Sample records for yeast chromosome arm

  1. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    PubMed

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  2. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast

    PubMed Central

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi

    2017-01-01

    ABSTRACT The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their “petite” strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic

  3. Effect of chromosome tethering on nuclear organization in yeast.

    PubMed

    Avşaroğlu, Barış; Bronk, Gabriel; Gordon-Messer, Susannah; Ham, Jungoh; Bressan, Debra A; Haber, James E; Kondev, Jane

    2014-01-01

    Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.

  4. Effect of Chromosome Tethering on Nuclear Organization in Yeast

    PubMed Central

    Avşaroğlu, Barış; Bronk, Gabriel; Gordon-Messer, Susannah; Ham, Jungoh; Bressan, Debra A.; Haber, James E.; Kondev, Jane

    2014-01-01

    Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild–type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination. PMID:25020108

  5. Structural maintenance of chromosome complexes differentially compact mitotic chromosomes according to genomic context

    PubMed Central

    Schalbetter, S. A.; Goloborodko, A.; Fudenberg, G.; Belton, J.-M.; Miles, C.; Yu, M.; Dekker, J.; Mirny, L.; Baxter, J.

    2017-01-01

    Structural Maintenance of Chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modeling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids whilst condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes. PMID:28825700

  6. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-04

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.

  7. Mapping replication origins in yeast chromosomes.

    PubMed

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  8. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  9. Construction of human chromosome 21-specific yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, M.K.; Shero, J.H.; Hieter, P.A.

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to > 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtainedmore » from a mouse-human hybrid, ranging in size from 200 to > 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from {approx} 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.« less

  10. Rescue of Targeted Regions of Mammalian Chromosomes by in Vivo Recombination in Yeast

    PubMed Central

    Kouprina, Natalya; Kawamoto, Kensaku; Barrett, J. Carl; Larionov, Vladimir; Koi, Minoru

    1998-01-01

    In contrast to other animal cell lines, the chicken pre-B cell lymphoma line, DT40, exhibits a high level of homologous recombination, which can be exploited to generate site-specific alterations in defined target genes or regions. In addition, the ability to generate human/chicken monochromosomal hybrids in the DT40 cell line opens a way for specific targeting of human genes. Here we describe a new strategy for direct isolation of a human chromosomal region that is based on targeting of the chromosome with a vector containing a yeast selectable marker, centromere, and an ARS element. This procedure allows rescue of the targeted region by transfection of total genomic DNA into yeast spheroplasts. Selection for the yeast marker results in isolation of chromosome sequences in the form of large circular yeast artificial chromosomes (YACs) up to 170 kb in size containing the targeted region. These YACs are generated by homologous recombination in yeast between common repeated sequences in the targeted chromosomal fragment. Alternatively, the targeted region can be rescued as a linear YACs when a YAC fragmentation vector is included in the yeast transformation mixture. Because the entire isolation procedure of the chromosomal region, once a target insertion is obtained, can be accomplished in ∼1 week, the new method greatly expands the utility of the homologous recombinationproficient DT40 chicken cell system. PMID:9647640

  11. Arm-specific dynamics of chromosome evolution in malaria mosquitoes

    PubMed Central

    2011-01-01

    Background The malaria mosquito species of subgenus Cellia have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in Anopheles gambiae and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus Cellia nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints. Results To gain a better understanding of the arm-specific differences in the rates of genome rearrangements, we compared gene orders and established syntenic relationships among Anopheles gambiae, Anopheles funestus, and Anopheles stephensi. We provided evidence that polymorphic inversions on the 2R arms in these three species nonrandomly captured similar sets of genes. This nonrandom distribution of genes was not only a result of preservation of ancestral gene order but also an outcome of extensive reshuffling of gene orders that created new combinations of homologous genes within independently originated polymorphic inversions. The statistical analysis of distribution of conserved gene orders demonstrated that the autosomal arms differ in their tolerance to generating evolutionary breakpoints. The fastest evolving 2R autosomal arm was enriched with gene blocks conserved between only a pair of species. In contrast, all identified syntenic blocks were preserved on the slowly evolving 3R arm of An. gambiae and on the homologous arms of An. funestus and An. stephensi. Conclusions Our results suggest that natural selection favors specific gene combinations within polymorphic inversions when distant species are exposed to similar environmental pressures. This knowledge could be useful for the discovery of genes responsible for an association of inversion polymorphisms with phenotypic variations in

  12. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast.

    PubMed

    Goshima, G; Yanagida, M

    2000-03-17

    Sister kinetochores are bioriented toward the spindle poles in higher eukaryotic prometaphase before chromosome segregation. We show that, in budding yeast, the sister kinetochores are separated in the very early spindle, while the sister arms remain associated. Biorientation of the separated kinetochores is achieved already after replication. Mtw1p, a homolog of fission yeast Mis12 required for biorientation, locates at the centromeres in an Ndc10p-dependent manner. Mtw1p and the sequences 1.8 and 3.8 kb from CEN3 and CEN15, respectively, behave like the precociously separated kinetochores, whereas the sequences 23 and 35 kb distant from CEN3 and CEN5 previously used as the centromere markers behave like a part of the arm. Mtw1p and Ndc10p are identically located except for additional spindle localization of Ndc10p. A model explaining small centromeres and early spindle formation in budding yeast is proposed.

  13. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    PubMed Central

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  14. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kere, J.; Grzeschik, K.H.; Limon, J.

    1993-05-01

    Anhidrotic ectodermal dysplasia (EDA), an X-chromosomal recessive disorder, is expressed in a few females with chromosomal translocations involving bands Xq12-q13. Using available DNA markers from the region and somatic cell hybrids the authors mapped the X-chromosomal breakpoints in two such translocations. The breakpoints were further mapped within a yeast artificial chromosome contig constructed by chromosome walking techniques. Genomic DNA markers that map between the two translocation breakpoints were recovered representing putative portions of the EDA gene. 32 refs., 3 figs., 1 tab.

  15. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  16. Quantitative Analysis of Chromosome Condensation in Fission Yeast

    PubMed Central

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota

    2013-01-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote. PMID:23263988

  17. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    PubMed

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  18. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    PubMed

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  19. Active role of a human genomic insert in replication of a yeast artificial chromosome.

    PubMed

    van Brabant, A J; Fangman, W L; Brewer, B J

    1999-06-01

    Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.

  20. Partial deletion of long arm of chromosome 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golomb, H.M.; Rowley, J.; Vardiman, J.

    Two patients with acute promyelocytic leukemia had an identical chromosomal abnormality detected by fluorescence banding. In each case, the clinical course was rapidly fatal, and was characterized by a lack of response to chemotherapy with cytarabine and thioguanine, and was complicated by disseminated intravascular coagulation. Bone marrow cells from each patient contained 46 chromosomes; in each instance, however, one chromosome 17 had a deletion of almost one half of the proximal portion of the long arm (del(17)(q11q21 or 22)).

  1. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  2. Efficient high-throughput sequencing of a laser microdissected chromosome arm

    PubMed Central

    2013-01-01

    Background Genomic sequence assemblies are key tools for a broad range of gene function and evolutionary studies. The diploid amphibian Xenopus tropicalis plays a pivotal role in these fields due to its combination of experimental flexibility, diploid genome, and early-branching tetrapod taxonomic position, having diverged from the amniote lineage ~360 million years ago. A genome assembly and a genetic linkage map have recently been made available. Unfortunately, large gaps in the linkage map attenuate long-range integrity of the genome assembly. Results We laser dissected the short arm of X. tropicalis chromosome 7 for next generation sequencing and computational mapping to the reference genome. This arm is of particular interest as it encodes the sex determination locus, but its genetic map contains large gaps which undermine available genome assemblies. Whole genome amplification of 15 laser-microdissected 7p arms followed by next generation sequencing yielded ~35 million reads, over four million of which uniquely mapped to the X. tropicalis genome. Our analysis placed more than 200 previously unmapped scaffolds on the analyzed chromosome arm, providing valuable low-resolution physical map information for de novo genome assembly. Conclusion We present a new approach for improving and validating genetic maps and sequence assemblies. Whole genome amplification of 15 microdissected chromosome arms provided sufficient high-quality material for localizing previously unmapped scaffolds and genes as well as recognizing mislocalized scaffolds. PMID:23714049

  3. Chromosome dynamics in the yeast interphase nucleus.

    PubMed

    Heun, P; Laroche, T; Shimada, K; Furrer, P; Gasser, S M

    2001-12-07

    Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.

  4. Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces.

    PubMed

    Barisic, Marin; Aguiar, Paulo; Geley, Stephan; Maiato, Helder

    2014-12-01

    Accurate chromosome segregation during cell division in metazoans relies on proper chromosome congression at the equator. Chromosome congression is achieved after bi-orientation to both spindle poles shortly after nuclear envelope breakdown, or by the coordinated action of motor proteins that slide misaligned chromosomes along pre-existing spindle microtubules. These proteins include the minus-end-directed kinetochore motor dynein, and the plus-end-directed motors CENP-E at kinetochores and chromokinesins on chromosome arms. However, how these opposite and spatially distinct activities are coordinated to drive chromosome congression remains unknown. Here we used RNAi, chemical inhibition, kinetochore tracking and laser microsurgery to uncover the functional hierarchy between kinetochore and arm-associated motors, exclusively required for congression of peripheral polar chromosomes in human cells. We show that dynein poleward force counteracts chromokinesins to prevent stabilization of immature/incorrect end-on kinetochore-microtubule attachments and random ejection of polar chromosomes. At the poles, CENP-E becomes dominant over dynein and chromokinesins to bias chromosome ejection towards the equator. Thus, dynein and CENP-E at kinetochores drive congression of peripheral polar chromosomes by preventing arm-ejection forces mediated by chromokinesins from working in the wrong direction.

  5. Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines.

    PubMed

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Laureys, G; De Paepe, A; Speleman, F

    2000-12-01

    M-FISH analysis was performed on 18 neuroblastoma cell lines, which were previously studied with cytogenetic, standard FISH and CGH data. One of the most striking findings of this study was the detection of chromosome 2 short arm rearrangements in 61% of the investigated cell lines. These rearrangements resulted from translocations with various partner chromosomes. All translocations, except one were unbalanced, leading to the consistent gain of chromosome segment 2pter-p22. A cryptic balanced translocation t(2;4) was observed with a breakpoint located in the vicinity of MYCN in cell line NBL-S. Combination of M-FISH results together with cytogenetic, standard FISH and CGH data yielded the most comprehensive description of chromosome 2 short arm rearrangements, leading to a consistent gain of chromosome 2 short arm material. Copyright 2000 Wiley-Liss, Inc.

  6. Centromere pairing – tethering partner chromosomes in meiosis I

    PubMed Central

    Kurdzo, Emily L; Dawson, Dean S

    2015-01-01

    In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans. PMID:25817724

  7. Production of a yeast artificial chromosome for stable expression of a synthetic xylose isomerase-xylulokinase polyprotein in a fuel ethanol yeast strain

    USDA-ARS?s Scientific Manuscript database

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. A yeast artificial chromosome (YAC) was engineered to contain a polyprotein gene construct expressing xylos...

  8. Sequence Composition and Gene Content of the Short Arm of Rye (Secale cereale) Chromosome 1

    PubMed Central

    Fluch, Silvia; Kopecky, Dieter; Burg, Kornel; Šimková, Hana; Taudien, Stefan; Petzold, Andreas; Kubaláková, Marie; Platzer, Matthias; Berenyi, Maria; Krainer, Siegfried; Doležel, Jaroslav; Lelley, Tamas

    2012-01-01

    Background The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. Methodology/Principal Findings Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice. Conclusions The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye. PMID:22328922

  9. Initiation at closely spaced replication origins in a yeast chromosome.

    PubMed

    Brewer, B J; Fangman, W L

    1993-12-10

    Replication of eukaryotic chromosomes involves initiation at origins spaced an average of 50 to 100 kilobase pairs. In yeast, potential origins can be recognized as autonomous replication sequences (ARSs) that allow maintenance of plasmids. However, there are more ARS elements than active chromosomal origins. The possibility was examined that close spacing of ARSs can lead to inactive origins. Two ARSs located 6.5 kilobase pairs apart can indeed interfere with each other. Replication is initiated from one or the other ARS with equal probability, but rarely (< 5%) from both ARSs on the same DNA molecule.

  10. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    PubMed Central

    2012-01-01

    Background Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. Results The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695

  11. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    PubMed

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    PubMed

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  13. NET1 and HFI1 genes of yeast mediate both chromosome maintenance and mitochondrial rho(-) mutagenesis.

    PubMed

    Koltovaya, N A; Guerasimova, A S; Tchekhouta, I A; Devin, A B

    2003-08-01

    An increase in the mitochondrial rho(-) mutagenesis is a well-known response of yeast cells to mutations in numerous nuclear genes as well as to various kinds of stress. Despite extensive studies for several decades, the biological significance of this response is still not fully understood. The genetic approach to solving this enigma includes a study of genes that are required for the high incidence of spontaneous rho(-) mutants. We have obtained mutations of a few nuclear genes of that sort and found that mutations in certain genes, including CDC28, the central cell-cycle regulation gene, result in a decrease in spontaneous rho(-) mutability and simultaneously affect the maintenance of the yeast chromosomes and plasmids. Two more genes resembling CDC28 in this respect are identified in the present work as a result of the characterization of four new mutants. These two genes are NET1 and HFI1 which mediate important regulatory protein-protein interactions in the yeast cell. The effects of four mutations, including net1-srm and hfi1-srm, on the maintenance of the yeast mitochondrial genome, chromosomes and plasmids, as well as on the cell's sensitivity to ionizing radiation, are also described. The data presented suggest that the pleiotropic srm mutations determining coordinate changes in the fidelity of mitotic transmission of chromosomes, plasmids and mtDNA molecules identify genes that most probably operate high up in the hierarchy of the general genetic regulation of yeast. Copyright 2003 John Wiley & Sons, Ltd.

  14. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-09-09

    Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  15. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast

    PubMed Central

    Sanchez, Joseph C.; Kwan, Elizabeth X.; Raghuraman, M. K.; Brewer, Bonita J.

    2017-01-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways—DNA replication and ribosome biogenesis. PMID:29036220

  16. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    PubMed

    Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J

    2017-10-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  17. Erratum: Letter to the Editor: Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This {open_quotes}Letter to the Editor{close_quotes} is the reprint of a corrected table from a previous paper about the exclusion of primary congenital glaucoma from two candidate regions of chromosome arm 6p and chromosome 11.

  18. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles

    PubMed Central

    Levesque, Aime A.; Compton, Duane A.

    2001-01-01

    Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression. PMID:11564754

  19. A Three-Dimensional Model of the Yeast Genome

    NASA Astrophysics Data System (ADS)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  20. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome.

    PubMed

    Shen, Yue; Wang, Yun; Chen, Tai; Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M; Jiang, Hui; French, Christopher E; Nieduszynski, Conrad A; Koszul, Romain; Marston, Adele L; Yuan, Yingjin; Wang, Jian; Bader, Joel S; Dai, Junbiao; Boeke, Jef D; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-03-10

    Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. Copyright © 2017, American Association for the Advancement of Science.

  1. Deep functional analysis of synII, a 770 kb synthetic yeast chromosome

    PubMed Central

    Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A.; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A.; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M.; Jiang, Hui; French, Christopher E.; Nieduszynski, Conrad A.; Koszul, Romain; Marston, Adele L.; Yuan, Yingjin; Wang, Jian; Bader, Joel S.; Dai, Junbiao; Boeke, Jef D.; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-01-01

    Herein we report the successful design, construction and characterization of a 770 kb synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels, including phenomics, transcriptomics, proteomics, chromosome segregation and replication analysis to provide a thorough and comprehensive analysis of a synthetic chromosome. Our “Trans-Omics” analyses reveal a modest but potentially significant pervasive up-regulation of translational machinery observed in synII is mainly caused by the deletion of 13 tRNAs. By both complementation assays and SCRaMbLE, we targeted and debuged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the HOG response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. PMID:28280153

  2. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    PubMed

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  3. Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing

    PubMed Central

    Lang, Gregory I.; Murray, Andrew W.

    2011-01-01

    Previous experimental studies suggest that the mutation rate is nonuniform across the yeast genome. To characterize this variation across the genome more precisely, we measured the mutation rate of the URA3 gene integrated at 43 different locations tiled across Chromosome VI. We show that mutation rate varies 6-fold across a single chromosome, that this variation is correlated with replication timing, and we propose a model to explain this variation that relies on the temporal separation of two processes for replicating past damaged DNA: error-free DNA damage tolerance and translesion synthesis. This model is supported by the observation that eliminating translesion synthesis decreases this variation. PMID:21666225

  4. A genetic linkage map of the long arm of human chromosome 22.

    PubMed

    Rouleau, G A; Haines, J L; Bazanowski, A; Colella-Crowley, A; Trofatter, J A; Wexler, N S; Conneally, P M; Gusella, J F

    1989-01-01

    We have used a recombinant phage library enriched for chromosome 22 sequences to isolate and characterize eight anonymous DNA probes detecting restriction fragment length polymorphisms on this autosome. These were used in conjunction with eight previously reported loci, including the genes BCR, IGLV, and PDGFB, four anonymous DNA markers, and the P1 blood group antigen, to construct a linkage map for chromosome 22. The linkage group is surprisingly large, spanning 97 cM on the long arm of the chromosome. There are no large gaps in the map; the largest intermarker interval is 14 cM. Unlike several other chromosomes, little overall difference was observed for sex-specific recombination rates on chromosome 22. The availability of a genetic map will facilitate investigation of chromosome 22 rearrangements in such disorders as cat eye syndrome and DiGeorge syndrome, deletions in acoustic neuroma and meningioma, and translocations in Ewing sarcoma. This defined set of linked markers will also permit testing chromosome 22 for the presence of particular disease genes by family studies and should immediately support more precise mapping and identification of flanking markers for NF2, the defective gene causing bilateral acoustic neurofibromatosis.

  5. Microcephaly/lymphedema and terminal deletion of the long arm of chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryns, J.P.

    1995-07-03

    Recently, we examined a 2-year-old boy with the association of microcephaly and significant pedal edema that extended to the distal parts of the legs. Prometaphase chromosome studies showed a small terminal deletion in the long arm of chromosome 13 of band 13q34, karyotype 46,XY,del(13)(q34{yields}qter). The present finding of a small terminal 13q34 deletion in this young boy with microcephaly/lymphedema is a first indication that the lymphedema/microcephaly association can be due to a small terminal 13q deletion. 2 refs.

  6. Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model.

    PubMed

    Gürsoy, Gamze; Xu, Yun; Liang, Jie

    2017-07-01

    Nuclear landmarks and biochemical factors play important roles in the organization of the yeast genome. The interaction pattern of budding yeast as measured from genome-wide 3C studies are largely recapitulated by model polymer genomes subject to landmark constraints. However, the origin of inter-chromosomal interactions, specific roles of individual landmarks, and the roles of biochemical factors in yeast genome organization remain unclear. Here we describe a multi-chromosome constrained self-avoiding chromatin model (mC-SAC) to gain understanding of the budding yeast genome organization. With significantly improved sampling of genome structures, both intra- and inter-chromosomal interaction patterns from genome-wide 3C studies are accurately captured in our model at higher resolution than previous studies. We show that nuclear confinement is a key determinant of the intra-chromosomal interactions, and centromere tethering is responsible for the inter-chromosomal interactions. In addition, important genomic elements such as fragile sites and tRNA genes are found to be clustered spatially, largely due to centromere tethering. We uncovered previously unknown interactions that were not captured by genome-wide 3C studies, which are found to be enriched with tRNA genes, RNAPIII and TFIIS binding. Moreover, we identified specific high-frequency genome-wide 3C interactions that are unaccounted for by polymer effects under landmark constraints. These interactions are enriched with important genes and likely play biological roles.

  7. Assembly of YAC contigs on the long arm of human chromosome 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Fujiwara, T.M.; Wang, J.X.

    1994-09-01

    We have previously identified approximately 2,000 chromosome 2-specific YACs by screening the CEPH Mark I YAC library (`Midi- YACs`). Using STS content mapping, we have been able to order groups of these YACs along chromosome 2q. The four biggest YAC groups were associated with VIL (2q35), FN (2q34), PAX3 (2q36), ALPI (2q37) and contained 113, 107, 79, and 63 YACs, respectively. We have identified the minimal tiling paths for most YAC groups and determined the insert sizes of over 300 YACs. Furthermore, on human chromosome 2q31-q37, 15 microsatellite markers were linked to various expressed genes through overlapping YACs and themore » physical distance of microsatellites to expressed genes was determined. The precise mapping of a set of highly informative microsatellite markers with respect to known genes provides a useful tool for linkage studies and the identification of disease genes from the long arm of human chromosome 2.« less

  8. Control of mitotic chromosome condensation by the fission yeast transcription factor Zas1.

    PubMed

    Schiklenk, Christoph; Petrova, Boryana; Kschonsak, Marc; Hassler, Markus; Klein, Carlo; Gibson, Toby J; Haering, Christian H

    2018-05-07

    Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C 2 H 2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation. © 2018 Schiklenk et al.

  9. Recombination walking: genetic selection of clones from pooled libraries of yeast artificial chromosomes by homologous recombination.

    PubMed Central

    Miller, A M; Savinelli, E A; Couture, S M; Hannigan, G M; Han, Z; Selden, R F; Treco, D A

    1993-01-01

    Recombination walking is based on the genetic selection of specific human clones from a yeast artificial chromosome (YAC) library by homologous recombination. The desired clone is selected from a pooled (unordered) YAC library, eliminating labor-intensive steps typically used in organizing and maintaining ordered YAC libraries. Recombination walking represents an efficient approach to library screening and is well suited for chromosome-walking approaches to the isolation of genes associated with common diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8367472

  10. Cryptic insertion of 3'FOXO1 into inverted chromosome arm 2q in the presence of two normal chromosome 13s and 13 small interstitial duplications in a patient with alveolar rhabdomyosarcoma.

    PubMed

    Hackman, Sarah; Calvey, Laura; Bernreuter, Kristen; Mark, Mengya Wang; Starnes, Sarah; Batanian, Jacqueline R

    2015-09-01

    Alveolar rhabdomyosarcoma (ARMS) is a pediatric soft tissue neoplasm with a characteristic translocation, t(2;13)(q35;q14), which is detected in 70-80% of cases. This well-described translocation produces the gene fusion product PAX3-FOXO1. Cryptic rearrangements of this fusion have never before been reported in ARMS. Here we describe a patient with ARMS that showed, by fluorescence in situ hybridization and G-banded chromosomes, a cryptic insertion of 3'FOXO1 into inverted chromosome 2q. The inversion breakpoints were depicted by array comparative genomic hybridization as two small interstitial duplications, one of which involved the PAX3 gene. In addition, the array comparative genomic hybridization results revealed 1q gain, 16q loss, and 11 more small duplications, with one of them involving the FOXO1 gene. Although the pathogenesis in classic ARMS cases is thought to be driven by the 5'PAX3-3'FOXO1 fusion on derivative chromosome 13, here we report a novel cryptic insertion of 3'FOXO1 resulting in a pathogenic fusion with 5'PAX3 on inverted chromosome 2q. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Speciation driven by hybridization and chromosomal plasticity in a wild yeast.

    PubMed

    Leducq, Jean-Baptiste; Nielly-Thibault, Lou; Charron, Guillaume; Eberlein, Chris; Verta, Jukka-Pekka; Samani, Pedram; Sylvester, Kayla; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2016-01-11

    Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.

  12. The short arm deletion syndrome of chromosome 4 (4p- syndrome).

    PubMed

    Zellweger, H; Bardach, J; Bordwell, J; Williams, K

    1975-01-01

    Partial deletion of the short arm of chromosome 4 (4p-) represents another (rare) cause of cleft lip and cleft palate. Further characteristic manifestations of the syndrome (also called Wolf or Wolf-Hirschhorn syndrome) are growth failure, microcephaly, prominent glabella, hypertelorism, beaked nose, poorly differentiated and low set ears, cardiac and renal malformation and hypospadias. Life expectancy is often shortened. The 4p- syndrome has many features in common with another deletion syndrome, the cri-du-chat syndrome, and also with the Smith-Lemli-Opitz syndrome. The latter is a hereditary condition with normal karyotype. The cri-du-chat syndrome is characterized by a peculiar high-pitched, mewing cry and can be differentiated from the Wolf syndrome by the different staining characteristics (banding) of chromosomes 4 and 5.

  13. The A-Like Faker Assay for Measuring Yeast Chromosome III Stability.

    PubMed

    Novoa, Carolina A; Ang, J Sidney; Stirling, Peter C

    2018-01-01

    The ability to rapidly assess chromosome instability (CIN) has enabled profiling of most yeast genes for potential effects on genome stability. The A-like faker (ALF) assay is one of several qualitative and quantitative marker loss assays that indirectly measure loss or conversion of genetic material using a counterselection step. The ALF assay relies on the ability to count spurious mating events that occur upon loss of the MATα locus of haploid Saccharomyces cerevisiae strains. Here, we describe the deployment of the ALF assay for both rapid and simple qualitative, and more in-depth quantitative analysis allowing determination of absolute ALF frequencies.

  14. A gene for cleidocranial dysplasia to the short arm of chromosome 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, G.F.; Muenke, M.; Robin, N.H.

    1995-04-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant generalized bone dysplasia characterized by mild-to-moderate short stature, clavicular aplasia or hypoplasia, supernumerary and ectopic teeth, delayed eruption of secondary teeth, a characteristic craniofacial appearance, and a variety of other skeletal anomalies. We have performed linkage studies in five families with CCD, with 24 affected and 20 unaffected individuals, using microsatellite markers spanning two candidate regions on chromosomes 8q and 6. The strongest support for linkage was with chromosome 6p microsatellite marker D6S282 with a two-point lod score of 4.84 ({theta} = .03). Furthermore, the multipoint lod score was 5.70 in the intervalmore » between D6S282 and D6S291. These data show that the gene for autosomal dominant CCD is located within a 19-cM interval on the short arm of chromosome 6, between D6S282 and D6S291. 25 refs., 3 figs., 1 tab.« less

  15. Hypertensive Cerebral Hemorrhage in a Patient with Turner Syndrome Caused by Deletion in the Short Arm of the X Chromosome.

    PubMed

    Hori, Yusuke S; Ohkura, Takahiro; Ebisudani, Yuki; Umakoshi, Michiari; Ishi, Masato; Oda, Kazunori; Aoi, Mizuho; Inoue, Takushi; Furujo, Mahoko; Tanaka, Hiroyuki; Fukuhara, Toru

    2018-01-01

    Turner syndrome is a chromosomal disorder usually caused by complete deletion of an X chromosome, with deletion in the short arm of the X chromosome being a rare cause of the condition. Patients with Turner syndrome commonly develop hypertension, and associated vascular complications such as aortic dissection or cerebral hemorrhage have been reported. Cerebral hemorrhage in Turner syndrome is a rare complication, and only a few reports have been published. In these reports, all patients have XO karyotypes or a mosaic type as the cause of Turner syndrome, while no other Turner syndrome types have been documented. In this report, we present for the first time a patient with Turner syndrome caused by deletion in the short arm of the X chromosome who experienced hypertensive hemorrhage as a late complication. © 2017 S. Karger AG, Basel.

  16. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M.

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which ismore » G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.« less

  17. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    PubMed

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  18. Chromosomal location and genetic mapping of the mismatch repair gene homologs MSH2, MSH3, and MSH6 in rye and wheat

    PubMed

    Korzun; Borner; Siebert; Malyshev; Hilpert; Kunze; Puchta

    1999-12-01

    The efficiency of homeologous recombination is influenced by mismatch repair genes in bacteria, yeast, and mammals. To elucidate a possible role of these genes in homeologous pairing and cross-compatibility in plants, gene probes of wheat (Triticum aestivum) specific for the mismatch repair gene homologues MSH2, MSH3, and MSH6 were used to map them to their genomic positions in rye (Secale cereale). Whereas MSH2 was mapped to the short arm of chromosome 1R, MSH3 was mapped to the long arm of chromosome 2R and MSH6 to the long arm of chromosome 5R. Southern blots with nullisomic-tetrasomic (NT) lines of wheat indicated the presence of the sequences on the respective homeologous group of wheat chromosomes. Additionally, an MSH6-specific homologue could also be detected on homoeologous group 3 of wheat. However, in the well-known, highly homoeologous pairing wheat mutant ph1b the MSH6-specific sequence is not within the deleted part of chromosome 5BL, indicating that the pairing phenotype is not due to a loss of one of the mismatch repair genes tested.

  19. Differing Requirements for RAD51 and DMC1 in Meiotic Pairing of Centromeres and Chromosome Arms in Arabidopsis thaliana

    PubMed Central

    Da Ines, Olivier; Abe, Kiyomi; Goubely, Chantal; Gallego, Maria Eugenia; White, Charles I.

    2012-01-01

    During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains. PMID:22532804

  20. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast.

    PubMed

    Meyer, Régis E; Kim, Seoyoung; Obeso, David; Straight, Paul D; Winey, Mark; Dawson, Dean S

    2013-03-01

    The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.

  1. Interstitial deletion in the long arms of chromosome 1: 46,XY,del(1)(pter leads to q22::q25 leads to qter).

    PubMed Central

    de Pablo, C E; García Sagredo, J M; Ferro, M T; Ferrando, P; San Román, C

    1980-01-01

    A child was brought to us with multiple anomalies. On examination we found an interstitial deletion in the long arms of chromosome 1. We studied genetic and chromosome markers, comparing our clinical and cytogenetic findings with other reported cases of chromosome 1 interstitial deletion. Images PMID:6937620

  2. Module-based construction of plasmids for chromosomal integration of the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Kakui, Yasutaka; Sunaga, Tomonari; Arai, Kunio; Dodgson, James; Ji, Liang; Csikász-Nagy, Attila; Carazo-Salas, Rafael; Sato, Masamitsu

    2015-01-01

    Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a ‘module’, can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism. PMID:26108218

  3. Capturing Chromosome Conformation

    NASA Astrophysics Data System (ADS)

    Dekker, Job; Rippe, Karsten; Dekker, Martijn; Kleckner, Nancy

    2002-02-01

    We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.

  4. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts

    PubMed Central

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-01-01

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends. PMID:22354040

  5. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.

    PubMed

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-04-18

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.

  6. Multiple determinants controlling activation of yeast replication origins late in S phase.

    PubMed

    Friedman, K L; Diller, J D; Ferguson, B M; Nyland, S V; Brewer, B J; Fangman, W L

    1996-07-01

    Analysis of a 131-kb segment of the left arm of yeast chromosome XIV beginning 157 kb from the telomere reveals four highly active origins of replication that initiate replication late in S phase. Previous work has shown that telomeres act as determinants for late origin activation. However, at least two of the chromosome XIV origins maintain their late activation time when located on large circular plasmids, indicating that late replication is independent of telomeres. Analysis of the replication time of plasmid derivatives containing varying amounts of chromosome XIV DNA show that a minimum of three chromosomal elements, distinct from each tested origin, contribute to late activation time. These late determinants are functionally equivalent, because duplication of one set of contributing sequences can compensate for the removal of another set. Furthermore, insertion of an origin that is normally early activated into this domain results in a shift to late activation, suggesting that the chromosome XIV origins are not unique in their ability to respond to the late determinants.

  7. An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.

    PubMed

    van Brabant, A J; Buchanan, C D; Charboneau, E; Fangman, W L; Brewer, B J

    2001-04-01

    Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.

  8. Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer

    PubMed Central

    Buganim, Yosef; Solomon, Hilla; Goldfinger, Naomi; Hovland, Randi; Ke, Xi-Song; Oyan, Anne M.; Kalland, Karl-H.; Rotter, Varda; Domany, Eytan

    2011-01-01

    Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a causal role in tumorigenesis. According to an alternative view, chromosomal imbalance is mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized by the over-expression of human telomerase catalytic subunit hTERT, and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that 20q amplification induced deregulation of several specific cancer-related pathways including the MAPK pathway, the p53 pathway and Polycomb group factors. In addition, activation of Myc, AML, B-Catenin and the ETS family transcription factors was identified as an important step in cancer development driven by 20q amplification. Finally we identified 13 "cancer initiating genes", located on 20q13, which were significantly over-expressed in many tumors, with expression levels correlated with tumor grade and outcome suggesting that these genes induce the malignant process upon 20q amplification. PMID:21297939

  9. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis.

    PubMed

    Medhi, Darpan; Goldman, Alastair Sh; Lichten, Michael

    2016-11-18

    The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1 -derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions.

  10. Mitotic Chromosome Biorientation in Fission Yeast Is Enhanced by Dynein and a Minus-end–directed, Kinesin-like Protein

    PubMed Central

    Spiridonov, Ilia S.; McIntosh, J. Richard

    2007-01-01

    Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end–directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole. PMID:17409356

  11. Construction of a yeast artificial chromosome contig encompassing the chromosome 14 Alzheimer`s disease locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, V.; Bonnycastle, L.; Poorkai, P.

    1994-09-01

    We have constructed a yeast artificial chromosome (YAC) contig of chromosome 14q24.3 which encompasses the chromosome 14 Alzheimer`s disease locus (AD3). Determined by linkage analysis of early-onset Alzheimer`s disease kindreds, this interval is bounded by the genetic markers D14S61-D14S63 and spans approximately 15 centimorgans. The contig consists of 29 markers and 74 YACs of which 57 are defined by one or more sequence tagged sites (STSs). The STS markers comprise 5 genes, 16 short tandem repeat polymorphisms and 8 cDNA clones. An additional number of genes, expressed sequence tags and cDNA fragments have been identified and localized to the contigmore » by hybridization and sequence analysis of anonymous clones isolated by cDNA direct selection techniques. A minimal contig of about 15 YACs averaging 0.5-1.5 megabase in length will span this interval and is, at first approximation, in rough agreement with the genetic map. For two regions of the contig, our coverage has relied on L1/THE fingerprint and Alu-PCR hybridization data of YACs provided by CEPH/Genethon. We are currently developing sequence tagged sites from these to confirm the overlaps revealed by the fingerprint data. Among the genes which map to the contig are transforming growth factor beta 3, c-fos, and heat shock protein 2A (HSPA2). C-fos is not a candidate gene for AD3 based on the sequence analysis of affected and unaffected individuals. HSPA2 maps to the proximal edge of the contig and Calmodulin 1, a candidate gene from 4q24.3, maps outside of the region. The YAC contig is a framework physical map from which cosmid or P1 clone contigs can be constructed. As more genes and cDNAs are mapped, a highly resolved transcription map will emerge, a necessary step towards positionally cloning the AD3 gene.« less

  12. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture

    PubMed Central

    2013-01-01

    Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes. PMID:24267747

  13. Rif1 is a global regulator of timing of replication origin firing in fission yeast

    PubMed Central

    Hayano, Motoshi; Kanoh, Yutaka; Matsumoto, Seiji; Renard-Guillet, Claire; Shirahige, Katsuhiko; Masai, Hisao

    2012-01-01

    One of the long-standing questions in eukaryotic DNA replication is the mechanisms that determine where and when a particular segment of the genome is replicated. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication and may affect the site selection and timing of origin firing. We identified rif1Δ, a null mutant of rif1+, a conserved telomere-binding factor, as an efficient bypass mutant of fission yeast hsk1. Extensive deregulation of dormant origins over a wide range of the chromosomes occurs in rif1Δ in the presence or absence of hydroxyurea (HU). At the same time, many early-firing, efficient origins are suppressed or delayed in firing timing in rif1Δ. Rif1 binds not only to telomeres, but also to many specific locations on the arm segments that only partially overlap with the prereplicative complex assembly sites, although Rif1 tends to bind in the vicinity of the late/dormant origins activated in rif1Δ. The binding to the arm segments occurs through M to G1 phase in a manner independent of Taz1 and appears to be essential for the replication timing program during the normal cell cycle. Our data demonstrate that Rif1 is a critical determinant of the origin activation program on the fission yeast chromosomes. PMID:22279046

  14. Analysis of the temporal program of replication initiation in yeast chromosomes.

    PubMed

    Friedman, K L; Raghuraman, M K; Fangman, W L; Brewer, B J

    1995-01-01

    The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating

  15. Protein Arms in the Kinetochore-Microtubule Interface of the Yeast DASH Complex

    PubMed Central

    Miranda, JJ L.; King, David S.

    2007-01-01

    The yeast DASH complex is a heterodecameric component of the kinetochore necessary for accurate chromosome segregation. DASH forms closed rings around microtubules with a large gap between the DASH ring and the microtubule cylinder. We characterized the microtubule-binding properties of limited proteolysis products and subcomplexes of DASH, thus identifying candidate polypeptide extensions involved in establishing the DASH-microtubule interface. The acidic C-terminal extensions of tubulin subunits are not essential for DASH binding. We also measured the molecular mass of DASH rings on microtubules with scanning transmission electron microscopy and found that approximately 25 DASH heterodecamers assemble to form each ring. Dynamic association and relocation of multiple flexible appendages of DASH may allow the kinetochore to translate along the microtubule surface. PMID:17460120

  16. The gene for PAX7, a member of the paired-box-containing genes, is localized on human chromosome arm 1p36.

    PubMed

    Shapiro, D N; Sublett, J E; Li, B; Valentine, M B; Morris, S W; Noll, M

    1993-09-01

    The murine Pax-7 gene and the cognate human gene, formerly designated HuP1, are members of the multigene paired-box-containing class of developmental regulatory genes first identified in Drosophila. By analysis of somatic cell hybrids segregating human chromosomes, the gene encoding PAX7 was localized to human chromosome 1. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region of the short arm (1p36) of the chromosome. Additionally, these results confirm the extensive homology between human chromosome 1p and the distal segment of mouse chromosome 4, extending from bands C5 through E2.

  17. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis

    PubMed Central

    Medhi, Darpan; Goldman, Alastair SH; Lichten, Michael

    2016-01-01

    The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions. DOI: http://dx.doi.org/10.7554/eLife.19669.001 PMID:27855779

  18. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.

  19. Small terminal deletions of the long arm of chromosome 2: Two new cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A.M.; Ellis, K.H.; Browne, C.E.

    1994-12-01

    We report on 2 girls with small de novo terminal deletions of the long arm of chromosome 2 and breakpoints within q37. Four cases with similar or more extensive deletions have been previously reported in full. Hypotonia and psychomotor retardation were the only manifestations common to all 6 cases. The phenotype associated with small terminal 2q deletions is variable and clearly not always as mild as indicated in previous reports. The abnormality may also be more common than has been assumed. 12 refs., 3 figs., 1 tab.

  20. Assignment of the Nance-Horan syndrome to the distal short arm of the X chromosome.

    PubMed

    Zhu, D; Alcorn, D M; Antonarakis, S E; Levin, L S; Huang, P C; Mitchell, T N; Warren, A C; Maumenee, I H

    1990-11-01

    There are three types of X-linked cataracts recorded in Mendelian Inheritance in Man (McKusick 1988): congenital total, with posterior sutural opacities in heterozygotes; congenital, with microcornea or slight microphthalmia; and the cataract-dental syndrome or Nance-Horan (NH) syndrome. To identify a DNA marker close to the gene responsible for the NH syndrome, linkage analysis on 36 members in a three-generation pedigree including seven affected males and nine carrier females was performed using 31 DNA markers. A LOD score of 1.662 at theta = 0.16 was obtained with probe 782 from locus DXS85 on Xp22.2-p22.3. Negative LOD scores were found at six loci on the short arm, one distal to DXS85, five proximal, and six probes spanning the long arm were highly negative. These results make the assignment of the locus for NH to the distal end of the short arm of the X chromosome likely.

  1. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    PubMed Central

    2010-01-01

    Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs), and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb) was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously reported, to the two

  2. The Chromosomal Association of the Smc5/6 Complex Depends on Cohesion and Predicts the Level of Sister Chromatid Entanglement

    PubMed Central

    Jeppsson, Kristian; Carlborg, Kristian K.; Nakato, Ryuichiro; Berta, Davide G.; Lilienthal, Ingrid; Kanno, Takaharu; Lindqvist, Arne; Brink, Maartje C.; Dantuma, Nico P.; Katou, Yuki; Shirahige, Katsuhiko; Sjögren, Camilla

    2014-01-01

    The cohesin complex, which is essential for sister chromatid cohesion and chromosome segregation, also inhibits resolution of sister chromatid intertwinings (SCIs) by the topoisomerase Top2. The cohesin-related Smc5/6 complex (Smc5/6) instead accumulates on chromosomes after Top2 inactivation, known to lead to a buildup of unresolved SCIs. This suggests that cohesin can influence the chromosomal association of Smc5/6 via its role in SCI protection. Using high-resolution ChIP-sequencing, we show that the localization of budding yeast Smc5/6 to duplicated chromosomes indeed depends on sister chromatid cohesion in wild-type and top2-4 cells. Smc5/6 is found to be enriched at cohesin binding sites in the centromere-proximal regions in both cell types, but also along chromosome arms when replication has occurred under Top2-inhibiting conditions. Reactivation of Top2 after replication causes Smc5/6 to dissociate from chromosome arms, supporting the assumption that Smc5/6 associates with a Top2 substrate. It is also demonstrated that the amount of Smc5/6 on chromosomes positively correlates with the level of missegregation in top2-4, and that Smc5/6 promotes segregation of short chromosomes in the mutant. Altogether, this shows that the chromosomal localization of Smc5/6 predicts the presence of the chromatid segregation-inhibiting entities which accumulate in top2-4 mutated cells. These are most likely SCIs, and our results thus indicate that, at least when Top2 is inhibited, Smc5/6 facilitates their resolution. PMID:25329383

  3. Scc2 regulates gene expression by recruiting cohesin to the chromosome as a transcriptional activator during yeast meiosis

    PubMed Central

    Lin, Weiqiang; Jin, Hui; Liu, Xiuwen; Hampton, Kristin; Yu, Hong-Guo

    2011-01-01

    To tether sister chromatids, a protein-loading complex, including Scc2, recruits cohesin to the chromosome at discrete loci. Cohesin facilitates the formation of a higher-order chromosome structure that could also influence gene expression. How cohesin directly regulates transcription remains to be further elucidated. We report that in budding yeast Scc2 is required for sister-chromatid cohesion during meiosis for two reasons. First, Scc2 is required for activating the expression of REC8, which encodes a meiosis-specific cohesin subunit; second, Scc2 is necessary for recruiting meiotic cohesin to the chromosome to generate sister-chromatid cohesion. Using a heterologous reporter assay, we have found that Scc2 increases the activity of its target promoters by recruiting cohesin to establish an upstream cohesin-associated region in a position-dependent manner. Rec8-associated meiotic cohesin is required for the full activation of the REC8 promoter, revealing that cohesin has a positive feedback on transcriptional regulation. Finally, we provide evidence that chromosomal binding of cohesin is sufficient for target-gene activation during meiosis. Our data support a noncanonical role for cohesin as a transcriptional activator during cell differentiation. PMID:21508318

  4. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene.

    PubMed

    Mollereau, C; Simons, M J; Soularue, P; Liners, F; Vassart, G; Meunier, J C; Parmentier, M

    1996-08-06

    Nociceptin (orphanin FQ), the newly discovered natural agonist of opioid receptor-like (ORL1) receptor, is a neuropeptide that is endowed with pronociceptive activity in vivo. Nociceptin is derived from a larger precursor, prepronociceptin (PPNOC), whose human, mouse, and rat genes we have now isolated. The PPNOC gene is highly conserved in the three species and displays organizational features that are strikingly similar to those of the genes of preproenkephalin, preprodynorphin, and preproopiomelanocortin, the precursors to endogenous opioid peptides, suggesting the four genes belong to the same family-i.e., have a common evolutionary origin. The PPNOC gene encodes a single copy of nociceptin as well as of other peptides whose sequence is strictly conserved across murine and human species; hence it is likely to be neurophysiologically significant. Northern blot analysis shows that the PPNOC gene is predominantly transcribed in the central nervous system (brain and spinal cord) and, albeit weakly, in the ovary, the sole peripheral organ expressing the gene. By using a radiation hybrid cell line panel, the PPNOC gene was mapped to the short arm of human chromosome 8 (8p21), between sequence-tagged site markers WI-5833 and WI-1172, in close proximity of the locus encoding the neurofilament light chain NEFL. Analysis of yeast artificial chromosome clones belonging to the WC8.4 contig covering the 8p21 region did not allow to detect the presence of the gene on these yeast artificial chromosomes, suggesting a gap in the coverage within this contig.

  5. Studies on metatherian sex chromosomes. IX. Sex chromosomes of the greater glider (Marsupialia: Petauridae).

    PubMed

    Murray, J D; McKay, G M; Sharman, G B

    1979-06-01

    The greater glider, currently but incorrectly known as Schoinobates volans, is widely distributed in forested regions in eastern Australia. All animals studied from six different localities had 20 autosomes but there were four chromosomally distinct populations. At Royal National Park, N.S.W., all female greater gliders studied had 22 chromosomes including two large submetacentric X chromosomes with subterminal secondary constrictions in their longer arms. This form of X chromosome occurred also at Bondo State Forest, Myall Lakes and Coff's Harbour, N.S.W., and at Eidsvold, Qld. At Coomooboolaroo, Qld, the X chromosome was also a large submetacentric but a secondary constriction occurred in the shorter arm. Two chromosomally distinct types apparently occur in Royal National Park, one with XY males as in all other populations, and one with XY1Y2 males. Y or Y1, but not Y2, chromosomes were eliminated from the bone marrow in all populations but were present in spermatogonia, primary spermatocytes and cultured fibroblasts. Animals from Bondo State Forest had three or more acrocentric or metacentric supernumerary chromosomes.

  6. Chironomus group classification according to the mapping of polytene chromosomes

    NASA Astrophysics Data System (ADS)

    Salleh, Syafinaz; Kutty, Ahmad Abas

    2013-11-01

    Chironomus is one of the important genera in Chironomidae family since they are widely diverse and abundance in aquatic ecosystem. Since Chironomus is very diverse, taxonomic work on this genus is very difficult and incomplete. Objective of this study is to form group classification of Chironomus according to the polytene chromosome mapping. The specific characteristics of polytene chromosomes in the salivary gland appeared to be particularly promising for taxonomic diagnosis of chironomid species. Chironomid larvae were collected from pristine sites at Sg. Langat and cultured in laboratory to reach fourth instar stage. The salivary glands were removed from larvae and chromosomes were stained with aceto orcein. Results showed that polytene chromosomes of Chironomus comprise of three long metacentric or submetacentric arms (BF, CD and AE arms) and one short acrocentric (G arm). In regards to nucleolar organizing region (NOR), Balbiani ring (BR), puffings and chromosome rearrangement, a number of four groups of different banding patterns were found. Two groups called as G group A and B have common NOR on arm BF and BR on arm G. However, group A has rearrangement pattern on arm CD and not in group B. This makes group B separated from group A. Another two groups called as groups C and D do not have common NOR on arm BF and also BR on arm G. Groups C and D were separated using arms G and arm AE. At arm G, only group C rearrangement pattern at unit 23c whereas group D was found to have large NOR at arm G and as well as arm AE, only group D has rearrangement pattern at unit 12c. This study indicates that chromosome arrangement could aid in revealing Chironomus diversity.

  7. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells

    PubMed Central

    Shrestha, Roshan L.; Ahn, Grace S.; Staples, Mae I.; Sathyan, Kizhakke M.; Karpova, Tatiana S.; Foltz, Daniel R.; Basrai, Munira A.

    2017-01-01

    Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability. PMID:28596481

  8. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis.

    PubMed

    Lech, Tomasz; Styrna, Józefa; Kotarska, Katarzyna

    2018-03-01

    Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.

  9. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    PubMed

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  10. Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid

    PubMed Central

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-01-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production. PMID:19261625

  11. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  12. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/myeloid leukemia factor 2 (MLF2).

    PubMed

    Kuefer, M U; Look, A T; Williams, D C; Valentine, V; Naeve, C W; Behm, F G; Mullersman, J E; Yoneda-Kato, N; Montgomery, K; Kucherlapati, R; Morris, S W

    1996-07-15

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, the MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal region frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements.

  13. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed Central

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-01-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype. Images Figure 2 Figure 3 PMID:1384329

  14. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  15. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes.

    PubMed

    Shen, Yue; Stracquadanio, Giovanni; Wang, Yun; Yang, Kun; Mitchell, Leslie A; Xue, Yaxin; Cai, Yizhi; Chen, Tai; Dymond, Jessica S; Kang, Kang; Gong, Jianhui; Zeng, Xiaofan; Zhang, Yongfen; Li, Yingrui; Feng, Qiang; Xu, Xun; Wang, Jun; Wang, Jian; Yang, Huanming; Boeke, Jef D; Bader, Joel S

    2016-01-01

    Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3' UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes. © 2016 Shen et al.; Published by Cold Spring Harbor Laboratory Press.

  16. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes

    PubMed Central

    Shen, Yue; Stracquadanio, Giovanni; Wang, Yun; Yang, Kun; Mitchell, Leslie A.; Xue, Yaxin; Cai, Yizhi; Chen, Tai; Dymond, Jessica S.; Kang, Kang; Gong, Jianhui; Zeng, Xiaofan; Zhang, Yongfen; Li, Yingrui; Feng, Qiang; Xu, Xun; Wang, Jun; Wang, Jian; Yang, Huanming; Boeke, Jef D.; Bader, Joel S.

    2016-01-01

    Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3′ UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes. PMID:26566658

  17. Analysis and Dynamics of the Chromosomal Complements of Wild Sparkling-Wine Yeast Strains

    PubMed Central

    Nadal, Dolors; Carro, David; Fernández-Larrea, Juan; Piña, Benjamin

    1999-01-01

    We isolated Saccharomyces cerevisiae yeast strains that are able to carry out the second fermentation of sparkling wine from spontaneously fermenting musts in El Penedès (Spain) by specifically designed selection protocols. All of them (26 strains) showed one of two very similar mitochondrial DNA (mtDNA) restriction patterns, whereas their karyotypes differed. These strains showed high rates of karyotype instability, which were dependent on both the medium and the strain, during vegetative growth. In all cases, the mtDNA restriction pattern was conserved in strains kept under the same conditions. Analysis of different repetitive sequences in their genomes suggested that ribosomal DNA repeats play an important role in the changes in size observed in chromosome XII, whereas SUC genes or Ty elements did not show amplification or transposition processes that could be related to rearrangements of the chromosomes showing these sequences. Karyotype changes also occurred in monosporidic diploid derivatives. We propose that these changes originated mainly from ectopic recombination between repeated sequences interspersed in the genome. None of the rearranged karyotypes provided a selective advantage strong enough to allow the strains to displace the parental strains. The nature and frequency of these changes suggest that they may play an important role in the establishment and maintenance of the genetic diversity observed in S. cerevisiae wild populations. PMID:10103269

  18. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast

    PubMed Central

    Jespersen, Lene; Cesar, Lene B.; Meaden, Philip G.; Jakobsen, Mogens

    1999-01-01

    Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure. PMID:9925567

  19. Repetitive telomeric sequences in chromosomal translocations involving chromosome 21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, J.; Dallaire, L.; Fetni, R.

    Telomeres perform key functions in maintaining chromosome integrity. In some structural rearrangements the structure and polymorphism in human telomeres may play a significant role. However, of all the telomeric and subtelomeric sequences, only the terminal TTAGGG repeats are believed essential for telomere function. During the course of a study on the role of telomere structure and polymorphism in chromosomal rearrangements observed in families referred for prenatal diagnosis, we studied three cases in which chromosome 21 was involved. Repetitive TTAGGG sequences for all human chromosomes were used as probes (Oncor). Case 1, a de novo cryptic translocation (2;21) was initially identifiedmore » as monosomy 21 in a child with psychomotor delay and mild dysmorphism. Using a cosmid probe specific for region 21q22.3 and whole chromosome 21 specific painting probe, the long arm of 21 was found on the short arm of chromosome 2 with an interstitial telomere at the breakpoint junction. All the cells were monosomic for 21pter{yields}q21. Case 2 is a familial (19;21) translocation. GTG-banding and FISH with a satellite probe showed no apparent loss of material at the end of either 19q or 21q, with an interstitial telomere at the fusion site of the two intact chromosomes. In case 3, a four generation reciprocal (20;21) translocation, there was no interstitial telomere. The persistence of an interstitial telomere is a relatively rare event which can now be observed with in situ hybridization. Its study may lead to a better understanding of the dynamics of translocations and of chromosome imbalance.« less

  20. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of aberrations in human chromosome 5 by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/μ m, doses 1 or 4 Gy) 56Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture, and slides were painted by mBAND (MetaSystems). We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 Gy and 4 Gy Fe-ions, respectively. The distribution per unit length were similar in the p- and q-arm of chromosome 5, and >50% of the observed fragments measured <30% of the whole chromosome length. Only small fragments (<40% of the chromosome size) were involved in intra-chromosomal exchanges (interstitial deletions or inversions), whereas fragments up to 75% of the whole chromosome 5 were found in inter-chromosomal exchanges. We measured more inter-changes than intra-changes, and more intra-arm than inter-arm exchanges at both doses. No significant differences in the ratios of these aberrations were detected with respect to X-rays. On the other hand, Fe-ions induced a significantly higher fraction of complex-type exchanges when compared to sparsely ionizing radiation. Work supported by DLR, BMBF, INTAS and NIRS-HIMAC.

  1. The effect of first chromosome long arm duplication on survival of endometrial carcinoma.

    PubMed

    Sever, Erman; Doğer, Emek; Çakıroğlu, Yiğit; Sünnetçi, Deniz; Çine, Naci; Savlı, Hakan; Yücesoy, İzzet

    2014-12-01

    The aim of this study is to investigate the effect of first chromosome long arm duplication (dup(1q)) in cases with endometrial carcinoma detected with array based comperative genomic hybridization (aCGH) on survival from the cancer. A total of 53 patients with the diagnosis of endometrial carcinom due to endometrial biopsy and who have been operated for this reason have been allocated in the study. Frozen section biopsy and staging surgery have been performed for all the cases. Samples obtained from the tumoral mass have been investigated for chromosomal aberrations with aCGH method. Kaplan-Meier and Cox-regression analysis have been performed for survival analysis. Among 53 cases with endometrial carcinomas, dup(1q) was diagnosed in 14 (26.4%) of the cases. For the patient group that has been followed-up for 24 months (3-33 months), dup(1q) (p=.01), optimal cytoreduction (p<.001), lymph node positivity (p=.006), tumor stage >1 (p=.006) and presence of high risk tumor were the factors that were associated with survival. Cox-regression analysis has revealed that optimal cytoreduction was the most important prognostic factor (p=.02). Presence of 1q duplication can be used as a prognostic factor in the preoperative period.

  2. The effect of first chromosome long arm duplication on survival of endometrial carcinoma

    PubMed Central

    Sever, Erman; Doğer, Emek; Çakıroğlu, Yiğit; Sünnetçi, Deniz; Çine, Naci; Savlı, Hakan; Yücesoy, İzzet

    2014-01-01

    Objective: The aim of this study is to investigate the effect of first chromosome long arm duplication (dup(1q)) in cases with endometrial carcinoma detected with array based comperative genomic hybridization (aCGH) on survival from the cancer. Materials and Methods: A total of 53 patients with the diagnosis of endometrial carcinom due to endometrial biopsy and who have been operated for this reason have been allocated in the study. Frozen section biopsy and staging surgery have been performed for all the cases. Samples obtained from the tumoral mass have been investigated for chromosomal aberrations with aCGH method. Kaplan-Meier and Cox-regression analysis have been performed for survival analysis. Results: Among 53 cases with endometrial carcinomas, dup(1q) was diagnosed in 14 (26.4%) of the cases. For the patient group that has been followed-up for 24 months (3-33 months), dup(1q) (p=.01), optimal cytoreduction (p<.001), lymph node positivity (p=.006), tumor stage >1 (p=.006) and presence of high risk tumor were the factors that were associated with survival. Cox-regression analysis has revealed that optimal cytoreduction was the most important prognostic factor (p=.02). Conclusion: Presence of 1q duplication can be used as a prognostic factor in the preoperative period. PMID:28913021

  3. Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dracopoli, N.C.; Harnett, P.; Bale, S.J.

    The gene for familial malignant melanoma and its precursor lesion, the dysplastic nevus, has been assigned to a region of the distal short arm of chromosome 1, which is frequently involved in karyotypic abnormalities in melanoma cells. The authors have examined loci on chromosome 1p for loss-of-constitutional heterozygosity in 35 melanomas and 21 melanoma cell lines to analyze the role of these abnormalities in melanocyte transformation. Loss-of-heterozygosity at loci on chromosome 1p was identified in 15/35 (43%) melanomas and 11/21 (52%) melanoma cell lines. Analysis of multiple metastases derived from the same patient and of melanoma and lymphoblastoid samples frommore » a family with hereditary melanoma showed that the loss-of-heterozygosity at loci on distal 1p is a late event in tumor progression, rather than the second mutation that would occur if melanoma were due to a cellular recessive mechanism. Comparisons with neuroblastoma and multiple endocrine neoplasia (MEN2) suggest that the frequent 1p loss-of-heterozygosity in these malignancies is a common late event of neuroectodermal tumor progression.« less

  4. Mitotic Recombination in the Heterochromatin of the Sex Chromosomes of DROSOPHILA MELANOGASTER

    PubMed Central

    Ripoll, P.; Garcia-Bellido, A.

    1978-01-01

    The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions. PMID:100372

  5. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/Myeloid Leukemia Factor 2 (MLF2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuefer, M.U.; Valentine, V.; Behm, F.G.

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, and MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal regionmore » frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements. 19 refs., 2 figs.« less

  6. The human interleukin-1 alpha gene is located on the long arm of chromosome 2 at band q13.

    PubMed

    Lafage, M; Maroc, N; Dubreuil, P; de Waal Malefijt, R; Pébusque, M J; Carcassonne, Y; Mannoni, P

    1989-01-01

    Interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) are two biochemically distinct, but distantly related, polypeptidic cytokines that play a key role in inflammation, immunologic reactions, and tissue repair. Recently, it has been shown that IL-1 alpha is identical to hematopoietin 1, which was described as a hematopoietic growth factor acting on early progenitor cells in synergy with other hematopoietic growth factors. In this report we discuss our use of in situ hybridization on human prometaphase cells with a human IL-1 alpha cDNA probe to localize the human IL-1 alpha gene on the proximal part of the long arm of chromosome 2 at band q13, in the same chromosomal region as the IL-1 beta gene.

  7. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET = 200 keV/μm, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.

  8. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    PubMed

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  9. Inducing rye 1R chromosome structural changes in common wheat cv. Chinese spring by the gametocidal chromosome 2C of Aegilops cylindrica.

    PubMed

    Shi, Fang; Liu, Kun-Fan; Endo, Takashi R; Wang, Dao-Wen

    2005-05-01

    To generate 1 R deletion and translocation lines, we introduced a 2C chromosome,which was derived from Aegilops cylindrica and was known to have a gametocidal function when added monosomically into common wheat cv. Chinese Spring (CS) and its derivative, into a wheat-rye 1R chromosome disomic addition line (CS-1R"). When the individuals with chromosome constitution 21" + 1R" + 2C' (2n = 45) were selfed, the 1R chromosome structural changes were found to be induced with high frequency (24.1%) among the progenies. By using C-banding and GISH analysis, we analyzed 1R structural changes in 46 F3 individuals, which came from 23 F2 plants. The rearranged 1R chromosomes could be characterized in about 85% of the F3 individuals. This included telosome 1RL (39.1%), iso-chromosome 1 RL (2.2%), whole arm translocation involving 1RL (32.6%), telosome 1RS (4.3%), iso-chromosome 1RS (4.3%), and 1R deletion mutant with break point in the long arm (2.2%). The mutant 1R lines obtained in this study will potentially be useful in mapping the chromosome locations of agronomically important genes located in 1R. This study also demonstrated that molecular markers might be used to identify wheat chromosome arm involved in translocation with 1R.

  10. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    PubMed Central

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  11. Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application.

    PubMed

    Pan, Chao-Yu; Kuo, Wei-Ting; Chiu, Chien-Yuan; Lin, Wen-Chang

    2017-01-01

    MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.

  12. A Fine Physical Map of the Rice Chromosome 4

    PubMed Central

    Zhao, Qiang; Zhang, Yu; Cheng, Zhukuan; Chen, Mingsheng; Wang, Shengyue; Feng, Qi; Huang, Yucheng; Li, Ying; Tang, Yesheng; Zhou, Bo; Chen, Zhehua; Yu, Shuliang; Zhu, Jingjie; Hu, Xin; Mu, Jie; Ying, Kai; Hao, Pei; Zhang, Lei; Lu, Yiqi; Zhang, Lei S.; Liu, Yilei; Yu, Zhen; Fan, Danlin; Weng, Qijun; Chen, Ling; Lu, Tingting; Liu, Xiaohui; Jia, Peixin; Sun, Tongguo; Wu, Yongrui; Zhang, Yujun; Lu, Ying; Li, Can; Wang, Rong; Lei, Haiyan; Li, Tao; Hu, Hao; Wu, Mei; Zhang, Runquan; Guan, Jianping; Zhu, Jia; Fu, Gang; Gu, Minghong; Hong, Guofan; Xue, Yongbiao; Wing, Rod; Jiang, Jiming; Han, Bin

    2002-01-01

    As part of an international effort to completely sequence the rice genome, we have produced a fine bacterial artificial chromosome (BAC)-based physical map of the Oryza sativa japonica Nipponbare chromosome 4 through an integration of 114 sequenced BAC clones from a taxonomically related subspecies O. sativa indica Guangluai 4 and 182 RFLP and 407 expressed sequence tag (EST) markers with the fingerprinted data of the Nipponbare genome. The map consists of 11 contigs with a total length of 34.5 Mb covering 94% of the estimated chromosome size (36.8 Mb). BAC clones corresponding to telomeres, as well as to the centromere position, were determined by BAC-pachytene chromosome fluorescence in situ hybridization (FISH). This gave rise to an estimated length ratio of 5.13 for the long arm and 2.9 for the short arm (on the basis of the physical map), which indicates that the short arm is a highly condensed one. The FISH analysis and physical mapping also showed that the short arm and the pericentromeric region of the long arm are rich in heterochromatin, which occupied 45% of the chromosome, indicating that this chromosome is likely very difficult to sequence. To our knowledge, this map provides the first example of a rapid and reliable physical mapping on the basis of the integration of the data from two taxonomically related subspecies. [The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: S. McCouch, T. Sasaki, and Monsanto.] PMID:11997348

  13. Analysis of yeast prp20 mutations and functional complementation by the human homologue RCC1, a protein involved in the control of chromosome condensation.

    PubMed

    Fleischmann, M; Clark, M W; Forrester, W; Wickens, M; Nishimoto, T; Aebi, M

    1991-07-01

    Mutations in the PRP20 gene of yeast show a pleiotropic phenotype, in which both mRNA metabolism and nuclear structure are affected. srm1 mutants, defective in the same gene, influence the signal transduction pathway for the pheromone response. The yeast PRP20/SRM1 protein is highly homologous to the RCC1 protein of man, hamster and frog. In mammalian cells, this protein is a negative regulator for initiation of chromosome condensation. We report the analysis of two, independently isolated, recessive temperature-sensitive prp20 mutants. They have identical G to A transitions, leading to the alteration of a highly conserved glycine residue to glutamic acid. By immunofluorescence microscopy the PRP20 protein was localized in the nucleus. Expression of the RCC1 protein can complement the temperature-sensitive phenotype of prp20 mutants, demonstrating the functional similarity of the yeast and mammalian proteins.

  14. Microgravitational effects on chromosome behavior (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Bruschi, Carlo

    1992-01-01

    The effects of the two major space-related conditions, microgravity and radiation, on the maintenance and transmission of genetic information have been partially documented in many organisms. Specifically, microgravity acts at the chromosomal level, primarily on the structure and segregation of chromosomes, in producing major abberations such as deletions, breaks, nondisjunction, and chromosome loss, and to a lesser degree, cosmic radiation appears to affect the genic level, producing point mutations and DNA damage. To distinguish between the effects from microgravity and from radiation, it is necessary to monitor both mitotic and meiotic genetic damage in the same organism. The yeast Saccharomyces cerevisiae is used to monitor at high resolution the frequency of chromosome loss, nondisjunction, intergenic recombination, and gene mutation in mitotic and meiotic cells, to a degree impossible in other organisms. Because the yeast chromosomes are small, sensitive measurements can be made that can be extrapolated to higher organisms and man. The objectives of the research are: (1) to quantitate the effects of microgravity and its synergism with cosmic radiation on chromosomal integrity and transmission during mitosis and meiosis; (2) to discriminate between chromosomal processes sensitive to microgravity and/or radiation during mitosis and meiosis; and (3) to relate these findings to anomalous mitotic mating type switching and ascosporogenesis following meiosis.

  15. Broad chromosomal domains of histone modification patterns in C. elegans

    PubMed Central

    Liu, Tao; Rechtsteiner, Andreas; Egelhofer, Thea A.; Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Kolasinska-Zwierz, Paulina; Rosenbaum, Heidi; Shin, Hyunjin; Taing, Scott; Takasaki, Teruaki; Iniguez, A. Leonardo; Desai, Arshad; Dernburg, Abby F.; Kimura, Hiroshi; Lieb, Jason D.; Ahringer, Julie; Strome, Susan; Liu, X. Shirley

    2011-01-01

    Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development. PMID:21177964

  16. Inversion duplication deletions involving the long arm of chromosome 13: phenotypic description of additional three fetuses and genotype-phenotype correlation.

    PubMed

    Quelin, Chloe; Spaggiari, Emmanuel; Khung-Savatovsky, Suonavy; Dupont, Celine; Pasquier, Laurent; Loeuillet, Laurence; Jaillard, Sylvie; Lucas, Josette; Marcorelles, Pascale; Journel, Hubert; Pluquailec-Bilavarn, Khantaby; Bazin, Anne; Verloes, Alain; Delezoide, Anne-Lise; Aboura, Azzedine; Guimiot, Fabien

    2014-10-01

    Inversion duplication and terminal deletion of the long arm of chromosome 13 (inv dup del 13q) is a rare chromosomal rearrangement: only five patients have been reported, mostly involving a ring chromosome 13. We report on additional three fetuses with pure inv dup del 13q: Patient 1 had macrosomia, enlarged kidneys, hypersegmented lungs, unilateral moderate ventriculomegaly, and a mild form of hand and feet preaxial polydactyly; Patient 2 had intrauterine growth retardation, widely spaced eyes, left microphthalmia, right anophthalmia, short nose, bilateral absent thumbs, cutaneous syndactyly of toes 4 and 5, bifid third metacarpal, a small left kidney, hyposegmented lungs, and partial agenesis of the corpus callosum; Patient 3 had widely spaced eyes, long and smooth philtrum, low-set ears, median notch in the upper alveolar ridge, bifid tongue, cutaneous syndactyly of toes 2 and 3, enlarged kidneys and pancreas, arhinencephaly, and partial agenesis of the corpus callosum. We compared the phenotypes of these patients to those previously reported for ring chromosome 13, pure 13q deletions and duplications. We narrowed some critical regions previously reported for lung, kidney and fetal growth, and for thumb, cerebral, and eye anomalies. © 2014 Wiley Periodicals, Inc.

  17. Deletion of the long arm of chromosome 20 (del(20)(q11)) in myeloid disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, J.R.; Kinnealey, A.; Rowley, J.D.

    1978-11-01

    Detailed clinical and cytogenetic studies were performed in five patients who had abnormal hematopoiesis and an acquired deletion of an F-group chromosome. Cytogenetic analyses, with banding techniques, of cells from bone marrow, spleen, or unstimulated peripheral blood showed a partial deletion of the long arm of one chromosome 20 (del(20)(q11)) in all five patients. Three patients had myeloproliferative disorders of uncertain classification, the fourth had possible preleukemia, and the fifth had acute myelomonocytic leukemia. Although the five cases showed certain similarities, the clinical and hematologic findings seen with the 20q- abnormality were not specific. None of the patients showed evidencemore » of polycythemia vera or idiopathic acquired refractory sideroblastic anemia, two diseases previously associated with the 20q-. Our studies indicate that the 20q-abnormality is not limited to diseases primarily affecting erythropoiesis but that it can be found in the broader spectrum of myeloid disorders. In polycythemia vera, the 20q- has sometimes been regarded as a possible result of previous therapy with cytotoxic agents; however, four of our patients were untreated when the deletion was first noted.« less

  18. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis

    PubMed Central

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C.; Tan, Chia H.; Pereira, Antonio J.; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick

    2012-01-01

    Chromokinesins are microtubule plus end–directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  19. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    USDA-ARS?s Scientific Manuscript database

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  20. Chiasma failures and chromosome association in Rhoeo spathacea var. variegata.

    PubMed

    Lin, Y J

    1982-01-01

    In Rhoeo spathacea var. variegata (2n = 2x = 12), the most frequent meiotic configuration was the chain-of-12 chromosomes (36%) and the second most frequent was the ring-of-12 chromosomes (25.6%). All six possible two-chain situations and eleven of the twelve possible three-chain situations were observed. A maximum of five chains was observed in four cells. The size of chains ranged from on through twelve chromosomes. The mean number of chiasma failures was 1.36 +/- 0.07 per cell and 0.1133 per pair of chromosome arms. Because the observed frequencies of various configurations agree with the expected, which were calculated under the assumption that chiasma failure is equally likely at each of the twelve positions around the ring, it was concluded that chiasma failures occurred at random among the arm-positions. Due to the lengths of arm-pairs in the ring vary considerably, the randomness may mean that chiasma formation was restricted to small terminal regions on all chromosomes.

  1. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes.

    PubMed

    Szamalek, Justyna M; Goidts, Violaine; Cooper, David N; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2006-08-01

    The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.

  2. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  3. To pair or not to pair: chromosome pairing and evolution.

    PubMed

    Moore, G

    1998-04-01

    Chromosome pairing in wild-type wheat closely resembles the process in both yeast and Drosophila. The recent characterisation of a mutant Ph1 wheat and the observation that chromosome pairing in the absence of Ph1 more closely resembles that of mammals and maize has shed light on the evolution of chromosome pairing in the cereals.

  4. Fission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine.

    PubMed

    Shamim, Hossain Mohammad; Minami, Yukako; Tanaka, Daiki; Ukimori, Shinobu; Murray, Johanne M; Ueno, Masaru

    2017-01-01

    Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.

  5. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    PubMed

    Divashuk, Mikhail G; Alexandrov, Oleg S; Razumova, Olga V; Kirov, Ilya V; Karlov, Gennady I

    2014-01-01

    Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  6. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-01-01

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.

  7. Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement

    PubMed Central

    Ohno, Yuko; Ogiyama, Yuki; Kubota, Yoshino; Kubo, Takuya; Ishii, Kojiro

    2016-01-01

    The centromeres of many eukaryotic chromosomes are established epigenetically on potentially variable tandem repeats; hence, these chromosomes are at risk of being acentric. We reported previously that artificially created acentric chromosomes in the fission yeast Schizosaccharomyces pombe can be rescued by end-to-end fusion with functional chromosomes. Here, we show that most acentric/functional chromosome fusion events in S. pombe cells harbouring an acentric chromosome I differed from the non-homologous end-joining-mediated rearrangements that result in deleterious dicentric fusions in normal cells, and were elicited by a previously unidentified homologous recombination (HR) event between chromosome end-associated sequences. The subtelomere repeats associated with the non-fusogenic ends were also destabilized in the surviving cells, suggesting a causal link between general subtelomere destabilization and acentric/functional chromosome fusion. A mutational analysis indicated that a non-canonical HR pathway was involved in the rearrangement. These findings are indicative of a latent mechanism that conditionally induces general subtelomere instability, presumably in the face of accidental centromere loss events, resulting in rescue of the fatal acentric chromosomes by interchromosomal HR. PMID:26433224

  8. Genome Sequence of Saccharomyces carlsbergensis, the World’s First Pure Culture Lager Yeast

    PubMed Central

    Walther, Andrea; Hesselbart, Ana; Wendland, Jürgen

    2014-01-01

    Lager yeast beer production was revolutionized by the introduction of pure culture strains. The first established lager yeast strain is known as the bottom fermenting Saccharomyces carlsbergensis, which was originally termed Unterhefe No. 1 by Emil Chr. Hansen and has been used in production in since 1883. S. carlsbergensis belongs to group I/Saaz-type lager yeast strains and is better adapted to cold growth conditions than group II/Frohberg-type lager yeasts, e.g., the Weihenstephan strain WS34/70. Here, we sequenced S. carlsbergensis using next generation sequencing technologies. Lager yeasts are descendants from hybrids formed between a S. cerevisiae parent and a parent similar to S. eubayanus. Accordingly, the S. carlsbergensis 19.5-Mb genome is substantially larger than the 12-Mb S. cerevisiae genome. Based on the sequence scaffolds, synteny to the S. cerevisae genome, and by using directed polymerase chain reaction for gap closure, we generated a chromosomal map of S. carlsbergensis consisting of 29 unique chromosomes. We present evidence for genome and chromosome evolution within S. carlsbergensis via chromosome loss and loss of heterozygosity specifically of parts derived from the S. cerevisiae parent. Based on our sequence data and via fluorescence-activated cell-sorting analysis, we determined the ploidy of S. carlsbergensis. This inferred that this strain is basically triploid with a diploid S. eubayanus and haploid S. cerevisiae genome content. In contrast the Weihenstephan strain, which we resequenced, is essentially tetraploid composed of two diploid S. cerevisiae and S. eubayanus genomes. Based on conserved translocations between the parental genomes in S. carlsbergensis and the Weihenstephan strain we propose a joint evolutionary ancestry for lager yeast strains. PMID:24578374

  9. Effect of Red Yeast Rice and Coconut, Rice Bran or Sunflower Oil Combination in Rats on Hypercholesterolemic Diet.

    PubMed

    Govindarajan, Sumitra; Vellingiri, Kishore

    2016-04-01

    Dietary supplements provide a novel population based health approach for treating hyperlipidemias. Red yeast rice is known to have lipid lowering effects. Combination of red yeast rice with various oils is taken by different population around the world. In this present work, we aimed to compare the effects of red yeast rice with different oil (coconut, rice bran and sunflower oil) supplementations on lipid levels and oxidative stress in rats fed on hypercholesterolemic diet. A Randomized controlled study was conducted on 28 male Sprague Dawley rats. It included 4 arms-Control arm (hypercholesterolemic diet), Test arm A (hypercholesterolemic diet +Red yeast rice + Rice bran oil), arm B (hypercholesterolemic diet +Red yeast rice + Coconut oil) and arm C (hypercholesterolemic diet +Red yeast rice + Sunflower oil). At the end of one month, serum cholesterol, triglycerides, MDA and paraoxonase was measured. The mean values of analytes between the different groups were compared using student 't-' test. The rats fed with red yeast rice and rice bran oil combination showed significantly lower levels of serum cholesterol, triglycerides and MDA when compared to the controls. The serum paraoxonase levels were significantly higher in this group when compared to the controls. The rats fed with red yeast rice and coconut oil combination showed significantly lower serum cholesterol and MDA levels when compared to the controls. The mean triglyceride and paraoxonase levels did not show any statistically significant difference from the controls. The rats on red yeast rice and sunflower oil combination did not show any statistically significant difference in the lipid levels and oxidative stress parameters. The food combination which had best outcome in preventing the development of hyperlipidemia and oxidative stress in rats fed with hypercholesterolemic diet was red yeast rice and rice bran oil. Combining red yeast rice with coconut oil and sunflower oil gave suboptimal benefits.

  10. [Molecular cytogenetic analysis of chromosomal aberrations in cells of low grade gliomas and its contribution for tumour classification].

    PubMed

    Lhotská, H; Zemanová, Z; Kramář, F; Lizcová, L; Svobodová, K; Ransdorfová, S; Bystřická, D; Krejčík, Z; Hrabal, P; Dohnalová, A; Kaiser, M; Michalová, K

    2014-01-01

    Low-grade gliomas represent a heterogeneous group of primary brain malignancies. The current diagnostics of these tumors rely strongly on histological classification. With the development of molecular cytogenetic methods several genetic markers were described, contributing to a better distinction of glial subtypes. The aim of this study was to assess the frequency of acquired chromosomal aberrations in lowgrade gliomas and to search for new genomic changes associated with higher risk of tumor progression. We analysed biopsy specimens from 41 patients with histological dia-gnosis of low-grade glioma using interphase fluorescence in situ hybridization (I FISH) and single nucleotide polymorphism (SNP) array techniques (19 females and 22 males, medium age 42 years). Besides notorious and most frequent finding of combined deletion of 1p/ 19q (81.25% patients) several other recurrent aberrations were described in patients with oligodendrogliomas: deletions of p and q arms of chromosome 4 (25% patients), deletions of the short arms of chromosome 9 (18.75% patients), deletions of the long arms of chromosome 13 and monosomy of chromosome 18 (18.75% patients). In bio-psy specimens from patients with astrocytomas, we often observed deletion of 1p (24% patients), amplification of the long arms of chromosome 7 (16% patients), deletion of the long arm of chromosome 13 (20% patients), segmental uniparental disomy (UPD) of the short arms of chromosome 17 (60% patients) and deletion of the long arms of chromosome 19 (28% patients). In one patient we detected a shuttered chromosome 10 resulting from chromothripsis. Using a combination of I FISH and SNP array, we detected not only known chromosomal changes but also new or less frequent recur-rent aberrations. Their role in cancer  cell progression and their impact on low grade gliomas classification remains to be elucidated in a larger cohort of patients.

  11. Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants

    PubMed Central

    Uchida, Tetsuya; Ishihara, Naoto; Zenitani, Hiroyuki; Hiratsu, Keiichiro; Kinashi, Haruyasu

    2004-01-01

    Streptomyces linear chromosomes display various types of rearrangements after telomere deletion, including circularization, arm replacement, and amplification. We analyzed the new chromosomal deletion mutants Streptomyces griseus 301-22-L and 301-22-M. In these mutants, chromosomal arm replacement resulted in long terminal inverted repeats (TIRs) at both ends; different sizes were deleted again and recombined inside the TIRs, resulting in a circular chromosome with an extremely large palindrome. Short palindromic sequences were found in parent strain 2247, and these sequences might have played a role in the formation of this unique structure. Dynamic structural changes of Streptomyces linear chromosomes shown by this and previous studies revealed extraordinary strategies of members of this genus to keep a functional chromosome, even if it is linear or circular. PMID:15150216

  12. Centromere-Like Regions in the Budding Yeast Genome

    PubMed Central

    Lefrançois, Philippe; Auerbach, Raymond K.; Yellman, Christopher M.; Roeder, G. Shirleen; Snyder, Michael

    2013-01-01

    Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP–Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres. PMID:23349633

  13. Recurrent sequence exchange between homeologous grass chromosomes.

    PubMed

    Wicker, Thomas; Wing, Rod A; Schubert, Ingo

    2015-11-01

    All grass species evolved from an ancestor that underwent a whole-genome duplication (WGD) approximately 70 million years ago. Interestingly, the short arms of rice chromosomes 11 and 12 (and independently their homologs in sorghum) were found to be much more similar to each other than other homeologous regions within the duplicated genome. Based on detailed analysis of rice chromosomes 11 and 12 and their homologs in seven grass species, we propose a mechanism that explains the apparently 'younger' age of the duplication in this region of the genome, assuming a small number of reciprocal translocations at the chromosome termini. In each case the translocations were followed by unbalanced transmission and subsequent lineage sorting of the involved chromosomes to offspring. Molecular dating of these translocation events also allowed us to date major chromosome 'fusions' in the evolutionary lineages that led to Brachypodium and Triticeae. Furthermore, we provide evidence that rice is exceptional regarding the evolution of chromosomes 11 and 12, inasmuch as in other species the process of sequence exchange between homeologous chromosomes ceased much earlier than in rice. We presume that random events rather than selective forces are responsible for the observed high similarity between the short arm ends of rice chromosomes 11 and 12. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Germ line transmission of a yeast artificial chromosome spanning the murine [alpha][sub 1](I) collagen locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, W.M.; Dausman, J.; Beard, C.

    Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protectionmore » analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.« less

  15. Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation.

    PubMed

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2013-12-03

    Meiotic chromosome segregation involves pairing and segregation of homologous chromosomes in the first division and segregation of sister chromatids in the second division. Although it is known that the centromere and kinetochore are responsible for chromosome movement in meiosis as in mitosis, potential specialized meiotic functions are being uncovered. Centromere pairing early in meiosis I, even between nonhomologous chromosomes, and clustering of centromeres can promote proper homolog associations in meiosis I in yeast, plants, and Drosophila. It was not known, however, whether centromere proteins are required for this clustering. We exploited Drosophila mutants for the centromere proteins centromere protein-C (CENP-C) and chromosome alignment 1 (CAL1) to demonstrate that a functional centromere is needed for centromere clustering and pairing. The cenp-C and cal1 mutations result in C-terminal truncations, removing the domains through which these two proteins interact. The mutants show striking genetic interactions, failing to complement as double heterozygotes, resulting in disrupted centromere clustering and meiotic nondisjunction. The cluster of meiotic centromeres localizes to the nucleolus, and this association requires centromere function. In Drosophila, synaptonemal complex (SC) formation can initiate from the centromere, and the SC is retained at the centromere after it disassembles from the chromosome arms. Although functional CENP-C and CAL1 are dispensable for assembly of the SC, they are required for subsequent retention of the SC at the centromere. These results show that integral centromere proteins are required for nuclear position and intercentromere associations in meiosis.

  16. Fission yeast cdc24(+) encodes a novel replication factor required for chromosome integrity.

    PubMed

    Gould, K L; Burns, C G; Feoktistova, A; Hu, C P; Pasion, S G; Forsburg, S L

    1998-07-01

    A mutation within the Schizosaccharomyces pombe cdc24(+) gene was identified previously in a screen for cell division cycle mutants and the cdc24(+) gene was determined to be essential for S phase in this yeast. We have isolated the cdc24(+) gene by complementation of a new temperature-sensitive allele of the gene, cdc24-G1. The DNA sequence predicts the presence of an open reading frame punctuated by six introns which encodes a pioneer protein of 58 kD. A cdc24 null mutant was generated by homologous recombination. Haploid cells lacking cdc24(+) are inviable, indicating that cdc24(+) is an essential gene. The transcript of cdc24(+) is present at constant levels throughout the cell cycle. Cells lacking cdc24(+) function show a checkpoint-dependent arrest with a 2N DNA content, indicating a block late in S phase. Arrest is accompanied by a rapid loss of viability and chromosome breakage. An S. pombe homolog of the replicative DNA helicase DNA2 of S. cerevisiae suppresses cdc24. These results suggest that Cdc24p plays a role in the progression of normal DNA replication and is required to maintain genomic integrity.

  17. Fission yeast cdc24(+) encodes a novel replication factor required for chromosome integrity.

    PubMed Central

    Gould, K L; Burns, C G; Feoktistova, A; Hu, C P; Pasion, S G; Forsburg, S L

    1998-01-01

    A mutation within the Schizosaccharomyces pombe cdc24(+) gene was identified previously in a screen for cell division cycle mutants and the cdc24(+) gene was determined to be essential for S phase in this yeast. We have isolated the cdc24(+) gene by complementation of a new temperature-sensitive allele of the gene, cdc24-G1. The DNA sequence predicts the presence of an open reading frame punctuated by six introns which encodes a pioneer protein of 58 kD. A cdc24 null mutant was generated by homologous recombination. Haploid cells lacking cdc24(+) are inviable, indicating that cdc24(+) is an essential gene. The transcript of cdc24(+) is present at constant levels throughout the cell cycle. Cells lacking cdc24(+) function show a checkpoint-dependent arrest with a 2N DNA content, indicating a block late in S phase. Arrest is accompanied by a rapid loss of viability and chromosome breakage. An S. pombe homolog of the replicative DNA helicase DNA2 of S. cerevisiae suppresses cdc24. These results suggest that Cdc24p plays a role in the progression of normal DNA replication and is required to maintain genomic integrity. PMID:9649516

  18. Updating the maize karyotype by chromosome DNA sizing.

    PubMed

    Silva, Jéssica Coutinho; Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species' karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes.

  19. Salivary Polytene Chromosome Map of Anopheles darlingi, the Main Vector of Neotropical Malaria

    PubMed Central

    Rafael, Míriam S.; Rohde, Cláudia; Bridi, Letícia C.; da Silva Valente Gaiesky, Vera Lúcia; Tadei, Wanderli P.

    2010-01-01

    New photomap of Anopheles (Nyssorhynchus) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus, Anopheles stephensi, and Anopheles gambiae, we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species. PMID:20682862

  20. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    PubMed

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  1. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast.

    PubMed

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-10-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. © 2014 Li et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Updating the maize karyotype by chromosome DNA sizing

    PubMed Central

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  3. PP2A(Cdc55)'s role in reductional chromosome segregation during achiasmate meiosis in budding yeast is independent of its FEAR function.

    PubMed

    Kerr, Gary W; Wong, Jin Huei; Arumugam, Prakash

    2016-07-26

    PP2A(Cdc55) is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2A(Cdc55) activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2A(Cdc55) prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2A(Cdc55)'s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function.

  4. A patient with interstitial deletion of the short arm of chromosome 3 (pter{yields}p21.2::p12{yields}qter) and a CHARGE-like phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieczorek, D.; Gillessen-Kaesbach, G.

    1997-04-14

    We report on a 4-month-old boy with a de novo interstitial deletion of the short arm of chromosome 3 (pter {r_arrow} p21.2::p12 {r_arrow} qter) and clinical findings typical of proximal 3p deletion together with coloboma of iris, heart defect, choanal atresia, retardation of growth and development, genital hypoplasia, and ear anomalies. Family history was unremarkable and parental chromosomes were normal. The clinical manifestations of the patient are compared with those of 10 patients previously described with a proximal 3p deletion. The additional CHARGE- like phenotype is discussed. 20 refs., 4 figs., 1 tab.

  5. Agrobacterium tumefaciens Integrates Transfer DNA into Single Chromosomal Sites of Dimorphic Fungi and Yields Homokaryotic Progeny from Multinucleate Yeast

    PubMed Central

    Sullivan, Thomas D.; Rooney, Peggy J.; Klein, Bruce S.

    2002-01-01

    The dimorphic fungi Blastomyces dermatitidis and Histoplasma capsulatum cause systemic mycoses in humans and other animals. Forward genetic approaches to generating and screening mutants for biologically important phenotypes have been underutilized for these pathogens. The plant-transforming bacterium Agrobacterium tumefaciens was tested to determine whether it could transform these fungi and if the fate of transforming DNA was suited for use as an insertional mutagen. Yeast cells from both fungi and germinating conidia from B. dermatitidis were transformed via A. tumefaciens by using hygromycin resistance for selection. Transformation frequencies up to 1 per 100 yeast cells were obtained at high effector-to-target ratios of 3,000:1. B. dermatitidis and H. capsulatum ura5 lines were complemented with transfer DNA vectors expressing URA5 at efficiencies 5 to 10 times greater than those obtained using hygromycin selection. Southern blot analyses indicated that in 80% of transformants the transferred DNA was integrated into chromosomal DNA at single, unique sites in the genome. Progeny of B. dermatitidis transformants unexpectedly showed that a single round of colony growth under hygromycin selection or visible selection of transformants by lacZ expression generated homokaryotic progeny from multinucleate yeast. Theoretical analysis of random organelle sorting suggests that the majority of B. dermatitidis cells would be homokaryons after the ca. 20 generations necessary for colony formation. Taken together, the results demonstrate that A. tumefaciens efficiently transfers DNA into B. dermatitidis and H. capsulatum and has the properties necessary for use as an insertional mutagen in these fungi. PMID:12477790

  6. A strategy for rapid production and screening of yeast artificial chromosome libraries.

    PubMed

    Strauss, W M; Jaenisch, E; Jaenisch, R

    1992-01-01

    We describe methods for rapid production and screening of yeast artificial chromosome (YAC) libraries. Utilizing complete restriction digests of mouse genomic DNA for ligations in agarose, a 32,000-clone library was produced and screened in seven weeks. Screening was accomplished by subdividing primary transformation plates into pools of approximately 100 clones which were transferred into a master glycerol stock. These master stocks were used to inoculate liquid cultures to produce culture "pools," and ten pools of 100 clones were then combined to yield superpools of 1,000 clones. Both pool and superpool DNA was screened by polymerase chain reaction (PCR) and positive pools representing 100 clones were then plated on selective medium and screened by in situ hybridization. Screening by the two tiered PCR assay and by in situ hybridization was completed in 4-5 days. Utilizing this methodology we have isolated a 150 kb clone spanning the alpha 1(I) collagen (Col1a1) gene as well as 40 kb clones from the Hox-2 locus. To characterize the representation of the YAC library, the size distribution of genomic Sal I fragments was compared to that of clones picked at random from the library. The results demonstrate significant biasing of the cloned fragment distribution, resulting in a loss of representation for larger fragments.

  7. Chromosome 10q tetrasomy: First reported case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackston, R.D.; May, K.M.; Jones, F.D.

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears withmore » overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.« less

  8. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast.

    PubMed

    Jonak, Katarzyna; Zagoriy, Ievgeniia; Oz, Tugce; Graf, Peter; Rojas, Julie; Mengoli, Valentina; Zachariae, Wolfgang

    2017-06-18

    Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/C Cdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.

  9. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast

    PubMed Central

    Jonak, Katarzyna; Oz, Tugce; Graf, Peter; Rojas, Julie; Mengoli, Valentina; Zachariae, Wolfgang

    2017-01-01

    ABSTRACT Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to “deprotect” Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes. PMID:28514186

  10. Unstable transpositions of his4 in yeast.

    PubMed Central

    Greer, H; Fink, G R

    1979-01-01

    Unstable transpositions in yeast have been selected in which the his4C gene from chromosome III is inserted into chromosome XII. This event is associated with the generation of a recessive lethal mutation, resulting from the integration of his4C into an essential gene. Strains with these transpositions are viable as diploids or aneuploids for chromosome XII. The event that generates the transpositions does not lead reciprocally to a deletion on chromosome III, implying that synthesis of a new copy of his4C and subsequent transposition may have occurred. The his4C transpositions are unstable and give rise to C- segregants at a high frequency, as a result of either precise excision of the his4C gene (restoring function of the gene into which insertion had occurred) or chromosome loss. PMID:386353

  11. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.

    PubMed

    Parry, J M; Sharp, D; Tippins, R S; Parry, E M

    1979-06-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.

  12. Normalization of a chromosomal contact map.

    PubMed

    Cournac, Axel; Marie-Nelly, Hervé; Marbouty, Martial; Koszul, Romain; Mozziconacci, Julien

    2012-08-30

    Chromatin organization has been increasingly studied in relation with its important influence on DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their spatial proximity in a population of cells. The recent coupling of 3C with deep sequencing approaches now allows the generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts generated by the experiments. Our study aims at proposing a simple normalization procedure to minimize the influence of these unwanted but inevitable events on the final results. Careful analysis of the raw data generated previously for budding yeast S. cerevisiae led to the identification of three main biases affecting the final datasets, including a previously unknown bias resulting from the circularization of DNA molecules. We then developed a simple normalization procedure to process the data and allow the generation of a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used. We quantitatively reanalyzed the

  13. Chromosome integrity at a double-strand break requires exonuclease 1 and MRX

    PubMed Central

    Nakai, Wataru; Westmoreland, Jim; Yeh, Elaine; Bloom, Kerry; Resnick, Michael A.

    2010-01-01

    The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be under limited control by the tethering function of the RAD50/MRE11/XRS2 (MRX) complex. Using a system for differential fluorescent marking of both sides of an endonuclease-induced DSB in single cells, we found that nearly all DSBs are converted to CRBs in cells lacking both exonuclease 1 (EXO1) activity and MRX complex. Thus, it appears that some feature of exonuclease processing or resection at a DSB is critical for maintaining broken chromosome ends in close proximity. In addition, we discovered a thermal sensitive (cold) component to CRB formation in an MRX mutant that has implications for chromosome end mobility and/or end-processing. PMID:21115410

  14. The dynamic three-dimensional organization of the diploid yeast genome

    PubMed Central

    Kim, Seungsoo; Liachko, Ivan; Brickner, Donna G; Cook, Kate; Noble, William S; Brickner, Jason H; Shendure, Jay; Dunham, Maitreya J

    2017-01-01

    The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization. DOI: http://dx.doi.org/10.7554/eLife.23623.001 PMID:28537556

  15. Reflections and meditations upon complex chromosomal exchanges.

    PubMed

    Savage, John R K

    2002-12-01

    The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.

  16. Differentiation and Evolution of the W Chromosome in the Fish Species of Megaleporinus (Characiformes, Anostomidae).

    PubMed

    Caetano de Barros, Lucas; Piscor, Diovani; Parise-Maltempi, Patricia P; Feldberg, Eliana

    2018-06-08

    The W chromosome of Megaleporinus trifasciatus was isolated in order to analyze its behavior in the karyotype of this and other species of the family, including forms with differentiated and undifferentiated sex chromosomes. The chromosome was microdissected, and the WMt probe was prepared for the chromosome painting procedure. M. trifasciatus was also cross-hybridized (cross-FISH) using existing probes available for M. macrocephalus (WMm) and M. elongatus (WMe). Two Leporinus species and Semaprochilodus taeniurus, representing a clade close to the Anostomidae, were also cross-hybridized with the objective to better understand the evolution of the sex chromosomes. In the metaphase of female M. trifasciatus, the WMt probe highlighted the whole long arm of the W chromosome and a small, distal portion of the long arm of the Z chromosome. In males, the probe highlighted the distal portion of the long arm of the Z chromosomes. The hybridization of female M. trifasciatus with the WMe and WMm probes revealed a pattern similar to that encountered using the WMt probe. The WMt, WMm, and WMe probes revealed broad similarities among the species of the genus Megaleporinus, which has a ZZ/ZW system of sex chromosomes, with only minor alterations becoming apparent when analyzed separately. © 2018 S. Karger AG, Basel.

  17. Large-scale Chromosomal Movements During Interphase Progression in Drosophila

    PubMed Central

    Csink, Amy K.; Henikoff, Steven

    1998-01-01

    We examined the effect of cell cycle progression on various levels of chromosome organization in Drosophila. Using bromodeoxyuridine incorporation and DNA quantitation in combination with fluorescence in situ hybridization, we detected gross chromosomal movements in diploid interphase nuclei of larvae. At the onset of S-phase, an increased separation was seen between proximal and distal positions of a long chromsome arm. Progression through S-phase disrupted heterochromatic associations that have been correlated with gene silencing. Additionally, we have found that large-scale G1 nuclear architecture is continually dynamic. Nuclei display a Rabl configuration for only ∼2 h after mitosis, and with further progression of G1-phase can establish heterochromatic interactions between distal and proximal parts of the chromosome arm. We also find evidence that somatic pairing of homologous chromosomes is disrupted during S-phase more rapidly for a euchromatic than for a heterochromatic region. Such interphase chromosome movements suggest a possible mechanism that links gene regulation via nuclear positioning to the cell cycle: delayed maturation of heterochromatin during G1-phase delays establishment of a silent chromatin state. PMID:9763417

  18. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo

    PubMed Central

    Lebo, Kevin J.; Zappulla, David C.

    2012-01-01

    The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold has not been directly analyzed. Here we explore the structure–function organization of the yeast telomerase RNP by extensively stiffening the three long arms of TLC1, which connect essential and important accessory protein subunits Ku, Est1, and Sm7, to its central catalytic hub. This 956-nt triple-stiff-arm TLC1 (TSA-T) reconstitutes active telomerase with TERT (Est2) in vitro. Furthermore, TSA-T functions in vivo, even maintaining longer telomeres than TLC1 on a per RNA basis. We also tested functional contributions of each stiffened arm within TSA-T and found that the stiffened Est1 and Ku arms contribute to telomere lengthening, while stiffening the terminal arm reduces telomere length and telomerase RNA abundance. The fact that yeast telomerase tolerates significant stiffening of its RNA subunit in vivo advances our understanding of the architectural and functional organization of this RNP and, more broadly, our conception of the world of lncRNPs. PMID:22850424

  19. Induction of uncoiled chromosomes by vibration.

    PubMed

    Delinassios, J G

    1979-02-15

    Chromatin condensation during metaphase can be removed by simple vibration of metaphase cells prior to fixation. Uncoiled chromosome arms consist of long threads with dense regions at irregular distances each from the other.

  20. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  1. Mechanisms of Chromosome Congression during Mitosis

    PubMed Central

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-01-01

    Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule

  2. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species

    PubMed Central

    2010-01-01

    Background The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. Results The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome

  3. Form and function of topologically associating genomic domains in budding yeast.

    PubMed

    Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat; Straight, Aaron F; Duan, Zhijun; Noble, William Stafford; Skotheim, Jan M

    2017-04-11

    The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.

  4. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation.

    PubMed

    Kiefer, Yvonne; Schulte, Christoph; Tiemann, Markus; Bullerdiek, Joern

    2012-01-01

    Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM) in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH). Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL.

  5. Potential linkage disequilibrium between schizophrenia and locus D22S278 on the long arm of chromosome 22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moises, H.W.; Yang, L.; Havsteen, B.

    Locus D22S278 at 22q12 has been implicated in schizophrenia by sib-pair analysis. In order to replicate these results, we performed the transmission test for linkage disequilibrium (TDT) in 113 unrelated schizophrenic patients and their 226 parents. Evidence for potential linkage disequilibrium was obtained between schizophrenia and allele 243 of the marker AFM 182xd12 at the locus D22S278 (P = 0.02). The results of our study suggest a detectable oligogenic gene in a multigene system for schizophrenia closely linked to D22S278 on the long arm of chromosome 22. If confirmed by others, this finding could lead to the identification of amore » schizophrenia susceptibility gene. 12 refs., 1 tab.« less

  6. 3D organization of synthetic and scrambled chromosomes.

    PubMed

    Mercy, Guillaume; Mozziconacci, Julien; Scolari, Vittore F; Yang, Kun; Zhao, Guanghou; Thierry, Agnès; Luo, Yisha; Mitchell, Leslie A; Shen, Michael; Shen, Yue; Walker, Roy; Zhang, Weimin; Wu, Yi; Xie, Ze-Xiong; Luo, Zhouqing; Cai, Yizhi; Dai, Junbiao; Yang, Huanming; Yuan, Ying-Jin; Boeke, Jef D; Bader, Joel S; Muller, Héloïse; Koszul, Romain

    2017-03-10

    Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution) strains. Copyright © 2017, American Association for the Advancement of Science.

  7. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  8. Delimitation of duplicated segments and identification of their parental origin in two partial chromosome 3p duplications.

    PubMed

    Antonini, Sylvie; Kim, Chong A; Sugayama, Sofia M; Vianna-Morgante, Angela M

    2002-11-22

    Two chromosome 3 short arm duplications identified through G-banding were further investigated using fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) of microsatellite markers, aiming at mapping breakpoints and disclosing mechanisms of origin of these chromosome aberrations. Patient 1 was found to be a mosaic: a 3p12 --> 3p21 duplication was observed in most of his cells, and a normal cell line occurred with a frequency of about 3% in blood. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the short-arm duplication. Using FISH of short-arm sequences, the YAC 961_h_3 was shown to contain the proximal breakpoint (3p12.1 or 3p12.2), and the distal breakpoint was located between the YACs 729_c_3 and 806_h_2, which are adjacent in the WC 3.10 contig (3p21.1). In Patient 2, G-banding indicated a 3p21 --> 3p24 duplication, without mosaicism. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the duplication of short-arm sequences. FISH of chromosome 3 sequences showed that the YAC 749_a_7 spanned the proximal breakpoint (3p21.33). The distal breakpoint mapped to the interval between YACs 932_b_6 (3p24.3) and 909_b_6 (3p25). In both cases, microsatellite genotyping pointed to a rearrangement between paternal sister chromatids. Copyright 2002 Wiley-Liss, Inc.

  9. FISH analysis in the derivation of a 12, 15, 21 complex chromosomal rearrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, C.K.; Muscolino, D.; Baird, N.

    Cytogenetic analysis was performed for a couple referred for recurrent pregnancy loss. Routine GTG banded studies revealed a 46,XY karyotype for the husband, but in the woman, an apparently balanced complex rearrangement involving chromosomes 12, 15, and 21 was detected. The 46,XX,t(12;15)(q13.3;q23),t(12;21)(q21;q11.2) karyotype is the consequence of 2 translocation events resulting in 3 rearranged chromosomes: (1) a derivative 12 arising from the exchange of the short arms of 12 and 21; (2) a derivative chromosome 15 consisting of segments of the long arms of chromosomes 12 and 15; and (3) a complex derivative chromosome 21 which includes the short armmore » and centromere of 21, and portions of the long arms of both chromosomes 12 and 15. Because the 12;21 translocation occurred at the centromeric region on both chromosomes, it was not possible to cytogenetically differentiate the derivative chromosomes 12 and 21. To clarify this issue, fluorescence in situ hybridization (FISH) was performed utilizing a 13/21 alpha-satellite probe. The location of the FITC signal clearly indicated a chromosome 21 centromere present on the derivative containing portions of all three chromosomes. A family history of spontaneous fetal losses suggested the possibility of a familial translocation. However, the likelihood of transmission of such a complex set of translocations is low, leading to the hypothesis that only one of the translocations was inherited with the second a de novo event in this individual. Karyotype analysis of both parents revealed no cytogenetic anomalies. Therefore, the extremely unusual occurrence of two independent translocations involving 3 chromosomes arose de novo in this patient.« less

  10. Physical Association of Saccharomyces cerevisiae Polo-like Kinase Cdc5 with Chromosomal Cohesin Facilitates DNA Damage Response.

    PubMed

    Pakchuen, Sujiraporn; Ishibashi, Mai; Takakusagi, Emi; Shirahige, Katsuhiko; Sutani, Takashi

    2016-08-12

    At the onset of anaphase, a protease called separase breaks the link between sister chromatids by cleaving the cohesin subunit Scc1. This irreversible step in the cell cycle is promoted by degradation of the separase inhibitor, securin, and polo-like kinase (Plk) 1-dependent phosphorylation of the Scc1 subunit. Plk could recognize substrates through interaction between its phosphopeptide interaction domain, the polo-box domain, and a phosphorylated priming site in the substrate, which has been generated by a priming kinase beforehand. However, the physiological relevance of this targeting mechanism remains to be addressed for many of the Plk1 substrates. Here, we show that budding yeast Plk1, Cdc5, is pre-deposited onto cohesin engaged in cohesion on chromosome arms in G2/M phase cells. The Cdc5-cohesin association is mediated by direct interaction between the polo-box domain of Cdc5 and Scc1 phosphorylated at multiple sites in its middle region. Alanine substitutions of the possible priming phosphorylation sites (scc1-15A) impair Cdc5 association with chromosomal cohesin, but they make only a moderate impact on mitotic cell growth even in securin-deleted cells (pds1Δ), where Scc1 phosphorylation by Cdc5 is indispensable. The same scc1-15A pds1Δ double mutant, however, exhibits marked sensitivity to the DNA-damaging agent phleomycin, suggesting that the priming phosphorylation of Scc1 poses an additional layer of regulation that enables yeast cells to adapt to genotoxic environments. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A highly polymorphic dinucleotide repeat on the proximal short arm of the human X chromosome: linkage mapping of the synapsin I/A-raf-1 genes.

    PubMed Central

    Kirchgessner, C U; Trofatter, J A; Mahtani, M M; Willard, H F; DeGennaro, L J

    1991-01-01

    A compound (AC)n repeat located 1,000 bp downstream from the human synapsin I gene and within the last intron of the A-raf-1 gene has been identified. DNA data-base comparisons of the sequences surrounding the repeat indicate that the synapsin I gene and the A-raf-1 gene lie immediately adjacent to each other, in opposite orientation. PCR amplification of this synapsin I/A-raf-1 associated repeat by using total genomic DNA from members of the 40 reference pedigree families of the Centre d'Etude du Polymorphisme Humaine showed it to be highly polymorphic, with a PIC value of .84 and a minimum of eight alleles. Because the synapsin I gene has been mapped previously to the short arm of the human X chromosome at Xp11.2, linkage analysis was performed with markers on the proximal short arm of the X chromosome. The most likely gene order is DXS7SYN/ARAF1TIMPDXS255DXS146, with a relative probability of 5 x 10(8) as compared with the next most likely order. This highly informative repeat should serve as a valuable marker for disease loci mapped to the Xp11 region. Images Figure 2 PMID:1905878

  12. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    PubMed Central

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes (“H-probes”) for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin. PMID:22745230

  13. Evidence that meiotic pairing starts at the telomeres: Molecular analysis of recombination in a family with a pericentric X chromosome inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashi, V.; Allinson, P.S.; Golden, W.L.

    1994-09-01

    Recent studies in yeast have shown that telomeres rather than centromeres lead in chromosome movement just prior to meiosis and may have a role in recombination. Cytological studies of meiosis in Drosophila and mice have shown that in pericentric inversion heterozygotes there is lack of loop formation, with recobmination seen only outside the inversion. In a family with Duchenne muscular dystrophy (DMD) we recognized that only affected males and carrier females had a pericentric X chromosome inversion (inv X(p11.4;q26)). Since the short arm inversion breakpoint was proximal to the DMD locus, it could not be implicated in the mutational eventmore » causing DMD. There was no history of infertility, recurrent miscarriages or liveborn unbalanced females to suggest there was recombination within the inversion. We studied 22 members over three generations to understand the pattern of meiotic recombination between the normal and the inverted X chromosome. In total, 17 meioses involving the inverted X chromosome in females were studied by cytogenetic analysis and 16 CA repeat polymorphisms along the length of the X chromosome. Results: (a) There was complete concordance between the segregation of the DMD mutation and the inverted X chromosome. (b) On DNA analysis, there was complete absence of recombination within the inverted segment. We also found no recombination at the DMD locus. Recombination was seen only at Xp22 and Xq27-28. (c) Recombination was seen in the same individual at both Xp22 and Xq27-28 without recombination otherwise. Conclusions: (1) Pericentric X inversions reduce the genetic map length of the chromosome, with the physical map length being normal. (2) Meiotic X chromosome pairing in this family is initiated at the telomeres. (3) Following telomeric pairing in pericentric X chromosome inversions, there is inhibition of recombination within the inversion and adjacent regions.« less

  14. Nuclear envelope expansion is crucial for proper chromosomal segregation during a closed mitosis.

    PubMed

    Takemoto, Ai; Kawashima, Shigehiro A; Li, Juan-Juan; Jeffery, Linda; Yamatsugu, Kenzo; Elemento, Olivier; Nurse, Paul

    2016-03-15

    Here, we screened a 10,371 library of diverse molecules using a drug-sensitive fission yeast strain to identify compounds which cause defects in chromosome segregation during mitosis. We identified a phosphorium-ylide-based compound Cutin-1 which inhibits nuclear envelope expansion and nuclear elongation during the closed mitosis of fission yeast, and showed that its target is the β-subunit of fatty acid synthase. A point mutation in the dehydratase domain of Fas1 conferred in vivo and in vitro resistance to Cutin-1. Time-lapse photomicrography showed that the bulk of the chromosomes were only transiently separated during mitosis, and nucleoli separation was defective. Subsequently sister chromatids re-associated leading to chromosomal mis-segregation. These segregation defects were reduced when the nuclear volume was increased and were increased when the nuclear volume was reduced. We propose that there needs to be sufficient nuclear volume to allow the nuclear elongation necessary during a closed mitosis to take place for proper chromosome segregation, and that inhibition of fatty acid synthase compromises nuclear elongation and leads to defects in chromosomal segregation. © 2016. Published by The Company of Biologists Ltd.

  15. Fission yeast dam1-A8 mutant is resistant to and rescued by an anti-microtubule agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Karen; Masuda, Hirohisa; Dhut, Susheela

    2008-04-11

    The Dam1/DASH outer kinetochore complex is required for high-fidelity chromosome segregation in budding and fission yeast. Unlike budding yeast, the fission yeast complex is non-essential, however it promotes bipolar microtubule attachment in conjunction with microtubule-depolymerising kinesin-8 Klp5 and Klp6. Here, we screened for dam1 temperature sensitive mutants in a klp5 null background and identified dam1-A8 that contains two amino acid substitutions in the C-terminus (H126R and E149G). dam1-A8klp5 mutant cells display massive chromosome missegregation with lagging chromosomes and monopolar attachment of sister chromatids to one SPB (spindle pole body). Unexpectedly contrary to a deletion mutant that is hypersensitive to microtubule-destabilisingmore » drugs, dam1-A8 is resistant and furthermore the temperature sensitivity of dam1-A8klp5 is rescued by addition of these drugs. This indicates that the hyper-stabilised rigidity of kinetochore-spindle mal-attachments is the primary cause of lethality. Our result shows that fine-tuning of Dam1 activity is essential for chromosome bi-orientation.« less

  16. [A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].

    PubMed

    Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan

    2009-02-01

    Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2

  17. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  18. Visualization of yeast chromosomal DNA

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1990-01-01

    The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.

  19. Replication dynamics of the yeast genome.

    PubMed

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  20. Chromosomal changes during experimental evolution in laboratory populations of Escherichia coli.

    PubMed

    Bergthorsson, U; Ochman, H

    1999-02-01

    Short-term rates of chromosome evolution were analyzed in experimental populations of Escherichia coli B that had been propagated for 2,000 generations under four thermal regimens. Chromosome alterations were monitored in 24 independent populations by pulsed-field gel electrophoresis of DNA treated with five rare-cutting restriction enzymes. A total of 11 changes, 8 affecting chromosome size and 3 altering restriction sites, were observed in these populations, with none occurring in strains cultured at 37 degreesC. Considering the changes detected in these experimental populations, the rate of chromosome alteration of E. coli is estimated to be half of that observed in experimental populations of yeast.

  1. Sperm-FISH analysis in a pericentric chromosome 1 inversion, 46,XY,inv(1)(p22q42), associated with infertility.

    PubMed

    Chantot-Bastaraud, S; Ravel, C; Berthaut, I; McElreavey, K; Bouchard, P; Mandelbaum, J; Siffroi, J P

    2007-01-01

    No phenotypic effect is observed in most inversion heterozygotes. However, reproductive risks may occur in the form of infertility, spontaneous abortions or chromosomally unbalanced children as a consequence of meiotic recombination between inverted and non-inverted chromosomes. An odd number of crossovers within the inverted segment results in gametes bearing recombinant chromosomes with a duplication of the region outside of the inversion segment of one arm and a deletion of the terminal segment of the other arm [dup(p)/del(q) and del(p)/dup(q)]. Using fluorescence in-situ hybridization (FISH), the chromosome segregation of a pericentric inversion of chromosome 1 was studied in spermatozoa of a inv(1)(p22q42) heterozygous carrier. Three-colour FISH was performed on sperm samples using a probe mixture consisting of chromosome 1p telomere-specific probe, chromosome 1q telomere-specific probe and chromosome 18 centromere-specific alpha satellite DNA probe. The frequency of the non-recombinant product was 80.1%. The frequencies of the two types of recombinants carrying a duplication of the short arm and a deletion of the long arm, and vice versa, were respectively 7.6 and 7.2%, and these frequencies were not statistically significant from the expected ratio of 1:1. Sperm-FISH allows the further understanding of segregation patterns and their effect on reproductive failure and allows an accurate genetic counselling.

  2. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less

  3. Chromosome Rearrangements That Involve the Nucleolus Organizer Region in Neurospora

    PubMed Central

    Perkins, D. D.; Raju, N. B.; Barry, E. G.; Butler, D. K.

    1995-01-01

    In ~3% of Neurospora crassa rearrangements, part of a chromosome arm becomes attached to the nucleolus organizer region (NOR) at one end of chromosome 2 (linkage group V). Investigations with one inversion and nine translocations of this type are reported here. They appear genetically to be nonreciprocal and terminal. When a rearrangement is heterozygous, about one-third of viable progeny are segmental aneuploids with the translocated segment present in two copies, one in normal position and one associated with the NOR. Duplications from many of the rearrangements are highly unstable, breaking down by loss of the NOR-attached segment to restore normal chromosome sequence. When most of the rearrangements are homozygous, attenuated strands can be seen extending through the unstained nucleolus at pachytene, joining the translocated distal segment to the remainder of chromosome 2. Although the rearrangements appear genetically to be nonreciprocal, molecular evidence shows that at least several of them are physically reciprocal, with a block of rDNA repeats translocated away from the NOR. Evidence that NOR-associated breakpoints are nonterminal is also provided by intercrosses between pairs of translocations that transfer different-length segments of the same donor-chromosome arm to the NOR. PMID:8582636

  4. Interphase Chromosome Conformation and Chromatin-chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Hada, Megumi; Wu, Honglu

    2014-01-01

    On a multi-mega base pair scale of the DNA, the arrangement of chromatin is non-random. In M10 epithelial cells, both telomere regions tend to be located towards the exterior of the chromosome domain, whereas the rest p-arm of the chromatin region towards the interior. In contrast, most of the q-arm of the chromatin is found in the peripheral of the domain. In lymphocytes, the p-arm chromatin regions towards the interior in close proximity with each other, whereas two q-arm regions are nearness in space. It indicates that G0 lymphocytes may lack secondary 3D chromatin folding. There chromatin folding patterns are consistent with our previous finding of non-random distribution of intra-chromosomal exchanges. In simulated microgravity conditions, the chromosome conformation may be altered and new regions in close proximity, especially to region 2 are suggested.

  5. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  6. Instability of isochromosome 4p in a child with pure trisomy 4p syndrome features and entire 4q-arm translocation.

    PubMed

    Pota, Pruthvi; Grammatopoulou, Vasiliki; Torti, Erin; Braddock, Stephen; Batanian, Jacqueline R

    2014-01-01

    Constitutional chromosome instability so far has mainly been associated with ring formation. In addition, isochromosome formation involving the short arm with translocation of the entire long arm is rarely observed. This type of rearrangement has been reported for chromosomes 4, 5, 7, 9, 10, 12, and 20. Here, we present the third patient having an isochromosome 4p with 4q translocation, but showing for the first time chromosome instability detected by FISH following chromosome microarray analysis.

  7. Recombination of an intrachromosomal paracentric insertion of chromosome 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, R.G.; Burnett, W.J.; Brock, J.K.

    1994-09-01

    Cytogenetic studies were initiated on a newborn female due to multiple congenital anomalies including microcephaly, clinodactyly, abnormal positioning of hands, left facial palsy, heart defect, sacral dimple, and facial dysmorphic features. Facial features were described as low set rotated ears, nystagmus, and a small, flattened nose. A structural rearrangement of the long arm of chromosome 3 was observed with a complex banding pattern. Study of parental chromosomes revealed a normal male pattern for the father, and an intrachromosomal insertion on the long arm of chromosome 3 for the mother described as 46,XX,dir ins(3)(q21q23q26.2). Further characterization of the proband`s structurally abnormalmore » chromosome 3 revealed a karyotype best described as: 46,XX,rec(3),dupq23{r_arrow}q26.2::q21{r_arrow}q23,dir ins(3)(q21q23q26.2), which is a partial duplication of both the inserted segment as well as the intervening segment between the inserted segment and the insertion site. This would appear to be the result of a three-strand double cross-over within the insertion loop. Molecular cytogenetic studies are presently underway to further elucidate chromosome structure of the proband and her mother.« less

  8. Mechanisms of ring chromosome formation, ring instability and clinical consequences.

    PubMed

    Guilherme, Roberta S; Meloni, Vera F Ayres; Kim, Chong A; Pellegrino, Renata; Takeno, Sylvia S; Spinner, Nancy B; Conlin, Laura K; Christofolini, Denise M; Kulikowski, Leslie D; Melaragno, Maria I

    2011-12-21

    The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients. Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization). The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV). We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).

  9. Exceptional complex chromosomal rearrangements in three generations.

    PubMed

    Kartapradja, Hannie; Marzuki, Nanis Sacharina; Pertile, Mark D; Francis, David; Suciati, Lita Putri; Anggaratri, Helena Woro; Ambarwati, Debby Dwi; Idris, Firman Prathama; Lesmana, Harry; Trimarsanto, Hidayat; Paramayuda, Chrysantine; Harahap, Alida Roswita

    2015-01-01

    We report an exceptional complex chromosomal rearrangement (CCR) found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband's mother, which was confirmed using the whole chromosome painting (WCP) FISH. High resolution whole genome microarray analysis of DNA from the proband's mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother's and grandmother's CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  10. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  11. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis.

    PubMed

    Basu, J; Williams, B C; Li, Z; Williams, E V; Goldberg, M L

    1998-01-01

    In the course of a genetic screen for male-sterile mutations in Drosophila affecting chromosome segregation during the meiotic divisions in spermatocytes, we identified the mutation dsup35(63D). Examination of mutant testes showed that chromosome misbehavior was a consequence of major disruptions in meiotic spindle assembly. These perturbations included problems in aster formation, separation, and migration around the nuclear envelope; aberrations in spindle organization and integrity; and disappearance of the ana/telophase central spindle, which in turn disrupts cytokinesis. The dsup35(63D) mutation is caused by a P element insertion that affects, specifically in the testis, the expression of a gene (dsup35) encoding the Drosophila homolog of the yeast Sup35p and Xenopus eRF3 proteins. These proteins are involved in the termination of polypeptide synthesis on ribosomes, but previous studies have suggested that Sup35p and closely related proteins of the same family also interact directly with microtubules. An affinity-purified antibody directed against the product of the dsup35 gene was prepared; interestingly, this antibody specifically labels primary spermatocytes in one or two discrete foci of unknown structure within the nucleoplasm. We discuss how depletion of the dsup35 gene product in spermatocytes might lead to the global disruptions in meiotic spindle assembly seen in mutant spermatocytes.

  12. Contrasting evolutionary genome dynamics between domesticated and wild yeasts

    PubMed Central

    Yue, Jia-Xing; Li, Jing; Aigrain, Louise; Hallin, Johan; Persson, Karl; Oliver, Karen; Bergström, Anders; Coupland, Paul; Warringer, Jonas; Lagomarsino, Marco Consentino; Fischer, Gilles; Durbin, Richard; Liti, Gianni

    2017-01-01

    Structural rearrangements have long been recognized as an important source of genetic variation with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here, we use long-read sequencing to generate end-to-end genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level high-quality genomes with comprehensive annotation allow for the first time a precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus exhibits faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions) whereas S. cerevisiae accumulates unbalanced rearrangements (novel insertions, deletions and duplications) more rapidly. In subtelomeres, both species show extensive interchromosomal reshuffling, with a higher tempo in S. cerevisiae. Such striking contrasts between wild and domesticated yeasts likely reflect the influence of human activities on structural genome evolution. PMID:28416820

  13. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  14. Origin of the chromosomal radiation of Madeiran house mice: a microsatellite analysis of metacentric chromosomes

    PubMed Central

    Förster, D W; Mathias, M L; Britton-Davidian, J; Searle, J B

    2013-01-01

    Chromosome races of Mus musculus domesticus are characterised by particular sets of metacentric chromosomes formed by Robertsonian fusions and whole-arm reciprocal translocations. The Atlantic island of Madeira is inhabited by six chromosome races of house mice with 6–9 pairs of metacentric chromosomes. Three of these races are characterised by the metacentric 3.8 also found elsewhere in the distribution of M. m. domesticus, including Denmark and Spain. We investigated the possibility that metacentric 3.8 was introduced to Madeira during the initial colonisation, as this could have ‘seeded' the cascade of chromosomal mutation that is the basis of the extraordinary chromosomal radiation observed on the island. Variation at 24 microsatellite loci mapping to three different chromosomal regions (proximal, interstitial and distal) of mouse chromosomes 3 and 8 was investigated in 179 mice from Madeira, Denmark, Portugal, Spain, Italy and Scotland. Analyses of microsatellite loci closely linked to the centromeres of these chromosomes (‘proximal loci') do not support a common evolutionary origin of metacentric 3.8 among Madeiran, Danish and Spanish mouse populations. Our results suggest that Madeiran mice are genetically more similar to standard karyotype mice from Portugal than to metacentric mice from elsewhere. There is expected to be an interruption to gene flow between hybridising metacentric races on Madeira, particularly in the chromosomal regions close to the rearrangement breakpoints. Consistent with this, relating to differentiation involving chromosomes 3 and 8 on Madeira, we found greater genetic structure among races for proximal than interstitial or distal loci. PMID:23232832

  15. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize.

    PubMed

    Liu, Yalin; Su, Handong; Pang, Junling; Gao, Zhi; Wang, Xiu-Jie; Birchler, James A; Han, Fangpu

    2015-03-17

    The ability of centromeres to alternate between active and inactive states indicates significant epigenetic aspects controlling centromere assembly and function. In maize (Zea mays), misdivision of the B chromosome centromere on a translocation with the short arm of chromosome 9 (TB-9Sb) can produce many variants with varying centromere sizes and centromeric DNA sequences. In such derivatives of TB-9Sb, we found a de novo centromere on chromosome derivative 3-3, which has no canonical centromeric repeat sequences. This centromere is derived from a 288-kb region on the short arm of chromosome 9, and is 19 megabases (Mb) removed from the translocation breakpoint of chromosome 9 in TB-9Sb. The functional B centromere in progenitor telo2-2 is deleted from derivative 3-3, but some B-repeat sequences remain. The de novo centromere of derivative 3-3 becomes inactive in three further derivatives with new centromeres being formed elsewhere on each chromosome. Our results suggest that de novo centromere initiation is quite common and can persist on chromosomal fragments without a canonical centromere. However, we hypothesize that when de novo centromeres are initiated in opposition to a larger normal centromere, they are cleared from the chromosome by inactivation, thus maintaining karyotype integrity.

  16. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize

    PubMed Central

    Liu, Yalin; Su, Handong; Pang, Junling; Gao, Zhi; Wang, Xiu-Jie; Birchler, James A.; Han, Fangpu

    2015-01-01

    The ability of centromeres to alternate between active and inactive states indicates significant epigenetic aspects controlling centromere assembly and function. In maize (Zea mays), misdivision of the B chromosome centromere on a translocation with the short arm of chromosome 9 (TB-9Sb) can produce many variants with varying centromere sizes and centromeric DNA sequences. In such derivatives of TB-9Sb, we found a de novo centromere on chromosome derivative 3-3, which has no canonical centromeric repeat sequences. This centromere is derived from a 288-kb region on the short arm of chromosome 9, and is 19 megabases (Mb) removed from the translocation breakpoint of chromosome 9 in TB-9Sb. The functional B centromere in progenitor telo2-2 is deleted from derivative 3-3, but some B-repeat sequences remain. The de novo centromere of derivative 3-3 becomes inactive in three further derivatives with new centromeres being formed elsewhere on each chromosome. Our results suggest that de novo centromere initiation is quite common and can persist on chromosomal fragments without a canonical centromere. However, we hypothesize that when de novo centromeres are initiated in opposition to a larger normal centromere, they are cleared from the chromosome by inactivation, thus maintaining karyotype integrity. PMID:25733907

  17. Chromosome behaviour in Rhoeo spathacea var. variegata.

    PubMed

    Lin, Y J

    1980-01-01

    Rhoeo spathacea var. variegata is unusual in that its twelve chromosomes are arranged in a ring at meiosis. The order of the chromosomes has been established, and each chromosome arm has been designated a letter in accordance with the segmental interchange theory. Chromosomes are often irregularly orientated at metaphase I. Chromosomes at anaphase I are generally distributed equally (6-6, 58.75%) although not necessarily balanced. Due to adjacent distribution, 7-5 distribution at anaphase I was frequently observed (24.17%), and due to lagging, 6-1-5 and 5-2-5 distributions were also observed (10.83% and 3.33% respectively). Three types of abnormal distribution, 8-4, 7-1-4 and 6-2-4 were observed very infrequently (2.92% total), and their possible origins are discussed. Irregularities, such as adjacent distribution and lagging, undoubtedly reduce the fertility of the plant because of the resulting unbalanced gametes.

  18. Genetic effects of nine Gossypium barbadense L. chromosome substitution lines in topcrosses with five elite Upland cotton G. hirsutum L. cultivars

    USDA-ARS?s Scientific Manuscript database

    Crosses between Gossypium barbadense L. and Upland (G. hirsutum L.) have produced limited success in introgressing fiber quality genes into Upland cotton. Chrosome substitution lines (CSL) have chromosomes or arms from G. barbadense, line 3-79, substituted for the corresponding chromosome or arm in ...

  19. Satellite DNA-based artificial chromosomes for use in gene therapy.

    PubMed

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  20. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    PubMed

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Assignment of xeroderma pigmentosum group C(XPC) gene to chromosome 3p25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legerski, R.J.; Liu, P.; Li, L.

    1994-05-01

    The human gene XPC (formerly designated XPCC), which corrects the repair deficiency of xeroderma pigmentosum (XP) group C cells, was mapped to 3p25. A cDNA probe for Southern blot hybridization and diagnostic PCR analyses of hybrid clone panels informative for human chromosomes in general and portions of chromosome 3 in particular produced the initial results. Fluorescence in situ hybridization utilizing both a yeast artificial chromosome DNA containing the gene and XPC cDNA as probes provided verification and specific regional assignment. A conflicting assignment of XPC to chromosome 5 is discussed in light of inadequacies in the exclusive use of microcell-mediatedmore » chromosome transfer for gene mapping. 12 refs., 3 figs.« less

  2. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications

    PubMed Central

    2012-01-01

    Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed. PMID:23181612

  3. Mapping of Ppd-B1, a Major Candidate Gene for Late Heading on Wild Emmer Chromosome Arm 2BS and Assessment of Its Interactions with Early Heading QTLs on 3AL.

    PubMed

    Zhou, Wei; Wu, Shasha; Ding, Mingquan; Li, Jingjuan; Shi, Zhaobin; Wei, Wei; Guo, Jialian; Zhang, Hua; Jiang, Yurong; Rong, Junkang

    2016-01-01

    Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days.

  4. Mapping of Ppd-B1, a Major Candidate Gene for Late Heading on Wild Emmer Chromosome Arm 2BS and Assessment of Its Interactions with Early Heading QTLs on 3AL

    PubMed Central

    Ding, Mingquan; Li, Jingjuan; Shi, Zhaobin; Wei, Wei; Guo, Jialian; Zhang, Hua; Jiang, Yurong; Rong, Junkang

    2016-01-01

    Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days. PMID:26848576

  5. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities.

    PubMed

    Ferlin, A; Garolla, A; Foresta, C

    2005-01-01

    The most common type of karyotype abnormality detected in infertile subjects is represented by Klinefelter's syndrome, and the most frequent non-chromosomal alteration is represented by Y chromosome long arm microdeletions. Here we report our experience and a review of the literature on sperm sex chromosome aneuploidies in these two conditions. Non mosaic 47,XXY Klinefelter patients (12 subjects) show a significantly lower percentage of normal Y-bearing sperm and slightly higher percentage of normal X-bearing sperm. Consistent with the hypothesis that 47,XXY germ cells may undergo and complete meiosis, aneuploidy rate for XX- and XY-disomies is also increased with respect to controls, whereas the percentage of YY-disomies is normal. Aneuploidy rates in men with mosaic 47,XXY/46,XY (11 subjects) are lower than those observed in men with non-mosaic Klinefelter's syndrome, and only the frequency of XY-disomic sperm is significantly higher with respect to controls. Although the great majority of children born by intracytoplasmic sperm injection from Klinefelter subjects are chromosomally normal, the risk of producing offspring with chromosome aneuploidies is significant. Men with Y chromosome microdeletions (14 subjects) showed a reduction of normal Y-bearing sperm, and an increase in nullisomic and XY-disomic sperm, suggesting an instability of the deleted Y chromosome causing its loss in germ cells, and meiotic alterations leading to XY non-disjunction. Intracytoplasmic injection of sperm from Y-deleted men will therefore transmit the deletion to male children, and therefore the spermatogenic impairment, but raises also concerns of generating 45,X and 47,XXY embryos. Copyright 2005 S. Karger AG, Basel.

  6. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    PubMed Central

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  7. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    PubMed

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.

  8. Chromosome congression by kinesin-5 motor-mediated disassembly of longer kinetochore microtubules

    PubMed Central

    Gardner, Melissa K; Bouck, David C.; Paliulis, Leocadia V.; Meehl, Janet B.; O’Toole, Eileen T.; Haase, Julian; Soubry, Adelheid; Joglekar, Ajit P.; Winey, Mark; Salmon, Edward D.; Bloom, Kerry; Odde, David J.

    2008-01-01

    Summary During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus-ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely-conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus-end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression. PMID:19041752

  9. Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species.

    PubMed

    Graphodatsky, A S; Yang, F; O'Brien, P C; Perelman, P; Milne, B S; Serdukova, N; Kawada, S I; Ferguson-Smith, M A

    2001-01-01

    Chromosome homologies between the Japanese raccoon dog (Nectereutes procyonoides viverrinus, 2n = 39 + 2-4 B chromosomes) and domestic dog (Canis familiaris, 2n = 78) have been established by hybridizing a complete set of canine paint probes onto high-resolution G-banded chromosomes of the raccoon dog. Dog chromosomes 1, 13, and 19 each correspond to two raccoon dog chromosome segments, while the remaining 35 dog autosomes each correspond to a single segment. In total, 38 dog autosome paints revealed 41 conserved segments in the raccoon dog. The use of dog painting probes has enabled integration of the raccoon dog chromosomes into the previously established comparative map for the domestic dog, Arctic fox (Alopex lagopus), and red fox (Vulpes vulpes). Extensive chromosome arm homologies were found among chromosomes of the red fox, Arctic fox, and raccoon dog. Contradicting previous findings, our results show that the raccoon dog does not share a single biarmed autosome in common with the Arctic fox, red fox, or domestic cat. Comparative analysis of the distribution patterns of conserved chromosome segments revealed by dog paints in the genomes of the canids, cats, and human reveals 38 ancestral autosome segments. These segments could represent the ancestral chromosome arms in the karyotype of the most recent ancestor of the Canidae family, which we suggest could have had a low diploid number, based on comparisons with outgroup species. Copyright 2001 S. Karger AG, Basel.

  10. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast.

    PubMed

    Chan, C S; Botstein, D

    1993-11-01

    We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37 degrees. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37 degrees. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth.

  11. Isolation and Characterization of Chromosome-Gain and Increase-in-Ploidy Mutants in Yeast

    PubMed Central

    Chan, CSM.; Botstein, D.

    1993-01-01

    We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37°. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37°. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth. PMID:8293973

  12. [Research progress in human artificial chromosomes(HACs) and the potentials in application].

    PubMed

    Zuo, Guo-Wei; Lü, Feng-Lin

    2005-11-01

    Since the first report of the establishment of human artificial chromosome(HAC) was published in 1997, several types of HAC have been created by different strategies. Compared to other artificial chromosomes, such as yeast artificial chromosome (YAC) and bacterial artificial chromosome(BAC), HAC exists in a cell independently, in other words, HAC does not integrated into the cellular genome, and can undergo normal mitosis and meiosis from generation to generation in vitro and in vivo. Recent results proved that HAC, as a DNA carrier, is able to host a large fragment of DNA or mini-chromosome, thus it could be a very important tool in the study of human gene expression and regulation, human chromosome function and minimum functional elements and animal models for human diseases. In the near future, HAC can also be used in gene therapy for human genetic diseases.

  13. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  14. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  15. A radiation hybrid map of the distal short arm of human chromosome II, containing the Beckwith-Weidemann and associated embroyonal tumor disease loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, C.W. III; Berg, D.J.; Meeker, T.C.

    1993-05-01

    The authors describe a high-resolution radiation hybrid (RH) map of the distal short arm of human chromosome 11 containing the Beckwith-Weidemann gene and the associated embryonal tumor disease loci. Thirteen human 11p15 genes and 17 new anonymous probes were mapped by a statistical analysis of the cosegregation of markers in 102 rodent-human radiation hybrids retaining fragments of human chromosome 11. The 17 anonymous probes were generated from lambda phage containing human 11p15.5 inserts, by using ALU-PCR. A comprehensive map of all 30 loci and a framework map of nine clusters of loci ordered at odds of 1,000:1 were constructed bymore » a multipoint maximum-likelihood approach by using the computer program RHMAP. This RH map localizes one new gene to chromosome 11p15 (WEE1), provides more precise order information for several 11p15 genes (CTSD, H19, HPX,.ST5, RNH, and SMPD1), confirms previous map orders for other 11p15 genes (CALCA, PTH, HBBC, TH, HRAS, and DRD4), and maps 17 new anonymous probes within the 11p15.5 region. This RH map should prove useful in better defining the positions of the Beckwith-Weidemann and associated embryonal tumor disease-gene loci. 41 refs., 1 fig., 2 tabs.« less

  16. Kinetochore-independent chromosome segregation driven by lateral microtubule bundles

    PubMed Central

    Muscat, Christina C; Torre-Santiago, Keila M; Tran, Michael V; Powers, James A; Wignall, Sarah M

    2015-01-01

    During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not understood. In this study, we show that lateral microtubule–chromosome associations established during prometaphase remain intact during anaphase to facilitate separation, defining a novel form of kinetochore-independent segregation. Chromosome dynamics during congression and segregation are controlled by opposing forces; plus-end directed forces are mediated by a protein complex that forms a ring around the chromosome center and dynein on chromosome arms provides a minus-end force. At anaphase onset, ring removal shifts the balance between these forces, triggering poleward movement along lateral microtubule bundles. This represents an elegant strategy for controlling chromosomal movements during cell division distinct from the canonical kinetochore-driven mechanism. DOI: http://dx.doi.org/10.7554/eLife.06462.001 PMID:26026148

  17. Proximity within interphase chromosome contributes to the breakpoint distribution in radiation-induced intrachromosomal exchanges

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu

    2014-07-01

    Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome 3 in human mammary epithelial cells after exposures to either low- or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome 3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations.

  18. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae.

    PubMed

    Adams, J; Puskas-Rozsa, S; Simlar, J; Wilke, C M

    1992-07-01

    Thirteen independent populations of Saccharomyces cerevisiae (nine haploid and four diploid) were maintained in continuous culture for up to approximately 1000 generations, with growth limited by the concentration of organic phosphates in medium buffered at pH 6. Analysis of clones isolated from these populations showed that a number (17) of large-scale chromosomal-length variants and rearrangements were present in the populations at their termination. Nine of the 16 yeast chromosomes were involved in such changes. Few of the changes could be explained by copy-number increases in the structural loci for acid phosphatase. Several considerations concerning the nature and frequency of the chromosome-length variants observed lead us to conclude that they are selectively advantageous.

  19. The Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Schober, Heiko; Gasser, Susan M.

    2010-01-01

    The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704

  20. [Molecular and cytogenetic characterization of six 46, XX males due to translocations between the short arms of X and Y chromosomes].

    PubMed

    Xing, Ya; Ji, Xing; Xiao, Bing; Jiang, Wen-ting; Hu, Qin; Hu, Juan; Cao, Ying; Tao, Jiong

    2012-08-01

    To characterize molecular and cytogenetic abnormalities in six 46, XX males, and to investigate the clinical manifestations and underlying mechanisms in such patients. Clinical data of six XX male patients were collected. Karyotyping, multiple polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) were utilized to detect and locate the sex determining region (SRY) gene. PCR and FISH showed that all patients were SRY-positive XX males. All patients have their SRY gene located at the tip of derivative X chromosomes, which have resulted from translocation between short arms of X and Y chromosomes. High resolution karyotyping at 550-750 band level has revealed that the translocation breakpoints were at Xp22.33 and Yp11.2 in three patients. In the remaining patients, the breakpoints were either at Xp22.32 and Yp11.31 or Xp22.31 and Yp11.2. The breakpoints at Xp22.32, Xp22.31 and Yp11.31 were rarely reported. Genotype-phenotype correlation analysis indicated that the clinical manifestations were age-specific. Four adult patients have come to clinical attention due to infertility, with typical features including azoospermia and testis dysgenesis, whereas poorly developed secondary sexual characteristics and short stature were main complaints of adolescence patients, and short stature was the sole symptom in a child patient. Combined karyotyping, PCR and FISH are important for the analysis of XX males. Particularly, high resolution karyotyping is valuable for the refinement of chromosome breakpoints and detailed analysis of genotype-phenotype correlation.

  1. A 21.7 kb DNA segment on the left arm of yeast chromosome XIV carries WHI3, GCR2, SPX18, SPX19, an homologue to the heat shock gene SSB1 and 8 new open reading frames of unknown function.

    PubMed

    Jonniaux, J L; Coster, F; Purnelle, B; Goffeau, A

    1994-12-01

    We report the amino acid sequence of 13 open reading frames (ORF > 299 bp) located on a 21.7 kb DNA segment from the left arm of chromosome XIV of Saccharomyces cerevisiae. Five open reading frames had been entirely or partially sequenced previously: WHI3, GCR2, SPX19, SPX18 and a heat shock gene similar to SSB1. The products of 8 other ORFs are new putative proteins among which N1394 is probably a membrane protein. N1346 contains a leucine zipper pattern and the corresponding ORF presents an HAP (global regulator of respiratory genes) upstream activating sequence in the promoting region. N1386 shares homologies with the DNA structure-specific recognition protein family SSRPs and the corresponding ORF is preceded by an MCB (MluI cell cycle box) upstream activating factor.

  2. Partial monosomy and partial trisomy for different segments of chromosome 13 in several individuals of the same family.

    PubMed

    Wilroy, R S; Summitt, R L; Martens, P; Gooch, W M

    1977-12-01

    A reciprocal translocation, 46,XX,rcp(13;17)(q13;p13), was found to be segregating in a family. Two children have duplication of the distal portion of the long arm of chromosome 13, 46,XX,der(17),rcp(13;17)(q13;p13)mat. They are mentally retarded, have long philtra and postaxial hexadactyly. A maternal half-uncle has a duplication of the short arm and proximal portion of the long arm of chromosome 13, 47,XY,+der(13),rcp (13;17)(q13;p13)mat. He is mentally retarded, has scalp and skull defects and a very short philtrum. A fetus was found, on analysis of amniotic fluid cells, to have a deletion of the distal portion of the long arm of chromosome 13, 46,XX,der,(13),rcp(13;17)(q13;p13)mat. The fetus had multiple internal abnormalities and only 4 fingers on each hand.

  3. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms

    PubMed Central

    Marbouty, Martial; Cournac, Axel; Flot, Jean-François; Marie-Nelly, Hervé; Mozziconacci, Julien; Koszul, Romain

    2014-01-01

    Genomic analyses of microbial populations in their natural environment remain limited by the difficulty to assemble full genomes of individual species. Consequently, the chromosome organization of microorganisms has been investigated in a few model species, but the extent to which the features described can be generalized to other taxa remains unknown. Using controlled mixes of bacterial and yeast species, we developed meta3C, a metagenomic chromosome conformation capture approach that allows characterizing individual genomes and their average organization within a mix of organisms. Not only can meta3C be applied to species already sequenced, but a single meta3C library can be used for assembling, scaffolding and characterizing the tridimensional organization of unknown genomes. By applying meta3C to a semi-complex environmental sample, we confirmed its promising potential. Overall, this first meta3C study highlights the remarkable diversity of microorganisms chromosome organization, while providing an elegant and integrated approach to metagenomic analysis. DOI: http://dx.doi.org/10.7554/eLife.03318.001 PMID:25517076

  4. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    PubMed

    Li, Xiaojun; Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  5. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance

    PubMed Central

    Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat. PMID:28886152

  6. Anopheles darlingi polytene chromosomes: revised maps including newly described inversions and evidence for population structure in Manaus

    PubMed Central

    Cornel, Anthony J; Brisco, Katherine K; Tadei, Wanderli P; Secundino, Nágila FC; Rafael, Miriam S; Galardo, Allan KR; Medeiros, Jansen F; Pessoa, Felipe AC; Ríos-Velásquez, Claudia M; Lee, Yoosook; Pimenta, Paulo FP; Lanzaro, Gregory C

    2016-01-01

    Salivary gland polytene chromosomes of 4th instar Anopheles darlingi Root were examined from multiple locations in the Brazilian Amazon. Minor modifications were made to existing polytene photomaps. These included changes to the breakpoint positions of several previously described paracentric inversions and descriptions of four new paracentric inversions, two on the right arm of chromosome 3 and two on the left arm of chromosome 3 that were found in multiple locations. A total of 18 inversions on the X (n = 1) chromosome, chromosome 2 (n = 7) and 3 (n = 11) were scored for 83 individuals from Manaus, Macapá and Porto Velho municipalities. The frequency of 2Ra inversion karyotypes in Manaus shows significant deficiency of heterozygotes (p < 0.0009). No significant linkage disequilibrium was found between inversions on chromosome 2 and 3. We hypothesize that at least two sympatric subpopulations exist within the An. darlingi population at Manaus based on inversion frequencies. PMID:27223867

  7. Proximity Within Interphase Chromosome Contributes to the Breakpoint Distribution in Radiation-Induced Intrachromosomal Exchanges

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu

    2015-01-01

    Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome3 in human mammary epithelial cells after exposures to either low-or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations. Further investigations suggest that the 3D chromosome folding is cell type and culture condition dependent.

  8. A highly efficient targeted recombination system for engineering linear chromosomes of industrial bacteria Streptomyces.

    PubMed

    Pan, Hung-Yin; Chen, Carton W; Huang, Chih-Hung

    2018-04-17

    Soil bacteria Streptomyces are the most important producers of secondary metabolites, including most known antibiotics. These bacteria and their close relatives are unique in possessing linear chromosomes, which typically harbor 20 to 30 biosynthetic gene clusters of tens to hundreds of kb in length. Many Streptomyces chromosomes are accompanied by linear plasmids with sizes ranging from several to several hundred kb. The large linear plasmids also often contain biosynthetic gene clusters. We have developed a targeted recombination procedure for arm exchanges between a linear plasmid and a linear chromosome. A chromosomal segment inserted in an artificially constructed plasmid allows homologous recombination between the two replicons at the homology. Depending on the design, the recombination may result in two recombinant replicons or a single recombinant chromosome with the loss of the recombinant plasmid that lacks a replication origin. The efficiency of such targeted recombination ranges from 9 to 83% depending on the locations of the homology (and thus the size of the chromosomal arm exchanged), essentially eliminating the necessity of selection. The targeted recombination is useful for the efficient engineering of the Streptomyces genome for large-scale deletion, addition, and shuffling.

  9. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes

    PubMed Central

    Matsubara, Kazumi; Tarui, Hiroshi; Toriba, Michihisa; Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Agata, Kiyokazu; Matsuda, Yoichi

    2006-01-01

    All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids. PMID:17110446

  10. A contiguous clone map over 3 Mb on the long arm of chromosome 11 across a balanced translocation associated with schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, K.L.; Shibasaki, Yoshiro; Devon, R.S.

    1995-08-10

    Forty-nine clones derived by microdissection of a schizophrenia-associated t(1;11)(q42.1;q14.3) breakpoint region have been assigned by somatic cell hybrid mapping to seven discrete intervals on the long arm of human chromosome 11. Eleven of the clones were shown to map to a small region immediately distal to the translocation breakpoint on 11q. A 3-Mb contiguous clone map of this region was established by isolation of corresponding YAC recombinants. The contig was oriented and shown to traverse the translocation breakpoint by FISH and microsatellite marker analysis. This contig will facilitate the isolation of candidate sequences whose expression may be affected by themore » translocation. 28 refs., 4 figs., 3 tabs.« less

  11. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    PubMed

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  12. A patient with familial bone marrow failure and an inversion of chromosome 8.

    PubMed

    Buchbinder, David Kyle; Zadeh, Touran; Nugent, Diane

    2011-12-01

    Familial bone marrow failure has been associated with a variety of chromosomal aberrations. Chromosome 8 abnormalities have been described in association with neoplastic and hematologic disorders; however, to our knowledge, inversion of the long arm of chromosome 8 has not been described in the context of familial bone marrow failure. We describe a 9-year-old female with familial bone marrow failure and an inversion of chromosome 8 [inv (8) (q22, q24.3)]. Given the importance of considering the genetic determinants of familial bone marrow failure, the potential role of chromosome 8 abnormalities in the development of marrow failure is discussed.

  13. Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines.

    PubMed

    Saha, S; Wu, J; Jenkins, J N; McCarty, J C; Stelly, D M

    2013-01-01

    The untapped potential of the beneficial alleles from Gossypium barbadense L. has not been well utilized in G. hirsutum L. (often referred to as Upland cotton) breeding programs. This is primarily due to genomic incompatibility and technical challenges associated with conventional methods of interspecific introgression. In this study, we used a hypoaneuploid-based chromosome substitution line as a means for systematically introgressing G. barbadense doubled-haploid line '3-79' germplasm into a common Upland genetic background, inbred 'Texas marker-1' ('TM-1'). We reported on the chromosomal effects, lint percentage, boll weight, seedcotton yield and lint yield in chromosome substitution CS-B (G. barbadense L.) lines. Using an additive-dominance genetic model, we studied the interaction of alleles located on two alien substituted chromosomes versus one alien substituted chromosome using a partial diallel mating design of selected CS-B lines (CS-B05sh, CS-B06, CS-B09, CS-B10, CS-B12, CS-B17 and CS-B18). Among these parents, CS-B09 and CS-B10 were reported for the first time. The donor parent 3-79, had the lowest additive effect for all of the agronomic traits. All of the CS-B lines had significant additive effects with boll weight and lint percentage. CS-B10 had the highest additive effects for lint percentage, and seedcotton and lint yield among all of the lines showing a transgressive genetic mode of inheritance for these traits. CS-B09 had greater additive genetic effects on lint yield, while CS-B06, CS-B10 and CS-B17 had superior additive genetic effects on both lint and seedcotton yield compared to TM-1 parent. The 3-79 line had the highest dominance effects for boll weight (0.513 g) and CS-B10 had the lowest dominance effect for boll weight (-0.702). Some major antagonistic genetic effects for the agronomic traits were present with most of the substituted chromosomes and chromosome arms, a finding suggested their recalcitrance to conventional breeding efforts

  14. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation.

    PubMed

    Matsuo, Yuzy; Maurer, Sebastian P; Yukawa, Masashi; Zakian, Silva; Singleton, Martin R; Surrey, Thomas; Toda, Takashi

    2016-12-15

    Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein. Using an in vitro microscopy assay, we find that purified Dis1 autonomously tracks growing microtubule ends and is a bona fide microtubule polymerase. Mal3 recruits additional Dis1 to microtubule ends, explaining the synergistic enhancement of microtubule dynamicity by these proteins. A non-canonical binding motif in Dis1 mediates the interaction with Mal3. X-ray crystallography shows that this new motif interacts in an unconventional configuration with the conserved hydrophobic cavity formed within the Mal3 C-terminal region that typically interacts with the canonical SXIP motif. Selectively perturbing the Mal3-Dis1 interaction in living cells demonstrates that it is important for accurate chromosome segregation. Whereas, in some metazoans, the interaction between EB1 and the XMAP215/TOG family members requires an additional binding partner, fission yeast relies on a direct interaction, indicating evolutionary plasticity of this critical interaction module. © 2016. Published by The Company of Biologists Ltd.

  15. The Juberg-Marsidi syndrome maps to the proximal long arm of the X chromosome (Xq12-q21)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saugier-Veber, P.; Abadie, V.; Turleau, C.

    Juberg-Marsidi syndrome (McKusick 309590) is a rare X-linked recessive condition characterized by severe mental retardation, growth failure, sensorineural deafness, and microgenitalism. Here the authors report on the genetic mapping of the Juberg-Marsidi gene to the proximal long arm of the X chromosome (Xq12-q21) by linkage to probe pRX214H1 at the DXS441 locus (Z = 3.24 at [theta] = .00). Multipoint linkage analysis placed the Juberg-Marsidi gene within the interval defined by the DXS159 and the DXYS1X loci in the Xq12-q21 region. These data provide evidence for the genetic distinction between Juberg-Marsidi syndrome and several other X-linked mental retardation syndromes thatmore » have hypogonadism and hypogenitalism and that have been localized previously. Finally, the mapping of the Juberg-Marsidi gene is of potential interest for reliable genetic counseling of at-risk women. 25 refs., 2 figs., 3 tabs.« less

  16. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts

    PubMed Central

    Maresca, Thomas J.; Freedman, Benjamin S.; Heald, Rebecca

    2005-01-01

    During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis. PMID:15967810

  17. Ends-in Vs. Ends-Out Recombination in Yeast

    PubMed Central

    Hastings, P. J.; McGill, C.; Shafer, B.; Strathern, J. N.

    1993-01-01

    Integration of linearized plasmids into yeast chromosomes has been used as a model system for the study of recombination initiated by double-strand breaks. The linearized plasmid DNA recombines efficiently into sequences homologous to the ends of the DNA. This efficient recombination occurs both for the configuration in which the break is in a contiguous region of homology (herein called the ends-in configuration) and for ``omega'' insertions in which plasmid sequences interrupt a linear region of homology (herein called the ends-out configuration). The requirements for integration of these two configurations are expected to be different. We compared these two processes in a yeast strain containing an ends-in target and an ends-out target for the same cut plasmid. Recovery of ends-in events exceeds ends-out events by two- to threefold. Possible causes for the origin of this small bias are discussed. The lack of an extreme difference in frequency implies that cooperativity between the two ends does not contribute to the efficiency with which cut circular plasmids are integrated. This may also be true for the repair of chromosomal double-strand breaks. PMID:8307337

  18. Chromosome dynamics in meiotic prophase I in plants.

    PubMed

    Ronceret, A; Pawlowski, W P

    2010-07-01

    Early stages of meiotic prophase are characterized by complex and dramatic chromosome dynamics. Chromosome behavior during this period is associated with several critical meiotic processes that take place at the molecular level, such as recombination and homologous chromosome recognition and pairing. Studies to characterize specific patterns of chromosome dynamics and to identify their exact roles in the progression of meiotic prophase are only just beginning in plants. These studies are facilitated by advances in imaging technology in the recent years, including development of ultra-resolution three-dimensional and live microscopy methods. Studies conducted so far indicate that different chromosome regions exhibit different dynamics patterns in early prophase. In many species telomeres cluster at the nuclear envelope at the beginning of zygotene forming the telomere bouquet. The bouquet has been traditionally thought to facilitate chromosome pairing by bringing chromosome ends into close proximity, but recent studies suggest that its main role may rather be facilitating rapid movements of chromosomes during zygotene. In some species, including wheat and Arabidopsis, there is evidence that centromeres form pairs (couple) before the onset of pairing of chromosome arms. While significant advances have been achieved in elucidating the patterns of chromosome behavior in meiotic prophase I, factors controlling chromosome dynamics are still largely unknown and require further studies. Copyright 2010 S. Karger AG, Basel.

  19. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  20. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE PAGES

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.; ...

    2014-11-20

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  1. Unraveling the Sex Chromosome Heteromorphism of the Paradoxical Frog Pseudis tocantins

    PubMed Central

    Gatto, Kaleb Pretto; Busin, Carmen Silvia; Lourenço, Luciana Bolsoni

    2016-01-01

    The paradoxical frog Pseudis tocantins is the only species in the Hylidae family with known heteromorphic Z and W sex chromosomes. The Z chromosome is metacentric and presents an interstitial nucleolar organizer region (NOR) on the long arm that is adjacent to a pericentromeric heterochromatic band. In contrast, the submetacentric W chromosome carries a pericentromeric NOR on the long arm, which is adjacent to a clearly evident heterochromatic band that is larger than the band found on the Z chromosome and justify the size difference observed between these chromosomes. Here, we provide evidence that the non-centromeric heterochromatic bands in Zq and Wq differ not only in size and location but also in composition, based on comparative genomic hybridization (CGH) and an analysis of the anuran PcP190 satellite DNA. The finding of PcP190 sequences in P. tocantins extends the presence of this satellite DNA, which was previously detected among Leptodactylidae and Hylodidae, suggesting that this family of repetitive DNA is even older than it was formerly considered. Seven groups of PcP190 sequences were recognized in the genome of P. tocantins. PcP190 probes mapped to the heterochromatic band in Wq, and a Southern blot analysis indicated the accumulation of PcP190 in the female genome of P. tocantins, which suggests the involvement of this satellite DNA in the evolution of the sex chromosomes of this species. PMID:27214234

  2. [Early loss of heterozygosity on chromosome arm 16q in flat epithelial atypia of the breast. Detection by microsatellite analyses].

    PubMed

    Schmidt, H; Dahrenmöller, C; Agelepoulos, K; Hungermann, D; Böcker, W

    2008-11-01

    With the improvement of breast carcinoma screening, pre-malignant cell lesions such as flat epithelial atypia (FEA) are detected more frequently. Several studies have demonstrated that FEA show features of a ductal neoplasia, but is it really a precursor lesion? We have started a comparative genetic analysis of a panel of nine microsatellite markers on six different chromosomal regions to investigate whether FEAs show the same characteristic genetic alterations as ductal carcinomas in situ (DCISs) and invasive carcinoma of the breast. FEAs, DCISs and invasive carcinomas of the same patients were microdissected using PALM micro laser technology. DNA was isolated using the QIAamp DNA Micro Kit (QIAGEN). We have investigated a set of the polymorphic microsatellite markers D7S522, D8S522, NEFL, D10S541 (PTEN), D13S153 (RB1), D16S400, D16S402, D16S422 and D17S855 (BRCA1) using multiplex PCR for the detection of allelic imbalances. Most of the investigated FEAs showed a lower frequency of loss of heterozygosity than associated DCISs or invasive carcinomas. However, we were able to detect the same alterations in FEAs as in DCISs or invasive carcinomas in a number of cases. Notably, the microsatellite marker on 16q showed more prevalent allelic imbalances in FEAs than the other investigated markers. One of the hallmarks in the pathogenesis of a large subgroup of invasive breast carcinomas is the early loss of chromosome arm 16q. In this study, we were able to detect frequent genetic alterations on chromosome 16q in FEAs, associated DCISs and invasive carcinomas. This suggests that FEA is a precursor lesion in the low-grade pathway.

  3. Chromosomal Translocations in Black Flies (Diptera: Simuliidae)-Facilitators of Adaptive Radiation?

    PubMed

    Adler, Peter H; Yadamsuren, Oyunchuluun; Procunier, William S

    2016-01-01

    A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum) were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic) entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential structural and

  4. Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times.

    PubMed

    Kasai, F; O'Brien, P C M; Martin, S; Ferguson-Smith, M A

    2012-01-01

    We report extensive chromosome homology revealed by chromosome painting between chicken (Gallus gallus domesticus, GGA, 2n = 78) macrochromosomes (representing 70% of the chicken genome) and the chromosomes of a turtle, the red-eared slider (Trachemys scripta elegans, TSC, 2n = 50), and the Nile crocodile (Crocodylus niloticus, CNI, 2n = 32). Our data show that GGA1-8 arms seem to be conserved in the arms of TSC chromosomes, GGA1-2 arms are separated and homologous to CNI1p, 3q, 4q and 5q. In addition to GGAZ homologues in our previous study, large-scale GGA autosome syntenies have been conserved in turtle and crocodile despite hundreds of millions of years divergence time. Based on phylogenetic hypotheses that crocodiles diverged after the divergence of birds and turtles, our results in CNI suggest that GGA1-2 and TSC1-2 represent the ancestral state and that chromosome fissions followed by fusions have been the mechanisms responsible for the reduction of chromosome number in crocodiles. Copyright © 2012 S. Karger AG, Basel.

  5. Chromosomal evolution of the Canidae. II. Divergence from the primitive carnivore karyotype.

    PubMed

    Wayne, R K; Nash, W G; O'Brien, S J

    1987-01-01

    The Giemsa-banding patterns of chromosomes from the arctic fox (Alopex lagopus), the red fox (Vulpes vulpes), the kit fox (Vulpes macrotis), and the raccoon dog (Nyctereutes procyonoides) are compared. Despite their traditional placement in different genera, the arctic fox and the kit fox have an identical chromosome morphology and G-banding pattern. The red fox has extensive chromosome arm homoeology with these two species, but has only two entire chromosomes in common. All three species share some chromosomes with the raccoon dog, as does the high diploid-numbered grey wolf (Canis lupus, 2n = 78). Moreover, some chromosomes of the raccoon dog show partial or complete homoeology with metacentric feline chromosomes which suggests that these are primitive canid chromosomes. We present the history of chromosomal rearrangements within the Canidae family based on the assumption that a metacentric-dominated karyotype is primitive for the group.

  6. Identification of supernumerary ring chromosome 1 mosaicism using fluorescence in situ hybridization.

    PubMed

    Chen, H; Tuck-Muller, C M; Batista, D A; Wertelecki, W

    1995-03-27

    We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype.

  7. Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes.

    PubMed

    Cuadrado, A; Jouve, N

    2007-01-01

    Two simple sequence repeats (SSRs), AG and AC, were mapped directly in the metaphase chromosomes of man and barley (Hordeum vulgare L.), and in the metaphase and polytene chromosomes of Drosophila melanogaster. To this end, synthetic oligonucleotides corresponding to (AG)(12) and (AC)(8) were labelled by the random primer technique and used as probes in fluorescent in situ hybridisation (FISH) under high stringency and strict washing conditions. The distribution and intensity of the signals for the repeat sequences were found to be characteristic of the chromosomes and genomes of the three species analysed. The AC repeat sites were uniformly dispersed along the euchromatic segments of all three genomes; in fact, they were largely excluded from the heterochromatin. The Drosophila genome showed a high density of AC sequences on the X chromosome in both mitotic and polytene nuclei. In contrast, the AG repeats were associated with the euchromatic regions of the polytene chromosomes (and in high density on the X chromosome), but were only seen in specific heterochromatic regions in the mitotic chromosomes of all three species. In Drosophila, the AG repeats were exclusively distributed on the tips of the Y chromosome and near the centromere on both arms of chromosome 2. In barley and man, AG repeats were associated with the centromeres (of all chromosomes) and nucleolar organizer regions, respectively. The conserved chromosome distribution of AC within and between these three phylogenetically distant species, and the association of AG in specific chromosome regions with structural or functional properties, suggests that long clusters of these repeats may have some, as yet unknown, role. Copyright (c) 2007 S. Karger AG, Basel.

  8. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype.

    PubMed

    O'Neill, R J; Eldridge, M D; Toder, R; Ferguson-Smith, M A; O'Brien, P C; Graves, J A

    1999-06-01

    Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.

  9. Synthetic genome engineering forging new frontiers for wine yeast.

    PubMed

    Pretorius, Isak S

    2017-02-01

    Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future

  10. Anniversary of the discovery/isolation of the yeast centromere by Clarke and Carbon.

    PubMed

    Bloom, Kerry

    2015-05-01

    The first centromere was isolated 35 years ago by Louise Clarke and John Carbon from budding yeast. They embarked on their journey with rudimentary molecular tools (by today's standards) and little knowledge of the structure of a chromosome, much less the nature of a centromere. Their discovery opened up a new field, as centromeres have now been isolated from fungi and numerous plants and animals, including mammals. Budding yeast and several other fungi have small centromeres with short, well-defined sequences, known as point centromeres, whereas regional centromeres span several kilobases up to megabases and do not seem to have DNA sequence specificity. Centromeres are at the heart of artificial chromosomes, and we have seen the birth of synthetic centromeres in budding and fission yeast and mammals. The diversity in centromeres throughout phylogeny belie conserved functions that are only beginning to be understood. © 2015 Bloom. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. 8-Methoxypsoralen photoinduced plasmid-chromosome recombination in Saccharomyces cerevisiae using a centromeric vector.

    PubMed Central

    Meira, L B; Henriques, J A; Magaña-Schwencke, N

    1995-01-01

    The characterization of a new system to study the induction of plasmid-chromosome recombination is described. Single-stranded and double-stranded centromeric vectors bearing 8-methoxypsoralen photoinduced lesions were used to transform a wild-type yeast strain bearing the leu2-3,112 marker. Using the SSCP methodology and DNA sequencing, it was demonstrated that repair of the lesions in plasmid DNA was mainly due to conversion of the chromosomal allele to the plasmid DNA. Images PMID:7784218

  12. Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by separate genes.

    PubMed

    Tzagoloff, A; Shtanko, A

    1995-06-01

    Three complementation groups of a pet mutant collection have been found to be composed of respiratory-deficient deficient mutants with lesions in mitochondrial protein synthesis. Recombinant plasmids capable of restoring respiration were cloned by transformation of representatives of each complementation group with a yeast genomic library. The plasmids were used to characterize the complementing genes and to institute disruption of the chromosomal copies of each gene in respiratory-proficient yeast. The sequences of the cloned genes indicate that they code for isoleucyl-, arginyl- and glutamyl-tRNA synthetases. The properties of the mutants used to obtain the genes and of strains with the disrupted genes indicate that all three aminoacyl-tRNA synthetases function exclusively in mitochondrial proteins synthesis. The ISM1 gene for mitochondrial isoleucyl-tRNA synthetase has been localized to chromosome XVI next to UME5. The MSR1 gene for the arginyl-tRNA synthetase was previously located on yeast chromosome VIII. The third gene MSE1 for the mitochondrial glutamyl-tRNA synthetase has not been localized. The identification of three new genes coding for mitochondrial-specific aminoacyl-tRNA synthetases indicates that in Saccharomyces cerevisiae at least 11 members of this protein family are encoded by genes distinct from those coding for the homologous cytoplasmic enzymes.

  13. Chromosome Segregation Is Biased by Kinetochore Size.

    PubMed

    Drpic, Danica; Almeida, Ana C; Aguiar, Paulo; Renda, Fioranna; Damas, Joana; Lewin, Harris A; Larkin, Denis M; Khodjakov, Alexey; Maiato, Helder

    2018-05-07

    Chromosome missegregation during mitosis or meiosis is a hallmark of cancer and the main cause of prenatal death in humans. The gain or loss of specific chromosomes is thought to be random, with cell viability being essentially determined by selection. Several established pathways including centrosome amplification, sister-chromatid cohesion defects, or a compromised spindle assembly checkpoint can lead to chromosome missegregation. However, how specific intrinsic features of the kinetochore-the critical chromosomal interface with spindle microtubules-impact chromosome segregation remains poorly understood. Here we used the unique cytological attributes of female Indian muntjac, the mammal with the lowest known chromosome number (2n = 6), to characterize and track individual chromosomes with distinct kinetochore size throughout mitosis. We show that centromere and kinetochore functional layers scale proportionally with centromere size. Measurement of intra-kinetochore distances, serial-section electron microscopy, and RNAi against key kinetochore proteins confirmed a standard structural and functional organization of the Indian muntjac kinetochores and revealed that microtubule binding capacity scales with kinetochore size. Surprisingly, we found that chromosome segregation in this species is not random. Chromosomes with larger kinetochores bi-oriented more efficiently and showed a 2-fold bias to congress to the equator in a motor-independent manner. Despite robust correction mechanisms during unperturbed mitosis, chromosomes with larger kinetochores were also strongly biased to establish erroneous merotelic attachments and missegregate during anaphase. This bias was impervious to the experimental attenuation of polar ejection forces on chromosome arms by RNAi against the chromokinesin Kif4a. Thus, kinetochore size is an important determinant of chromosome segregation fidelity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Targeting telomere-containing chromosome ends with a near-infrared femtosecond laser to study the activation of the DNA damage response and DNA damage repair pathways

    PubMed Central

    Silva, Bárbara Alcaraz; Stambaugh, Jessica R.

    2013-01-01

    Abstract. Telomeres are at the ends of chromosomes. Previous evidence suggests that laser-induced deoxyribose nucleic acid (DNA) breaks at chromosome ends during anaphase results in delayed cytokinesis. A possible explanation for this delay is that the DNA damage response (DDR) mechanism has been activated. We describe a live imaging method to study the effects of DDR activation following focal point near-infrared femtosecond laser microirradiation either at a single chromosome end or at a chromosome arm in mitotic anaphase cells. Laser microirradiation is used in combination with dual fluorescent labeling to monitor the co-localization of double-strand break marker γH2AX along with the DDR factors in PtK2 (Potorous tridactylus) cells. Laser-induced DNA breaks in chromosome ends as well as in chromosome arms results in recruitment of the following: poly(ADP-ribose) polymerase 1, checkpoint sensors (p-Chk1, p-Chk2), DNA repair protein Ku70/Ku80, and proliferating cell nuclear antigen. However, phosphorylated p53 at serine 15 is detected only at chromosome ends and not at chromosome arms. Full activation of DDR on damaged chromosome ends may explain previously published results that showed the delay of cytokinesis. PMID:24064949

  15. Yeast arming systems: pros and cons of different protein anchors and other elements required for display.

    PubMed

    Andreu, Cecilia; Del Olmo, Marcel Lí

    2018-03-01

    Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.

  16. Dicentric chromosomes: unique models to study centromere function and inactivation.

    PubMed

    Stimpson, Kaitlin M; Matheny, Justyne E; Sullivan, Beth A

    2012-07-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation.

  17. Dicentric chromosomes: unique models to study centromere function and inactivation

    PubMed Central

    Stimpson, Kaitlin M.; Matheny, Justyne E.

    2013-01-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well under-stood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation. PMID:22801777

  18. [Family paracentric inversion of the short arm of chromosome X (Xp21.2p11.23) and connection with autism spectrum disorders].

    PubMed

    Milovančević, Milica Pejović; Vešić, Marija; Jelisavčić, Marko; Nikšić, Snežana; Pilić, Gordana Radivojević; Maravić, Vanja Mandić

    2012-01-01

    Autism spectrum disorders (ASDs) are a group of complex pervasive developmental disorders characterized by impairments in communication, social interaction and behavior. In most cases autism is caused by a combination of genetic factors and environmental risk factors. In 10% to 20% of cases it has been shown that the cause of ASD is genetic. We are describing a 2-year-old boy who was referred to genetic counseling because of speech delay and certain autism-like behavior. By cytogenetic analysis the karyotype 46, inv(X),Y was obtained. The boy was a carrier of a paracentric inversion of the short arm of the chromosome X. After cytogenetic analysis of parental blood, it was detected that mother was a carrier of identical aberration, but had no clinical signs. The method of fluorescent in situ hybridization (FISH) yielded the precise breakpoint in the region (p21.2p11.23). Mother and son were carriers of identical X chromosome. Breakpoints are located in the regions that have already been linked to autism, which indicates that the positional effect of the gene could have been a possible cause of the patient's genotype. In addition to positional effects, in order to better understand the etiology of autism other genetic and environmental factors should be always taken into consideration.

  19. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936

    PubMed Central

    Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J.; Noël, Thierry

    2017-01-01

    ABSTRACT Clavispora lusitaniae, an environmental saprophytic yeast belonging to the CTG clade of Candida, can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. PMID:28774979

  20. Chromosomal Mapping of Repetitive DNAs in Myiopsitta monachus and Amazona aestiva (Psittaciformes, Psittacidae) with Emphasis on the Sex Chromosomes.

    PubMed

    de Oliveira Furo, Ivanete; Kretschmer, Rafael; Dos Santos, Michelly S; de Lima Carvalho, Carlos A; Gunski, Ricardo J; O'Brien, Patrícia C M; Ferguson-Smith, Malcolm A; Cioffi, Marcelo B; de Oliveira, Edivaldo H C

    2017-01-01

    Here, for the first time, we describe the karyotype of Myiopsitta monachus (Psittacidae, Arini). We found 2n = 48, corresponding to the lowest diploid number observed in Neotropical Psittaciformes so far, with an uncommonly large W chromosome homomorphic to the Z. In order to better understand the evolution of the sex chromosomes in this species, we applied several molecular cytogenetic approaches, including C-banding, FISH mapping of repetitive DNAs (several microsatellite repeats), and whole-chromosome painting on metaphases of M. monachus. For comparison, another species belonging to the same tribe but with a smaller W chromosome (A. aestiva) was also analyzed. The results show that the constitutive heterochromatin has a very diverse distribution pattern in these species revealing heterochromatic blocks in the centromeric region of all chromosomes and in most of the length of the W chromosome in A. aestiva, while in M. monachus they were found in interstitial and telomeric regions. Concerning the microsatellites, only the sequence (CG)n produced signals on the W chromosome of A. aestiva, in the distal region of both arms. However, in M. monachus, (CAA)n, (CAG)n, and (CG)n probes were accumulated on the W chromosome, and, in addition, the sequence (CAG)n also hybridized to heterochromatic regions in macrochromosomes, as well as in microchromosomes. Based on these results, we suggest that the increase in length of the W chromosome in M. monachus is due to the amplification of repetitive elements, which highlights their significant role in the evolutionary process of sex chromosome differentiation. © 2017 S. Karger AG, Basel.

  1. Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations.

    PubMed

    Fung, J C; Marshall, W F; Dernburg, A; Agard, D A; Sedat, J W

    1998-04-06

    The dynamics by which homologous chromosomes pair is currently unknown. Here, we use fluorescence in situ hybridization in combination with three-dimensional optical microscopy to show that homologous pairing of the somatic chromosome arm 2L in Drosophila occurs by independent initiation of pairing at discrete loci rather than by a processive zippering of sites along the length of chromosome. By evaluating the pairing frequencies of 11 loci on chromosome arm 2L over several timepoints during Drosophila embryonic development, we show that all 11 loci are paired very early in Drosophila development, within 13 h after egg deposition. To elucidate whether such pairing occurs by directed or undirected motion, we analyzed the pairing kinetics of histone loci during nuclear cycle 14. By measuring changes of nuclear length and correlating these changes with progression of time during cycle 14, we were able to express the pairing frequency and distance between homologous loci as a function of time. Comparing the experimentally determined dynamics of pairing to simulations based on previously proposed models of pairing motion, we show that the observed pairing kinetics are most consistent with a constrained random walk model and not consistent with a directed motion model. Thus, we conclude that simple random contacts through diffusion could suffice to allow pairing of homologous sites.

  2. Small supernumerary chromosome marker generating complete and pure trisomy 18p, characterized by molecular cytogenetic techniques and review.

    PubMed

    Rodríguez, L; Liehr, T; Mrasek, K; Mansilla, E; Martínez-Fernández, M L; Garcia, A; Martínez-Frías, M L

    2007-11-15

    Small supernumerary marker chromosomes (sSMC) have been described from all human chromosomes with different sizes and shapes. However, it is difficult to know the clinical manifestations associated with them, because such knowledge depends on the size, presence of euchromatic material, degree of mosaicism and/or uniparental disomy (UPD). Pure trisomy of the whole arm of chromosome 18 (18p), has been described in only a few cases and the general consensus is that there is a mild phenotypic effect. Here we report on a newborn male presenting with an atrial septal defect and a club foot. The high resolution G-band karyotype (550-850 bands) and the molecular cytogenetic techniques revealed in all cells the presence of an sSMC, which was a complex derivative from the short arm of a chromosome 18 (18p) and a centromere of a chromosome 13/21. His healthy mother had the same sSMC in all analyzed cells. With the present case, we support the previous suggestion that this unusual chromosome trisomy 18p has little clinical repercussions. (c) 2007 Wiley-Liss, Inc.

  3. Reorganization of chromosome architecture in replicative cellular senescence.

    PubMed

    Criscione, Steven W; De Cecco, Marco; Siranosian, Benjamin; Zhang, Yue; Kreiling, Jill A; Sedivy, John M; Neretti, Nicola

    2016-02-01

    Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells.

  4. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.

    PubMed

    Oda, Y; Tonomura, K

    1996-10-01

    The presence of any one of the five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 and MAL6) confers the ability to ferment maltose on the yeast Saccharomyces cerevisiae. Each locus is composed of three genes encoding maltose permease, alpha-glucosidase and MAL activator. Chromosomal DNA of seven representative baking strains has been separated by pulse-field gel electrophoresis and probed with three genes in MAL6 locus. The DNA bands to which all of the three MAL-derived probes simultaneously hybridized were chromosome VII carrying MAL1 in all of the strains tested, chromosome XI carrying MAL4 in six strains, chromosome III carrying MAL2 in three strains and chromosomes II and VIII carrying MAL3 and MAL6, respectively, in the one strain. The number of MAL loci in baking strains was comparable to those of brewing strains.

  5. Multiple congenital defects associated with trisomy for long arm of No. 4.

    PubMed

    Issa, M; Potter, A M; Blank, C E

    1976-08-01

    The clinical and cytogenetic findings of a male infant with multiple congenital anomalies and trisomy for the distal third of the long arm of No. 4 are described. The abnormal chromosome was inherited from the mother who had a balanced translocation, t(4;9)(q31;q34). Trisomy for the long arm of No. 4 has previously been described in only 3 patients.

  6. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    PubMed Central

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in

  7. Chromosomal localization and structure of the human type II IMP dehydrogenase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glesne, D.; Huberman, E.; Collart, F.

    1994-05-01

    We determined the chromosomal localization and structure of the gene encoding human type II inosine 5{prime}-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205), an enzyme associated with cellular proliferation, malignant transformation, and differentiation. Using polymerase chain reaction (PCR) primers specific for type II IMPDH, we screened a panel of human-Chinese hamster cell somatic hybrids and a separate deletion panel of chromosome 3 hybrids and localized the gene to 3p21.1{yields}p24.2. Two overlapping yeast artificial chromosome clones containing the full gene for type II IMPDH were isolated and a physical map of 117 kb of human genomic DNA in this region of chromosome 3 wasmore » constructed. The gene for type II IMPDH was localized and oriented on this map and found to span no more than 12.5 kb.« less

  8. Chromosome 16 inversion-associated translocations in acute myeloid leukemia elucidated using a dual-color CBFB DNA probe.

    PubMed

    Aventín, Anna; Espadaler, Montserrat; Casas, Sílvia; Duarte, José; Nomdedéu, Josep; Sierra, Jorge

    2002-04-15

    We describe two cases of acute myelomonocytic leukemia with eosinophilia (AML-M4Eo) that were diagnosed with an inv(16)(p13q22) based on conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH) technique using a chromosome 16p arm specific paint probe. Additional FISH analysis with a dual-color CBFB DNA probe showed that the 3' portion of the CBFB gene was translocated to chromosome 10p13 in the first patient and 1p36 in the other. These two cases indicate that some inv(16)(p13q22) identified by CC and FISH with chromosome arm-specific painting probe may represent cases of inversion-associated translocation. We suggest that all cases with inv(16)(p13q22) should be investigated by FISH with appropriate probes for a possible translocation of 16q22-->qter to another chromosome.

  9. Monitoring Recombination During Meiosis in Budding Yeast.

    PubMed

    Owens, Shannon; Tang, Shangming; Hunter, Neil

    2018-01-01

    Homologous recombination is fundamental to sexual reproduction, facilitating accurate segregation of homologous chromosomes at the first division of meiosis, and creating novel allele combinations that fuel evolution. Following initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs), homologous pairing and DNA strand exchange form joint molecule (JM) intermediates that are ultimately resolved into crossover and noncrossover repair products. Physical monitoring of the DNA steps of meiotic recombination in Saccharomyces cerevisiae (budding yeast) cultures undergoing synchronous meiosis has provided seminal insights into the molecular basis of meiotic recombination and affords a powerful tool for dissecting the molecular roles of recombination factors. This chapter describes a suit of electrophoretic and Southern hybridization techniques used to detect and quantify the DNA intermediates of meiotic recombination at recombination hotspots in budding yeast. DSBs and recombination products (crossovers and noncrossovers) are resolved using one-dimensional electrophoresis and distinguished by restriction site polymorphisms between the parental chromosomes. Psoralen cross-linking is used to stabilize branched JMs, which are resolved from linear species by native/native two-dimensional electrophoresis. Native/denaturing two-dimensional electrophoresis is employed to determine the component DNA strands of JMs and to measure the processing of DSBs. These techniques are generally applicable to any locus where the frequency of recombination is high enough to detect intermediates by Southern hybridization. © 2018 Elsevier Inc. All rights reserved.

  10. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

    PubMed

    Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2008-11-01

    Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. (c) 2008 John Wiley & Sons, Ltd.

  11. Cross-referencing yeast genetics and mammalian genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hieter, P.; Basset, D.; Boguski, M.

    1994-09-01

    We have initiated a project that will systematically transfer information about yeast genes onto the genetic maps of mice and human beings. Rapidly expanding human EST data will serve as a source of candidate human homologs that will be repeatedly searched using yeast protein sequence queries. Search results will be automatically reported to participating labs. Human cDNA sequences from which the ESTs are derived will be mapped at high resolution in the human and mouse genomes. The comparative mapping information cross-references the genomic position of novel human cDNAs with functional information known about the cognate yeast genes. This should facilitatemore » the initial identification of genes responsible for mammalian mutant phenotypes, including human disease. In addition, the identification of mammalian homologs of yeast genes provides reagents for determining evolutionary conservation and for performing direct experiments in multicellular eukaryotes to enhance study of the yeast protein`s function. For example, ESTs homologous to CDC27 and CDC16 were identified, and the corresponding cDNA clones were obtained from ATTC, completely sequenced, and mapped on human and mouse chromosomes. In addition, the CDC17hs cDNA has been used to raise antisera to the CDC27Hs protein and used in subcellular localization experiments and junctional studies in mammalian cells. We have received funding from the National Center for Human Genome Research to provide a community resource which will establish comprehensive cross-referencing among yeast, human, and mouse loci. The project is set up as a service and information on how to communicate with this effort will be provided.« less

  12. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes.

    PubMed

    McDowell, T L; Gibbons, R J; Sutherland, H; O'Rourke, D M; Bickmore, W A; Pombo, A; Turley, H; Gatter, K; Picketts, D J; Buckle, V J; Chapman, L; Rhodes, D; Higgs, D R

    1999-11-23

    ATRX is a member of the SNF2 family of helicase/ATPases that is thought to regulate gene expression via an effect on chromatin structure and/or function. Mutations in the hATRX gene cause severe syndromal mental retardation associated with alpha-thalassemia. Using indirect immunofluorescence and confocal microscopy we have shown that ATRX protein is associated with pericentromeric heterochromatin during interphase and mitosis. By coimmunofluorescence, ATRX localizes with a mouse homologue of the Drosophila heterochromatic protein HP1 in vivo, consistent with a previous two-hybrid screen identifying this interaction. From the analysis of a trap assay for nuclear proteins, we have shown that the localization of ATRX to heterochromatin is encoded by its N-terminal region, which contains a conserved plant homeodomain-like finger and a coiled-coil domain. In addition to its association with heterochromatin, at metaphase ATRX clearly binds to the short arms of human acrocentric chromosomes, where the arrays of ribosomal DNA are located. The unexpected association of a putative transcriptional regulator with highly repetitive DNA provides a potential explanation for the variability in phenotype of patients with identical mutations in the ATRX gene.

  13. Deletion of chromosome 21 in a girl with congenital hypothyroidism and mild mental retardation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlbom, B.E.; Anneren, G.; Sidenvall, R.

    1996-08-23

    We report on a girl with a large interstitial deletion of the long arm of chromosome 21 and with mild mental retardation, congenital hypothyroidism, and hyperopia. The deletion [del(21)(q11.1-q22.1)] extends molecularly from marker D21S215 to D21S213. The distal breakpoint is not clearly defined but is situated between markers D21S213 and IFNAR. This patient has the largest deletion of chromosome 21 known without having severe mental retardation or malformations. The deletion does not involve the {open_quotes}Down syndrome chromosome{close_quotes} region, the region of chromosome 21 which in trisomy causes most of the manifestations of Down syndrome. Apparently, the proximal part of themore » long arm of chromosome 21 does not include genes that are responsible for severe clinical effects in the event of either deletion or duplication, since several reported patients with either trisomy or deletion of this region have mild phenotypic abnormalities. Congenital hypothyroidism is much more common in Down syndrome than in the average population. Thus, the congenital hypothyroidism of the present patient might indicate that there is one or several genes on the proximal part of chromosome 21, which might be of importance for the thyroid function. 24 refs., 4 figs., 2 tabs.« less

  14. Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi

    PubMed Central

    BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.

    2012-01-01

    Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344

  15. Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus

    PubMed Central

    Hult, Caitlin; Adalsteinsson, David; Vasquez, Paula A.; Lawrimore, Josh; Bennett, Maggie; York, Alyssa; Cook, Diana; Yeh, Elaine; Forest, Mark Gregory

    2017-01-01

    Abstract Regions of highly repetitive DNA, such as those found in the nucleolus, show a self-organization that is marked by spatial segregation and frequent self-interaction. The mechanisms that underlie the sequestration of these sub-domains are largely unknown. Using a stochastic, bead-spring representation of chromatin in budding yeast, we find enrichment of protein-mediated, dynamic chromosomal cross-links recapitulates the segregation, morphology and self-interaction of the nucleolus. Rates and enrichment of dynamic crosslinking have profound consequences on domain morphology. Our model demonstrates the nucleolus is phase separated from other chromatin in the nucleus and predicts that multiple rDNA loci will form a single nucleolus independent of their location within the genome. Fluorescent labeling of budding yeast nucleoli with CDC14-GFP revealed that a split rDNA locus indeed forms a single nucleolus. We propose that nuclear sub-domains, such as the nucleolus, result from phase separations within the nucleus, which are driven by the enrichment of protein-mediated, dynamic chromosomal crosslinks. PMID:28977453

  16. Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus.

    PubMed

    Hult, Caitlin; Adalsteinsson, David; Vasquez, Paula A; Lawrimore, Josh; Bennett, Maggie; York, Alyssa; Cook, Diana; Yeh, Elaine; Forest, Mark Gregory; Bloom, Kerry

    2017-11-02

    Regions of highly repetitive DNA, such as those found in the nucleolus, show a self-organization that is marked by spatial segregation and frequent self-interaction. The mechanisms that underlie the sequestration of these sub-domains are largely unknown. Using a stochastic, bead-spring representation of chromatin in budding yeast, we find enrichment of protein-mediated, dynamic chromosomal cross-links recapitulates the segregation, morphology and self-interaction of the nucleolus. Rates and enrichment of dynamic crosslinking have profound consequences on domain morphology. Our model demonstrates the nucleolus is phase separated from other chromatin in the nucleus and predicts that multiple rDNA loci will form a single nucleolus independent of their location within the genome. Fluorescent labeling of budding yeast nucleoli with CDC14-GFP revealed that a split rDNA locus indeed forms a single nucleolus. We propose that nuclear sub-domains, such as the nucleolus, result from phase separations within the nucleus, which are driven by the enrichment of protein-mediated, dynamic chromosomal crosslinks. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936.

    PubMed

    Durrens, Pascal; Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J; Noël, Thierry

    2017-08-03

    Clavispora lusitaniae , an environmental saprophytic yeast belonging to the CTG clade of Candida , can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. Copyright © 2017 Durrens et al.

  18. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps

    PubMed Central

    Gosselin, Thierry; Normandeau, Eric; Lamothe, Manuel; Isabel, Nathalie; Audet, Céline; Bernatchez, Louis

    2016-01-01

    Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/ PMID:28173098

  19. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.

    PubMed

    Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M

    2015-12-01

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains. © 2015 Society for Laboratory Automation and Screening.

  20. The chromosomal distribution of Mus musculus-like AT-rich heterochromatin in the M. dunni complex as revealed by AluI digestion of metaphase chromosomes.

    PubMed

    Balajee, A S; Sharma, T

    1994-01-01

    In situ digestion of metaphase chromosomes with AluI revealed differences in the distribution of Mus musculus-like AT-rich heterochromatin in the complements of the Indian pygmy field mice, M. booduga and M. dunni. In M. booduga, although the banding pattern was almost comparable to that of M. musculus, AluI-resistant bands were much reduced in size at the centromeric regions. In all three chromosome types of the M. dunni complex, M. musculus-like AT-rich heterochromatin was found to be confined mainly to two small segments on the short arm of the X chromosome. This AT-rich heterochromatin varied greatly in both position and quantity in the two X chromosomes. In addition to the polymorphism, a whole block of M. musculus-like AT-rich heterochromatin was found at the centromeric region of an autosome in one individual of M. dunni.

  1. Meiotic events in Oenothera - a non-standard pattern of chromosome behaviour.

    PubMed

    Golczyk, Hieronim; Musiał, Krystyna; Rauwolf, Uwe; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera shows an intriguing extent of permanent translocation heterozygosity. Reciprocal translocations of chromosome arms in species or populations result in various kinds of chromosome multivalents in diakinesis. Early meiotic events conditioning such chromosome behaviour are poorly understood. We found a surprising uniformity of the leptotene-diplotene period, regardless of the chromosome configuration at diakinesis (ring of 14, 7 bivalents, mixture of bivalents and multivalents). It appears that the earliest chromosome interactions at Oenothera meiosis are untypical, since they involve pericentromeric regions. During early leptotene, proximal chromosome parts cluster and form a highly polarized Rabl configuration. Telomeres associated in pairs were seen at zygotene. The high degree of polarization of meiotic nuclei continues for an exceptionally long period, i.e., during zygotene-pachytene into the diplotene contraction stage. The Rabl-polarized meiotic architecture and clustering of pericentromeres suggest a high complexity of karyotypes, not only in structural heterozygotes but also in bivalent-forming homozygous species.

  2. Features of the organization of bread wheat chromosome 5BS based on physical mapping.

    PubMed

    Salina, Elena A; Nesterov, Mikhail A; Frenkel, Zeev; Kiseleva, Antonina A; Timonova, Ekaterina M; Magni, Federica; Vrána, Jan; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Korol, Abraham; Sergeeva, Ekaterina M

    2018-02-09

    The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the

  3. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe.

    PubMed

    Pratihar, Aditya S; Tripathi, Vishnu P; Yadav, Mukesh P; Dubey, Dharani D

    2015-12-01

    Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2004, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2004 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727- associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2004 or ars727 remains unaltered by the extended chromosomal context.

  4. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  5. Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts

    PubMed Central

    Dujon, Bernard

    2012-01-01

    Summary: Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes. PMID:23204364

  6. [Mechanism of mutant induction in the ade2 gene of diploid Saccharomyces cerevisiae yeasts by ultraviolet rays].

    PubMed

    Gordenin, D A; Inge-Vechtomov, S G

    1981-01-01

    Ultraviolet light (UV) at 3000 ergs/mm-2 induces ade2 mutants with a frequency about 10(-4) in wild-type haploid strains of yeast and about 10(-5) in diploid wild-type strains. UV irradiation effectively induced mitotic segregation of ade2 in the heterozygous diploid (the frequency of segregation is 6%). Interallelic complementation and localization spectra are similar for mutations induced both in haploids and diploids. The occurrence of ade2 mutants in diploids correlated with mitotic segregation of the marker his8 which is situated in the same arm of XY chromosome as ade2 is, distal to the centromere. Our data about the frequency of ade2 mutants in diploids and haploids, the frequency of ade2 mitotic segregation, mitotic segregation of other markers and genetic characteristics of ade2 mutations confirm the suggestion that the major mechanism of diploid ade2 mutants appearance is mutation in one of the two ADE2 alleles and consequent mitotic homozygotisation of mutation as a result of mitotic crossingover between ade2 and the centromere.

  7. Homologous Chromosome Pairing in Drosophila melanogaster Proceeds through Multiple Independent Initiations

    PubMed Central

    Fung, Jennifer C.; Marshall, Wallace F.; Dernburg, Abby; Agard, David A.; Sedat, John W.

    1998-01-01

    The dynamics by which homologous chromosomes pair is currently unknown. Here, we use fluorescence in situ hybridization in combination with three-dimensional optical microscopy to show that homologous pairing of the somatic chromosome arm 2L in Drosophila occurs by independent initiation of pairing at discrete loci rather than by a processive zippering of sites along the length of chromosome. By evaluating the pairing frequencies of 11 loci on chromosome arm 2L over several timepoints during Drosophila embryonic development, we show that all 11 loci are paired very early in Drosophila development, within 13 h after egg deposition. To elucidate whether such pairing occurs by directed or undirected motion, we analyzed the pairing kinetics of histone loci during nuclear cycle 14. By measuring changes of nuclear length and correlating these changes with progression of time during cycle 14, we were able to express the pairing frequency and distance between homologous loci as a function of time. Comparing the experimentally determined dynamics of pairing to simulations based on previously proposed models of pairing motion, we show that the observed pairing kinetics are most consistent with a constrained random walk model and not consistent with a directed motion model. Thus, we conclude that simple random contacts through diffusion could suffice to allow pairing of homologous sites. PMID:9531544

  8. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient.

    PubMed

    Tirado, Carlos A; Gotway, Garrett; Torgbe, Emmanuel; Iyer, Santha; Dallaire, Stephanie; Appleberry, Taylor; Suterwala, Mohamed; Garcia, Rolando; Valdez, Federico; Patel, Sangeeta; Koduru, Prasad

    2012-01-01

    Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36. Copyright © 2011 Wiley Periodicals, Inc.

  9. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses.

    PubMed

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-03-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.

  10. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.).

    PubMed

    Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi

    2002-09-01

    Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.

  11. Prenatal diagnosis of a de novo 9p terminal chromosomal deletion in a fetus with major congenital anomalies.

    PubMed

    Hou, Wen-Chien; Chen, Chih-Ping; Hwang, Kwei-Shuai; Chen, Ying-Chieh; Lai, Yu-Ju; Tien, Chau-Yang; Su, Her-Young

    2014-12-01

    We describe a prenatal ultrasonography diagnosis of omphalocele and symbrachydactyly in a fetus and review the literature on prenatal diagnosis of 9p terminal chromosomal deletions. A 31-year-old woman (gravida 3, para 1) was referred for genetic counseling because a fetal omphalocele had been detected. Prenatal ultrasonography at 17+ weeks of gestational age revealed a singleton female fetus with biometry equivalent to 18 weeks with an omphalocele. In addition, symbrachydactyly was also noted in the right arm; the wrist bones as well as the metacarpals were missing. A chromosomal study was arranged for a congenital anomaly involving omphalocele. We obtained Giemsa-banded chromosomes from fetal tissue cells, and an abnormal male karyotype with a terminal deletion of the short arm of chromosome 9 at band 9p13 was noted. After delivery, the fetus showed omphalocele, symbrachydactyly, trigonocephaly, sex reversal, a long philtrum, low-set ears, telecanthus, and a frontal prominence. Prenatal diagnosis of abnormal ultrasound findings with omphalocele and symbrachydactyly should include the differential diagnosis of a chromosome 9p deletion. Copyright © 2014. Published by Elsevier B.V.

  12. Comparative study of mitotic chromosomes in two blowflies, Lucilia sericata and L. cluvia (Diptera, Calliphoridae), by C- and G-like banding patterns and rRNA loci, and implications for karyotype evolution

    PubMed Central

    Chirino, Mónica G.; Rossi, Luis F.; Bressa, María J.; Luaces, Juan P.; Merani, María S.

    2015-01-01

    Abstract The karyotypes of Lucilia cluvia (Walker, 1849) and Lucilia sericata (Meigen, 1826) from Argentina were characterized using conventional staining and the C- and G-like banding techniques. Besides, nucleolus organizer regions (NORs) were detected by fluorescent in situ hybridization (FISH) and silver staining technique. The chromosome complement of these species comprises five pairs of autosomes and a pair of sex chromosomes (XX/XY, female/male). The autosomes of both species have the same size and morphology, as well as C- and G-like banding patterns. The X and Y chromosomes of Lucilia cluvia are subtelocentric and easily identified due to their very small size. In Lucilia sericata, the X chromosome is metacentric and the largest of the complement, showing a secondary constriction in its short arm, whereas the Y is submetacentric and smaller than the X. The C-banding patterns reflect differences in chromatin structure and composition between the subtelocentric X and Y chromosomes of Lucilia cluvia and the biarmed sex chromosomes of Lucilia sericata. These differences in the sex chromosomes may be due to distinct amounts of constitutive heterochromatin. In Lucilia cluvia, the NORs are placed at one end of the long-X and of the long-Y chromosome arms, whereas one of the NORs is disposed in the secondary constriction of the short-X chromosome arm and the other on the long-Y chromosome arm in Lucilia sericata. Although the G-like banding technique does not yield G-bands like those in mammalian chromosomes, it shows a high degree chromosomal homology in both species because each pair of autosomes was correctly paired. This chromosome similarity suggests the absence of autosomal rearrangements during karyotype evolution in the two species studied. PMID:25893078

  13. Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust.

    PubMed

    Faris, Justin D; Xu, Steven S; Cai, Xiwen; Friesen, Timothy L; Jin, Yue

    2008-01-01

    Stem rust is a serious disease of wheat that has caused historical epidemics, but it has not been a threat in recent decades in North America owing to the eradication of the alternative host and deployment of resistant cultivars. However, the recent emergence of Ug99 (or race TTKS) poses a threat to global wheat production because most currently grown wheat varieties are susceptible. In this study, we evaluated a durum wheat-Aegilops speltoides chromosome translocation line (DAS15) for reaction to Ug99 and six other races of stem rust, and used molecular and cytogenetic tools to characterize the translocation. DAS15 was resistant to all seven races of stem rust. Two durum-Ae. speltoides translocated chromosomes were detected in DAS15. One translocation involved the short arm, centromere, and a major portion of the long arm of Ae. speltoides chromosome 2S and a small terminal segment from durum chromosome arm 2BL. Thus, this translocated chromosome is designated T2BL-2SL*2SS. Cytogenetic mapping assigned the resistance gene(s) in DAS15 to the Ae. speltoides segment in T2BL-2SL*2SS. The Ae. speltoides segment in the other translocated chromosome did not harbour stem rust resistance. A comparison of DAS15 and the wheat stocks carrying the Ae. speltoides-derived resistance genes Sr32 and Sr39 indicated that stem rust resistance gene present in DAS15 is likely novel and will be useful for developing germplasm with resistance to Ug99. Efforts to reduce Ae. speltoides chromatin in T2BL-2SL*2SS are currently in progress.

  14. Genomic structure and paralogous regions of the inversion breakpoint occurring between human chromosome 3p12.3 and orangutan chromosome 2.

    PubMed

    Yue, Y; Grossmann, B; Tsend-Ayush, E; Grützner, F; Ferguson-Smith, M A; Yang, F; Haaf, T

    2005-01-01

    Intrachromosomal duplications play a significant role in human genome pathology and evolution. To better understand the molecular basis of evolutionary chromosome rearrangements, we performed molecular cytogenetic and sequence analyses of the breakpoint region that distinguishes human chromosome 3p12.3 and orangutan chromosome 2. FISH with region-specific BAC clones demonstrated that the breakpoint-flanking sequences are duplicated intrachromosomally on orangutan 2 and human 3q21 as well as at many pericentromeric and subtelomeric sites throughout the genomes. Breakage and rearrangement of the human 3p12.3-homologous region in the orangutan lineage were associated with a partial loss of duplicated sequences in the breakpoint region. Consistent with our FISH mapping results, computational analysis of the human chromosome 3 genomic sequence revealed three 3p12.3-paralogous sequence blocks on human chromosome 3q21 and smaller blocks on the short arm end 3p26-->p25. This is consistent with the view that sequences from an ancestral site at 3q21 were duplicated at 3p12.3 in a common ancestor of orangutan and humans. Our results show that evolutionary chromosome rearrangements are associated with microduplications and microdeletions, contributing to the DNA differences between closely related species. Copyright (c) 2005 S. Karger AG, Basel.

  15. Comparison of the chromosome maps around a resistance hot spot on chromosome 5 of potato and tomato using BAC-FISH painting.

    PubMed

    Achenbach, Ute C; Tang, Xiaomin; Ballvora, Agim; de Jong, Hans; Gebhardt, Christiane

    2010-02-01

    Potato chromosome 5 harbours numerous genes for important qualitative and quantitative traits, such as resistance to the root cyst nematode Globodera pallida and the late blight fungus, Phytophthora infestans. The genes make up part of a "hot spot" for resistances to various pathogens covering a genetic map length of 3 cM between markers GP21 and GP179. We established the physical size and position of this region on chromosome 5 in potato and tomato using fluorescence in situ hybridization (FISH) on pachytene chromosomes. Five potato bacterial artificial chromosome (BAC) clones with the genetically anchored markers GP21, R1-contig (proximal end), CosA, GP179, and StPto were selected, labeled with different fluorophores, and hybridized in a five-colour FISH experiment. Our results showed the location of the BAC clones in the middle of the long arm of chromosome 5 in both potato and tomato. Based on chromosome measurements, we estimate the physical size of the GP21-GP179 interval at 0.85 Mb and 1.2 Mb in potato and tomato, respectively. The GP21-GP179 interval is part of a genome segment known to have inverted map positions between potato and tomato.

  16. Confinement-Induced Glassy Dynamics in a Model for Chromosome Organization

    NASA Astrophysics Data System (ADS)

    Kang, Hongsuk; Yoon, Young-Gui; Thirumalai, D.; Hyeon, Changbong

    2015-11-01

    Recent experiments showing scaling of the intrachromosomal contact probability, P (s )˜s-1 with the genomic distance s , are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of P (s ) varies across organisms, requiring an explanation. We illustrate dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosomes inside a nucleus as a homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction (ϕ ) inside the confinement approaches a critical value ϕc. The universal value of ϕc∞≈0.44 for a sufficiently long polymer (N ≫1 ) allows us to discuss genome dynamics using ϕ as the sole parameter. Our study shows that the onset of glassy dynamics is the reason for the segregated chromosome organization in humans (N ≈3 ×109, ϕ ≳ϕc∞), whereas chromosomes of budding yeast (N ≈108, ϕ <ϕc∞) are equilibrated with no clear signature of such organization.

  17. Mirror-symmetric duplicated chromosome 21q with minor proximal deletion, and with neocentromere in a child without the classical Down syndrome phenotype.

    PubMed

    Barbi, G; Kennerknecht, I; Wöhr, G; Avramopoulos, D; Karadima, G; Petersen, M B

    2000-03-13

    We report on a mentally retarded child with multiple minor anomalies and an unusually rearranged chromosome 21. This der(21) chromosome has a deletion of 21p and of proximal 21q, whereas the main portion of 21q is duplicated leading to a mirror-symmetric appearance with the mirror axis at the breakpoint. The centromere is only characterized by a secondary constriction (with a centromeric index of a G chromosome) at an unexpected distal position, but fluorescence in situ hybridization (FISH) with either chromosome specific or with all human centromeres alpha satellite DNA shows no cross hybridization. Thus, the marker chromosome represents a further example of an "analphoid marker with neocentromere." Molecular analysis using polymorphic markers on chromosome 21 verified a very small monosomic segment of the proximal long arm of chromosome 21, and additionally trisomy of the remaining distal segment. Although trisomic for almost the entire 21q arm, our patient shows no classical Down syndrome phenotype, but only a few minor anomalies found in trisomy 21 and in monosomy of proximal 21q, respectively. Copyright 2000 Wiley-Liss, Inc.

  18. A new derived and highly polymorphic chromosomal race of Liolaemus monticola (Iguanidae) from the 'Norte Chico' of Chile.

    PubMed

    Lamborot, M

    1998-06-01

    A multiple Robertsonian fission chromosomal race of the Liolaemus monticola complex in Chile is described and is shown to be the most derived and the most complex among the Liolaemus examined thus far. The 29 karyotyped lizards analysed from the locality of Mina Hierro Viejo, Petorca, Provincia de Valparaiso, Chile, exhibited a diploid chromosomal number ranging from 42 to 44, and several polymorphisms. The polymorphisms included: a pair 1 fission; a pair 2 fission plus a pericentric inversion in one of the fission products, which moved the NOR and satellite from the tip of the long arm of the metacentric 2 to the short arm of the fission product; a fission in pair 3; a polymorphism for an enlarged chromosome pair 6; and a polymorphism for a pericentric inversion in pair 7. This population is fixed for a fission of chromosome pair 4. A total of 76% of the lizards analysed were polymorphic for one or more pairs of chromosomes. We have compared these data with other Liolaemus monticola chromosomal races and calculated the Hardy-Weinberg ratios for the polymorphic chromosome pairs in this Multiple-Fission race. Karyotypic differences between the Northern (2n = 38-40) and the Multiple-Fission (2n = 42-44) races were attributed mainly to Robertsonian fissions, an enlarged chromosome and pericentric inversions involving the macrochromosomes and one microchromosome pair.

  19. A Cytoplasmic Dynein Heavy Chain Is Required for Oscillatory Nuclear Movement of Meiotic Prophase and Efficient Meiotic Recombination in Fission Yeast

    PubMed Central

    Yamamoto, Ayumu; West, Robert R.; McIntosh, J. Richard; Hiraoka, Yasushi

    1999-01-01

    Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination. PMID:10366596

  20. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency.

    PubMed

    Kotarska, Katarzyna; Galas, Jerzy; Przybyło, Małgorzata; Bilińska, Barbara; Styrna, Józefa

    2015-02-01

    It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency. © The Author(s) 2014.

  1. Complex chromosomal abnormalities in a patient with HTLV-1 positive T-cell leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, P.; Macera, M.J.; Gogineni, S.K.

    HTLV-1 positive adult T-cell leukemia (ATL) is associated with numerous chromosomal abnormalities. The chromosomal rearrangements can be extremely complex and additional material is often present, making precise identification by routine cytogenetic techniques difficult. We report a case of ATL that was established of bone marrow cells by both QFQ and GTG banding techniques revealed a highly complex 49,XX,der(2)t(2;?)(q37;?),+5,+2mar karyotype in the dividing cells. The identical cytogenetic findings were also seen in unstimulated peripheral blood collected one week later. Using the FISH-technique, we applied spectrum green-labeled No. 1- and No. 7-specific WCP, spectrum orange-labeled No. 2- and No. 5-specific WCP (GIBCO/BRL,more » Gaithersburg, MD) and biotin-labeled No. 18-specific WCP (Oncor, Gaithersburg, MD) to metaphase chromosomes. The large marker chromosome was identified as an extra 1q arm, the material attached to the distal 2q was additional 7q. The presence of three No. 5 chromosomes was verified and the small marker was determined to be an extra partial 5p in Robertsonian translocation with an additional partial 18q arm. The karyotype was revised to 49,XX,+1q,der(2)t(2;7)(q37;q22),+5,+t(5;18)(p14{r_arrow}p11::q11{r_arrow}q12). Identification of the numerous chromosomal anomalies associated with the disease by molecular techniques shall lead to a better understanding of this deadly cancer.« less

  2. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.

    PubMed

    Harsono, Marcellinus S; Zhu, Qingyuan; Shi, Linda Z; Duquette, Michelle; Berns, Michael W

    2013-02-01

    A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    PubMed Central

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  4. Karyotype differentiation of four Cestrum species (Solanaceae) revealed by fluorescent chromosome banding and FISH

    PubMed Central

    2009-01-01

    The karyotypes of four South American species of Cestrum (C. capsulare,C. corymbosum,C. laevigatum and C. megalophylum) were studied using conventional staining, C-CMA/DAPI chromosome banding and FISH with 45S and 5S rDNA probes. The karyotypes showed a chromosome number of 2n = 2x = 16, with metacentric chromosomes, except for the eighth submeta- to acrocentric pair. Several types of heterochromatin were detected, which varied in size, number, distribution and base composition. The C-CMA+ bands and 45S rDNA were located predominantly in terminal regions. The C-CMA + /DAPI + bands appeared in interstitial and terminal regions, and the C-DAPI + bands were found in all chromosome regions. The 5S rDNA sites were observed on the long arm of pair 8 in all species except C. capsulare, where they were found in the paracentromeric region of the long arm of pair 4. The differences in band patterns among the species studied here, along with data from other nine species reported in the literature, suggest that the bands are dispersed in an equilocal and non-equilocal manner and that structural rearrangements can be responsible for internal karyotype diversification. However, it is important to point out that the structural changes involving repetitive segments did not culminate in substantial changes in the general karyotype structure concerning chromosome size and morphology. PMID:21637687

  5. Multiple Pairwise Analysis of Non-homologous Centromere Coupling Reveals Preferential Chromosome Size-Dependent Interactions and a Role for Bouquet Formation in Establishing the Interaction Pattern

    PubMed Central

    Lefrançois, Philippe; Rockmill, Beth; Xie, Pingxing; Roeder, G. Shirleen; Snyder, Michael

    2016-01-01

    During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition. PMID:27768699

  6. Combing Chromosomal DNA Mediated by the SMC Complex: Structure and Mechanisms.

    PubMed

    Kamada, Katsuhiko; Barillà, Daniela

    2018-02-01

    Genome maintenance requires various nucleoid-associated factors in prokaryotes. Among them, the SMC (Structural Maintenance of Chromosomes) protein has been thought to play a static role in the organization and segregation of the chromosome during cell division. However, recent studies have shown that the bacterial SMC is required to align left and right arms of the emerging chromosome and that the protein dynamically travels from origin to Ter region. A rod form of the SMC complex mediates DNA bridging and has been recognized as a machinery responsible for DNA loop extrusion, like eukaryotic condensin or cohesin complexes, which act as chromosome organizers. Attention is now turning to how the prototype of the complex is loaded on the entry site and translocated on chromosomal DNA, explaining its overall conformational changes at atomic levels. Here, we review and highlight recent findings concerning the prokaryotic SMC complex and discuss possible mechanisms from the viewpoint of protein architecture. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  7. Hereditary spherocytic anemia with deletion of the short arm of chromosome 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Nobuhiko; Wada, Yoshinao; Nakamura, Yoich

    1995-09-11

    We describe a 30-month-old boy with multiple anomalies and mental retardation with hereditary spherocytic anemia. His karyotype was 46,XYdel(8)(p11.23p21.1). Genes for ankyrin and glutathione reductase (GSR) were localized to chromosome areas 8p11.2 and 8p21.1, respectively. Six patients with spherocytic anemia and interstitial deletion of 8p- have been reported. In these patients, severe mental retardation and multiple anomalies are common findings. This is a new contiguous gene syndrome. Lux established that ankyrin deficiency and associated deficiencies of spectrin and protein 4.2 were responsible for spherocytosis in this syndrome. We reviewed the manifestations of this syndrome. Patients with spherocytic anemia and multiplemore » congenital anomalies should be investigated by high-resolution chromosomal means to differentiate this syndrome. 14 refs., 3 figs., 2 tabs.« less

  8. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes.

    PubMed

    Roa, Fernando; Guerra, Marcelo

    2015-01-01

    5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera. © 2015 S. Karger AG, Basel.

  9. Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles

    PubMed Central

    McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.

    2015-01-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to

  10. Initiation preference at a yeast origin of replication.

    PubMed

    Brewer, B J; Fangman, W L

    1994-04-12

    Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.

  11. Structure and Stability of Telocentric Chromosomes in Wheat

    PubMed Central

    Koo, Dal-Hoe; Sehgal, Sunish K.; Friebe, Bernd; Gill, Bikram S.

    2015-01-01

    In most eukaryotes, centromeres assemble at a single location per chromosome. Naturally occurring telocentric chromosomes (telosomes) with a terminal centromere are rare but do exist. Telosomes arise through misdivision of centromeres in normal chromosomes, and their cytological stability depends on the structure of their kinetochores. The instability of telosomes may be attributed to the relative centromere size and the degree of completeness of their kinetochore. Here we test this hypothesis by analyzing the cytogenetic structure of wheat telosomes. We used a population of 80 telosomes arising from the misdivision of the 21 chromosomes of wheat that have shown stable inheritance over many generations. We analyzed centromere size by probing with the centromere-specific histone H3 variant, CENH3. Comparing the signal intensity for CENH3 between the intact chromosome and derived telosomes showed that the telosomes had approximately half the signal intensity compared to that of normal chromosomes. Immunofluorescence of CENH3 in a wheat stock with 28 telosomes revealed that none of the telosomes received a complete CENH3 domain. Some of the telosomes lacked centromere specific retrotransposons of wheat in the CENH3 domain, indicating that the stability of telosomes depends on the presence of CENH3 chromatin and not on the presence of CRW repeats. In addition to providing evidence for centromere shift, we also observed chromosomal aberrations including inversions and deletions in the short arm telosomes of double ditelosomic 1D and 6D stocks. The role of centromere-flanking, pericentromeric heterochromatin in mitosis is discussed with respect to genome/chromosome integrity. PMID:26381743

  12. The pig X and Y Chromosomes: structure, sequence, and evolution

    PubMed Central

    Skinner, Benjamin M.; Sargent, Carole A.; Churcher, Carol; Hunt, Toby; Herrero, Javier; Loveland, Jane E.; Dunn, Matt; Louzada, Sandra; Fu, Beiyuan; Chow, William; Gilbert, James; Austin-Guest, Siobhan; Beal, Kathryn; Carvalho-Silva, Denise; Cheng, William; Gordon, Daria; Grafham, Darren; Hardy, Matt; Harley, Jo; Hauser, Heidi; Howden, Philip; Howe, Kerstin; Lachani, Kim; Ellis, Peter J.I.; Kelly, Daniel; Kerry, Giselle; Kerwin, James; Ng, Bee Ling; Threadgold, Glen; Wileman, Thomas; Wood, Jonathan M.D.; Yang, Fengtang; Harrow, Jen; Affara, Nabeel A.; Tyler-Smith, Chris

    2016-01-01

    We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes—both single copy and amplified—on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution. PMID:26560630

  13. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  14. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be; Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be; Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cellsmore » results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  15. Chromosomal analysis of Physalaemus kroyeri and Physalaemus cicada (Anura, Leptodactylidae)

    PubMed Central

    Vittorazzi, Stenio Eder; Lourenço, Luciana Bolsoni; Solé, Mirco; Faria, Renato Gomes; Recco-Pimentel, Shirlei Maria

    2016-01-01

    Abstract All the species of Physalaemus Fitzinger, 1826 karyotyped up until now have been classified as 2n = 22. The species of the Physalaemus cuvieri group analyzed by C-banding present a block of heterochromatin in the interstitial region of the short arm of pair 5. Physalaemus cicada Bokermann, 1966 has been considered to be a member of the Physalaemus cuvieri species group, although its interspecific phylogenetic relationships remain unknown. The PcP190 satellite DNA has been mapped on the chromosomes of most of the species of the Physalaemus cuvieri group. For two species, Physalaemus cicada and Physalaemus kroyeri (Reinhardt & Lütken, 1862), however, only the chromosome number and morphology are known. Given this, the objective of the present study was to analyze the chromosomes of Physalaemus cicada and Physalaemus kroyeri, primarily by C-banding and PcP190 mapping. The results indicate that Physalaemus kroyeri and Physalaemus cicada have similar karyotypes, which were typical of Physalaemus. In both species, the NORs are located on the long arm of pair 8, and the C-banding indicated that, among other features, Physalaemus kroyeri has the interstitial band on chromosome 5, which is however absent in Physalaemus cicada. Even so, a number of telomeric bands were observed in Physalaemus cicada. The mapping of the PcP190 satellite DNA highlighted areas of the centromeric region of the chromosomes of pair 1 in both species, although in Physalaemus kroyeri, heteromorphism was also observed in pair 3. The cytogenetic evidence does not support the inclusion of Physalaemus cicada in the Physalaemus cuvieri group. In the case of Physalaemus kroyeri, the interstitial band on pair 5 is consistent with the existence of a cytogenetic synapomorphy in the Physalaemus cuvieri species group. PMID:27551351

  16. Chromosomal analysis of Physalaemus kroyeri and Physalaemus cicada (Anura, Leptodactylidae).

    PubMed

    Vittorazzi, Stenio Eder; Lourenço, Luciana Bolsoni; Solé, Mirco; Faria, Renato Gomes; Recco-Pimentel, Shirlei Maria

    2016-01-01

    All the species of Physalaemus Fitzinger, 1826 karyotyped up until now have been classified as 2n = 22. The species of the Physalaemus cuvieri group analyzed by C-banding present a block of heterochromatin in the interstitial region of the short arm of pair 5. Physalaemus cicada Bokermann, 1966 has been considered to be a member of the Physalaemus cuvieri species group, although its interspecific phylogenetic relationships remain unknown. The PcP190 satellite DNA has been mapped on the chromosomes of most of the species of the Physalaemus cuvieri group. For two species, Physalaemus cicada and Physalaemus kroyeri (Reinhardt & Lütken, 1862), however, only the chromosome number and morphology are known. Given this, the objective of the present study was to analyze the chromosomes of Physalaemus cicada and Physalaemus kroyeri, primarily by C-banding and PcP190 mapping. The results indicate that Physalaemus kroyeri and Physalaemus cicada have similar karyotypes, which were typical of Physalaemus. In both species, the NORs are located on the long arm of pair 8, and the C-banding indicated that, among other features, Physalaemus kroyeri has the interstitial band on chromosome 5, which is however absent in Physalaemus cicada. Even so, a number of telomeric bands were observed in Physalaemus cicada. The mapping of the PcP190 satellite DNA highlighted areas of the centromeric region of the chromosomes of pair 1 in both species, although in Physalaemus kroyeri, heteromorphism was also observed in pair 3. The cytogenetic evidence does not support the inclusion of Physalaemus cicada in the Physalaemus cuvieri group. In the case of Physalaemus kroyeri, the interstitial band on pair 5 is consistent with the existence of a cytogenetic synapomorphy in the Physalaemus cuvieri species group.

  17. Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akarsu, A.N.; Hossain, A.; Sarfarazi, M.

    1996-01-22

    Primary congenital glaucoma (gene symbol: GLC3) is characterized by an improper development of the aqueous outflow system. The reduced outflow of fluid results in an increased intraocular pressure leading to buphthalmos, optic nerve damage, and eventual visual impairment. GLC3 is a heterogeneous condition with an estimated incidence of 1:2,500 in Middle Eastern and 1:10,000 in Western countries. In many families, GLC3 is an autosomal recessive trait with presentation of an earlier age-of-onset, high intraocular pressure, enlarged cloudy cornea, buphthalmos, and a more aggressive course. The pathogenesis of GLC3 remains elusive despite extensive histologic efforts to identify a single anatomic defect.more » Recent advances in positional mapping and cloning of human disorders provided an opportunity to identify chromosome locations of the GLC3 phenotype. Our laboratory is currently involved in the mapping of this condition by using a combination of candidate chromosome regions associated with the GLC3 phenotype and by a general positional mapping strategy. 16 refs., 3 tabs.« less

  18. Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus

    PubMed Central

    2009-01-01

    Background Cytogenetic studies were carried out on samples of Eigenmannia virescens (Sternopygidae, Gymnotiformes) obtained from four river systems of the Eastern Amazon region (Para, Brazil). Results All four populations had 2n = 38, with ZZ/ZW sex chromosomes (Z, acrocentric; W, submetacentric). Constitutive heterochromatin (CH) was found at the centromeric regions of all chromosomes. The W chromosome had a heterochromatic block in the proximal region of the short arm; this CH was positive for DAPI staining, indicating that it is rich in A-T base pairs. The nucleolar organizer region (NOR) was localized to the short arm of chromosome pair 15; this result was confirmed by fluorescent in situ hybridization (FISH) with human 45S rDNA, and CMA3 staining indicated that the region is G-C rich. FISH with telomeric probes did not show any evidence of interstitial telomeric sequences (ITS). Conclusion Previous studies have shown that the species Eigenmannia sp. 2 and E. virescens have differentiated sex chromosomes, and diverse sex chromosome systems have been described for E. virescens specimens obtained from different Brazilian rivers. A comparative analysis of the present data and prior reports suggests that the sex chromosomes of Eigenmannia may have arisen independently in the different populations. PMID:19930594

  19. De novo centromere formation on a chromosome fragment in maize.

    PubMed

    Fu, Shulan; Lv, Zhenling; Gao, Zhi; Wu, Huajun; Pang, Junling; Zhang, Bing; Dong, Qianhua; Guo, Xiang; Wang, Xiu-Jie; Birchler, James A; Han, Fangpu

    2013-04-09

    The centromere is the part of the chromosome that organizes the kinetochore, which mediates chromosome movement during mitosis and meiosis. A small fragment from chromosome 3, named Duplication 3a (Dp3a), was described from UV-irradiated materials by Stadler and Roman in the 1940s [Stadler LJ, Roman H (1948) Genetics 33(3):273-303]. The genetic behavior of Dp3a is reminiscent of a ring chromosome, but fluoresecent in situ hybridization detected telomeres at both ends, suggesting a linear structure. This small chromosome has no detectable canonical centromeric sequences, but contains a site with protein features of functional centromeres such as CENH3, the centromere specific H3 histone variant, and CENP-C, a foundational kinetochore protein, suggesting the de novo formation of a centromere on the chromatin fragment. To examine the sequences associated with CENH3, chromatin immunoprecipitation was carried out with anti-CENH3 antibodies using material from young seedlings with and without the Dp3a chromosome. A novel peak was detected from the ChIP-Sequencing reads of the Dp3a sample. The peak spanned 350 kb within the long arm of chromosome 3 covering 22 genes. Collectively, these results define the behavior and molecular features of de novo centromere formation in the Dp3a chromosome, which may shed light on the initiation of new centromere sites during evolution.

  20. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    PubMed Central

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  1. Chromosomal organization of four classes of repetitive DNA sequences in killifish Orestias ascotanensis Parenti, 1984 (Cyprinodontiformes, Cyprinodontidae)

    PubMed Central

    Araya-Jaime, Cristian; Lam, Natalia; Pinto, Irma Vila; Méndez, Marco A.; Iturra, Patricia

    2017-01-01

    Abstract Orestias Valenciennes, 1839 is a genus of freshwater fish endemic to the South American Altiplano. Cytogenetic studies of these species have focused on conventional karyotyping. The aim of this study was to use classical and molecular cytogenetic methods to identify the constitutive heterochromatin distribution and chromosome organization of four classes of repetitive DNA sequences (histone H3 DNA, U2 snRNA, 18S rDNA and 5S rDNA) in the chromosomes of O. ascotanensis Parenti, 1984, an endemic species restricted to the Salar de Ascotán in the Chilean Altiplano. All individuals analyzed had a diploid number of 48 chromosomes. C-banding identified constitutive heterochromatin mainly in the pericentromeric region of most chromosomes, especially a GC-rich heterochromatic block of the short arm of pair 3. FISH assay with an 18S probe confirmed the location of the NOR in pair 3 and revealed that the minor rDNA cluster occurs interstitially on the long arm of pair 2. Dual FISH identified a single block of U2 snDNA sequences in the pericentromeric regions of a subtelocentric chromosome pair, while histone H3 sites were observed as small signals scattered in throughout the all chromosomes. This work represents the first effort to document the physical organization of the repetitive fraction of the Orestias genome. These data will improve our understanding of the chromosomal evolution of a genus facing serious conservation problems. PMID:29093798

  2. The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427.

    PubMed

    Melville, S E; Leech, V; Navarro, M; Cross, G A

    2000-12-01

    We present the molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427, clone 221a. This cloned stock is most commonly used in research laboratories in genetic manipulation experiments and in studies of antigenic variation. Using 116 previously characterised chromosome-specific markers, we identify 11 diploid pairs of megabase chromosomes and detect no loss of synteny in EST and gene marker distribution between this stock and the genome project reference stock TREU 927/4. Nevertheless, the chromosomes of 427 are all larger than their homologues in 927, except chromosomes IIa and IXa. The greatest size variation is seen in chromosome I, the smallest of which is 1.1 Mb (927-Ia) and the largest 3.6 Mb (427-Ib). The total nuclear DNA content of both stocks has been estimated by comparison of the mobility of T. brucei and yeast chromosomes. Trypanosomes of stock 427 contain approximately 16.5 Mb more megabase chromosomal DNA than those of stock 927. We have detected the presence of bloodstream-form expression-site-associated sequences on eight or more megabase chromosomes. These sequences are not found on the same chromosomes in each stock. We have determined the chromosomal band location of nine characterised variant surface glycoprotein genes, including the currently expressed VSG 221. Our results demonstrate both the stability of the T. brucei genome, as illustrated by the conservation of syntenic groups of genes in the two stocks, and the polymorphic nature of the genomic regions involved in antigenic variation. We propose that the chromosomes of stock 427 be numbered to correspond to their homologues in the genome project reference stock TREU 927/4.

  3. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.

    PubMed

    Figueroa, Debbie M; Bass, Hank W

    2012-05-01

    Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the

  4. Contribution of Chromosomes 1HchS and 6HchS to Fertility Restoration in the Wheat msH1 CMS System under Different Environmental Conditions

    PubMed Central

    Castillo, Almudena; Rodríguez-Suárez, Cristina; Martín, Azahara C.; Pistón, Fernando

    2015-01-01

    Exploiting hybrid wheat heterosis has been long pursued to increase crop yield, stability and uniformity. Cytoplasmic male sterility (CMS) systems based in the nuclear-cytoplasmic incompatible interactions are a classic way for hybrid seed production, but to date, no definitive system is available in wheat. The msH1 CMS system results from the incompatibility between the nuclear genome of wheat and the cytoplasmic genome of the wild barley Hordeum chilense. Fertility restoration of the CMS phenotype was first associated with the disomic addition of the short arm of chromosome 6H from H. chilense. In further studies it was observed that chromosome arm 1HchS was also implicated, and the combination of genes in both chromosome arms restored fertility more efficiently. In this work we aim to dissect the effect of each chromosome in fertility restoration when combined in different genomic backgrounds and under different environmental conditions. We propose a model to explain how restoration behaves in the msH1 system and generate valuable information necessary to develop an efficient system for hybrid wheat production. PMID:26192191

  5. Contribution of Chromosomes 1HchS and 6HchS to Fertility Restoration in the Wheat msH1 CMS System under Different Environmental Conditions.

    PubMed

    Castillo, Almudena; Rodríguez-Suárez, Cristina; Martín, Azahara C; Pistón, Fernando

    2015-01-01

    Exploiting hybrid wheat heterosis has been long pursued to increase crop yield, stability and uniformity. Cytoplasmic male sterility (CMS) systems based in the nuclear-cytoplasmic incompatible interactions are a classic way for hybrid seed production, but to date, no definitive system is available in wheat. The msH1 CMS system results from the incompatibility between the nuclear genome of wheat and the cytoplasmic genome of the wild barley Hordeum chilense. Fertility restoration of the CMS phenotype was first associated with the disomic addition of the short arm of chromosome 6H from H. chilense. In further studies it was observed that chromosome arm 1HchS was also implicated, and the combination of genes in both chromosome arms restored fertility more efficiently. In this work we aim to dissect the effect of each chromosome in fertility restoration when combined in different genomic backgrounds and under different environmental conditions. We propose a model to explain how restoration behaves in the msH1 system and generate valuable information necessary to develop an efficient system for hybrid wheat production.

  6. Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome

    PubMed Central

    Castillo, Almudena; Atienza, Sergio G.; Martín, Azahara C.

    2014-01-01

    Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of `zebra-like′ chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S, has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S, the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. PMID:25271260

  7. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    PubMed Central

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  8. Replication and meiotic transmission of yeast ribosomal RNA genes.

    PubMed

    Brewer, B J; Zakian, V A; Fangman, W L

    1980-11-01

    The yeast Saccharomyces cerevisiae has approximately 120 genes for the ribosomal RNAs (rDNA) which are organized in tandem within chromosomal DNA. These multiple-copy genes are homogeneous in sequence but can undergo changes in copy number and topology. To determine if these changes reflect unusual features of rDNA metabolism, we have examined both the replication of rDNA in the mitotic cell cycle and the inheritance of rDNA during meiosis. The results indicate that rDNA behaves identically to chromosomal DNA: each rDNA unit is replicated once during the S phase of each cell cycle and each unit is conserved through meiosis. Therefore, the flexibility in copy number and topology of rDNA does not arise from the selective replication of units in each S phase nor by the selective inheritance of units in meiosis.

  9. Entropy gives rise to topologically associating domains

    PubMed Central

    Vasquez, Paula A.; Hult, Caitlin; Adalsteinsson, David; Lawrimore, Josh; Forest, Mark G.; Bloom, Kerry

    2016-01-01

    We investigate chromosome organization within the nucleus using polymer models whose formulation is closely guided by experiments in live yeast cells. We employ bead-spring chromosome models together with loop formation within the chains and the presence of nuclear bodies to quantify the extent to which these mechanisms shape the topological landscape in the interphase nucleus. By investigating the genome as a dynamical system, we show that domains of high chromosomal interactions can arise solely from the polymeric nature of the chromosome arms due to entropic interactions and nuclear confinement. In this view, the role of bio-chemical related processes is to modulate and extend the duration of the interacting domains. PMID:27257057

  10. Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, A.K.; Hubbard, K.; Kaur, G.P.

    1994-06-07

    In these studies the authors show that introduction of a normal human chromosome 6 or 6q can suppress the immortal phenotype of simian virus 40-transformed human fibroblasts (SV/HF). Normal human fibroblasts have a limited life span in culture. Immortal clones of SV/HF displayed nonrandom rearrangements in chromosome 6. Single human chromosomes present in mouse/human monochromosomal hybrids were introduced into SV/HF via microcell fusion and maintained by selection for a dominant selectable marker gpt, previously integrated into the human chromosome. Clones of SV/HF cells bearing chromosome 6 displayed limited potential for cell division and morphological characteristics of senescent cells. The lossmore » of chromosome 6 from the suppressed clones correlated with the reappearance of immortal clones. Introduced chromosome 6 in the senescing cells was distinguished from those of parental cells by analysis for DNA sequences specific for the donor chromosome. The results further show that suppression of immortal phenotype in SV/HF is specific to chromosome 6. Introduction of individual human chromosomes 2, 8, or 19 did not impart cellular senescence in SV/HF. In addition, introduction of chromosome 6 into human glioblastoma cells did not lead to senescence. Based upon these results the authors propose that at least one of the genes (SEN6) for cellular senescence in human fibroblasts is present on the long arm of chromosome 6.« less

  11. Checkpoint independence of most DNA replication origins in fission yeast

    PubMed Central

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  12. Characterization of a microdissection library from human chromosome region 3p14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardenheuer, W.; Szymanski, S.; Lux, A.

    1994-01-15

    Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two newmore » chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.« less

  13. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    PubMed

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  14. Biological Dual-Use Research and Synthetic Biology of Yeast.

    PubMed

    Cirigliano, Angela; Cenciarelli, Orlando; Malizia, Andrea; Bellecci, Carlo; Gaudio, Pasquale; Lioj, Michele; Rinaldi, Teresa

    2017-04-01

    In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.

  15. Colchicine promotes a change in chromosome structure without loss of sister chromatid cohesion in prometaphase I-arrested bivalents.

    PubMed

    Rodríguez, E M; Parra, M T; Rufas, J S; Suja, J A

    2001-12-01

    In somatic cells colchicine promotes the arrest of cell division at prometaphase, and chromosomes show a sequential loss of sister chromatid arm and centromere cohesion. In this study we used colchicine to analyse possible changes in chromosome structure and sister chromatid cohesion in prometaphase I-arrested bivalents of the katydid Pycnogaster cucullata. After silver staining we observed that in colchicine-arrested prometaphase I bivalents, and in contrast to what was found in control bivalents, sister kinetochores appeared individualised and sister chromatid axes were completely separated all along their length. However, this change in chromosome structure occurred without loss of sister chromatid arm cohesion. We also employed the MPM-2 monoclonal antibody against mitotic phosphoproteins on control and colchicine-treated spermatocytes. In control metaphase I bivalents this antibody labelled the tightly associated sister kinetochores and the interchromatid domain. By contrast, in colchicine-treated prometaphase I bivalents individualised sister kinetochores appeared labelled, but the interchromatid domain did not show labelling. These results support the notion that MPM-2 phosphoproteins, probably DNA topoisomerase IIalpha, located in the interchromatid domain act as "chromosomal staples" associating sister chromatid axes in metaphase I bivalents. The disappearance of these chromosomal staples would induce a change in chromosome structure, as reflected by the separation of sister kinetochores and sister axes, but without a concomitant loss of sister chromatid cohesion.

  16. The price of independence: cell separation in fission yeast.

    PubMed

    Martín-García, Rebeca; Santos, Beatriz

    2016-04-01

    The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.

  17. A Novel Method to Detect Early Colorectal Cancer Based on Chromosome Copy Number Variation in Plasma.

    PubMed

    Xu, Jun-Feng; Kang, Qian; Ma, Xing-Yong; Pan, Yuan-Ming; Yang, Lang; Jin, Peng; Wang, Xin; Li, Chen-Guang; Chen, Xiao-Chen; Wu, Chao; Jiao, Shao-Zhuo; Sheng, Jian-Qiu

    2018-01-01

    Colonoscopy screening has been accepted broadly to evaluate the risk and incidence of colorectal cancer (CRC) during health examination in outpatients. However, the intrusiveness, complexity and discomfort of colonoscopy may limit its application and the compliance of patients. Thus, more reliable and convenient diagnostic methods are necessary for CRC screening. Genome instability, especially copy-number variation (CNV), is a hallmark of cancer and has been proved to have potential in clinical application. We determined the diagnostic potential of chromosomal CNV at the arm level by whole-genome sequencing of CRC plasma samples (n = 32) and healthy controls (n = 38). Arm level CNV was determined and the consistence of arm-level CNV between plasma and tissue was further analyzed. Two methods including regular z score and trained Support Vector Machine (SVM) classifier were applied for detection of colorectal cancer. In plasma samples of CRC patients, the most frequent deletions were detected on chromosomes 6, 8p, 14q and 1p, and the most frequent amplifications occurred on chromosome 19, 5, 2, 9p and 20p. These arm-level alterations detected in plasma were also observed in tumor tissues. We showed that the specificity of regular z score analysis for the detection of colorectal cancer was 86.8% (33/38), whereas its sensitivity was only 56.3% (18/32). Applying a trained SVM classifier (n = 40 in trained group) as the standard to detect colorectal cancer relevance ratio in the test samples (n = 30), a sensitivity of 91.7% (11/12) and a specificity 88.9% (16/18) were finally reached. Furthermore, all five early CRC patients in stages I and II were successfully detected. Trained SVM classifier based on arm-level CNVs can be used as a promising method to screen early-stage CRC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Chromosomal characterization of armored catfish Harttia longipinna (Siluriformes, Loricariidae): first report of B chromosomes in the genus.

    PubMed

    Blanco, Daniel Rodrigues; Vicari, Marcelo Ricardo; Artoni, Roberto Ferreira; Traldi, Josiane Baccarin; Moreira-Filho, Orlando

    2012-09-01

    The B chromosomes are accessory elements that are widely distributed among eukaryotic genomes and often show non-Mendelian inheritance. They are considered dispensable for the growth, development, and reproduction of organisms. Some studies have suggested that these elements may affect sex determination. Harttia is a small armored catfish genus that shows sexual dimorphism, including hypertrophied odontodes on the pectoral fin spines and along the margins of the snout in mature males. They exhibit considerable karyotypic diversity with diploid number (2n) variation and heteromorphic sex system in H. carvalhoi. To date, no occurrences of B chromosomes in the Harttia genus were detected and no relation to sexual differentiation in Neotropical fish has been determined. To determine the validity of this claim, the present paper characterized specimens of Harttia longipinna by classical and molecular cytogenetic methods. The 2n found was 58 (16m + 12sm + 16st + 14a), but of the 50 specimens analyzed (30 male and 20 female), 23 specimens (16 males and seven females) show an intra-individual from 0 to 2 micro B chromosomes. The B chromosomes were completely heterochromatic. The single NORs were shown in the first acrocentric pair with silver staining and 18S rDNA probing. FISH performed with 5S rDNA probe showed a single cistron in the proximal region of the short arm of a small metacentric pair. Thus, the cytogenetic data obtained in this study of H. longipinna highlight the karyotypic diversity found within the genus Harttia, and represent the first description of B chromosomes for this genus.

  19. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains

    PubMed Central

    Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.

    2014-01-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  20. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    PubMed

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Purifying Selection Maintains Dosage-Sensitive Genes during Degeneration of the Threespine Stickleback Y Chromosome

    PubMed Central

    White, Michael A.; Kitano, Jun; Peichel, Catherine L.

    2015-01-01

    Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. PMID:25818858

  2. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    PubMed

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  4. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.

    PubMed

    García-Ríos, Estéfani; Morard, Miguel; Parts, Leopold; Liti, Gianni; Guillamón, José M

    2017-02-14

    Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci. In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions' adaptive nature. The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.

  5. Chromosomal Aberrations and Survival after Unrelated Donor Hematopoietic Stem Cell Transplant in Patients with Fanconi Anemia.

    PubMed

    Wang, Youjin; Zhou, Weiyin; Alter, Blanche P; Wang, Tao; Spellman, Stephen R; Haagenson, Michael; Yeager, Meredith; Lee, Stephanie J; Chanock, Stephen J; Savage, Sharon A; Gadalla, Shahinaz M

    2018-06-04

    Studies of chromosomal aberrations in blood or bone marrow of patients with Fanconi anemia (FA) have focused on their associations with leukemic transformation. The role of such abnormalities on outcomes after hematopoietic cell transplantation (HCT) is unclear. We used genome-wide single nucleotide polymorphism arrays to identify chromosomal aberrations in pre-HCT blood samples from 73 patients with FA who received unrelated donor HCT for severe aplastic anemia between 1991 and 2007. Outcome data and blood samples were available through the Center for International Blood and Marrow Transplant Research. For survival analyses, we used the Kaplan-Meier estimator to calculate the survival probabilities and the exact log-rank test to compare the survival differences across groups. Chromosomal aberrations were detected in 16 (22%) patients; most frequent were clonal copy loss in chromosome 7 (9.6%), clonal copy gains in the long arm (q) of chromosome 1 (chr1q + ) (8.2%), and clonal or complete copy gains in the q arm of chromosome 3 (chr3q + ) (8.2%). Seven (9.6%) patients had alterations in 3 or more chromosomes. Poor post-HCT overall survival (OS) was noted in patients with chr3q +  (P = .04), or those with abnormalities in ≥3 chromosomes (P = .03). The 1-year OS was 0% versus 45% in patients with either alteration versus its absence. No statistically significant differences in 1-year OS were noted in patients carrying deletions in chr7 (29% versus 42%; log-rank P = .74). The study is limited by the small sample size. A larger, prospective study is warranted to validate our findings in light of recent improvement in transplant modalities and outcomes. Copyright © 2018. Published by Elsevier Inc.

  6. Vaginal yeast infections while deployed in Southwest/Central Asia, active component females, U.S. Armed Forces, 2008-2013.

    PubMed

    2014-08-01

    In field settings, female service members may not have adequate access to bathrooms, showers, laundry, or sanitary products necessary to maintain adequate feminine hygiene; therefore, service women may be at risk for vaginal yeast infections while deployed. During the 6-year surveillance period, nearly 3,000 U.S. military service women were diagnosed with at least one clinically significant yeast infection while supporting combat operations in Southwest/Central Asia. The crude overall incidence rate was 35.1 per 1,000 person-years (p-yrs). Overall incidence rates were higher among black, non-Hispanic service women, and among those in the Army and Air Force, in enlisted grades, and in communications/intelligence and motor transport occupations. The yearly rate of yeast infections was relatively stable from 2008 through 2010, then decreased in 2011 through 2013. Prior to deploying to austere operational settings, female service members should be provided practical and useful information, realistic training, and material support to decrease the risk of acquiring and increase the effectiveness of treating clinically and military operationally significant yeast infections.

  7. Partial trisomy 11q involving chromosome 1 detected by fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorquodale, M.; Bereziouk, O.; McCorquodale, D.J.

    1994-09-01

    Partial trisomy 11q was detected in an infant delivered 3-4 weeks prematurely. The phenotype included slanted palpebral fissures, high arched palate, developmental delay, microcephaly, and cardiac defects, all of which occur in the majority of cases with this syndrome. Other features included a column-shaped skull, preauricular pit, single palmar crease, short, broad great toes, flat occiput, unilateral kidney agenesis, and strabismus. Chromosomes obtained from peripheral blood cells revealed the presence of extra material on the long arm of chromosome 1. The G-banding pattern of this extra material indicated that it might be derived from chromosome 1 or 11. Chromosomal {open_quotes}paints{close_quotes}more » showed that it was not chromosome 1 material, but was chromosome 11 material extending from band q21 to qter. Partial trisomy 11q arising from translocation of the 11q material to chromosome 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 22, and X has been reported previously, whereas translocation to chromosome 1 has not. The chromosome to which the 11q material is translocated does not alter the most frequent features of the partial trisomy 11q syndrome, but may influence other less common features.« less

  8. Complex distal 10q rearrangement in a girl with mild intellectual disability: follow up of the patient and review of the literature of non-acrocentric satellited chromosomes.

    PubMed

    Sarri, Catherine; Douzgou, Sofia; Gyftodimou, Yolanda; Tümer, Zeynep; Ravn, Kirstine; Pasparaki, Angela; Sarafidou, Theologia; Kontos, Harry; Kokotas, Haris; Karadima, Georgia; Grigoriadou, Maria; Pandelia, Effie; Theodorou, Virginia; Moschonas, Nicholas K; Petersen, Michael B

    2011-11-01

    We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited non-acrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is, to our knowledge, the third report of a 10qs chromosome. The phenotype observed in the proband prompted a search for a structural rearrangement of chromosome 10q. By microsatellite analysis we observed a 4 Mb deletion on the long arm of chromosome 10, approximately 145 kb from the telomere. FISH and array CGH analyses revealed a complex rearrangement involving in range from the centromere to the telomere: A 9.64 Mb 10q26.11-q26.2 duplication, a 1.3 Mb region with no copy number change, followed by a 5.62 Mb 10q26.2-q26.3 deletion and a translocation of satellite material. The homology between the repeat sequences at 10q subtelomere region and the sequences on the acrocentric short arms may explain the origin of the rearrangement and it is likely that the submicroscopic microdeletion and microduplication are responsible for the abnormal phenotype in our patient. The patient presented here, with a 15-year follow-up, manifests a distinct phenotype different from the 10q26 pure distal monosomy and trisomy syndromes. Copyright © 2011 Wiley Periodicals, Inc.

  9. Relationship of gliadin protein components to chromosomes in hexaploid wheats (Triticum aestivum L.)

    PubMed Central

    Kasarda, Donald D.; Bernardin, John E.; Qualset, Calvin O.

    1976-01-01

    The synthesis of the A-gliadin protein fraction derived from the endosperm of the grain of hexaploid bread wheats (Triticum aestivum L.), which is toxic in celiac disease, was associated with the α arm of the 6A chromosome through use of the substitution lines of “Cheyenne” chromosomes in “Chinese Spring”. The association was made through the use of ditelocentric stocks of Chinese Spring. The synthesis of many other gliadin components in the gel electrophoretic patterns of these two varieties could be associated with particular chromosomes as well. All genes detected were located in the chromosomes of homoeologous groups 1 and 6. It is possible to remove some of the proteins toxic to people with celiac disease from wheat (flour) by chromosome manipulation. If the toxic factor is not widely distributed among the storage protein components, it may be possible to produce a wheat that would be safe for celiac patients to eat. Images PMID:16592355

  10. Microdeletion of Y chromosome as a cause of recurrent pregnancy loss.

    PubMed

    Agarwal, Shubhra; Agarwal, Arjit; Khanna, Anuradha; Singh, Kiran

    2015-01-01

    In majority of couples experiencing recurrent pregnancy loss (RPL), etiology is still unknown. Two genetic factors have been suggested to underlie miscarriage in a subset of patients, namely skewed X chromosome inactivation in females and Y chromosome microdeletions in their partners. In males, microdeletions of the Y chromosome are known to cause spermatogenetic failure and male infertility. The aim of the study was to find out the role of Y chromosome microdeletion in male partners of couples experiencing RPL. University hospital and genetic laboratory. Prospective case-control study. 59 couples with a history of RPL and 20 fertile controls (FC) with no miscarriage were included in the study. The study subjects were divided into male partners of RPL couples with abnormal semen parameters (AS) (n = 8), and couples with normal semen parameters (NS) (n = 51). Fertile controls with normal semen parameters were (FC) (n = 20). Y chromosome microdeletion was performed on 40 male partners of RPL and 20 FC. Chi-square test. P <0.05 were considered statistically significant. 13 of the 40 RPL cases showed deletion in three azoospermia factor loci on the long arm of Y chromosome. The P value was significant with Y chromosome microdeletion in RPL cases as compared to 20 FC where no Y chromosome microdeletion was present. Y chromosome microdeletion may be an important hidden cause of recurrent pregnancy miscarriage and can be offered to couples with the undiagnosed cause of miscarriage.

  11. Histone modifications associated with both A and B chromosomes of maize.

    PubMed

    Jin, Weiwei; Lamb, Jonathan C; Zhang, Wenli; Kolano, Bozena; Birchler, James A; Jiang, Jiming

    2008-01-01

    We report the distribution of several histone modifications along the arms and in centromeric regions of somatic chromosomes of maize, including the supernumerary B chromosome. Acetylated H3 and H4 as well as H3K4me2, modifications associated with euchromatin, were enriched in the distal parts of the A chromosomes, but were progressively depleted toward the centromeres of the A chromosomes and were depleted in the heterochromatic portions of the B chromosome. Classical histone modifications associated with heterochromatin, including H3K9me2, H3K27me1 and H3K27me2, were distributed throughout both A and B chromosomes. However, H3K27me2 showed a reduced level on the B chromosome compared with the A chromosomes and was not associated with some classes of constitutive heterochromatin. We monitored the presence of each histone modification in the centromeric regions using a YFP-tagged centromere-specific histone, CENH3. We observed the presence of H3K9me2 and absence of H3K4me2 in the centromeric regions of both A and B chromosomes of maize, which is in contrast to the presence of H3K4me2 and absence of H3K9me2 in animal centromeres. These results show a diversity of epigenetic modifications associated with centromeric chromatin in different eukaryotes.

  12. Meiotic Nuclear Oscillations Are Necessary to Avoid Excessive Chromosome Associations.

    PubMed

    Chacón, Mariola R; Delivani, Petrina; Tolić, Iva M

    2016-11-01

    Pairing of homologous chromosomes is a crucial step in meiosis, which in fission yeast depends on nuclear oscillations. However, how nuclear oscillations help pairing is unknown. Here, we show that homologous loci typically pair when the spindle pole body is at the cell pole and the nucleus is elongated, whereas they unpair when the spindle pole body is in the cell center and the nucleus is round. Inhibition of oscillations demonstrated that movement is required for initial pairing and that prolonged association of loci leads to mis-segregation. The double-strand break marker Rec25 accumulates in elongated nuclei, indicating that prolonged chromosome stretching triggers recombinatory pathways leading to mis-segregation. Mis-segregation is rescued by overexpression of the Holliday junction resolvase Mus81, suggesting that prolonged pairing results in irresolvable recombination intermediates. We conclude that nuclear oscillations exhibit a dual role, promoting initial pairing and restricting the time of chromosome associations to ensure proper segregation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Maize chromosomal knobs are located in gene-dense areas and suppress local recombination

    USDA-ARS?s Scientific Manuscript database

    Knobs are conspicuous heterochromatic regions found on the chromosomes of maize and its relatives. The number, locations, and sizes vary dramatically, with most lines containing between four and eight knobs in mid-arm positions. Prior data suggest that some knobs may reduce recombination, but prev...

  14. Complete and partial trisomy of different segments of chromosome 8: case reports and review.

    PubMed

    Fineman, R M; Ablow, R C; Breg, W R; Wing, S D; Rose, J S; Rothman, S L; Warpinski, J

    1979-12-01

    This report describes some of the clinical, chromosomal and radiological findings in three unrelated patients with trisomy 8 mosaicism syndrome (T8ms), two first cousins with trisomy 8q and a patient with trisomy 8p. On the basis of the phenotypic and cytogenetic findings seen in our six patients and those noted in previous reports, we concur with Riccardi & Crandall (1978) that most physical malformations seen in T8ms are associated with trisomy for the long arm of chromosome 8.

  15. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast

    PubMed Central

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-01-01

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI: http://dx.doi.org/10.7554/eLife.02630.001 PMID:24963140

  16. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast.

    PubMed

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-06-24

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation.DOI: http://dx.doi.org/10.7554/eLife.02630.001. Copyright © 2014, Zanders et al.

  17. Characterization of a rice variety with high hydraulic conductance and identification of the chromosome region responsible using chromosome segment substitution lines

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Kondo, Motohiko; Yamamoto, Toshio; Arai-Sanoh, Yumiko; Ando, Tsuyu; Ookawa, Taiichiro; Yano, Masahiro; Hirasawa, Tadashi

    2010-01-01

    Background and Aims The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance. Methods Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used. Key Results The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’. Conclusions The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one

  18. Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: Mapping of the Proximal Portion of the Right Arm

    PubMed Central

    Duncan, Ian W.; Kaufman, Thomas C.

    1975-01-01

    In order to define more precisely the most proximal portion of chromosome 3R in Drosophila melanogaster, several new chromosome aberrations involving this region have been recovered and analyzed. These new arrangements were recovered as induced reversions of two dominant mutations, AntpNs and dsxD, located in the region of interest. The results of the analysis have allowed the localization of several existing mutations, have further elucidated the complex homoeotic locus which resides in this region, and have confirmed the efficacy of this type of screen in the analysis of specific chromosome regions. PMID:811500

  19. Ordered mapping of 3 alphoid DNA subsets on human chromosome 22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonacci, R.; Baldini, A.; Archidiacono, N.

    1994-09-01

    Alpha satellite DNA consists of tandemly repeated monomers of 171 bp clustered in the centromeric region of primate chromosomes. Sequence divergence between subsets located in different human chromosomes is usually high enough to ensure chromosome-specific hybridization. Alphoid probes specific for almost every human chromosome have been reported. A single chromosome can carry different subsets of alphoid DNA and some alphoid subsets can be shared by different chromosomes. We report the physical order of three alphoid DNA subsets on human chromosome 22 determined by a combination of low and high resolution cytological mapping methods. Results visually demonstrate the presence of threemore » distinct alphoid DNA domains at the centromeric region of chromosome 22. We have measured the interphase distances between the three probes in three-color FISH experiments. Statistical analysis of the results indicated the order of the subsets. Two color experiments on prometaphase chromosomes established the order of the three domains relative to the arms of chromosome 22 and confirmed the results obtained using interphase mapping. This demonstrates the applicability of interphase mapping for alpha satellite DNA orderering. However, in our experiments, interphase mapping did not provide any information about the relationship between extremities of the repeat arrays. This information was gained from extended chromatin hybridization. The extremities of two of the repeat arrays were seen to be almost overlapping whereas the third repeat array was clearly separated from the other two. Our data show the value of extended chromatin hybridization as a complement of other cytological techniques for high resolution mapping of repetitive DNA sequences.« less

  20. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  1. Analysis of four microsatellite markers on the long arm of chromosome 9 by meiotic recombination in flow-sorted single sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furlong, R.A.; Goudie, D.R.; Carter, N.P.

    1993-06-01

    Meiotic recombination in flow-sorted single sperm was used to analyze four highly polymorphic microsatellite markers on the long arm of chromosome 9. The microsatellites comprised three tightly linked markers: 9CMP1 (D9S109), 9CMP2 (D9S127), and D9S53, which map to 9q31, and a reference marker, ASS, which is located in 9q34.1. Haplotypes of single sperm were assessed by using PCR in a single-step multiplex reaction to amplify each locus. Recombinant haplotypes were identified by their relative infrequency and were analyzed using THREELOC, a maximum-likelihood-analysis program, and an adaptation of CRI-MAP. The most likely order of these markers was cen-D9S109-D9S127-D9S53-ASS-tel with D9S109, D9S127,more » and D9S53 being separated by a genetic distance of approximately 3%. The order of the latter three markers did not however achieve statistical significance using the THREELOC program. 21 refs., 2 figs., 4 tabs.« less

  2. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae).

    PubMed

    Ferro, Juan M; Cardozo, Dario E; Suárez, Pablo; Boeris, Juan M; Blasco-Zúñiga, Ailin; Barbero, Gastón; Gomes, Anderson; Gazoni, Thiago; Costa, William; Nagamachi, Cleusa Y; Rivera, Miryan; Parise-Maltempi, Patricia P; Wiley, John E; Pieczarka, Julio C; Haddad, Celio F B; Faivovich, Julián; Baldo, Diego

    2018-01-01

    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini.

  3. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    PubMed Central

    Suárez, Pablo; Boeris, Juan M.; Blasco-Zúñiga, Ailin; Barbero, Gastón; Gomes, Anderson; Gazoni, Thiago; Costa, William; Nagamachi, Cleusa Y.; Rivera, Miryan; Parise-Maltempi, Patricia P.; Wiley, John E.; Pieczarka, Julio C.; Haddad, Celio F. B.; Faivovich, Julián; Baldo, Diego

    2018-01-01

    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini. PMID:29444174

  4. Molecular cytogenetic analysis consistently identifies translocations involving chromosomes 1, 2 and 15 in five embryonal rhabdomyosarcoma cell lines and a PAX-FOXO1A fusion gene negative alveolar rhabdomyosarcoma cell line.

    PubMed

    Roberts, I; Gordon, A; Wang, R; Pritchard-Jones, K; Shipley, J; Coleman, N

    2001-01-01

    Rhabdomyosarcoma in children is a "small round blue cell tumour" that displays skeletal muscle differentiation. Two main histological variants are recognised, alveolar (ARMS) and embryonal (ERMS) rhabdomyosarcoma. Whereas consistent chromosome translocations characteristic of ARMS have been reported, no such cytogenetic abnormality has yet been described in ERMS. We have used multiple colour chromosome painting to obtain composite karyotypes for five ERMS cell lines and one PAX-FOXO1A fusion gene negative ARMS. The cell lines were assessed by spectral karyotyping (SKY), tailored multi-fluorophore fluorescence in situ hybridisation (M-FISH) using series of seven colour paint sets generated to examine specific abnormalities, and comparative genomic hybridisation (CGH). This approach enabled us to obtain karyotypes of the cell lines in greater detail than previously possible. Several recurring cytogenetic abnormalities were demonstrated, including translocations involving chromosomes 1 and 15 and chromosomes 2 and 15, in 4/6 and 2/6 cell lines respectively. All six cell lines demonstrated abnormalities of chromosome 15. Translocations between chromosomes 1 and 15 have previously been recorded in two primary cases of ERMS by conventional cytogenetics. Analysis of the translocation breakpoints may suggest mechanisms of ERMS tumourigenesis and may enable the development of novel approaches to the clinical management of this tumour. Copyright 2002 S. Karger AG, Basel

  5. Karyotype and sex chromosome differentiation in two Nalassus species (Coleoptera, Tenebrionidae)

    PubMed Central

    Şendoğan, Dirim; Alpagut-Keskin, Nurşen

    2016-01-01

    Abstract Cytogenetic features of Nalassus bozdagus Nabozhenko & Keskin, 2010 and Nalassus plebejus Küster, 1850 were analysed using conventional and differential staining. Mitotic and meiotic chromosomal analysis revealed the diploid number as 2n = 20 (9+Xyp) in both species. Besides the general resemblance of two Nalassus Mulsant, 1854 karyotypes, important differences related to variations in the number of metacentric/submetacentric chromosomes, localization of highly impregnated regions which are considered as NOR and heterochromatin distribution are clearly observed. The most prominent difference between two species is found related to the X chromosome which is clearly larger in Nalassus bozdagus and has a conspicuous secondary constriction on the long arm. As a result of silver staining, the existence of highly impregnated areas associated with Xyp of Nalassus bozdagus in both prophase I and metaphase I, suggests that NORs are seemingly located on sex chromosomes. On the other hand, the potential NORs of Nalassus plebejus were observed only in prophase I nuclei. With the application of fluorescence dye DAPI, the AT rich chromosome regions and Xyp which forms the parachute configuration were shown in both species. PMID:27830047

  6. Spindle checkpoint–independent inhibition of mitotic chromosome segregation by Drosophila Mps1

    PubMed Central

    Althoff, Friederike; Karess, Roger E.; Lehner, Christian F.

    2012-01-01

    Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation. PMID:22553353

  7. Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1.

    PubMed

    Althoff, Friederike; Karess, Roger E; Lehner, Christian F

    2012-06-01

    Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.

  8. Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    PubMed Central

    Akao, Takeshi; Yashiro, Isao; Hosoyama, Akira; Kitagaki, Hiroshi; Horikawa, Hiroshi; Watanabe, Daisuke; Akada, Rinji; Ando, Yoshinori; Harashima, Satoshi; Inoue, Toyohisa; Inoue, Yoshiharu; Kajiwara, Susumu; Kitamoto, Katsuhiko; Kitamoto, Noriyuki; Kobayashi, Osamu; Kuhara, Satoru; Masubuchi, Takashi; Mizoguchi, Haruhiko; Nakao, Yoshihiro; Nakazato, Atsumi; Namise, Masahiro; Oba, Takahiro; Ogata, Tomoo; Ohta, Akinori; Sato, Masahide; Shibasaki, Seiji; Takatsume, Yoshifumi; Tanimoto, Shota; Tsuboi, Hirokazu; Nishimura, Akira; Yoda, Koji; Ishikawa, Takeaki; Iwashita, Kazuhiro; Fujita, Nobuyuki; Shimoi, Hitoshi

    2011-01-01

    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast. PMID:21900213

  9. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  10. Linkage analysis of Norrie disease with an X-chromosomal ornithine aminotransferase locus.

    PubMed

    Bateman, J B; Kojis, T L; Cantor, R M; Heinzmann, C; Ngo, J T; Spence, M A; Inana, G; Kivlin, J D; Curtis, D; Sparkes, R S

    1993-01-01

    Norrie disease is a rare disease of newborn males caused by prenatal or perinatal retinal detachment, which may be associated with mental retardation, psychosis, and/or hearing loss. DXS7 (L1.28) and MAO A and B loci have been linked to the ND locus on the short arm of the X chromosome. Sequences homologous to OAT also have been mapped to the short arm of the X chromosome. We performed linkage analyses between the ND locus and one of the OAT-like clusters of sequences on the X chromosome (OATL1), using a ScaI RFLP in a ND family, and increased the previously calculated lod score (z) to over 3 (3.38; theta = 0.05). Similarly, we calculated a lod score of 4.06 (theta = 0.01) between the OATL1 and DXS7 loci. Alone, the OATL1 ScaI RFLP system is expected to be informative in 48% of females. If this system were used in combination with the DXS7 TaqI polymorphism, 71% of females would be informative for at least one of the markers and 21% would be informative for both. Because the OATL1 ScaI RFLP is a relatively common polymorphism, this system should be useful for the identification of ND carriers and affected male fetuses and newborns.

  11. Linkage analysis of Norrie disease with an X-chromosomal ornithine aminotransferase locus.

    PubMed Central

    Bateman, J B; Kojis, T L; Cantor, R M; Heinzmann, C; Ngo, J T; Spence, M A; Inana, G; Kivlin, J D; Curtis, D; Sparkes, R S

    1993-01-01

    Norrie disease is a rare disease of newborn males caused by prenatal or perinatal retinal detachment, which may be associated with mental retardation, psychosis, and/or hearing loss. DXS7 (L1.28) and MAO A and B loci have been linked to the ND locus on the short arm of the X chromosome. Sequences homologous to OAT also have been mapped to the short arm of the X chromosome. We performed linkage analyses between the ND locus and one of the OAT-like clusters of sequences on the X chromosome (OATL1), using a ScaI RFLP in a ND family, and increased the previously calculated lod score (z) to over 3 (3.38; theta = 0.05). Similarly, we calculated a lod score of 4.06 (theta = 0.01) between the OATL1 and DXS7 loci. Alone, the OATL1 ScaI RFLP system is expected to be informative in 48% of females. If this system were used in combination with the DXS7 TaqI polymorphism, 71% of females would be informative for at least one of the markers and 21% would be informative for both. Because the OATL1 ScaI RFLP is a relatively common polymorphism, this system should be useful for the identification of ND carriers and affected male fetuses and newborns. PMID:7908152

  12. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization].

    PubMed

    Solov'ev, I V; Iurov, Iu B; Vorsanova, S G; Marcais, B; Rogaev, E I; Kapanadze, B I; Brodianskiĭ, V M; Iankovskiĭ, N K; Roizes, G

    1998-11-01

    Fluorescent in situ hybridization (FISH) was employed in mapping the alpha-satellite DNA that was revealed in the cosmid libraries specific for human chromosomes 13, 21, and 22. In total, 131 clones were revealed. They contained various elements of centromeric alphoid DNA sequences of acrocentric chromosomes, including those located close to SINEs, LINEs, and classical satellite sequences. The heterochromatin of acrocentric chromosomes was shown to contain two different groups of alphoid sequences: (1) those immediately adjacent to the centromeric regions (alpha 13-1, alpha 21-1, and alpha 22-1 loci) and (2) those located in the short arm of acrocentric chromosomes (alpha 13-2, alpha 21-2, and alpha 22-2 loci). Alphoid DNA sequences from the alpha 13-2, alpha 21-2, and alpha 22-2 loci are apparently not involved in the formation of centromeres and are absent from mitotically stable marker chromosomes with a deleted short arm. Robertsonian translocations t(13q; 21q) and t(14q; 22q), and chromosome 21p-. The heterochromatic regions of chromosomes 13, 21, and 22 were also shown to contain relatively chromosome-specific repetitive sequences of various alphoid DNA families, whose numerous copies occur in other chromosomes. Pools of centromeric alphoid cosmids can be of use in further studies of the structural and functional properties of heterochromatic DNA and the identification of centromeric sequences. Moreover, these clones can be employed in high-resolution mapping and in sequencing the heterochromatic regions of the human genome. The detailed FISH analysis of numerous alphoid cosmid clones allowed the identification of several new, highly specific DNA probes of molecular cytogenetic studies--in particular, the interphase and metaphase analyses of chromosomes 2, 9, 11, 14, 15, 16, 18, 20, 21-13, 22-14, and X.

  13. Technique of laser chromosome welding for chromosome repair and artificial chromosome creation.

    PubMed

    Huang, Yao-Xiong; Li, Lin; Yang, Liu; Zhang, Yi

    2018-04-01

    Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The technique may also have applicability on the manipulation and extension of large pieces of synthetic DNA.

  14. Somatic association of telocentric chromosomes carrying homologous centromeres in common wheat.

    PubMed

    Mello-Sampayo, T

    1973-01-01

    Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 B (S) and 6 B (L)) and a non-related (5 B (L)) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement - the Rabl orientation - and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary

  15. Ethanol production from xylose with the yeast Pichia stipitis and simultaneous product recovery by gas stripping using a gas-lift loop fermentor with attached side-arm (GLSA).

    PubMed

    Domínguez, J M; Cao, N; Gong, C S; Tsao, G T

    2000-02-05

    The bioconversion of xylose into ethanol with the yeast Pichia stipitis CBS 5773 is inhibited when 20 g/L of ethanol are present in the fermentation broth. In order to avoid this limitation, the fermentation was carried out with simultaneous recovery of product by CO(2) stripping. The fermentation was also improved by attaching a side-arm to the main body of a classical gas-lift loop fermentor. This side-arm increases the liquid circulation, mass transfer, and gas distribution, reducing the amount of oxygen in the inlet gas necessary to perform the fermentation of xylose under microaerobic conditions (K(L)a approximately 16 h(-1)). The continuous stripping of ethanol from the fermentation broth in this new bioreactor system allowed the consumption of higher xylose concentrations than using Erlenmeyer shaker flasks, improved significantly the process productivity and provided a clean ethanol solution by using an ice-cooled condenser system. Finally, a fed-batch fermentation was carried out with a K(L)a = 15.8 h(-1). Starting with 248.2 g of xylose, 237.6 g of xylose was consumed to produce 88.1 g of ethanol which represents 72.6% of the theoretical yield (47.2 g/L of ethanol was recovered in the condenser, while 9.6 g/L remained in the fermentation broth). Copyright 2000 John Wiley & Sons, Inc.

  16. "Omics" of Selenium Biology: A Prospective Study of Plasma Proteome Network Before and After Selenized-Yeast Supplementation in Healthy Men.

    PubMed

    Sinha, Indu; Karagoz, Kubra; Fogle, Rachel L; Hollenbeak, Christopher S; Zea, Arnold H; Arga, Kazim Y; Stanley, Anne E; Hawkes, Wayne C; Sinha, Raghu

    2016-04-01

    Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan, Chagas, and Kashin-Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associated with mutations in genes encoding for selenoproteins. Selenium biology is complex, and a systems biology approach to study global metabolomics, genomics, and/or proteomics may provide important clues to examining selenium-responsive markers in circulation. In the current investigation, we applied a global proteomics approach on plasma samples collected from a previously conducted, double-blinded placebo controlled clinical study, where men were supplemented with selenized-yeast (Se-Yeast; 300 μg/day, 3.8 μmol/day) or placebo-yeast for 48 weeks. Proteomic analysis was performed by iTRAQ on 8 plasma samples from each arm at baseline and 48 weeks. A total of 161 plasma proteins were identified in both arms. Twenty-two proteins were significantly altered following Se-Yeast supplementation and thirteen proteins were significantly changed after placebo-yeast supplementation in healthy men. The differentially expressed proteins were involved in complement and coagulation pathways, immune functions, lipid metabolism, and insulin resistance. Reconstruction and analysis of protein-protein interaction network around selected proteins revealed several hub proteins. One of the interactions suggested by our analysis, PHLD-APOA4, which is involved in insulin resistance, was subsequently validated by Western blot analysis. Our systems approach illustrates a viable platform for investigating responsive proteomic profile in 'before and after' condition following Se-Yeast supplementation. The nature of proteins identified suggests that selenium may play an important role in complement and coagulation pathways, and insulin resistance.

  17. Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin

    PubMed Central

    Kapoor, Shivali; Zhu, Lisha; Froyd, Cara; Liu, Tao; Rusche, Laura N.

    2015-01-01

    Point centromeres are specified by a short consensus sequence that seeds kinetochore formation, whereas regional centromeres lack a conserved sequence and instead are epigenetically inherited. Regional centromeres are generally flanked by heterochromatin that ensures high levels of cohesin and promotes faithful chromosome segregation. However, it is not known whether regional centromeres require pericentromeric heterochromatin. In the yeast Candida lusitaniae, we identified a distinct type of regional centromere that lacks pericentromeric heterochromatin. Centromere locations were determined by ChIP-sequencing of two key centromere proteins, Cse4 and Mif2, and are consistent with bioinformatic predictions. The centromeric DNA sequence was unique for each chromosome and spanned 4–4.5 kbp, consistent with regional epigenetically inherited centromeres. However, unlike other regional centromeres, there was no evidence of pericentromeric heterochromatin in C. lusitaniae. In particular, flanking genes were expressed at a similar level to the rest of the genome, and a URA3 reporter inserted adjacent to a centromere was not repressed. In addition, regions flanking the centromeric core were not associated with hypoacetylated histones or a sirtuin deacetylase that generates heterochromatin in other yeast. Interestingly, the centromeric chromatin had a distinct pattern of histone modifications, being enriched for methylated H3K79 and H3R2 but lacking methylation of H3K4, which is found at other regional centromeres. Thus, not all regional centromeres require flanking heterochromatin. PMID:26371315

  18. Transfer to wheat (Triticum aestivum) of small chromosome segments from rye (Secale cereale) carrying disease resistance genes.

    PubMed

    Fu, S; Tang, Z; Ren, Z; Zhang, H

    2010-01-01

    One hundred wheat lines, derived from monosomic additions of chromosome 1R of rye inbred line R12 (Chinese rye), were detected by PCR amplification using rye-specific primer pairs. Only 5 wheat lines, 1R296, 1R330, 1R314, 1R725, and 1R734, were determined to contain rye chromatin. While 1R296 and 1R330 were highly susceptible to stripe rust and powdery mildew, 1R314, 1R725 and 1R734 were highly resistant to both diseases. Acid-polyacrylamide gel electrophoresis showed that the omega-secalin bands were absent in 1R314, but present in the other 4 wheat lines. Genomic in situ hybridization indicated that 1R296, 1R330, and 1R725 contained translocations involving the whole short arm of chromosome 1R. However, 1R314 and 1R734 contained a pair of wheat chromosomes with small, terminal, rye-derived chromosome segments. The results suggest that the translocation breakpoint of 1RS in 1R314 was located between the Sec-1 locus and the disease-resistance loci, while in line 1R734, the breakpoint was located between the Sec-1 locus and the centromere. Taking account of the improved disease resistance of 1R725, 1R314 and 1R734, the chromosome arm 1RS of R12 may represent new and valuable disease resistance resources for wheat improvement.

  19. Rapid depletion of budding yeast proteins by fusion to a heat-inducible degron.

    PubMed

    Sanchez-Diaz, Alberto; Kanemaki, Masato; Marchesi, Vanessa; Labib, Karim

    2004-03-02

    One effective way to study the biological function of a protein in vivo is to inactivate it and see what happens to the cell. For proteins that are dispensable for cell viability, the corresponding gene can simply be deleted from its chromosomal locus. The study of essential proteins is more challenging, however, because the function of the protein must be inactivated conditionally. Here, we describe a method that allows the target protein to be depleted rapidly and conditionally, so that the immediate effects on the cell can be examined. The chromosomal locus of a budding yeast gene is modified so that a "heat-inducible degron cassette" is added to the N terminus of the encoded protein, causing it to be degraded by a specific ubiquitin-mediated pathway when cells are shifted from 24 degrees to 37 degrees C. Degradation requires recognition of the degron cassette by the evolutionarily conserved Ubr1 protein, which is associated with a ubiquitin-conjugating enzyme. To promote rapid and conditional depletion of the target protein, we use a yeast strain in which expression of the UBR1 gene can be either repressed or strongly induced. Degron strains are constructed by a simple "one-step" approach using the polymerase chain reaction.

  20. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our datamore » strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.« less

  1. Clinical and molecular cytogenetic studies in ring chromosome 5: report of a child with congenital abnormalities.

    PubMed

    Basinko, Audrey; Giovannucci Uzielli, Maria Luisa; Scarselli, Gloria; Priolo, Manuela; Timpani, Giuseppina; De Braekeleer, Marc

    2012-02-01

    We report here a child with a ring chromosome 5 (r(5)) associated with facial dysmorphology and multiple congenital abnormalities. Fluorescent in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones was performed to determine the breakpoints involved in the r(5). The 5p deletion extended from 5p13.2-3 to 5pter and measured 34.61 Mb (range: 33.7-35.52 Mb) while the 5q deletion extended from 5q35.3 to 5qter and measured 2.44 Mb (range: 2.31-2.57 Mb). The patient presented signs such as microcephaly, hypertelorism, micrognathia and epicanthal folds, partially recalling those of a deletion of the short arm of chromosome 5 and the "cri-du-chat" syndrome. The most striking phenotypic features were the congenital heart abnormalities which have been frequently reported in deletions of the distal part of the long arm of chromosome 5 and in rings leading to a 5q35-5qter deletion. However, the NKX2-5 gene, which has been related to congenital heart defects, was not deleted in our patient, nor presumably to some other patients with 5q35.3-5qter deletion. We propose that VEGFR3, deleted in our patient, could be a candidate gene for the congenital heart abnormalities observed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. [Identification of C(2)M interacting proteins by yeast two-hybrid screening].

    PubMed

    Yue, Shan-shan; Xia, Lai-xin

    2015-11-01

    The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.

  3. Flow Sorting and Sequencing Meadow Fescue Chromosome 4F1[C][W

    PubMed Central

    Kopecký, David; Martis, Mihaela; Číhalíková, Jarmila; Hřibová, Eva; Vrána, Jan; Bartoš, Jan; Kopecká, Jitka; Cattonaro, Federica; Stočes, Štěpán; Novák, Petr; Neumann, Pavel; Macas, Jiří; Šimková, Hana; Studer, Bruno; Asp, Torben; Baird, James H.; Navrátil, Petr; Karafiátová, Miroslava; Kubaláková, Marie; Šafář, Jan; Mayer, Klaus; Doležel, Jaroslav

    2013-01-01

    The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before. PMID:24096412

  4. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  5. Familial interstitial deletion of the short arm of chromosome 4 (p15.33-p16.3) characterized by molecular cytogenetic analysis.

    PubMed

    Basinko, Audrey; Douet-Guilbert, Nathalie; Parent, Philippe; Blondin, Gilles; Mingam, M; Monot, Françoise; Morel, Frédéric; Le Bris, Marie-Josée; De Braekeleer, Marc

    2008-04-01

    This 15-month boy was expressed at the cytogenetic laboratory because of psychomotor development delay. He was tall and had plagiocephaly, micrognathia, high nasal bridge, anteverted nostrils and pectus excavatum. A 46,XY,del(4)(p16.1p16.3) karyotype was found using high-resolution R-banding technique. FISH studies using the LSI Wolf-Hirschhorn dual color 4p16.3 and the TelVysion 4p probes showed no deletion. Using BACs, the distal breakpoint was located in 4p16.3, between RP11-165K4 and RP11-717M10 and the proximal breakpoint in 4p15.33, between RP11-74M11 and RP11-1J7; therefore, approximately 7.96 Mb of the short arm were deleted. The maternal karyotype showed the same deletion, but in a mosaic status. Two distinct phenotypes have been recognized on the basis of the chromosomal bands involved in 4p deletion: the Wolf-Hirschhorn syndrome (WHS) and a proximal 4p deletion syndrome (4p15.2-p15.32). Our observation confirms that the basic WHS phenotype maps distally to this region. Copyright 2008 Wiley-Liss, Inc.

  6. The morbid anatomy of the human genome: chromosomal location of mutations causing disease.

    PubMed Central

    McKusick, V A; Amberger, J S

    1993-01-01

    Information is given in tabular form derived from a synopsis of the human gene map which has been updated continuously since 1973 as part of Mendelian Inheritance in Man (Johns Hopkins University Press, 10th ed, 1992) and of OMIM (Online Mendelian Inheritance in Man, available generally since 1987). The part of the synopsis reproduced here consists of chromosome by chromosome gene lists of loci for which there are associated disorders (table 1), a pictorial representation of this information (fig 1a-d), and an index of disorders for which the causative mutations have been mapped (table 2). In table 1, information on genes that have been located to specific chromosomal positions and are also the site of disease producing mutations is arranged by chromosome, starting with chromosome 1 and with the end of the short arm of the chromosome in each case. In table 2 an alphabetized list of these disorders and the chromosomal location of the mutation in each case are provided. Both in the 'Disorder' field of table 1 and in table 2, the numbers 1, 2, or 3 in parentheses after the name of the disorder indicate that its chromosomal location was determined by mapping of the wildtype gene (1), by mapping of the clinical phenotype (2), or by both strategies (3). PMID:8423603

  7. Vba2p, a vacuolar membrane protein involved in basic amino acid transport in Schizosaccharomyces pombe.

    PubMed

    Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi

    2010-01-01

    A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.

  8. Coincidence of synteny breakpoints with malignancy-related deletions on human chromosome 3

    PubMed Central

    Kost-Alimova, Maria; Kiss, Hajnalka; Fedorova, Ludmila; Yang, Ying; Dumanski, Jan P.; Klein, George; Imreh, Stefan

    2003-01-01

    We have found previously that during tumor growth intact human chromosome 3 transferred into tumor cells regularly looses certain 3p regions, among them the ≈1.4-Mb common eliminated region 1 (CER1) at 3p21.3. Fluorescence in situ hybridization analysis of 12 mouse orthologous loci revealed that CER1 splits into two segments in mouse and therefore contains a murine/human conservation breakpoint region (CBR). Several breaks occurred in tumors within the region surrounding the CBR, and this sequence has features that characterize unstable chromosomal regions: deletions in yeast artificial chromosome clones, late replication, gene and segment duplications, and pseudogene insertions. Sequence analysis of the entire 3p12-22 revealed that other cancer-associated deletions (regions eliminated from monochromosomal hybrids carrying an intact chromosome 3 during tumor growth and homozygous deletions found in human tumors) colocalized nonrandomly with murine/human CBRs and were characterized by an increased number of local gene duplications and murine/human conservation mismatches (single genes that do not match into the conserved chromosomal segment). The CBR within CER1 contains a simple tandem TATAGA repeat capable of forming a 40-bp-long secondary hairpin-like structure. This repeat is nonrandomly localized within the other tumor-associated deletions and in the vicinity of 3p12-22 CBRs. PMID:12738884

  9. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    PubMed

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  10. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y

    2016-01-01

    HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.

  11. Number of X-chromosome genes influences social behavior and vasopressin gene expression in mice

    PubMed Central

    Cox, Kimberly H.; Quinnies, Kayla M.; Eschendroeder, Alex; Didrick, Paula M.; Eugster, Erica A.; Rissman, Emilie F.

    2017-01-01

    Summary Sex differences in behavior are widespread and often caused by hormonal differences between the sexes. In addition to hormones, the composition and numbers of the sex chromosomes also affect a variety of sex differences. In humans, X-chromosome genes are implicated in neurobehavioral disorders (i.e. fragile-X, autism). To investigate the role of X-chromosome genes in social behavior, we used a mouse model that has atypical sex chromosome configurations resembling Turner (45, XO) and Klinefelter syndromes (47, XXY). We examined a number of behaviors in juvenile mice. Mice with only one copy of most X-chromosome genes, regardless of gonadal sex, were less social in dyadic interaction and social preference tasks. In the elevated plus maze, mice with one X-chromosome spent less time in the distal ends of the open arms as compared to mice with two copies of X-chromosome genes. Using qRTPCR, we noted that amygdala from female mice with one X-chromosome had higher expression levels of vasopressin (Avp) as compared to mice in the other groups. Finally, in plasma from girls with Turner syndrome we detected reduced vasopressin (AVP) concentrations as compared to control patients. These novel findings link sex chromosome genes with social behavior via concentrations of AVP in brain, adding to our understanding of sex differences in neurobehavioral disorders. PMID:25462900

  12. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance.

    PubMed

    Ali, N; Heslop-Harrison, Js Pat; Ahmad, H; Graybosch, R A; Hein, G L; Schwarzacher, T

    2016-08-01

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a cost-effective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm.

  13. [Increasing the resolution of chromosome analysis using pyrido[1,2alpha]benzimidazoles].

    PubMed

    Rachinskaia, O A; Popov, K V; Ryzvanovich, G A; Bol'sheva, N L; Begunov, R S; Iurkevich, O Iu; Zelenin, A V; Muravlenko, O V

    2012-10-01

    We studied the influence of three derivatives of pyrido[1,2alpha]benzimidazoles (PBIs), which have DNA-intercalating properties, on plant mitotic chromosome condensation, in order to increase the resolution of chromosome analysis. The efficiency of the influence of these agents was assessed using the median chromosome length on chromosome slides, as well as by the number and size of chromosome DAPI bands. We used the third chromosome of Linum grandiflorum Desf. in these experiments. The chromosome was identified on the slides using its DAPI band pattern and a molecular marker, viz., the 5S rDNA site, which is located in the proximal region of the long arm of the chromosome. The influence of the well-known 9-aminoacridine (9-AMA) DNA intercalator, which is widely used in karyotype studies of short-chromosome organisms, was used as a control in all of the experiments. It was found that the influence of each of the three PBIs in the study on the root meristem of L. grandiflorum resulted in an increase in the median length of the third chromosome, the linear centromeric DAPI band size, and the number ofintercalary DAPI bands. All three PBIs acted more efficiently than 9-AMA. The median chromosome length was increased by 15-40% and the number of intercalary bands increased by 1.5-3 times after PBI treatment, as compared to 9-AMA treatment. At the same time, 7-CF3-PBI, in a similar manner to 9-AMA, did not change the relative size of the centromeric DAPI band, while 7-NH2-PBI and 7-CF3-9-NH2-PBI gradually increased this parameter. It is concluded that these substances can be used as intercalating agents in cytogenetic studies in order to increase the resolution of chromosome analysis.

  14. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.

    PubMed

    Stoyan, T; Gloeckner, G; Diekmann, S; Carbon, J

    2001-08-01

    The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.

  15. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  16. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome

    PubMed Central

    Liu, Yen-Ting; Chang, Keng-Ming; Ma, Chien-Hui; Jayaram, Makkuni

    2016-01-01

    The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts’ fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates ‘mother bias’ (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation. PMID:27492289

  17. Multiple sex chromosome system in penguins (Pygoscelis, Spheniscidae)

    PubMed Central

    Gunski, Ricardo José; Cañedo, Andrés Delgado; Garnero, Analía Del Valle; Ledesma, Mario Angel; Coria, Nestor; Montalti, Diego; Degrandi, Tiago Marafiga

    2017-01-01

    Abstract Penguins are classified in the order Sphenisciformes into a single family, Spheniscidae. The genus Pygoscelis Wagler, 1832, is composed of three species, Pygoscelis antarcticus Forster, 1781, P. papua Forster, 1781 and P. adeliae Hombron & Jacquinot, 1841. In this work, the objective was to describe and to compare the karyotypes of Pygoscelis penguins contributing genetic information to Sphenisciformes. The metaphases were obtained by lymphocyte culture, and the diploid number and the C-banding pattern were determined. P. antarcticus has 2n = 92, P. papua 2n = 94 and P. adeliae exhibited 2n = 96 in males and 2n = 95 in females. The difference of diploid number in P. adeliae was identified as a multiple sex chromosome system where males have Z1Z1Z2Z2 and females Z1Z2W. The C-banding showed the presence of a heterochromatic block in the long arm of W chromosome and Z2 was almost entirely heterochromatic. The probable origin of a multiple system in P. adeliae was a translocation involving the W chromosome and the chromosome ancestral to Z2. The comparison made possible the identification of a high karyotype homology in Sphenisciformes which can be seen in the conservation of macrochromosomes and in the Z chromosome. The karyotypic divergences in Pygoscelis are restricted to the number of microchromosomes and W, which proved to be highly variable in size and morphology. The data presented in this work corroborate molecular phylogenetic proposals, supporting the monophyletic origin of penguins and intraspecific relations. PMID:29093802

  18. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael D.; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.

  19. Chromosome evolution in three Brazilian Leptodactylus species (Anura, Leptodactylidae), with phylogenetic considerations.

    PubMed

    Reinaldo Cruz Campos, João; Ananias, Fernando; Aguirre Brasileiro, Cinthia; Yamamoto, Marcos; Fernando Baptista Haddad, Célio; Kasahara, Sanae

    2009-05-01

    Karyotypic analyses on three species of the Leptodactylus from Brazil showed 2n=24 in L. cf. marmoratus, 2n=23 in Leptodactylus sp. (aff. bokermanni), and 2n=26 in L. hylaedactylus, with distinct numbers of bi and uni-armed chromosomes. Leptodactylus cf. marmoratus presented a variation as regard to the morphology of pair 12. All specimens of L. cf. marmoratus had Ag-NOR in pair 6, confirmed by FISH, but the sample from one of the localities presented additional Ag-NOR, in one of the chromosomes 8. In Leptodactylus sp. (aff. bokermanni) and L. hylaedactylus the chromosome pairs bearing Ag-NOR are 11 and 7, respectively. The C banding patterns are predominantly centromeric, but only in L. marmoratus this heterochromatin appeared very brilliant with DAPI. On the other hand, bright labelling was noticed with CMA(3) in the three species, on the Ag-NOR site. The data obtained here are in accordance with the proposed phylogeny to the genus, and the chromosomal analyses in these Leptodactylus showed that the karyotype evolution was based mainly in centric fusion and pericentric inversion.

  20. Neurodevelopmental outcome in patients with terminal deletion of the short arm of chromosome 20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazer, C.H.; Hobbs, N.; Rappaport, L.

    Clinical geneticists and genetic counselors are often expected to provide information concerning anticipated neurodevelopmental outcome in children with chromosome abnormalities. Accurate prediction, however, may be impossible, and is at the least hampered by insufficient data and by natural variation in expression. Our experience with a now 27-month-old boy with terminal 20p- underscores this issue. A newborn male with multiple congenital anomalies, including pulmonary artery stenosis, vertebral anomalies, posterior ocular embryotoxon and multiple dysmorphic features was found to have 46,XY,del(20)(p11.23ter) de novo, including the location for Alagille Syndrome (AS). Early clinical course was also notable for obstructive apnea and cardiorespiratory arrests.more » Available literature suggested a poor neurodevelopmental prognosis. At age 27 months, he exhibits hypotonia and gross motor skills assessed at 12-15 months. However, cognitive and language skills were at the 20 months level. No structural neurological lesions have been identified. We attempted to obtain updated outcome information on previous cases for comparison. 11 previously published reports with similar extent of deletion of 20p demonstrated varied, but often more severe neurodevelopmental impairment. The majority described early global delays, with significant motor delay. However, little longitudinal or functional information was available. In contrast, our patient demonstrates good neurodevelopmental and functional progress. Caution should be exercised in counseling regarding neurodevelopmental outcome in cases of chromosomal anomaly, due to lack of information and natural variability. Standardized assessment and reporting of longitudinal neurodevelopmental follow-up are necessary for more appropriate counseling concerning outcome in chromosomal anomalies.« less

  1. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  2. Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe.

    PubMed

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C

    2007-11-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage.

  3. Msc1 Acts Through Histone H2A.Z to Promote Chromosome Stability in Schizosaccharomyces pombe

    PubMed Central

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C.

    2007-01-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage. PMID:17947424

  4. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction

    PubMed Central

    Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric

    2017-01-01

    Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination–initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria. However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome–axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. PMID:29021238

  5. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system

    PubMed Central

    Hanson, Sara J.; Byrne, Kevin P.; Wolfe, Kenneth H.

    2014-01-01

    Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)–like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms. PMID:25349420

  6. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system.

    PubMed

    Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H

    2014-11-11

    Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.

  7. High-resolution meiotic and physical mapping of the Best vitelliform macular dystrophy (VMD2) locus to pericentromeric chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, B.H.F.; Vogt, G.; Stoehr, H.

    1994-12-01

    Best vitelliform macular dystrophy (VMD2) has previously been linked to several microsatellite markers from chromosome 11. Subsequently, additional genetic studies have refined the Best disease region to a 3.7-cM interval flanked by markers at D11S903 and PYGM. To further narrow the interval containing the Best disease gene and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best disease pedigrees.more » Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 on the short arm and at D11S480 in band q13.2-13.3 on the proximal long arm. This study demonstrates that the physical size of the Best disease region is exceedingly larger than previously estimated from the genetic data, because of the proximity of the defective gene to the centromere of chromosome 11.« less

  8. Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material.

    PubMed

    Cappello, M S; Poltronieri, P; Blaiotta, G; Zacheo, G

    2010-11-15

    The knowledge about wine yeasts remains largely dominated by the extensive studies on Saccharomyces (S.) cerevisiae. Molecular methods, allowing discrimination of both species and strains in winemaking, can profitably be applied for characterization of the microflora occurring in winemaking and for monitoring the fermentation process. Recently, some novel yeast isolates have been described as hybrid between S. cerevisiae and Saccharomyces species, leaving the Saccharomyces strains containing non-Saccharomyces hybrids essentially unexplored. In this study, we have analyzed a yeast strain isolated from "Primitivo" grape (http://www.ispa.cnr.it/index.php?page=collezioni&lang=en accession number 12998) and we found that, in addition to the S. cerevisiae genome, it has acquired genetic material from a non-Saccharomyces species. The study was focused on the analysis of chromosomal and mitochondrial gene sequences (ITS and 26S rRNA, SSU and COXII, ACTIN-1 and TEF), 2D-PAGE mitochondrial proteins, and spore viability. The results allowed us to formulate the hypothesis that in the MSH199 isolate a DNA containing an rDNA sequence from Hanseniaspora vineae, a non-Saccharomyces yeast, was incorporated through homologous recombination in the grape environment where yeast species are propagated. Moreover, physiological characterization showed that the MSH199 isolate possesses high technological quality traits (fermentation performance) and glycerol production, resistance to ethanol, SO₂ and temperature) useful for industrial application. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Sex determining gene on the X chromosome short arm: dosage sensitive sex reversal.

    PubMed

    Ogata, T; Matsuo, N

    1996-08-01

    The present review article summarizes current knowledge concerning the sex determining gene on Xp21, termed DSS (dosage sensitive sex reversal). The presence of DSS has been based on the finding that, in the presence of SRY, partial active Xp duplications encompassing the middle part of Xp result in sex reversal, whereas those of the distal or proximal part of Xp permit male sex development. Because Klinefelter patients develop as males, it is believed that DSS is normally subject to X-inactivation, and that two active copies of DSS override the function of SRY, resulting in gonadal dysgenesis because of meiotic pairing failure. It may be possible that DSS encodes a target sequence for repressing function of SRY or that DSS is involved in an X chromosome-counting mechanism. Molecular approaches have localized DSS to a 160 kb region and isolated candidate genes such as DAX-1 and MAGE-Xp, but there has been no formal evidence equating the candidate gene with DSS. In addition to its clinical importance, the exploration of DSS must provide a useful clue to phylogenetic studies of sex chromosomes and dosage compensation.

  10. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements

    PubMed Central

    Dickson, Laura B.; Sharakhova, Maria V.; Timoshevskiy, Vladimir A.; Fleming, Karen L.; Caspary, Alex; Sylla, Massamba; Black, William C.

    2016-01-01

    was used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere) inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3. PMID:27105225

  11. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Feng, Quanzhou; Weber, Scott A.; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production. PMID:29621349

  12. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.

    PubMed

    Feng, Quanzhou; Liu, Z Lewis; Weber, Scott A; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production.

  13. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes.

    PubMed

    Grochowski, Christopher M; Gu, Shen; Yuan, Bo; Tcw, Julia; Brennand, Kristen J; Sebat, Jonathan; Malhotra, Dheeraj; McCarthy, Shane; Rudolph, Uwe; Lindstrand, Anna; Chong, Zechen; Levy, Deborah L; Lupski, James R; Carvalho, Claudia M B

    2018-04-25

    Small supernumerary marker chromosomes (sSMC) are chromosomal fragments difficult to characterize genomically. Here, we detail a proband with schizoaffective disorder and a mother with bipolar disorder with psychotic features who present with a marker chromosome that segregates with disease. We explored the architecture of this marker and investigated its temporal origin. Array comparative genomic hybridization (aCGH) analysis revealed three duplications and three triplications that spanned the short arm of chromosome 9, suggestive of a chromoanasynthesis-like event. Segregation of marker genotypes, phased using sSMC mosaicism in the mother, provided evidence that it was generated during a germline-level event in the proband's maternal grandmother. Whole-genome sequencing (WGS) was performed to resolve the structure and junctions of the chromosomal fragments, revealing further complexities. While structural variations have been previously associated with neuropsychiatric disorders and marker chromosomes, here we detail the precise architecture, human life-cycle genesis, and propose a DNA replicative/repair mechanism underlying formation. © 2018 Wiley Periodicals, Inc.

  14. Abnormalities at chromosome region 3p12-14 characterize clear cell renal carcinoma.

    PubMed

    Carroll, P R; Murty, V V; Reuter, V; Jhanwar, S; Fair, W R; Whitmore, W F; Chaganti, R S

    1987-06-01

    In an effort to determine whether or not any characteristic chromosomal abnormalities exist in renal cancer, cytogenetic findings were correlated with tumor histology in nine cases of renal adenocarcinoma. Metaphase preparations adequate for analysis were obtained from cultures harvested between day 3 and day 21. Model chromosome number was diploid in three cases, hypodiploid in three, and hyperdiploid in the remaining three. One clear cell adenocarcinoma failed to reveal any chromosomal abnormality. Two tumors, a tubular/papillary carcinoma and an acinar/papillary carcinoma, showed the clonal abnormalities del(1)(p2l),+2,+7,+8,+12,+13,+16,+17,-21 and t(2;10)(q14-21;q26),+7q,+11q,-18, respectively. Interestingly, five of six clear cell tumors studied had clonal abnormalities affecting the short arm of chromosome #3 in the 3p12-21 region, and in the remaining case, of 15 karyotyped metaphases suitable for interpretation, one showed a deletion in 3p. These data indicate that clear cell carcinoma of the kidney may be associated with a nonrandom chromosomal abnormality involving the 3p12-14 region.

  15. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  16. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia

    PubMed Central

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J.; Mecucci, Cristina

    2016-01-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. PMID:27151989

  17. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.

    PubMed

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina

    2016-08-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. Copyright© Ferrata Storti Foundation.

  18. Elucidation of the mechanism of homozygous deletion of 3p12-13 in the U2020 cell line reveals the unexpected involvement of other chromosomes.

    PubMed

    Heppell-Parton, A C; Nacheva, E; Carter, N P; Bergh, J; Ogilvie, D; Rabbitts, P H

    1999-06-01

    Homozygous deletions in tumor cells have been useful in the localization and validation of tumor suppressor genes. We have described a homozygous deletion in a lung cancer cell line (U2020) which is located within the most proximal of the three regions on the short arm of chromosome 3 believed to be lost in lung cancer development. Construction of a YAC contig map indicates that the deletion spans around 8 Mb, but no large deletion was apparent on conventional cytogenetic analysis of the cell line. To investigate this paradox, whole chromosome, arm-specific, and regional paints have been used. This analysis has revealed that genetic loss has occurred by complex rearrangements of chromosomes 3, rather than simple interstitial deletion. These studies emphasize the power of molecular cytogenetics to disclose unsuspected tumor-specific translocations within the extremely complex karyotypes characteristic of solid tumors.

  19. Partial preferential chromosome pairing is genotype dependent in tetraploid rose.

    PubMed

    Bourke, Peter M; Arens, Paul; Voorrips, Roeland E; Esselink, G Danny; Koning-Boucoiran, Carole F S; Van't Westende, Wendy P C; Santos Leonardo, Tiago; Wissink, Patrick; Zheng, Chaozhi; van Geest, Geert; Visser, Richard G F; Krens, Frans A; Smulders, Marinus J M; Maliepaard, Chris

    2017-04-01

    It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  20. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  1. Termini of human chromosomes display elevated rates of mitotic recombination.

    PubMed

    Cornforth, M N; Eberle, R L

    2001-01-01

    The strand-specific in situ hybridization technique of CO-FISH was used to probe telomeres of human mitotic cells in order to determine the spontaneous frequency of crossover. This approach allowed the detection of recombinational crossovers occurring anywhere along the length of individual chromosomes, including reciprocal events taking place between sister chromatids. Although the process of sister chromatid exchange (SCE) is the most prominent type of recombination in somatic mammalian cells, our results show that SCEs accounted for less than a third of the recombinational events revealed by CO-FISH. It is concluded that chromosomal regions near the termini of chromosome arms undergo extraordinarily high rates of spontaneous recombination, producing terminal crossovers whose small size precludes detection by standard cytogenetic methods. That similar results were observed for transformed epithelial cells, as well as primary fibroblasts, suggests that the phenomenon is a common characteristic of human cells. These findings are noteworthy because, although telomeric and subtelomeric DNA is known to be preferentially involved in certain types of recombination, the tips of somatic mammalian chromosomes have not previously been identified as preferred sites for crossover. Implications of these results are discussed in terms of limitations imposed on CO-FISH for its proposed use in directional hybridization mapping.

  2. A new yeast gene with a myosin-like heptad repeat structure.

    PubMed

    Kölling, R; Nguyen, T; Chen, E Y; Botstein, D

    1993-03-01

    We isolated a gene encoding a 218 kDa myosin-like protein from Saccharomyces cerevisiae using a monoclonal antibody directed against human platelet myosin as a probe. The protein sequence encoded by the MLP1 gene (for myosin-like protein) contains extensive stretches of a heptad-repeat pattern suggesting that the protein can form coiled coils typical of myosins. Immunolocalization experiments using affinity-purified antibodies raised against a TrpE-MLP1 fusion protein showed a dot-like structure adjacent to the nucleus in yeast cells bearing the MLP1 gene on a multicopy plasmid. In mouse epithelial cells the yeast anti-MLP1 antibodies stained the nucleus. Mutants bearing disruptions of the MLP1 gene were viable, but more sensitive to ultraviolet light than wild-type strains, suggesting an involvement of MLP1 in DNA repair. The MLP1 gene was mapped to chromosome 11, 25 cM from met1.

  3. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed Central

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi,, Naoki; Shigyo, Masayoshi

    2012-01-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum–shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F2 mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5. PMID:22690373

  4. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies.

    PubMed

    Tulpová, Zuzana; Luo, Ming-Cheng; Toegelová, Helena; Visendi, Paul; Hayashi, Satomi; Vojta, Petr; Paux, Etienne; Kilian, Andrzej; Abrouk, Michaël; Bartoš, Jan; Hajdúch, Marián; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2018-03-08

    Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere. Copyright © 2018. Published by Elsevier B.V.

  5. Cleavage of the SUN-domain protein Mps3 at its N-terminus regulates centrosome disjunction in budding yeast meiosis

    PubMed Central

    Koch, Bailey A.; Han, Xuemei

    2017-01-01

    Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge. Using the unique feature in yeast meiosis that centrosomes are linked for hours before their separation, we have revealed that Mps3 is cleaved at its nucleus-localized N-terminal domain, the process of which is regulated by its phosphorylation at serine 70. Cleavage of Mps3 takes place at the yeast centrosome and requires proteasome activity. We show that noncleavable Mps3 (Mps3-nc) inhibits centrosome separation during yeast meiosis. In addition, overexpression of mps3-nc in vegetative yeast cells also inhibits centrosome separation and is lethal. Our findings provide a genetic mechanism for the regulation of SUN-domain protein-mediated activities, including centrosome separation, by irreversible protein cleavage at the nuclear periphery. PMID:28609436

  6. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome.

    PubMed

    Liu, Yen-Ting; Chang, Keng-Ming; Ma, Chien-Hui; Jayaram, Makkuni

    2016-09-30

    The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Genetics of dioecy and causal sex chromosomes in plants.

    PubMed

    Kumar, Sushil; Kumari, Renu; Sharma, Vishakha

    2014-04-01

    Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.

  8. Resolution of model Holliday junctions by yeast endonuclease: effect of DNA structure and sequence.

    PubMed Central

    Parsons, C A; Murchie, A I; Lilley, D M; West, S C

    1989-01-01

    The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease. Images PMID:2653810

  9. Submicroscopic interstitial deletion of the X chromosome explains a complex genetic syndrome dominated by Norrie disease.

    PubMed

    Gal, A; Wieringa, B; Smeets, D F; Bleeker-Wagemakers, L; Ropers, H H

    1986-01-01

    Norrie disease (ND), an X-linked recessive disorder, is characterized by congenital blindness followed by bulbar atrophy. We have examined a three-generation family in which ND is part of a complex X-linked syndrome with severe mental retardation, hypogonadism, growth disturbances, and increased susceptibility to infections as additional features. This syndrome is apparently due to an interstitial deletion, as evidenced by the failure of the L1.28 DNA probe (DXS7 locus, Xp11.3) to detect complementary DNA sequences on the defective X chromosome of an affected male and of several obligatory heterozygotes. Attempts to further define this deletion with other DNA probes from the proximal short arm of the X chromosome or by prometaphase chromosome analysis were unsuccessful.

  10. FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy

    PubMed Central

    Giorgi, Debora; Farina, Anna; Grosso, Valentina; Gennaro, Andrea; Ceoloni, Carla; Lucretti, Sergio

    2013-01-01

    The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic

  11. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy.

    PubMed

    Giorgi, Debora; Farina, Anna; Grosso, Valentina; Gennaro, Andrea; Ceoloni, Carla; Lucretti, Sergio

    2013-01-01

    The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic

  12. New family of pectinase genes PGU1b-PGU3b of the pectinolytic yeast Saccharomyces bayanus var. uvarum.

    PubMed

    Naumov, G I; Shalamitskiy, M Yu; Naumova, E S

    2016-03-01

    Using yeast genome databases and literature data, we have conducted a phylogenetic analysis of pectinase PGU genes from Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and hybrid taxon S. pastorianus (syn. S. carlsbergensis). Single PGU genes were observed in all Saccharomyces species, except S. bayanus. The superfamily of divergent PGU genes has been documented in S. bayanus var. uvarum for the first time. Chromosomal localization of new PGU1b, PGU2b, and PGU3b genes in the yeast S. bayanus var. uvarum has been determined by molecular karyotyping and Southern hybridization.

  13. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  14. Frequency of chromosome healing and interstitial telomeres in 40 cases of constitutional abnormalities.

    PubMed

    Fortin, F; Beaulieu Bergeron, M; Fetni, R; Lemieux, N

    2009-01-01

    Human telomeres play a major role in stabilizing chromosome ends and preventing fusions. Chromosomes bearing a broken end are rescued by the acquisition of a new telomeric cap without any subtelomeric sequences being present at the breakpoint, a process referred to as chromosome healing. Conversely, a loss of telomeric function or integrity can lead to the presence of interstitial telomeres at the junction site in translocations or ring chromosomes. In order to determine the frequency at which interstitial telomeres or chromosome healing events are observed in target chromosome abnormalities, we conducted a retrospective FISH study using pan-telomeric and chromosome-specific subtelomeric probes on archival material from 40 cases of terminal deletions, translocations or ring chromosomes. Of the 19 terminal deletions investigated, 17 were negative for the subtelomeric probe specific to the deleted arm despite being positive for the pan-telomeric probe. These 17 cases were thus considered as having been rescued through chromosome healing, suggesting that this process is frequent in terminal deletions. In addition, as 2 of these cases were inherited from a parent bearing the same deletion, chromosomes healed by this process are thus stable through mitosis and meiosis. Regarding the 13 cases of translocations and 8 ring chromosomes, 4 and 2 cases respectively demonstrated pan-telomeric sequences at the interstitial junction point. Furthermore, 2 cases of translocations and 1 ring chromosome had both interstitial pan-telomeres and subtelomeres, whereas 2 other cases of ring chromosomes and 1 case of translocation only showed interstitial subtelomeres. Therefore, interstitial (sub)telomeric sequences in translocations and ring chromosomes are more common than previously thought, as we found a frequency of 43% in this study. Moreover, our results illustrate the necessity of performing FISH with both subtelomeric and pan-telomeric probes when investigating these

  15. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  16. Compartmentalization of the yeast meiotic nucleus revealed by analysis of ectopic recombination.

    PubMed

    Schlecht, Hélène B; Lichten, Michael; Goldman, Alastair S H

    2004-11-01

    As yeast cells enter meiosis, chromosomes move from a centromere-clustered (Rabl) to a telomere-clustered (bouquet) configuration and then to states of progressive homolog pairing where telomeres are more dispersed. It is uncertain at which stage of this process sequences commit to recombine with each other. Previous analyses using recombination between dispersed homologous sequences (ectopic recombination) support the view that, on average, homologs are aligned end to end by the time of commitment to recombination. We have undertaken further analyses incorporating new inserts, chromosome rearrangements, an alternate mode of recombination initiation, and mutants that disrupt nuclear structure or telomere metabolism. Our findings support previous conclusions and reveal that distance from the nearest telomere is an important parameter influencing recombination between dispersed sequences. In general, the farther dispersed sequences are from their nearest telomere, the less likely they are to engage in ectopic recombination. Neither the mode of initiating recombination nor the formation of the bouquet appears to affect this relationship. We suggest that aspects of telomere localization and behavior influence the organization and mobility of chromosomes along their entire length, during a critical period of meiosis I prophase that encompasses the homology search.

  17. The Manifestation of Chromosome Rearrangements in Unordered Asci of Neurospora

    PubMed Central

    Perkins, David D.

    1974-01-01

    Rapid, effective techniques have been developed for detecting and characterizing chromosome aberrations in Neurospora by visual inspection of ascospores and asci. Rearrangements that are detectable by the presence of deficient, nonblack ascospores in test crosses make up 5 to 10% of survivors after UV doses giving 10-55% survival. Over 135 rearrangements have been diagnosed by classifying unordered asci according to numbers of defective spores. (These include 15 originally identified or analyzed by other workers.) About 100 reciprocal translocations (RT's) have been confirmed and mapped genetically, involving all combinations of the seven chromosomes. Thirty-three other rearrangements generate viable nontandem duplications in meiosis. These consist of insertional translocations (IT's) (15 confirmed), and of rearrangements that involve a chromosome tip (10 translocations and 3 pericentric inversions). No inversion has been found that does not include the centromere. A reciprocal translocation was found within one population in nature. When pairs of RT's that involve the same two chromosome arms were intercrossed, viable duplications were produced if the breakpoints overlapped in such a way that pairing resembled that of insertional translocations (27 combinations).—The rapid analytical technique depends on the following. Deficiency ascospores are usually nonblack (W: "white") and inviable, while nondeficient ascospores, even those that include duplications, are black (B) and viable. Thus RT's typically produce 50% black spores, and IT's 75% black. Asci are shot spontaneously from ripe perithecia, and can be collected in large numbers as groups of eight ascospores representing unordered tetrads, which fall into five classes: 8B:0W; 6B:2W, 4B:4W, 2B:6B, 0B:8W. In isosequential crosses, 90-95% of tetrads are 8:0. When a rearrangement is heterozygous, the frequencies of tetrad classes are diagnostic of the type of rearrangement, and provide information also on the

  18. Yeast Infection (Vaginal)

    MedlinePlus

    Yeast infection (vaginal) Overview A vaginal yeast infection is a fungal infection that causes irritation, discharge and intense itchiness ... symptoms Causes The fungus candida causes a vaginal yeast infection. Your vagina naturally contains a balanced mix of yeast, including ...

  19. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones

  20. Chromosome

    MedlinePlus

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  1. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction.

    PubMed

    Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric

    2017-09-15

    Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. © 2017 Tessé et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Successful treatment of an infant with constitutional chromosomal abnormality and hemangiopericytoma with chemotherapy alone.

    PubMed

    Gowans, L Kate; Bentz, Michael L; DeSantes, Kenneth B; Thompson, Kate J

    2007-06-01

    Hemangiopericytoma is a rare vascular tumor, of which 5% to 10% occur in the pediatric population. Although usually benign in infants, local recurrence, metastasis, and deaths have been reported. Clonal chromosomal rearrangements have been described, most involving the long arm of chromosome 12. We report a case of a 6-month-old boy with an hemangiopericytoma of the left forearm initially incorrectly diagnosed as hemangioma. He was treated successfully with chemotherapy alone using vincristine, doxorubicin, actinomycin-D, and cyclophosphamide. Although cytogenetic analysis was not performed on his biopsy, it was later discovered that a prenatal karyotype had shown 46,XY,inv(12)(q15q24.1).

  3. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments.

    PubMed

    Lopandic, Ksenija

    2018-01-01

    The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Interaction of the Saccharomyces cerevisiae RING-domain protein Nse1 with Nse3 and the Smc5/6 complex is required for chromosome replication and stability.

    PubMed

    Wani, Saima; Maharshi, Neelam; Kothiwal, Deepash; Mahendrawada, Lakshmi; Kalaivani, Raju; Laloraya, Shikha

    2018-06-01

    Genomic stability is maintained by the concerted actions of numerous protein complexes that participate in chromosomal duplication, repair, and segregation. The Smc5/6 complex is an essential multi-subunit complex crucial for repair of DNA double-strand breaks. Two of its subunits, Nse1 and Nse3, are homologous to the RING-MAGE complexes recently described in human cells. We investigated the contribution of the budding yeast Nse1 RING-domain by isolating a mutant nse1-103 bearing substitutions in conserved Zinc-coordinating residues of the RING-domain that is hypersensitive to genotoxic stress and temperature. The nse1-103 mutant protein was defective in interaction with Nse3 and other Smc5/6 complex subunits, Nse4 and Smc5. Chromosome loss was enhanced, accompanied by a delay in the completion of replication and a modest defect in sister chromatid cohesion, in nse1-103. The nse1-103 mutant was synthetic sick with rrm3∆ (defective in fork passage through pause sites), this defect was rescued by inactivation of Tof1, a subunit of the fork protection complex that enforces pausing. The temperature sensitivity of nse1-103 was partially suppressed by deletion of MPH1, encoding a DNA-helicase. Homology modeling of the structure of the budding yeast Nse1-Nse3 heterodimer based on the human Nse1-MAGEG1 structure suggests a similar organization and indicates that perturbation of the Zn-coordinating cluster has the potential to allosterically alter structural elements at the Nse1/Nse3 interaction interface that may abrogate their association. Our findings demonstrate that the budding yeast Nse1 RING-domain organization is important for interaction with Nse3, which is crucial for completion of chromosomal replication, cohesion, and maintenance of chromosome stability.

  5. The gene for pancreatic polypeptide (PPY) and the anonymous marker D17S78 are within 45 kb of each other on chromosome 17q21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekharappa, S.C.; King, S.E.; Lee, Y.H.

    1994-05-15

    A gene for early-onset breast and ovarian cancer (BRCA1) has been localized to a small region of chromosome 17q21. A combination of genetic linkage studies, radiation-reduced hybrid analysis, and physical mapping by FISH has identified several genes/markers that lie in this interval. Among these are the gene encoding pancreatic polypeptide (PPY) and a polymorphic marker at locus D17S78. Efforts to construct a physical map of this region by isolating a large number of yeast artificial chromosome (YAC) and cosmid clones demonstrate that PPY and D17S78 are present within the same cosmid clone, and therefore no farther than 45 kb apart.more » This observation takes on particular significance since it excludes a recently described BRCA1 candidate gene from the interval defined by meiotic mapping. Although PPY and D17S78 were found to be no farther than 45 kb apart, identification of a smaller fragment that hybridizes to both probes would indicate that these two are much closer. The probe p131 and the gene PPY were previously mapped to 17q21-q23 and to the proximal long arm of chromosome 17, respectively. The demonstration of the close proximity of these markers should allow them to be treated as a single locus in terms of long-range genomic mapping of this region, and the genomic clones isolated should serve as useful resources for the identification of the BRCA1 gene. Analysis of a large number of a familial and spordic breast and ovarian cancers has identified frequent loss of heterozygosity near the BRCA1 locus. A recent report has suggested the responsible interval lies just telomeric to PPY, and a suggested candidate gene (MCD) for BRCA1 was found to be somatically rearranged in two of several hundred sporadic breast tumors.« less

  6. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes

    PubMed Central

    D’Archivio, Simon

    2017-01-01

    Kinetochores are multiprotein complexes that couple eukaryotic chromosomes to the mitotic spindle to ensure proper segregation. The model for kinetochore assembly is conserved between humans and yeast, and homologues of several components are widely distributed in eukaryotes, but key components are absent in some lineages. The recent discovery in a lineage of protozoa called kinetoplastids of unconventional kinetochores with no apparent homology to model organisms suggests that more than one system for eukaryotic chromosome segregation may exist. In this study, we report a new family of proteins distantly related to outer kinetochore proteins Ndc80 and Nuf2. The family member in kinetoplastids, KKT-interacting protein 1 (KKIP1), associates with the kinetochore, and its depletion causes severe defects in karyokinesis, loss of individual chromosomes, and gross defects in spindle assembly or stability. Immunopurification of KKIP1 from stabilized kinetochores identifies six further components, which form part of a trypanosome outer kinetochore complex. These findings suggest that kinetochores in organisms such as kinetoplastids are built from a divergent, but not ancestrally distinct, set of components and that Ndc80/Nuf2-like proteins are universal in eukaryotic division. PMID:28034897

  8. Characterization of genomic instability in Saccharomyces cerevisiae and engaging teaching strategies described in two curricula

    NASA Astrophysics Data System (ADS)

    Keller, Alexandra P.

    Cancer arises through an accumulation of mutations in the genome. In cancer cells, mutations are frequently caused by DNA rearrangements, which include chromosomal breakages, deletions, insertions, and translocations. Such events contribute to genomic instability, a known hallmark of cancer. To study cycles of chromosomal instability, we are using baker's yeast as a model organism. In yeast, a ChrVII system was previously developed (Admire et al., 2006), in which a disomic yeast strain was used to identify regions of instability on ChrVII. Using this system, a fragile site on the left arm of ChrVII (Admire et al., 2006) was identified and characterized. This study led to insight into mechanisms involved in chromosomal rearrangements and mutations that arise from them as well as to an understanding of mechanisms involved in genomic instability. To further our understanding of genomic instability, I devised a strategy to study instability on a different chromosome (ChrV) (Figure 3), so that we could determine whether lessons learned from the ChrVII system are applicable to other chromosomes, and/or whether other mechanisms of instability could be identified. A suitable strain was generated and analyzed, and our findings suggest that frequencies of instability on the right arm of ChrV are similar to those found in ChrVII. The results from the work in ChrV described in this paper support the idea that the instability found on ChrVII is not an isolated occurrence. My research was supported by an NSF GK-12 grant. The aim of this grant is to improve science education in middle schools, and as part of my participation in this program, I studied and practiced effective science communication methodologies. In attempts to explain my research to middle school students, I collaborated with others to develop methods for explaining genetics and the most important techniques I used in my research. While developing these methods, I learned more about what motivates people to learn

  9. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1.

    PubMed

    Sugihara, Asami; Nguyen, Luan Cao; Shamim, Hossain Mohammad; Iida, Tetsushi; Nakase, Mai; Takegawa, Kaoru; Senda, Mitsuhisa; Jida, Shohei; Ueno, Masaru

    2018-02-19

    Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1 + causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ. We obtained a novel pik1 mutant, pik1-1, which is synthetically lethal with pot1Δ. We found phosphoinositol 4-phosphate in the Golgi was reduced in pik1-1. To investigate the mechanism of the lethality of the pot1Δ pik1-1 double mutant, we constructed the nmt-pot1-aid pik1-1 strain, where Pot1 function becomes low by drugs, which leads to telomere loss and chromosome circularization, and found pik1-1 mutation does not affect telomere resection and chromosome circularization. Thus, our results suggest that pik1 + is required for the maintenance of circular chromosomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria.

    PubMed Central

    Diffley, J F; Stillman, B

    1991-01-01

    ABF2 (ARS-binding factor 2), a small, basic DNA-binding protein that binds specifically to the autonomously replicating sequence ARS1, is located primarily in the mitochondria of the yeast Saccharomyces cerevisiae. The abundance of ABF2 and the phenotype of abf2- null mutants argue that this protein plays a key role in the structure, maintenance, and expression of the yeast mitochondrial genome. The predicted amino acid sequence of ABF2 is closely related to the high-mobility group proteins HMG1 and HMG2 from vertebrate cell nuclei and to several other DNA-binding proteins. Additionally, ABF2 and the other HMG-related proteins are related to a globular domain from the heat shock protein hsp70 family. ABF2 interacts with DNA both nonspecifically and in a specific manner within regulatory regions, suggesting a mechanism whereby it may aid in compacting the mitochondrial genome without interfering with expression. Images PMID:1881919

  12. Microtubule Depolymerization as a Driver for Chromosome Motion

    NASA Astrophysics Data System (ADS)

    McIntosh, Richard

    2014-03-01

    Microtubules (MTs) are rigid polymers of the protein, tubulin, which function as intracellular struts. They are also tracks along which motor enzymes can run, carrying cargo to specific cellular locations. Most MTs are dynamic; they assemble and disassemble rapidly, particularly during cell division when the cell forms the ``mitotic spindle,'' a machine that organizes the duplicated chromosomes into a planar disk, then pulls the duplicate copies apart, moving them to opposite ends of the cell. This process is necessary for the daughter cells to have a full complement of DNA. The mitotic spindle is a labile framework that exerts several kinds of forces on the chromosomes to move them in well organized ways. It contains many motor enzymes that contribute to spindle formation, but genetic evidence shows that the motors that attach to chromosomes and might contribute to chromosome motion are dispensable for normal mitosis. Apparently MT dynamics can also serve as a motor and is an important source of force for chromosome motion. We have studied this process and find that MTs can be coupled to a load by specific spindle proteins so that MT depolymerization can exert substantial force. With the yeast protein, Dam1, a single MT can generate 30 pN, about 5-fold more than is generated by a motor enzyme like kinesin or myosin. The resulting motions are processive, so a depolymerizing MT can carry its load for many micrometers. However, Dam1 is found only in fungi. We have therefore sought other proteins that can serve as analogous couplers. Several MT-dependent motor enzymes can do the job in ways that do not require ATP, their normal source of energy. Some non-motor MT-associated proteins will also work, e.g., the kinetochore proteins NDC80 and CENP-F. Data will be presented that show the strengths and weaknesses of each coupler, allowing some generalization about how the mitotic machinery works. Supported by NIH GM033787.

  13. Contrasting behavior of heterochromatic and euchromatic chromosome portions and pericentric genome separation in pre-bouquet spermatocytes of hybrid mice.

    PubMed

    Scherthan, Harry; Schöfisch, Karina; Dell, Thomas; Illner, Doris

    2014-12-01

    The spatial distribution of parental genomes has attracted much interest because intranuclear chromosome distribution can modulate the transcriptome of cells and influence the efficacy of meiotic homologue pairing. Pairing of parental chromosomes is imperative to sexual reproduction as it translates into homologue segregation and genome haploidization to counteract the genome doubling at fertilization. Differential FISH tagging of parental pericentromeric genome portions and specific painting of euchromatic chromosome arms in Mus musculus (MMU) × Mus spretus (MSP) hybrid spermatogenesis disclosed a phase of homotypic non-homologous pericentromere clustering that led to parental pericentric genome separation from the pre-leptoteneup to zygotene stages. Preferential clustering of MMU pericentromeres correlated with particular enrichment of epigenetic marks (H3K9me3), HP1-γ and structural maintenance of chromosomes SMC6 complex proteins at the MMU major satellite DNA repeats. In contrast to the separation of heterochromatic pericentric genome portions, the euchromatic arms of homeologous chromosomes showed considerable presynaptic pairing already during leptotene stage of all mice investigated. Pericentric genome separation was eventually disbanded by telomere clustering that concentrated both parental pericentric genome portions in a limited nuclear sector of the bouquet nucleus. Our data disclose the differential behavior of pericentromeric heterochromatin and the euchromatic portions of the parental genomes during homologue search. Homotypic pericentromere clustering early in prophase I may contribute to the exclusion of large repetitive DNA domains from homology search, while the telomere bouquet congregates and registers spatially separated portions of the genome to fuel synapsis initiation and high levels of homologue pairing, thus contributing to the fidelity of meiosis and reproduction.

  14. Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae).

    PubMed

    Diniz, Débora; Moreira-Filho, Orlando; Bertollo, Luiz Antonio Carlos

    2008-05-01

    Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.

  15. Genetics of the connective tissue proteins: Assignment of the gene for human type I procollagen to chromosome 17 by analysis of cell hybrids and microcell hybrids*

    PubMed Central

    Raj, Cholappadi V. Sundar; Church, Robert L.; Klobutcher, Lawrence A.; Ruddle, Frank H.

    1977-01-01

    Somatic cell hybrids between mouse and human cell lines have been used to identify the specific chromosome that governs the synthesis of type I procollagen. Fourteen hybrid clones and subclones were derived independently from crosses between mouse parents [LM (thymidine kinase-negative) or A9 (hypoxanthine phosphoribosyltransferase-negative)] and human cells (human diploid lung fibroblasts WI-38 or diploid skin fibroblasts GM5, GM17, and GM9). The cultures were labeled with [3H]proline in modified Eagle's medium without serum. Radioactive procollagens were purified from the medium by the method of Church et al. [(1974) J. Mol. Biol. 86, 785-799]. DEAE-cellulose chromatography was used to separate collagen and type I and type III procollagen. Human type I procollagen was assayed by double immunodiffusion analysis with type I procollagen antibodies prepared by immunizing rabbits with purified human type I procollagen. These analyses combined with karyology and isozyme analyses of each hybrid line have produced evidence for the assignment of the gene for human type I procollagen to chromosome 17. A human microcell-mouse hybrid cell line containing only human chromosome 17 was positive for human type I procollagen, lending further support to the assignment of the human type I procollagen gene to chromosome 17. Finally, by using a hybrid line containing only the long arm of human chromosome 17 translocated onto a mouse chromosome, the type I procollagen gene can be assigned more specifically to the long arm of chromosome 17. Images PMID:412188

  16. Mapping of the locus for autosomal dominant amelogenesis imperfecta (AIH2) to a 4-Mb YAC contig on chromosome 4q11-q21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaerrman, C.; Holmgren, G.; Forsman, K.

    1997-01-15

    Amelogenesis imperfecta (Al) is a clinically and genetically heterogeneous group of inherited enamel defects. We recently mapped a locus for autosomal dominant local hypoplastic amelogenesis imperfecta (AIH2) to the long arm of chromosome 4. The disease gene was localized to a 17.6-cM region between the markers D4S392 and D4S395. The albumin gene (ALB), located in the same interval, was a candidate gene for autosomal dominant AI (ADAI) since albumin has a potential role in enamel maturation. Here we describe refined mapping of the AIH2 locus and the construction of marker maps by radiation hybrid mapping and yeast artificial chromosome (YAC)-basedmore » sequence tagged site-content mapping. A radiation hybrid map consisting of 11 microsatellite markers in the 5-cM interval between D4S409 and D4S1558 was constructed. Recombinant haplotypes in six Swedish ADAI families suggest that the disease gene is located in the interval between D4S2421 and ALB. ALB is therefore not likely to be the disease-causing gene. Affected members in all six families share the same allele haplotypes, indicating a common ancestral mutation in all families. The AIH2 critical region is less than 4 cM and spans a physical distance of approximately 4 Mb as judged from radiation hybrid maps. A YAC contig over the AIH2 critical region including several potential candidate genes was constructed. 35 refs., 4 figs., 1 tab.« less

  17. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  18. Evidence for the evolutionary origin of human chromosome 21 from comparative gene mapping in the cow and mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Threadgill, D.S.; Womack, J.E.; Kraus, J.P.

    1991-01-01

    To determine the extent of conservation between bovine syntenic group U10, human chromosome 21 (HSA 21), and mouse chromosome 16(MMU 16), 11 genes were physically mapped by segregation analysis in a bovine-hamster hybrid somatic cell panel. The genes chosen for study span MMU 16 and represent virtually the entire q arm of HSA 21. Because the somatostatin gene (SST), an HSA 3/MMU 16 locus, was previously shown to be in U10, the transferrin gene (TF), an HSA 3/MMU 9 marker, was also mapped to determine whether U10 contains any HSA 3 genes not represented on MMU 16. With the exceptionmore » of the protamine gene PRM1 (HSA 16/MMU 16), all of the genes studies were syntenic on bovine U10. Thus, all homologous loci from HSA 21 that have been studied in the cow are on a single chromosome. The bovine homolog of HSA 21 also carries several HSA 3 genes, two of which have homologous loci on MMU 16. The syntenic association of genes from the q arm of HSA 3 with HSAS 21 genes in two mammalian species, the mouse and the cow, indicates that HSA 21 may have evolved from a larger ancestral mammalian chromosome that contained genes now residing on HSA 3. Additionally, the syntenic association of TF with SST in the cow permits the prediction that the rhodopsin gene (RHO) is proximal to TF on HSA 3q.« less

  19. BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer.

    PubMed

    Rodriguez-Nieto, Salvador; Sanchez-Cespedes, Montse

    2009-04-01

    Losses of heterozygosity (LOH) of the short arm of chromosome 19 are frequent in lung cancer, suggesting that one or more tumor suppressor genes are present in this region. The LKB1 gene, also called STK11, is somatically inactivated through point mutations and large deletions in lung tumors, demonstrating that LKB1 is a target of the LOH of this chromosomal arm. Data from several independent groups have provided information about the profiles of lung tumors with LKB1 inactivation and it is generally agreed that this alteration strongly predominates in non-small cell lung cancer, in particular adenocarcinomas, in smokers. The LKB1 protein has serine-threonine kinase activity and is involved in the regulation of the cell energetic checkpoint through the phosphorylation and activation of adenosine monophosphate-dependent kinase (AMPK). LKB1 is also involved in other processes such as cell polarization, probably through substrates other than AMPK. Interestingly, another gene on chromosome 19p, BRG1, encoding a component of the SWI/SNF chromatin-remodeling complex, has emerged as a tumor suppressor gene that is altered in lung tumors. Similar to LKB1, BRG1 is somatically inactivated by point mutations or large deletions in lung tumors featuring LOH of chromosome 19p. These observations suggest an important role for BRG1 in lung cancer and highlight the need to further our understanding of the function of Brahma/SWI2-related gene 1 (BRG1) in cancer. Finally, simultaneous mutations at LKB1 and BRG1 are common in lung cancer cells, which exemplifies how a single event, LOH of chromosome 19p in this instance, targets two different tumor suppressors.

  20. Multiplex engineering of industrial yeast genomes using CRISPRm.

    PubMed

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  1. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds.

    PubMed

    Dudchenko, Olga; Batra, Sanjit S; Omer, Arina D; Nyquist, Sarah K; Hoeger, Marie; Durand, Neva C; Shamim, Muhammad S; Machol, Ido; Lander, Eric S; Aiden, Aviva Presser; Aiden, Erez Lieberman

    2017-04-07

    The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective way. Here we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67× coverage). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Ae aegypti and Culex quinquefasciatus , each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that almost all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, and accurate, and can be applied to many species. Copyright © 2017, American Association for the Advancement of Science.

  2. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Lewinska, Anna; Miedziak, Beata; Kulak, Klaudia; Molon, Mateusz; Wnuk, Maciej

    2014-06-01

    The nucleolus is speculated to be a regulator of cellular senescence in numerous biological systems (Guarente, Genes Dev 11(19):2449-2455, 1997; Johnson et al., Curr Opin Cell Biol 10(3):332-338, 1998). In the budding yeast Saccharomyces cerevisiae, alterations in nucleolar architecture, the redistribution of nucleolar protein and the accumulation of extrachromosomal ribosomal DNA circles (ERCs) during replicative aging have been reported. However, little is known regarding rDNA stability and changes in nucleolar activity during chronological aging (CA), which is another yeast aging model used. In the present study, the impact of aberrant cell cycle checkpoint control (knock-out of BUB1, BUB2, MAD1 and TEL1 genes in haploid and diploid hemizygous states) on CA-mediated changes in the nucleolus was studied. Nucleolus fragmentation, changes in the nucleolus size and the nucleolus/nucleus ratio, ERC accumulation, expression pattern changes and the relocation of protein involved in transcriptional silencing during CA were revealed. All strains examined were affected by oxidative stress, aneuploidy (numerical rather than structural aberrations) and DNA damage. However, the bub1 cells were the most prone to aneuploidy events, which may contribute to observed decrease in chronological lifespan. We postulate that chronological aging may be affected by redox imbalance-mediated chromosome XII instability leading to both rDNA instability and whole chromosome aneuploidy. CA-mediated nucleolus fragmentation may be a consequence of nucleolus enlargement and/or Nop2p upregulation. Moreover, the rDNA content of chronologically aging cells may be a factor determining the subsequent replicative lifespan. Taken together, we demonstrated that the nucleolus state is also affected during CA in yeast.

  3. 46, XX true hermaphroditism associated with a terminal deletion of the short arm of the X chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaux, S.; Vilain, E.; McElreavey, K.

    1994-09-01

    Testes are determined by the activity of the SRY gene product encoded by the Y chromosome. Mutations in SRY can lead to XY sex reversal (XY females) and the presence of the SRY gene in some XX individuals can lead either to complete (XX males) or incomplete (XX true hermaphrodites) sex reversal. Approximately 10% of XX true hermaphrodites contain a portion of the Y chromosome, including SRY, in their genome. The etiology of the remaining cases is unestablished but may be caused by mutations in other as yet unidentied sex determining genes downstream of SRY. Here we describe an SRY-negativemore » true hermaphrodite with a 46,X,del(X)(p21.1-pter). The patient also presented with severe mental retardation, abnormal skin pigmentation and below average height. Histological examination of the gonad revealed bilateral ovotestis. We postulate that the Xp deletion has unmasked a recessive allele on the apparently normal X chromosome generating the intersex phenotype. This observation together with recent findings of certain XY females carrying duplications of Xp21.3 suggests that there may be a loci on Xp which acts as a switch in the testis/ovarian determination pathways.« less

  4. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Nito, Naoko; Murata, Kazumasa; Yamamoto, Toshio; Ebitani, Takeshi; Ookawa, Taiichiro; Hirasawa, Tadashi

    2011-01-01

    DNA marker-assisted selection appears to be a promising strategy for improving rates of leaf photosynthesis in rice. The rate of leaf photosynthesis was significantly higher in a high-yielding indica variety, Habataki, than in the most popular Japanese variety, Koshihikari, at the full heading stage as a result of the higher level of leaf nitrogen at the same rate of application of nitrogen and the higher stomatal conductance even when the respective levels of leaf nitrogen were the same. The higher leaf nitrogen content of Habataki was caused by the greater accumulation of nitrogen by plants. The higher stomatal conductance of Habataki was caused by the higher hydraulic conductance. Using progeny populations and selected lines derived from a cross between Koshihikari and Habataki, it was possible to identify the genomic regions responsible for the rate of photosynthesis within a 2.1 Mb region between RM17459 and RM17552 and within a 1.2 Mb region between RM6999 and RM22529 on the long arm of chromosome 4 and on the short arm of chromosome 8, respectively. The designated region on chromosome 4 of Habataki was responsible for both the increase in the nitrogen content of leaves and hydraulic conductance in the plant by increasing the root surface area. The designated region on chromosome 8 of Habataki was responsible for the increase in hydraulic conductance by increasing the root hydraulic conductivity. The results suggest that it may be possible to improve photosynthesis in rice leaves by marker-assisted selection that focuses on these regions of chromosomes 4 and 8. PMID:21296764

  5. Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison.

    PubMed

    Romanenko, Svetlana A; Volobouev, Vitaly T; Perelman, Polina L; Lebedev, Vladimir S; Serdukova, Natalya A; Trifonov, Vladimir A; Biltueva, Larisa S; Nie, Wenhui; O'Brien, Patricia C M; Bulatova, Nina Sh; Ferguson-Smith, Malcolm A; Yang, Fengtang; Graphodatsky, Alexander S

    2007-01-01

    The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.

  6. Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeast Hansenula polymorpha.

    PubMed

    Tikhomirova, L P; Ikonomova, R N; Kuznetsova, E N

    1986-01-01

    For the transformation of the yeast Hansenula polymorpha we have constructed a set of hybrid plasmids carrying the LEU2 gene of Saccharomyces cerevisiae as a selective marker and fragments of mitochondrial DNA of Candida utilis and H. polymorpha or chromosomal DNA fragments of H. polymorpha as replicator sequences. The replication properties of chimeric plasmids in the yeast H. polymorpha were investigated. We showed that for plasmids propagated autonomously in this yeast the plasmid monomers could be detected in the transformants only during the immediate time after the transformation event. Further growth under selective conditions led to the selection of polymeric forms of plasmid DNA as it was clearly shown for transformants carrying cosmid pL2 with mtDNA fragment of C. utilis. Such transformants carrying polymerized plasmids showed a remarkably increased stability of the transformed phenotype. Cosmid pL2 was able to shuttle between Escherichia coli, S. cerevisiae and H. polymorpha, whereas plasmids with DNA fragments from H. polymorpha did not transform S. cerevisiae effectively.

  7. A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast.

    PubMed

    Specht, Sandra; Liedgens, Linda; Duarte, Margarida; Stiegler, Alexandra; Wirth, Ulrike; Eberhardt, Maike; Tomás, Ana; Hell, Kai; Deponte, Marcel

    2018-05-01

    Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErv C17S . Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The YeastGenome app: the Saccharomyces Genome Database at your fingertips.

    PubMed

    Wong, Edith D; Karra, Kalpana; Hitz, Benjamin C; Hong, Eurie L; Cherry, J Michael

    2013-01-01

    The Saccharomyces Genome Database (SGD) is a scientific database that provides researchers with high-quality curated data about the genes and gene products of Saccharomyces cerevisiae. To provide instant and easy access to this information on mobile devices, we have developed YeastGenome, a native application for the Apple iPhone and iPad. YeastGenome can be used to quickly find basic information about S. cerevisiae genes and chromosomal features regardless of internet connectivity. With or without network access, you can view basic information and Gene Ontology annotations about a gene of interest by searching gene names and gene descriptions or by browsing the database within the app to find the gene of interest. With internet access, the app provides more detailed information about the gene, including mutant phenotypes, references and protein and genetic interactions, as well as provides hyperlinks to retrieve detailed information by showing SGD pages and views of the genome browser. SGD provides online help describing basic ways to navigate the mobile version of SGD, highlights key features and answers frequently asked questions related to the app. The app is available from iTunes (http://itunes.com/apps/yeastgenome). The YeastGenome app is provided freely as a service to our community, as part of SGD's mission to provide free and open access to all its data and annotations.

  9. ZZ/ZW sex chromosome system in the endangered fish Lignobrycon myersi Miranda-Ribeiro, 1956 (Teleostei, Characiformes, Triportheidae).

    PubMed

    Rodrigues, Alexandre Dos Santos; Medrado, Aline Souza; Diniz, Débora; Oliveira, Claudio; Affonso, Paulo Roberto Antunes de Mello

    2016-01-01

    Lignobrycon myersi is an endemic fish species from a few coastal rivers in northeastern Brazil. Based on molecular evidence, Lignobrycon myersi and genera Triportheus Cope, 1872, Agoniates Müller & Troschel, 1845, Clupeacharax Pearson, 1924 and Engraulisoma Castro, 1981 were placed in the family Triportheidae. In the present work, we report the first cytogenetic data for Lignobrycon myersi to test the hypothesis that Lignobrycon and Triportheus are closely related. Studied specimens presented 2n=52 with 28 metacentric (m), 18 submetacentric (sm) and six subtelocentric (st) chromosomes for males and 27 m, 19 sm and 6 st for females, characterizing a ZZ/ZW sex chromosome system. The Z chromosome corresponds to the largest chromosome in karyotype while the W is about 50% smaller than the Z and largely heterochromatic. Terminal nucleolus organizer regions, GC-rich sites and 18S rDNA signals were detected on pair 14. However, additional 18S rDNA sites were observed in the W chromosome. The 5S rDNA was mainly detected on long arms of pair 7. The apparent synapomorphic chromosomal traits of Triportheus and Lignobrycon myersi reinforce their close phylogenetic relationship, suggesting that the ZZ/ZW chromosome system in both genera has arisen before cladogenic events.

  10. LRRC6 Mutation Causes Primary Ciliary Dyskinesia with Dynein Arm Defects

    PubMed Central

    Horani, Amjad; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Oren, Yifat S.; Kerem, Batsheva; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Brody, Steven L.; Elpeleg, Orly; Kerem, Eitan

    2013-01-01

    Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD) remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6) that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His). LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects. PMID:23527195

  11. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  12. BuGZ is required for Bub3 stability, Bub1 kinetochore function, and chromosome alignment

    PubMed Central

    Toledo, Chad M.; Herman, Jacob A.; Olsen, Jonathan B.; Ding, Yu; Corrin, Philip; Girard, Emily J.; Olson, James M.; Emili, Andrew; DeLuca, Jennifer G.; Paddison, Patrick J.

    2014-01-01

    Summary During mitosis, the spindle assembly checkpoint (SAC) monitors the attachment of kinetochores (KTs) to the plus ends of spindle microtubules (MTs) and prevents anaphase onset until chromosomes are aligned and KTs are under proper tension. Here, we identify a SAC component, BuGZ/ZNF207, from an RNAi viability screen in human Glioblastoma multiforme (GBM) brain tumor stem cells. BuGZ binds to and stabilizes Bub3 during interphase and mitosis through a highly conserved GLE2p-binding sequence (GLEBS) domain. Inhibition of BuGZ results in loss of both Bub3 and its binding partner Bub1 from KTs, reduction of Bub1-dependent phosphorylation of centromeric histone H2A, attenuation of KT-based Aurora kinase B activity, and lethal chromosome congression defects in cancer cells. Phylogenetic analysis indicates that BuGZ orthologs are highly conserved among eukaryotes, but are conspicuously absent from budding and fission yeasts. These findings suggest BuGZ has evolved to facilitate Bub3 activity and chromosome congression in higher eukaryotes. PMID:24462187

  13. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  14. Long-read sequencing data analysis for yeasts.

    PubMed

    Yue, Jia-Xing; Liti, Gianni

    2018-06-01

    Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.

  15. The chromosomal complement of the artedidraconid fish Histiodraco velifer (Perciformes: Notothenioidei) from Terra Nova Bay, Ross Sea.

    PubMed

    Caputo, V; Splendiani, A; Nisi Cerioni, P; Olmo, E

    2003-01-01

    The karyotype of Histiodraco velifer from the Antartic Ocean was analyzed using various banding methods and in situ hybridization with a telomeric probe. A male and a female had a diploid set of 46 chromosomes (6 submetacentric + 40 acrocentric, FN = 52); the nucleolar organizer was CMA3-positive and was located on the short arm of a medium-sized submetacentric pair. All chromosomes stained uniformly with DAPI, whereas C-banding revealed heterochromatic blocks that were mostly located centromerically and telomerically and were resistant to ALUI digestion. The substantial identity of the karyotype of H. velifer with that of the other artedidraconids investigated so far suggests that chromosome changes must have played a less than significant role in the speciation among the lineages of this fish family endemic to Antarctica. Copyright 2003 S. Karger AG, Basel

  16. "European" race-specific metacentrics in East Siberian common shrews (Sorex araneus): a description of two new chromosomal races, Irkutsk and Zima.

    PubMed

    Pavlova, Svetlana V; Borisov, Sergei A; Timoshenko, Alexander F; Sheftel, Boris I

    2017-01-01

    Karyotype studies of common shrews in the vicinity of Lake Baikal (Irkutsk Region, Eastern Siberia) resulted in the description of two new chromosomal races of Sorex araneus Linnaeus, 1758 (Lypotyphla, Mammalia), additional to 5 races formerly found in Siberia. In the karyotypes of 12 specimens from 3 locations, the polymorphism of metacentric and acrocentric chromosomes of the Robertsonian type was recorded and two distinct groups of karyotypes interpreted as the chromosomal races were revealed. They are geographically distant and described under the racial names Irkutsk (Ir) and Zima (Zi). Karyotypes of both races were characterized by species-specific (the same for all 74 races known so far) metacentric autosomes af, bc, tu and jl , and the typical sex chromosome system - XX/XY 1 Y 2 . The race-specific arm chromosome combinations include three metacentrics and four acrocentrics in the Irkutsk race ( gk, hi, nq, m, o, p, r ) and four metacentrics and two acrocentrics in the Zima race ( gm, hi, ko, nq, p, r ). Within the races, individuals with polymorphic chromosomes were detected ( g/m, k/o, n/q, p/r ). The presence of the specific metacentric gk allowed us to include the Irkutsk race into the Siberian Karyotypic Group (SKG), distributed in surrounding regions. The Zima race karyotype contained two metacentrics, gm and ko , which have been never found in the Siberian part of the species range, but appear as the common feature of chromosomal races belonging to the West European Karyotypic Group (WEKG). Moreover, the metacentrics of that karyotype are almost identical to the Åkarp race (except the heterozygous pair p/r ) locally found in the southern Sweden. One of two Siberian races described here for the first time, the Zima race, occurs in an area considerably distant from Europe and shares the common metacentrics ( gm, hi, ko ) with races included in WEKG. This fact may support a hypothesis of independent formation of identical arm chromosome combinations

  17. Cytogenetic data on six leafcutter ants of the genus Acromyrmex Mayr, 1865 (Hymenoptera, Formicidae, Myrmicinae): insights into chromosome evolution and taxonomic implications

    PubMed Central

    Barros, Luísa Antônia Campos; de Aguiar, Hilton Jeferson Alves Cardoso; Mariano, Cléa dos Santos Ferreira; Andrade-Souza, Vanderly; Costa, Marco Antonio; Delabie, Jacques Hubert Charles; Pompolo, Silvia das Graças

    2016-01-01

    Abstract Cytogenetic data for the genus Acromyrmex Mayr, 1865 are available, to date, for a few species from Brazil and Uruguay, which have uniform chromosome numbers (2n = 38). The recent cytogenetic data of Acromyrmex striatus (Roger, 1863), including its banding patterns, showed a distinct karyotype (2n = 22), similar to earlier studied Atta Fabricius, 1804 species. Karyological data are still scarce for the leafcutter ants and many gaps are still present for a proper understanding of this group. Therefore, this study aimed at increasing cytogenetic knowledge of the genus through the characterization of other six species: Acromyrmex balzani (Emery, 1890), Acromyrmex coronatus Fabricius, 1804, Acromyrmex disciger (Mayr, 1887), Acromyrmex echinatior (Forel, 1899), Acromyrmex niger (Smith, 1858) and Acromyrmex rugosus (Smith, 1858), all of which were collected in Minas Gerais – Brazil, except for Acromyrmex echinatior which was collected in Barro Colorado – Panama. The number and morphology of the chromosomes were studied and the following banding techniques were applied: C-banding, fluorochromes CMA3 and DAPI, as well as the detection of 45S rDNA using FISH technique. All the six species had the same chromosome number observed for already studied species, i.e. 2n = 38. Acromyrmex balzani had a different karyotype compared with other species mainly due to the first metacentric pair. The heterochromatin distribution also showed interspecific variation. Nevertheless, all the studied species had a pair of bands in the short arm of the first subtelocentric pair. The fluorochrome CMA3 visualized bands in the short arm of the first subtelocentric pair for all the six species, while Acromyrmex rugosus and Acromyrmex niger also demonstrated in the other chromosomes. The AT-rich regions with differential staining using DAPI were not observed. 45S ribosomal genes were identified by FISH in the short arm of the first subtelocentric pair in Acromyrmex coronatus, Acromyrmex

  18. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing.

    PubMed

    Kurtoglu, Kuaybe Yucebilgili; Kantar, Melda; Lucas, Stuart J; Budak, Hikmet

    2013-01-01

    MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.

  19. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    PubMed Central

    Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis. PMID:24455347

  20. Prenatal diagnosis of 4p and 4q subtelomeric microdeletion in de novo ring chromosome 4.

    PubMed

    Akbas, Halit; Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  1. Integrated genomics for pinpointing survival loci within arm-level somatic copy number alterations

    PubMed Central

    Roy, David M.; Walsh, Logan A.; Desrichard, Alexis; Huse, Jason T.; Wu, Wei; Gao, JianJiong; Bose, Promita; Lee, William; Chan, Timothy A.

    2016-01-01

    SUMMARY The identification of driver loci underlying arm-level somatic copy number alterations (SCNAs) in cancer has remained challenging and incomplete. Here we assess the relative impact and present a detailed landscape of arm-level SCNAs in 10985 patient samples across 33 cancer types from The Cancer Genome Atlas (TCGA). Further, using chromosome 9p loss in lower grade glioma (LGG) as a model, we employ a unique multi-tiered genomic dissection strategy using 540 patients from 3 independent LGG datasets to identify genetic loci that govern tumor aggressiveness and poor survival. This comprehensive approach uncovered several 9p loss-specific prognostic markers, validated existing ones, and re-defined the impact of CDKN2A loss in LGG. PMID:27165745

  2. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion.

    PubMed Central

    Shashi, V.; Golden, W. L.; Allinson, P. S.; Blanton, S. H.; von Kap-Herr, C.; Kelly, T. E.

    1996-01-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8651300

  3. Yeast Reporter Assay to Identify Cellular Components of Ricin Toxin A Chain Trafficking.

    PubMed

    Becker, Björn; Schnöder, Tina; Schmitt, Manfred J

    2016-12-06

    RTA, the catalytic A-subunit of the ribosome inactivating A/B toxin ricin, inhibits eukaryotic protein biosynthesis by depurination of 28S rRNA. Although cell surface binding of ricin holotoxin is mainly mediated through its B-subunit (RTB), sole application of RTA is also toxic, albeit to a significantly lower extent, suggesting alternative pathways for toxin uptake and transport. Since ricin toxin trafficking in mammalian cells is still not fully understood, we developed a GFP-based reporter assay in yeast that allows rapid identification of cellular components required for RTA uptake and subsequent transport through a target cell. We hereby show that Ypt6p, Sft2p and GARP-complex components play an important role in RTA transport, while neither the retromer complex nor COPIB vesicles are part of the transport machinery. Analyses of yeast knock-out mutants with chromosomal deletion in genes whose products regulate ADP-ribosylation factor GTPases (Arf-GTPases) and/or retrograde Golgi-to-ER (endoplasmic reticulum) transport identified Sso1p, Snc1p, Rer1p, Sec22p, Erv46p, Gea1p and Glo3p as novel components in RTA transport, suggesting the developed reporter assay as a powerful tool to dissect the multistep processes of host cell intoxication in yeast.

  4. Mutation analysis of the chromosome 14q24.3 dihydrolipoyl succinyltransferase (DLST) gene in patients with early-onset Alzheimer disease.

    PubMed

    Cruts, M; Backhovens, H; Van Gassen, G; Theuns, J; Wang, S Y; Wehnert, A; van Duijn, C M; Karlsson, T; Hofman, A; Adolfsson, R

    1995-10-13

    Linkage analysis studies have indicated that the chromosome band 14q24.3 harbours a major gene for familial early-onset Alzheimer's disease (AD). Recently we localized the chromosome 14 AD gene (AD3) in the 6.4 cM interval between the markers D14S289 and D14S61. We mapped the gene encoding dihydrolipoyl succinyltransferase (DLST), the E2k component of human alpha-ketoglutarate dehydrogenase complex (KGDHC), in the AD3 candidate region using yeast artificial chromosomes (YACs). The DLST gene is a candidate for the AD3 gene since deficiencies in KGDHC activity have been observed in brain tissue and fibroblasts of AD patients. The 15 exons and the promoter region of the DLST gene were analysed for mutations in chromosome 14 linked AD cases and in two series of unrelated early-onset AD cases (onset age < 55 years). Sequence variations in intronic sequences (introns 3, 5 and 10) or silent mutations in exonic sequences (exons 8 and 14) were identified. However, no AD related mutations were observed, suggesting that the DLST gene is not the chromosome 14 AD3 gene.

  5. The Karyotype of Microsternarchus aff. bilineatus: A First Case of Y Chromosome Degeneration in Gymnotiformes.

    PubMed

    Batista, Jéssica Almeida; Cardoso, Adauto Lima; Milhomem-Paixão, Susana Suely Rodrigues; Ready, Jonathan Stuart; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko

    2017-06-01

    Various species and lineages that until recently were identified as Microsternarchus bilineatus (Hypopomidae, Gymnotiformes) have a widespread distribution in the Amazon and Orinoco River basins and across the Guiana shield. Recent molecular studies show five distinct lineages for Microsternarchus from different localities. These results suggest that this previously monotypic genus actually consists of more than one species. Here, we describe the karyotype of M. aff. bilineatus from the Cururutuia River (Bragança, Pará, Brazil). The diploid number of 48 chromosomes (14 meta-submetacentric/34 subtelo-acrocentric) is found for males and females, with an XX/XY sex chromosome system. The nucleolar organizer region is found in the short arm of pair 9. Constitutive heterochromatin occurs in the pericentromeric region of all chromosomes, in the distal region of 3p, 5p, 7p, 8q, 9q, 16q, and Xq, in the interstitial region in 2p, 10q, 11q, and 12q and all along 4p, and in a large block of the Y chromosome. These results indicate extensive karyotype divergence between this population and samples from Igarapé Tarumã Grande (Negro River, Amazonas, Brazil) studied by other researchers. Moreover, despite the diversity of sex chromosome systems found in Gymnotiformes, the XX/XY sex chromosome system of M. aff. bilineatus is the first case of Y chromosome degeneration in this order. The present data are valuable to help understand karyotype evolution in Hypopomidae.

  6. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C.

    PubMed

    Smukowski Heil, Caiti; Burton, Joshua N; Liachko, Ivan; Friedrich, Anne; Hanson, Noah A; Morris, Cody L; Schacherer, Joseph; Shendure, Jay; Thomas, James H; Dunham, Maitreya J

    2018-01-01

    Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation

    PubMed Central

    Steenwyk, Jacob L.; Rokas, Antonis

    2018-01-01

    In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond. PMID:29520259

  8. Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places.

    PubMed

    van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J

    1998-06-01

    DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.

  9. Mapping yeast origins of replication via single-stranded DNA detection.

    PubMed

    Feng, Wenyi; Raghuraman, M K; Brewer, Bonita J

    2007-02-01

    Studies in th Saccharomyces cerevisiae have provided a framework for understanding how eukaryotic cells replicate their chromosomal DNA to ensure faithful transmission of genetic information to their daughter cells. In particular, S. cerevisiae is the first eukaryote to have its origins of replication mapped on a genomic scale, by three independent groups using three different microarray-based approaches. Here we describe a new technique of origin mapping via detection of single-stranded DNA in yeast. This method not only identified the majority of previously discovered origins, but also detected new ones. We have also shown that this technique can identify origins in Schizosaccharomyces pombe, illustrating the utility of this method for origin mapping in other eukaryotes.

  10. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  11. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  12. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  13. Linkage of Usher syndrome type I gene (USH1B) to the long arm of chromosome 11.

    PubMed

    Kimberling, W J; Möller, C G; Davenport, S; Priluck, I A; Beighton, P H; Greenberg, J; Reardon, W; Weston, M D; Kenyon, J B; Grunkemeyer, J A

    1992-12-01

    Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization establishes the existence of a new and independent locus for Usher syndrome.

  14. Chromosome-specific physical localisation of expressed sequence tag loci in Corchorus olitorius L.

    PubMed

    Joshi, A; Das, S K; Samanta, P; Paria, P; Sen, S K; Basu, A

    2014-11-01

    Jute (Corchorus spp.), as a natural fibre-producing species, ranks next only to cotton. Inadequate understanding of its genetic architecture is a major lacuna for genetic improvement of this crop in terms of yield and quality. Establishment of a physical map provides a genomic tool that helps in positional cloning of valuable genes. In this report, an attempt was initiated to study association and localisation of single copy expressed sequence tag (EST) loci in the genome of Corchorus olitorius. The chromosome-specific association of EST was determined based on the appearance of an extra signal for a single copy cDNA probe in mitotic interphase nuclei of specific trisomic(s) for fluorescence in situ hybridisation, and validated using a cDNA fragment of the 26S rRNA gene (600 bp) as molecular probe. The probe exhibited three signals in meiotic interphase nuclei of trisomic 5, instead of two as observed in diploids and other trisomics, indicating its association with chromosome 5. Subsequent hybridisation of the same probe on the pachytene chromosomes of diploids confirmed that 26S rRNA occupies the terminal end of the short arm of chromosome 5 in C. olitorius. Subsequently, chromosome-specific association of 63 single copy EST and their physical localisation were determined on chromosomes 2, 4, 5 and 7. The study describes chromosome-specific physical localisation of genes in jute. The approach used here could be a step towards construction of genome-wide physical maps for any recalcitrant plant species like jute. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres.

    PubMed Central

    Carlson, M; Celenza, J L; Eng, F J

    1985-01-01

    The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres. Images PMID:3018485

  16. Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera.

    PubMed

    Richards, Leigh R; Rambau, Ramugondo V; Lamb, Jennifer M; Taylor, Peter J; Yang, Fengtang; Schoeman, M Corrie; Goodman, Steven M

    2010-09-01

    The chiropteran fauna of Madagascar comprises eight of the 19 recognized families of bats, including the endemic Myzopodidae. While recent systematic studies of Malagasy bats have contributed to our understanding of the morphological and genetic diversity of the island's fauna, little is known about their cytosystematics. Here we investigate karyotypic relationships among four species, representing four families of Chiroptera endemic to the Malagasy region using cross-species chromosome painting with painting probes of Myotis myotis: Myzopodidae (Myzopoda aurita, 2n = 26), Molossidae (Mormopterus jugularis, 2n = 48), Miniopteridae (Miniopterus griveaudi, 2n = 46), and Vespertilionidae (Myotis goudoti, 2n = 44). This study represents the first time a member of the family Myzopodidae has been investigated using chromosome painting. Painting probes of M. myotis were used to delimit 29, 24, 23, and 22 homologous chromosomal segments in the genomes of M. aurita, M. jugularis, M. griveaudi, and M. goudoti, respectively. Comparison of GTG-banded homologous chromosomes/chromosomal segments among the four species revealed the genome of M. aurita has been structured through 14 fusions of chromosomes and chromosomal segments of M. myotis chromosomes leading to a karyotype consisting solely of bi-armed chromosomes. In addition, chromosome painting revealed a novel X-autosome translocation in M. aurita. Comparison of our results with published chromosome maps provided further evidence for karyotypic conservatism within the genera Mormopterus, Miniopterus, and Myotis. Mapping of chromosomal rearrangements onto a molecular consensus phylogeny revealed ancestral syntenies shared between Myzopoda and other bat species of the infraorders Pteropodiformes and Vespertilioniformes. Our study provides further evidence for the involvement of Robertsonian (Rb) translocations and fusions/fissions in chromosomal evolution within Chiroptera.

  17. The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound XY or ring X chromosomes.

    PubMed

    Mathog, D; Sedat, J W

    1989-02-01

    The three-dimensional organization of polytene chromosomes within nuclei containing rearranged X chromosomes was examined in male Drosophila melanogaster. Salivary glands of third instar larvae containing either an inverted X chromosome (YSX.YL, In(1)EN/O) or a ring X chromosome (R(1) 2/BSYy+) were fixed, embedded, and serially sectioned. The nuclei in contiguous groups of cells were modeled and analyzed. We find that for both genotypes the three-dimensional behavior at each euchromatic locus is independent of the orientation of the chromosome on which it resides, independent of the behavior of loci not closely linked to it, and not similar in neighboring cells. The preference for right-handed chromosome coiling noted in previous studies is shown to be independent of homologous pairing. However, a relation between the extent of chromosome curvature and the handedness of chromosome coiling is present only in homologously paired chromosomes. The attached-XY chromosome has two previously undescribed behaviors: a nearly invariant association of the euchromatic side of the proximal heterochromatin/euchromatin junction with the nucleolus and a frequent failure of this site to attach to the chromocenter. The relative chromosome arm positions are often similar in several neighboring cells. The size of these patches of cells, assuming that they represent clones, indicates that such arrangements are at best quasi-stable: they may be maintained over at least one, but less than four, cell divisions. The observed nuclear organization in salivary glands is inconsistent with the idea that position in the polytene nucleus plays a major role in the normal genetic regulation of euchromatic loci.

  18. Screening of transporters to improve xylodextrin utilization in the yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Chenlu; Acosta-Sampson, Ligia; Yu, Vivian Yaci; Cate, Jamie H D

    2017-01-01

    The economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of yeast on xylodextrins aerobically. However, the consumption rate of xylodextrin requires improvement for industrial applications, including consumption in anaerobic conditions. As a first step in this improvement, we report analysis of orthologues of the N. crassa transporters CDT-1 and CDT-2. Transporter ST16 from Trichoderma virens enables faster aerobic growth of S. cerevisiae on xylodextrins compared to CDT-2. ST16 is a xylodextrin-specific transporter, and the xylobiose transport activity of ST16 is not inhibited by cellobiose. Other transporters identified in the screen also enable growth on xylodextrins including xylotriose. Taken together, these results indicate that multiple transporters might prove useful to improve xylodextrin utilization in S. cerevisiae. Efforts to use directed evolution to improve ST16 from a chromosomally-integrated copy were not successful, due to background growth of yeast on other carbon sources present in the selection medium. Future experiments will require increasing the baseline growth rate of the yeast population on xylodextrins, to ensure that the selective pressure exerted on xylodextrin transport can lead to isolation of improved xylodextrin transporters.

  19. The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis.

    PubMed

    Hiraoka, Y; Dernburg, A F; Parmelee, S J; Rykowski, M C; Agard, D A; Sedat, J W

    1993-02-01

    We have determined the position within the nucleus of homologous sites of the histone gene cluster in Drosophila melanogaster using in situ hybridization and high-resolution, three-dimensional wide field fluorescence microscopy. A 4.8-kb biotinylated probe for the histone gene repeat, located approximately midway along the short arm of chromosome 2, was hybridized to whole-mount embryos in late syncytial and early cellular blastoderm stages. Our results show that the two homologous histone loci are distinct and separate through all stages of the cell cycle up to nuclear cycle 13. By dramatic contrast, the two homologous clusters were found to colocalize with high frequency during interphase of cycle 14. Concomitant with homolog pairing at cycle 14, both histone loci were also found to move from their position near the midline of the nucleus toward the apical side. This result suggests that coincident with the initiation of zygotic transcription, there is dramatic chromosome and nuclear reorganization between nuclear cycles 13 and 14.

  20. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    DOE R&D Accomplishments Database

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.