Science.gov

Sample records for yeast extract hydrolysate

  1. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  2. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  3. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  4. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  5. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  6. Membrane Extraction for Detoxification of Biomass Hydrolysates

    SciTech Connect

    Grzenia, D. L.; Schell, D. J.; Wickramasinghe, S. R.

    2012-05-01

    Membrane extraction was used for the removal of sulfuric acid, acetic acid, 5-hydroxymethyl furfural and furfural from corn stover hydrolyzed with dilute sulfuric acid. Microporous polypropylene hollow fiber membranes were used. The organic extractant consisted of 15% Alamine 336 in: octanol, a 50:50 mixture of oleyl alcohol:octanol or oleyl alcohol. Rapid removal of sulfuric acid, 5-hydroxymethyl and furfural was observed. The rate of acetic acid removal decreased as the pH of the hydrolysate increased. Regeneration of the organic extractant was achieved by back extraction into an aqueous phase containing NaOH and ethanol. A cleaning protocol consisting of flushing the hydrolysate compartment with NaOH and the organic phase compartment with pure organic phase enabled regeneration and reuse of the module. Ethanol yields from hydrolysates detoxified by membrane extraction using 15% Alamine 336 in oleyl alcohol were about 10% higher than those from hydrolysates detoxified using ammonium hydroxide treatment.

  7. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    PubMed

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. PMID:20801644

  8. Yeast hydrolysate reduces body fat of dietary obese rats.

    PubMed

    Kim, K M; Chang, U J; Kang, D H; Kim, J M; Choi, Y M; Suh, H J

    2004-11-01

    The purpose of this study was to assess the antiobesity effect of the yeast hydrolysate (DNF) on the body weight, body fat and plasma lipids levels of high-fat fed rats. The weight gain of the HF (high fat diet) (162.58 +/- 6.68 g) was significantly (p < 0.05) greater than that of DNF-1, DNF-2, (high fat diet with DNF of 0.5 and 1.0 g/kg body weight, respectively) and control groups (143.19 +/- 7.33 g, 139.20 +/- 8.36 g, 130.23 +/- 8.02 g, respectively). The wet weight of the epididymal fat and the perirenal fat pads of the DNF-1, DNF-2 and control groups were reduced significantly (p < 0.05). A significant (p < 0.05) increase of HDL-cholesterol level of the DNF-2 and control groups was observed. However, there was no significant difference between DNF-1 and DNF-2. It was also found that the triacylglycerol (TG) levels decreased significantly (p < 0.05) in the DNF-2 group from that of the HF, but there was no significant (p < 0.05) difference between DNF-1 and DNF-2.

  9. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast.

    PubMed

    Kumar, Sachin; Dheeran, Pratibha; Singh, Surendra P; Mishra, Indra M; Adhikari, Dilip K

    2015-01-01

    Fermentation of xylose-rich and glucose-rich bagasse hydrolysates, obtained from the two-stage acid hydrolysis was studied using the thermotolerant yeast Kluyveromyces sp. IIPE453. The yeast could grow on xylose-rich hydrolysate at 50 °C with the dry cell weight, cell mass yield and maximum specific growth rate of 5.35 g l(-1), 0.58 g g(-1) and 0.13 h(-1), respectively. The yeast was found to be very promising for ethanol as well as xylitol production from the sugars obtained from the lignocellulosic biomass. Batch fermentations of xylose-rich and glucose-rich hydrolysates yielded 0.61 g g(-1) xylitol and 0.43 g g(-1) ethanol in the broth, respectively based on the sugars present in the hydrolysate. Overall ethanol yield of 165 g (210 ml) and 183 g xylitol per kg of bagasse was obtained, when bagasse hydrolysate was used as a substrate. Utilization of both the glucose and xylose sugars makes the process most economical by producing both ethanol and xylitol based on biorefinery concept. On validating the experimental data of ethanol fermentation, the modified Luong kinetic model for product inhibition as well as inhibition due to inhibitory compounds present in hydrolysate, the model was found to be the best fit for ethanol formation from bagasse hydrolysate using Kluyveromyces sp. IIPE453.

  10. Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast-Exophiala oligosperma R1.

    PubMed

    Rustler, Sven; Stolz, Andreas

    2007-06-01

    Different nitriles were used as sole sources of nitrogen in a series of enrichments under acidic conditions to isolate acidotolerant nitriles hydrolysing microorganisms. From an enrichment in Na-citrate-phosphate buffer at pH 4 with glucose as carbon source and phenylacetonitrile as sole source of nitrogen, a black yeast (strain R1) was obtained which was identified by subsequent 18S rRNA gene sequencing as Exophiala oligosperma. The growth conditions of the organism were optimized for the production of cell material and the induction of the nitrile converting activity. Resting cell experiments demonstrated that phenylacetonitrile was converted via phenylacetic acid and 2-hydroxyphenylacetic acid. The organism could grow at pH 4 with phenylacetonitrile as sole source of carbon, nitrogen, and energy. The nitriles hydrolysing activity was also detected in cell-free extracts and indications for a nitrilase activity were found. The cell-free extracts converted, in addition to phenylacetonitrile, also different substituted phenylacetonitriles. Whole cells of E. oligosperma R1 converted phenylacetonitrile with almost the same reaction rates in the pH range from pH 1.5-pH 9. PMID:17361431

  11. Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum.

    PubMed

    Gao, Qiuqiang; Cui, Zhenyang; Zhang, Jian; Bao, Jie

    2014-01-01

    Corncob residues (CCR) are cellulose residues of corncob after xylan (hemicellulose) is extracted for production of xylitol. Here, an oleaginous yeast Trichosporon cutaneum ACCC 20271 was screened for lipid fermentation using CCR hydrolysate. The initial carbon-to-nitrogen molar ratio (C/N ratio) and the initial sugar concentration of the CCR hydrolysate were investigated in the lipid fermentation of T. cutaneum ACCC 20271. A C/N ratio gradient was generated by changing the corn steep liquor (CSL) addition and an optimal C/N ratio of 49.3 was obtained. The different initial sugar concentration was obtained by changing the cellulase amount and the lipid titer was enhanced by the increased sugar concentration. To our knowledge, this is the first report on using CCR as the feedstock for lipid fermentation. The lipid titer of 12.3g/L and dry cell weight (DCW) of 38.4 g/L were the highest values among the studies using lignocellulose for lipid production.

  12. Isolation of oleaginous yeast (Rhodosporidium toruloides) mutants tolerant of sugarcane bagasse hydrolysate.

    PubMed

    Kitahara, Yuki; Yin, Tie; Zhao, Xuebing; Wachi, Masaaki; Du, Wei; Liu, Dehua

    2014-01-01

    Rhodosporidium toruloides is a lipid-producing yeast, the growth of which is severely suppressed when hydrolysates of lignocellulosic biomass are used as carbon source. This is probably due to the toxic substances, such as organic acids, furans, and phenolic compounds produced during the preparation of the hydrolysates. In order to solve this problem, R. toruloides cultures were subjected to atmospheric room-temperature plasma mutagenesis, resulting in the isolation of mutants showing tolerance to sugarcane bagasse hydrolysate (SBH). Three mutant strains, M11, M13, and M18, were found to grow with producing lipids with SBH as carbon source. M11 in particular appeared to accumulate higher levels (up to 60% of dry cell weight) of intracellular lipids. Further, all three mutant strains showed tolerance of vanillin, furfural, and acetic acid, with different spectra, suggesting that different genetic determinants are involved in SBH tolerance.

  13. Ethanol production using a soy hydrolysate-based medium or a yeast autolysate-based medium

    DOEpatents

    Ingram, Lonnie O.

    2000-01-01

    This invention presents a method for the production of ethanol that utilizes a soy hydrolysate-based nutrient medium or a yeast autolysate-based medium nutrient medium in conjunction with ethanologenic bacteria and a fermentable sugar for the cost-effective production of ethanol from lignocellulosic biomass. The invention offers several advantages over presently available media for use in ethanol production, including consistent quality, lack of toxins and wide availability.

  14. Production of bioactive protein hydrolysate using the yeasts isolated from soft chhurpi.

    PubMed

    Rai, Amit Kumar; Kumari, Reena; Sanjukta, Samurailatpam; Sahoo, Dinabandhu

    2016-11-01

    The aim of this work was to study the production of bioactive protein hydrolysates using yeasts isolated from chhurpi. For this, a total of 125 proteolytic yeasts were isolated and molecular identification was carried out by analysis of the restriction digestion pattern generated by digesting the PCR amplified internal transcribed spacer region and 5.8S rRNA gene (ITS1-5.8S-ITS2) using three endonucleases (HaeIII, CfoI and HinfI). The results obtained showed that different proteolytic yeasts were dominant in marketed products (Kluyveromyces marxianus and Issatchenkia orientalis) and samples from production centers (Trichosporon asahii, Saccharomyces cerevisiae and Exophiala dermatitidis). Proteolytic strains in individual groups showed their ability to hydrolyze milk protein and enhance antioxidant property. Among the isolates, fermentation using K. marxianus YMP45 and S. cerevisiae YAM14 resulted in higher antioxidant activity. This is the first report on application of yeast isolated from fermented food of North-East India for the production of bioactive protein hydrolysate. PMID:27494105

  15. Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology.

    PubMed

    Bandhu, Sheetal; Dasgupta, Diptarka; Akhter, Jawed; Kanaujia, Pankaj; Suman, Sunil K; Agrawal, Deepti; Kaul, Savita; Adhikari, Dilip K; Ghosh, Debashish

    2014-01-01

    Single cell oil production from sugarcane bagasse hydrolysate by oleaginous yeast Rhodotorula sp. IIP-33 was analyzed using a two stage statistical design approach based on Response Surface Methodology. Variables like pentose sugar, (NH4)2SO4, KH2PO4, yeast extract, pH and temperature were found to influence lipid production significantly. Under optimized condition in a shake flask, yield of lipid was 2.1199 g with fat coefficient of 7.09 which also resembled ~99% similarity to model predicted lipid production. In this paper we are presenting optimized results for production of non polar lipid which could be later deoxygenated into hydrocarbon. A qualitative analyses of selective lipid samples yielded a varying distribution of free acid ranging from C6 to C18, majoring C16:0, C18:0 and C18:1 under different fermentation conditions.

  16. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae,...

  17. Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed. PMID:25649983

  18. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  19. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  20. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast,...

  1. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  2. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  3. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  4. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  5. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process.

    PubMed

    Huang, Chiung-Fang; Jiang, Yi-Feng; Guo, Gia-Luen; Hwang, Wen-Song

    2011-02-01

    The present study verified an applicable technology of xylitol bioconversion as part of the integration of co-product generation within second-generation bioethanol processes. A newly isolated yeast strain, Candida tropicalis JH030, was shown to have a capacity for xylitol production from hemicellulosic hydrolysate without detoxification. The yeast gives a promising xylitol yield of 0.71 g(p) g(s)(-1) from non-detoxified rice straw hydrolysate that had been prepared by the dilute acid pretreatment under severe conditions. The yeast's capacity was also found to be practicable with various other raw materials, such as sugarcane bagasse, silvergrass, napiergrass and pineapple peel. The lack of a need to hydrolysate detoxification enhances the potential of this newly isolated yeast for xylitol production and this, in turn, has the capacity to improve economics of lignocellulosic ethanol production. PMID:21095119

  6. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates.

    PubMed

    Oreb, Mislav; Dietz, Heiko; Farwick, Alexander; Boles, Eckhard

    2012-01-01

    Economically feasible production of second-generation biofuels requires efficient co-fermentation of pentose and hexose sugars in lignocellulosic hydrolysates under very harsh conditions. Baker's yeast is an excellent, traditionally used ethanol producer but is naturally not able to utilize pentoses. This is due to the lack of pentose-specific transporter proteins and enzymatic reactions. Thus, natural yeast strains must be modified by genetic engineering. Although the construction of various recombinant yeast strains able to ferment pentose sugars has been described during the last two decades, their rates of pentose utilization is still significantly lower than D-glucose fermentation. Moreover, pentoses are only fermented after D-glucose is exhausted, resulting in an uneconomical increase in the fermentation time. In this addendum, we discuss novel approaches to improve utilization of pentoses by development of specific transporters and substrate channeling in enzyme cascades. PMID:22892590

  7. Lipid Production from Hemicellulose and Holocellulose Hydrolysate of Palm Empty Fruit Bunches by Newly Isolated Oleaginous Yeasts.

    PubMed

    Tampitak, Srikanya; Louhasakul, Yasmi; Cheirsilp, Benjamas; Prasertsan, Poonsuk

    2015-07-01

    Palm empty fruit bunches (EFBs) are abundant lignocellulosic wastes from palm oil mills. They are potential sources of sugars which can be converted to microbial lipids by oleaginous yeasts. To produce sugars from EFB, two-step and one-step hydrolysis reactions were performed. In the first step, the use of diluted sulfuric acid (0.5 % w/v) hydrolyzed hemicelluloses and released mainly pentoses, and in the second step of hydrolysis of residual pulp using 2.5 % (w/v), sulfuric acid released more hexoses. The use of 2.5 % (w/v) sulfuric acid in one-step hydrolysis of holocelluloses released the highest amount of sugars (38.3 g/L), but it also produced high concentration of potential inhibitors (>1 g/L). Three oleaginous yeasts, Rhodotorula mucilaginosa, Kluyveromyces marxianus, and Candida tropicalis, were isolated and screened for their ability to convert EFB hydrolysates into lipids. These yeasts grew well and produced lipids from EFB hemicellulose and holocellulose hydrolysate after potential inhibitors were removed. This study shows that EFB can be used for lipid production.

  8. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strategies are sought to reduce intestinal colonization of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry, chestnut tannin extracts, and conden...

  9. Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants.

    PubMed

    Lee, Sang Cheol

    2015-09-01

    Selective removal of acetic acid from simulated hemicellulosic hydrolysates containing xylose and sulfuric acid was attempted in a batch emulsion liquid membrane (ELM) system with organophosphorus extractants. Various experimental variables were used to develop a more energy-efficient ELM process. Total operation time of an ELM run with a very small quantity of trioctylphosphine oxide as the extractant was reduced to about a third of those required to attain almost the same extraction efficiency as obtained in previous ELM works without any extractant. Under specific conditions, acetic acid was selectively separated with a high degree of extraction and insignificant loss of xylose, and its purity and enrichment ratio in the stripping phase were higher than 92% and 6, respectively. Also, reused organic membrane solutions exhibited the extraction efficiency as high as fresh organic solutions did. These results showed that the current ELM process would be quite practical.

  10. Growth inhibition of thermotolerant yeast, Kluyveromyces marxianus, in hydrolysates from cassava pulp.

    PubMed

    Rugthaworn, Prapassorn; Murata, Yoshinori; Machida, Masashi; Apiwatanapiwat, Waraporn; Hirooka, Akiko; Thanapase, Warunee; Dangjarean, Hatairat; Ushiwaka, Satoru; Morimitsu, Kozo; Kosugi, Akihiko; Arai, Takamitsu; Vaithanomsat, Pilanee

    2014-07-01

    In this study, we report the inhibition of Kluyveromyces marxianus TISTR5925 growth and ethanol fermentation in the presence of furan derivatives and weak acids (acetic acid and lactic acid) at high temperatures. Cassava pulp, obtained as the waste from starch processing, was collected from 14 starch factories located in several provinces of Thailand. At a high temperature (42 °C), the cassava pulp hydrolysate from some starch factories strongly inhibited growth and ethanol production of both K. marxianus (strain TISTR5925) and Saccharomyces cerevisiae (strain K3). HPLC detected high levels of lactic acid and acetic acid in the hydrolysates, suggesting that these weak acids impaired the growth of K. marxianus at high temperature. We isolated Trp-requiring mutants that had reduced tolerance to acetic acid compared to the wild-type. This sensitivity to acetic acid was suppressed by supplementation of the medium with tryptophan.

  11. Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality.

    PubMed

    Lee, Hyun Jung; Son, Heung Soo; Park, Chung; Suh, Hyung Joo

    2015-12-01

    In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60°C, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50°C and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.

  12. Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality

    PubMed Central

    Lee, Hyun Jung; Son, Heung Soo; Park, Chung; Suh, Hyung Joo

    2015-01-01

    In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60°C, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50°C and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability. PMID:26770916

  13. Dissecting principles governing actin assembly using yeast extracts.

    PubMed

    Michelot, Alphée; Drubin, David G

    2014-01-01

    In this chapter, we describe recent protocols that we have developed to trigger actin assembly and actin-based motility in yeast cell extracts. Our method allows for the fast preparation of yeast extracts that are competent in dynamic assembly of distinct actin filament structures of biologically appropriate protein composition. Compared to previous extract-based systems using other eukaryotic cell types, yeast provides a unique advantage for combining reconstituted assays with the preparation of extracts from genetically modified yeast strains. We present a global strategy for dissecting the functions of individual proteins, where the activities of the proteins are analyzed in systems of variable complexity, ranging from simple mixtures of pure proteins to the full complexity of a cell's cytoplasm.

  14. Effect of yeast extract on growth kinetics of Monascus purpureus.

    PubMed

    Pereira, D G; Kilikian, B V

    2001-01-01

    Growth kinetics and red pigment production of Monascus purpureus CCT 3802 was studied. A reproducible inoculum with extremely dispersed hyphae for bioreactor runs was obtained through a two-step cultivation in a shaker. First, the spores were cultivated in a complex medium rendering a suspension of vegetative cells. In the second step these cells were grown in a semisynthetic medium. Two types of media were employed in the bioreactor runs: a semisynthetic (glucose, salts, and yeast extract), and a synthetic, without yeast extract. The inclusion of yeast extract, caused an increase in cell yield on glucose (Yx/s) as high as 40%. Also, yeast extract probably yielded a higher proportion of red pigment associated with the cell, relative to the synthetic medium. On the other hand, cells grown on the synthetic medium were slightly higher producers of red soluble pigments.

  15. Antioxidant Properties of Fish Protein Hydrolysates Prepared from Cod Protein Hydrolysate by Bacillus sp.

    PubMed

    Godinho, I; Pires, C; Pedro, S; Teixeira, B; Mendes, R; Nunes, M L; Batista, I

    2016-03-01

    Fermentative protein hydrolysates (FPH) were prepared with a proteolytic bacterium, Bacillus strain exhibiting high proteolytic activity. Three FPH with 1, 2, and 4 % of cod protein hydrolysate (CPH) and 0.5 % of yeast extract in the culture were prepared. The yields achieved varied between 30 and 58 % based on protein content. A general decrease of leucine, isoleucine, valine, alanine, arginine, threonine, proline, and glutamic acid was observed. All FPHs showed higher reducing power and DPPH radical scavenging activity than CPH, but similar ABTS radical scavenging activity. However, FPHs exhibited lower Cu(+2)-chelating activity than CPH. The ACE inhibitory activity of FPHs was not improved relatively to that recorded in CPH. The fermentative process seems to have potential to obtaining hydrolysates with improved biological activities or even to produce protein hydrolysates from native fish proteins. PMID:26590847

  16. Yeast hydrolysate protects cartilage via stimulation of type II collagen synthesis and suppression of MMP-13 production.

    PubMed

    Lee, Hyun-Sun; Park, So Yeon; Park, Yooheon; Bae, Song Hwan; Suh, Hyung Joo

    2013-09-01

    Type II collagen (COL II) is one of the primary components of hyaline cartilage and plays a key role in maintaining chondrocyte function. COL II is the principal target of destruction, and matrix metalloproteases (MMPs) have a major role in arthritis. In the present study, we investigated the chondroctye protection effects of specific fraction of yeast hydrolysate ((10-30 kDa molecular weight peptides). The mRNA expression of COL II was significantly increased in the YH-treated group compared to the control at concentrations above 50 µg/ml, respectively. The 200 µg/ml YH-treated group (3.43 ± 0.23 µg/ml) showed significantly reduced glycosaminoglycan (GAG) degradation relative to that in the interleukin-1β (IL-1β)-treated control group (4.72 ± 0.05 µg/ml). In the YH-treated group, MMP-13 level was significantly decreased in a dose-dependent manner compared to the IL-1β-treated group without YH treatment. However, MMP-1 and MMP-3 level were not different from that of control. Under the same conditions, we also examined mRNA levels of COL II. The mRNA expression of COL II was significantly higher in the YH-treated group than in the IL-1β-treated control group at concentrations above 100 µg/ml. In conclusion, YH stimulated COL II synthesis and significantly inhibited MMP-13 and GAG degradation caused by IL-1β treatment. PMID:23070893

  17. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.

    PubMed

    Gairola, Krishan; Smirnova, Irina

    2012-11-01

    This work explores hydrothermal d-xylose and hemicellulose to furfural conversion coupled with simultaneous furfural extraction by SC-CO(2) and the underlying reaction pathway. A maximum furfural yield of 68% was attained from d-xylose at 230°C and 12MPa. Additionally missing kinetic data for l-arabinose to furfural conversion was provided, showing close similarity to d-xylose. Furfural yields from straw and brewery waste hydrolysates were significantly lower than those obtained from model compounds, indicating side reactions with other hydrolysate components. Simultaneous furfural extraction by SC-CO(2) significantly increased extraction yield in all cases. The results indicate that furfural reacts with intermediates of pentose dehydration. The proposed processing route can be well integrated into existing lignocellulose biorefinery concepts.

  18. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    PubMed

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. PMID:27474613

  19. Screening of Yeasts for Selection of Potential Strains and Their Utilization for In Situ Microbial Detoxification (ISMD) of Sugarcane Bagasse Hemicellulosic Hydrolysate.

    PubMed

    Soares, Luma C S R; Chandel, Anuj K; Pagnocca, Fernando C; Gaikwad, Swapnil C; Rai, Mahendra; da Silva, Silvio S

    2016-06-01

    Many toxic compounds are produced and released in the hemicellulosic hydrolyzates during the acid pretreatment step, which are required for the disruption of the lignocelluloses matrix and sugars release. The conventional methods of detoxification i.e. overliming, activated charcoal, ion exchange or even membrane-based separations have the limitations in removal of these toxic inhibitors in fermentation process. Hence, it is imperative to explore biological methods to overcome the inhibitors by minimizing the filtration steps, sugar loss and chemical additions. In the present study we screened sixty-four strains of yeasts to select potential strains for detoxification of furfural, acetic acid, ferulic acid, 5-hydroxymethyl furfural (5-HMF) as carbon and energy source. Among these strains Pichia occidentalis M1, Y1'a, Y1'b and Y3' showed a significant decrease in the toxic compounds but we selected two best yeast strains i.e. P. occidentalis Y1'a and P. occidentalis M1 for the further experiments with an aim to remove the fermentation inhibitors. The yeasts P. occidentalis Y1'a and P. occidentalis M1 were grown aerobically in sugarcane bagasse hemicellulose hydrolysate under submerged cultivation. For each yeast, a 2(2) full factorial design was performed considering the variables-pH (4.0 or 5.0) and agitation rate (100 or 300 rpm), and the percentage removal of HMF, furfural, acetic acid and phenols from hemicellulosic hydrolysates were responsive variables. After 96 h of biological treatment, P. occidentalis M1 and P. occidentalis Y1'a showed 42.89 and 46.04 % cumulative removal of inhibitors, respectively. PMID:27570309

  20. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates.

    PubMed

    Wang, Yuanzhen; Liu, Shijie

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  1. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates

    PubMed Central

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  2. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN... additive may be used as a flavor enhancer in food at a level not in excess of that reasonably required to... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section...

  3. Spent brewer's yeast extract as an ingredient in cooked hams.

    PubMed

    Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia

    2016-11-01

    This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics. PMID:27449232

  4. Spent brewer's yeast extract as an ingredient in cooked hams.

    PubMed

    Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia

    2016-11-01

    This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics.

  5. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  6. Extraction and analysis of soluble inositol polyphosphates from yeast.

    PubMed

    Azevedo, Cristina; Saiardi, Adolfo

    2006-01-01

    Soluble inositol polyphosphates are implicated in the regulation of many important cellular functions. This protocol to extract and separate inositol polyphosphates from Saccharomyces cerevisiae is divided into three steps: labeling of yeast, extraction of soluble inositol polyphosphates and chromatographic separation. Yeast cells are incubated with tritiated inositol, which is taken up and metabolized into different phosphorylated forms. Soluble inositol polyphosphates are then acid-extracted and fractionated by high-performance liquid chromatography. The radioactivity of each fraction is determined by scintillation counting. This highly sensitive and reproducible method allows the accurate detection of subtle changes in the inositol polyphosphate profile and takes less than 48 h. It can easily be applied to other systems and we have included two adaptations of the protocol, one optimized for mammalian cells and the other for Arabidopsis thaliana. PMID:17406485

  7. Inhibition of spoiling yeasts of fruit juices through citrus extracts.

    PubMed

    Bevilacqua, Antonio; Speranza, Barbara; Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

    2013-10-01

    This article reports on the bioactivities of citrus extracts (citrus extract, lemon extract, and neroli) toward Saccharomyces cerevisiae, Zygosaccharomyces bailii, Zygosaccharomyces rouxii, Pichia membranifaciens, and Rhodotorula bacarum. The bioactivities of the extracts (from 10 to 100 ppm) were evaluated through a microdilution method; thereafter, citrus extracts (0 to 80 ppm) were tested in combination with either pH (3.0 to 5.0) or temperature (5 to 25°C). Finally, a confirmatory experiment was run in a commercial drink (referred to as red fruit juice) containing citrus extract (40 ppm) that was inoculated with either S. cerevisiae or Z. bailii (5 log CFU/ml) and stored at 4 and 25°C. Yeasts increased to 7 log CFU/ml (Z. bailii) or 8 log CFU/ml (S. cerevisiae) in the control at 25°C, but the citrus extract addition controlled yeast growth for at least 3 days; under refrigeration, the effect was significant for 10 days.

  8. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells.

    PubMed

    Spearman, Maureen; Chan, Sarah; Jung, Vince; Kowbel, Vanessa; Mendoza, Meg; Miranda, Vivian; Butler, Michael

    2016-09-10

    Yeast and plant hydrolysates are used as media supplements to support the growth and productivity of CHO cultures for biopharmaceutical production. Through fractionation of a yeast lysate and metabolic analysis of a fraction that had bioactivity equivalent to commercial yeast extract (YE), bioactive components were identified that promoted growth and productivity of two recombinant CHO cell lines (CHO-Luc and CHO-hFcEG2) equivalent to or greater than YE-supplemented media. Autolysis of the yeast lysate was not necessary for full activity, suggesting that the active components are present in untreated yeast cells. A bioactive fraction (3KF) of the yeast lysate was isolated from the permeate using a 3kDa molecular weight cut-off (MWCO) filter. Supplementation of this 3KF fraction into the base media supported growth of CHO-Luc cells over eight passages equivalent to YE-supplemented media. The 3KF fraction was fractionated further by a cation exchange spin column using a stepwise pH elution. Metabolomic analysis of a bioactive fraction isolated at high pH identified several arginine and lysine-containing peptides as well as two polyamines, spermine and spermidine, with 3.5× and 4.5× higher levels compared to a fraction showing no bioactivity. The addition of a mixture of polyamines and their precursors (putrescine, spermine, spermidine, ornithine and citrulline) as well as increasing the concentration of some of the components of the original base medium resulted in a chemically-defined (CD) formulation that produced an equivalent viable cell density (VCD) and productivity of the CHO-Luc cells as the YE-supplemented medium. The VCD of the CHO-hFcEG2 culture in the CD medium was 1.9× greater and with equivalent productivity to the YE-supplemented media.

  9. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells.

    PubMed

    Spearman, Maureen; Chan, Sarah; Jung, Vince; Kowbel, Vanessa; Mendoza, Meg; Miranda, Vivian; Butler, Michael

    2016-09-10

    Yeast and plant hydrolysates are used as media supplements to support the growth and productivity of CHO cultures for biopharmaceutical production. Through fractionation of a yeast lysate and metabolic analysis of a fraction that had bioactivity equivalent to commercial yeast extract (YE), bioactive components were identified that promoted growth and productivity of two recombinant CHO cell lines (CHO-Luc and CHO-hFcEG2) equivalent to or greater than YE-supplemented media. Autolysis of the yeast lysate was not necessary for full activity, suggesting that the active components are present in untreated yeast cells. A bioactive fraction (3KF) of the yeast lysate was isolated from the permeate using a 3kDa molecular weight cut-off (MWCO) filter. Supplementation of this 3KF fraction into the base media supported growth of CHO-Luc cells over eight passages equivalent to YE-supplemented media. The 3KF fraction was fractionated further by a cation exchange spin column using a stepwise pH elution. Metabolomic analysis of a bioactive fraction isolated at high pH identified several arginine and lysine-containing peptides as well as two polyamines, spermine and spermidine, with 3.5× and 4.5× higher levels compared to a fraction showing no bioactivity. The addition of a mixture of polyamines and their precursors (putrescine, spermine, spermidine, ornithine and citrulline) as well as increasing the concentration of some of the components of the original base medium resulted in a chemically-defined (CD) formulation that produced an equivalent viable cell density (VCD) and productivity of the CHO-Luc cells as the YE-supplemented medium. The VCD of the CHO-hFcEG2 culture in the CD medium was 1.9× greater and with equivalent productivity to the YE-supplemented media. PMID:27165505

  10. The implementation of high fermentative 2,3-butanediol production from xylose by simultaneous additions of yeast extract, Na2EDTA, and acetic acid.

    PubMed

    Wang, Xiao-Xiong; Hu, Hong-Ying; Liu, De-Hua; Song, Yuan-Quan

    2016-01-25

    The effective use of xylose may significantly enhance the feasibility of using lignocellulosic hydrolysate to produce 2,3-butanediol (2,3-BD). Previous difficulties in 2,3-BD production include that the high-concentration xylose cannot be converted completely and the fermentation rate is slow. This study investigated the effects of yeast extract, ethylenediaminetetraacetic acid disodium salt (Na2EDTA), and acetic acid on 2,3-BD production from xylose. The central composite design approach was used to optimize the concentrations of these components. It was found that simultaneous addition of yeast extract, Na2EDTA, and acetic acid could significantly improve 2,3-BD production. The optimal concentrations of yeast extract, Na2EDTA, and acetic acid were 35.2, 1.2, and 4.5 g/L, respectively. The 2,3-BD concentration in the optimized medium reached 39.7 g/L after 48 hours of shake flask fermentation, the highest value ever reported in such a short period. The xylose utilization ratio and the 2,3-BD concentration increased to 99.0% and 42.7 g/L, respectively, after 48 hours of stirred batch fermentation. Furthermore, the 2,3-BD yield was 0.475 g/g, 95.0% of the theoretical maximum value. As the major components of lignocellulosic hydrolysate are glucose, xylose, and acetic acid, the results of this study indicate the possibility of directly using the hydrolysate to effectively produce 2,3-BD.

  11. Recycling microbial lipid production wastes to cultivate oleaginous yeasts.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Gong, Zhiwei; Shen, Hongwei; Bai, Fengwu; Zhao, Zongbao Kent

    2015-01-01

    To reduce wastes and the costs of microbial lipid production, it is imperative to recycle resources, including spent cell mass, mineral nutrients and water. In the present study, lipid production by the oleaginous yeast Rhodosporidium toruloides was used as a model system to demonstrate resources recycling. It was found that the hydrolysates of spent cell mass were good media to support cell growth of various oleaginous yeasts. When serial repitching experiments were performed using 70g/L glucose and the hydrolysates alone as nutrients, it produced 16.6, 14.6 and 12.9g/L lipids, for three successive cycles, while lipid titre remained almost constant when spent water was also recycled. The cell mass hydrolysates could be used as equivalents to the mixture of yeast extract and peptone to support lipid production from corn stalk hydrolysates. Our results showed efficient recycling of lipid production wastes and should be helpful to advance microbial lipid technology. PMID:25459808

  12. Recycling microbial lipid production wastes to cultivate oleaginous yeasts.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Gong, Zhiwei; Shen, Hongwei; Bai, Fengwu; Zhao, Zongbao Kent

    2015-01-01

    To reduce wastes and the costs of microbial lipid production, it is imperative to recycle resources, including spent cell mass, mineral nutrients and water. In the present study, lipid production by the oleaginous yeast Rhodosporidium toruloides was used as a model system to demonstrate resources recycling. It was found that the hydrolysates of spent cell mass were good media to support cell growth of various oleaginous yeasts. When serial repitching experiments were performed using 70g/L glucose and the hydrolysates alone as nutrients, it produced 16.6, 14.6 and 12.9g/L lipids, for three successive cycles, while lipid titre remained almost constant when spent water was also recycled. The cell mass hydrolysates could be used as equivalents to the mixture of yeast extract and peptone to support lipid production from corn stalk hydrolysates. Our results showed efficient recycling of lipid production wastes and should be helpful to advance microbial lipid technology.

  13. Hydrogen production from paper sludge hydrolysate.

    PubMed

    Kádár, Zsófia; De Vrije, Truus; Budde, Miriam A W; Szengyel, Zsolt; Réczey, Kati; Claassen, Pieternel A M

    2003-01-01

    The main objective of this study was to develop a system for the production of "renewable" hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga elfii and Caldicellulosiruptor saccharolyticus. Tests on different medium compositions showed that both bacteria were able to produce hydrogen from paper sludge hydrolysate, but the amount of produced hydrogen and the requirement for other components differed. Hydrogen production by T. elfii strongly depended on the presence of yeast extract and salts. By contrast, C. saccharolyticus was less dependent on medium components but seemed to be inhibited by a component present in the sludge hydrolysate. Utilization of xylose was preferred over glucose by C. saccharolyticus.

  14. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    PubMed Central

    2014-01-01

    Background Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. Results We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. Conclusion Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde. PMID:24655423

  15. Effects of Cyclo-His-Pro-enriched yeast hydrolysate on blood glucose levels and lipid metabolism in obese diabetic ob/ob mice

    PubMed Central

    Jung, Eun Young; Hong, Yang Hee; Park, Chung

    2016-01-01

    BACKGROUND/OBJECTIVES We examined the hypoglycemic and anti-hyperlipidemic effect of yeast hydrolysate (YH) enriched with Cyclo-His-Pro (CHP) in the C57BL/6J ob/ob mouse model. MATERIALS/METHODS Mice were separated into 4 groups (8 mice/group) on the basis of blood glucose and body weight: WT control, lean mice given vehicle; ob/ob control, ob/ob mice given vehicle; YH-1, ob/ob mice given 0.5 g/kg of YH; YH-2, ob/ob mice given 1 g/kg of YH. YH in saline or vehicle was administered orally in the same volume every day for 3 weeks. RESULTS Mice treated with YH (0.5 and 1 g/kg) for 3 weeks displayed a significant reduction in overall body weight gain and perirenal and epididymal adipose tissue weight compared to the ob/ob control group. Additionally, high-density lipoprotein (HDL) cholesterol, glucose, and atherogenic indexes were significantly decreased in the blood of YH-1 and YH-2 groups compared to the ob/ob control. In ob/ob mice, YH administration significantly improved glucose tolerance and blood insulin levels. These data indicate that YH treatment produces potent hypoglycemic and anti-hyperlipidemic effects by controlling body weight, fat mass, blood lipid, insulin levels, and glucose tolerance. CONCLUSION YH could potentially be used as a treatment option for diabetes and hyperlipidemia. The CHP-enriched YH may be a promising strategy in the development of hypoglycemic peptide nutraceuticals. PMID:27087898

  16. The effects of different yeast extracts on secondary metabolite production in Fusarium.

    PubMed

    Sørensen, Jens Laurids; Sondergaard, Teis Esben

    2014-01-17

    Yeast extract is an important constituent in several media used for metabolite profiling of filamentous fungi. The nutrient composition can vary between brands and thereby influence production of secondary metabolites, which can be regulated in response to nitrogen, carbon and pH. In the present study we examined the production of known secondary metabolites in Fusarium pseudograminearum, Fusarium graminearum, Fusarium avenaceum and Fusarium fujikuroi and in each species we identified several secondary metabolites which are influenced by yeast extract brands. Deoxynivalenol and zearalenone were produced in high levels on some yeast extract by F. pseudograminearum and F. graminearum, while absent on others. Chlamydosporol, 2-AOD-3-ol and enniatins were influenced by yeast extracts in F. avenaceum, while bikaverin, gibberellic acid, fumonisin and fusaric acid were affected in F. fujikuroi. Aurofusarin and fusarin C on the other hand were not affected by yeast extracts in all producing strains. The observed differences in production in metabolite profiles show the need to use the same yeast extract brand in repeating experiments. The study illustrates furthermore that it can be beneficial to use more than one yeast extract in metabolite profiling a species.

  17. Use of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minuta) muscle.

    PubMed

    Klomklao, Sappasith; Kishimura, Hideki; Benjakul, Soottawat

    2013-01-15

    Proteolytic activity of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) was studied. The optimal pH and temperature were 9.0 and 50°C, respectively, when toothed ponyfish (Gazza minuta) muscle was used as a substrate. When viscera extract from hybrid catfish was used for the production of protein hydrolysate from toothed ponyfish muscle, extract concentration, reaction time, and fish muscle/buffer ratio affected the hydrolysis and nitrogen recovery (NR) (p<0.05). Optimum conditions for toothed ponyfish muscle hydrolysis were 3.5% hybrid catfish viscera extract, 15 min reaction time and fish muscle/buffer ratio of 1:3 (w/v). High correlation between the degree of hydrolysis (DH) and NR (R(2)=0.974) was observed. Freeze-dried hydrolysate had a high protein content (89.02%, dry weight basis) and it was brownish yellow in colour (L(∗)=63.67, a(∗)=6.33, b(∗)=22.41). The protein hydrolysate contained a high amount of essential amino acids (48.22%) and had arginine and lysine as the dominant amino acids. PMID:23122156

  18. Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals

    NASA Astrophysics Data System (ADS)

    Nagodawithana, Tilak W.; Nelles, Lynn; Trivedi, Nayan B.

    Early civilizations have relied upon their good sense and experience to develop and improve their food quality. The discovery of soy sauce centuries ago can now be considered one of the earliest protein hydrolysates made by man to improve palatability of foods. Now, it is well known that such savory systems are not just sources for enjoyment but complex semiotic systems that direct the humans to satisfy the body's protein need for their sustenance. Recent developments have resulted in a wide range of cost effective savory flavorings, the best known of which are autolyzed yeast extracts and hydrolyzed vegetable proteins. New technologies have helped researchers to improve the savory characteristics of yeast extracts through the application of Maillard reaction and by generating specific flavor enhancers through the use of enzymes. An interesting parallel exists in the pet food industry, where a similar approach is taken in using animal protein hydrolysates to create palatability enhancers via Maillard reaction scheme. Protein hydrolysates are also utilized extensively as a source of nutrition to the elderly, young children and immuno-compromised patient population. These hydrolysates have an added advantage in having peptides small enough to avoid any chance of an allergenic reaction which sometimes occur with the consumption of larger sized peptides or proteins. Accordingly, protein hydrolysates are required to have an average molecular weight distribution in the range 800-1,500 Da to make them non-allergenic. The technical challenge for scientists involved in food and feed manufacture is to use an appropriate combination of enzymes within the existing economic constraints and other physical factors/limitations, such as heat, pH, and time, to create highly palatable, yet still nutritious and hypoallergenic food formulations.

  19. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

    PubMed Central

    da Silva, Debora Danielle Virginio; Cândido, Elisangela de Jesus; de Arruda, Priscila Vaz; da Silva, Silvio Silvério; Felipe, Maria das Graças de Almeida

    2014-01-01

    The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH4)2SO4; peptone and yeast extract; (NH4)2SO4, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH4)2SO4, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH4)2SO4 and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH4)2SO4 was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials. PMID:25763056

  20. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract.

    PubMed

    da Silva, Debora Danielle Virginio; Cândido, Elisangela de Jesus; de Arruda, Priscila Vaz; da Silva, Silvio Silvério; Felipe, Maria das Graças de Almeida

    2014-01-01

    The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH₄)₂SO₄; peptone and yeast extract; (NH₄)₂SO₄, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH₄)₂SO₄, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH₄)₂SO₄ and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH₄)₂SO₄ was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials.

  1. Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62.

    PubMed

    Konishi, Masaaki; Nagahama, Takahiko; Fukuoka, Tokuma; Morita, Tomotake; Imura, Tomohiro; Kitamoto, Dai; Hatada, Yuji

    2011-06-01

    We improved the culture conditions for a biosurfactant producing yeast, Pseudozyma hubeiensis SY62. We found that yeast extract greatly stimulates MEL production. Furthermore, we demonstrated a highly efficient production of MELs in the improved medium by fed-batch cultivation. The final concentration of MELs reached 129 ± 8.2g/l for one week. PMID:21393057

  2. Acidifying and yeast extract in diets for adults cats.

    PubMed

    Ogoshi, Rosana C S; Zangeronimo, Márcio G; Dos Reis, Jéssica S; França, Janine; Santos, João P F; Pires, Carolina P; Chizzotti, Ana F; Costa, Adriano C; Ferreira, Lívia G; Saad, Flávia M O B

    2014-05-01

    This study evaluated the effects of adding an acidifying agent based on phosphoric acid (A), a yeast extract from a specific strain (Saccharomyces cerevisiae) (Y) and the combination of these two additives in food for adult cats. A test was conducted with 24 animals (mean 3.5 years old), mixed breed, weighing 3.72 ± 0.74 kg, kept in individual metabolic cages and distributed in a completely randomized design with a 2 × 2 factorial design (with or without A 0.6% of dry matter, with or without Y 1.5% of dry matter) totalling four treatments and six replicates of each condition. The experimental period was 15 days. The A or the Y reduced (P< 0.01) the dry matter intake, but the effect was not observed when they were associated. The association improved (P<0.05) the digestibility of dry matter and ashes. The A reduced urine pH (P=0.05) regardless of the presence of the Y. There was no effect (P>0.09) on other parameters evaluated. Results of this study show that the isolated use of 0.6% A or 1.5% Y in diets for cats is not recommended. However, the association of these two additives was beneficial in increasing nutrient digestibility.

  3. Synergistic inhibition of lipid oxidation by pea protein hydrolysate coupled with licorice extract in a liposomal model system.

    PubMed

    Zhang, Xin; Xiong, Youling L; Chen, Jie; Zhou, Liuming

    2013-09-01

    Fourteen pea protein hydrolysates (PPHs) were prepared using different proteases and tested for antioxidant activity in a liposomal model system under oxidative stress (100 μM FeCl3/2 mM ascorbate). Almost all PPHs inhibited lipid oxidation, and those prepared from heated protein with Flavourzyme (Fla-PPH) or Protamex (Pro-PPH) were the most effective. Remarkable synergistic effects were observed on both Fla-PPH and Pro-PPH with licorice extract (LE). Electron microscopy revealed a self-assembled network that appeared to provide crucial protection of liposome against oxidation. The presence of LE enhanced the antioxidant potential by producing a more compact network apparently via PPH-LE complexation. Zeta-potential measurements suggested electrostatic interactions are important driving forces for the accumulation of active peptides at the liposome interface. Peptides rich in leucine, lysine, glutamic acid, glutamine, valine, or proline with a hydrophobic N-terminus, as identified by mass spectrometry, were implicated in the antioxidative protection. PMID:23924409

  4. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.

    PubMed

    Martini, Cristina; Tauk-Tornisielo, Sâmia Maria; Codato, Carolina Brito; Bastos, Reinaldo Gaspar; Ceccato-Antonini, Sandra Regina

    2016-05-01

    The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed. PMID:27038950

  5. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    PubMed

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations.

  6. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    PubMed

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. PMID:21820955

  7. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    PubMed Central

    Kerr, Edward D.

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings. PMID:27602264

  8. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    PubMed

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings. PMID:27602264

  9. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    PubMed

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  10. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    PubMed Central

    Kerr, Edward D.

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  11. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    PubMed

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema. PMID:17291738

  12. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    PubMed

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.

  13. Iron-binding properties of sugar cane yeast peptides.

    PubMed

    de la Hoz, Lucia; Ponezi, Alexandre N; Milani, Raquel F; Nunes da Silva, Vera S; Sonia de Souza, A; Bertoldo-Pacheco, Maria Teresa

    2014-01-01

    The extract of sugar-cane yeast (Saccharomyces cerevisiae) was enzymatically hydrolysed by Alcalase, Protex or Viscozyme. Hydrolysates were fractionated using a membrane ultrafiltration system and peptides smaller than 5kDa were evaluated for iron chelating ability through measurements of iron solubility, binding capacity and dialyzability. Iron-chelating peptides were isolated using immobilized metal affinity chromatography (IMAC). They showed higher content of His, Lys, and Arg than the original hydrolysates. In spite of poor iron solubility, hydrolysates of Viscozyme provided higher iron dialyzability than those of other enzymes. This means that more chelates of iron or complexes were formed and these kept the iron stable during simulated gastro-intestinal digestion in vitro, improving its dialyzability.

  14. [Study of the Sporothrix schenkii (yeast forms) extract. Electrophoretic and immunoelectrophoretic analyses: characterization of enzymatic activities].

    PubMed

    Walbaum, S; Duriez, T; Dujardin, L; Biguet, J

    1978-07-28

    An extract from living yeast forms of S. schenckii was prepared. The yeasts originated from a shake culture in B.H.I. broth (Difco) incubated for 3 days at 35 degrees C in darkness; they were harvested, washed and disrupted with glass beads in a model MSK Braun mechanical cell homogenizer; a freezing-thawing was added to improve the extract. After electrophoretic separation in agarose gel, the extract's components were characterized by their enzymic activity; with this technique, 30 bands were revealed. These enzymic activities were also investigated on the antigenic fractions of the extract revealed by a rabbit hyperimmunserum: 16 among 22 immunoprecipitates are identified by their catalytic properties. Study of the earliest precipitating antibodies (appearing-order and enzymic caracterization) in rabbits just immunized completes this work. How to ameliorate the quality of the extract by culture and extraction conditions is also specified. PMID:692628

  15. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    PubMed Central

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  16. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts.

    PubMed

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.

  17. Bacterial clearance, heterophil function, and hematological parameters of transport stressed turkey poults supplemented with dietary yeast extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeast extracts contain biological response modifiers that may be useful as alternatives to antibiotics for controlling pathogens in poultry production and mitigating the deleterious effects of production stressors. A standardized yeast extract feed supplement, Alphamune™ (YE), was added to turkey po...

  18. Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber

    PubMed Central

    2013-01-01

    Background Hair is composed mainly of keratin protein and a small amount of lipid. Protein hydrolysates, in particular those with low molecular weight distribution have been known to protect hair against chemical and environmental damage. Many types of protein hydrolysates from plants and animals have been used in hair and personal care such as keratin hydrolysates obtained from nails, horns and wool. Most of these hydrolysates are obtained by chemical hydrolysis and hydrothermal methods, but recently hydrolyzed hair keratin, feather keratin peptides, and feather meal peptides have been obtained by enzymatic hydrolysis using Bacillus spp in submerged fermentation. Results Keratin peptides were obtained by enzymatic hydrolysis of keratinases using Bacillus subtilis AMR. The microorganism was grown on a feather medium, pH 8.0 (1% feathers) and supplemented with 0.01% of yeast extract, for 5 days, at 28°C with agitation. The supernatant containing the hydrolysates was colleted by centrifugation and ultra filtered in an AMICON system using nano–membranes (Millipore – YC05). The Proteins and peptides were analyzed using HPTLC and MALDI-TOF-MS. Commercial preparations of keratin hydrolysates were used as a comparative standard. After five days the feather had been degraded (90-95%) by the peptidases and keratinases of the microorganism. MALDI-TOF mass spectrometry showed multiple peaks that correspond to peptides in the range of 800 to 1079 Daltons and the commercial hydrolysate was in the range of 900 to 1400 Da. HPTLC showed lower molecular mass peptides and amino acids in the enzymatic hydrolysate when compared with the commercial hydrolysate . A mild shampoo and a rinse off conditioner were formulated with the enzymatic hydrolysate and applied to hair fibers to evaluate the hydration, with and without heat, using a Corneometer® CM 825. The hydration was more efficient with heat, suggesting a more complete incorporation of hydrolysates into the fibers

  19. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective nutritional approaches to counteract the negative effects of stress would both improve human health and provide food animal producers with useful alternatives to antibiotics. In this study, turkeys were fed a standard diet or the same diet supplemented with yeast extract (Alphamune™, YE), ...

  20. Gastrointestinal Maturation is Accelerated in Turkey Poults Supplemented with a Mannan-Oligosaccharide Yeast Extract (Alphamune)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alphamune™, a yeast extract antibiotic alternative, has been shown to stimulate the immune system, increase body weight in pigs, and reduce Salmonella colonization in chickens. The influence of Alphamune™ on gastrointestinal tract development has not been reported. Two trials were conducted to evalu...

  1. A single protocol for extraction of gDNA from bacteria and yeast.

    PubMed

    Vingataramin, Laurie; Frost, Eric H

    2015-03-01

    Guanidine thiocyanate breakage of microorganisms has been the standard initial step in genomic DNA (gDNA) extraction of microbial DNA for two decades, despite the requirement for pretreatments to extract DNA from microorganisms other than Gram-negative bacteria. We report a quick and low-cost gDNA extraction protocol called EtNa that is efficient for bacteria and yeast over a broad range of concentrations. EtNa is based on a hot alkaline ethanol lysis. The solution can be immediately centrifuged to yield a crude gDNA extract suitable for PCR, or it can be directly applied to a silica column for purification. PMID:25757544

  2. A single protocol for extraction of gDNA from bacteria and yeast.

    PubMed

    Vingataramin, Laurie; Frost, Eric H

    2015-03-01

    Guanidine thiocyanate breakage of microorganisms has been the standard initial step in genomic DNA (gDNA) extraction of microbial DNA for two decades, despite the requirement for pretreatments to extract DNA from microorganisms other than Gram-negative bacteria. We report a quick and low-cost gDNA extraction protocol called EtNa that is efficient for bacteria and yeast over a broad range of concentrations. EtNa is based on a hot alkaline ethanol lysis. The solution can be immediately centrifuged to yield a crude gDNA extract suitable for PCR, or it can be directly applied to a silica column for purification.

  3. NMR studies of a bacterial cell culture medium (LB broth): cyclic nucleotides in yeast extracts.

    PubMed

    Rayner, M H; Sadler, P J; Scawen, M D

    1990-03-01

    The composition of LB broth (tryptone, yeast extract and NaCl) was investigated by 1H,31P-NMR spectroscopy, FPLC and gel electrophoresis. An unexpected finding was the high level of 2'3'-cyclic nucleotides, detected by characteristic 31P-NMR resonances in the region 20-21 ppm, originating from the yeast component. 31P-NMR resonances for cyclic nucleotides were observed during the autolysis of Saccharomyces cerevisiae cells, and in model reactions of RNase with RNA.

  4. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil.

    PubMed

    Ocak, Buğra

    2012-06-15

    In the world, approximately 600,000 metric tonnes of chromium-containing solid wastes are generated by the leather industry each year. Environmental concerns and escalating landfill costs are becoming increasingly serious problems to the leather industry and seeking solutions to these problems is a prime concern in much research today. In this study, solid collagen-based protein hydrolysate was isolated from chromium-tanned leather wastes and its chemical properties were determined. Microcapsules of collagen hydrolysate (CH) - chitosan (C) crosslinked with glutaraldehyde (GA) containing Lavender oil (LO) were prepared by complex coacervation method. The effects of various processing parameters, including the CH to C ratio, LO content, and GA, on the oil load (%), oil content (%), encapsulation efficiency (%) and release rate of LO from microcapsules were investigated. As the ratio of C present in the CH/C mixture and crosslinking density increased, the release rate of LO from microcapsules slowed down. Optical and scanning electron microscopy images illustrated that the LO microcapsules were spherical in shape. Fourier transform infrared spectroscopy (FTIR) studies confirmed that there was no significant interaction between CH/C complex and LO.

  5. Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process

    PubMed Central

    2013-01-01

    Background The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. Results The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. Conclusion These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates. PMID:23414668

  6. 21 CFR 102.22 - Protein hydrolysates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... derived. (a) “Hydrolyzed wheat gluten,” “hydrolyzed soy protein,” and “autolyzed yeast extract” are... “hydrolyzed milk protein” is not an acceptable name for this ingredient because it is not specific to the ingredient (hydrolysates can be prepared from other milk proteins). The names “hydrolyzed vegetable...

  7. 21 CFR 102.22 - Protein hydrolysates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... derived. (a) “Hydrolyzed wheat gluten,” “hydrolyzed soy protein,” and “autolyzed yeast extract” are... “hydrolyzed milk protein” is not an acceptable name for this ingredient because it is not specific to the ingredient (hydrolysates can be prepared from other milk proteins). The names “hydrolyzed vegetable...

  8. 21 CFR 102.22 - Protein hydrolysates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... derived. (a) “Hydrolyzed wheat gluten,” “hydrolyzed soy protein,” and “autolyzed yeast extract” are... “hydrolyzed milk protein” is not an acceptable name for this ingredient because it is not specific to the ingredient (hydrolysates can be prepared from other milk proteins). The names “hydrolyzed vegetable...

  9. 21 CFR 102.22 - Protein hydrolysates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... derived. (a) “Hydrolyzed wheat gluten,” “hydrolyzed soy protein,” and “autolyzed yeast extract” are... “hydrolyzed milk protein” is not an acceptable name for this ingredient because it is not specific to the ingredient (hydrolysates can be prepared from other milk proteins). The names “hydrolyzed vegetable...

  10. 21 CFR 102.22 - Protein hydrolysates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... derived. (a) “Hydrolyzed wheat gluten,” “hydrolyzed soy protein,” and “autolyzed yeast extract” are... “hydrolyzed milk protein” is not an acceptable name for this ingredient because it is not specific to the ingredient (hydrolysates can be prepared from other milk proteins). The names “hydrolyzed vegetable...

  11. Inhibition of Melanogenesis by Yeast Extracts from Cultivations of Recombinant Pichia pastoris Catalyzing ortho-Hydroxylation of Flavonoids.

    PubMed

    Chang, Te-sheng; Tsai, Yi-Hsuan

    2015-01-01

    The inhibition of melanogenesis by yeast extracts from cultivations of recombinant Pichia pastoris catalyzing ortho-hydroxylation of flavonoids was investigated. The recombinant yeast harbored a fusion gene composed of the CYP57B3 gene from Aspergillus oryzae and a cytochrome reductase gene from Saccharomyces cerevisiae. Ten flavonoids belonging to flavones, flavonols, flavanones, flavanols, and isoflavones were evaluated for biotransformation by the recombinant strain. The results showed that five flavonoids, including the flavone apigenin, the flavanones naringenin and liquiritigenin, and the isoflavones daidzein and genistein, could be biotransformed. The yeast extracts from the five biotransformation fermentations were then evaluated for inhibitory activity on melanogenesis in cultured mouse B16 melanoma cells. Three yeast extracts from biotransformation fermentation feeding with daidzein, genistein, or apigenin showed inhibitory activity on melanogenesis in the B16 cells, while the extract from genistein biotransformation exhibited the highest activity. The yeast extract from genistein biotransformation also showed inhibitory activity on cellular tyrosinase activity in the B16 cells. The present study shows a CYP with multiple flavonoid substrates for the first time and highlights the usage of yeast extracts from cultivations of the recombinant yeast catalyzing flavonoids' biotransformation in the development of skin-whitening agents.

  12. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization

    PubMed Central

    Fernandes, Joana P.; Neto, Rodrigo; Centeno, Filipe; De Fátima Teixeira, Maria; Gomes, Ana Catarina

    2015-01-01

    Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76–89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011. PMID:25853122

  13. Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition.

    PubMed

    Chagas, Clarice M A; Honorato, Talita L; Pinto, Gustavo A S; Maia, Geraldo A; Rodrigues, Sueli

    2007-05-01

    Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30 degrees C at a pH of 5.0.

  14. GC Preps: Fast and Easy Extraction of Stable Yeast Genomic DNA.

    PubMed

    Blount, Benjamin A; Driessen, Maureen R M; Ellis, Tom

    2016-01-01

    Existing yeast genomic DNA extraction methods are not ideally suited to extensive screening of colonies by PCR, due to being too lengthy, too laborious or yielding poor quality DNA and inconsistent results. We developed the GC prep method as a solution to this problem. Yeast cells from colonies or liquid cultures are lysed by vortex mixing with glass beads and then boiled in the presence of a metal chelating resin. In around 12 minutes, multiple samples can be processed to extract high yields of genomic DNA. These preparations perform as effectively in PCR screening as DNA purified by organic solvent methods, are stable for up to 1 year at room temperature and can be used as the template for PCR amplification of fragments of at least 8 kb.

  15. GC Preps: Fast and Easy Extraction of Stable Yeast Genomic DNA.

    PubMed

    Blount, Benjamin A; Driessen, Maureen R M; Ellis, Tom

    2016-01-01

    Existing yeast genomic DNA extraction methods are not ideally suited to extensive screening of colonies by PCR, due to being too lengthy, too laborious or yielding poor quality DNA and inconsistent results. We developed the GC prep method as a solution to this problem. Yeast cells from colonies or liquid cultures are lysed by vortex mixing with glass beads and then boiled in the presence of a metal chelating resin. In around 12 minutes, multiple samples can be processed to extract high yields of genomic DNA. These preparations perform as effectively in PCR screening as DNA purified by organic solvent methods, are stable for up to 1 year at room temperature and can be used as the template for PCR amplification of fragments of at least 8 kb. PMID:27240644

  16. Acceleration of yoghurt fermentation time by yeast extract and partial characterisation of the active components.

    PubMed

    Smith, Esti-Andrine; Myburgh, Jacobus; Osthoff, Gernot; de Wit, Maryna

    2014-11-01

    Water soluble autolysate of yeast, usually utilised for microbial growth support, was used as additive in yoghurt fermentation. The yeast extract (YE) resulted in a decrease of fermentation time by 21% to reach a pH of 4·6. However, the YE resulted in unacceptable flavour and taste. By size exclusion chromatography, a fraction of the YE was obtained that could account for the observed 21% decrease in fermentation time. The fraction contained molecules of low molecular weight, consisting of minerals, free amino acids and peptides. The acceleration of the yoghurt fermentation was ascribed to the short peptides in the fraction. It is proposed that the application of this extract in industrial yoghurt manufacture would result in savings for both the industry and the consumer.

  17. GC Preps: Fast and Easy Extraction of Stable Yeast Genomic DNA

    PubMed Central

    Blount, Benjamin A.; Driessen, Maureen R. M.; Ellis, Tom

    2016-01-01

    Existing yeast genomic DNA extraction methods are not ideally suited to extensive screening of colonies by PCR, due to being too lengthy, too laborious or yielding poor quality DNA and inconsistent results. We developed the GC prep method as a solution to this problem. Yeast cells from colonies or liquid cultures are lysed by vortex mixing with glass beads and then boiled in the presence of a metal chelating resin. In around 12 minutes, multiple samples can be processed to extract high yields of genomic DNA. These preparations perform as effectively in PCR screening as DNA purified by organic solvent methods, are stable for up to 1 year at room temperature and can be used as the template for PCR amplification of fragments of at least 8 kb. PMID:27240644

  18. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation.

    PubMed

    Zhao, Guili; Chen, Xue; Wang, Lei; Zhou, Shixiao; Feng, Huixing; Chen, Wei Ning; Lau, Raymond

    2013-01-01

    Recently, carbohydrates biomass from microalgae is considered as a promising and inexpensive feedstock for biofeuls production by microorganism fermentation. The main obstacle of the process is microalgae pretreatment and carbohydrates extraction from algal cell. In this study, comparison of three pretreatment methods was performed and the results showed that ultrasonic assisted extraction (UAE) was very effective. The effects of four parameters (ultrasonic power, extraction time, flow rate and algal cell concentration, respectively) on extraction efficiency were also investigated. Additionally, in order to identify significant factors for glucose yield, combination of these four parameters was examined by using fractional factorial design (FFD) and the regression model was obtained. Meanwhile, the refined model was confirmed as a good fitting model via analysis of variance (ANOVA). After extraction, glucose obtained from microalgae was used as substrate for Rhodosporidium toruloides fermentation and yeast biomass was much higher than that of control culture.

  19. Aniline blue-containing buffered charcoal-yeast extract medium for presumptive identification of Legionella species

    SciTech Connect

    Holmes, R.L.

    1982-04-01

    By utilizing buffered charcoal-yeast extract medium containing 0.01% aniline blue in conjunction with a long-wave UV light, the differentiation of five species of Legionella was facilitated. L. pneumophila, when grown on this medium, did not absorb the aniline blue dye; however, L. micdadei, L. dumoffii, L. bozemanii, and L. gormanii absorbed the dye in varying amounts and produced colonies of various shades of blue.

  20. Methyl jasmonate and yeast extract stimulate mitragynine production in Mitragyna speciosa (Roxb.) Korth. shoot culture.

    PubMed

    Wungsintaweekul, Juraithip; Choo-Malee, Jutarat; Charoonratana, Tossaton; Keawpradub, Niwat

    2012-10-01

    Mitragynine is a pharmacologically-active terpenoid indole alkaloid found in Mitragyna speciosa leaves. Treatment with methyl jasmonate (10 μM) for 24 h and yeast extract (0.1 mg/ml) for 12 h were the optimum conditions of elicitation of mitragynine accumulation in a M. speciosa shoot culture. The former elicitor gave 0.11 mg mitragynine/g dry wt. Tryptophan decarboxylase and strictosidine synthase mRNA levels were enhanced in accordance with mitragynine accumulation. PMID:22714271

  1. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract

    PubMed Central

    Silva, S.Q.; Silva, D.C.; Lanna, M.C.S.; Baeta, B.E.L.; Aquino, S.F.

    2014-01-01

    The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal. PMID:25763018

  2. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells.

    PubMed

    Gallo, Dominique; Dillemans, Monique; Allardin, David; Priem, Fabian; Van Nedervelde, Laurence

    2014-01-01

    With regard to the increase of human life expectancy, interest for topical treatments aimed to counteract skin aging is still growing. Hence, research for bioactive compounds able to stimulate skin fibroblast activity is an attractive topic. Having previously described the effects of a new methanol yeast extract on growth and metabolic activity of Saccharomyces cerevisiae, we studied its effects on 3T3 fibroblasts to evaluate its potential antiaging property. This investigation demonstrates that this extract increases proliferation as well as migration of 3T3 cells and decreases their entrance in senescence and apoptosis phases. Altogether, these results open new perspectives for the formulation of innovative antiaging topical treatments.

  3. Ethanolic fermentation of pentoses in lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.; Linden, T.; Senac, T.; Skoog, K.

    1991-12-31

    In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts; such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase, and subsequent fermentation with bakers yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

  4. Host-Pathogen Interactions: XIV. Isolation and Partial Characterization of an Elicitor from Yeast Extract.

    PubMed

    Hahn, M G; Albersheim, P

    1978-07-01

    An elicitor of glyceollin accumulation in soybeans (Glycine max L.) has been isolated from a commercially available extract of brewers' yeast. Yeast is not a known pathogen of plants. The elicitor was isolated by precipitation in 80% (v/v) ethanol followed by column chromatography on DEAE-cellulose, sulfopropyl-Sephadex, and concanavalin A-Sepharose. Compositional and structural analysis showed the elicitor to be a glucan containing terminal, 3-, 6-, and 3,6-linked glucosyl residues. The yeast elicitor stimulates the accumulation of glyceollin in the cotyledons and hypocotyls of soybeans when as little as 15 nanograms or 100 nanograms of the elicitor is applied to the respective tissues. The yeast elicitor is very similar in both structure and absolute elicitor activity to an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, a pathogen of soybeans. These and other results of this laboratory suggest that plants are able to respond to the presence of a wide range of fungi by recognizing, as foreign to the plant, structural polysaccharides of the mycelial walls of the fungi.

  5. Understanding the intracellular effects of yeast extract on the enhancement of Fc-fusion protein production in Chinese hamster ovary cell culture.

    PubMed

    Hu, Dongdong; Sun, Yating; Liu, Xuping; Liu, Jintao; Zhang, Xintao; Zhao, Liang; Wang, Haibin; Tan, Wen-Song; Fan, Li

    2015-10-01

    Yeast extract (YE), as a non-animal source additive for mammalian cell culture medium, has been widely used for manufacturing of therapeutic proteins. In the present study, one particular YE was found to have significantly improved the specific productivity (q p) of Fc-fusion protein in recombinant Chinese hamster ovary (rCHO) cell culture. In order to elucidate the intracellular effects of YE on protein productivity, steps of the target protein synthesis process were investigated to unveil their variations caused by YE addition. Stepwise analysis on Fc-fusion protein synthesis process showed that YE enhanced Fc-fusion protein gene transcription with cell cycle arrest at G1 phase; mammalian target of rapamycin (mTOR) signaling pathway was activated to enhance the translation of Fc-fusion protein, and the block in post-translational steps of Fc-fusion protein was alleviated by YE addition as well. Our results revealed the responses of multiple protein production steps to the addition of YE and provided a practical guidance for the separation and application of active compounds from hydrolysates. PMID:26162671

  6. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus.

    PubMed

    Li, Ming; Si, Shengli; Hao, Bo; Zha, Yi; Wan, Can; Hong, Shufen; Kang, Yongbo; Jia, Jun; Zhang, Jing; Li, Meng; Zhao, Chunqiao; Tu, Yuanyuan; Zhou, Shiguang; Peng, Liangcai

    2014-10-01

    In this study, various alkali-pretreated lignocellulose enzymatic hydrolyses were evaluated by using three standard pairs of Miscanthus accessions that showed three distinct monolignol (G, S, H) compositions. Mfl26 samples with elevated G-levels exhibited significantly increased hexose yields of up to 1.61-fold compared to paired samples derived from enzymatic hydrolysis, whereas Msa29 samples with high H-levels displayed increased hexose yields of only up to 1.32-fold. In contrast, Mfl30 samples with elevated S-levels showed reduced hexose yields compared to the paired sample of 0.89-0.98 folds at p<0.01. Notably, only the G-rich biomass samples exhibited complete enzymatic hydrolysis under 4% NaOH pretreatment. Furthermore, the G-rich samples showed more effective extraction of lignin-hemicellulose complexes than the S- and H-rich samples upon NaOH pretreatment, resulting in large removal of lignin inhibitors to yeast fermentation. Therefore, this study proposes an optimal approach for minor genetic lignin modification towards cost-effective biomass process in Miscanthus. PMID:25079210

  7. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery.

  8. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. PMID:27416517

  9. Extraction of brewer's yeasts using different methods of cell disruption for practical biodiesel production.

    PubMed

    Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel

    2015-05-01

    The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.

  10. Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts.

    PubMed Central

    Das, J; Busse, H G

    1991-01-01

    In yeasts, the glycolysis may display oscillations of its metabolites while it is converting glucose. The dynamics of the oscillations has been investigated in cytoplasmic extracts of yeast under relaxation type conditions by determining the time course of some of the glycolytic metabolites. The compounds of the nucleotide pool have been identified as fast variables and the glucose derivatives as slow variables of the relaxation type. The period of oscillation has been subdivided into four phases which represent prominent parts of the limit cycle in the phase plane of a slow versus a fast variable. From the reaction processes in these phases, a dynamical picture of the mechanisms of oscillations is suggested. Accordingly, the oscillation results from an alternating activity of the fructose bisphosphate and the polysaccharide synthesis, both of which are coupled to glycolysis via the nucleotide pool. The processes in the phases are analyzed by calculating the rates of the reaction steps in the biochemical pathway. PMID:1832975

  11. Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing.

    PubMed

    Silva, Vinícius F N; Arruda, Priscila V; Felipe, Maria G A; Gonçalves, Adilson R; Rocha, George J M

    2011-07-01

    This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl(2)·2H(2)O and (NH(4))(2)SO(4) in 50 mL Erlenmeyer flasks, containing 20 mL of medium, initial 5.5 pH under agitation of an orbital shaker (200 rpm) at 30°C for 24 h. The cellulosic hydrolysates, prior to being used as a fermentation medium, were autoclaved for 15 min at 0.5 atm and supplemented with the same nutrients employed for the inoculum, except the glucose, using the same conditions for the inoculum, but with a period of 48 h. Preliminary results showed the highest consumption of glucose (97%) for all the hydrolysates, at 28 h of fermentation. The highest concentration of ethanol (20.5 g/L) was found in the procedure of sugarcane bagasse pretreated by hydrothermal processing (195°C/10 min in 20 L reactor) and delignificated with NaOH 1.0% (w/v), 100°C, 1 h in 500 mL stainless steel ampoules immersed in an oil bath.

  12. A Yeast Metabolite Extraction Protocol Optimised for Time-Series Analyses

    PubMed Central

    Sasidharan, Kalesh; Soga, Tomoyoshi; Tomita, Masaru; Murray, Douglas B.

    2012-01-01

    There is an increasing call for the absolute quantification of time-resolved metabolite data. However, a number of technical issues exist, such as metabolites being modified/degraded either chemically or enzymatically during the extraction process. Additionally, capillary electrophoresis mass spectrometry (CE-MS) is incompatible with high salt concentrations often used in extraction protocols. In microbial systems, metabolite yield is influenced by the extraction protocol used and the cell disruption rate. Here we present a method that rapidly quenches metabolism using dry-ice ethanol bath and methanol N-ethylmaleimide solution (thus stabilising thiols), disrupts cells efficiently using bead-beating and avoids artefacts created by live-cell pelleting. Rapid sample processing minimised metabolite leaching. Cell weight, number and size distribution was used to calculate metabolites to an attomol/cell level. We apply this method to samples obtained from the respiratory oscillation that occurs when yeast are grown continuously. PMID:22952947

  13. A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material.

    PubMed

    Millar, B C; Jiru, X; Moore, J E; Earle, J A

    2000-10-01

    This study investigated the various commercially available kits and 'in-house' methods to extract DNA from Gram-negative and Gram-positive bacteria, yeast and fungal agents in commonly employed blood culture material. The main methods investigated were as follows; Qiagen QIAmp Blood kit, Roche high PCR template preparation kit, Puregene DNA extraction kit, boiling, glass beads/sonication and wash/alkali/heat lysis. The results indicated that a simple wash/alkali/heat lysis method was the most sensitive, reproducible, simple and cost-effective extraction method. This was the only method which removed any PCR inhibitors and inherent DNA which existed in virgin BacT/Alert aerobic, anaerobic and paediatric blood culture material. Contaminating microbial DNA from Lactococcus lactis or Bacillus coagulans was identified in all batches of BacT/Alert FAN aerobic blood culture material examined.

  14. Protein hydrolysates and associated bacterial contaminants as oviposition attractants for the mosquito Culex quinquefasciatus.

    PubMed

    Beehler, J W; Millar, J G; Mulla, M S

    1994-10-01

    Six protein or protein hydrolysate solutions were tested for activity as attractants for ovipositing Culex quinquefasciatus mosquitoes in the laboratory. Four of these solutions (egg albumin, lactalbumin hydrolysate, casein hydrolysate and yeast hydrolysate) were attractive to ovipositing females at varying concentrations, when compared to distilled water controls. Soy hydrolysate was repellent at 1%, but not significantly attractive or repellent at lower concentrations. 'Nulure', a tephritid fly bait containing protein hydrolysate, also had no significant effect on oviposition behaviour. Gravid females mostly oviposited within the first 4 h of the scotophase, regardless of the presence or absence of an oviposition attractant. Lactalbumin hydrolysate 1% solution, with or without 0.1% neomycin antibiotic, was attractive to Cx quinquefasciatus. This effect was reduced by the presence of neomycin which, alone, had no effect on oviposition. Hence both lactalbumin hydrolysate and bacterial contaminants were shown to be attractive to gravid Cx quinquefasciatus.

  15. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation.

    PubMed

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-12-01

    Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.

  16. Immunogenicity and protective efficacy of yeast extracts containing rotavirus-like particles: a potential veterinary vaccine.

    PubMed

    Rodríguez-Limas, William A; Pastor, Ana Ruth; Esquivel-Soto, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A

    2014-05-19

    Rotavirus is the most common cause of severe diarrhea in many animal species of economic interest. A simple, safe and cost-effective vaccine is required for the control and prevention of rotavirus in animals. In this study, we evaluated the use of Saccharomyces cerevisiae extracts containing rotavirus-like particles (RLP) as a vaccine candidate in an adult mice model. Two doses of 1mg of yeast extract containing rotavirus proteins (between 0.3 and 3 μg) resulted in an immunological response capable of reducing the replication of rotavirus after infection. Viral shedding in all mice groups diminished in comparison with the control group when challenged with 100 50% diarrhea doses (DD50) of murine rotavirus strain EDIM. Interestingly, when immunizing intranasally protection against rotavirus infection was observed even when no increase in rotavirus-specific antibody titers was evident, suggesting that cellular responses were responsible of protection. Our results indicate that raw yeast extracts containing rotavirus proteins and RLP are a simple, cost-effective alternative for veterinary vaccines against rotavirus.

  17. Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli.

    PubMed Central

    Barbosa, M F; Beck, M J; Fein, J E; Potts, D; Ingram, L O

    1992-01-01

    Process conditions for the acid hydrolysis of pine hemicellulose and cellulose have been described which provide a biocompatible sugar solution. By using an improved strain of recombinant Escherichia coli, strain KO11, hydrolysates supplemented with yeast extract and tryptone nutrients were converted to ethanol with an efficiency of 85% to over 100% on the basis of monomer sugar content (approximately 72 g/liter) and with the production of 35 g of ethanol per liter in 48 h. In the process described, approximately 347 liters of ethanol could be produced per dry metric ton of lignocellulose. PMID:1599258

  18. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs).

    PubMed

    Ma, Xiaochen; Zheng, Hongli; Huang, He; Liu, Yuhuan; Ruan, Roger

    2014-10-01

    The enzymatic hydrolysates of the lipid-extracted microalgal biomass residues (LMBRs) from biodiesel production were evaluated as nutritional sources for the mixotrophic growth of Chlorella vulgaris and lipid production at different temperature levels and substrate concentrations. Both parameters had a significant effect on cell growth and lipid production. It was observed that C. vulgaris could grow mixotrophically in a wide range of temperatures (20∼35 °C). The optimal temperature for cell growth and lipid accumulation of the mixotrophic growth of C. vulgaris was between 25 and 30 °C. The neutral lipids of the culture at 25 °C accounted for as much as 82 % of the total lipid content in the microalga at culture day 8. Fatty acid composition analysis showed that the increase of saturated fatty acids was proportional to the increase in temperature. The maximum biomass concentration of 4.83 g/L and the maximum lipid productivity of 164 mg/L/day were obtained at an initial total sugar concentration of 10 g/L and an initial total concentration of amino acids of 1.0 g/L but decreased at lower and higher substrate concentrations. The present results show that LMBRS could be utilized by the mixotrophic growth of C. vulgaris for microalgal lipid production under the optimum temperature and substrate concentration.

  19. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs).

    PubMed

    Ma, Xiaochen; Zheng, Hongli; Huang, He; Liu, Yuhuan; Ruan, Roger

    2014-10-01

    The enzymatic hydrolysates of the lipid-extracted microalgal biomass residues (LMBRs) from biodiesel production were evaluated as nutritional sources for the mixotrophic growth of Chlorella vulgaris and lipid production at different temperature levels and substrate concentrations. Both parameters had a significant effect on cell growth and lipid production. It was observed that C. vulgaris could grow mixotrophically in a wide range of temperatures (20∼35 °C). The optimal temperature for cell growth and lipid accumulation of the mixotrophic growth of C. vulgaris was between 25 and 30 °C. The neutral lipids of the culture at 25 °C accounted for as much as 82 % of the total lipid content in the microalga at culture day 8. Fatty acid composition analysis showed that the increase of saturated fatty acids was proportional to the increase in temperature. The maximum biomass concentration of 4.83 g/L and the maximum lipid productivity of 164 mg/L/day were obtained at an initial total sugar concentration of 10 g/L and an initial total concentration of amino acids of 1.0 g/L but decreased at lower and higher substrate concentrations. The present results show that LMBRS could be utilized by the mixotrophic growth of C. vulgaris for microalgal lipid production under the optimum temperature and substrate concentration. PMID:25138600

  20. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.

    PubMed

    Hodgman, C Eric; Jewett, Michael C

    2013-10-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform technology to help satisfy the growing demand for simple, affordable, and efficient protein production. In this article, we describe a novel CFPS platform derived from the popular bio-manufacturing organism Saccharomyces cerevisiae. By developing a streamlined crude extract preparation protocol and optimizing the CFPS reaction conditions we were able to achieve active firefly luciferase synthesis yields of 7.7 ± 0.5 µg mL(-1) with batch reactions lasting up to 2 h. This duration of synthesis is the longest ever reported for a yeast CFPS batch reaction. Furthermore, by removing extraneous processing steps and eliminating expensive reagents from the cell-free reaction, we have increased relative product yield (µg protein synthesized per $ reagent cost) over an alternative commonly used method up to 2000-fold from ∼2 × 10(-4) to ∼4 × 10(-1)  µg $(-1) , which now puts the yeast CPFS platform on par with other eukaryotic CFPS platforms commercially available. Our results set the stage for developing a yeast CFPS platform that provides for high-yielding and cost-effective expression of a variety of protein therapeutics and protein libraries.

  1. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  2. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    PubMed

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results.

  3. Recovery of spores of Clostridium botulinum in yeast extract agar and pork infusion agar after heat treatment.

    PubMed

    Odlaug, T E; Pflug, I J

    1977-10-01

    Yeast extract agar, pork infusion agar, and modifications of these media were used to recover heated Clostridium botulinum spores. The D- and z-values were determined. Two type A strains and one type B strain of C. botulinum were studied. In all cases the D-values were largest when the spores were recovered in yeast extract agar, compared to the D-values for spores recovered in pork infusion agar. The z-values for strains 62A and A16037 were largest when the spores were recovered in pork infusion agar. The addition of sodium bicarbonate and sodium thioglycolate to pork infusion agar resulted in D-values for C. botulinum 62A spores similar to those for the same spores recovered in yeast extract agar. The results suggest that sodium bicarbonate and sodium thioglycolate should be added to recovery media for heated C. botulinum spores to obtain maximum plate counts. PMID:335970

  4. High-throughput method for the analysis of ethylenethiourea with direct injection of hydrolysed urine using online on-column extraction liquid chromatography and triple quadrupole mass spectrometry.

    PubMed

    Ekman, Eva; Maxe, Margaretha; Littorin, Margareta; Jönsson, Bo A G; Lindh, Christian H

    2013-09-01

    Ethylenethiourea (ETU) is of major toxicological concern, since in experimental animal studies, ETU has shown a large spectrum of adverse effects. High occupational exposure can be found among agricultural workers or during manufacturing of ethylenbisdithiocarbamates (EBDC). For the general public, sources of environmental exposure may be residues of ETU in commercial products, food and beverages. For the determination of ETU in human urine we present a high-throughput online on-column extraction liquid chromatography triple quadrupole mass spectrometry method using direct injection of hydrolysed urine samples. This method is simple, user- and environmentally friendly and all sample preparation is performed in 96-well plates. A labelled ETU internal standard was used for quantification. The method showed a good sensitivity with a limit of quantification (LOQ) of 0.5ng ETU/mL urine and the calibration curve was linear in the range 0.25-200ng ETU/mL urine. The within-run, between-run and between-batch precision was between 6% and 13%. Alkaline hydrolysis considerably increased the levels of ETU indicating a potential conjugate. The method was applied in an experimental dermal exposure study in humans, with sample concentrations ranging from 0.4 to 5.0ng ETU/mL urine. The excretion in urine was 10% of the applied dose. The elimination profile seemed to differ between the two individuals. The results show an estimated half-life of ETU between 34 and 72h. Although the experiment is limited to two individuals, the data provide valuable and new information regarding the toxicokinetics of ETU after dermal exposure.

  5. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  6. Effect of ultrafiltration of yeast extracts on their ability to promote lactic acid bacteria growth.

    PubMed

    Gaudreau, H; Champagne, C P; Conway, J; Degré, R

    1999-11-01

    Five yeast extracts (YE) were fractionated by ultrafiltration (UF) with 1, 3, and 10 kDa molecular weight cutoff membranes, concentrated by freeze-drying, and the resulting powders of yeast extract filtrates (YEF) were evaluated for their growth-promoting properties on nine cultures of lactic acid bacteria (LAB). There was an increase in alpha-amino nitrogen content of the YEF powders as the pore size of the UF membranes used to filter the YE solutions decreased. The source of YE had a much greater effect than UF on the growth of LAB. This was also the case for the YEF contents in total and alpha-amino nitrogen. Growth curves of the LAB showed that maximum growth rate (mumax) data were on average 30% higher with bakers' YE than with brewers' YE, while maximum optical density (ODmax) values were on average 16% higher with bakers' YE. This could be related to the higher nitrogen content of the bakers' YE used in this study. Modification by UF of the YE had no significant influence on the growth of 4 of the 9 LAB strains. The three strains of Lactobacillus casei were negatively influenced by UF, as they did not grow as well in the media containing the YEF obtained after filtering with 1 and 3 kDa membranes. On a total solids basis, the 2.5 x retentates from the 10 kDa membrane gave, on average, 4% lower mumax and 5% lower ODmax values as compared to cultures where the corresponding YEF was used as medium supplement. This could also be partially related to the different nitrogen contents of the filtrates and retentates.

  7. Yeast Extract: Sucrose Ratio Effects on Egg Load, Survival, and Mortality Caused by GF-120 in Western Cherry Fruit Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrinsic sources of nitrogen are needed by tephritid fruit flies for optimal nutrition. In this study, relationships between yeast extract diets containing 0, 0.109, 0.545, 1.09, 2.18, 3.27, and 5.45% nitrogen (N) and diet intake, survival, egg production, and responses to spinosad bait in western...

  8. Effects of yeast extract and vitamin D on turkey mortality and cellulitis incidence in a transport stress model.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated yeast extract (YE) and vitamin D (VD) in turkeys treated with dexamethasone (Dex) at intervals designed to simulate transport stress during a 3 stage growout. YE but not VD decreased early mortality (P = 0.001) and mortality at wk 7 (P= 0.02) and wk 12 (P = 0.002) but not wk 16. Celluli...

  9. Effect of yeast extract and vitamin B sub 12 on ethanol production from cellulose by Clostridium thermocellum I-1-B

    SciTech Connect

    Sato, Kanji; Goto, Shingo; Yonemura, Sotaro; Sekine, Kenji; Okuma, Emiko; Takagi, Yoshio; Honnami, Koyu; Saiki, Takashi )

    1992-02-01

    Addition to media of yeast extract, a vitamin mixture containing vitamin B{sub 12}, biotin, pyridoxamine, and p-aminobenzoic acid, or vitamin B{sub 12} alone enhanced formation of ethanol but decreased lactate production in the fermentation of cellulose by Clostridium thermocellum I-1-B. A similar effect was not observed with C. thermocellum ATCC 27405 and JW20.

  10. Use of yeast cell wall extract as a tool to reduce the impact of necrotic enteritis in broilers.

    PubMed

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Choct, Mingan; Forder, Rebecca; Swick, Robert A

    2015-05-01

    The use of a yeast cell wall extract derived from Saccharomyces cerevisiae (Actigen(®)) has been proposed as an alternative to in-feed antibiotics. This experiment was conducted to investigate the efficacy of yeast cell extract as an alternative to zinc bacitracin or salinomycin using a necrotic enteritis challenge model. A feeding study was conducted using 480-day-old male Ross 308 chicks assigned to 48 floor pens. A 2 × 4 factorial arrangement of treatments was employed. The factors were: challenge (- or +) and feed additive (control, zinc bacitracin at 100/50 mg/kg, yeast cell wall extract at 400/800/200 mg/kg, or salinomycin at 60 mg/kg in starter, grower, and finisher, respectively). Diets based on wheat, sorghum, soybean meal, meat and bone meal, and canola meal were formulated according to the Ross 308 nutrient specifications. Birds were challenged using a previously established protocol (attenuated Eimeria spp oocysts) on d 9 and 10(8) to 10(9) Clostridium perfringens (type A strain EHE-NE18) on d 14 and 15). Challenged and unchallenged birds were partitioned to avoid cross contamination. Challenged birds had lower weight gain, feed intake and livability compared to unchallenged birds on d 24 and d 35 (P < 0.05). Birds given zinc bacitracin, yeast cell wall extract, or salinomycin had improved weight gain and livability when compared to control birds given no additives. Challenge × additive interactions were observed for feed intake and weight gain on d 24 and d 35 (P < 0.01). The additives all had a greater positive impact on feed intake, weight gain, and livability in challenged than unchallenged birds. All challenged birds showed higher necrotic enteritis lesion scores in the small intestine sections when compared to unchallenged birds (P < 0.01). Birds fed yeast cell wall extract exhibited increased villus height, decreased crypt depth, and increased villus:crypt ratio when challenged. Yeast cell wall extract, zinc bacitracin, and salinomycin were

  11. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    PubMed Central

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  12. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice.

    PubMed

    Yeap, Swee Keong; Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Mohamad, Nurul Elyani; Hussin, Aminuddin Bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah; Long, Kamariah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  13. Zinc-containing yeast extract promotes nonrapid eye movement sleep in mice.

    PubMed

    Cherasse, Yoan; Saito, Hitomi; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael; Urade, Yoshihiro

    2015-10-01

    Zinc is an essential trace element for humans and animals, being located, among other places, in the synaptic vesicles of cortical glutamatergic neurons and hippocampal mossy fibers in the brain. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate and GABA receptors. Because of the central role of these neurotransmitters in brain activity, we examined in this study the sleep-promoting activity of zinc by monitoring locomotor activity and electroencephalogram after its administration to mice. Zinc-containing yeast extract (40 and 80 mg/kg) dose dependently increased the total amount of nonrapid eye movement sleep and decreased the locomotor activity. However, this preparation did not change the amount of rapid eye movement sleep or show any adverse effects such as rebound of insomnia during a period of 24 h following the induction of sleep; whereas the extracts containing other divalent cations (manganese, iron, and copper) did not decrease the locomotor activity. This is the first evidence that zinc can induce sleep. Our data open the way to new types of food supplements designed to improve sleep.

  14. Simulation of the continuous fermentation of manioc hydrolysate

    SciTech Connect

    Bonomi, A.; Aboutboul, H.; Schmidell, W.

    1981-01-01

    The simulation of the continuous fermentation of manioc hydrolysate utilizing a yeast strain of Saccharomyces cerevisiae isolated from the commercial pressed yeast largely employed in Brazilian distilleries is described. The model used in the simulation is derived from batch experimental runs. In order to assess the economical competitiveness of the continuous fermentation, some additional concepts, such as cell recycle, and two fermentors connected in series with and without feed division of fresh substrate, are analyzed and compared.

  15. Evaluation of the efficacy of yeast extract in reducing intestinal Clostridium perfringens levels in broiler chickens.

    PubMed

    Thanissery, R; McReynolds, J L; Conner, D E; Macklin, K S; Curtis, P A; Fasina, Y O

    2010-11-01

    The etiological agent of necrotic enteritis is Clostridium perfringens. Traditionally, necrotic enteritis is controlled with in-feed antibiotics. However, increasing consumer demand for drug-free poultry has fostered the search for nonantibiotic alternatives. Yeast extract contain nucleotides that are immunomodulatory and also essential for cellular functions. An experiment was conducted to evaluate the efficacy of NuPro yeast extract (Alltech Inc., Nicholasville, KY) in reducing intestinal C. perfringens levels in broiler chickens. One hundred ninety-two 1-d-old male broiler chicks were obtained and randomly assigned to 6 treatments in a battery cage trial. Treatment 1 consisted of chicks fed a corn-soybean meal basal diet (BD) without added bacitracin methylene disalicylate or NuPro. Treatment 2 consisted of chicks fed BD into which bacitracin methylene disalicylate was added at 0.055 g/kg. Treatment 3 consisted of chicks fed BD supplemented with NuPro at a 2% level for the first 10 d of the experiment. Treatments 4 (PX), 5, and 6 (PN) consisted of chicks that were challenged with 3 mL of the C. perfringens inoculum (~10(7) cfu/mL) on d 14, 15, and 16 of the experiment and fed diets similar to treatments 1, 2, and 3, respectively. On d 1 and 7 postchallenge, intestinal C. perfringens levels, lesion scores, and alkaline phosphatase activity were assessed. On d 1 postchallenge, C. perfringens level in treatment 5 (2.09 log(10) cfu/g) was lower (P < 0.05) compared with the PX treatment (4.71 log(10) cfu/g) but similar to the PN treatment (2.98 log(10) cfu/g). A similar trend was observed on d 7 postchallenge. NuPro supplementation enhanced alkaline phosphatase activity (P < 0.05) in C. perfringens-challenged chicks and appeared to reduce intestinal lesion scores. Although dietary supplementation of NuPro in the PN treatment reduced C. perfringens levels by 1.73 and 0.68 log(10) cfu/g compared with the PX treatment on d 1 and 7 postchallenge, respectively, these

  16. Preparation of a γ-glutamylcysteine-enriched yeast extract from a newly developed GSH2-deficient strain.

    PubMed

    Nishiuchi, Hiroaki; Suehiro, Mariko; Sugimoto, Reiko; Yamagishi, Kazuo

    2013-01-01

    Gamma-glutamylcysteine (γ-GC), the precursor of glutathione (GSH), may have significant health benefits as a dietary supplement, but there are few cost-effective methods available for its large-scale production. We developed an efficient method for producing γ-GC in a mutant yeast strain using a three-step breeding procedure and a unique cultivation process. In the first breeding step, we prepared a glutathione synthetase (GSH2)-deficient yeast mutant. In the second step, selenate (SeO(4)(2-)) sensitivity was introduced by crossing the GSH2-deficient mutant with a strain harboring the met30 mutation. In the final step, pantothenic acid auxotrophy was introduced by ethyl methanesulfonate mutagenesis. The isolated strain displayed significantly enhanced cellular γ-GC when cultivated in synthetic medium without pantothenic acid, reaching a maximum level of 4.39% of dry cell weight. Using this strain, we were able to prepare a yeast extract containing approximately 13% γ-GC (w/w), which is markedly higher than the reported value (0.3%) of commercially available yeast extracts. The present method may facilitate large-scale γ-GC production for investigating the nutritive value and other benefits of dietary γ-GC.

  17. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity.

    PubMed

    Huff, G R; Dutta, V; Huff, W E; Rath, N C

    2011-08-01

    1. Effective nutritional approaches to counteract the negative effects of stress may provide food animal producers with useful alternatives to antibiotics. In this study, turkeys were fed on a standard diet, or the same diet supplemented with yeast extract (YE), to determine if YE would improve disease resistance in a stress model. 2. At 16 weeks of age, half of the birds were exposed to a bacterial challenge using a coarse spray of the pen environment. A subset of control and challenged birds was also treated with dexamethasone (Dex) prior to challenge (Dex/challenge). At 18 weeks, another subset was subjected to a 12?h transport stress protocol (Challenge/transport). All birds were bled and necropsied the morning after transport. The numbers and proportions of blood cells and the heterophil oxidative burst activity (OBA) were determined. Serum corticosterone (Cort) levels of male birds were measured using a commercial ELISA kit. Body weight and gain were increased by YE during week 1. 3. YE decreased mortality and bacterial isolation following Dex/challenge only in females. Cort levels in male turkeys were decreased by YE and Dex treatment. OBA was higher in males and in birds given YE and was reduced by challenge and transport. 4. These results suggest there may be gender differences in the turkey stress response and that dietary YE has potential for modulating the impact of stress on innate immunity of turkeys. PMID:21919572

  18. Biphenyl Phytoalexin in Sorbus pohuashanensis Suspension Cell Induced by Yeast Extract.

    PubMed

    Zhou, Liangyun; Yang, Jian; Yang, Guang; Kang, Chuanzhi; Xiao, Wenjuan; Lv, Chaogeng; Wang, Sheng; Tang, Jinfu; Guo, Lanping

    2016-01-01

    Biphenyls are unique phytoalexins de novo synthesized in plants in response to pathogen attack. These compounds are found in Maloideae, a subfamily of the Rosaceae. The anti-microbial activities of biphenyls have been reported in a number of studies and they appear to represent an important defense strategy against pathogens common in the Maloideae, such as species in Malus, Pyrus, Sorbus, and Chaenomeles. Here, cell suspension cultures of Sorbus pohuashanensis were established to study biphenyl phytoalexins formation after yeast extract (YE) treatment. An ultra-performance liquid chromatography (UPLC) method coupled with quadrupole time of flight mass spectrometry (Q-TOF-MS) LC-MS/MS was applied to determine the time course of these biphenyl biomarkers accumulation in YE-treated S. pohuashanensis suspension cells. The results of quantitative analyses show the content of Noraucuparin, 2'-Hydroxyaucuparin, and their glycosides initially increased, then decreased over time. The Noraucuparin content reached its highest (225.76 μg·g(-1)) at 18 h after treatment, 6 hours earlier than that of Noraucuparin 5-O-β-d-glucopyranoside. The content of 2'-Hydroxyaucuparin reached its highest (422.75 μg·g(-1)) at 30 h after treatment, also earlier than that of its glycoside. The understanding of phytoalexin metabolism in this study may provide a basis for improving Maloideae resistance to pathogens. PMID:27649118

  19. Investigations on hydrolytic activities from Stachybotrys microspora and their use as an alternative in yeast DNA extraction.

    PubMed

    Abdeljalil, Salma; Ben Hmad, Ines; Saibi, Walid; Amouri, Bahia; Maalej, Wiem; Kaaniche, Marwa; Koubaa, Aida; Gargouri, Ali

    2014-02-01

    Stachybotrys microspora is a filamentous fungus characterized by the secretion of multiple hydrolytic activities (cellulolytic and non-cellulolytic enzymes). The production of these biocatalysts was studied under submerged culture using glucose, cellulose, and wheat bran as carbon sources. Endoglucanases, pectinases, xylanases, β-glucanases, chitinases, and proteases were induced on cellulose-based medium and repressed on glucose in both strains with higher amounts produced by the mutant. β-glucosidases were roughly equally produced by both strains under glucose and cellulose conditions. The yield of chitinases, β-glucanases, and proteases produced by Stachybotrys strains was as much higher than the commercialized lysing enzyme called "zymolyase," currently used in yeast DNA extraction. In this context, we showed that S. microspora hydrolases can be successfully applied in the extraction of yeast DNA.

  20. Fermentation and recovery of glutamic acid from palm waste hydrolysate by Ion-exchange resin column.

    PubMed

    Das, K; Anis, M; Azemi, B M; Ismail, N

    1995-12-01

    Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.

  1. SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate.

    PubMed

    Jayakody, Lahiru N; Kadowaki, Masafumi; Tsuge, Keisuke; Horie, Kenta; Suzuki, Akihiro; Hayashi, Nobuyuki; Kitagaki, Hiroshi

    2015-01-01

    The complex inhibitory effects of inhibitors present in lignocellulose hydrolysate suppress the ethanol fermentation of Saccharomyces cerevisiae. Although the interactive inhibitory effects play important roles in the actual hydrolysate, few studies have investigated glycolaldehyde, the key inhibitor of hot-compressed water-treated lignocellulose hydrolysate. Given this challenge, we investigated the interactive effects of mixed fermentation inhibitors, including glycolaldehyde. First, we confirmed that glycolaldehyde was the most potent inhibitor in the hydrolysate and exerted interactive inhibitory effects in combination with major inhibitors. Next, through genome-wide analysis and megavariate data modeling, we identified SUMOylation as a novel potential mechanism to overcome the combinational inhibitory effects of fermentation inhibitors. Indeed, overall SUMOylation was increased and Pgk1, which produces an ATP molecule in glycolysis by substrate-level phosphorylation, was SUMOylated and degraded in response to glycolaldehyde. Augmenting the SUMO-dependent ubiquitin system in the ADH1-expressing strain significantly shortened the lag phase of growth, released cells from G2/M arrest, and improved energy status and glucose uptake in the inhibitor-containing medium. In summary, our study was the first to establish SUMOylation as a novel platform for regulating the lag phase caused by complex fermentation inhibitors.

  2. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn.

    PubMed

    Sánchez-Sampedro, M Angeles; Fernández-Tárrago, Jorge; Corchete, Purificación

    2005-09-22

    The biosynthesis of the flavonolignan silymarin, a constitutive compound of the fruits of Silybum marianum with strong antihepatotoxic and hepatoprotective activities, is severely reduced in cell cultures of this species. It is well known that elicitation is one of the strategies employed to increase accumulation of secondary metabolites. Our study here reports on the effect of several compounds on the production of silymarin in S. marianum cultures. Yeast extract (YE), chitin and chitosan were compared with respect to their effects on silymarin accumulation in S. marianum suspensions and only yeast extract stimulated production. Jasmonic acid (JA) potentiated the yeast extract effect. One of the jasmonic acid derivatives, methyl jasmonate (MeJA), strongly promoted the accumulation of silymarin. Methyl jasmonate acted in a number of steps of the metabolic pathway of flavonolignans and its stimulating effect was totally dependent of "de novo" protein synthesis. Chalcone synthase (CHS) activity was enhanced by methyl jasmonate; however there did not appear to be a temporal relationship between silymarin accumulation and increase in enzyme activity. Also, this increase was not blocked by the protein synthesis inhibitor cycloheximide (CH). This study indicates that elicitor treatment promotes secondary metabolite production in S. marianum cultures and that jasmonic acid and its functional analogue plays a critical role in elicitation.

  3. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus

    PubMed Central

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-01-01

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution. PMID:27589726

  4. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-01-01

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  5. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-01-01

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution. PMID:27589726

  6. Cell-recycle continuous fermentation of Enterococcus faecalis RKY1 for economical production of lactic acid by reduction of yeast extract supplementation.

    PubMed

    Lee, Ryun-Kyung; Ryu, Hwa-Won; Oh, Hurok; Kim, Mina; Wee, Young-Jung

    2014-05-01

    Both lactic acid productivity and cell growth were linearly correlated with yeast extract supplementation in batch fermentation. During conventional continuous operation, although fresh feed was introduced into the bioreactor with a significantly low dilution rate (0.04 h(-1)), the amount of yeast extract employed was not enough to maintain the growth of microorganism. However, when the fresh feed contained 100 g/l glucose and 2 g/l yeast extract during cell-recycle continuous operation at a dilution rate of 0.04 h(-1), more than 90 g/l lactic acid was continuously produced, with the average productivity of 3.72 g/l·h. In this experiment, 82 g of yeast extract (77% of reduction yield) could be reduced for the production of 1 kg of lactic acid compared with batch fermentation of a similar volumetric productivity.

  7. The Effects of Mechanically Deboned Chicken Hydrolysates on the Characteristics of Imitation Crab Stick

    PubMed Central

    Jin, Sang-Keun; Hwang, Jin-Won; Moon, Sungsil; Choi, Yeung-Joon; Kim, Gap-Don; Jung, Eun-Young; Yang, Han-Sul

    2014-01-01

    The effects of adding mechanically deboned chicken (MDC) hydrolysates on the quality characteristics of imitation crab stick (ICS) during storage were investigated. ICS was prepared from Alaska Pollack, chicken breast surimi, and protein hydrolysates enzymatically extracted from MDC. ICS samples were divided into 4 groups: without protein hydrolysate (control), added with 0.5% protein hydrolysate (T1), added with 1.0% protein hydrolysate (T2), and added with 1.5% protein hydrolysate (T3). Results showed that crude protein content did not differ significantly among the ICS samples (p>0.05). ICS sample added with MDC hydrolysates had higher crude fat and ash content but lower moisture content than the control (p<0.05). Lightness was significantly lower in T2 and T3 than in the other groups at 0 and 4 wk of storage. Also, whiteness decreased in the groups contained MDC hydrolysates. Breaking force and jelly strength were higher in samples containing MDC hydrolysates compared to control samples (p<0.05). Additionally, saturated fatty acid contents were lower in the groups containing MDC hydrolysates than in control sample groups (p<0.05). Polyunsaturated fatty acid (PUFA) and essential fatty acids (EFA) were significantly higher in T2 and T3 than the control samples. In particular, all samples containing MDC hydrolysates had reduced thiobarbituric acid-reactive substances (TBARS) values at 4 wk. Free radical scavenging activity also was increased with addition of MDC hydrolysates. PMID:26760938

  8. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes.

    PubMed

    Lutchman, Vicky; Medkour, Younes; Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I

    2016-03-29

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  9. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  10. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    PubMed

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  11. Antioxidant properties of enzymatic hydrolysates from royal jelly.

    PubMed

    Nagai, Takeshi; Inoue, Reiji; Suzuki, Nobutaka; Nagashima, Toshio

    2006-01-01

    Enzymatic hydrolysates were prepared from royal jelly using three enzymes (pepsin, trypsin, and papain), and their antioxidative properties were evaluated. The yield of these hydrolysates was very high, about 20-26% on a raw weight basis. In comparison with the antioxidative activities of water extract and alkaline extract of royal jelly, the antioxidative activities and scavenging activities against active oxygen species such as superoxide anion radical and hydroxyl radical of each hydrolysate were high in the sample with a low protein concentration. These results suggest that once royal jelly is hydrolyzed using enzyme, the hydrolysate possesses much higher antioxidative activity and scavenging activity against active oxygen species. Royal jelly will act as a medicinal food in the human body. PMID:17004899

  12. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract.

    PubMed

    Portu, Javier; López, Rosa; Baroja, Elisa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2016-06-15

    Phenolic compounds play a key role in grape and wine organoleptic properties, being therefore a key parameter in wine quality. Elicitor application constitutes an interesting field of research since it is indirectly involved in the accumulation of phenolic compounds. The aim of this study was to compare the effect of the application of three different elicitors on both grape and wine phenolic content. Methyl jasmonate, chitosan, and a commercial yeast extract were applied to the canopy at veraison and one week later. Results showed that foliar treatments carried out with methyl jasmonate and yeast extract achieved the best results, increasing grape and wine anthocyanin content when compared to the control. Moreover, the application of the yeast elicitor also enhanced grape stilbene content. In contrast, the chitosan treatment did not have a substantial impact on the phenolic compounds. The results of this study indicate that methyl jasmonate and yeast extract applications could be a simple practice to increase grape and wine phenolic content.

  13. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    PubMed

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans.

  14. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    PubMed

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans. PMID:27211695

  15. Peat hydrolysate medium optimization for pullulan production.

    PubMed

    Boa, J M; Leduy, A

    1984-07-01

    Peat hydrolysate, a diluted acid-autoclaved extract of peat, was used as a substrate for the production of the extracellular polysaccharide pullulan by three strains of Aureobasidium pullulans, 140B, 142, and 2552. It was found that the addition of (NH(4))(2)SO(4) and K(2)HPO(4) as sources of nitrogen and phosphate, respectively, is not necessary for the polysaccharide production. The economically optimized culture medium for large-scale production of pullulan contains peat hydrolysate, 0.05% NaCl, 0.02% MgSO(4), and 0.01% antifoam FG-10. The initial pH of peat hydrolysate medium is adjusted to its optimum value of 6.0 with Ca(OH)(2). The total ingredient cost for the production of each kilogram of pullulan with optimized medium is only 1/10 of that with the nonoptimized medium. In this study, a zero cost for peat hydrolysate was assumed, since it is an effluent of the peat and peat processing industries.

  16. Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine.

    PubMed

    Huynh, Hoai T; Chan, Leslie C L; Tran, Trinh T B; Nielsen, Lars K; Reid, Steven

    2012-01-01

    A critical component of an in vitro production process for baculovirus biopesticides is a growth medium that is efficacious, robust, and inexpensive. An in-house low-cost serum-free medium, VPM3, has been shown to be very promising in supporting Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) production in H. zea insect cell suspension cultures, for use as a biopesticide against the Heliothine pest complex. However, VPM3 is composed of a significant number of undefined components, including five different protein hydrolysates, which introduce a challenging lot-to-lot variability to the production process. In this study, an intensive statistical optimization routine was employed to reduce the number of protein hydrolysates in VPM3 medium. Nearly 300 runs (including replicates) were conducted with great efficiency by using 50 mL TubeSpin® bioreactors to propagate insect cell suspension cultures. Fractional factorial experiments were first used to determine the most important of the five default protein hydrolysates, and to screen for seven potential substitutes for the default meat peptone, Primatone RL. Validation studies informed by the screening tests showed that promising alternative media could be formulated based on just two protein hydrolysates, in particular the YST-AMP (Yeast Extract and Amyl Meat Peptone) and YST-POT (Yeast Extract and Lucratone Potato Peptone) combinations. The YST-AMP (meat-based) and YST-POT (meat-free) variants of VPM3 were optimized using response surface methodology, and were shown to be just as good as the default VPM3 and the commercial Sf-900 II media in supporting baculovirus yields, hence providing a means toward a more reproducible and scalable production process for HaSNPV biopesticides. PMID:22323401

  17. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate.

    PubMed

    Yuangsaard, Napatchanok; Yongmanitchai, Wichien; Yamada, Mumoru; Limtong, Savitree

    2013-03-01

    Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH(4))(2)SO(4), 0.09 % yeast extract, 0.05 % KH(2)PO(4), and 0.05 % MgSO(4)·7H(2)O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield.

  18. Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine.

    PubMed

    Huynh, Hoai T; Chan, Leslie C L; Tran, Trinh T B; Nielsen, Lars K; Reid, Steven

    2012-01-01

    A critical component of an in vitro production process for baculovirus biopesticides is a growth medium that is efficacious, robust, and inexpensive. An in-house low-cost serum-free medium, VPM3, has been shown to be very promising in supporting Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) production in H. zea insect cell suspension cultures, for use as a biopesticide against the Heliothine pest complex. However, VPM3 is composed of a significant number of undefined components, including five different protein hydrolysates, which introduce a challenging lot-to-lot variability to the production process. In this study, an intensive statistical optimization routine was employed to reduce the number of protein hydrolysates in VPM3 medium. Nearly 300 runs (including replicates) were conducted with great efficiency by using 50 mL TubeSpin® bioreactors to propagate insect cell suspension cultures. Fractional factorial experiments were first used to determine the most important of the five default protein hydrolysates, and to screen for seven potential substitutes for the default meat peptone, Primatone RL. Validation studies informed by the screening tests showed that promising alternative media could be formulated based on just two protein hydrolysates, in particular the YST-AMP (Yeast Extract and Amyl Meat Peptone) and YST-POT (Yeast Extract and Lucratone Potato Peptone) combinations. The YST-AMP (meat-based) and YST-POT (meat-free) variants of VPM3 were optimized using response surface methodology, and were shown to be just as good as the default VPM3 and the commercial Sf-900 II media in supporting baculovirus yields, hence providing a means toward a more reproducible and scalable production process for HaSNPV biopesticides.

  19. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate.

    PubMed

    Yuangsaard, Napatchanok; Yongmanitchai, Wichien; Yamada, Mumoru; Limtong, Savitree

    2013-03-01

    Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH(4))(2)SO(4), 0.09 % yeast extract, 0.05 % KH(2)PO(4), and 0.05 % MgSO(4)·7H(2)O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield. PMID:23132277

  20. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread

    PubMed Central

    Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-01-01

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  1. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-06-15

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  2. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-06-15

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt).

  3. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis.

    PubMed

    Rao, R Sreenivas; Jyothi, Ch Pavana; Prakasham, R S; Sarma, P N; Rao, L Venkateswar

    2006-10-01

    A natural isolate, Candida tropicalis was tested for xylitol production from corn fiber and sugarcane bagasse hydrolysates. Fermentation of corn fiber and sugarcane bagasse hydrolysate showed xylose uptake and xylitol production, though these were very low, even after hydrolysate neutralization and treatments with activated charcoal and ion exchange resins. Initial xylitol production was found to be 0.43 g/g and 0.45 g/g of xylose utilised with corn fiber and sugarcane bagasse hydrolysate respectively. One of the critical factors for low xylitol production was the presence of inhibitors in these hydrolysates. To simulate influence of hemicellulosic sugar composition on xylitol yield, three different combinations of mixed sugar control experiments, without the presence of any inhibitors, have been performed and the strain produced 0.63 g/g, 0.68 g/g and 0.72 g/g of xylose respectively. To improve yeast growth and xylitol production with these hydrolysates, which contain inhibitors, the cells were adapted by sub culturing in the hydrolysate containing medium for 25 cycles. After adaptation the organism produced more xylitol 0.58 g/g and 0.65 g/g of xylose with corn fiber hydrolysate and sugarcane bagasse hydrolysate respectively.

  4. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    PubMed Central

    Tambellini, Nicolas P.; Zaremberg, Vanina; Turner, Raymond J.; Weljie, Aalim M.

    2013-01-01

    Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols. PMID:24958140

  5. Anaerobic degradation of azo dye Drimaren blue HFRL in UASB reactor in the presence of yeast extract a source of carbon and redox mediator.

    PubMed

    Baêta, B E L; Aquino, S F; Silva, S Q; Rabelo, C A

    2012-04-01

    This paper presents results on anaerobic degradation of the azo dye blue HFRL in a bench scale Upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature. The results show that the addition of yeast extract (500 mg/L) increased color removal (P < 0.05) from 62 to 93% despite the low chemical oxygen demand (COD) removal (~35%) which happened due to volatile fatty acids (VFA) accumulation. There were no differences in color removal (~91%) when yeast extract (500 mg/L) was used in the presence or absence of glucose, suggesting that yeast extract acted as source of redox mediator (riboflavin) and carbon. The specific rate of dye removal increased along the operational phases and depended on the presence of yeast extract, suggesting progressive biomass acclimatization. Analysis of bacterial diversity by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) method showed there was biomass selection along the bioreactor operation and no evidence of azo dye degrading bacteria predominance. This strengthens the hypothesis that color removal happens extracellularly by the reduction of azo bond by reduced redox mediators, such as riboflavin, which is present in high amount in the yeast extract.

  6. Malt-yeast extract-sucrose agar, a suitable medium for enumeration and isolation of fungi from silage.

    PubMed Central

    Skaar, I; Stenwig, H

    1996-01-01

    A general medium named malt-yeast extract-sucrose agar (MYSA) containing oxgall was designed. The medium was intended for the enumeration and isolation of molds and yeasts in routine examinations of animal feed stuffs. In this study MYSA was tested as a general medium for mycological examination of silage. The medium was compared with dichloran-rose bengal medium (DRBC) in an examination of more than 500 specimens of big bale grass silage. Selected characteristics of known fungal species commonly isolated from feeds were examined after growth on MYSA and DRBC and on malt extract agar, used as a noninhibitory control medium. MYSA suppressed bacterial growth, without affecting the growth of fungi common in feeds. The fungi growing on MYSA were easily recognized, and the medium seemed to slow radial growth of fungal colonies, which permitted, easy counting. The number of species found was higher on MYSA than on DRBC. When we compared MYSA with DRBC for mycological examination of grass silage samples, MYSA was found to be the medium of choice. PMID:8837416

  7. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    NASA Astrophysics Data System (ADS)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  8. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. PMID:27359065

  9. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%.

  10. Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae.

    PubMed

    Lalou, Sofia; Mantzouridou, Fani; Paraskevopoulou, Adamantini; Bugarski, Branko; Levic, Steva; Nedovic, Victor

    2013-11-01

    The rising trend of bioflavour synthesis by microorganisms is hindered by the high manufacturing costs, partially attributed to the cost of the starting material. To overcome this limitation, in the present study, dilute-acid hydrolysate of orange peel was employed as a low-cost, rich in fermentable sugars substrate for the production of flavour-active compounds by Saccharomyces cerevisiae. With this purpose, the use of immobilized cell technology to protect cells against the various inhibitory compounds present in the hydrolysate was evaluated with regard to yeast viability, carbon and nitrogen consumption and cell ability to produce flavour active compounds. For cell immobilization the encapsulation in Ca alginate beads was used. The results were compared with those obtained using free-cell system. Based on the data obtained immobilized cells showed better growth performance and increased ability for de novo synthesis of volatile esters of "fruity" aroma (phenylethyl acetate, ethyl hexanoate, octanoate, decanoate and dodecanoate) than those of free cells. The potential for in situ production of new formulations containing flavour-active compounds derive from yeast cells and also from essential oil of orange peel (limonene, α-terpineol) was demonstrated by the fact that bioflavour mixture was found to accumulate within the beads. Furthermore, the ability of the immobilized yeast to perform efficiently repeated batch fermentations of orange peel hydrolysate for bioflavour production was successfully maintained after six consecutive cycles of a total period of 240 h. PMID:23995224

  11. Influence of hen age on the response of turkey poults to cold stress, Escherichia coli challenge, and treatment with a yeast extract antibiotic alternative.

    PubMed

    Huff, G R; Huff, W E; Rath, N C; Solis de Los Santos, F; Farnell, M B; Donoghue, A M

    2007-04-01

    Two battery experiments were conducted to evaluate a commercial yeast extract feed supplement, Alphamune, in a cold stress-Escherichia coli challenge of 1-wk-old turkeys. Experiment 1 used 1-d-old male poults that were the progeny of 33-wk-old hens in their second week of lay. Experiment 2 used male poults of the same genetic line from 40-wk-old hens in their eighth week of lay. Poults were fed a standard unmedicated turkey starter diet or the same diet with either a low level (504 g/t) or a high level (1,008 g/t) of yeast extract. Challenged birds were exposed to intermittent cold stress during wk 1 to 3 and to a respiratory E. coli challenge at 1 wk of age. In both experiments, BW at wk 1 was increased by feeding yeast extract. In experiment 1, challenged, control-fed birds had decreased BW at wk 3 and feed conversion was protected by both levels of yeast extract supplementation. In experiment 2, challenge had no effect on control-fed birds; however, yeast extract decreased the BW of challenged birds. In experiment 1, total leukocyte numbers were decreased by challenge of control-fed birds only, and there was no effect of challenge on the heterophil/lymphocyte ratio. In experiment 2, total leukocyte numbers were decreased and the heterophil/lymphocyte ratio was increased in challenged, control-fed birds. Percentage mortality was not affected by challenge in experiment 1; however, in experiment 2, mortality was increased by challenge of control-fed birds and those fed the lower level of yeast extract. These results suggest that hen age should be considered when designing studies to evaluate antibiotic alternatives and in making decisions for incorporating such alternatives into production. PMID:17369533

  12. Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast.

    PubMed

    Peltola, Pasi; Ivask, Angela; Aström, Mats; Virta, Marko

    2005-11-01

    Twenty urban soil samples, with a wide range of Pb (14-5323 mg/kg) and Cu (8-12987 mg/kg), were used to compare the operational speciation of a five-step sequential leach with the bioavailability determined with bioluminescent Pb (RN4220(pTOO24)) and Cu (MC1061(pSLcueR/pDNPcopAluc)) specific bacterial biosensors and a Cu specific yeast sensor. The bioavailable Pb concentrations were all similar or lower than the first sequential leach step (1M NaOAc). In contrast, in some samples the bioavailable concentrations of Cu clearly exceeded even the second sequential leach step (0.1 M Na4P2O7). With the yeast sensor 12/20 samples were below detection, however, the yeast sensor was capable of detecting all high Cu concentrations. The biosensors used in this study are not capable of detecting the natural soil concentrations of Pb and Cu in the studied area.

  13. Ethanolic fermentation of lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.

    1996-12-31

    This minireview discusses various factors which require consideration for the ethanolic fermentation of lignocellulose hydrolysates. The production of an alternative transportation fuel requires pretreatment of the biomass and detoxification to enhance the fermentability. Recombinant DNA technology makes it possible to engineer new microorganisms for efficient ethanol production from all sugars present in the hydrolysates. 60 refs.

  14. Bio-Based Solvents for Green Extraction of Lipids from Oleaginous Yeast Biomass for Sustainable Aviation Biofuel.

    PubMed

    Breil, Cassandra; Meullemiestre, Alice; Vian, Maryline; Chemat, Farid

    2016-01-01

    Lipid-based oleaginous microorganisms are potential candidates and resources for the sustainable production of biofuels. This study was designed to evaluate the performance of several alternative bio-based solvents for extracting lipids from yeasts. We used experimental design and simulation with Hansen solubility simulations and the conductor-like screening model for realistic solvation (COSMO-RS) to simulate the solubilization of lipids in each of these solvents. Lipid extracts were analyzed by high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes and gas chromatography coupled with a flame ionization detector (GC/FID) to obtain fatty acid profiles. Our aim was to correlate simulation with experimentation for extraction and solvation of lipids with bio-based solvents in order to make a preliminary evaluation for the replacement of hexane to extract lipids from microorganisms. Differences between theory and practice were noted for several solvents, such as CPME, MeTHF and ethyl acetate, which appeared to be good candidates to replace hexane. PMID:26861274

  15. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking.

    PubMed

    Belda, Ignacio; Conchillo, Lorena B; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-04-16

    Pectinase enzymes have shown a considerable influence in both, sensitive and technological properties of wines. They can help to improve clarification process, releasing more color and flavor compounds entrapped in grape skin, facilitating the liberation of phenolic compounds. This work aims to find yeasts that, because of their native pectinases, can be applied on combined fermentations with Saccharomyces cerevisiae obtaining significant benefits over single-inoculated traditional fermentations. 462 yeast strains isolated from wineries were identified and tested for several enzymatic activities of recognized interest for enology industry. Considering the 7 identified species, only Aureobasidium pullulans, Metschnikowia pulcherrima and Metschnikowia fructicola showed polygalacturonase activity. Because of its interest in winemaking, due to its reported incidence in wine flavor, the impact of M. pulcherrima as a source of pectinolytic enzymes was analyzed by measuring its influence in filterability, turbidity and the increase on color, anthocyanin and polyphenol content of wines fermented in combination with S. cerevisiae. Among the strains screened, M. pulcherrima NS-EM-34 was selected, due to its polygalacturonase activity, for further characterization in both, laboratory and semi-industrial scale assays. The kinetics concerning several metabolites of enological concern were followed during the entire fermentation process at microvinification scale. Improved results were obtained in the expected parameters when M. pulcherrima NS-EM-34 was used, in comparison to wines fermented with S. cerevisiae alone and combined with other pectinolytic and non-pectinolytic yeasts (A. pullulans and Lachancea thermotolerans, respectively), even working better than commercial enzymes preparations in most parameters. Additionally, M. pulcherrima NS-EM-34 was used at a semi-industrial scale combined with three different S. cerevisiae strains, confirming its potential application for

  16. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.

    PubMed

    Cunha, Joana T; Aguiar, Tatiana Q; Romaní, Aloia; Oliveira, Carla; Domingues, Lucília

    2015-09-01

    PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved the fermentation rate (up to 32%) and productivity (up to 48%) in different hydrolysates. ZWF1 and RPB4 overexpression did not improve the fermentation performance, but their increased expression in the presence of acetic acid, furfural and hydroxymethylfurfural was found to contribute to yeast adaptation to these inhibitors. This study expands our understanding about the molecular mechanisms involved in industrial yeast tolerance to the stresses occurring during lignocellulosic bioethanol production and highlights the importance of selecting appropriate strain backgrounds/hydrolysates combinations when addressing further improvement of these processes.

  17. The natural yeast extract isolated by ethanol precipitation inhibits melanin synthesis by modulating tyrosinase activity and downregulating melanosome transfer.

    PubMed

    Lee, Woo Jin; Rhee, Do Young; Bang, Seung Hyun; Kim, Su Yeon; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Chang, Sung Eun

    2015-01-01

    This study was conducted to examine the effects of EP-2, a natural yeast extract isolated by ethanol precipitation from Saccharomyces cerevisiae, on melanogenesis and to determine its underlying mechanism of action. Our results show that although EP-2 is not a direct tyrosinase inhibitor, when EP-2 was added to the culture media of B16F10 melanoma cells, intracellular tyrosinase activity was decreased. However, EP-2 had no effect on the expression of microphthalmia-associated transcription factor or tyrosinase. EP-2 was found to inhibit melanogenesis and melanosome transfer when it was added to melanocytes and keratinocytes in coculture. In addition, protease-activated receptor 2, a key protein associated with melanosome transfer from melanocytes to keratinocytes, was downregulated in the presence of EP-2. In conclusion, EP-2 is a potent inhibitor of melanogenesis and its hypomelanogenic effect is related to the inhibition of tyrosinase activity and transfer of melanosomes.

  18. Effects of a dietary yeast extract on hematological parameters, heterophil function, and bacterial clearance in turkey poults challenged with Escherichia coli and subjected to transport stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop nutritional methods for controlling pathogens in poultry production. A standardized yeast extract supplement, Alphamune™ (YE), was added to turkey poult diets. Male poults were challenged by air sac injection with 60 cfu of E. coli at 1 week of age. At 3 weeks of age chal...

  19. The effect of a yeast extract feed additive on turkeys challenged with Escherichia coli and Listeria monocytogenes and subjected to transport stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop nutritional methods for controlling pathogens in poultry production. A yeast extract supplement, Alphamune™ (YE) was added to the diet of turkeys which were exposed to E. coli and L. monocytogenes Scott A at 16 wks of age using coarse spray and feed inclusion. Positive c...

  20. Effects of bentonite and yeast extract as nutrient on decrease in hydraulic conductivity of porous media due to CaCO3 precipitation induced by Sporosarcina pasteurii.

    PubMed

    Eryürük, Kağan; Yang, Suyin; Suzuki, Daisuke; Sakaguchi, Iwao; Katayama, Arata

    2015-10-01

    The reduction mechanism of hydraulic conductivity was investigated in porous media treated with bentonite and CaCO3 precipitates induced by growing cells of Sporosarcina pasteurii (ATCC 11859). Bentonite, the bacterial cells, and a precipitation solution, composing of 0.5 M CaCl2 and 0.5 M urea with or without 2% weight/volume yeast extract allowing the bacterial growth were sequentially introduced into the continuous-flow columns containing glass beads between 0.05 and 3 mm in diameter. The treatments reduced the hydraulic conductivity of the columns from between 8.4 × 10(-1) and 4.1 × 10(-3) cm/s to between 9.9 × 10(-4) and 2.1 × 10(-6) cm/s as the lowest. With yeast extract, the conductivity continuously decreased during four days of the experiment, while became stable after two days without yeast extract. Introduction of the bacterial cells did not decrease the conductivity. The reduction in hydraulic conductivity was inversely correlated with the volume occupied by the depositions of bentonite and CaCO3 precipitates in column, showing the same efficiency but a larger effect of the CaCO3 precipitates with increasing volume by bacterial growth. The smaller glass beads resulted in larger volume of the depositions. Bentonite increased the deposition of CaCO3 precipitates. Analysis using the Kozeny-Carman equation suggested that without yeast extract, bentonite and the CaCO3 precipitates formed aggregates with glass beads, thus increasing their diameter and consequently decreasing the pore size in the column. With yeast extract, in addition to the aggregates, the individual CaCO3 precipitates formed separately from the aggregates reduced the hydraulic conductivity. PMID:25736267

  1. Effects of bentonite and yeast extract as nutrient on decrease in hydraulic conductivity of porous media due to CaCO3 precipitation induced by Sporosarcina pasteurii.

    PubMed

    Eryürük, Kağan; Yang, Suyin; Suzuki, Daisuke; Sakaguchi, Iwao; Katayama, Arata

    2015-10-01

    The reduction mechanism of hydraulic conductivity was investigated in porous media treated with bentonite and CaCO3 precipitates induced by growing cells of Sporosarcina pasteurii (ATCC 11859). Bentonite, the bacterial cells, and a precipitation solution, composing of 0.5 M CaCl2 and 0.5 M urea with or without 2% weight/volume yeast extract allowing the bacterial growth were sequentially introduced into the continuous-flow columns containing glass beads between 0.05 and 3 mm in diameter. The treatments reduced the hydraulic conductivity of the columns from between 8.4 × 10(-1) and 4.1 × 10(-3) cm/s to between 9.9 × 10(-4) and 2.1 × 10(-6) cm/s as the lowest. With yeast extract, the conductivity continuously decreased during four days of the experiment, while became stable after two days without yeast extract. Introduction of the bacterial cells did not decrease the conductivity. The reduction in hydraulic conductivity was inversely correlated with the volume occupied by the depositions of bentonite and CaCO3 precipitates in column, showing the same efficiency but a larger effect of the CaCO3 precipitates with increasing volume by bacterial growth. The smaller glass beads resulted in larger volume of the depositions. Bentonite increased the deposition of CaCO3 precipitates. Analysis using the Kozeny-Carman equation suggested that without yeast extract, bentonite and the CaCO3 precipitates formed aggregates with glass beads, thus increasing their diameter and consequently decreasing the pore size in the column. With yeast extract, in addition to the aggregates, the individual CaCO3 precipitates formed separately from the aggregates reduced the hydraulic conductivity.

  2. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock.

    PubMed

    Gong, Yangmin; Liu, Jiao; Jiang, Mulan; Liang, Zhuo; Jin, Hu; Hu, Xiaojia; Wan, Xia; Hu, Chuanjiong

    2015-01-01

    Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH) using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA). The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7%) and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34%) in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock. PMID:25942565

  3. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock.

    PubMed

    Gong, Yangmin; Liu, Jiao; Jiang, Mulan; Liang, Zhuo; Jin, Hu; Hu, Xiaojia; Wan, Xia; Hu, Chuanjiong

    2015-01-01

    Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH) using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA). The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7%) and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34%) in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock.

  4. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock

    PubMed Central

    Gong, Yangmin; Liu, Jiao; Jiang, Mulan; Liang, Zhuo; Jin, Hu; Hu, Xiaojia; Wan, Xia; Hu, Chuanjiong

    2015-01-01

    Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH) using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA). The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7%) and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34%) in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock. PMID:25942565

  5. Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass.

    PubMed

    Camargo, Danielle; Sene, Luciane; Variz, Daniela Inês Loreto Saraiva; Felipe, Maria das Graças de Almeida

    2015-04-01

    This study evaluated the biotechnological production of xylitol from sorghum forage biomass. The yeast Candida guilliermondii was cultivated in hemicellulosic hydrolysates obtained from biomass of three sorghum varieties (A, B, and C). First, the biomass was chemically characterized and subjected to dilute acid hydrolysis to obtain the hemicellulosic hydrolysates which were vacuum-concentrated and detoxified with activated charcoal. The hemicellulosic hydrolysates (initial pH 5.5) were supplemented with nutrients, and fermentations were conducted in 125-mL Erlenmeyer flasks containing 50 mL medium, under 200 rpm, at 30 °C for 96 h. Fermentations were evaluated by determining the parameters xylitol yield (Y P/S ) and productivity (QP), as well as the activities of the enzymes xylose reductase (XR) and xylitol dehydrogenase (XDH). There was no significant difference among the three varieties with respect to the contents of cellulose, hemicellulose, and lignin, although differences were found in the hydrolysate fermentability. Maximum xylitol yield and productivity values for variety A were 0.35 g/g and 0.16 g/L.h(-1), respectively. It was coincident with XR (0.25 U/mg prot) and XDH (0.17 U/mg prot) maximum activities. Lower values were obtained for varieties B and C, which were 0.25 and 0.17 g/g for yield and 0.12 and 0.063 g/L.h(-1) for productivity.

  6. Use of elephant grass (Pennisetum purpureum) acid hydrolysate for microbial oil production by Trichosporon cutaneum.

    PubMed

    Chen, Xue-Fang; Huang, Chao; Xiong, Lian; Wang, Bo; Qi, Gao-Xiang; Lin, Xiao-Qing; Wang, Can; Chen, Xin-De

    2016-10-01

    Elephant grass (Pennisetum purpureum) dilute acid hydrolysate contains 34.6 g/L total sugars. The potential of lipid production by oleaginous yeast Trichosporon cutaneum grown on elephant grass acid hydrolysate was investigated for the first time. During the fermentation process on the elephant grass acid hydrolysate, glucose, xylose, and arabinose could be well utilized as carbon sources by T. cutaneum. Interestingly, xylose was almost no use before glucose was consumed completely. This illustrated that simultaneous saccharification of xylose and glucose by T. cutaneum did not occur on elephant grass acid hydrolysate. The highest biomass, lipid content, lipid yield, and lipid coefficient of T. cutaneum were measured after the sixth day of fermentation and were 22.76 g/L, 24.0%, 5.46 g/L, and 16.1%, respectively. Therefore, elephant grass is a promising raw material for microbial oil production by T. cutaneum.

  7. Simple method for the extraction and reversed-phase high-performance liquid chromatographic analysis of carotenoid pigments from red yeasts (Basidiomycota, Fungi).

    PubMed

    Weber, Roland W S; Anke, Heidrun; Davoli, Paolo

    2007-03-23

    A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions.

  8. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract.

    PubMed

    Portu, Javier; López, Rosa; Baroja, Elisa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2016-06-15

    Phenolic compounds play a key role in grape and wine organoleptic properties, being therefore a key parameter in wine quality. Elicitor application constitutes an interesting field of research since it is indirectly involved in the accumulation of phenolic compounds. The aim of this study was to compare the effect of the application of three different elicitors on both grape and wine phenolic content. Methyl jasmonate, chitosan, and a commercial yeast extract were applied to the canopy at veraison and one week later. Results showed that foliar treatments carried out with methyl jasmonate and yeast extract achieved the best results, increasing grape and wine anthocyanin content when compared to the control. Moreover, the application of the yeast elicitor also enhanced grape stilbene content. In contrast, the chitosan treatment did not have a substantial impact on the phenolic compounds. The results of this study indicate that methyl jasmonate and yeast extract applications could be a simple practice to increase grape and wine phenolic content. PMID:26868568

  9. Yeast tRNA3Leu gene transcribed and spliced in a HeLa cell extract.

    PubMed Central

    Standring, D N; Venegas, A; Rutter, W J

    1981-01-01

    A cloned yeast tRNA3Leu gene containing a 33-base intervening sequence (IVS) is selectively transcribed by a soluble extract from HeLa cells. The 130-nucleotide tRNA3Leu precursor RNA formed is colinear with the gene and contains approximately 4 leader nucleotides and up to 9 trailer nucleotides. The IVS is accurately and efficiently removed by an endogenous HeLa excision-ligase activity to yield the spliced tRNA, the free IVS, and the half-tRNA intermediates. The splicing reaction occurs without prior 5' and 3' maturation of the precursor but, with this exception, this pattern of synthesis and subsequent maturation of the tRNA3Leu precursor conforms to the scheme for tRNA biosynthesis deduced for the xenopus system. Indeed, the two systems utilize similar or identical tRNA3Leu precursors. Our results stress the extraordinary conservation of tRNA biosynthesis in eukaryotes and demonstrate that a HeLa extract provides a useful system for investigating this process. Images PMID:6796956

  10. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  11. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  12. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a screening exercise for ethanol-selective extraction solvents, partitioning of ethanol and water from a 5 wt% aqueous solution into several C8 – C18 carboxylic acids was studied. Results for the acids are compared with those from alcohols of similar structure. In all cases studied, the acids exh...

  13. A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation.

    PubMed

    Liu, Z Lewis; Weber, Scott A; Cotta, Michael A; Li, Shi-Zhong

    2012-01-01

    This study reports a new yeast strain of Clavispora NRRL Y-50464 that is able to utilize cellobiose as sole source of carbon and produce sufficient native β-glucosidase enzyme activity for cellulosic ethanol production using SSF. In addition, this yeast is tolerant to the major inhibitors derived from lignocellulosic biomass pre-treatment such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF), and converted furfural into furan methanol in less than 12h and HMF into furan-2,5-dimethanol within 24h in the presence of 15 mM each of furfural and HMF. Using xylose-extracted corncob residue as cellulosic feedstock, an ethanol production of 23 g/l was obtained using 25% solids loading at 37 °C by SSF without addition of exogenous β-glucosidase. Development of this yeast aids renewable biofuels development efforts for economic consolidated SSF bio-processing.

  14. Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis.

    PubMed

    Fonseca, Bruno Guedes; Puentes, Juan Gabriel; Mateo, Soledad; Sánchez, Sebastian; Moya, Alberto J; Roberto, Inês Conceição

    2013-10-01

    The aim of this work was to study the ability of Saccharomyces cerevisiae (baker's yeast) to metabolize a variety of aromatic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, obtained by acid hydrolysis at different sugar and toxic compound concentrations. Initially, the hydrolysates were inoculated with S. cerevisiae (10 g L(-1)) and incubated at 30 °C under agitation at 200 rpm for 6 h. The results showed that this yeast was able to utilize phenolic and furan compounds in both hemicellulose hydrolysates. Next, the treated hydrolysates were inoculated with Pichia stipitis NRRL Y-7124 to evaluate the effect of biotransformation of aromatic compounds on ethanol production, and better fermentation results were obtained in this case compared to untreated ones. The untreated hemicellulose hydrolysates were not able to be fermented when they were incubated with Pichia stipitis. However, in RSHH treated hydrolysates, ethanol (Y(P/S)) and biomass (Y(X/S)) yields and volumetric ethanol productivity (Q(P)) were 0.17 g g(-1), 0.15 g g(-1) and 0.09 g L(-1) h(-1), respectively. The OTHH-treated hydrolysates showed less favorable results compared to RSHH, but the fermentation process was favored with regard to untreated hydrolysate. These results showed that the fermentation by P. stipitis in untreated hydrolysates was strongly inhibited by toxic compounds present in the media and that treatment with S. cerevisiae promoted a significant reduction in their toxicities.

  15. Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis.

    PubMed

    Fonseca, Bruno Guedes; Puentes, Juan Gabriel; Mateo, Soledad; Sánchez, Sebastian; Moya, Alberto J; Roberto, Inês Conceição

    2013-10-01

    The aim of this work was to study the ability of Saccharomyces cerevisiae (baker's yeast) to metabolize a variety of aromatic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, obtained by acid hydrolysis at different sugar and toxic compound concentrations. Initially, the hydrolysates were inoculated with S. cerevisiae (10 g L(-1)) and incubated at 30 °C under agitation at 200 rpm for 6 h. The results showed that this yeast was able to utilize phenolic and furan compounds in both hemicellulose hydrolysates. Next, the treated hydrolysates were inoculated with Pichia stipitis NRRL Y-7124 to evaluate the effect of biotransformation of aromatic compounds on ethanol production, and better fermentation results were obtained in this case compared to untreated ones. The untreated hemicellulose hydrolysates were not able to be fermented when they were incubated with Pichia stipitis. However, in RSHH treated hydrolysates, ethanol (Y(P/S)) and biomass (Y(X/S)) yields and volumetric ethanol productivity (Q(P)) were 0.17 g g(-1), 0.15 g g(-1) and 0.09 g L(-1) h(-1), respectively. The OTHH-treated hydrolysates showed less favorable results compared to RSHH, but the fermentation process was favored with regard to untreated hydrolysate. These results showed that the fermentation by P. stipitis in untreated hydrolysates was strongly inhibited by toxic compounds present in the media and that treatment with S. cerevisiae promoted a significant reduction in their toxicities. PMID:23992561

  16. THE VITAMIN B(1) AND B(2) G CONTENT OF LIVER EXTRACT AND BREWERS' YEAST CONCENTRATE.

    PubMed

    Miller, D K; Rhoads, C P

    1934-02-28

    1. Liver extract powder, No. 343 Lilly, and the same material prepared for parenteral use, when administered daily by mouth in amounts derived from 2.5 gm. of fresh whole liver, to rats weighing from 40 to 50 gm., contain sufficient vitamin B(1) to support normal growth, provided the animals receive in addition an adequate amount of vitamin B(2) G. Moreover, liver extract in the forms mentioned, administered in the same amounts, does not contain sufficient vitamin B(2) G to maintain normal growth of similar rate when all other necessary constituents of the diet are provided. 2. Liver extract (Lilly) in the form prepared for parenteral use, when administered daily by intraperitoneal injections, in amounts derived from 2.5 gm. of fresh whole liver, to rats under standard experimental conditions, does not contain sufficient vitamin B(2) G to maintain normal growth. Furthermore, the amount of vitamin B(1) present in liver extract in this form is not as effective in supporting normal growth when given by intraperitoneal injection as it is when given by mouth. 3. Vegex, when administered daily in amounts of 50, 150, and 250 mg. to rats of 40 to 50 gm. in weight contains sufficient vitamin B(1) to maintain normal growth of the rats, provided the animals receive in addition an adequate amount of vitamin B(2) G. However, vegex in the same amounts does not contain sufficient vitamin B(2) G to support normal growth of similar rats when all other necessary constituents of the diet are provided. 4. These experiments indicate that the extrinsic, anti-anemic factor of Castle and the thermostable growth-promoting food constituent, commonly known as vitamin B(2) G, are not identical.

  17. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    PubMed Central

    2014-01-01

    Background Microbial bioconversion of photosynthetic biomass is a promising approach to the generation of biofuels and other bioproducts. However, rapid, high-yield, and simple processes are essential for successful applications. Here, biomass from the rapidly growing photosynthetic marine cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that pH was adjusted to the optimal value. The highest ethanol yield and concentration obtained was 0.27 g ethanol per g cell dry weight and 30 g ethanol L-1, respectively. About 90% of the glucose in the biomass was converted to ethanol. The cyanobacterial hydrolysate was rapidly fermented (up to 20 g ethanol L-1 day-1) even in the absence of any other nutrient additions to the fermentation medium. Conclusions Cyanobacterial biomass was hydrolyzed using a simple enzymatic treatment and fermented into ethanol more rapidly and to higher concentrations than previously reported for similar approaches using cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used for Saccharomyces fermentations. PMID:24739806

  18. Budding yeast protein extraction and purification for the study of function, interactions, and post-translational modifications.

    PubMed

    Szymanski, Eva Paige; Kerscher, Oliver

    2013-01-01

    Homogenization by bead beating is a fast and efficient way to release DNA, RNA, proteins, and metabolites from budding yeast cells, which are notoriously hard to disrupt. Here we describe the use of a bead mill homogenizer for the extraction of proteins into buffers optimized to maintain the functions, interactions and post-translational modifications of proteins. Logarithmically growing cells expressing the protein of interest are grown in a liquid growth media of choice. The growth media may be supplemented with reagents to induce protein expression from inducible promoters (e.g. galactose), synchronize cell cycle stage (e.g. nocodazole), or inhibit proteasome function (e.g. MG132). Cells are then pelleted and resuspended in a suitable buffer containing protease and/or phosphatase inhibitors and are either processed immediately or frozen in liquid nitrogen for later use. Homogenization is accomplished by six cycles of 20 sec bead-beating (5.5 m/sec), each followed by one minute incubation on ice. The resulting homogenate is cleared by centrifugation and small particulates can be removed by filtration. The resulting cleared whole cell extract (WCE) is precipitated using 20% TCA for direct analysis of total proteins by SDS-PAGE followed by Western blotting. Extracts are also suitable for affinity purification of specific proteins, the detection of post-translational modifications, or the analysis of co-purifying proteins. As is the case for most protein purification protocols, some enzymes and proteins may require unique conditions or buffer compositions for their purification and others may be unstable or insoluble under the conditions stated. In the latter case, the protocol presented may provide a useful starting point to empirically determine the best bead-beating strategy for protein extraction and purification. We show the extraction and purification of an epitope-tagged SUMO E3 ligase, Siz1, a cell cycle regulated protein that becomes both sumoylated and

  19. Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids.

    PubMed

    Tsakona, Sofia; Skiadaresis, Argyrios G; Kopsahelis, Nikolaos; Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kookos, Ioannis K; Koutinas, Apostolis A

    2016-05-01

    Crude enzymes produced via solid state fermentation (SSF) using wheat milling by-products have been employed for both fermentation media production using flour-rich waste (FRW) streams and lysis of Rhodosporidium toruloides yeast cells. Filter sterilization of crude hydrolysates was more beneficial than heat sterilization regarding yeast growth and microbial oil production. The initial carbon to free amino nitrogen ratio of crude hydrolysates was optimised (80.2g/g) in fed-batch cultures of R. toruloides leading to a total dry weight of 61.2g/L with microbial oil content of 61.8% (w/w). Employing a feeding strategy where the glucose concentration was maintained in the range of 12.2-17.6g/L led to the highest productivity (0.32 g/L·h). The crude enzymes produced by SSF were utilised for yeast cell treatment leading to simultaneous release of around 80% of total lipids in the broth and production of a hydrolysate suitable as yeast extract replacement.

  20. Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids.

    PubMed

    Tsakona, Sofia; Skiadaresis, Argyrios G; Kopsahelis, Nikolaos; Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kookos, Ioannis K; Koutinas, Apostolis A

    2016-05-01

    Crude enzymes produced via solid state fermentation (SSF) using wheat milling by-products have been employed for both fermentation media production using flour-rich waste (FRW) streams and lysis of Rhodosporidium toruloides yeast cells. Filter sterilization of crude hydrolysates was more beneficial than heat sterilization regarding yeast growth and microbial oil production. The initial carbon to free amino nitrogen ratio of crude hydrolysates was optimised (80.2g/g) in fed-batch cultures of R. toruloides leading to a total dry weight of 61.2g/L with microbial oil content of 61.8% (w/w). Employing a feeding strategy where the glucose concentration was maintained in the range of 12.2-17.6g/L led to the highest productivity (0.32 g/L·h). The crude enzymes produced by SSF were utilised for yeast cell treatment leading to simultaneous release of around 80% of total lipids in the broth and production of a hydrolysate suitable as yeast extract replacement. PMID:26769508

  1. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors.

    PubMed

    Shi, Zhouming; Wei, Peilian; Zhu, Xiangcheng; Cai, Jin; Huang, Lei; Xu, Zhinan

    2012-10-10

    Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40 min acid treatment at 95 °C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5 g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142 g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale. PMID:22975123

  2. Production of Defatted Palm Kernel Cake Protein Hydrolysate as a Valuable Source of Natural Antioxidants

    PubMed Central

    Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Anwar, Farooq; Saari, Nazamid

    2012-01-01

    The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential. PMID:22942692

  3. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    PubMed

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  4. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4.

    PubMed

    Imran, Muhammad; Arshad, Muhammad; Negm, Fayek; Khalid, Azeem; Shaharoona, Baby; Hussain, Sabir; Mahmood Nadeem, Sajid; Crowley, David E

    2016-02-01

    Biological treatment of azo dyes commonly requires a combined anaerobic-aerobic process in which initial decolorization is achieved by reductive cleavage of azo bonds on the parent molecule. The present study was conducted to examine the relative importance of co-substrates for driving reductive decolorization of azo dyes by Shewanella sp. strain IFN4 using whole cells and enzyme assays. Results showed that the dye decolorization by strain IFN4 was faster in medium containing 1gL(-1) yeast extract (YE) as compared to nine other co-substrates. Moreover, only YE stimulated azoreductase activity (increased from 1.32 to 4.19U/mg protein). Increasing the level of YE up to 8gL(-)(1) resulted into 81% decolorization of the dye in 1h along with an increase in azoreductase activity up to 6.16U/mg protein. Among the components of YE, only riboflavin stimulated the decolorization process as well as enzyme activity. Moreover, strain IFN4 demonstrated flavin reductase activity, and a significant correlation (r(2)=0.98) between flavin reduction and dye reduction by this strain emphasized the involvement of flavin compounds in the decolorization process. The results of this study show that YE serves both as a source of reducing equivalents and an electron shuttle for catalyzing dye reduction.

  5. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement.

    PubMed

    Mosser, Mathilde; Kapel, Romain; Chevalot, Isabelle; Olmos, Eric; Marc, Ivan; Marc, Annie; Oriol, Eric

    2015-01-01

    Yeast extract (YE) is known to greatly enhance mammalian cell culture performances, but its undefined composition decreases process reliability. Accordingly, in the present study, the nature of YE compounds involved in the improvement of recombinant CHO cell growth and IgG production was investigated. First, the benefits of YE were verified, revealing that it increased maximal concentrations of viable cells and IgG up to 73 and 60%, respectively compared to a reference culture. Then, the analyses of YE composition highlighted the presence of molecules such as amino acids, vitamins, salts, nucleobase, and glucose that were contained in reference medium, while others including peptides, trehalose, polysaccharides, and nucleic acids were not. Consequently, YE was fractionated by a nanofiltration process to deeper evaluate its effects on CHO cell cultures. The YE molecules already contained in reference medium were mainly isolated in the permeate fraction together with trehalose and short peptides, while other molecules were concentrated in the retentate. Permeate, which was free of macromolecules, exhibited a similar positive effect than raw YE on maximal concentrations. Additional studies on cell energetic metabolism underlined that dipeptides and tripeptides in permeate were used as an efficient source of nitrogenous substrates.

  6. Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

    PubMed Central

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  7. Effects of vitamin D and yeast extract supplementation on turkey mortality and clostridial dermatitis incidence in a dexamethasone immunosuppression model.

    PubMed

    Huff, G R; Huff, W E; Ratha, N C

    2014-12-01

    Clostridial dermatitis (CD) is a production disease of commercial turkeys that is characterized by sudden mortality in market-aged male birds and by lesions that include fluid and air bubbles under the skin of the thigh, breast, and tail area. We have developed a model for CD using dexamethasone (Dex) injection that suggests this disease may be related to stressors during the last stages of turkey production. Male turkeys were provided with control feed and water or with feed supplemented with a commercial yeast extract (YE) product, water supplemented with vitamin D (VD), or the combination. At 6, 11, and 15 wk of age birds were treated with three intramuscular injections of Dex over a 5-day period. Both YE and VD, but not the combination, decreased early mortality. At week 7 mortality was increased by VD, and cellulitis lesions were seen in 7/8 mortalities. Mortality at week 12 was decreased by both YE and the combination of YE and VD, and cellulitis lesions were seen in 8/17 mortalities. There were no significant differences in mortality at week 16. Total mortality was 66 birds, and 23 of these had cellulitis lesions (38%). There were no YE-treated birds with CD lesions; however, 67% of VD-treated birds had CD lesions. This study suggests that feed supplementation with YE may improve the ability of turkeys to withstand the stressors during late production and provide protection against the development of CD; however, high levels of VD supplementation may be detrimental.

  8. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract.

    PubMed

    Maddipati, Prasanth; Atiyeh, Hasan K; Bellmer, Danielle D; Huhnke, Raymond L

    2011-06-01

    The feasibility of replacing yeast extract (YE) by corn steep liquor (CSL), a low cost nutrient source, for syngas fermentation to produce ethanol using Clostridium strain P11 was investigated. About 32% more ethanol (1.7 g L(-1)) was produced with 20 g L(-1) CSL media in 250-mL bottle fermentations compared to media with 1 g L(-1) YE after 360 h. Maximum ethanol concentrations after 360 h of fermentation in a 7.5-L fermentor with 10 and 20 g L(-1) CSL media were 8.6 and 9.6 g L(-1), respectively, which represent 57% and 60% of the theoretical ethanol yields from CO. Only about 6.1 g L(-1) of ethanol was obtained in the medium with 1 g L(-1) YE after 360 h, which represents 53% of the theoretical ethanol yield from CO. The use of CSL also enhanced butanol production by sevenfold compared to YE in bottle fermentations. These results demonstrate that CSL can replace YE as the primary medium component and significantly enhance ethanol production by Clostridium strain P11.

  9. Protein Hydrolysates/Peptides in Animal Nutrition

    NASA Astrophysics Data System (ADS)

    McCalla, Jeff; Waugh, Terry; Lohry, Eric

    The use of protein hydrolysates as an important nutrient for growth and maintenance has been increasing in animal nutrition. Although animal proteins and protein hydrolysates are widely used however, recently vegetable protein hydrolysates are gaining importance. This chapter reviews the use of protein hydrolysates developed by enzyme hydrolysis and by solid state fermentation process in animal nutrition especially for piglets and compares it with the standard products such as plasma and fishmeal.

  10. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum.

    PubMed

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-01-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen. PMID:27251222

  11. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum.

    PubMed

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-02

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  12. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    NASA Astrophysics Data System (ADS)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7–64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  13. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    PubMed Central

    Dan Jiang; Fang, Zhen; Chin, Siew-xian; Tian, Xiao-fei; Su, Tong-chao

    2016-01-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7–64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen. PMID:27251222

  14. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates

    PubMed Central

    Tomás-Pejó, Elia; Olsson, Lisbeth

    2015-01-01

    Development of xylose-fermenting yeast strains that are tolerant to the inhibitors present in lignocellulosic hydrolysates is crucial to achieve efficient bioethanol production processes. In this study, the importance of the propagation strategy for obtaining robust cells was studied. Addition of hydrolysate during propagation of the cells adapted them to the inhibitors, resulting in more tolerant cells with shorter lag phases and higher specific growth rates in minimal medium containing acetic acid and vanillin than unadapted cells. Addition of hydrolysate during propagation also resulted in cells with better fermentation capabilities. Cells propagated without hydrolysate were unable to consume xylose in wheat straw hydrolysate fermentations, whereas 40.3% and 97.7% of the xylose was consumed when 12% and 23% (v/v) hydrolysate, respectively, was added during propagation. Quantitative polymerase chain reaction revealed changes in gene expression, depending on the concentration of hydrolysate added during propagation. This study highlights the importance of using an appropriate propagation strategy for the optimum performance of yeast in fermentation of lignocellulosic hydrolysates. PMID:25989314

  15. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application.

    PubMed

    Meullemiestre, Alice; Breil, Cassandra; Abert-Vian, Maryline; Chemat, Farid

    2016-07-01

    In the present work, two different ways of lipids extraction from Yarrowia lipolytica yeast were investigated in order to maximize the extraction yield. Firstly, various modern techniques of extraction including ultrasound, microwave, and bead milling were tested to intensify the efficiency of lipid recovery. Secondly, several pretreatments such as freezing/defrosting, cold drying, bead milling, and microwave prior two washing of mixture solvent of chloroform:methanol (1:2, v/v) were study to evaluate the impact on lipid recovery. All these treatments were compared to conventional maceration, in terms of lipids extraction yield and lipid composition analysis. The main result of this study is the large difference of lipid recovery among treatments and the alteration of lipids profile after microwave and ultrasound techniques.

  16. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii (CBS 5512)

    SciTech Connect

    Spindler, D.D.; Grohmann, K.; Wyman, C.E.

    1991-01-16

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.

  17. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    SciTech Connect

    Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.

    1992-01-01

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.

  18. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    DOEpatents

    Spindler, D.D.; Grohmann, K.; Wyman, C.E.

    1992-03-31

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. 2 figs.

  19. Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures.

    PubMed

    Wang, Yajun; Shen, Ye; Shen, Zhuo; Zhao, Le; Ning, Deli; Jiang, Chao; Zhao, Rong; Huang, Luqi

    2016-10-01

    Biotic and abiotic stresses can inhibit plant growth, resulting in losses of crop productivity. However, moderate adverse stress can promote the accumulation of valuable natural products in medicinal plants. Elucidating the underlying molecular mechanisms thus might help optimize the variety of available plant medicinal materials and improve their quality. In this study, Salvia miltiorrhiza hairy root cultures were employed as an in vitro model of the Chinese herb Danshen. A comparative proteomic analysis using 2-dimensional gel electrophoresis and MALDI-TOF-MS was performed. By comparing the gel images of groups exposed to the stress of yeast extract (YE) combined with Ag(+) and controls, 64 proteins were identified that showed significant changes in protein abundance for at least one time point after treatment. According to analysis based on the KEGG and related physiological experimental verification, it was found that YE and Ag(+) stress induced a burst of reactive oxygen species and activated the Ca(2+)/calmodulin signaling pathway. Expression of immune-suppressive proteins increased. Epidermal cells underwent programmed cell death. Energy metabolism was enhanced and carbon metabolism shifted to favor the production of secondary metabolites such as lignin, tanshinone and salvianolic acids. The tanshinone and salvianolic acids were deposited on the collapsed epidermal cells forming a physicochemical barrier. The defense proteins and these natural products together enhanced the stress resistance of the plants. Since higher levels of natural products represent good quality in medicinal materials, this study sheds new light on quality formation mechanisms of medicinal plants and will hopefully encourage further research on how the planting environment affects the efficacy of herbal medicines.

  20. Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures.

    PubMed

    Wang, Yajun; Shen, Ye; Shen, Zhuo; Zhao, Le; Ning, Deli; Jiang, Chao; Zhao, Rong; Huang, Luqi

    2016-10-01

    Biotic and abiotic stresses can inhibit plant growth, resulting in losses of crop productivity. However, moderate adverse stress can promote the accumulation of valuable natural products in medicinal plants. Elucidating the underlying molecular mechanisms thus might help optimize the variety of available plant medicinal materials and improve their quality. In this study, Salvia miltiorrhiza hairy root cultures were employed as an in vitro model of the Chinese herb Danshen. A comparative proteomic analysis using 2-dimensional gel electrophoresis and MALDI-TOF-MS was performed. By comparing the gel images of groups exposed to the stress of yeast extract (YE) combined with Ag(+) and controls, 64 proteins were identified that showed significant changes in protein abundance for at least one time point after treatment. According to analysis based on the KEGG and related physiological experimental verification, it was found that YE and Ag(+) stress induced a burst of reactive oxygen species and activated the Ca(2+)/calmodulin signaling pathway. Expression of immune-suppressive proteins increased. Epidermal cells underwent programmed cell death. Energy metabolism was enhanced and carbon metabolism shifted to favor the production of secondary metabolites such as lignin, tanshinone and salvianolic acids. The tanshinone and salvianolic acids were deposited on the collapsed epidermal cells forming a physicochemical barrier. The defense proteins and these natural products together enhanced the stress resistance of the plants. Since higher levels of natural products represent good quality in medicinal materials, this study sheds new light on quality formation mechanisms of medicinal plants and will hopefully encourage further research on how the planting environment affects the efficacy of herbal medicines. PMID:27372730

  1. Bacterial clearance, heterophil function, and hematological parameters of transport-stressed turkey poults supplemented with dietary yeast extract.

    PubMed

    Huff, G R; Huff, W E; Farnell, M B; Rath, N C; Solis de Los Santos, F; Donoghue, A M

    2010-03-01

    Yeast extracts (YE) contain biological response modifiers that may be useful as alternatives to antibiotics for controlling pathogens in poultry production and mitigating the deleterious effects of production stressors. The objective of the present study was to determine the ability of a commercial dietary YE (Alphamune) to modulate the immune response in male turkey poults challenged with Escherichia coli and subjected to transport stress. Alphamune was added to turkey poult diets at 0, 500, or 1,000 g/ton. Poults were challenged by air sac injection with 60 cfu of E. coli at 1 wk of age. At 3 wk of age, these challenged birds were subjected to transport stress and birds were bled and necropsied the following morning. Blood cell numbers and percentages, hematological parameters, and clinical chemistry values were determined. Oxidative burst activity of isolated heterophils was measured using stimulation with phorbol myristate acetate and a 2',7'-dichlorofluorescein diacetate assay. Data were analyzed using GLM and least squares means procedures of the SAS program. The numbers and percentages of heterophils in peripheral blood were increased and their oxidative burst activity was stimulated by YE. The stress challenge dramatically increased oxidative burst and this increase was significantly modulated by YE treatment. Serum levels of calcium, phosphorus, and triglycerides were decreased and uric acid levels, erythrocyte numbers, hemoglobin, and hematocrit were increased by YE supplementation. Bacteria were isolated from the air sac and liver of a lower percentage of birds provided with YE. These results suggest that dietary YE has potential as a nonantibiotic alternative for decreasing bacterial pathogens in turkey production. PMID:20181859

  2. Beneficial effect of brewers' yeast extract on daily activity in a murine model of chronic fatigue syndrome.

    PubMed

    Takahashi, Takashi; Yu, Fei; Zhu, Shi-Jie; Moriya, Junji; Sumino, Hiroyuki; Morimoto, Shigeto; Yamaguchi, Nobuo; Kanda, Tsugiyasu

    2006-03-01

    The aim of this study was to assess the effect of Brewers' yeast extract (BYE) on daily activity in a mouse model of chronic fatigue syndrome (CFS). CFS was induced by repeated injection of Brucella abortus (BA) antigen every 2 weeks. BYE was orally administered to mice in a dose of 2 g per kg per day for 2 weeks before injecting BA and for 4 weeks thereafter. We evaluated daily running activity in mice receiving BYE as compared with that in untreated mice. Weekly variation of body weight (BW) and survival in both groups was monitored during the observation period. Spleen weight (SW), SW/BW ratio, percent splenic follicular area and expression levels of interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) mRNA in spleen were determined in both groups at the time of sacrifice. The daily activity during 2 weeks after the second BA injection was significantly higher in the treated group than in the control. There was no difference in BW between both groups through the experimental course. Two mice in the control died 2 and 7 days after the second injection, whereas no mice in the treated group died. Significantly decreased SW and SW/BW ratio were observed in the treated mice together with elevation of splenic follicular area. There were suppressed IFN-gamma and IL-10 mRNA levels in spleens from the treated mice. Our results suggest that BYE might have a protective effect on the marked reduction in activity following repeated BA injection via normalization of host immune responses.

  3. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species

    PubMed Central

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-01-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698

  4. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species.

    PubMed

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-07-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hannaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima, Schwanniomyces occidentalis and Wickerhamomyces ciferrii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals.

  5. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  6. System and method for conditioning a hardwood pulp liquid hydrolysate

    SciTech Connect

    Waite, Darrell M; Arnold, Richard; St. Pierre, James; Pendse, Hemant P; Ceckler, William H

    2013-12-17

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hyrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  7. System and method for conditioning a hardwood pulp liquid hydrolysate

    DOEpatents

    Waite, Darrell; Arnold, Richard; St. Pierre, James; Pendse, Hemant P.; Ceckler, William H.

    2015-06-30

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hydrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  8. Effects of Ca(OH)(2) treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates.

    PubMed

    Martinez, A; Rodriguez, M E; York, S W; Preston, J F; Ingram, L O

    2000-09-01

    Hemicellulose syrups from dilute sulfuric acid hydrolysates of hemicellulose contain inhibitors that prevent efficient fermentation by yeast or bacteria. It is well known that the toxicity of these hydrolysate syrups can be ameliorated by optimized "overliming" with Ca(OH)(2). We have investigated the optimization of overliming treatments for sugar cane bagasse hydrolysates (primarily pentose sugars) using recombinant Escherichia coli LY01 as the biocatalyst. A comparison of composition before and after optimal overliming revealed a substantial reduction in furfural, hydroxymethylfurfural, and three unidentified high-performance liquid chromatography (HPLC) peaks. Organic acids (acetic, formic, levulinic) were not affected. Similar changes have been reported after overliming of spruce hemicellulose hydrolysates (Larsson et al., 1999). Our studies further demonstrated that the extent of furan reduction correlated with increasing fermentability. However, furan reduction was not the sole cause for reduced toxicity. After optimal overliming, bagasse hydrolysate was rapidly and efficiently fermented (>90% yield) by LY01. During these studies, titration, and conductivity were found to be in excellent agreement as methods to estimate sulfuric acid content. Titration was also found to provide an estimate of total organic acids in hydrolysate, which agreed well with the sum of acetic, levulinic, and formic acids obtained by HPLC. Titration of acids, measurement of pH before and after treatment, and furan analyses are proposed as relatively simple methods to monitor the reproducibility of hydrolysate preparations and the effectiveness of overliming treatments.

  9. Effects of a preparation of combined glutathione-enriched yeast and rice embryo/soybean extracts on ethanol hangover.

    PubMed

    Lee, Heon-Sik; Song, Jugyeong; Kim, Tae Myoung; Joo, Seong Soo; Park, Dongsun; Jeon, Jeong Hee; Shin, Sunhee; Park, Hyoung Kook; Lee, Won Kyung; Ly, Sun Yung; Kim, Mee Ree; Lee, Do Ik; Kim, Yun-Bae

    2009-12-01

    The effects of a preparation of combined glutathione-enriched yeast (GEY) and rice embryo/soybean (RES) extracts (20:1), GEY/RES, on experimentally induced ethanol hangover were investigated in male Sprague-Dawley rats. To evaluate the preventive effects on hangover, rats were orally administered GEY/RES (50/2.5, 100/5, or 200/10 mg/kg) for 2 weeks. At 30 minutes after the final treatment, they were challenged with 3 mL/kg ethanol (15 mL of 20% in water/kg). The blood concentrations of alcohol and acetaldehyde were analyzed up to 7 hours postchallenge. Hepatic mRNA expression levels of alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH), cytochrome P450 type 2E1 (CYP2E1), and aldehyde dehydrogenase (ALDH), were determined by real-time polymerase chain reaction. Additional rats were challenged with ethanol and, 60 minutes later, administered GEY/RES to evaluate alcohol clearance. Pretreatment with GEY/RES for 2 weeks reduced the blood concentrations of alcohol and acetaldehyde in a dose-dependent manner, lowering by 29.5% and 54.6% at the highest dose (200/10 mg/kg), respectively. The expressions of mRNAs for ADH and ALDH, the major alcohol-metabolizing enzymes, were markedly increased in the livers of rats administered GEY/RES for 2 weeks, whereas CYP2E1 mRNA was suppressed. Postchallenge treatment with GEY/RES enhanced the alcohol clearance rate by lowering blood concentrations of alcohol and acetaldehyde by 24% and 26.6%, respectively, for the highest dose group. GEY/RES remarkably eliminated 2,2-diphenyl-1-picrylhydrazyl hydrate radical and FeCl(3)-mediated lipid peroxidation in vitro and attenuated hepatic lipid accumulation following ethanol administration in vivo. Therefore, it is suggested that GEY/RES reduces the blood concentrations of alcohol and acetaldehyde not only by modulating alcohol-metabolizing enzymes, but also by exerting its antioxidant activity, and that GEY/RES could be a promising candidate for improvements of alcoholic hangover.

  10. Differentiation and numerical analysis of oral yeasts based on SDS-Page profiles. Influence of the culture media on the whole-cell protein extracts.

    PubMed

    Höfling, J F; Rosa, E A; Pereira, C V; Boriollo, M F; Rodrigues, J A

    2001-08-01

    The application of gel electrophoresis and numerical analysis of yeast soluble proteins analysis to the investigation of 12 oral yeast strains belonging to five species is described. It involves one-dimensional electrophoresis of SDS-solubilized whole-cell proteins using different culture media for the cultivation of the cells, integration densitometries in the areas of the gels and percentages of the proteins extraction. These extracts were prepared from four isolates of Candida albicans, two of C. tropicalis, C. guilliermondii, C. parapsilosis and C. krusei. The extracts from whole-cells proteins using different culture media for the cultivation of the cells were fractionated by slab electrophoresis using a discontinuous buffer system. The corresponding patterns showed at least 36 polypeptides in the range of 14.4-200 kDa. Different isolates of each species were clearly different in each of the five species. The data obtained suggest that different nutritional compositions led to the expression of different proteins derived from alternatives metabolic pathways expressed by the electrophoretic profiles. The construction of a database of protein fingerprints and numerical analysis based on such data, may have some implications in the classification and identification of such species with epidemiological, ecological and taxonomic purposes. A well defined or synthetic culture media seems to be much properly.

  11. A preliminary study on the effect of adding yeast extract to cheese curd on proteolysis and flavour development of reduced-fat Cheddar.

    PubMed

    Shakeel-Ur-Rehman; Farkye, Nana Y; Vedamuthu, Ebenezer R; Drake, Mary A

    2003-02-01

    Yeast extract was used as a nutrient for growing lactobacilli in reduced-fat Cheddar cheese as early growth of non-starter lactic acid bacteria (NSLAB) in Cheddar cheese is suppressed by pasteurization of milk and the hostile environment of the cheese. Reduced-fat Cheddar cheese was manufactured from 100 kg standardized milk on two occasions. After milling, the curd was divided into two portions, C and E. To control portion, C, salt was added at normal levels. A mixture of salt and yeast extract was added to the experimental, E. The cheeses were ripened for 7 months at 8 degrees C and assessed for proteolysis and NSLAB growth during ripening. Mean % moisture, fat, protein, salt and pH were 40.6, 20.5, 31.1, 1.72 and 5.22 respectively, in E cheeses, and 39.5, 20.5, 30.9, 1.68 and 5.22, respectively, in C cheese. NSLAB counts in E cheeses were 10(1), 10(3), 10(5) cfu/g compared with 0, 10(1), 10(4) cfu/g in C respectively, after 1, 7 and 30 d of ripening. After 60 d, cell densities of NSLAB were similar (approximately 10(6) cfu/g) in C and E cheese. Addition of yeast extract to curd affected neither the electrophoretic patterns of cheese nor its water-soluble N content during ripening. However, the total free amino acids were significantly higher in E cheese than C cheese throughout ripening, suggesting faster secondary proteolysis in the former cheeses. A 6-member trained descriptive panel evaluated the cheese at 7 months and found that the E cheeses had higher intensities of whey, fruity, sulphur, nutty, sweet and sour flavours, but had lower intensities of brothy flavours as compared to C cheeses. Also, the E cheeses were perceived to be more mature than corresponding C cheese. Results show that addition of yeast extract to cheese curd is a promising method of enhancing flavour development in ripened cheeses.

  12. Cyclin B-Cdk1 Kinase Stimulates ORC- and Cdc6-Independent Steps of Semiconservative Plasmid Replication in Yeast Nuclear Extracts

    PubMed Central

    Duncker, Bernard P.; Pasero, Philippe; Braguglia, Diego; Heun, Patrick; Weinreich, Michael; Gasser, Susan M.

    1999-01-01

    Nuclear extracts from Saccharomyces cerevisiae cells synchronized in S phase support the semiconservative replication of supercoiled plasmids in vitro. We examined the dependence of this reaction on the prereplicative complex that assembles at yeast origins and on S-phase kinases that trigger initiation in vivo. We found that replication in nuclear extracts initiates independently of the origin recognition complex (ORC), Cdc6p, and an autonomously replicating sequence (ARS) consensus. Nonetheless, quantitative density gradient analysis showed that S- and M-phase nuclear extracts consistently promote semiconservative DNA replication more efficiently than G1-phase extracts. The observed semiconservative replication is compromised in S-phase nuclear extracts deficient for the Cdk1 kinase (Cdc28p) but not in extracts deficient for the Cdc7p kinase. In a cdc4-1 G1-phase extract, which accumulates high levels of the specific Clb-Cdk1 inhibitor p40SIC1, very low levels of semiconservative DNA replication were detected. Recombinant Clb5-Cdc28 restores replication in a cdc28-4 S-phase extract yet fails to do so in the cdc4-1 G1-phase extract. In contrast, the addition of recombinant Xenopus CycB-Cdc2, which is not sensitive to inhibition by p40SIC1, restores efficient replication to both extracts. Our results suggest that in addition to its well-characterized role in regulating the origin-specific prereplication complex, the Clb-Cdk1 complex modulates the efficiency of the replication machinery itself. PMID:9891057

  13. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate.

    PubMed

    Xiao, Z J; Liu, P H; Qin, J Y; Xu, P

    2007-02-01

    The nutritional requirements for acetoin production by Bacillus subtilis CICC 10025 were optimized statistically in shake flask experiments using indigenous agroindustrial by-products. The medium components considered for initial screening in a Plackett-Burman design comprised a-molasses (molasses submitted to acidification pretreatment), soybean meal hydrolysate (SMH), KH(2)PO(4).3H(2)O, sodium acetate, MgSO(4).7H(2)O, FeCl(2), and MnCl(2), in which the first two were identified as significantly (at the 99% significant level) influencing acetoin production. Response surface methodology was applied to determine the mutual interactions between these two components and optimal levels for acetoin production. In flask fermentations, 37.9 g l(-1) acetoin was repeatedly achieved using the optimized concentrations of a-molasses and SMH [22.0% (v/v) and 27.8% (v/v), respectively]. a-Molasses and SMH were demonstrated to be more productive than pure sucrose and yeast extract plus peptone, respectively, in acetoin fermentation. In a 5-l fermenter, 35.4 g l(-1) of acetoin could be obtained after 56.4 h of cultivation. To our knowledge, these results, i.e., acetoin yields in flask or fermenter fermentations, were new records on acetoin fermentation by B. subtilis. PMID:17043817

  14. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  15. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor.

    PubMed

    Yeon, Ji-Hyeon; Lee, Sang-Eun; Choi, Woon Yong; Choi, Won-Seok; Kim, Il-Chul; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2011-01-01

    In this study, we investigated the feasibility of producing bioethanol from the hydrolysate of rape stem. Specifically, the most ideal yeast strain was screened, and the microaeration was performed by surface aeration on a liquid medium surface. Among the yeast strains examined, Pichia stipitis CBS 7126 displayed the best performance in bioethanol production during the surface-aerated fermentor culture. Pichia stipitis CBS 7126 produced maximally 9.56 g/l of bioethanol from the initial total reducing sugars (about 28 g/l). The bioethanol yield was 0.397 (by the DNS method). Furthermore, this controlled surface aeration method holds promise for use in the bioethanol production from the xylose-containing lignocellulosic hydrolysate of biomass.

  16. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses: II. Nutrient excretion and potential environmental impact.

    PubMed

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P < 0.003). Differences due to diet were found for selenium fecal (P < 0.0001) and urine (P < 0.0001) excretions, with decreased concentrations found for horses consuming organic selenium yeast (ADD). In contrast, fecal K (%) was greater (P = 0.0421) for horses consuming ADD, whereas concentrations of fecal solids, total N, ammonia N, P, total ammonia, and fecal output did not differ between dietary treatments (P > 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P < 0.0001). In conclusion, the addition of certain chelated

  17. Bitter peptide from hemoglobin hydrolysate: isolation and characterization.

    PubMed

    Aubes-Dufau, I; Capdevielle, J; Seris, J L; Combes, D

    1995-05-01

    Two separation methods, ultrafiltration and 2-butanol extraction, have shown that a peptide is the major agent responsible for bitterness in peptic hemoglobin hydrolysates. It was easily purified from these complex mixtures by specific hydrophobic adsorption on Superose 12, a gel-filtration column, which could constitute an original and interesting method for bitterness detection. The bitter peptide which corresponded to VV-hemorphin 7, the fragment 32-40 of the beta chain of bovine hemoglobin, is first generated during proteolysis, then hydrolysed by pepsin. It exhibited a strong bitterness at 0.25 mM equivalent to 0.073 mM quinine sulfate or 21 mM caffeine.

  18. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    PubMed

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells. PMID:25027024

  19. Characterisation of the substrate specificity of the nitrile hydrolyzing system of the acidotolerant black yeast Exophiala oligosperma R1.

    PubMed

    Rustler, S; Chmura, A; Sheldon, R A; Stolz, A

    2008-01-01

    The ;black yeast' Exophiala oligosperma R1 can utilise various organic nitriles under acidic conditions as nitrogen sources. The induction of a phenylacetonitrile converting activity was optimised by growing the strain in the presence of different nitriles and /or complex or inorganic nitrogen sources. The highest nitrile hydrolysing activity was observed with cells grown with 2-cyanopyridine and NaNO(3). The cells metabolised the inducer and grew with 2-cyanopyridine as sole source of nitrogen. Cell extracts converted various (substituted) benzonitriles and phenylacetonitriles. They usually converted the isomers carrying a substituent in the meta-position with higher relative activities than the corresponding para- or ortho-substituted isomers. Aliphatic substrates such as acrylonitrile and 2-hydroxy-3-butenenitrile were also hydrolysed. The highest specific activity was detected with 4-cyanopyridine. Most nitriles were almost exclusively converted to the corresponding acids and no or only low amounts of the corresponding amides were formed. The cells hydrolysed amides only with extremely low activities. It was therefore concluded that the cells harboured a nitrilase activity. The specific activities of whole cells and cell extracts were compared for different nitriles and evidence obtained for limitation in the substrate-uptake by whole cells. The conversion of 2-hydroxy-3-butenenitrile to 2-hydroxy-3-butenoic acid at pH 4 demonstrated the unique ability of cells of E. oligosperma R1 to hydrolyse aliphatic alpha-hydroxynitriles under acidic conditions. The organism could grow with phenylacetonitrile as sole source of carbon, energy and nitrogen. The degradation of phenylacetonitrile presumably proceeds via phenylacetic acid, 2-hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid (homogentisate), maleylacetoacetate and fumarylacetoacetate. PMID:19287539

  20. Characterisation of the substrate specificity of the nitrile hydrolyzing system of the acidotolerant black yeast Exophiala oligosperma R1

    PubMed Central

    Rustler, S.; Chmura, A.; Sheldon, R.A.; Stolz, A.

    2008-01-01

    The `black yeast' Exophiala oligosperma R1 can utilise various organic nitriles under acidic conditions as nitrogen sources. The induction of a phenylacetonitrile converting activity was optimised by growing the strain in the presence of different nitriles and /or complex or inorganic nitrogen sources. The highest nitrile hydrolysing activity was observed with cells grown with 2-cyanopyridine and NaNO3. The cells metabolised the inducer and grew with 2-cyanopyridine as sole source of nitrogen. Cell extracts converted various (substituted) benzonitriles and phenylacetonitriles. They usually converted the isomers carrying a substituent in the meta-position with higher relative activities than the corresponding para- or ortho-substituted isomers. Aliphatic substrates such as acrylonitrile and 2-hydroxy-3-butenenitrile were also hydrolysed. The highest specific activity was detected with 4-cyanopyridine. Most nitriles were almost exclusively converted to the corresponding acids and no or only low amounts of the corresponding amides were formed. The cells hydrolysed amides only with extremely low activities. It was therefore concluded that the cells harboured a nitrilase activity. The specific activities of whole cells and cell extracts were compared for different nitriles and evidence obtained for limitation in the substrate-uptake by whole cells. The conversion of 2-hydroxy-3-butenenitrile to 2-hydroxy-3-butenoic acid at pH 4 demonstrated the unique ability of cells of E. oligosperma R1 to hydrolyse aliphatic α-hydroxynitriles under acidic conditions. The organism could grow with phenylacetonitrile as sole source of carbon, energy and nitrogen. The degradation of phenylacetonitrile presumably proceeds via phenylacetic acid, 2-hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid (homogentisate), maleylacetoacetate and fumarylacetoacetate. PMID:19287539

  1. Ethanol production from xylose by enzymic isomerization and yeast fermentation

    SciTech Connect

    Chiang, L.C.; Hsiao, H.Y.; Ueng, P.P.; Chen, L.F.; Tsao, G.T.

    1981-01-01

    Repetitive enzymic isomerization of xylose followed by yeast fermentation of xylulose, and simultaneous enzymic isomerization and yeast fermentation were proven to be methods capable of converting xylose to ethanol. The fermentation product, ethanol, xylitol, or glycerol, has little inhibitory or deactivation effect on the activity of isomerase. In a comparison of the ability of yeasts to ferment xylulose to ethanol, Schizosaccharomyces pombe was found to be superior to industrial bakers' yeast. Under optimal conditions (pH 6, temperature 30/sup 0/C), a final ethanol concentration of 6.3 wt.% was obtained from simulated hemicellulose hydrolysate using a simultaneous fermentation process. The ethanol yield was over 80% of the theoretical value.

  2. Effect of Mechanically Deboned Chicken Meat Hydrolysates on the Physicochemical Properties of Imitation Fish Paste

    PubMed Central

    Jin, Sang-Keun; Go, Gwang-woong; Jung, Eun-Young; Lim, Hyun-Jung; Yang, Han-Sul; Park, Jae-Hong

    2014-01-01

    This study investigated on the effects of adding mechanically deboned chicken meat (MDCM) hydrolysates on the quality properties of imitation fish paste (IFP) during storage. IFP was prepared from Alaska Pollack, spent laying hens surimi and protein hydrolysates which were enzymatically extracted from MDCM. The study was designed as a 3×4 factorial design with three MDCM hydrolysate content groups (0%, 0.4%, and 0.8%) and four storage times (0, 2, 4, and 6 weeks). Addition of MDCM hydrolysates increased crude fat content but lowered water content (p<0.05). The breaking force of IFP, an indicator of gel formation, increased in treated groups compared to control (p<0.05). Angiotensin I-converting enzyme (ACE) activity was inhibited and free radical scavenging activity increased with increasing MDCM hydrolysate content (p<0.05). In conclusion, the addition of MDCM to IFP improves gel characteristics. Additionally, protein hydrolysates from MDCM serve as a potential source of ACE inhibiting peptides. PMID:25049933

  3. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    PubMed

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  4. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    PubMed

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  5. Hydrolysed formula and risk of allergic or autoimmune disease: systematic review and meta-analysis

    PubMed Central

    Ierodiakonou, Despo; Khan, Tasnia; Chivinge, Jennifer; Robinson, Zoe; Geoghegan, Natalie; Jarrold, Katharine; Afxentiou, Thalia; Reeves, Tim; Cunha, Sergio; Trivella, Marialena; Garcia-Larsen, Vanessa; Leonardi-Bee, Jo

    2016-01-01

    Objective To determine whether feeding infants with hydrolysed formula reduces their risk of allergic or autoimmune disease. Design Systematic review and meta-analysis, as part of a series of systematic reviews commissioned by the UK Food Standards Agency to inform guidelines on infant feeding. Two authors selected studies by consensus, independently extracted data, and assessed the quality of included studies using the Cochrane risk of bias tool. Data sources Medline, Embase, Web of Science, CENTRAL, and LILACS searched between January 1946 and April 2015. Eligibility criteria for selecting studies Prospective intervention trials of hydrolysed cows’ milk formula compared with another hydrolysed formula, human breast milk, or a standard cows’ milk formula, which reported on allergic or autoimmune disease or allergic sensitisation. Results 37 eligible intervention trials of hydrolysed formula were identified, including over 19 000 participants. There was evidence of conflict of interest and high or unclear risk of bias in most studies of allergic outcomes and evidence of publication bias for studies of eczema and wheeze. Overall there was no consistent evidence that partially or extensively hydrolysed formulas reduce risk of allergic or autoimmune outcomes in infants at high pre-existing risk of these outcomes. Odds ratios for eczema at age 0-4, compared with standard cows’ milk formula, were 0.84 (95% confidence interval 0.67 to 1.07; I2=30%) for partially hydrolysed formula; 0.55 (0.28 to 1.09; I2=74%) for extensively hydrolysed casein based formula; and 1.12 (0.88 to 1.42; I2=0%) for extensively hydrolysed whey based formula. There was no evidence to support the health claim approved by the US Food and Drug Administration that a partially hydrolysed formula could reduce the risk of eczema nor the conclusion of the Cochrane review that hydrolysed formula could prevent allergy to cows’ milk. Conclusion These findings do not support current guidelines

  6. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-08-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries.

  7. Could yeast infections impair recovery from mental illness? A case study using micronutrients and olive leaf extract for the treatment of ADHD and depression.

    PubMed

    Rucklidge, Julia J

    2013-01-01

    Micronutrients are increasingly used to treat psychiatric disorders including attention-deficit/hyperactivity disorder (ADHD), mood disorders, stress, and anxiety. However, a number of factors influence optimal response and absorption of nutrients, including the health of the gut, particularly the presence of yeast infections, such as Candida. As part of a wider investigation into the impact of micronutrients on psychiatric symptoms, many participants who experienced a yeast infection during their treatment showed a diminished response to the micronutrients. One case was followed systematically over a period of 3 y with documentation of deterioration in psychiatric symptoms (ADHD and mood) when infected with Candida and then symptom improvement following successful treatment of the infection with olive leaf extract (OLE) and probiotics. This case outlines that micronutrient treatment might be severely compromised by infections such as Candida and may highlight the importance of gut health when treating psychiatric disorders with nutrients. Given the role that inflammation can play in absorption of nutrients, it was hypothesized that the infection was impairing absorption of the micronutrients. PMID:23784606

  8. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    PubMed Central

    Ghanbari, Raheleh; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2012-01-01

    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp.) were evaluated. Papain hydrolysis showed the highest DH value (89.44%), followed by alcalase hydrolysis (83.35%). Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions. PMID:23222684

  9. Co-fermentation of glucose, xylose and/or cellobiose by yeast

    DOEpatents

    Jeffries, Thomas W.; Willis, Laura B.; Long, Tanya M.; Su, Yi-Kai

    2013-09-10

    Provided herein are methods of using yeast cells to produce ethanol by contacting a mixture comprising xylose with a Spathaspora yeast cell under conditions suitable to allow the yeast to ferment at least a portion of the xylose to ethanol. The methods allow for efficient ethanol production from hydrolysates derived from lignocellulosic material and sugar mixtures including at least xylose and glucose or xylose, glucose and cellobiose.

  10. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock.

    PubMed

    Wang, Juan; Gao, Qiuqiang; Zhang, Huizhan; Bao, Jie

    2016-10-01

    Oleaginous yeast Trichosporon cutaneum is robust to high levels of lignocellulose derived inhibitor compounds with considerable lipid accumulation capacity. The potential of lipid accumulation of T. cutaneum ACCC 20271 was investigated using corn stover hydrolysates with varying sugar and inhibitor concentrations. Biodiesel was synthesized using the extracted lipid and the product satisfied the ASTM standards. Among the typical inhibitors, T. cutaneum ACCC 20271 is relatively sensitive to furfural and 4-hydroxybenzaldehyde, but strongly tolerant to high titers of formic acid, acetic acid, levulinic acid, HMF, vanillin, and syringaldehyde. It is capable of complete degradation of formic acid, acetic acid, vanillin and 4-hydroxybenzaldehyde. Finally, the inhibitor degradation pathways of T. cutaneum ACCC 20271 were constructed based on the newly sequenced whole genome information and the experimental results. The study provided the first insight to the inhibitor degradation of T. cutaneum and demonstrated the potentials of lipid production from lignocellulose.

  11. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock.

    PubMed

    Wang, Juan; Gao, Qiuqiang; Zhang, Huizhan; Bao, Jie

    2016-10-01

    Oleaginous yeast Trichosporon cutaneum is robust to high levels of lignocellulose derived inhibitor compounds with considerable lipid accumulation capacity. The potential of lipid accumulation of T. cutaneum ACCC 20271 was investigated using corn stover hydrolysates with varying sugar and inhibitor concentrations. Biodiesel was synthesized using the extracted lipid and the product satisfied the ASTM standards. Among the typical inhibitors, T. cutaneum ACCC 20271 is relatively sensitive to furfural and 4-hydroxybenzaldehyde, but strongly tolerant to high titers of formic acid, acetic acid, levulinic acid, HMF, vanillin, and syringaldehyde. It is capable of complete degradation of formic acid, acetic acid, vanillin and 4-hydroxybenzaldehyde. Finally, the inhibitor degradation pathways of T. cutaneum ACCC 20271 were constructed based on the newly sequenced whole genome information and the experimental results. The study provided the first insight to the inhibitor degradation of T. cutaneum and demonstrated the potentials of lipid production from lignocellulose. PMID:27441826

  12. Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment.

    PubMed

    Liang, Yanna; Jarosz, Kimberly; Wardlow, Ashley T; Zhang, Ji; Cui, Yi

    2014-08-01

    Corn fiber and sweet sorghum bagasse (SSB) are both pre-processed lignocellulosic materials that can be used to produce liquid biofuels. Pretreatment using dilute sulfuric acid at a severity factor of 1.06 and 1.02 released 83.2 and 86.5 % of theoretically available sugars out of corn fiber and SSB, respectively. The resulting hydrolysates derived from pretreatment of SSB at SF of 1.02 supported growth of Cryptococcus curvatus well. In 6 days, the dry cell density reached 10.8 g/l with a lipid content of 40 % (w/w). Hydrolysates from corn fiber, however, did not lead to any significant cell growth even with addition of nutrients. In addition to consuming glucose, xylose, and arabinose, C. curvatus also utilized formic acid, acetic acid, 4-hydroxymethylfurfural, and levulinic acid for growth. Thus, C. curvatus appeared to be an excellent yeast strain for producing lipids from hydrolysates developed from lignocellulosic feedstocks. PMID:24928546

  13. A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization.

    PubMed

    Li, Jian; Ren, Shujuan; Han, Shaolun; Li, Na

    2014-04-01

    The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples. PMID:24355165

  14. A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization.

    PubMed

    Li, Jian; Ren, Shujuan; Han, Shaolun; Li, Na

    2014-04-01

    The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples.

  15. Biofunctional Properties of Enzymatic Squid Meat Hydrolysate

    PubMed Central

    Choi, Joon Hyuk; Kim, Kyung-Tae; Kim, Sang Moo

    2015-01-01

    Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 μg/mL, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an IC50 value of 145.1 μg/mL, while tyrosinase inhibitory activity with an IC50 value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics. PMID:25866752

  16. Applications of Protein Hydrolysates in Biotechnology

    NASA Astrophysics Data System (ADS)

    Pasupuleti, Vijai K.; Holmes, Chris; Demain, Arnold L.

    By definition, protein hydrolysates are the products that are obtained after the hydrolysis of proteins and this can be achieved by enzymes, acid or alkali. This broad definition encompasses all the products of protein hydrolysis - peptides, amino acids and minerals present in the protein and acid/alkali used to adjust pH (Pasupuleti 2006). Protein hydrolysates contain variable side chains depending on the enzymes used. These side chains could be carboxyl, amino, imidazole, sulfhydryl, etc. and they may exert specific physiological roles in animal, microbial, insect and plant cells. This introductory chapter reviews the applications of protein hydrolysates in biotechnology. The word biotechnology is so broad and for the purpose of this book, we define it as a set of technologies such as cell culture technology, bioprocessing technology that includes fermentations, genetic engineering technology, microbiology, and so on. This chapter provides introduction and leads to other chapters on manufacturing and applications of protein hydrolysates in biotechnology.

  17. Hydrolysates of lignocellulosic materials for biohydrogen production.

    PubMed

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-05-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.

  18. Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats (SHRs). The protein of foxtail millet after extruding or fermenting and the raw foxtail millet was extracted and hydrolyzed by digestive protea...

  19. Molten salt destruction of base hydrolysate

    SciTech Connect

    Watkins, B.E.; Kanna, R.L.; Chambers, R.D.; Upadhye, R.S.; Promeda, C.O.

    1996-10-01

    There is a great need for alternatives to open burn/open detonation of explosives and propellants from dismantled munitions. LANL has investigated the use of base hydrolysis for the demilitarization of explosives. Hydrolysates of Comp B, Octol, Tritonal, and PBXN-109 were processed in the pilot molten salt unit (in building 191). NOx and CO emissions were found to be low, except for CO from PBXN-109 processing. This report describes experimental results of the destruction of the base hydrolysates.

  20. Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice.

    PubMed

    An, L; Han, X; Li, H; Ma, Y; Shi, L; Xu, G; Yuan, G; Sun, J; Zhao, N; Sheng, Y; Wang, M; Du, P

    2016-01-01

    Cerebroprotein hydrolysate is an extract from porcine brain tissue that acts on the central nervous system in various ways to protect neurons and improve memory, attention, and vigilance. This study examined the effect and mechanism of cerebroprotein hydrolysate on learning and memory in mice with scopolamine-induced impairment. Mice were given an intraperitoneal injection of scopolamine hydrobromide to establish a murine model of learning and memory impairment. After 35 successive days of cerebroprotein hydrolysate treatment, their behaviors were observed in the Morris water maze and step-down test. Superoxide dismutase (SOD), Na(+)-K(+)-ATPase, and acetylcholinesterase (AChE) activity, and malondialdehyde (MDA), γ-aminobutyric acid (GABA), and glutamic acid (Glu) levels in the brain tissue of the mice were determined, and pathological changes in the hippocampus were examined. The results of the water-maze test showed that cerebroprotein hydrolysate shortened the escape latency and increased the number of platform crossings. In the step-down test, cerebroprotein hydrolysate treatment prolonged the step-down latency and reduced the number of errors; cerebroprotein hydrolysate increased the activity of SOD, Na(+)-K(+)-ATPase, and AChE, reduced the levels of MDA, decreased the Glu/GABA ratio in brain tissue, and reduced pathological changes in the hippocampus. The results indicate that cerebroprotein hydrolysate can improve learning and memory in mice with scopolamine-induced impairment. This effect may be associated with its ability to reduce injury caused by free radicals, improve acetylcholine function, and modulate the Glu/GABA learning and memory regulation system, reducing excitotoxicity caused by Glu. PMID:27525868

  1. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.

    PubMed

    Cunha, Joana T; Aguiar, Tatiana Q; Romaní, Aloia; Oliveira, Carla; Domingues, Lucília

    2015-09-01

    PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved the fermentation rate (up to 32%) and productivity (up to 48%) in different hydrolysates. ZWF1 and RPB4 overexpression did not improve the fermentation performance, but their increased expression in the presence of acetic acid, furfural and hydroxymethylfurfural was found to contribute to yeast adaptation to these inhibitors. This study expands our understanding about the molecular mechanisms involved in industrial yeast tolerance to the stresses occurring during lignocellulosic bioethanol production and highlights the importance of selecting appropriate strain backgrounds/hydrolysates combinations when addressing further improvement of these processes. PMID:25974617

  2. Comparison of different extraction methods for simultaneous determination of B complex vitamins in nutritional yeast using LC/MS-TOF and stable isotope dilution assay.

    PubMed

    Hälvin, Kristel; Paalme, Toomas; Nisamedtinov, Ildar

    2013-02-01

    The application of LC/MS-TOF method combined with stable isotope dilution assay was studied for determination of thiamine, riboflavin, nicotinamide, nicotinic acid, pantothenic acid, pyridoxal, and pyridoxine in food. Nutritional yeast powder was used as a model food matrix. Acid extraction was compared with various enzymatic treatments in ammonium formate buffer to find a suitable method for the conversion of more complex vitamers into the same forms as the used isotope-labeled internal standards. The enzyme preparations α-amylase, takadiastase, β-glucosidase, and acid phosphatase were all able to liberate thiamine and riboflavin. The diastatic enzyme preparations α-amylase and takadiastase also expressed proteolytic side activities resulting in the formation of small peptides which interfered with the mass spectra of thiamine and riboflavin. Liberation of nicotinamide and pantothenic acid from NAD(+) and CoA, respectively, could not be achieved with any of the studied enzyme preparations. Hydrochloric acid extraction at 121 °C for 30 min was found to be destructive to pantothenic acid, but increased the liberation of pyridoxal.

  3. Development of an enzymatic fish hydrolysate and its use in instant soup bases.

    PubMed

    Gálvez, A; Morales de Léon, J; Bourges Rodríguez, H

    1985-12-01

    The successful conservation of fish products, at low costs, is a subject of special interest in the developing countries. Conscious of this fact, our group has been studying several fish conservation methods, such as autolysis with high salt concentrations, and has obtained a sauce of high nutritive value and long shelf life. Nevertheless, the reaction process takes from four to six months. In the study herein reported, the hydrolysis was accelerated and controlled by using the following enzymes: papain, HT proteolytic, and Brew (N) zyme. The hydrolysate was then mixed with cereals to prepare instant soups. As results indicated, the best hydrolysate was obtained with Brew (N) zyme at 50 degrees C and 8.30 hours. This hydrolysate contains 93.0 g/100 g crude protein with a protein efficiency ratio (PER) and a net protein utilization (NPU) of 60% that of casein's NPU as well as a content of 0.8% ether extract. The lowest-cost mixtures with the highest nutritive value were: hydrolysate-wheat-soymeal, and hydrolysate-rice-soymeal, with 38.3 and 29.7 protein per 100 g of mixture, respectively, and a NPU of 79.0 and 79.8% in relation to casein, respectively. The soups prepared had a satisfactory acceptance rating. There were no significant differences in flavor and aroma at a confidence level of 95%. The cost per gram of protein is about US$ 0.22 per kg. PMID:3842931

  4. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717.

    PubMed

    Wei, Zhuan; Zhou, Jue; Sun, WenJing; Cui, FengJie; Xu, QinHua; Liu, ChangFeng

    2015-01-01

    D-Ribose is a five-carbon sugar and generally used as an energy source to improve athletic performance and the ability. The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design. The optimal fermentation parameters were obtained as 36°C culture temperature, 10% inoculum volume, and 7.0 initial pH. The mathematical model was then developed to show the effect of each medium composition and their interactions on the production of D-ribose and estimated that the optimized D-ribose production performance with the concentration of 62.13 g/L, yield of 0.40 g/g, and volumetric productivity of 0.86 g/L·h could be obtained when the medium compositions were set as 157 g/L glucose, 21 g/L corn steep liquor, 3.2 g/L (NH4)2SO4, 1 g/L yeast extract, 0.05 g/L MnSO4·H2O, and 20 g/L CaCO3. These findings indicated the D-ribose production performance was significantly improved compared to that under original conditions. PMID:26759810

  5. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717

    PubMed Central

    Wei, Zhuan; Zhou, Jue; Sun, WenJing; Cui, FengJie; Xu, QinHua; Liu, ChangFeng

    2015-01-01

    D-Ribose is a five-carbon sugar and generally used as an energy source to improve athletic performance and the ability. The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design. The optimal fermentation parameters were obtained as 36°C culture temperature, 10% inoculum volume, and 7.0 initial pH. The mathematical model was then developed to show the effect of each medium composition and their interactions on the production of D-ribose and estimated that the optimized D-ribose production performance with the concentration of 62.13 g/L, yield of 0.40 g/g, and volumetric productivity of 0.86 g/L·h could be obtained when the medium compositions were set as 157 g/L glucose, 21 g/L corn steep liquor, 3.2 g/L (NH4)2SO4, 1 g/L yeast extract, 0.05 g/L MnSO4·H2O, and 20 g/L CaCO3. These findings indicated the D-ribose production performance was significantly improved compared to that under original conditions. PMID:26759810

  6. Immunogenicity evaluation of protein hydrolysates for hypoallergenic infant formulae.

    PubMed

    Cordle, C T; Mahmoud, M I; Moore, V

    1991-10-01

    Casein and soy protein were enzymatically hydrolyzed for potential use in a hypoallergenic infant formula. To assess the relative immunoreactivity of the hydrolysates, rabbits were immunized with either the intact proteins or the protein hydrolysates using a vigorous immunization protocol. Serum samples were tested using ELISA methods that quantitated IgG antibody specific for the immunizing protein hydrolysates and the corresponding intact proteins. The results showed that the protein hydrolysates had substantially lower immunogenicity than the parent proteins. Also, antibody specific for the parent protein showed very low cross-reactivity with the hydrolysates. Both of the protein hydrolysates seem to be promising candidates for use in hypoallergenic infant feeding systems.

  7. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses. Part I: Blood nutrient concentration and digestibility.

    PubMed

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that feed additives such as chelated minerals, organic Se, yeast culture, direct-fed microbials, and Yucca schidigera extract would improve nutrient digestibility when included in an equine diet. Horses (Quarter Horse geldings 4.5 to 16 yr of age; mean BW 522 kg ± 46 kg) were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) commercially available sources of the aforementioned additives followed by a 14-d collection period of feces and urine. Chelated sources of Cu, Zn, Mn and Co were utilized versus sulfated forms, at a 100% replacement rate. No significant differences among apparent the digestibility of DM, ADF, or NDF (P= 0.665, P = 0.866, P = 0.747, respectively) were detected between dietary treatments. Likewise, no differences in apparent digestibility of Cu (P = 0.724), Zn (P = 0.256), Mn (P = 0.888), Co (P = 0.71), or Se (P = 0.588) were observed. No differences were observed in serum Cu, Mn, or Co concentrations between ADD and CTRL at acclimation or collection time points (P > 0.05). While no difference in serum Zn concentrations were observed between ADD and CTRL groups at acclimation (P > 0.05), they were statistically higher at the collection time period for horses consuming CTRL (P < 0.0001). Whole blood Se concentration was greater in the CTRL group versus the ADD group both at acclimation (P = 0.041) and collection (P = 0.005) time periods. In reference to time, serum Cu concentrations increased (P = 0.012) for animals consuming CTRL, but not ADD (P > 0.05). Serum Zn concentrations of horses consuming both ADD (P = 0.021) and CTRL (P < 0.0001) increased over time from acclimation to collection time points. No time differences (P > 0.05) were observed in serum Mn concentrations. Serum Co concentrations increased over time in horses consuming both ADD (P = 0.001) and CTRL (P = 0.021). From acclimation to collection, whole blood Se concentration increased for horses

  8. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus

    PubMed Central

    Akanni, Gabriel B; du Preez, James C; Steyn, Laurinda; Kilian, Stephanus G

    2015-01-01

    BACKGROUND The cladodes of Opuntia ficus-indica (prickly pear cactus) have a low protein content; for use as a balanced feed, supplementation with other protein sources is therefore desirable. We investigated protein enrichment by cultivation of the yeasts Candida utilis and Kluyveromyces marxianus in an enzymatic hydrolysate of the cladode biomass. RESULTS Dilute acid pretreatment and enzymatic hydrolysis of sun-dried cladodes resulted in a hydrolysate containing (per litre) 45.5 g glucose, 6.3 g xylose, 9.1 g galactose, 10.8 g arabinose and 9.6 g fructose. Even though K. marxianus had a much higher growth rate and utilized l-arabinose and d-galactose more completely than C. utilis, its biomass yield coefficient was lower due to ethanol and ethyl acetate production despite aerobic cultivation. Yeast cultivation more than doubled the protein content of the hydrolysate, with an essential amino acid profile superior to sorghum and millet grains. CONCLUSIONS This K. marxianus strain was weakly Crabtree positive. Despite its low biomass yield, its performance compared well with C. utilis. This is the first report showing that the protein content and quality of O. ficus-indica cladode biomass could substantially be improved by yeast cultivation, including a comparative evaluation of C. utilis and K. marxianus. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25371280

  9. State of the Art Manufacturing of Protein Hydrolysates

    NASA Astrophysics Data System (ADS)

    Pasupuleti, Vijai K.; Braun, Steven

    The use of protein hydrolysates in microbiological media has been in existence for several decades and the basic manufacturing process of protein hydrolysates has remained the same. However, with increasing use of protein hydrolysates in specialized applications such as animal cell culture processes, the manufacturing of protein hydrolysates has dramatically improved and is still in its infancy to uncover the specific peptide, peptides and combination of individual amino acids that produce intended effects for that application. This will change as the protein hydrolysate manufacturers and end-users exchange information and work towards the common goal of developing the best protein hydrolysates for specific applications. This chapter will review the generic manufacturing of protein hydrolysates describing individual unit operations, problems faced by manufacturers and suggestions for obtaining consistent product and guidelines for the end-users in getting regulatory support and setting up reliable specifications. Finally the chapter concludes with future trends of protein hydrolysates.

  10. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  11. Comparison of a novel MPN method against the yeast extract agar (YEA) pour plate method for the enumeration of heterotrophic bacteria from drinking water.

    PubMed

    Sartory, David P; Gu, Haoyi; Chen, Chun-Ming

    2008-07-01

    This study compared the Quanti-Disc most probable number (MPN) test for heterotrophic bacteria from drinking water with the widely used yeast extract agar (YEA) pour plate method. The Quanti-Disc test module contains 50 reaction wells in which a medium has been pre-deposited. The medium contains a suite of three fluorogenic enzyme substrates selected for the detection of enzymes expressed widely by heterotrophic bacteria. The MPN of heterotrophic bacteria is calculated from the number of fluorescing reaction wells after incubation of a sample. Quanti-Disc and the YEA pour plate method were compared according to guidance on comparing methods given in United Kingdom national guidance and ISO 17994:2004. The two methods were also challenged with reference strains and isolates of heterotrophic bacteria from drinking water. This indicated that heterotrophic bacteria commonly encountered in drinking water are detected by both the YEA pour plate method and Quanti-Disc. Analysis of data from split water samples (723 for 37 degrees C tests and 872 for 22 degrees C tests) from nine geographically diverse laboratories in England and Wales demonstrated that the Quanti-Disc method is equivalent to the YEA pour plate method for the analysis of heterotrophic bacteria from drinking and similar waters at 37 degrees C, and superior to YEA for the analysis at 22 degrees C. The Quanti-Disc method is a simple and efficient alternative method for the enumeration of heterotrophic bacteria from drinking water.

  12. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone.

    PubMed

    Yiannikouris, A; Kettunen, H; Apajalahti, J; Pennala, E; Moran, C A

    2013-01-01

    The sequestration/inactivation of the oestrogenic mycotoxin zearalenone (ZEA) by two adsorbents--yeast cell wall extract (YCW) and hydrated sodium calcium aluminosilicate (HSCAS)--was studied in three laboratory models: (1) an in vitro model was adapted from referenced methods to test for the sequestrant sorption capabilities under buffer conditions at two pH values using liquid chromatography coupled to a fluorescence detector for toxin quantification; (2) a second in vitro model was used to evaluate the sequestrant sorption stability according to pH variations and using ³H-labelled ZEA at low toxin concentration; and (3) an original, ex vivo Ussing chamber model was developed to further understand the transfer of ZEA through intestinal tissue and the impact of each sequestrant on the mycotoxin bioavailability of ³H-labelled ZEA. YCW was a more efficient ZEA adsorbent than HSCAS in all three models, except under very acidic conditions (pH 2.5 or 3.0). The Ussing chamber model offered a novel, ex vivo, alternative method for understanding the effect of sequestrant on the bioavailability of ZEA. The results showed that compared with HSCAS, YCW was more efficient in sequestering ZEA and that it reduced the accumulation of ZEA in the intestinal tissue by 40% (p < 0.001).

  13. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. PMID:25647030

  14. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  15. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing.

    PubMed

    Beloshapka, Alison N; Dowd, Scot E; Suchodolski, Jan S; Steiner, Jörg M; Duclos, Laura; Swanson, Kelly S

    2013-06-01

    Our objective was to determine the effects of feeding raw meat-based diets with or without inulin or yeast cell wall extract (YCW) on fecal microbial communities of dogs using 454 pyrosequencing. Six healthy female adult beagles (5.5 ± 0.5 years; 8.5 ± 0.5 kg) were randomly assigned to six test diets using a Latin square design: (1) beef control; (2) beef + 1.4% inulin; (3) beef + 1.4% YCW; (4) chicken control; (5) chicken + 1.4% inulin; and (6) chicken + 1.4% YCW. Following 14 days of adaptation, fresh fecal samples were collected on day 15 or day 16 of each period. Fecal genomic DNA was extracted and used to create 16S rRNA gene amplicons, which were subjected to 454 pyrosequencing and qPCR. Predominant fecal bacterial phyla included Fusobacteria, Firmicutes, Bacteroidetes, and Proteobacteria. Beef-based diets increased (P < 0.05) Escherichia, but decreased (P < 0.05) Anaerobiospirillum vs. chicken-based diets. Inulin decreased (P < 0.05) Enterobacteriaceae. Inulin increased (P < 0.05) Megamonas vs. control. Inulin also decreased (P < 0.05) Escherichia vs. YCW. qPCR data showed that YCW increased (P < 0.05) Bifidobacterium vs. inulin and control and inulin increased (P < 0.05) Lactobacillus vs. YCW. Although a few changes in fecal microbiota were observed with inulin or YCW consumption, a strong prebiotic effect was not observed.

  16. Yeast and mould dynamics in Caciofiore della Sibilla cheese coagulated with an aqueous extract of Carlina acanthifolia All.

    PubMed

    Cardinali, Federica; Taccari, Manuela; Milanović, Vesna; Osimani, Andrea; Polverigiani, Serena; Garofalo, Cristiana; Foligni, Roberta; Mozzon, Massimo; Zitti, Silvia; Raffaelli, Nadia; Clementi, Francesca; Aquilanti, Lucia

    2016-08-01

    Caciofiore della Sibilla is a speciality ewes' milk cheese traditionally manufactured in a foothill area of the Marche region (Central Italy) with a crude extract of fresh young leaves of Carlina acanthifolia All. subsp. acanthifolia as a coagulating agent. The fungal dynamics and diversity of this speciality cheese were investigated throughout the manufacturing and 20-day ripening process, using a combined PCR-DGGE approach. The fungal biota of a control ewes' milk cheese, manufactured with the same batch of milk coagulated with a commercial animal rennet, was also monitored by PCR-DGGE, in order to investigate the contribution of the peculiar vegetable coagulant to the fungal diversity and dynamics of the cheese. Based on the overall results collected, the raw milk and the dairy environment represented the main sources of fungal contamination, with a marginal or null contribution of thistle rennet to the fungal diversity and dynamics of Caciofiore della Sibilla cheese. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Yeast and mould dynamics in Caciofiore della Sibilla cheese coagulated with an aqueous extract of Carlina acanthifolia All.

    PubMed

    Cardinali, Federica; Taccari, Manuela; Milanović, Vesna; Osimani, Andrea; Polverigiani, Serena; Garofalo, Cristiana; Foligni, Roberta; Mozzon, Massimo; Zitti, Silvia; Raffaelli, Nadia; Clementi, Francesca; Aquilanti, Lucia

    2016-08-01

    Caciofiore della Sibilla is a speciality ewes' milk cheese traditionally manufactured in a foothill area of the Marche region (Central Italy) with a crude extract of fresh young leaves of Carlina acanthifolia All. subsp. acanthifolia as a coagulating agent. The fungal dynamics and diversity of this speciality cheese were investigated throughout the manufacturing and 20-day ripening process, using a combined PCR-DGGE approach. The fungal biota of a control ewes' milk cheese, manufactured with the same batch of milk coagulated with a commercial animal rennet, was also monitored by PCR-DGGE, in order to investigate the contribution of the peculiar vegetable coagulant to the fungal diversity and dynamics of the cheese. Based on the overall results collected, the raw milk and the dairy environment represented the main sources of fungal contamination, with a marginal or null contribution of thistle rennet to the fungal diversity and dynamics of Caciofiore della Sibilla cheese. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27121441

  18. Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells.

    PubMed

    Zhao, Chun-Hai; Chi, Zhe; Zhang, Fang; Guo, Feng-Jun; Li, Mei; Song, Wei-Bo; Chi, Zhen-Ming

    2011-05-01

    In this study, it was found that the immobilized inulinase-producing cells of Pichia guilliermondii M-30 could produce 169.3 U/ml of inulinase activity while the free cells of the same yeast strain only produced 124.3 U/ml of inulinase activity within 48 h. When the immobilized inulinase-producing yeast cells were co-cultivated with the free cells of Rhodotorula mucilaginosa TJY15a, R. mucilaginosa TJY15a could accumulate 53.2% oil from inulin in its cells and cell dry weight reached 12.2g/l. Under the similar conditions, R. mucilaginosa TJY15a could accumulate 55.4% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 12.8 g/l within 48 h. When the co-cultures were grown in 2l fermentor, R. mucilaginosa TJY15a could accumulate 56.6% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 19.6g/l within 48 h. Over 90.0% of the fatty acids from the yeast strain TJY15a grown in the extract of Jerusalem artichoke tubers was C(16:0), C(18:1) and C(18:2), especially C(18:1) (50.6%). PMID:21411313

  19. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.

    PubMed

    Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek

    2016-05-01

    Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis.

  20. A new beta-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional cellulose-to-ethanol conversion by simultaneous saccharification and fermentation (SSF)requires enzymatic saccharification using both cellulase and ß-glucosidase allowing cellulose utilization by common ethanologenic yeast. Here we report a new yeast strain of Clavispora NRRL Y-50464 th...

  1. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    PubMed

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities.

  2. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    PubMed

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities. PMID:26617014

  3. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  4. Yeast Infections

    MedlinePlus

    Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in ... infection that causes white patches in your mouth Candida esophagitis is thrush that spreads to your esophagus, ...

  5. Hydrolysates of lignocellulosic materials for biohydrogen production

    PubMed Central

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-01-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized. [BMB Reports 2013; 46(5): 244-251] PMID:23710634

  6. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  7. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover.

    PubMed

    Sitepu, Irnayuli R; Jin, Mingjie; Fernandez, J Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L

    2014-09-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40 % of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Preculturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals.

  8. In vitro exposure of Penicillium mycotoxins with or without a modified yeast cell wall extract (mYCW) on bovine macrophages (BoMacs).

    PubMed

    Oh, Se-Young; Quinton, V Margaret; Boermans, Herman J; Swamy, H V L N; Karrow, Niel A

    2015-11-01

    Penicillium mycotoxins (PMs) are contaminants that are frequently found in grain or crop-based silage for animal feed. Previously, we have characterized the potential immunotoxicity of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA), and penicillic acid (PA) by using a bovine macrophage cell line (BoMacs). In the present study, cell proliferation was used as a bioassay endpoint to evaluate the efficacy of a modified yeast cell wall extract (mYCW), for preventing PM toxicity under various in vitro conditions such as the following: pH (3, 5, 7), incubation time (1, 2, 4, 6 h), percentage of mYCW (0.05, 0.1, 0.2, 0.5, 1.0 %), and PM concentration. mYCW was most effective in preventing the toxicity of 12.88 and 25.8 μM OTA at pH 3.0 (p < 0.0001), regardless of incubation time (p < 0.0001) and the percentage of mYCW (p < 0.0001). An incubation time of 6 h (p < 0.05) or 0.5 and 1.0 % mYCW (p < 0.0001) significantly improved the efficacy of mYCW for preventing CIT toxicity. In contrast, 0.5 and 1.0 % of mYCW appeared to exacerbate the PAT toxicity (p < 0. 0001). This effect on PAT toxicity was constantly observed with higher PAT concentrations, and it reached significance at a concentration of 0.70 μM (p < 0.0001). mYCW had no effect on PA toxicity. These results suggest that mYCW may reduce OTA toxicity and, to some extent, CIT toxicity at pH 3.0. Although PAT toxicity was increased by mYCW treatment, PAT is readily degraded during heat treatment and may therefore be dealt with using other preventative measures.

  9. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studies.

    PubMed

    Weksler-Zangen, Sarah; Mizrahi, Tal; Raz, Itamar; Mirsky, Nitsa

    2012-09-01

    In search for an effective oral treatment for diabetes, we examined the capacity of glucose tolerance factor (GTF) extracted from yeast and administered orally to reduce hyperglycaemia in rat models exhibiting insulin deficiency. The cellular effect of GTF on the insulin signalling pathway was investigated in vitro. GTF (oral bolus), insulin (intraperitoneal) or their combination was administered to streptozotocin-diabetic (STZ) or hyperglycaemic Cohen diabetic-sensitive (hyp-CDs) rats. Blood glucose (BG) and insulin levels were measured in the postprandial (PP) state and during an oral glucose tolerance test. Deoxy-glucose transport and insulin signal transduction were assessed in 3T3-L1 adipocytes and myoblasts incubated with the GTF. Low dose of insulin produced a 34 and 12·5 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. GTF induced a 33 and 17 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. When combined with insulin, a respective decrease (58 and 42 %) in BG levels was observed, suggesting a partially additive (hyp-CDs) or synergistic (STZ rats) effect of the GTF and insulin. GTF did not induce insulin secretion in hyp-CDs rats, yet it lowered their BG levels, proposing an effect on glucose clearance by peripheral tissues. GTF induced a dose-dependent increase in deoxy-glucose transport into myoblasts and fat cells similar to insulin, while the combined treatment resulted in augmented transport rate. GTF induced a dose- and time-dependent phosphorylation of insulin receptor substrate 1, Akt and mitogen-activated protein kinase independent of insulin receptor phosphorylation. GTF exerts remarkable insulin-mimetic and insulin-potentiating effects, both in vivo and in vitro. It produces an insulin-like effect by acting on cellular signals downstream of the insulin receptor. These results demonstrate a potential source for a novel oral medication for diabetes.

  10. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs.

    PubMed

    Bilić-Šobot, Diana; Kubale, Valentina; Škrlep, Martin; Čandek-Potokar, Marjeta; Prevolnik Povše, Maja; Fazarinc, Gregor; Škorjanc, Dejan

    2016-10-01

    This study aimed to evaluate the effect of hydrolysable tannin supplementation on morphology, cell proliferation and apoptosis in the intestine and liver of fattening boars. A total of 24 boars (Landrace × Large white) were assigned to four treatment groups: Control (fed commercial feed mixture) and three experimental groups fed the same diet supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract. Animals were housed individually with ad libitum access to feed and then slaughtered at 193 d of age and 122 ± 10 kg body weight. Diets supplemented with hydrolysable tannin affected the morphometric traits of the duodenum mucosa as reflected in increased villus height, villus perimeter and mucosal thickness. No effect was observed on other parts of the small intestine. In the large intestine, tannin supplementation reduced mitosis (in the caecum and descending colon) and apoptosis (in the caecum, ascending and descending colon). No detrimental effect of tannin supplementation on liver tissue was observed. The present findings suggest that supplementing boars with hydrolysable tannins at concentrations tested in this experiment has no unfavourable effects on intestinal morphology. On the contrary, it may alter cell debris production in the large intestine and thus reduce intestinal skatole production. PMID:27434497

  11. Evaluation of cotton stalk hydrolysate for xylitol production.

    PubMed

    Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent

    2016-07-01

    Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol. PMID:26444685

  12. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  13. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  14. Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark.

    PubMed

    Kemppainen, Katariina; Inkinen, Jenni; Uusitalo, Jaana; Nakari-Setälä, Tiina; Siika-aho, Matti

    2012-08-01

    Spruce bark is a source of interesting polyphenolic compounds and also a potential but little studied feedstock for sugar route biorefinery processes. Enzymatic hydrolysis and fermentation of spruce bark sugars to ethanol were studied after three different pretreatments: steam explosion (SE), hot water extraction (HWE) at 80 °C, and sequential hot water extraction and steam explosion (HWE+SE), and the recovery of different components was determined during the pretreatments. The best steam explosion conditions were 5 min at 190 °C without acid catalyst based on the efficiency of enzymatic hydrolysis of the material. However, when pectinase was included in the enzyme mixture, the hydrolysis rate and yield of HWE bark was as good as that of SE and HWE+SE barks. Ethanol was produced efficiently with the yeast Saccharomyces cerevisiae from the pretreated and hydrolysed materials suggesting the suitability of spruce bark to various lignocellulosic ethanol process concepts.

  15. Protein and protein hydrolysates in sports nutrition.

    PubMed

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  16. Antioxidant activities of protein hydrolysates obtained from the housefly larvae.

    PubMed

    Zhang, Huan; Wang, Pan; Zhang, Ai-Jun; Li, Xuan; Zhang, Ji-Hong; Qin, Qi-Lian; Wu, Yi-Jun

    2016-09-01

    The housefly is an important resource insect and the housefly larvae are ideal source of food additives. The housefly larvae protein hydrolysates were obtained by enzymatic hydrolysis by alcalase and neutral proteinase. Their antioxidant activities were investigated, including the superoxide and hydroxyl radicalscavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, reducing power and metal chelating activity. The antioxidant activities of both hydrolysates increased with their increasing concentrations. The alcalase hydrolysate (AH) showed higher scavenging activities against hydroxyl radical and superoxide anion radical at low concentrations and higher metal-chelating activity than the neutral proteinase hydrolysate (NPH). The NPH exhibited higher scavenging activity against DPPH free radical and higher reducing power than the AH. Both hydrolysates showed more than 50% superoxide anion radical-scavenging activity at 10 μg/mL. These results indicate that both housefly larvae protein hydrolysates display high antioxidant activities and they could serve as potential natural antioxidant food additives. PMID:27630047

  17. Iron-Binding Capacity of Defatted Rice Bran Hydrolysate and Bioavailability of Iron in Caco-2 Cells.

    PubMed

    Foong, Lian-Chee; Imam, Mustapha Umar; Ismail, Maznah

    2015-10-21

    The present study was aimed at utilizing defatted rice bran (DRB) protein as an iron-binding peptide to enhance iron uptake in humans. DRB samples were treated with Alcalase and Flavourzyme, and the total extractable peptides were determined. Furthermore, the iron-binding capacities of the DRB protein hydrolysates were determined, whereas iron bioavailability studies were conducted using an in vitro digestion and absorption model (Caco-2 cells). The results showed that the DRB protein hydrolysates produced by combined Alcalase and Flavourzyme hydrolysis had the best iron-binding capacity (83%) after 90 min of hydrolysis. The optimal hydrolysis time to produce the best iron-uptake in Caco-2 cells was found to be 180 min. The results suggested that DRB protein hydrolysates have potent iron-binding capacities and may enhance the bioavailability of iron, hence their suitability for use as iron-fortified supplements. PMID:26435326

  18. Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production.

    PubMed

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Zhao, Zongbao K; Yang, Zhonghua; Yan, Jiabao; Zhao, Mi

    2016-11-01

    In the present study, synergistic effects were observed when glycerol was co-fermented with glucose and xylose for lipid production by the oleaginous yeast Cryptococcus curvatus. Glycerol was assimilated simultaneously with sugars at the beginning of the culture without adaption time. Furthermore, better lipid production results, i.e., lipid yield and lipid productivity of 18.0g/100g and 0.13g/L/h, respectively, were achieved when cells were cultured in blends of corn stover hydrolysates and biodiesel-derived glycerol than those in the hydrolysates alone. The lipid samples had fatty acid compositional profiles similar to those of vegetable oils, suggesting their potential for biodiesel production. This co-utilization strategy provides an extremely simple solution to advance lipid production from both lignocelluloses and biodiesel-derived glycerol in one step.

  19. Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production.

    PubMed

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Zhao, Zongbao K; Yang, Zhonghua; Yan, Jiabao; Zhao, Mi

    2016-11-01

    In the present study, synergistic effects were observed when glycerol was co-fermented with glucose and xylose for lipid production by the oleaginous yeast Cryptococcus curvatus. Glycerol was assimilated simultaneously with sugars at the beginning of the culture without adaption time. Furthermore, better lipid production results, i.e., lipid yield and lipid productivity of 18.0g/100g and 0.13g/L/h, respectively, were achieved when cells were cultured in blends of corn stover hydrolysates and biodiesel-derived glycerol than those in the hydrolysates alone. The lipid samples had fatty acid compositional profiles similar to those of vegetable oils, suggesting their potential for biodiesel production. This co-utilization strategy provides an extremely simple solution to advance lipid production from both lignocelluloses and biodiesel-derived glycerol in one step. PMID:27529520

  20. Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag⁺, methyl jasmonate, and yeast extract elicitation.

    PubMed

    Li, Bo; Wang, Bangqing; Li, Hongyan; Peng, Liang; Ru, Mei; Liang, Zongsuo; Yan, Xijun; Zhu, Yonghong

    2016-01-01

    Salvia castanea Diels f. tomentosa Stib. is an endemic medicinal plant distributed in China, and the notably high content of tanshinone IIA in the root is proven effective for the therapy of heart diseases. Hairy root induction of this Salvia species was inoculated with Agrobacterium rhizogenes strain ATCC 15834. Transformed hairy root was cultured in 6,7-V liquid medium for growth kinetics assessment and elicitation. An S curve was present in the hairy root cultures based on the fresh and dry weights with an interval of 3 days. An optimum concentration of the applied elicitors (15 μM Ag(+), 200 μM methyl jasmonate, and 200 mg l(-1) yeast extract elicitor) benefitted both the growth status and tanshinone accumulation in the hairy root cultures. Tanshinone IIA contents were mostly stimulated 1.8-fold and 1.99-fold compared with the control by Ag(+) and methyl jasmonate elicitation, respectively. Yeast extract dramatically enhanced dry mass accumulation, while it promoted cryptotanshinone content of 2.84 ± 0.33 mg g(-1) dry weight at most in the hairy root cultures. Selected elicitors diversely influenced tanshinone accumulation in the time courses of hairy root cultures within 7 days. Furthermore, transcripts of selected genes in the tanshinone biosynthetic pathway were remarkably upregulated with elicitation. Yeast extract elicitor heightened 13.9-fold of isopentenyl diphosphate isomerase expression level at 12 h, while it increased 16.7-fold of geranylgeranyl diphosphate synthase transcript at 24 h compared with that of the control, which was more effective than Ag(+) and methyl jasmonate. This study provided a convenient hairy root culture system of S. castanea Diels f. tomentosa Stib. for tanshinone production for the first time.

  1. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Liang, Jinfeng; Li, Sha; Feng, Xiaohai

    2014-07-01

    Poly(ε-L-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP) co-production by Streptomyces albulus PD-1 from cane molasses and hydrolysate of strepyomyces cells (HSC) was investigated for the first time in this study. The optimal initial total sugar concentration of the cane molasses pretreated with sulfuric acid was determined to be 20 g L(-1), and HSC could substitute for yeast extract for ε-PL and PDAP co-production. When fed-batch fermentation was performed in 1t fermentor with pretreated cane molasses and HSC, 20.6 ± 0.5 g L(-1) of ε-PL and 5.2 ± 0.6 g L(-1) of PDAP were obtained. The amount of strepyomyces cells obtained in one fed-batch fermentation is sufficient to prepare the HSC to satisfy the demand of subsequent fermentations, thus the self-cycling of organic nitrogen source becomes available. These results suggest that the low-cost cane molasses and HSC can be used for the economical production of ε-PL and PDAP by S. albulus PD-1.

  2. Production of DagA, a β-agarase, by streptomyces lividans in glucose medium or mixed-sugar medium simulating microalgae hydrolysate.

    PubMed

    Park, Juyi; Hong, Soon-Kwang; Chang, Yong Keun

    2014-12-28

    DagA, a β-agarase, was produced by cultivating a recombinant Streptomyces lividans in a glucose medium or a mixed-sugar medium simulating microalgae hydrolysate. The optimum composition of the glucose medium was identified as 25 g/l glucose, 10 g/l yeast extract, and 5 g/l MgCl2·6H2O. With this, a DagA activity of 7.26 U/ml could be obtained. When a mixedsugar medium containing 25 g/l of sugars was used, a DagA activity of 4.81 U/ml was obtained with very low substrate utilization efficiency owing to the catabolic repression of glucose against the other sugars. When glucose and galactose were removed from the medium, an unexpectedly high DagA activity of about 8.7 U/ml was obtained, even though a smaller amount of sugars was used. It is recommended for better substrate utilization and process economics that glucose and galactose be eliminated from the medium, by being consumed by some other useful applications, before the production of DagA.

  3. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.

    PubMed

    Yen, Hong-Wei; Chang, Jung-Tzu

    2015-05-01

    The conversion of abundant lignocellulosic biomass (LCB) to valuable compounds has become a very attractive idea recently. This study successfully used LCB (rice straw) hydrolysate as a carbon source for the cultivation of oleaginous yeast-Rhodotorula glutinis in an airlift bioreactor. The lipid content of 34.3 ± 0.6% was obtained in an airlift batch with 60 g reducing sugars/L of LCB hydrolysate at a 2 vvm aeration rate. While using LCB hydrolysate as the carbon source, oleic acid (C18:1) and linoleic acid (C18:2) were the predominant fatty acids of the microbial lipids. Using LCB hydrolysate in the airlift bioreactor at 2 vvm achieved the highest cell mass growth as compared to the agitation tank. Despite the low lipid content of the batch using LCB hydrolysate, this low cost feedstock has the potential of being adopted for the production of β-carotene instead of lipid accumulation in the airlift bioreactor for the cultivation of R. glutinis.

  4. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.

    PubMed

    Yen, Hong-Wei; Chang, Jung-Tzu

    2015-05-01

    The conversion of abundant lignocellulosic biomass (LCB) to valuable compounds has become a very attractive idea recently. This study successfully used LCB (rice straw) hydrolysate as a carbon source for the cultivation of oleaginous yeast-Rhodotorula glutinis in an airlift bioreactor. The lipid content of 34.3 ± 0.6% was obtained in an airlift batch with 60 g reducing sugars/L of LCB hydrolysate at a 2 vvm aeration rate. While using LCB hydrolysate as the carbon source, oleic acid (C18:1) and linoleic acid (C18:2) were the predominant fatty acids of the microbial lipids. Using LCB hydrolysate in the airlift bioreactor at 2 vvm achieved the highest cell mass growth as compared to the agitation tank. Despite the low lipid content of the batch using LCB hydrolysate, this low cost feedstock has the potential of being adopted for the production of β-carotene instead of lipid accumulation in the airlift bioreactor for the cultivation of R. glutinis. PMID:25454603

  5. Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates

    PubMed Central

    Skerker, Jeffrey M; Leon, Dacia; Price, Morgan N; Mar, Jordan S; Tarjan, Daniel R; Wetmore, Kelly M; Deutschbauer, Adam M; Baumohl, Jason K; Bauer, Stefan; Ibáñez, Ana B; Mitchell, Valerie D; Wu, Cindy H; Hu, Ping; Hazen, Terry; Arkin, Adam P

    2013-01-01

    The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance. PMID:23774757

  6. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    NASA Astrophysics Data System (ADS)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  7. Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis.

    PubMed

    Cho, Dae Haeng; Shin, Soo-Jeong; Bae, Yangwon; Park, Chulhwan; Kim, Yong Hwan

    2010-07-01

    In this study, alkaline-pretreatment for the extraction of acetic acid from xylan of hemicellulose was introduced prior to concentrated acid hydrolysis of yellow poplar wood meal. Ethanol fermentability in deacetylated yellow poplar hydrolysate (DYPH) by Pichia stipitis was also investigated. The alkali-pretreatment conditions were evaluated in terms of temperature, reaction time, and alkalinity. 94% of the acetyl group in xylan of the yellow poplar hemicellulose fraction was extracted using 0.5% sodium hydroxide solution at 60 degrees C for 60 min. The cell growth and ethanol production of P. stipitis was strongly affected by acetic acid, either in synthetic medium with 7.1g/l of acetic acid added or in yellow poplar hydrolysate (YPH) containing 7.1g/l of acetic acid. On the other hand, ethanol production in DYPH was slightly higher than that of the control although cell growth decreased by 34%. In the case of DYPH, the ethanol yield, volumetric ethanol productivity, and theoretical yield percentage was 0.48 g/g, 0.40 g/lh, and 93.2%, respectively. Thus, the alkaline-pretreatment method greatly enhanced the ethanol fermentability of yellow poplar hydrolysate. PMID:19959357

  8. [Sorting oleaginous yeast by using optical manipulation and Raman spectroscopy].

    PubMed

    Li, Zi-Da; Chen, Liang; Meng, Ling-Jing; Liu, Jun-Xian; Wang, Gui-Wen

    2011-04-01

    Extensive research has been carried out in an effort to screen the oleaginous microorganisms. Here, Raman spectroscopy and laser tweezers were used to sort oleaginous yeast from mixed yeast cells. The preprocessing of subtracted background, 17 points S-G smoothing filter, polynomial fitting baseline correction and vector normalization were performed and the main features information of intracellular substances from the Raman spectroscopy of yeast cells was extracted by combining principal component analysis. Based on the distinguished composition of oleaginous yeast and non-oleaginous different yeast, a sorting model was established. The test yeast cell in optical trapping was distinguished real-time by the model referring to its Raman spectra. The cells distinguished as oleaginous yeast were collected by means of optical manipulation. The sorted oleaginous yeast cells were verified by microbial culture and Sudan black B test. The result illustrates that Raman spectroscopy combined with optical manipulation is an effective technique for sorting oleaginous yeast and other economic microorganisms.

  9. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Condensed animal protein hydrolysate. 573.200... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The...

  10. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Condensed animal protein hydrolysate. 573.200... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The...

  11. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Condensed animal protein hydrolysate. 573.200... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The...

  12. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Condensed animal protein hydrolysate. 573.200... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The...

  13. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed animal protein hydrolysate. 573.200... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The...

  14. Characterization of isolated yeast growth response to methionine analogs.

    PubMed

    Saengkerdsub, Suwat; Lingbeck, Jody M; Wilkinson, Heather H; O'Bryan, Corliss A; Crandall, Philip G; Muthaiyan, Arunachalam; Biswas, Debabrata; Ricke, Steven C

    2013-01-01

    Methionine is one of the first limiting amino acids in poultry nutrition. The use of methionine-rich natural feed ingredients, such as soybean meal or rapeseed meal may lead to negative environmental consequences. Amino acid supplementation leads to reduced use of protein-rich ingredients. The objectives of this study were isolation of potentially high content methionine-containing yeasts, quantification of methionine content in yeasts and their respective growth response to methionine analogs. Minimal medium was used as the selection medium and the isolation medium of methionine-producing yeasts from yeast collection and environmental samples, respectively. Two yeasts previously collected along with six additional strains isolated from Caucasian kefir grains, air-trapped, cantaloupe, and three soil samples could grow on minimal medium. Only two of the newly isolated strains, K1 and C1, grew in minimal medium supplied with either methionine analogs ethionine or norleucine at 0.5% (w/v). Based on large subunit rRNA sequences, these isolated strains were identified as Pichia udriavzevii/Issatchenkia orientalis. P. kudriavzevii/I. orentalis is a generally recognized as a safe organism. In addition, methionine produced by K1 and C1 yeast hydrolysate yielded 1.3 ± 0.01 and 1.1 ± 0.01 mg g(-1) dry cell. Yeast strain K1 may be suitable as a potential source of methionine for dietary supplements in organic poultry feed but may require growth conditions to further increase their methionine content. PMID:24007489

  15. Development of xylose-fermenting yeasts for ethanol production at high acetic acid concentrations

    SciTech Connect

    Mohandas, D.V.; Whelan, D.R.; Panchal, C.J.

    1995-12-31

    Mutants resistant to comparatively high levels of acetic acid were isolated from the xylose-fermenting yeasts Candida shehatae and Pichia Stipitis by adapting these cultures to increasing concentrations of acetic acid grown in shake-flask cultures. These mutants were tested for their ability to ferment xylose in presence of high acetic acid concentrations, in acid hydrolysates of wood, and in hardwood spent sulfite liquor, and compared with their wild-type counterparts and between themselves. The P. stipitis mutant exhibited faster fermentation times, better tolerance to acid hydrolysates, and tolerance to lower pH.

  16. [Antigenicity and allergenicity of hypoallergenic hydrolysate for infant nutrition].

    PubMed

    Görtler, I; Urbanek, R

    1990-09-01

    The antigenicity/allergenicity of protein components in hypoallergenic formulae is altered by hydrolysis. Two different hydrolysate formulae, hydrolysate 1 = cow milk based; hydrolysate 2 = soya/beef collagen based, were investigated with respect to their specific IgG/IgE binding capacities using the sera of 41 healthy controls, 40 atopic and 12 cow milk allergic subjects. Furthermore, histamine liberation from basophils on incubation with milk proteins and the hydrolysates was measured in 5 healthy and 3 cow milk allergic individuals. Nearly all probands demonstrated specific IgG binding with hypoallergenic formulae. Anti-hydrolysate 1 IgG titres were higher than titres against hydrolysate 2 in the cow milk allergic and healthy populations. Nonhydrolyzed cow milk elicited IgE binding in all cow milk allergic sera. IgE-antibody for hydrolysate 2 could only be demonstrated in one atopic subject. Hydrolysate 1 showed binding capacity for the IgE-antibody of one atopic and 3/12 cow milk allergic patients. Histamine liberation followed in-vitro incubation with both hydrolysates in one out of 3 cow milk allergic subjects and two out of these cases following incubation to unprocessed cow milk protein. A decreased antigenicity/allergenicity can be demonstrated for the two hydrolysates investigated, however antigenic/allergenic reactivity is still present to some degree. Therefore, the therapeutic application of hypoallergenic formulae in patients with specific sensitization to cow milk should be based on the results of the above-mentioned in-vitro parameters and if necessary skin tests and oral challenges.

  17. Comparison of torula yeast and various grape juice products as attractants for Mexican fruit fly (Diptera: Tephritidae).

    PubMed

    Mangan, Robert L; Thomas, Donald B

    2014-04-01

    Early research investigating attractants for the Mexican fruit fly, Anastrepha ludens Loew, during the 1930s indicated that fermentation products were effective attractants for Mexican fruit flies and other tropical Tephritidae, but that attraction to fruit components was only of academic interest. Tests reported here were carried out on populations of Mexican fruit flies from 2004 to 2011. Trapping experiments carried out at sites in the states Nuevo Leon and San Luis Potosi compared grape juice, reconstituted grape concentrate and powdered grape mixes, and torula yeast extract in orchards at each site. The Nuevo Leon orchard was mixed with alternate rows of pears and surrounded by alternate hosts. The San Luis Potosi site was surrounded by other orange orchards or nonhosts. Each test was run for at least 10 mo and included highest and lowest trapping periods. Results showed that grape juice captured the most total flies and had the fewest samples with zero flies. However, in the series of experiments, each product had the most captures in at least one experiment. Hydrolyzed torula was superior in one of the six experiments. In five of the tests, polyethylene glycol was tested as an additive to the grape products but never improved capture rate compared with the product without the additive. These results indicate that grape juice is superior to grape concentrate or powder and grape juice is at least equal to torula yeast hydrolysate for trapping pest populations of Mexican fruit flies in commercial citrus orchards.

  18. Modulation of Intestinal Inflammation by Yeasts and Cell Wall Extracts: Strain Dependence and Unexpected Anti-Inflammatory Role of Glucan Fractions

    PubMed Central

    Jawhara, Samir; Habib, Khalid; Maggiotto, François; Pignede, Georges; Vandekerckove, Pascal; Maes, Emmanuel; Dubuquoy, Laurent; Fontaine, Thierry; Guerardel, Yann; Poulain, Daniel

    2012-01-01

    Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb) reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation. Mice received a single oral challenge of C. albicans and were then given 1.5% dextran-sulphate-sodium (DSS) for 2 weeks followed by a 3-day restitution period. S. cerevisiae strains (Sb, Sc1 to Sc4), as well as mannoprotein (MP) and β-glucan crude fractions prepared from Sc2 and highly purified β-glucans prepared from C. albicans were used in this curative model, starting 3 days after C. albicans challenge. Mice were assessed for the clinical, histological and inflammatory responses related to DSS administration. Strain Sc1-1 gave the same level of protection against C. albicans as Sb when assessed by mortality, clinical scores, colonization levels, reduction of TNFα and increase in IL-10 transcription. When Sc1-1 was compared with the other S. cerevisiae strains, the preparation process had a strong influence on biological activity. Interestingly, some S. cerevisiae strains dramatically increased mortality and clinical scores. Strain Sc4 and MP fraction favoured C. albicans colonization and inflammation, whereas β-glucan fraction was protective against both. Surprisingly, purified β-glucans from C. albicans had the same protective effect. Thus, some yeasts appear to be strong modulators of intestinal inflammation. These effects are dependent on the strain, species, preparation process and cell wall fraction. It was striking that β-glucan fractions or pure β-glucans from C. albicans displayed the most potent anti-inflammatory effect in the DSS model. PMID

  19. Structural, thermal, functional, antioxidant & antimicrobial properties of β-d-glucan extracted from baker's yeast (Saccharomyces cereviseae)-Effect of γ-irradiation.

    PubMed

    Khan, Asma Ashraf; Gani, Adil; Masoodi, F A; Amin, Furheen; Wani, Idrees Ahmed; Khanday, Firdous Ahmad; Gani, Asir

    2016-04-20

    This study was carried out to evaluate the effect of γ-irradiation (0, 5, 10, 20, 30 & 50kGy) on the structural, functional, antioxidant and antimicrobial properties of yeast β-d-glucan. The samples were characterized by ATR-FTIR, gel permeation chromatography (GPC) and the thermal properties were studied using DSC. There was a decrease in the average molecular weight of β-d-glucan as the irradiation dose increased. The functional properties of irradiated yeast β-d-glucan were largely influenced by the action of gamma radiation like swelling power and viscosity decreases with increase in the irradiation dose while as fat binding capacity, emulsifying properties, foaming properties and bile acid binding capacity shows an increasing trend. All the antioxidant properties carried out using six different assays increased significantly (p≤0.05) in a dose dependent manner. The antibacterial activity of yeast β-d-glucan also showed an increasing trend with increase in the irradiation dose from 5 to 50kDa. PMID:26876872

  20. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    PubMed

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively.

  1. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    PubMed

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. PMID:25916261

  2. Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates.

    PubMed

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Yang, Zhonghua; Wang, Guanghui; Zuo, Zhenyu; Hou, Yali; Zhao, Zongbao K

    2016-05-01

    The process of lignocellulosic biomass routinely produces a stream that contains sugars plus various amounts of acetic acid. As acetate is known to inhibit the culture of microorganisms including oleaginous yeasts, little attention has been paid to explore lipid production on mixtures of acetate and sugars. Here we demonstrated that the yeast Cryptococcus curvatus can effectively co-ferment acetate and sugars for lipid production. When mixtures of acetate and glucose were applied, C. curvatus consumed both substrates simultaneously. Similar phenomena were also observed for acetate and xylose mixtures, as well as acetate-rich corn stover hydrolysates. More interestingly, the replacement of sugar with equal amount of acetate as carbon source afforded higher lipid titre and lipid content. The lipid products had fatty acid compositional profiles similar to those of cocoa butter, suggesting their potential for high value-added fats and biodiesel production. This co-fermentation strategy should facilitate lipid production technology from lignocelluloses. PMID:26874438

  3. Storage Stability of Food Protein Hydrolysates-A Review.

    PubMed

    Rao, Qinchun; Klaassen Kamdar, Andre; Labuza, Theodore P

    2016-05-18

    In recent years, mainly due to the specific health benefits associated with (1) the discovery of bioactive peptides in protein hydrolysates, (2) the reduction of protein allergenicity by protein hydrolysis, and (3) the improved protein digestibility and absorption of protein hydrolysates, the utilization of protein hydrolysates in functional foods and beverages has significantly increased. Although the specific health benefits from different hydrolysates are somewhat proven, the delivery and/or stability of these benefits is debatable during distribution, storage, and consumption. In this review, we discuss (1) the quality changes in different food protein hydrolysates during storage; (2) the resulting changes in the structure and texture of three food matrices, i.e., low moisture foods (LMF, aw < 0.6), intermediate moisture foods (IMF, 0.6 ≤ aw < 0.85), and high moisture foods (HMF, aw ≥ 0.85); and (3) the potential solutions to improve storage stability of food protein hydrolysates. In addition, we note there is a great need for evaluation of biofunction availability of bioactive peptides in food protein hydrolysates during storage.

  4. Method to produce succinic acid from raw hydrolysates

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia Y.; Nghiem, Nhuan Phu

    2004-06-01

    A method for producing succinic acid from industrial-grade hydrolysates is provided, comprising supplying an organism that contains mutations for the genes ptsG, pflB, and ldhA, allowing said organism to accumulate biomass, and allowing said organism to metabolize the hydrolysate. Also provided is a bacteria mutant characterized in that it produces succinic acid from substrate contained in industrial-grade hydrolysate in a ratio of between 0.6:1 and 1.3:1 succinic acid to substrate.

  5. Photosensitizing properties of protein hydrolysate-based fertilizers.

    PubMed

    Cavani, Luciano; Ter Halle, Alexandra; Richard, Claire; Ciavatta, Claudio

    2006-11-29

    The use of protein hydrolysate-based fertilizers (PHF) as adjuvant for pesticides or herbicides has been proposed; however, the behaviors of mixtures of PHFs and pesticides under solar light are not known, and various photochemical reactions may occur. The photosensitizing properties of PHFs were investigated in water solutions (0.8 g of total organic carbon L(-1)) within the wavelength range of 300-450 nm, using furfuryl alcohol (FA) as a probe to test the involvement of singlet oxygen and Irgarol 1051 as an example of organic pollutant. Two commercial PHFs and one standard PHF were studied, all of the products being of animal origin. PHFs photosensitize the transformation of FA (10(-4) M), and the kinetics of FA disappearance follows an apparent first-order rate law. Through the use of sodium azide (1 x 10(-3) M) as singlet oxygen scavenger and deuterium oxide (D2O) for increasing the singlet oxygen lifetime it was shown that singlet oxygen contributes largely to the phototransformation of FA. The replacement of water by D2O increases the apparent first-order rate constant 6 times, whereas the addition of sodium azide reduces it by approximately 90%. These results are confirmed using Irgarol 1051 (10(-5) M). The photosensitizing properties of PHFs might be due to pigments naturally present in tissues from which they are extracted or to compounds generated during the production processes. PMID:17117805

  6. Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides.

    PubMed

    Castañeda, María Teresita; Adachi, Osao; Hours, Roque Alberto

    2015-10-01

    L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.25) from Rhodosporidium toruloides was utilized to remove L-phenylalanine (L-Phe) from different commercial protein hydrolysates. A casein acid hydrolysate (CAH, L-Phe ~2.28 %) was employed as a model substrate. t-Cinnamic acid resulting from deamination of L-Phe was extracted, analyzed at λ = 290 nm, and used for PAL activity determination. Optimum reaction conditions, optimized using successive Doehlert design, were 35 mg mL(-1) of CAH and 800 mU mL(-1) of PAL, while temperature and pH were 42 °C and 8.7, respectively. Reaction kinetics of PAL with CAH was determined under optimized conditions. Then, removal of L-Phe from CAH was tested. Results showed that more than 92 % of initial L-Phe was eliminated. Similar results were obtained with other protein hydrolysates. These findings demonstrate that PAL is a useful biocatalyst for L-Phe removal from protein hydrolysates, which can be evaluated as potential ingredients in foodstuffs for PKU patients.

  7. Assessment of Extracts from Red Yeast Rice for Herb-Drug Interaction by in-vitro and in-vivo assays

    PubMed Central

    Fung, Wai To; Subramaniam, G.; Lee, Joel; Loh, Heng Meng; Leung, Pak Ho Henry

    2012-01-01

    Red yeast rice (RYR) is made by fermenting the yeast Monascus purpureus over rice. It is a source of natural red food colorants, a food garnish and a traditional medication. Results of the current study demonstrated that polar fractions of the RYR preparations contained herbal-drug interaction activity, which if left unremoved, enhanced P-glycoprotein activity and inhibited the major drug metabolizing cytochromes P450, i,e, CYP 1A2, 2C9 and 3A4. The data from Caco-2 cell absorption and animal model studies further demonstrated that the pharmacokinetic modulation effect by RYR preparations containing the polar fractions (“untreated” preparation) was greater than that from RYR preparations with the polar fractions removed (“treated” preparation). The data indicates a potential for herb-drug interactions to be present in RYR commonly sold as nutritional supplements when the polar fractions are not removed and this should be taken into consideration when RYR is consumed with medications, including verapamil. PMID:22389767

  8. Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass

    PubMed Central

    Liu, Tongjun; Parreiras, Lucas S.; Williams, Daniel L.; Wohlbach, Dana J.; Bice, Benjamin D.; Ong, Irene M.; Breuer, Rebecca J.; Qin, Li; Busalacchi, Donald; Deshpande, Shweta; Daum, Chris; Gasch, Audrey P.

    2014-01-01

    The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production. PMID:24212571

  9. Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover

    PubMed Central

    Parreiras, Lucas S.; Breuer, Rebecca J.; Avanasi Narasimhan, Ragothaman; Higbee, Alan J.; La Reau, Alex; Tremaine, Mary; Qin, Li; Willis, Laura B.; Bice, Benjamin D.; Bonfert, Brandi L.; Pinhancos, Rebeca C.; Balloon, Allison J.; Uppugundla, Nirmal; Liu, Tongjun; Li, Chenlin; Tanjore, Deepti; Ong, Irene M.; Li, Haibo; Pohlmann, Edward L.; Serate, Jose; Withers, Sydnor T.; Simmons, Blake A.; Hodge, David B.; Westphall, Michael S.; Coon, Joshua J.; Dale, Bruce E.; Balan, Venkatesh; Keating, David H.; Zhang, Yaoping; Landick, Robert; Gasch, Audrey P.; Sato, Trey K.

    2014-01-01

    The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. PMID:25222864

  10. Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend.

    PubMed

    de Figueiredo Vilela, Leonardo; de Mello, Vinicius Mattos; Reis, Viviane Castelo Branco; Bon, Elba Pinto da Silva; Gonçalves Torres, Fernando Araripe; Neves, Bianca Cruz; Eleutherio, Elis Cristina Araújo

    2013-01-01

    This study presents results regarding the successful cloning of the bacterial xylose isomerase gene (xylA) of Burkholderia cenocepacia and its functional expression in Saccharomyces cerevisiae. The recombinant yeast showed to be competent to efficiently produce ethanol from both glucose and xylose, which are the main sugars in lignocellulosic hydrolysates. The heterologous expression of the gene xylA enabled a laboratorial yeast strain to ferment xylose anaerobically, improving ethanol production from a fermentation medium containing a glucose-xylose blend similar to that found in sugar cane bagasse hydrolysates. The insertion of xylA caused a 5-fold increase in xylose consumption, and over a 1.5-fold increase in ethanol production and yield, in comparison to that showed by the WT strain, in 24h fermentations, where it was not detected accumulation of xylitol. These findings are encouraging for further studies concerning the expression of B. cenocepacia xylA in an industrial yeast strain. PMID:23186665

  11. Effects of yeast products on the intestinal morphology, barrier function, cytokine expression, and antioxidant system of weaned piglets*

    PubMed Central

    Yang, Huan-sheng; Wu, Fei; Long, Li-na; Li, Tie-jun; Xiong, Xia; Liao, Peng; Liu, Hong-nan; Yin, Yu-long

    2016-01-01

    The goal of this study was to evaluate the effects of a mixture of yeast culture, cell wall hydrolysates, and yeast extracts (collectively “yeast products,” YP) on the performance, intestinal physiology, and health of weaned piglets. A total of 90 piglets weaned at 21 d of age were blocked by body weight, sex, and litter and randomly assigned to one of three treatments for a 14-d feeding experiment, including (1) a basal diet (control), (2) 1.2 g/kg of YP, and (3) 20 mg/kg of colistin sulfate (CSE). No statistically significant differences were observed in average daily feed intake, average daily weight gain, or gain-to-feed ratio among CSE, YP, and control piglets. Increased prevalence of diarrhea was observed among piglets fed the YP diet, whereas diarrhea was less prevalent among those fed CSE. Duodenal and jejunal villus height and duodenal crypt depth were greater in the control group than they were in the YP or CSE groups. Intraepithelial lymphocytes (IEL) in the duodenal and jejunal villi were enhanced by YP, whereas IEL in the ileal villi were reduced in weaned piglets fed YP. Secretion of jejunal and ileal interleukin-10 (IL-10) was higher and intestinal and serum antioxidant indexes were affected by YP and CSE. In YP- and CSE-supplemented animals, serum D-lactate concentration and diamine oxidase (DAO) activity were both increased, and intestinal mRNA expressions of occludin and ZO-1 were reduced as compared to the control animals. In conclusion, YP supplementation in the diets of weaned piglets appears to increase the incidence of diarrhea and has adverse effects on intestinal morphology and barrier function. PMID:27704745

  12. Hydrolysates of citrus plants stimulate melanogenesis protecting against UV-induced dermal damage.

    PubMed

    Chiang, Hsiu-Mei; Lin, Jen-Wen; Hsiao, Pei-Ling; Tsai, Shang-Yuan; Wen, Kuo-Ching

    2011-04-01

    The sun-tanning process occurs as a spontaneous response to ultraviolet (UV) irradiation. UV will induce tanning and DNA damage, processes that can lead to photoaging and skin disorders such as hyperpigmentation and cancer. The pigment melanin protects skin from UV damage; therefore, an efficient melanin-promoting suntan lotion could be highly beneficial. In this study, a process was developed to increase the content of naringenin in citrus extracts and to determine whether a higher naringenin content of citrus would induce melanogenesis. Melanin content and tyrosinase expression in mouse B16 melanoma cells were assayed after treatment with citrus plant extracts and their hydrolysates. The results indicate that hydrolysis increased the naringenin content in citrus extracts and that citrus preparations stimulated cellular melanogenesis and tyrosinase expression. It is suggested that this method is applicable to the industrial production of melanin-promoting suntan lotions with antiphotocarcinogenic properties derived from citrus rind and citrus products.

  13. Plasmidic Expression of nemA and yafC* Increased Resistance of Ethanologenic Escherichia coli LY180 to Nonvolatile Side Products from Dilute Acid Treatment of Sugarcane Bagasse and Artificial Hydrolysate

    PubMed Central

    Shi, Aiqin; Zheng, Huabao; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham T.

    2016-01-01

    Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate. PMID:26826228

  14. Supplementation of Pork Patties with Bovine Plasma Protein Hydrolysates Augments Antioxidant Properties and Improves Quality

    PubMed Central

    Seo, Hyun-Woo

    2016-01-01

    This study investigated the effects of bovine plasma protein (PP) hydrolysates on the antioxidant and quality properties of pork patties during storage. Pork patties were divided into 4 groups: without butylated hydroxytoluene (BHT) and PP hydrolysates (control), 0.02% BHT (T1), 1% PP hydrolysates (T2), and 2% PP hydrolysates (T3). Pork patty supplemented with PP hydrolysates had higher pH values and lower weight loss during cooking than the control patties. Results showed that lightness and hardness both decreased upon the addition of PP hydrolysates. All samples containing BHT and PP hydrolysates had reduced TBARS and peroxide values during storage. In particular, 2% PP hydrolysates were more effective in delaying lipid oxidation than were the other treatments. It was concluded that treatment with 2% PP hydrolysates can enhance the acceptance of pork patty. PMID:27194928

  15. Vaginal Yeast Infections (For Parents)

    MedlinePlus

    ... Can I Help a Friend Who Cuts? Vaginal Yeast Infections KidsHealth > For Teens > Vaginal Yeast Infections Print ... side effect of taking antibiotics. What Is a Yeast Infection? A yeast infection is a common infection ...

  16. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds.

    PubMed

    Chen, Xi; Li, Zihui; Zhang, Xiaoxi; Hu, Fengxian; Ryu, Dewey D Y; Bao, Jie

    2009-12-01

    High cost of triacylglycerol lipid feedstock is the major barrier for commercial production of biodiesel. The fermentation of oleaginous yeasts for lipid production using lignocellulose biomass provides a practical option with high economic competitiveness. In this paper, the typical oleaginous yeast strains were screened under the pressure of lignocellulose degradation compounds for selection of the optimal strains tolerant to lignocellulose. The inhibitory effect of lignocellulose degradation products on the oleaginous yeast fermentation was carefully investigated. Preliminary screening was carried out in the minimum nutritious medium without adding any expensive complex ingredients then was carried out in the lignocellulosic hydrolysate pretreated by dilute sulfuric acid. Seven typical lignocellulose degradation products formed in various pretreatment and hydrolysis processing were selected as the model inhibitors, including three organic acids, two furan compounds, and two phenol derivatives. The inhibition of the degradation compounds on the cell growth and lipid productivity of the selected oleaginous yeasts were examined. Acetic acid, formic acid, furfural, and vanillin were found to be the strong inhibitors for the fermentation of oleaginous yeasts, while levulinic acid, 5-hydroxymethylfurfural, and hydroxybenzaldehyde were relatively weak inhibitors. Trichosporon cutaneum 2.1374 was found to be the most adopted strain to the lignocellulose degradation compounds.

  17. Assessing the potential of wild yeasts for bioethanol production.

    PubMed

    Ruyters, Stefan; Mukherjee, Vaskar; Verstrepen, Kevin J; Thevelein, Johan M; Willems, Kris A; Lievens, Bart

    2015-01-01

    Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with specific inhibitors and sugar mixtures depending on the type of carbon source. It is, therefore, suggested that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which we selected five isolates with promising features. The species Candida bombi, Wickerhamomyces anomalus and Torulaspora delbrueckii showed better osmo- and hydroxymethylfurfural tolerance than Saccharomyces cerevisiae. However, S. cerevisiae isolates had the highest ethanol yield in fermentation experiments mimicking high gravity fermentations (25 % glucose) and artificial lignocellulose hydrolysates (with a myriad of inhibitors). Interestingly, among two tested S. cerevisiae strains, a wild strain isolated from an oak tree performed better than Ethanol Red, a S. cerevisiae strain which is currently commonly used in industrial bioethanol fermentations. Additionally, a W. anomalus strain isolated from sugar beet thick juice was found to have a comparable ethanol yield, but needed longer fermentation time. Other non-Saccharomyces yeasts yielded lower ethanol amounts. PMID:25413210

  18. Amylase binding to starch granules under hydrolysing and non-hydrolysing conditions.

    PubMed

    Dhital, Sushil; Warren, Frederick J; Zhang, Bin; Gidley, Michael J

    2014-11-26

    Although considerable information is available about amylolysis rate, extent and pattern of granular starches, the underlying mechanisms of enzyme action and interactions are not fully understood, partly due to the lack of direct visualisation of enzyme binding and subsequent hydrolysis of starch granules. In the present study, α-amylase (AA) from porcine pancreas was labelled with either fluorescein isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (TRITC) fluorescent dye with maintenance of significant enzyme activity. The binding of FITC/TRITC-AA conjugate to the surface and interior of granules was studied under both non-hydrolysing (0 °C) and hydrolysing (37 °C) conditions with confocal microscopy. It was observed that enzyme binding to maize starch granules under both conditions was more homogenous compared with potato starch. Enzyme molecules appear to preferentially bind to the granules or part of granules that are more susceptible to enzymic degradation. The specificity is such that fresh enzyme added after a certain time of incubation binds at the same location as previously bound enzyme. By visualising the enzyme location during binding and hydrolysis, detailed information is provided regarding the heterogeneity of granular starch digestion. PMID:25256464

  19. Amylase binding to starch granules under hydrolysing and non-hydrolysing conditions.

    PubMed

    Dhital, Sushil; Warren, Frederick J; Zhang, Bin; Gidley, Michael J

    2014-11-26

    Although considerable information is available about amylolysis rate, extent and pattern of granular starches, the underlying mechanisms of enzyme action and interactions are not fully understood, partly due to the lack of direct visualisation of enzyme binding and subsequent hydrolysis of starch granules. In the present study, α-amylase (AA) from porcine pancreas was labelled with either fluorescein isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (TRITC) fluorescent dye with maintenance of significant enzyme activity. The binding of FITC/TRITC-AA conjugate to the surface and interior of granules was studied under both non-hydrolysing (0 °C) and hydrolysing (37 °C) conditions with confocal microscopy. It was observed that enzyme binding to maize starch granules under both conditions was more homogenous compared with potato starch. Enzyme molecules appear to preferentially bind to the granules or part of granules that are more susceptible to enzymic degradation. The specificity is such that fresh enzyme added after a certain time of incubation binds at the same location as previously bound enzyme. By visualising the enzyme location during binding and hydrolysis, detailed information is provided regarding the heterogeneity of granular starch digestion.

  20. Vaginal Yeast Infection

    MedlinePlus

    ... t diagnose this condition by a person’s medical history and physical examination. They usually diagnose yeast infection by examining vaginal secretions under a microscope for evidence of yeast. Treatment Various antifungal vaginal ...

  1. Cellulosic Ethanol Production from Xylose-extracted Corncob Residue by SSF Using Inhibitor- and Thermal-tolerant Yeast Clavispora NRRL Y-50339

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylose-extracted corncob residue, a byproduct of the xylose-producing industry using corncobs, is an abundant potential energy resource for cellulosic ethanol production. Simultaneous saccharification and fermentation (SSF) is considered an ideal one-step process for conversion of lignocellulosic b...

  2. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    NASA Astrophysics Data System (ADS)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  3. [Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions].

    PubMed

    Zi, Lihan; Liu, Chenguang; Bai, Fengwu

    2014-02-01

    Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.

  4. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification.

    PubMed

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  5. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    PubMed Central

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  6. Microbial utilization and biopolyester synthesis of bagasse hydrolysates.

    PubMed

    Yu, Jian; Stahl, Heiko

    2008-11-01

    Cellulosic biomass is a potentially inexpensive renewable feedstock for the biorefineries of fuels, chemicals and materials. Sugarcane bagasse was pretreated in dilute acid solution under moderately severe conditions, releasing sugars and other hydrolysates including volatile organic acids, furfurals and acid soluble lignin. Utilization of the hydrolysates by an aerobic bacterium, Ralstonia eutropha, was investigated to determine if the organic inhibitors can be removed for potential recycling and reuse of the process water. Simultaneous biosynthesis of polyhydroxyalkanoates (PHAs) for the production of value-added bioplastics was also investigated. An inhibitory effect of hydrolysates on microbial activity was observed, but it could be effectively relieved by using (a) a large inoculum, (b) a diluted hydrolysate solution, and (c) a tolerant strain, or a combination of the three. The major organic inhibitors including formic acid, acetic acid, furfural and acid soluble lignin were effectively utilized and removed to low concentration levels (less than 100ppm) while at the same time, PHA biopolyesters were synthesized and accumulated to 57wt% of cell mass under appropriate C/N ratios. Poly(3-hydroxybutyrate) was the predominant biopolyester formed on the hydrolysates, but the cells could also synthesize co-polyesters that exhibit high ductility. PMID:18474421

  7. Physiological Importance and Mechanisms of Protein Hydrolysate Absorption

    NASA Astrophysics Data System (ADS)

    Zhanghi, Brian M.; Matthews, James C.

    Understanding opportunities to maximize the efficient digestion and assimilation by production animals of plant- and animal-derived protein products is critical for farmers, nutritionists, and feed manufacturers to sustain and expand the affordable production of high quality animal products for human consumption. The challenge to nutritionists is to match gastrointestinal tract load to existing or ­inducible digestive and absorptive capacities. The challenge to feed manufacturers is to develop products that are efficient substrates for digestion, absorption, and/or both events. Ultimately, the efficient absorption of digesta proteins depends on the mediated passage (transport) of protein hydrosylate products as dipeptides and unbound amino acids across the lumen- and blood-facing membranes of intestinal absorptive cells. Data testing the relative efficiency of supplying protein as hydrolysates or specific dipeptides versus as free amino acids, and the response of animals in several physiological states to feeding of protein hydrolysates, are presented and reviewed in this chapter. Next, data describing the transport mechanisms responsible for absorbing protein hydrolysate digestion products, and the known and putative regulation of these mechanisms by their substrates (small peptides) and hormones are presented and reviewed. Several conclusions are drawn regarding the efficient use of protein hydrolysate-based diets for particular physiological states, the economically-practical application of which likely will depend on technological advances in the manufacture of protein hydrolysate products.

  8. Alcohol production from Jerusalem artichoke using yeasts with inulinase activity

    SciTech Connect

    Guiraud, J.P.; Daurelles, J.; Galzy, P.

    1981-07-01

    The purpose of this article is to show that yeasts with inulinase activity can be used to produce ethanol from the Jerusalem artichoke (Helianthus tuberosus L.). The results show that a fermentable extract can be easily obtained from the Jerusalem artichoke even under cold conditions. Yeasts with inulinase activity can be used to produce ethanol with good profitability. 19 refs.

  9. Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases.

    PubMed

    Bah, Clara S F; Bekhit, Alaa El-Din A; McConnell, Michelle A; Carne, Alan

    2016-12-15

    Four protease preparations from plant and fungal sources (papain, bromelain, FP400 and FPII) were used to hydrolyse plasma which was separated from slaughterhouse cattle blood. The o-phthaldialdehyde assay was used to follow the release of TCA-soluble peptides over a 24h period. Hydrolysis profiles were displayed using SDS-PAGE. The in vitro antioxidant and antimicrobial activities of the hydrolysates were determined. The results showed that hydrolysates of cattle plasma generated with fungal protease FPII had higher antioxidant activities. Overall than hydrolysates generated with papain, bromelain and FP400. None of the hydrolysates demonstrated antimicrobial activity. The FPII peptide hydrolysate was fractionated using gel permeation chromatography, OFFGEL isoelectric focusing and RP-HPLC. The RP-HPLC fraction with highest antioxidant activity contained 15 novel peptide sequences. The use of protease FPII to hydrolyse cattle plasma resulted in a hydrolysate with high antioxidant properties and unique peptide sequences. PMID:27451160

  10. Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases.

    PubMed

    Bah, Clara S F; Bekhit, Alaa El-Din A; McConnell, Michelle A; Carne, Alan

    2016-12-15

    Four protease preparations from plant and fungal sources (papain, bromelain, FP400 and FPII) were used to hydrolyse plasma which was separated from slaughterhouse cattle blood. The o-phthaldialdehyde assay was used to follow the release of TCA-soluble peptides over a 24h period. Hydrolysis profiles were displayed using SDS-PAGE. The in vitro antioxidant and antimicrobial activities of the hydrolysates were determined. The results showed that hydrolysates of cattle plasma generated with fungal protease FPII had higher antioxidant activities. Overall than hydrolysates generated with papain, bromelain and FP400. None of the hydrolysates demonstrated antimicrobial activity. The FPII peptide hydrolysate was fractionated using gel permeation chromatography, OFFGEL isoelectric focusing and RP-HPLC. The RP-HPLC fraction with highest antioxidant activity contained 15 novel peptide sequences. The use of protease FPII to hydrolyse cattle plasma resulted in a hydrolysate with high antioxidant properties and unique peptide sequences.

  11. Characterisation and foaming properties of hydrolysates derived from rapeseed isolate.

    PubMed

    Larré, C; Mulder, W; Sánchez-Vioque, R; Lazko, J; Bérot, S; Guéguen, J; Popineau, Y

    2006-04-15

    Two hydrolysis methods used to obtain rapeseed isolate derivates were compared: chemical hydrolysis performed under alkaline conditions and pepsic proteolysis performed under acidic conditions. The mean molecular weights obtained for the hydrolysates varied from 26 to 2.5 kDa, depending on the level of hydrolysis. Further characterisation showed that, at the same level of hydrolysis, the chemical hydrolysates differed by their charges and hydrophobicity from those derived from enzymatic digestion. Analysis of the foaming properties showed, for both cases, that a limited degree of hydrolysis, around 3%, was sufficient to optimise the foaming properties of the isolate despite the different physicochemical properties of the peptides generated. The study of foaming properties at basic, neutral and acidic pHs showed that the hydrolysate solutions yielded dense foams which drained slowly and which maintained a very stable volume under the three pH conditions tested.

  12. Production of enzymatic protein hydrolysates from freshwater catfish (Clarias batrachus)

    NASA Astrophysics Data System (ADS)

    Seniman, Maizatul Sarah Md; Yusop, Salma Mohamad; Babji, Abdul Salam

    2014-09-01

    Fish protein hydrolysate (FPH) was prepared from freshwater catfish (Clarias batrachus) by using Alcalase® 2.4L and Papain. The effect of hydrolysis time (30, 60, 120, 180 min) with enzyme concentration of 1% (v/w substrate); pH = 8.0, 7.0 was studied to determine the degree of hydrolysis (DH), peptide content, proximate composition and amino acid profile. Results showed that the highest DH of Alcalase and Papain FPH were 58.79% and 53.48% after 180 min at 55°C incubation respectively. The peptide content of both FPH increased as hydrolysis time increases. FPH showed higher crude protein content and lower fat, moisture and ash content compared to raw catfish. The major amino acids of both hydrolysates were Glu, Lys and Asp. Content of essential amino acids of Alcalase and Papain hydrolysates were 44.05% and 43.31% respectively.

  13. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens.

    PubMed

    Salvachúa, Davinia; Smith, Holly; St John, Peter C; Mohagheghi, Ali; Peterson, Darren J; Black, Brenna A; Dowe, Nancy; Beckham, Gregg T

    2016-08-01

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60g/L reached up to 30g/L, with metabolic yields of 0.69g/g, and an overall productivity of 0.43g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates. PMID:27179951

  14. Production of d-Mannitol and Glycerol by Yeasts

    PubMed Central

    Onishi, Hiroshi; Suzuki, Toshiyuki

    1968-01-01

    D-Mannitol has not so far been known as a major product of sugar metabolism by yeasts. Three yeast strains, a newly isolated yeast from soy-sauce mash, Torulopsis versatilis, and T. anomala, were found to be good mannitol producers. Under optimal conditions, the isolate produced mannitol at good yield of 30% of the sugar consumed. Glucose, fructose, mannose, galactose, maltose, glycerol, and xylitol were suitable substrates for mannitol formation. High concentrations of yeast extract, Casamino Acids, NaCl, and KCl in media affected significantly the mannitol yield, whereas high levels of inorganic phosphate did not show any detrimental effect. PMID:5749751

  15. Glycyl endopeptidase from papaya latex: partial purification and use for production of fish gelatin hydrolysate.

    PubMed

    Karnjanapratum, Supatra; Benjakul, Soottawat

    2014-12-15

    An aqueous two-phase system (ATPS) in combination with ammonium sulphate ((NH4)2SO4) precipitation was applied to fractionate glycyl endopeptidase from the papaya latex of Red Lady and Khack Dum cultivars. ATPS containing polyethylene glycol (PEG 2000 and 6000) and salts ((NH4)2SO4 and MgSO4) at different concentrations were used. Glycyl endopeptidase with high purification fold (PF) and yield was found in the salt-rich bottom phase of ATPS with 10%PEG 6000-10% (NH4)2SO4. When ATPS fraction from Red Lady cultivar was further precipitated with 40-60% saturation of (NH4)2SO4, PF of 2.1-fold with 80.23% yield was obtained. Almost all offensive odorous compounds, particularly benzyl isothiocyanate, were removed from partially purified glycyl endopeptidase (PPGE). The fish gelatin hydrolysates prepared using PPGE showed higher ABTS radical scavenging activity and less odour, compared with those of crude extract (CE). Thus antioxidative gelatin hydrolysate with negligible undesirable odour could be prepared with the aid of PPGE. PMID:25038693

  16. Semi-pilot Scale Microbial Oil Production by Trichosporon cutaneum Using Medium Containing Corncob Acid Hydrolysate.

    PubMed

    Qi, Gao-Xiang; Huang, Chao; Chen, Xue-Fang; Xiong, Lian; Wang, Can; Lin, Xiao-Qing; Shi, Si-Lan; Yang, Dan; Chen, Xin-De

    2016-06-01

    In this study, semi-pilot scale microbial oil production by Trichosporon cutaneum using medium containing corncob acid hydrolysate was carried out in a 50-L fermentor. Scale up showed no negative influence on lipid fermentation that no obvious lag phase was observed. Both glucose and xylose could be utilized simultaneously by T. cutaneum, but the utilization rate of xylose was much slower than that of glucose. After 7.6 days of fermentation, the biomass, lipid content, and lipid yield were 21.8 g/L, 53.7 %, and 11.7 g/L, respectively. Also, a high lipid coefficient (lipid yield on sugars consumption) of 26.3 was obtained. Besides microbial oil, polysaccharide was another main product of lipid fermentation that the remaining biomass residue full of polysaccharides after lipid extraction could be one important by-product in future. Overall, this study showed the great potential of industrialization for lipid production by T. cutaneum on low-cost substrates especially for lignocellulosic hydrolysates. PMID:26906119

  17. Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides.

    PubMed

    Esteve, C; Marina, M L; García, M C

    2015-01-15

    This work proposes a new strategy for the revalorization of residual materials from table-olive and olive oil production based on the extraction of bioactive peptides. Enzymatic hydrolysates of olive seed protein isolate were prepared by treatment with five different proteases: Alcalase, Thermolysin, Neutrase, Flavourzyme and PTN. Although all hydrolysates presented antioxidant properties, Alcalase was the enzyme that yielded the hydrolysate with the highest antioxidant capacity. All hydrolysates showed antihypertensive capacity, obtaining IC50 values from 29 to 350 μg/ml. Thermolysin was the enzyme which yielded the hydrolysate with the highest ACE-inhibitory capacity. Hydrolysates were fractionated by ultrafiltration showing a high concentration of short chain peptides, which exhibited significantly higher antioxidant and antihypertensive capacities than fractions with higher molecular weights. Peptides in most active fractions were identified by LC-MS/MS, observing homologies with other recognized antioxidant and antihypertensive peptides. Finally, their antioxidant and antihypertensive capacities were evaluated after in vitro gastrointestinal digestion.

  18. Hydrolysable tannin fed to entire male pigs affects intestinal production, tissue deposition and hepatic clearance of skatole.

    PubMed

    Čandek-Potokar, M; Škrlep, M; Batorek Lukač, N; Zamaratskaia, G; Prevolnik Povše, M; Velikonja Bolta, Š; Kubale, V; Bee, G

    2015-05-01

    The effect of adding hydrolysable tannins to the diet of fattening boars was studied. Performance, reproductive organ weights, salivary gland morphology, boar taint compounds and skatole metabolism were evaluated. At 123 days of age and 52 ± 6 kg liveweight, 24 Landrace × Large White boars were assigned within a litter to four treatment groups: control (T0 fed mixture with 13.2 MJ/kg, 17.5% crude proteins) and three experimental diets for which the T0 diet was supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract (T1, T2 and T3, respectively). Pigs were kept individually with ad libitum access to feed and water and slaughtered at 193 days of age and 122 ± 10 kg liveweight. Adding hydrolysable tannins to the diet had no negative effect on growth performance at 1% and 2%, whereas the 3% inclusion reduced feed intake and resulted in an adaptive response of the salivary glands (particularly parotid gland hypertrophy). Relative to T0, fat tissue skatole concentration was increased in the T1 group, but was similar in T2 and T3. Across treatments tissue skatole concentrations were proportional to the activity of hepatic CYP450. The results indicate the potential of tannin supplementation to reduce boar taint although further investigations are needed in order to establishing optimal dosage. PMID:25890671

  19. Optimisation of methodology for enumeration of xerophilic yeasts from foods.

    PubMed

    Andrews, S; de Graaf, H; Stamation, H

    1997-04-01

    Xerophilic yeasts grow in intermediate moisture foods (aw, 0.65-0.85) such as sugar syrups, fruit concentrates, jams and brines. Non-osmophilic yeasts are enumerated by diluting in 0.1% peptone and then plated onto media such as malt extract or glucose yeast extract agar. In the presence of moulds the yeasts are enumerated in dichloran rose bengal chloramphenicol agar (DRBC). These procedures were demonstrated to be unsatisfactory for the enumeration of xerophilic yeasts in low aw foods. Investigations using pure cultures of xerophilic yeasts as well as naturally contaminated apple juice concentrates and glacé cherries have shown that a reduced aw diluent, in particular 30% w/w glycerol in combination with tryptone 10% glucose yeast extract agar (TGY) optimises the recovery of the yeasts, especially sublethally injured cells. The inclusion of sodium chloride in either the diluents or the culture media was not necessary to optimise the recovery of D. hansenii growing in 20% sodium chloride broths.

  20. Yeast improves resistance to environmental challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alphamune™, a yeast extract antibiotic alternative, was added at either 1 lb/ton or 2 lb/ton to a turkey starter diet. Two trials were conducted to evaluate the effects of Alphamune™ on gut maturation of 7 and 21 day old poults. Sections from the mid-point of the duodenum, jejunum and ileum of each ...

  1. Sweetpotato vines hydrolysate promotes single cell oils production of Trichosporon fermentans in high-density molasses fermentation.

    PubMed

    Shen, Qi; Lin, Hui; Wang, Qun; Fan, Xiaoping; Yang, Yuyi; Zhao, Yuhua

    2015-01-01

    This study investigated the co-fermentation of molasses and sweetpotato vine hydrolysate (SVH) by Trichosporon fermentans. T. fermentans showed low lipid accumulation on pure molasses; however, its lipid content increased by 35% when 10% SVH was added. The strong influence of SVH on lipid production was further demonstrated by the result of sensitivity analysis on effects of factors based on an artificial neural network model because the relative importance value of SVH dosage for lipid production was only lower than that of fermentation time. Scanning electron microscope observation and flow cytometry of yeast cells grown in culture with and without SVH showed that less deformation cells were involved in the culture with SVH. The activity of malic enzyme, which plays a key role in fatty acid synthesis, increased from 2.4U/mg to 3.7U/mg after SVH added. All results indicated SVH is a good supplement for lipid fermentation on molasses. PMID:25461010

  2. Further Improvement of the Robust Recombinant Saccharomyces Yeast for the Conversion of Lignocellulosic Biomass to Ethanol

    SciTech Connect

    Ho, Nancy, W. Y.; Adamec, Jiri; Mosier, Nathan, S.; Sedlak, Miroslav

    2011-04-07

    Since 1980, the PI's laboratory at Purdue University has been at the forefront in developing recombinant Saccharomyces yeast for cellulosic ethanol production. Their innovation enabled them to successfully develop the recombinant Saccharomyces yeast strain 424A(LNH-ST) that has been validated by scientists in industry, universities, and National Laboratories. Strain 424A(LNH-ST) has also been used by a company to produce cellulosic ethanol since 2004. Nevertheless, this strain still needs improvement, particularly to achieve high ethanol titer when cellulosic biomass hydrolysates are used for ethanol production. In this project, we were able to carry out a total genetic overhaul of our yeast by carrying out nine different tasks to improve our 424A(LNH-ST) strain. Through these tasks we enabled the yeast to co-ferment arabinose together with other four sugars generally present in all cellulosic biomass. Thus 424A(LNH-ST) can now ferment all five sugars, glucose, xylose, mannose, galactose and arabinose present in any cellulosic biomass. We also successfully used adaptation techniques and direct genetic improvements to develop improved 424A(LNH-ST) strains that are more resistant to acetic acid or ethanol. These are the most significant inhibitors of those commonly present in cellulosic hydrolysates that prevent 424A(LNH-ST) from producing high concentrations of cellulosic ethanol. The acetic acid resistant strain has 89% better xylose utilization in the presence of acetic acid and 25% better overall ethanol yield. The ethanol resistant strain has 250% better ethanol volumetric productivity. The three tasks for improving the main metabolic pathways have all been successfully completed but the impact of these improvements was less dramatic. This demonstrates our yeast already has effective metabolic systems for co-fermenting cellulosic sugars. However, our attempt to improve the yeast to transport xylose and arabinose more efficiently had only limited success. Thus

  3. Further Improvement of the Robust Recombinant Saccharomyces Yeast for the Conversion of Lignocellulosic Biomass to Ethanol

    SciTech Connect

    Ho, Nancy W. Y.; Adamec, Jiri; Mosier, Nathan, S.; Sedlak, Miroslav

    2011-04-09

    Since 1980, the PI’s laboratory at Purdue University has been at the forefront in developing recombinant Saccharomyces yeast for cellulosic ethanol production. Their innovation enabled them to successfully develop the recombinant Saccharomyces yeast strain 424A(LNH-ST) that has been validated by scientists in industry, universities, and National Laboratories. Strain 424A(LNH-ST) has also been used by a company to produce cellulosic ethanol since 2004. Nevertheless, this strain still needs improvement, particularly to achieve high ethanol titer when cellulosic biomass hydrolysates are used for ethanol production. In this project, we were able to carry out a total genetic overhaul of our yeast by carrying out nine different tasks to improve our 424A(LNH-ST) strain. Through these tasks we enabled the yeast to co-ferment arabinose together with other four sugars generally present in all cellulosic biomass. Thus 424A(LNH-ST) can now ferment all five sugars, glucose, xylose, mannose, galactose and arabinose present in any cellulosic biomass. We also successfully used adaptation techniques and direct genetic improvements to develop improved 424A(LNH-ST) strains that are more resistant to acetic acid or ethanol. These are the most significant inhibitors of those commonly present in cellulosic hydrolysates that prevent 424A(LNH-ST) from producing high concentrations of cellulosic ethanol. The acetic acid resistant strain has 89% better xylose utilization in the presence of acetic acid and 25% better overall ethanol yield. The ethanol resistant strain has 250% better ethanol volumetric productivity. The three tasks for improving the main metabolic pathways have all been successfully completed but the impact of these improvements was less dramatic. This demonstrates our yeast already has effective metabolic systems for co-fermenting cellulosic sugars. However, our attempt to improve the yeast to transport xylose and arabinose more efficiently had only limited success. Thus

  4. Evaluation of Mucor indicus and Saccharomyces cerevisiae capability to ferment hydrolysates of rape straw and Miscanthus giganteus as affected by the pretreatment method.

    PubMed

    Lewandowska, Małgorzata; Szymańska, Karolina; Kordala, Natalia; Dąbrowska, Aneta; Bednarski, Włodzimierz; Juszczuk, Andrzej

    2016-07-01

    Rape straw and Miscanthus giganteus was pretreated chemically with oxalic acid or sodium hydroxide. The pretreated substrates were hydrolyzed with enzymatic preparations of cellulase, xylanase and cellobiase. The highest concentration of reducing sugars was achieved after hydrolysis of M. giganteus pretreated with NaOH (51.53gdm(-3)). In turn, the highest yield of enzymatic hydrolysis determined based on polysaccharides content in the pretreated substrates was obtained in the experiments with M. giganteus and oxalic acid (99.3%). Rape straw and M. giganteus hydrolysates were fermented using yeast Saccharomyces cerevisiae 7, NRRL 978 or filamentous fungus Mucor rouxii (Mucor indicus) DSM 1191. The highest ethanol concentration was determined after fermentation of M. giganteus hydrolysate pretreated with NaOH using S. cerevisiae (1.92% v/v). Considering cellulose content in the pretreated solid, the highest degree of its conversion to ethanol (86.2%) was achieved after fermentation of the hydrolysate of acid-treated M. giganteus using S. cerevisiae. PMID:27107482

  5. Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyanophycin is a poly(arginyl-aspartate) biopolymer produced and stored intracellularly by bacteria. Cyanophycin has been proposed as a renewable replacement for petrochemical-based industrial products. An abundant source of amino acids and nitrogen such as in the form of protein hydrolysates is n...

  6. Development of Silane Hydrolysate Binder for Thermal-Control Coatings

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1983-01-01

    Technical report describes theoretical and experimental development of methyltriethoxysilane (MTES) hydrolysate binder for white, titanium dioxidepigmented thermal-control coatings often needed on satellites. New coating is tougher and more abrasion-resistant than conventional coating, S-13G, which comprises zinc oxide in hydroxyl-therminated dimethylsiloxane binder.

  7. Enzyme Hydrolysates from Stichopus horrens as a New Source for Angiotensin-Converting Enzyme Inhibitory Peptides

    PubMed Central

    Forghani, Bita; Ebrahimpour, Afshin; Bakar, Jamilah; Abdul Hamid, Azizah; Hassan, Zaiton; Saari, Nazamid

    2012-01-01

    Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC50 value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC50 value of 2.24 mg/mL), trypsin hydrolysate (IC50 value of 2.28 mg/mL), papain hydrolysate (IC50 value of 2.48 mg/mL), bromelain hydrolysate (IC50 value of 4.21 mg/mL), and protamex hydrolysate (IC50 value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC50 values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits. PMID:22927875

  8. Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties.

    PubMed

    Evangelho, Jarine Amaral do; Vanier, Nathan Levien; Pinto, Vânia Zanella; Berrios, Jose J De; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    Black bean protein hydrolysates obtained from pepsin and alcalase digestions until 120min of hydrolysis were evaluated by gel electrophoresis, relative fluorescence intensity, emulsifying properties, light micrograph of emulsions and in vitro antioxidant activity. The emulsion stability of the bean protein hydrolysates were evaluated during 30days of storage. The pepsin-treated bean protein hydrolysates presented higher degree of hydrolysis than the alcalase-treated protein hydrolysates. The alcalase-treated bean protein hydrolysates showed higher surface hydrophobicity. Moreover, the protein hydrolysates obtained with alcalase digestion presented higher emulsion stability during 30-days than those obtained from pepsin digestion. The protein concentrate and especially the hydrolysates obtained from alcalase digestion had good emulsion stability and antioxidant activity. Thus, they could be exploited as protein supplements in the diet as nutritional and bioactive foods. PMID:27507499

  9. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince.

    PubMed

    Nikoo, Mehdi; Benjakul, Soottawat; Xu, Xueming

    2015-08-15

    Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysates prepared using different commercial proteases in unwashed fish mince were investigated. Gelatin hydrolysates prepared using either Alcalase or Flavourzyme, were effective in preventing lipid oxidation as evidenced by the lower thiobarbituric acid-reactive substances formation. Gelatin hydrolysates were able to retard protein oxidation as indicated by the retarded protein carbonyl formation and lower loss in sulfhydryl content. In the presence of gelatin hydrolysates, unwashed mince had higher transition temperature of myosin and higher enthalpy of myosin and actin as determined by differential scanning calorimetry. Based on low field proton nuclear magnetic resonance analysis, gelatin hydrolysates prevented the displacement of water molecules between the different compartments, thus stabilizing the water associated with myofibrils in unwashed mince induced by repeated freeze-thawing. Oligopeptides in gelatin hydrolysates more likely contributed to the cryoprotective effect. Thus, gelatin hydrolysate could act as both antioxidant and cryoprotectant in unwashed fish mince.

  10. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch.

    PubMed

    Murciano Martínez, Patricia; Kabel, Mirjam A; Gruppen, Harry

    2016-11-20

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Delignification of EFB facilitated the hydrolysis of EFB-xylan by a pure endo-β-1,4-xylanase. Up to 91% (w/w) of the non-extracted xylan in the delignified EFB was hydrolysed compared to less than 4% (w/w) of that in untreated EFB. Alkaline extraction of EFB, without prior delignification, yielded only 50% of the xylan. The xylan obtained was hydrolysed only for 40% by the endo-xylanase used. Hence, delignification alone outperformed alkaline extraction as pretreatment for enzymatic fingerprinting of EFB xylans. From the analysis of the oligosaccharide-fingerprint of the delignified endo-xylanase hydrolysed EFB xylan, the structure was proposed as acetylated 4-O-methylglucuronoarabinoxylan.

  11. Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate.

    PubMed

    Senatham, Srisuda; Chamduang, Thada; Kaewchingduang, Yotin; Thammasittirong, Anon; Srisodsuk, Malee; Elliston, Adam; Roberts, Ian N; Waldron, Keith W; Thammasittirong, Sutticha Na-Ranong

    2016-01-01

    Effective conversion of xylose into ethanol is important for lignocellulosic ethanol production. In the present study, UV-C mutagenesis was used to improve the efficiency of xylose fermentation. The mutated Scheffersomyces shehatae strain TTC79 fermented glucose as efficiently and xylose more efficiently, producing a higher ethanol concentration than the wild-type. A maximum ethanol concentration of 29.04 g/L was produced from 71.31 g/L xylose, which was 58.95 % higher than that of the wild-type. This mutant also displayed significantly improved hydrolysate inhibitors tolerance and increased ethanol production from non-detoxified lignocellulosic hydrolysates. The ethanol yield, productivity and theoretical yield by TTC79 from sugarcane bagasse hydrolysate were 0.46 g/g, 0.20 g/L/h and 90.61 %, respectively, while the corresponding values for the wild-type were 0.20 g/g, 0.04 g/L/h and 39.20 %, respectively. These results demonstrate that S. shehatae TTC79 is a useful non-recombinant strain, combining efficient xylose consumption and high inhibitor tolerance, with potential for application in ethanol production from lignocellulose hydrolysates. PMID:27462488

  12. Antioxidation activities of low-molecular-weight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus

    NASA Astrophysics Data System (ADS)

    Wang, Jingfeng; Wang, Yuming; Tang, Qingjuan; Wang, Yi; Chang, Yaoguang; Zhao, Qin; Xue, Changhu

    2010-03-01

    Gelatin extracted from the body wall of the sea cucumber ( Stichopus japonicus) was hydrolyzed with flavourzyme. Low-molecular-weight gelatin hydrolysate (LMW-GH) of 700-1700 Da was produced using an ultrafiltration membrane bioreactor system. Chemiluminescence analysis revealed that LMW-GH scavenges high free radicals in a concentration-dependent manner; IC50 value for superoxide and hydroxyl radicals was 442 and 285 μg mL-1, respectively. LMW-GH exhibited excellent inhibitory characteristics against melanin synthesis and tyrosinase activity in B16 cells. Furthermore, LMW-GH notably increased intracellular glutathione (GSH), which in turn suppressed melanogenesis. LMW-GH performs antioxidation activity, holding the potential of being used as a valuable ingredient in function foods, cosmetics and pharmaceuticals or nutriceuticals.

  13. An assay for ribonuclease activity, based on ultraviolet absorption of RNA hydrolysate, using phosphotungstic acid.

    PubMed

    Isobe, K; Uchiyama, S

    1986-06-01

    In the method for the determination of ribonuclease activity that depends on the ultraviolet absorption of the RNA hydrolysate, the uranium reagent (25% perchloric acid solution containing 0.75% uranyl acetate) is commonly used for the efficient precipitation of the unhydrolyzed RNA. However, this reagent is always contaminated by the presence of radioactive isotopes. Radioactive uranium is one of the substances used for atomic nuclear fuel and therefore, at least in Japan, the use of uranium compounds requires permission from the government. We tried to find another efficient and non-radioactive precipitant of RNA to replace the uranium reagent, and have developed a phosphotungsten reagent (25% perchloric acid solution containing 0.75% phosphotungstic acid plus 0.6% bovine serum albumin solution) which functions as efficiently as the uranium reagent in the precipitation of RNA. A cell-free crude extract of Dictyostelium discoideum was used as the source of ribonuclease.

  14. Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium.

    PubMed

    Konishi, Masaaki; Yoshida, Yuka; Horiuchi, Jun-ichi

    2015-03-01

    Sophorolipids (SLs) are amphiphilic compounds produced from a variety of saccharides and vegetable oils by the yeast Starmerella bombicola and related strains, and they have commercial uses as detergents. In the present study, SL production was investigated using a corncob hydrolysate (CCH) medium derived from lignocellulosic feedstocks as a source of hydrophilic carbon substrates. Excess sulfuric acid concentrations during pretreatment of the corncobs increased the furfural concentrations and turned the CCH dark brown. The optimal sulfuric acid concentration was 1% (w/v), and the treated CCH, containing 45 g/l glucose, allowed the production of 33.7 g/l of SLs following 4 days of cultivation. Additional autoclaving (121°C, 20 min) inhibited SL production and cell growth by 36% and 40%, respectively. Ammonium nitrate (0.1 g-N/l) restored SL production to the autoclaved CCH. Finally, a cost-effective SL production of 49.2 g/l, with a volumetric productivity of 12.3 g/l/day, was achieved using CCH medium during batch cultivation in a jar fermentor. PMID:25240400

  15. Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments

    NASA Astrophysics Data System (ADS)

    Chi, Zhenming; Wang, Fang; Wang, Lin; Li, Jing; Wang, Xianghong

    2007-10-01

    A total of 78 Yarrowia lipolytica yeast strains from seawater, sediments, mud of salterns, the guts of marine fish, and marine algae were obtained. After the crude protein of the yeasts was estimated by the method of Kjehldahl, we found that seven strains of the marine yeasts grown in soy bean cake hydrolysate with 20 g L-1 of glucose for 48 h at 28°C contained more than 41.0 g protein per 100 g of cell dry weight and the cell dry weight was more than 4.4 g per L of the culture. Among them, strain SWJ-1b contained the highest crude protein. The results of Biolog identification and molecular methods further confirmed that they indeed belonged to Y. lipolytica.

  16. Studies on methanol - oxidizing yeast. III. Enzyme.

    PubMed

    Volfová, O

    1975-01-01

    Oxidation of methanol, formaldehyde and formic acid was studied in cells and cell-free extract of the yeast Candida boidinii No. 11Bh. Methanol oxidase, an enzyme oxidizing methanol to formaldehyde, was formed inducibly after the addition of methanol to yeast cells. The oxidation of methanol by cell-free extract was dependent on the presence of oxygen and independent of any addition of nicotine-amide nucleotides. Temperature optimum for the oxidation of methanol to formaldehyde was 35 degrees C, pH optimum was 8.5. The Km for methanol was 0.8mM. The cell-free extract exhibited a broad substrate specificity towards primary alcohols (C1--C6). The activity of methanol oxidase was not inhibited by 1mM KCN, EDTA or monoiodoacetic acid. The strongest inhibitory action was exerted by p-chloromercuribenzoate. Both the cells and the cell-free extract contained catalase which participated in the oxidation of methanol to formaldehyde; the enzyme was constitutively formed by the yeast. The pH optimum for the degradation of H2O2 was in the same range as the optimum for methanol oxidation, viz. at 8.5. Catalase was more resistant to high pH than methanol oxidase. The cell-free extract contained also GSH-dependent NAD-formaldehyde dehydrogenase with Km = 0.29mM and NAD-formate dehydrogenase with Km = 55mM. PMID:240764

  17. Use of Protein Hydrolysates in Industrial Starter Culture Fermentations

    NASA Astrophysics Data System (ADS)

    Ummadi, Madhavi (Soni); Curic-Bawden, Mirjana

    Lactic acid bacteria (LAB) have been used as starter cultures for fermenting foods long before the importance of microorganisms were recognized. The most important group of LAB are the lactococci, lactobacilli, streptococci, and pediococci. Additionally, bifidobacteria have been included as a probiotic, providing added value to the product. Since the genera involved are so diverse, the nutritional requirements (energy, carbon and nitrogen sources) differ significantly between and within species. Designing an optimum fermentation medium for production of active and vigorous LAB starter cultures and probiotics requires selecting the right raw ingredients, especially protein hydrolysates that can provide adequate nutrients for growth and viability. This chapter attempts to describe the application of various commercial protein hydrolysates used for production of dairy and meat starter cultures, with special emphasis on meeting the nitrogen requirements of industrially important LAB species.

  18. Kinetic studies of cellodextrins hydrolyses by exocellulase from trichoderma reesei

    SciTech Connect

    Teh-An Hsu, Cheng-Shung Gong; Tsao, G.T.

    1980-11-01

    The kinetics of the hydrolyses of cellotriose and of cellotetraose by cellobiohydrolase were studied using a convenient integral technique. Reaction mechanisms and mathematical models were postulated to describe the reactions. The end-products of the reaction were found to be inhibitory toward hydrolysis in a competitive mode. Hydrolysis of cellotraose produces cellobiose and hydrolysis of cellotriose produces cellobiose and glucose. Both sugars inhibit the enzyme with cellobiose being a stronger inhibitor.

  19. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent.

    PubMed

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay

    2016-07-01

    Hydrolysable tannins (HTs) are secondary metabolites from plants, which are roughly classified into gallotannins and ellagitannins having gallic acid and ellagic acid residues respectively attached to the hydroxyl group of glucose by ester linkage. The presence of hexahydroxydiphenoyl and nonahydroxyterphenoyl moieties is considered to render antimicrobial property to HTs. HTs also show considerable synergy with antibiotics. Nevertheless, they have low pharmacokinetic property. The present review presents the scope of HTs as future antimicrobial agent. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27062587

  20. The effects of inulin supplementation of diets with or without hydrolysed protein sources on digestibility, faecal characteristics, haematology and immunoglobulins in dogs.

    PubMed

    Verlinden, A; Hesta, M; Hermans, J M; Janssens, G P J

    2006-11-01

    Dogs with food allergy are often treated by giving a diet with hydrolysed protein sources. Prebiotics might also be successful in prevention and treatment of allergic disease through their effect on the colonic microflora, analogous to studies on probiotics in allergic children. The present study was set up to investigate the effect of supplementing inulin (IN) to commercial hypoallergenic dog diets on apparent nutrient digestibility, faecal characteristics, haematology and Ig in dogs. Supplementation of 3 % IN did not affect faecal pH, food and water intake and urine production. Compared with the intact protein diet with a limited number of ingredients (L), the diet with a hydrolysed protein source (H) resulted in an increased water intake (P<0.001), which could be due to the osmotic effect of free amino acids. Faeces production was increased by IN due to increased faecal moisture content. Increased faeces production on the H diet was mainly due to a higher DM excretion. Subsequently, the apparent digestibility coefficient (ADC) of DM was lower in the H diet group. A similar result was noted for ADC of diethyl ether extract and crude ash. The ADC of crude protein was higher in the H diet group, whereas IN decreased the ADC of crude protein. Differences in the ADC of crude protein among the different diets disappeared after correction for a higher faecal biomass, except for the dogs fed the L+IN diet. Total faecal IgA concentrations were lower in the H group (P<0.05) because of lower antigenic stimulation of hydrolysed protein, which implies that hydrolysed protein is really hypoallergenic. The present study indicates that the use of hydrolysed protein diets for canine food allergy treatment can affect digestibility and that combination with IN affected apparent protein digestibility but not IgA response. PMID:17092385

  1. The effects of inulin supplementation of diets with or without hydrolysed protein sources on digestibility, faecal characteristics, haematology and immunoglobulins in dogs.

    PubMed

    Verlinden, A; Hesta, M; Hermans, J M; Janssens, G P J

    2006-11-01

    Dogs with food allergy are often treated by giving a diet with hydrolysed protein sources. Prebiotics might also be successful in prevention and treatment of allergic disease through their effect on the colonic microflora, analogous to studies on probiotics in allergic children. The present study was set up to investigate the effect of supplementing inulin (IN) to commercial hypoallergenic dog diets on apparent nutrient digestibility, faecal characteristics, haematology and Ig in dogs. Supplementation of 3 % IN did not affect faecal pH, food and water intake and urine production. Compared with the intact protein diet with a limited number of ingredients (L), the diet with a hydrolysed protein source (H) resulted in an increased water intake (P<0.001), which could be due to the osmotic effect of free amino acids. Faeces production was increased by IN due to increased faecal moisture content. Increased faeces production on the H diet was mainly due to a higher DM excretion. Subsequently, the apparent digestibility coefficient (ADC) of DM was lower in the H diet group. A similar result was noted for ADC of diethyl ether extract and crude ash. The ADC of crude protein was higher in the H diet group, whereas IN decreased the ADC of crude protein. Differences in the ADC of crude protein among the different diets disappeared after correction for a higher faecal biomass, except for the dogs fed the L+IN diet. Total faecal IgA concentrations were lower in the H group (P<0.05) because of lower antigenic stimulation of hydrolysed protein, which implies that hydrolysed protein is really hypoallergenic. The present study indicates that the use of hydrolysed protein diets for canine food allergy treatment can affect digestibility and that combination with IN affected apparent protein digestibility but not IgA response.

  2. A study of ethanol tolerance in yeast.

    PubMed

    D'Amore, T; Panchal, C J; Russell, I; Stewart, G G

    1990-01-01

    The ethanol tolerance of yeast and other microorganisms has remained a controversial area despite the many years of study. The complex inhibition mechanism of ethanol and the lack of a universally accepted definition and method to measure ethanol tolerance have been prime reasons for the controversy. A number of factors such as plasma membrane composition, media composition, mode of substrate feeding, osmotic pressure, temperature, intracellular ethanol accumulation, and byproduct formation have been shown to influence the ethanol tolerance of yeast. Media composition was found to have a profound effect upon the ability of a yeast strain to ferment concentrated substrates (high osmotic pressure) and to ferment at higher temperatures. Supplementation with peptone-yeast extract, magnesium, or potassium salts has a significant and positive effect upon overall fermentation rates. An intracellular accumulation of ethanol was observed during the early stages of fermentation. As fermentation proceeds, the intracellular and extracellular ethanol concentrations become similar. In addition, increases in osmotic pressure are associated with increased intracellular accumulation of ethanol. However, it was observed that nutrient limitation, not increased intracellular accumulation of ethanol, is responsible to some extent for the decreases in growth and fermentation activity of yeast cells at higher osmotic pressure and temperature.

  3. Extensively and partially hydrolysed infant formulas for allergy prophylaxis

    PubMed Central

    Oldaeus, G; Anjou, K; Bjorksten, B; Moran, J; Kjellman, N

    1997-01-01

    Accepted 17 March 1997
 The allergy preventive effect of extensively (N) and partially (PH) hydrolysed cows' milk formulas compared with a regular formula (RM) was assessed in 155 infants with a family history of allergy. No cows' milk was given during the first nine months of life and no egg and fish up to 12 months of age. Breast feeding mothers avoided the same foods. At weaning the infants were randomised to one of the formula groups. The cumulative incidence of atopic symptoms at 18 months was 51, 64, and 84% in the N, PH, and RM groups, respectively. From 6 to 18 months there were significantly less cumulative atopic symptoms in the N group compared with the RM group, and significantly less than the PH group up to 6 (N= 25%; PH = 46%) and 9 months (N = 34%, PH = 58%). At 9 months significantly fewer infants in the N group (10%) than in the PH group (33%) had a positive skin prick test to eggs. The findings support an allergy preventive effect of an extensively hydrolysed formula, but not of a partially hydrolysed formula, during the first 18 months of life of high risk infants.

 PMID:9279143

  4. The Use of Protein Hydrolysates for Weed Control

    NASA Astrophysics Data System (ADS)

    Christians, Nick; Liu, Dianna; Unruh, Jay Bryan

    Corn gluten meal, the protein fraction of corn (Zea mays L.) grain, is commercially used as a natural weed control agent and nitrogen source in horticultural crops and in the turf and ornamental markets. Corn gluten hydrolysate, a water soluble form of gluten meal, has also been proposed for the same purpose, although it could be sprayed on the soil rather than applied in the granular form. Five depeptides, glutaminyl-glutamine (Gln-Gln), glycinyl-alanine (Gly-Ala), alanyl-­glutamine (Ala-Glu), alanyl-asparagine (Ala-Asp), and alaninyl-alanine (Ala-Ala) and a pentapeptide leucine-serine-proline-alanine-glutamine (Leu-Ser-Pro-Ala-Gln) were identified as the active components of the hydrolysate. Microscopic analysis revealed that Ala-Ala acted on some metabolic process rather than directly on the mitotic apparatus. Similar to the chloracetamides and sulfonyl-urea hebicides, Ala-Ala inhibits cell division rather than disrupting of cell division processes. Cellular ultrastructure changes caused by exposure to Ala-Ala implicate Ala-Ala as having membrane-disrupting characteristics similar to several synthetic herbicides. The potential use of the hydrolysate and the peptides as weed controls is discussed.

  5. Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates.

    PubMed

    Chen, Ning; Yang, Hongmei; Sun, Yi; Niu, Jun; Liu, Shuying

    2012-12-01

    Walnut proteins were hydrolyzed separately using three different proteases to obtain antioxidant peptides. The antioxidant activities of the hydrolysates were measured using 1,1-diphenyl-2-picryl hydrazyl (DPPH) assay. Among hydrolysates, pepsin hydrolysate obtained by 3h exhibited the highest antioxidant activities, which could also quench the hydroxyl radical, chelate ferrous ion, exhibit reducing power and inhibit the lipid peroxidation. Then, 3-h pepsin hydrolysates were purified sequentially by ultrafiltration, gel filtration and RP-HPLC. The sequence of the peptide with the highest antioxidative activity was identified to be Ala-Asp-Ala-Phe (423.23 Da) using RP-HPLC-ESI-MS, which was identified for the first time from walnut protein hydrolysates. Last, the inhibition of the peptide on lipid peroxidation was similar with that of reduced glutathione (GSH). These results indicate that the protein hydrolysates and/or its isolated peptides may be effectively used as food additives.

  6. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501.

    PubMed

    Chandel, Anuj Kumar; Kapoor, Rajeev Kumar; Singh, Ajay; Kuhad, Ramesh Chander

    2007-07-01

    Sugarcane bagasse hydrolysis with 2.5% (v/v) HCl yielded 30.29g/L total reducing sugars along with various fermentation inhibitors such as furans, phenolics and acetic acid. The acid hydrolysate when treated with anion exchange resin brought about maximum reduction in furans (63.4%) and total phenolics (75.8%). Treatment of hydrolysate with activated charcoal caused 38.7% and 57.5% reduction in furans and total phenolics, respectively. Laccase reduced total phenolics (77.5%) without affecting furans and acetic acid content in the hydrolysate. Fermentation of these hydrolysates with Candida shehatae NCIM 3501 showed maximum ethanol yield (0.48g/g) from ion exchange treated hydrolysate, followed by activated charcoal (0.42g/g), laccase (0.37g/g), overliming (0.30g/g) and neutralized hydrolysate (0.22g/g). PMID:17011776

  7. Mild protein hydrolysation of lactose-free milk further reduces milk-related gastrointestinal symptoms.

    PubMed

    Turpeinen, Anu; Kautiainen, Hanna; Tikkanen, Marja-Leena; Sibakov, Timo; Tossavainen, Olli; Myllyluoma, Eveliina

    2016-05-01

    Gastrointestinal symptoms associated with milk are common. Besides lactose, milk proteins may cause symptoms in sensitive individuals. We have developed a method for mild enzymatic hydrolysation of milk proteins and studied the effects of hydrolysed milk on gastrointestinal symptoms in adults with a self-diagnosed sensitive stomach. In a double blind, randomised placebo-controlled study, 97 subjects consumed protein-hydrolysed lactose-free milk or commercially available lactose-free milk for 10 d. Frequency of gastrointestinal symptoms during the study period was reported and a symptom score was calculated. Rumbling and flatulence decreased significantly in the hydrolysed milk group (P < 0·05). Also, the total symptom score was lower in subjects who consumed hydrolysed milk (P < 0·05). No difference between groups was seen in abdominal pain (P = 0·47) or bloating (P = 0·076). The results suggest that mild enzymatic protein hydrolysation may decrease gastrointestinal symptoms in adults with a sensitive stomach.

  8. Leavening ability of baker's yeast exposed to hyperosmotic media.

    PubMed

    Hirasawa, R; Yokoigawa, K

    2001-01-15

    To develop a simple and rapid method for enhancing the leavening ability of baker's yeast, we examined the fermentation ability of baker's yeast exposed to hyperosmotic media. When baker's yeast cells were incubated at 25 degrees C for 1 h in a hyperosmotic medium containing 0.5% yeast extract, 0.5% peptone and 20% sucrose, the cells showed a higher fermentation ability in the subsequent fermentation test than those untreated. The increased ratios were from 40 to 60% depending on the strains used. Glucose and fructose showed a similar effect to that of sucrose, but sorbitol was less effective. A high correlation between the intracellular glycerol content and fermentation ability after the osmotic treatment suggested that glycerol accumulated during the hyperosmotic treatment was used in the subsequent fermentation as a substrate, lessened the lag time, and consequently enhanced the fermentation ability. Various baker's yeasts also showed a high leavening ability in dough after the hyperosmotic treatment.

  9. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    PubMed

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations.

  10. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    PubMed

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations. PMID:26802184

  11. [Determination of riboflavin kinase activity in yeast].

    PubMed

    Shavlovsky, G M; Kashchenko, V E

    1975-01-01

    It is established that the main reason of the riboflavin kinase (RFK, EC 2.7.1.26) low specific activity in the cell-free extracts of the yeast Pichia guillermondii Wickerham ATCC 9058 is the presence of alkaline phosphatase (EC 3.1.3.1), effectively destructing flaven mononucleotide. By chromatography of the cell-free extracts of P. guillermondii on DEAE-Sephadex A-50, CM-Sphadex C-50, CM-cellulose, Sephadexes G-75 and G-100 RFK and alkaline phosphatase may be separated completely. Any of these procedures results in a several times increase of the RFK activity as compared with the initial preparation. One failed to obtain a similar effect by fractionation of the extracts with amminium sulphate and by hydroxylapatite chromatography. A simple method is developed for determining the activity of RFK in the cell-free extracts of yeast on the basis of negative adsorption of this enzyme on DEAE-Sephadex A-50. A selective inhibition of alkaline phosphatase by ions Be2+ and F- yields a less satisfactory result. The data are presented on the PFK activity of certain species of flavinogenic (Pichia guillermondii, Torulopsis camdida) and non-flavinogenic (Pichia ohmeri, Candida utilis, Saccharomyces cervisiae) yeast. PMID:174262

  12. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions.

    PubMed

    Di Bernardini, Roberta; Mullen, Anne Maria; Bolton, Declan; Kerry, Joseph; O'Neill, Eileen; Hayes, Maria

    2012-01-01

    The main objective was to investigate the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of sarcoplasmic proteins isolated from the brisket muscle (Pectoralis profundus) of 3 (Bos taurus) cattle and hydrolysed with papain for 24 h at 37°C. Sarcoplasmic protein hydrolysates were ultra-filtered using molecular weight cut off (MWCO) membranes and 10-kDa and 3-kDa filtrates were obtained. The total sarcoplasmic protein extracts and the 3-kDa filtrates were tested for angiotensin I-converting enzyme inhibitory (ACE-I) activities. The total hydrolysates, 10-kDa and 3-kDa filtrates were also tested for their associated antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay, the ferric ion reducing antioxidant power (FRAP) assay and the Fe(2+) metal chelating ability assay. The peptidic content of the total hydrolysates, the 10-kDa and the 3-kDa filtrates were analysed using an ORBITRAP mass spectrometer, and mass spectral data obtained were analysed using TurboSEQUEST. Eleven peptides were characterised from the total hydrolysates, fifteen from the 10-kDa filtrate fractions, whilst nine peptides were characterised from the 3-kDa filtrate fractions. Similarities between the amino acid sequences of the peptides identified in this study and previously identified antioxidant and ACE-I inhibitory peptides detailed in the BIOPEP database were outlined. PMID:21880436

  13. Improved alcohol production employing SSF with thermotolerant yeast

    SciTech Connect

    Tsao, G.T.; Cao, N.; Gong, C.S.

    1996-12-31

    Simultaneous saccharification and fermentation (SSF) involves the enzymatic hydrolysis of cellulose and the yeast fermentation of sugars to ethanol simultaneously in the same reactor. For the effective SSF process to produce ethanol from lignocellulose, it is required to remove the physical and chemical barrier around cellulose fibers and make cellulose more accessible to cellulose. Furthermore, it is preferred to have the compatible fermentation and saccharification conditions (e.g., temperature and pH). The process for pretreatment of lignocellulosic biomass involves the steeping in ammonia solution to remove lignin followed by dilute acid (1%, w/w) hydrolysis of hemicellulose fraction. The ammonia steeping removes over 70% of lignin and consequently facilitates the removal of hemicellulose by dilute acid. Dilute acid hydrolysis of hemicellulose yielding hydrolysate with sugar concentration of up to 8%. This fraction was used as substrate for ethanol production with xylose fermenting yeast strain. After lignin and hemicellulose were removed, the cellulose fraction was used as substrate in the SSF process for ethanol production. High yield of ethanol of over 60 g/L was produced by the thermotolerant yeast within 80 hours of SSF with a low enzyme loading of 8 IFPU/g cellulose.

  14. Production of arabitol by yeasts: current status and future prospects.

    PubMed

    Kordowska-Wiater, M

    2015-08-01

    Arabitol belongs to the pentitol family and is used in the food industry as a sweetener and in the production of human therapeutics as an anticariogenic agent and an adipose tissue reducer. It can also be utilized as a substrate for chemical products such as arabinoic and xylonic acids, propylene, ethylene glycol, xylitol and others. It is included on the list of 12 building block C3-C6 compounds, designated for further biotechnological research. This polyol can be produced by yeasts in the processes of bioconversion or biotransformation of waste materials from agriculture, the forest industry (l-arabinose, glucose) and the biodiesel industry (glycerol). The present review discusses research on native yeasts from the genera Candida, Pichia, Debaryomyces and Zygosaccharomyces as well as genetically modified strains of Saccharomyces cerevisiae which are able to utilize biomass hydrolysates to effectively produce L- or D-arabitol. The metabolic pathways of these yeasts leading from sugars and glycerol to arabitol are presented. Although the number of reports concerning microbial production of arabitol is rather limited, the research on this topic has been growing for the last several years, with researchers looking for new micro-organisms, substrates and technologies.

  15. Metabolic engineering for improved fermentation of pentoses by yeasts.

    PubMed

    Jeffries, T W; Jin, Y-S

    2004-02-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g(-1) sugar consumed, so commercialization seems feasible for some applications.

  16. A yeast transcription system for the 5S rRNA gene.

    PubMed Central

    van Keulen, H; Thomas, D Y

    1982-01-01

    A cell-free extract of yeast nuclei that can specifically transcribe cloned yeast 5S rRNA genes has been developed. Optima for transcription of 5S rDNA were determined and conditions of extract preparation leading to reproducible activities and specificities established. The major in vitro product has the same size and oligonucleotide composition as in vivo 5S rRNA. The in vitro transcription extract does not transcribe yeast tRNA genes. The extract does increase the transcription of tRNA genes packaged in chromatin. Images PMID:7145700

  17. Vaginal yeast infection

    MedlinePlus

    Medicines to treat vaginal yeast infections are available as creams, ointments, vaginal tablets or suppositories and oral tablets. Most can be bought without needing to see your provider. Treating yourself at home is probably OK if: Your ...

  18. Single yeast cell imaging.

    PubMed

    Wolinski, Heimo; Kohlwein, Sepp D

    2014-01-01

    Microscopic imaging techniques play a pivotal role in the life sciences. Here we describe labeling and imaging methods for live yeast cell imaging. Yeast is an excellent reference organism for biomedical research to investigate fundamental cellular processes, and has gained great popularity also for large-scale imaging-based screens. Methods are described to label live yeast cells with organelle-specific fluorescent dyes or GFP-tagged proteins, and how cells are maintained viable over extended periods of time during microscopy. We point out common pitfalls and potential microscopy artifacts arising from inhomogeneous labeling and depending on cellular physiology. Application and limitation of bleaching techniques to address dynamic processes in the yeast cell are described.

  19. Organic fraction of municipal solid waste as a suitable feedstock for the production of lipid by oleaginous yeast Cryptococcus aerius.

    PubMed

    Ghanavati, Hossein; Nahvi, Iraj; Karimi, Keikhosro

    2015-04-01

    The detoxified pre-hydrolysate and enzymatic hydrolysate of OFMSW were used as substrates for lipid production by Cryptococcus aerius. Factorial experimental designs were employed for the optimization of dilute acid pre-hydrolysis, detoxification by over-liming, enzymatic hydrolysis, and lipid production. OFMSW pre-hydrolysis with 3% H2SO4 for 45 min was found to be the optimal treatment, resulted in total sugar concentration of 65.5 g/L (32.8% yield, based on grams of total reducing sugar per gram of OFMSW). The optimal detoxification conditions of the pre-hydrolysate by over-liming was incubation at 30 °C and pH 11 for 24h, resulted in the reduction of total nitrogen, total phenolic compounds, and furans by 51.3%, 45.1%, and 100%, respectively. The residual solid was subjected to enzymatic hydrolysis, and the highest sugar concentration of 30.5 g/L was obtained. At optimal conditions, the yeast cultivation on the detoxified pre-hydrolysate and enzymatic hydrolysate resulted in the lipid production of 3.9 g/L (12.8% yield, based on g lipid per g consumed sugar) and 4.3g/L (17.1% yield, based on g lipid per g consumed sugar), respectively. The elemental analysis showed the presence of heavy metals including iron (925 mg/l), zinc (59 mg/l), lead (4.7 mg/l), and nickel (3.5mg/l) in the pre-hydrolysate, which were significantly reduced by the over-liming detoxification. PMID:25595390

  20. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  1. Modeling brewers' yeast flocculation

    PubMed

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  2. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  3. Forces in yeast flocculation.

    PubMed

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  4. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  5. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain

    PubMed Central

    2014-01-01

    Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell

  6. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates

    PubMed Central

    Liang, Zhili; Li, Lin; Qi, Haiping; Zhang, Xia; Xu, Zhenbo; Li, Bing

    2016-01-01

    Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form pyrraline (Free-Pyr) and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH), soy protein hydrolysate (SPH) and collagen protein hydrolysate (CPH). A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE). The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD) of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent) of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent) of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs. PMID:27384561

  7. Stubborn vaginal yeast infections.

    PubMed

    1994-01-01

    Fungi, which along with plants and animals comprise a distinct group in the classification of living things, break down and recycle organic matter. One sub-group with over 600 varieties consists of microscopic, single-celled yeasts. Of the genus Candida, the species Candida albicans accounts for 94% of all cases of fungal vaginitis. Yeasts thrive in human bodies as either beneficial or pathogenic agents. Even when they are an innocuous presence in a healthy human body, they are always poised to create opportunistic infections in susceptible individuals. Candida has been known to infect every organ of the body, but its ability to cause infection depends upon the presence of a sufficient amount of fungal organisms or generally reduced resistance or both. Often use of modern medical drugs such as oral contraceptives, antibiotics, or immunosuppressant drugs can trigger an infection. The symptoms of vaginal infection are vaginal itching, inflammation, and swelling; a burning sensation; and a white, cheesy discharge. Yeast infections can occur in females of all ages (although they are most common in women of child-bearing age) and prompt a large percentage of trips to the gynecologist. Recurrence is common, and each occurrence is harder to eradicate. Often frustrated women turn to alternative therapies. Successful treatment depends upon reducing the yeast population in the body, building up the beneficial bacteria population, limiting and controlling yeast triggers, and strengthening overall health. PMID:12318962

  8. Yeasts in spa establishments.

    PubMed

    Svorcová, L

    1982-05-01

    It was investigated occurrence of yeasts on bathsurfaces, in sauna rooms, in swimming and therapeutic pool water. The number of yeasts decreased depending on patients age, if the rooms were furnished with bath. The lowest contamination was found after bath of 40-60 years-old women. In the saunas were yeasts not found on the upper benches with temperature above 55 degrees C. Much higher counts on lower benches and wood mats with temperature 35-40 degrees C, on basin walls and bottom-up to 10(4)-10(6)/100 cm2. It was isolated 172 yeast strains. The occurrence of some selected strains is given in Table 7, with the toxic effect of disinfectants. The most strains were resistant to Peracetic acid and Chloramin B. Since most of the isolated and determinated strains were found in contaminated environment or during various diseases, the yeasts of the genus Cryptococcus, Candida, Rhodotorula, Torulopsis and Metschnikowia should not occur in bath establishment, and should be classified among indicators of contamination of environment including water. PMID:7124167

  9. Evaluation of Catfish Skin Hydrolysates as a Glazing Material for Air-Blast Frozen Shrimp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catfish is one of the most widely consumed seafood in the United States. A by-product of this consumption is a large quantity of catfish skin (CS), approximately 8,200 metric tons in 2014. Enzymatic hydrolysis is used to produce protein hydrolysates from the skin. These hydrolysates have considerabl...

  10. Development and Validation of an In-House Database for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Yeast Identification Using a Fast Protein Extraction Procedure

    PubMed Central

    De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Posteraro, Patrizia; Ricciardi, Walter; Posteraro, Brunella

    2014-01-01

    In recent studies evaluating the usefulness of the matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based identification of yeasts for the routine diagnosis of fungal infections, preanalytical sample processing has emerged as a critical step for reliable MALDI-TOF MS outcomes, especially when the Bruker Daltonics Biotyper software was used. In addition, inadequate results often occurred due to discrepancies between the methods used for clinical testing and database construction. Therefore, we created an in-house MALDI-TOF MS library using the spectra from 156 reference and clinical yeast isolates (48 species in 11 genera), which were generated with a fast sample preparation procedure. After a retrospective validation study, our database was evaluated on 4,232 yeasts routinely isolated during a 6-month period and fast prepared for MALDI-TOF MS analysis. Thus, 4,209 (99.5%) of the isolates were successfully identified to the species level (with scores of ≥2.0), with 1,676 (39.6%) having scores of >2.3. For the remaining 23 (0.5%) isolates, no reliable identification (with scores of <1.7) was obtained. Interestingly, these isolates were almost always from species uniquely represented or not included in the database. As the MALDI-TOF MS results were, except for 23 isolates, validated without additional phenotypic or molecular tests, our proposed strategy can enhance the rapidity and accuracy of MALDI-TOF MS in identifying medically important yeast species. However, while continuous updating of our database will be necessary to enrich it with more strains/species of new and emerging yeasts, the present in-house MALDI-TOF MS library can be made publicly available for future multicenter studies. PMID:24554755

  11. Temperature-dependent FTIR spectra of collagen and protective effect of partially hydrolysed fucoidan

    NASA Astrophysics Data System (ADS)

    Pielesz, Anna

    2014-01-01

    FTIR spectra of collagen (PC) and partially hydrolysed fucoidan (PHF) incorporated into collagen films were investigated at different temperatures between 20 °C and 100 °C. Changes within the bands of amide I, amide II and amide III may indicate stabilization of collagen by hydrogen bonds during its interaction with partially hydrolysed fucoidan. Spectroscopic studies revealed that partially hydrolysed fucoidan was bound to the collagen without affecting its triple helicity. Interactions of fucoidan with H2SO4 (mild acid hydrolysis), leading to changes of the sulphated band positions in the 800-590 cm-1 region of IR spectra were observed. The effect of partially hydrolysed fucoidan on glucose-mediated collagen glycation and cross-linking of proteins in vitro was evaluated. It was observed that partially hydrolysed fucoidan incorporated into collagen films can be used as therapeutically active biomaterials that speed up the process of wound healing and may increase the anticancer activity of fucoidan.

  12. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  13. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

    PubMed

    Guamán-Burneo, Maria C; Dussán, Kelly J; Cadete, Raquel M; Cheab, Monaliza A M; Portero, Patricia; Carvajal-Barriga, Enrique J; da Silva, Sílvio S; Rosa, Carlos A

    2015-10-01

    This study evaluated D-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L(-1) xylitol, Y p/s (xyl) = 0.67 g g(-1), Qp = 0.38 g L(-1). A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L(-1), Y p/s (xyl) = 0.64 g g(-1), Qp = 0.33 g L(-1) h(-1)) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindnera galapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025(T) (=UFMG-CM-Y517(T); CBS 13997(T)). The MycoBank number is MB 812171.

  14. Use of Different Proteases to Obtain Flaxseed Protein Hydrolysates with Antioxidant Activity.

    PubMed

    Karamać, Magdalena; Kosińska-Cagnazzo, Agnieszka; Kulczyk, Anna

    2016-01-01

    The antioxidant activity of flaxseed protein hydrolysates obtained using five different enzymes was evaluated. Proteins were isolated from flaxseed cake and were separately treated with papain, trypsin, pancreatin, Alcalase and Flavourzyme. The degree of hydrolysis (DH) was determined as the percentage of cleaved peptide bonds using a spectrophotometric method with o-phthaldialdehyde. The distribution of the molecular weights (MW) of the hydrolysis products was profiled using Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) and size exclusion-high performance liquid chromatography (SE-HPLC) separations. The antioxidant activities of the protein isolate and hydrolysates were probed for their radical scavenging activity using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(•+)) and photochemiluminescence (PCL-ACL) assays, and for their ferric reducing antioxidant power (FRAP) and ability to bind Fe(2+). The hydrolysates were more effective as antioxidants than the protein isolate in all systems. The PCL-ACL values of the hydrolysates ranged from 7.2 to 35.7 μmol Trolox/g. Both the FRAP and ABTS(•+) scavenging activity differed among the hydrolysates to a lower extent, with the ranges of 0.20-0.24 mmol Fe(2+)/g and 0.17-0.22 mmol Trolox/g, respectively. The highest chelating activity (71.5%) was noted for the pancreatin hydrolysate. In general, the hydrolysates obtained using Alcalase and pancreatin had the highest antioxidant activity, even though their DH (15.4% and 29.3%, respectively) and the MW profiles of the peptides varied substantially. The O₂(•-) scavenging activity and the ability to chelate Fe(2+) of the Flavourzyme hydrolysate were lower than those of the Alcalase and pancreatin hydrolysates. Papain was the least effective in releasing the peptides with antioxidant activity. The study showed that the type of enzyme used for flaxseed protein hydrolysis determines the antioxidant activity

  15. Use of Different Proteases to Obtain Flaxseed Protein Hydrolysates with Antioxidant Activity

    PubMed Central

    Karamać, Magdalena; Kosińska-Cagnazzo, Agnieszka; Kulczyk, Anna

    2016-01-01

    The antioxidant activity of flaxseed protein hydrolysates obtained using five different enzymes was evaluated. Proteins were isolated from flaxseed cake and were separately treated with papain, trypsin, pancreatin, Alcalase and Flavourzyme. The degree of hydrolysis (DH) was determined as the percentage of cleaved peptide bonds using a spectrophotometric method with o-phthaldialdehyde. The distribution of the molecular weights (MW) of the hydrolysis products was profiled using Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) and size exclusion-high performance liquid chromatography (SE-HPLC) separations. The antioxidant activities of the protein isolate and hydrolysates were probed for their radical scavenging activity using 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS•+) and photochemiluminescence (PCL-ACL) assays, and for their ferric reducing antioxidant power (FRAP) and ability to bind Fe2+. The hydrolysates were more effective as antioxidants than the protein isolate in all systems. The PCL-ACL values of the hydrolysates ranged from 7.2 to 35.7 μmol Trolox/g. Both the FRAP and ABTS•+ scavenging activity differed among the hydrolysates to a lower extent, with the ranges of 0.20–0.24 mmol Fe2+/g and 0.17–0.22 mmol Trolox/g, respectively. The highest chelating activity (71.5%) was noted for the pancreatin hydrolysate. In general, the hydrolysates obtained using Alcalase and pancreatin had the highest antioxidant activity, even though their DH (15.4% and 29.3%, respectively) and the MW profiles of the peptides varied substantially. The O2•− scavenging activity and the ability to chelate Fe2+ of the Flavourzyme hydrolysate were lower than those of the Alcalase and pancreatin hydrolysates. Papain was the least effective in releasing the peptides with antioxidant activity. The study showed that the type of enzyme used for flaxseed protein hydrolysis determines the antioxidant activity of

  16. Genetics of Yeasts

    NASA Astrophysics Data System (ADS)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  17. Structural and Antihypertensive Properties of Enzymatic Hemp Seed Protein Hydrolysates.

    PubMed

    Malomo, Sunday A; Onuh, John O; Girgih, Abraham T; Aluko, Rotimi E

    2015-09-01

    The aim of this work was to produce antihypertensive protein hydrolysates through different forms of enzymatic hydrolysis (2% pepsin, 4% pepsin, 1% alcalase, 2% alcalase, 2% papain, and 2% pepsin + pancreatin) of hemp seed proteins (HSP). The hemp seed protein hydrolysates (HPHs) were tested for in vitro inhibitions of renin and angiotensin-converting enzyme (ACE), two of the enzymes that regulate human blood pressure. The HPHs were then administered orally (200 mg/kg body weight) to spontaneously hypertensive rats and systolic blood pressure (SBP)-lowering effects measured over a 24 h period. Size exclusion chromatography mainly showed a 300-9560 Da peptide size range for the HPHs, while amino acid composition data had the 2% pepsin HPH with the highest cysteine content. Fluorescence spectroscopy revealed higher fluorescence intensities for the peptides when compared to the unhydrolyzed hemp seed protein. Overall, the 1% alcalase HPH was the most effective (p < 0.05) SBP-reducing agent (-32.5 ± 0.7 mmHg after 4 h), while the pepsin HPHs produced longer-lasting effects (-23.0 ± 1.4 mmHg after 24 h). We conclude that an optimized combination of the fast-acting HPH (1% alcalase) with the longer-lasting HPHs (2% and 4% pepsin) could provide daily effective SBP reductions. PMID:26378569

  18. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility.

  19. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility. PMID:26453468

  20. Structural and Antihypertensive Properties of Enzymatic Hemp Seed Protein Hydrolysates

    PubMed Central

    Malomo, Sunday A.; Onuh, John O.; Girgih, Abraham T.; Aluko, Rotimi E.

    2015-01-01

    The aim of this work was to produce antihypertensive protein hydrolysates through different forms of enzymatic hydrolysis (2% pepsin, 4% pepsin, 1% alcalase, 2% alcalase, 2% papain, and 2% pepsin + pancreatin) of hemp seed proteins (HSP). The hemp seed protein hydrolysates (HPHs) were tested for in vitro inhibitions of renin and angiotensin-converting enzyme (ACE), two of the enzymes that regulate human blood pressure. The HPHs were then administered orally (200 mg/kg body weight) to spontaneously hypertensive rats and systolic blood pressure (SBP)-lowering effects measured over a 24 h period. Size exclusion chromatography mainly showed a 300–9560 Da peptide size range for the HPHs, while amino acid composition data had the 2% pepsin HPH with the highest cysteine content. Fluorescence spectroscopy revealed higher fluorescence intensities for the peptides when compared to the unhydrolyzed hemp seed protein. Overall, the 1% alcalase HPH was the most effective (p < 0.05) SBP-reducing agent (−32.5 ± 0.7 mmHg after 4 h), while the pepsin HPHs produced longer-lasting effects (−23.0 ± 1.4 mmHg after 24 h). We conclude that an optimized combination of the fast-acting HPH (1% alcalase) with the longer-lasting HPHs (2% and 4% pepsin) could provide daily effective SBP reductions. PMID:26378569

  1. Structural and Antihypertensive Properties of Enzymatic Hemp Seed Protein Hydrolysates.

    PubMed

    Malomo, Sunday A; Onuh, John O; Girgih, Abraham T; Aluko, Rotimi E

    2015-09-10

    The aim of this work was to produce antihypertensive protein hydrolysates through different forms of enzymatic hydrolysis (2% pepsin, 4% pepsin, 1% alcalase, 2% alcalase, 2% papain, and 2% pepsin + pancreatin) of hemp seed proteins (HSP). The hemp seed protein hydrolysates (HPHs) were tested for in vitro inhibitions of renin and angiotensin-converting enzyme (ACE), two of the enzymes that regulate human blood pressure. The HPHs were then administered orally (200 mg/kg body weight) to spontaneously hypertensive rats and systolic blood pressure (SBP)-lowering effects measured over a 24 h period. Size exclusion chromatography mainly showed a 300-9560 Da peptide size range for the HPHs, while amino acid composition data had the 2% pepsin HPH with the highest cysteine content. Fluorescence spectroscopy revealed higher fluorescence intensities for the peptides when compared to the unhydrolyzed hemp seed protein. Overall, the 1% alcalase HPH was the most effective (p < 0.05) SBP-reducing agent (-32.5 ± 0.7 mmHg after 4 h), while the pepsin HPHs produced longer-lasting effects (-23.0 ± 1.4 mmHg after 24 h). We conclude that an optimized combination of the fast-acting HPH (1% alcalase) with the longer-lasting HPHs (2% and 4% pepsin) could provide daily effective SBP reductions.

  2. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  3. Microbiological Characteristics and Physiological Functionality of New Records of Yeasts from Wild Flowers in Yokjido, Korea

    PubMed Central

    Hyun, Se-Hee

    2014-01-01

    Two new yeast records, Cryptococcus adeliensis YJ19-2 and Cryptococcus uzbekistanensis YJ10-4 were screened from 60 yeasts strains that were isolated and identified from wild flowers in Yokjido, Gyeongsangnam-do, Korea. The morphological and cultural characteristics of the newly recorded yeasts and the physiological functionalities of the supernatants and cell-free extracts obtained from their cultures were investigated. The two newly recorded yeasts did not form ascospores and pseudomycelia. They also grew well in yeast extract-peptone-dextrose broth. C. uzbekistanensis YJ10-4 grew in a vitamin-free medium and was also tolerant to sugar and salt. Antihypertensive angiotensin I-converting enzyme inhibitory activity of the supernatant from C. adeliensis YJ19-2 was high (71.8%) and its cell-free extract also showed very high (81.2%) antidiabetic á-glucosidase inhibitory activity. PMID:25071392

  4. Preparation and performance of immobilized yeast cells in columns containing no inert carrier. [Schizosaccharomyces pombe

    SciTech Connect

    Hsiao, H.Y.; Chiang, L.C.; Yang, C.M.; Chen, L.F.; Tsao, G.T.

    1983-02-01

    Schizosaccharomyes pombe was cultivated in a medium of glucose (10 g/l), malt extract (3 g/l), yeast extract (3 g/l), and bactopeptone (5 g/l) to form flocs. More than 95% of the cell population were flocculated. Variation in glucose concentration (from 10 to 11 g/l) did not affect flocculation. Yeast extract helped induce flocculation. Application of the immobilized yeast for the continuous production of ethanol was tested in a column reactor. Soft yeast flocs (50-200 mesh) underwent morphological changes to heavy particles (0.1-9.3 cm diameter) after continuously being fed with fresh substrates in the column. Productivity as high as 87 g EtOH/l/hour was obtained when a 150 g/l glucose medium was fed. The performance of this yeast reactor was stable over a two-month period. The ethanol yield was 97% of the theoretical maximum based upon glucose consumed. (Refs. 16).

  5. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  6. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes. PMID:21802922

  7. Conversion of pentoses by yeasts

    SciTech Connect

    Gong, C.S.; Claypool, T.A.; Maun, C.M.; Mccracken, L.D.; Tsao, G.T.; Ueng, P.P.

    1983-01-01

    The utilization and conversion of D-xylose, D-xyulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: 1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. 2) The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. 3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. 4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. 5) Of the four substrates examined, D-xylulose was the preferred substrate, followed by D-xylose, L-arabinose, and xylitol. 6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.

  8. Biodegradation and decolorization of melanoidin solutions by manganese peroxidase yeasts.

    PubMed

    Mahgoub, Samir; Tsioptsias, Costas; Samaras, Petros

    2016-01-01

    The ability of selected manganese peroxidase (MnP) yeast strains, isolated from the mixed liquor of an activated sludge bioreactor treating melanoidins wastewater, was investigated in this work, aiming to examine the degradation potential of melanoidins, in the presence or absence of nutrients. Ten yeast strains were initially isolated from the mixed liquor; four yeast strains (Y1, Y2, Y3 and Y4) were selected for further studies, based on their tolerance towards synthetic melanoidins (SMs) degradation and MnP activity onto solid agar medium. The Y1 strain exhibited almost 98% homology to Candida glabrata yeast, based on 28S rRNA identification studies. During experiments carried out using SM at 30 °C, the four isolated yeast cultures showed a noticeable organic matter reduction and decolorization capacity reaching up to 70% within 2-5 days. However, the corresponding yeast cultures grown in glucose peptone yeast extract medium using real melanoidin wastewater at 30°C showed lower organic matter and color removal capacity, reaching about 60% within 2-5 days. Nevertheless, it was found that the removal of real and synthetic melanoidins could be carried out by these strains under non-aseptic conditions, without requiring further addition of nutrients. PMID:27191565

  9. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    PubMed

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). PMID:27163886

  10. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    PubMed

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS).

  11. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    PubMed

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.

  12. Analysis of mitogen-activated protein kinase activity in yeast.

    PubMed

    Elion, Elaine A; Sahoo, Rupam

    2010-01-01

    Mitogen-activated protein (MAP) kinases play central roles in transmitting extracellular and intracellular information in a wide variety of situations in eukaryotic cells. Their activities are perturbed in a large number of diseases, and their activating kinases are currently therapeutic targets in cancer. MAPKs are highly conserved among all eukaryotes. MAPKs were first cloned from the yeast Saccharomyces cerevisiae. Yeast has five MAPKs and one MAPK-like kinase. The mating MAPK Fus3 is the best characterized yeast MAPK. Members of all subfamilies of human MAPKs can functionally substitute S. cerevisiae MAPKs, providing systems to use genetic approaches to study the functions of either yeast or human MAPKs and to identify functionally relevant amino acid residues that enhance or reduce the effects of therapeutically relevant inhibitors and regulatory proteins. Here, we describe an assay to measure Fus3 activity in immune complexes prepared from S. cerevisiae extracts. The assay conditions are applicable to other MAPKs, as well. PMID:20811996

  13. Yeast cells proliferation on various strong static magnetic fields and temperatures

    NASA Astrophysics Data System (ADS)

    Otabe, E. S.; Kuroki, S.; Nikawa, J.; Matsumoto, Y.; Ooba, T.; Kiso, K.; Hayashi, H.

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 106/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  14. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  15. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  16. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  17. Label-Free Quantitative Proteomics in Yeast.

    PubMed

    Léger, Thibaut; Garcia, Camille; Videlier, Mathieu; Camadro, Jean-Michel

    2016-01-01

    Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome. PMID:26483028

  18. Label-Free Quantitative Proteomics in Yeast.

    PubMed

    Léger, Thibaut; Garcia, Camille; Videlier, Mathieu; Camadro, Jean-Michel

    2016-01-01

    Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome.

  19. Generation, Fractionation, and Characterization of Iron-Chelating Protein Hydrolysate from Palm Kernel Cake Proteins.

    PubMed

    Zarei, Mohammad; Ghanbari, Rahele; Tajabadi, Naser; Abdul-Hamid, Azizah; Bakar, Fatimah Abu; Saari, Nazamid

    2016-02-01

    Palm kernel cake protein was hydrolyzed with different proteases namely papain, bromelain, subtilisin, flavourzyme, trypsin, chymotrypsin, and pepsin to generate different protein hydrolysates. Peptide content and iron-chelating activity of each hydrolysate were evaluated using O-phthaldialdehyde-based spectrophotometric method and ferrozine-based colorimetric assay, respectively. The results revealed a positive correlation between peptide contents and iron-chelating activities of the protein hydrolysates. Protein hydrolysate generated by papain exhibited the highest peptide content of 10.5 mM and highest iron-chelating activity of 64.8% compared with the other hydrolysates. Profiling of the papain-generated hydrolysate by reverse phase high performance liquid chromatography fractionation indicated a direct association between peptide content and iron-chelating activity in most of the fractions. Further fractionation using isoelectric focusing also revealed that protein hydrolysate with basic and neutral isoelectric point (pI) had the highest iron-chelating activity, although a few fractions in the acidic range also exhibited good metal chelating potential. After identification and synthesis of papain-generated peptides, GGIF and YLLLK showed among the highest iron-chelating activities of 56% and 53%, whereas their IC50 were 1.4 and 0.2 μM, respectively.

  20. Enhancing effect of albumin hydrolysate on ethanol production employing Saccharomyces sake

    SciTech Connect

    Shin, C.S.; Song, J.Y.; Ryu, O.H. ); Wang, S.S. . Dept. of Chemical and Biochemical Engineering)

    1995-03-05

    The enhancing effect of albumin hydrolysate on ethanol production was investigated in ethanol fermentations using Saccharomyces sake. In batchwise ethanol production, addition of supplemental albumin hydrolysate and phosphatidylcholine, or albumin hydrolysate alone, brought about a more than 60% increase in final ethanol concentration (148 or 144 g/L compared with 88 g/L with no supplementation [control] after 72h). The effect of the supplements is believed to be due to an enhanced alcohol tolerance of cells grown in media containing the supplements. Cells grown in media containing albumin hydrolysate were enriched in phenylalanine, tyrosine,d and methionine in their plasma membranes. All three amino acids were also present in considerable amounts in the albumin hydrolysate. This fact suggests that the three amino acids, which are present in albumin hydrolysate, are incorporated into the plasma membranes of cells. Under ethanol production conditions in which only one amino acid among the components of albumin hydrolysate was excluded, namely phenylalanine, tyrosine, or methionine, significant reductions in ethanol production resulted.

  1. Ultrasonic-Assisted Enzymolysis to Improve the Antioxidant Activities of Peanut (Arachin conarachin L.) Antioxidant Hydrolysate

    PubMed Central

    Yu, Lina; Sun, Jie; Liu, Shaofang; Bi, Jie; Zhang, Chushu; Yang, Qingli

    2012-01-01

    The objective of this work is to provide a theoretical basis for preparing peanut antioxidant hydrolysate in order to improve its antioxidant activities. Therefore, response surface methodology (RSM) based on the Box-Behnken design was used to optimize ultrasonic-assisted enzymolysis for the purpose of preparing peanut antioxidant hydrolysate. Results indicated that the DPPH free radical scavenging activity of peanut hydrolysate could reach 90.06% under the following optimum conditions: ultrasonic power of 150.0 w, reaction temperature of 62.0 °C, incubation time of 25.0 min, and initial pH value of 8.5. The DPPH free radical scavenging rate of peanut hydrolysate from ultrasonic-assisted enzymolysis improved comparing with that of peanut hydrolysate from protease hydrolysis alone. The peanut antioxidant hydrolysate was found to display eight improved kinds of antioxidant activities. In conclusion, the optimal ultrasonic-assisted enzymolysis technology conditions described in this paper, appear to be beneficial for preparing peanut antioxidant hydrolysate. PMID:22942751

  2. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    NASA Astrophysics Data System (ADS)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  3. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    PubMed

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (<1, 1-3, 3-5 and 5-10 kDa). The hydrolysates and their peptide fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes <3 kDa had significantly (p < 0.05) reduced surface hydrophobicity when compared with peptides >3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p < 0.05) when compared to low molecular weight peptide fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p < 0.05) reducing power and ability to chelate metal ions except for the pepsin hydrolysate and its membrane fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders. PMID:27156453

  4. Effect of reactor configuration on biogas production from wheat straw hydrolysate.

    PubMed

    Kaparaju, Prasad; Serrano, María; Angelidaki, Irini

    2009-12-01

    The potential of wheat straw hydrolysate for biogas production was investigated in continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge bed (UASB) reactors. The hydrolysate originated as a side stream from a pilot plant pretreating wheat straw hydrothermally (195 degrees C for 10-12 min) for producing 2nd generation bioethanol [Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology 100 (9), 2562-2568]. Results from batch assays showed that hydrolysate had a methane potential of 384 ml/g-volatile solids (VS)(added). Process performance in CTSR and UASB reactors was investigated by varying hydrolysate concentration and/or organic loading rate (OLR). In CSTR, methane yields increased with increase in hydrolysate concentration and maximum yield of 297 ml/g-COD was obtained at an OLR of 1.9 g-COD/l d and 100% (v/v) hydrolysate. On the other hand, process performance and methane yields in UASB were affected by OLR and/or substrate concentration. Maximum methane yields of 267 ml/g-COD (COD removal of 72%) was obtained in UASB reactor when operated at an OLR of 2.8 g-COD/l d but with only 10% (v/v) hydrolysate. However, co-digestion of hydrolysate with pig manure (1:3 v/v ratio) improved the process performance and resulted in methane yield of 219 ml/g-COD (COD removal of 72%). Thus, anaerobic digestion of hydrolysate for biogas production was feasible in both CSTR and UASB reactor types. However, biogas process was affected by the reactor type and operating conditions.

  5. Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry

    NASA Astrophysics Data System (ADS)

    Eberbeck, Dietmar; Bergemann, Christian; Hartwig, Stefan; Steinhoff, Uwe; Trahms, Lutz

    2005-03-01

    The ion exchange mediated binding of magnetic nanoparticles (MNP) to modified latex spheres and yeast cells was quantified using magnetorelaxometry. By fitting subsequently recorded relaxation curves, the kinetics of the binding reactions was extracted. The signal of MNP with weak ion exchanger groups bound to latex and yeast cells scales linearly with the concentration of latex beads or yeast cells whereas that of MNP with strong ion exchanger groups is proportional to the square root of concentration. The binding of the latter leads to a much stronger aggregation of yeast cells than the former MNP.

  6. EFFECT OF STARCH HYDROLYSATES IN THE PROCESS OF DISSOLUTION OF SOLIDS.

    PubMed

    Belniak, Piotr; Świąder, Katarzyna; Szumiło, Michał; Pietrzyk, Ewelina; Poleszak, Ewa

    2015-01-01

    The purpose of this work was to investigate the influence of starch hydrolysates in the dissolution process of the substance practically insoluble in water. Progesterone and ibuprofen were chosen as model substances. The study was conducted with a constant amount of the drug (25 mg/mL) or constant amount of starch hydrolysate (50 mg/mL). Next, the influence of ethanolic solutions (10-30% v/v) on solubility of drug was tested. The results confirm the possibility of using starch hydrolysate as a cheap and safe addition to increase the solubility of practically insoluble drugs.

  7. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

    PubMed

    Bura, Renata; Vajzovic, Azra; Doty, Sharon L

    2012-07-01

    An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

  8. In vitro Antioxidant Activities of Trianthema portulacastrum L. Hydrolysates

    PubMed Central

    Yaqoob, Sadaf; Sultana, Bushra; Mushtaq, Muhammad

    2014-01-01

    Hydrolysates of Trianthema portulacastrum in acidified methanol were evaluated for their total phenolic (TP) constituents and respective antioxidant activities using in vitro assays (i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, percent inhibition of linoleic acid peroxidation, and ferric reducing power). The observed results indicate that root, shoot, and leaf fractions of T. portulacastrum contain 50.75~98.09 mg gallic acid equivalents/g dry weight of TP. In addition, these fractions have substantial reducing potentials (0.10~0.59), abilities to inhibit peroxidation (43.26~89.98%), and DPPH radical scavenging capabilities (6.98~311.61 μg/mL IC50). The experimental data not only reveal T. portulacastrum as potential source of valuable antioxidants, but also indicate that acidified methanol may be an ideal choice for the enhanced recovery of phenolic compounds with retained biological potential for the food and pharmaceutical industry. PMID:24772406

  9. Wheat gluten hydrolysate affects race performance in the triathlon.

    PubMed

    Koikawa, Natsue; Aoki, Emi; Suzuki, Yoshio; Sakuraba, Keishoku; Nagaoka, Isao; Aoki, Kazuhiro; Shimmura, Yuki; Sawaki, Keisuke

    2013-07-01

    Wheat gluten hydrolysate (WGH) is a food ingredient, prepared by partial enzymatic digestion of wheat gluten, which has been reported to suppress exercise-induced elevation of serum creatinine kinase (CK) activity. However, its effects on athletic performance have not yet been elucidated. This is the presentation of an experiment performed on five female college triathletes who completed an Olympic distance triathlon with or without ingestion of 21 g of WGH during the cycling leg. The experiment was performed in a crossover double-blind manner. The race time of the running leg and thus the total race time was significantly shorter when WGH was ingested. However, serum CK levels exhibited no apparent differences between the two WGH or placebo groups.

  10. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    NASA Technical Reports Server (NTRS)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  11. Fluorescence spectroscopy and principal component analysis of soy protein hydrolysate fractions and the potential to assess their antioxidant capacity characteristics.

    PubMed

    Ranamukhaarachchi, Sahan A; Peiris, Ramila H; Moresoli, Christine

    2017-02-15

    The potential of intrinsic fluorescence and principal component analysis (PCA) to characterize the antioxidant capacity of soy protein hydrolysates (SPH) during sequential ultrafiltration (UF) and nanofiltration (NF) was evaluated. SPH was obtained by enzymatic hydrolysis of soy protein isolate. Antioxidant capacity was measured by Oxygen Radical Absorbance Capacity (ORAC) and Folin Ciocalteau Reagent (FCR) assays together with fluorescence excitation-emission matrices (EEM). PCA of the fluorescence EEMs revealed two principal components (PC1-tryptophan, PC2-tyrosine) that captured significant variance in the fluorescence spectra. Regression models between antioxidant capacity and PC1 and PC2 displayed strong linear correlations for NF fractions and a weak linear correlation for UF fractions. Clustering of UF and NF fractions according to ORACFPCA and FCRFPCA was observed. The ability of this method to extract information on contributions by tryptophan and tyrosine amino acid residues to the antioxidant capacity of SPH fractions was demonstrated. PMID:27664660

  12. Single-Cell Protein Production by the Acid-Tolerant Fungus Scytalidium acidophilum from Acid Hydrolysates of Waste Paper †

    PubMed Central

    Ivarson, K. C.; Morita, H.

    1982-01-01

    The bioconversion of waste paper to single-cell protein at pH <1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H2SO4 at 4°C was diluted with water to a pH of <0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed. PMID:16345970

  13. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.

    PubMed

    Su, Haifeng; Jiang, Juan; Lu, Qiuli; Zhao, Zhao; Xie, Tian; Zhao, Hai; Wang, Maolin

    2015-01-01

    Early trials have demonstrated great potential for the use of duckweed (family Lemnaceae) as the next generation of energy plants for the production of biofuels. Achieving this technological advance demands research to develop novel bioengineering microorganisms that can ferment duckweed feedstock to produce higher alcohols. In this study, we used relevant genes to transfer five metabolic pathways of isoleucine, leucine and valine from the yeast Saccharomyces cerevisiae into the bioengineered microorganism Corynebacterium crenatum. Experimental results showed that the bioengineered strain was able to produce 1026.61 mg/L of 2-methyl-1-butanol by fermenting glucose, compared to 981.79 mg/L from the acid hydrolysates of duckweed. The highest isobutanol yields achieved were 1264.63 mg/L from glucose and 1154.83 mg/L from duckweed, and the corresponding highest yields of 3-methyl-1-butanol were 748.35 and 684.79 mg/L. Our findings demonstrate the feasibility of using bioengineered C. crenatum as a platform to construct a bacterial strain that is capable of producing higher alcohols. We have also shown the promise of using duckweed as the basis for developing higher alcohols, illustrating that this group of plants represents an ideal fermentation substrate that can be considered the next generation of alternative energy feedstocks.

  14. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  15. Immunoprecipitation and Characterization of Membrane Protein Complexes from Yeast

    ERIC Educational Resources Information Center

    Parra-Belky, Karlett; McCulloch, Kathryn; Wick, Nicole; Shircliff, Rebecca; Croft, Nicolas; Margalef, Katrina; Brown, Jamie; Crabill, Todd; Jankord, Ryan; Waldo, Eric

    2005-01-01

    In this undergraduate biochemistry laboratory experiment, the vacuolar ATPase protein complex is purified from yeast cell extracts by doing immunoprecipitations under nondenaturing conditions. Immunoprecipitations are performed using monoclonal antibodies to facilitate data interpretation, and subunits are separated on the basis of their molecular…

  16. Glutathione Production in Yeast

    NASA Astrophysics Data System (ADS)

    Bachhawat, Anand K.; Ganguli, Dwaipayan; Kaur, Jaspreet; Kasturia, Neha; Thakur, Anil; Kaur, Hardeep; Kumar, Akhilesh; Yadav, Amit

    Glutathione, γ -glutamyl-cysteinyl-glycine, is the most abundant non-protein thiol found in almost all eukaryotic cells (and in some prokaryotes). The tripeptide, which is synthesized non-ribosomally by the consecutive action of two soluble enzymes, is needed for carrying out numerous functions in the cell, most important of which is the maintenance of the redox buffer. The cycle of glutathione biosynthesis and degradation forms part of the γ -glutamyl cycle in most organisms although the latter half of the pathway has not been demonstrated in yeasts. Our current understanding of how glutathione levels are controlled at different levels in the cell is described. Several different routes and processes have been attempted to increase commercial production of glutathione using both yeast and bacteria. In this article we discuss the history of glutathione production in yeast. The current bottlenecks for increased glutathione production are presented based on our current understanding of the regulation of glutathione homeostasis, and possible strategies for overcoming these limitations for further enhancing and improving glutathione production are discussed

  17. Yeasts associated with the infrabuccal pocket and colonies of the carpenter ant Camponotus vicinus.

    PubMed

    Mankowski, M E; Morrell, J J

    2004-01-01

    After scanning electron microscopy indicated that the infrabuccal pockets of carpenter ants (Camponotus vicinus) contained numerous yeast-like cells, yeast associations were examined in six colonies of carpenter ants from two locations in Benton County in western Oregon. Samples from the infrabuccal-pocket contents and worker ant exoskeletons, interior galleries of each colony, and detritus and soil around the colonies were plated on yeast-extract/ malt-extract agar augmented with 1 M hydrochloric acid and incubated at 25 C. Yeasts were identified on the basis of morphological characteristics and physiological attributes with the BIOLOG(®) microbial identification system. Yeast populations from carpenter ant nest material and material surrounding the nest differed from those obtained from the infrabuccal pocket. Debaryomyces polymorphus was isolated more often from the infrabuccal pocket than from other material. This species has also been isolated from other ant species, but its role in colony nutrition is unknown.

  18. Yeasts associated with the infrabuccal pocket and colonies of the carpenter ant Camponotus vicinus.

    PubMed

    Mankowski, M E; Morrell, J J

    2004-01-01

    After scanning electron microscopy indicated that the infrabuccal pockets of carpenter ants (Camponotus vicinus) contained numerous yeast-like cells, yeast associations were examined in six colonies of carpenter ants from two locations in Benton County in western Oregon. Samples from the infrabuccal-pocket contents and worker ant exoskeletons, interior galleries of each colony, and detritus and soil around the colonies were plated on yeast-extract/ malt-extract agar augmented with 1 M hydrochloric acid and incubated at 25 C. Yeasts were identified on the basis of morphological characteristics and physiological attributes with the BIOLOG(®) microbial identification system. Yeast populations from carpenter ant nest material and material surrounding the nest differed from those obtained from the infrabuccal pocket. Debaryomyces polymorphus was isolated more often from the infrabuccal pocket than from other material. This species has also been isolated from other ant species, but its role in colony nutrition is unknown. PMID:21148849

  19. Production of alcohol from Jerusalem artichokes by yeasts

    SciTech Connect

    Duvnjak, Z.; Kosaric, N.; Kliza, S.; Hayes, D.

    1982-11-01

    Various yeasts such as several strains of Saccharomyces diastaticus, S. cerevisiae, and Kluyveromyces fragilis were investigated for their ability to ferment the carbohydrates from Jerusalem artichokes to alcohol. Juice extracted from the artichokes was used as the fermentation substrate with and without prior hydrolysis of the carbohydrates. Fermentation was also carried out with raw artichokes without prior juice extraction. Results indicate that this raw material has good potential for fuel alcohol production by fermentation. (Refs. 15).

  20. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    PubMed

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. PMID:21640583

  1. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system.

    PubMed

    Kim, Sung Bong; Kim, Dong Sup; Yang, Ji Hyun; Lee, Junyoung; Kim, Seung Wook

    2016-04-01

    The waste hydrolysate after dilute acid pretreatment (DAP) of lignocellulosic biomass was utilized to generate electricity using an enzymatic fuel cell (EFC) system. During DAP, the components of biomass containing hemicellulose and other compounds are hydrolyzed, and glucose is solubilized into the dilute acid solution, called as the hydrolysate liquid. Glucose oxidase (GOD) and laccase (Lac) were assembled on the electrode of the anode and cathode, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured, and the maximum power density was found to be 1.254×10(3) μW/cm(2). The results indicate that the hydrolysate from DAP is a reliable electrolyte containing the fuel of EFC. Moreover, the impurities in the hydrolysate such as phenols and furans slightly affected the charge transfer on the surface of the electrode, but did not affect the power generation of the EFC system in principal. PMID:26920478

  2. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  3. Process development of fuel ethanol production from lignocellulosic sugars using gentically engineered yeasts

    SciTech Connect

    Krishnan, M.S.; Xia, Y.; Ho, N.W.Y.

    1996-10-01

    Lignocellulosic biomass is an ideal feedstock for the large scale manufacture of fuel ethanol. Glucose and xylose represent the two major fermentable sugars in lignocellulosic hydrolysates and efficient fermentation of both these sugars is essential for the economical production of fuel ethanol. In our laboratory, a genetically engineered yeast 1400 (pLNH33) has been developed which can ferment glucose and xylose simultaneously to ethanol. This recombinant yeast has a very high ethanol tolerance (13.6% w/v) which allows high ethanol concentrations to accumulate in the fermentation medium, thus reducing downstream processing mu significantly. For large scale application of this genetically engineered cell culture, the fermentation kinetics have been investigated. We have studied the effects of substrate and product inhibition for both the host post 1400 and the engineered yeast 1400 (pLNH33) during fermentation of glucose, xylose and mixtures of glucose and xylose. Plasmid instability is an important factor influencing cell culture scale up. This aspect w investigated in selective, non-selective and partially selective fermentation media and the results will be reported in this paper. Based on these kinetic studies, a model has been developed which can simulate the fermentation of glucose and xylose to ethanol using the genetically engineered yeast 1400 (pLNH33), in both batch and continuous cultures.

  4. Oleaginous yeasts from Ethiopia.

    PubMed

    Jiru, Tamene Milkessa; Abate, Dawit; Kiggundu, Nicholas; Pohl, Carolina; Groenewald, Marizeth

    2016-12-01

    Oleaginous microorganisms can produce high amounts of oil (>20 % of their biomass) under suitable cultivation conditions. In this research work 200 samples were collected from soil, plant surfaces (leaves, flowers and fruits), waste oils from traditional oil milling houses and dairy products (cheese, milk and yoghurt) in Ethiopia. Three hundred and forty yeast colonies were isolated from these samples. By applying Sudan III staining tests, 18 strains were selected as possible oleaginous yeasts. The 18 strains were identified and characterized for their lipid production as a feedstock for biodiesel production in the future. They were identified using morphological and physiological methods as well as sequencing the 3'end of the small-subunit rRNA gene, the internal transcribed spacer regions (ITS; ITS 1, ITS 2 and the intervening 5.8S rRNA gene), and the D1/D2 domain of the 26S rRNA gene. The 18 yeasts were identified as Cutaneotrichosporon curvatus (syn, Cryptococcus curvatus) (PY39), Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) (SY89), Rhodotorula dairenensis (SY94) and Rhodotourula mucilaginosa (SY09, SY18, SY20, PY21, PY23, PY25, SY30, PY32, SY43, PY44, SY52, PY55, PY61, SY75 and PY86). Under nitrogen-limited cultivation conditions, R. mucilaginosa PY44 produced the highest biomass (15.10 ± 0.54 g/L), while R. mucilaginosa PY32 produced the lowest biomass (10.32 ± 0.18 g/L). The highest lipid yield of 6.87 ± 0.62 g/L and lipid content of 46.51 ± 0.70 % were attained by C. curvatus (syn, C. curvatus) PY39. On the other hand, R. mucilaginosa PY61 gave the lowest lipid yield (2.06 ± 0.52 g/L) and R. mucilaginosa SY52 gave the lowest lipid content of 16.99 ± 0.85 %. The results in this research work suggest that much more oleaginous yeasts can be isolated from Ethiopian environment. On the basis of their substantial lipid production abilities, the three oleaginous yeast strains PY39, SY89 and SY18 were selected and

  5. Oleaginous yeasts from Ethiopia.

    PubMed

    Jiru, Tamene Milkessa; Abate, Dawit; Kiggundu, Nicholas; Pohl, Carolina; Groenewald, Marizeth

    2016-12-01

    Oleaginous microorganisms can produce high amounts of oil (>20 % of their biomass) under suitable cultivation conditions. In this research work 200 samples were collected from soil, plant surfaces (leaves, flowers and fruits), waste oils from traditional oil milling houses and dairy products (cheese, milk and yoghurt) in Ethiopia. Three hundred and forty yeast colonies were isolated from these samples. By applying Sudan III staining tests, 18 strains were selected as possible oleaginous yeasts. The 18 strains were identified and characterized for their lipid production as a feedstock for biodiesel production in the future. They were identified using morphological and physiological methods as well as sequencing the 3'end of the small-subunit rRNA gene, the internal transcribed spacer regions (ITS; ITS 1, ITS 2 and the intervening 5.8S rRNA gene), and the D1/D2 domain of the 26S rRNA gene. The 18 yeasts were identified as Cutaneotrichosporon curvatus (syn, Cryptococcus curvatus) (PY39), Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) (SY89), Rhodotorula dairenensis (SY94) and Rhodotourula mucilaginosa (SY09, SY18, SY20, PY21, PY23, PY25, SY30, PY32, SY43, PY44, SY52, PY55, PY61, SY75 and PY86). Under nitrogen-limited cultivation conditions, R. mucilaginosa PY44 produced the highest biomass (15.10 ± 0.54 g/L), while R. mucilaginosa PY32 produced the lowest biomass (10.32 ± 0.18 g/L). The highest lipid yield of 6.87 ± 0.62 g/L and lipid content of 46.51 ± 0.70 % were attained by C. curvatus (syn, C. curvatus) PY39. On the other hand, R. mucilaginosa PY61 gave the lowest lipid yield (2.06 ± 0.52 g/L) and R. mucilaginosa SY52 gave the lowest lipid content of 16.99 ± 0.85 %. The results in this research work suggest that much more oleaginous yeasts can be isolated from Ethiopian environment. On the basis of their substantial lipid production abilities, the three oleaginous yeast strains PY39, SY89 and SY18 were selected and

  6. Wine yeasts for the future.

    PubMed

    Fleet, Graham H

    2008-11-01

    International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.

  7. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    PubMed

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only.

  8. Wood impregnation of yeast lees for winemaking.

    PubMed

    Palomero, Felipe; Bertani, Paolo; Fernández de Simón, Brígida; Cadahía, Estrella; Benito, Santiago; Morata, Antonio; Suárez-Lepe, José A

    2015-03-15

    This study develops a new method to produce more complex wines by means of an indirect diffusion of wood aromas from yeast cell-walls. An exogenous lyophilized biomass was macerated with an ethanol wood extract solution and subsequently dried. Different times were used for the adsorption of polyphenols and volatile compounds to the yeast cell-walls. The analysis of polyphenols and volatile compounds (by HPLC/DAD and GC-MS, respectively) demonstrate that the adsorption/diffusion of these compounds from the wood to the yeast takes place. Red wines were also aged with Saccharomyces cerevisiae lees that had been impregnated with wood aromas and subsequently dried. Four different types of wood were used: chestnut, cherry, acacia and oak. Large differences were observed between the woods studied with regards to their volatile and polyphenolic profiles. Sensory evaluations confirmed large differences even with short-term contact between the wines and the lees, showing that the method could be of interest for red wine making. In addition, the results demonstrate the potential of using woods other than oak in cooperage.

  9. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    PubMed

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  10. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    PubMed Central

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  11. Detoxification of corncob acid hydrolysate with SAA pretreatment and xylitol production by immobilized Candida tropicalis.

    PubMed

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification.

  12. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  13. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts.

    PubMed

    Wiriyaphan, Chompoonuch; Chitsomboon, Benjamart; Yongsawadigul, Jirawat

    2012-05-01

    Antioxidant activities of protein hydrolysates from threadfin bream surimi wastes, including frame, bone and skin (FBS) and refiner discharge (RD), were investigated. FBS and RD were rich in Lys, Glu, Gly, Pro, Asp, Leu, His, Tyr and Phe. FBS was hydrolysed to a greater extent than RD regardless of proteinases tested (Virgibacillus sp. SK33 proteinase, Alcalase, pepsin and trypsin). Pepsin-hydrolysed FBS, at a 5% degree of hydrolysis (DH), showed the highest antioxidant activity based on 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) radical (0.455±0.054mg Trolox equivalents/mg leucine equivalents), ferric reducing antioxidant power (FRAP) (0.221±0.005mM Trolox equivalents) and inhibition of β-carotene bleaching assays. FBS hydrolysates showed higher antioxidant activity based on chemical assays than their RD counterparts. However, FBS and RD hydrolysates protected HepG2 cells against tert-butyl hydroperoxide-induced oxidative damage to a similar extent. Therefore, FBS and RD hydrolysates have a potential as antioxidative neutraceutical ingredients. PMID:26434269

  14. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.

    PubMed

    Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai

    2014-01-01

    Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum. PMID:24078255

  15. Diversity and Physiological Characterization of D-Xylose-Fermenting Yeasts Isolated from the Brazilian Amazonian Forest

    PubMed Central

    Cadete, Raquel M.; Melo, Monaliza A.; Dussán, Kelly J.; Rodrigues, Rita C. L. B.; Silva, Silvio S.; Zilli, Jerri E.; Vital, Marcos J. S.; Gomes, Fátima C. O.; Lachance, Marc-André; Rosa, Carlos A.

    2012-01-01

    Background This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. Methodology/Principal Findings A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L·h to 0.75 g/L·h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L·h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. Conclusions/Significance This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates. PMID:22912807

  16. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.

    PubMed

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam

    2016-05-01

    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste. PMID:26354791

  17. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram per gram of yeast (approximately 0.008 milligram of pteroyglutamic acid per gram of yeast)....

  18. Genomics and the making of yeast biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  19. A new naphthaquinone antibiotic from a new species of yeast.

    PubMed

    Flegel, T W; Meevootisom, V; Thebtaranonth, Y; Qi-Tai, Z; Clardy, J

    1984-04-01

    A fusiform yeast producing limited pseudomycelium and limited true mycelium on malt extract agar has been isolated. This non-fermentative yeast has hyaline cell walls but produces a thick, black oily exudate which is water insoluble and gives the colony a smooth black lacquered appearance. On the basis of morphology and physiology, this organism is distinctive enough to warrant the designation of a new genus. During stationary phase of cultures on chemically defined medium, a deep red substance is produced which has strong antibiotic activity against Staphylococcus aureus in vitro. The substance has been identified as a new natural naphthaquinone of the empirical formula C16H16O7 . PMID:6725143

  20. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry.

    PubMed

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  1. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry.

    PubMed

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

  2. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    PubMed Central

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  3. New and emerging yeast pathogens.

    PubMed Central

    Hazen, K C

    1995-01-01

    The most common yeast species that act as agents of human disease are Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans. The incidence of infections by other yeasts has increased during the past decade. The most evident emerging pathogens are Malassezia furfur, Trichosporon beigelii, Rhodotorula species, Hansenula anomala, Candida lusitaniae, and Candida krusei. Organisms once considered environmental contaminants or only industrially important, such as Candida utilis and Candida lipolytica, have now been implicated as agents of fungemia, onychomycosis, and systemic disease. The unusual yeasts primarily infect immunocompromised patients, newborns, and the elderly. The role of central venous catheter removal and antifungal therapy in patient management is controversial. The antibiograms of the unusual yeasts range from resistant to the most recent azoles and amphotericin B to highly susceptible to all antifungal agents. Current routine methods for yeast identification may be insufficient to identify the unusual yeasts within 2 days after isolation. The recognition of unusual yeasts as agents of sometimes life-threatening infection and their unpredictable antifungal susceptibilities increase the burden on the clinical mycology laboratory to pursue complete species identification and MIC determinations. Given the current and evolving medical practices for management of seriously ill patients, further evaluations of the clinically important data about these yeasts are needed. PMID:8665465

  4. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process.

    PubMed

    Luo, Ying; Pierce, Karisa M

    2012-07-01

    Plant-derived hydrolysates are widely used in mammalian cell culture media to increase yields of recombinant proteins and monoclonal antibodies (mAbs). However, these chemically varied and undefined raw materials can have negative impact on yield and/or product quality in large-scale cell culture processes. Traditional methods that rely on fractionation of hydrolysates yielded little success in improving hydrolysate quality. We took a holistic approach to develop an efficient and reliable method to screen intact soy hydrolysate lots for commercial recombinant mAb manufacturing. Combined high-resolution (1) H nuclear magnetic resonance (NMR) spectroscopy and partial least squares (PLS) analysis led to a prediction model between product titer and NMR fingerprinting of soy hydrolysate with cross-validated correlation coefficient R(2) of 0.87 and root-mean-squared-error of cross-validation RMSECV% of 11.2%. This approach screens for high performance hydrolysate lots, therefore ensuring process consistency and product quality in the mAb manufacturing process. Furthermore, PLS analysis was successful in discerning multiple markers (DL-lactate, soy saccharides, citrate and succinate) among hydrolysate components that positively and negatively correlate with titer. Interestingly, these markers correlate to the metabolic characteristics of some strains of taxonomically diverse lactic acid bacteria (LAB). Thus our findings indicate that LAB strains may exist during hydrolysate manufacturing steps and their biochemical activities may attribute to the titer enhancement effect of soy hydrolysates. PMID:22641483

  5. Phage and Yeast Display.

    PubMed

    Sheehan, Jared; Marasco, Wayne A

    2015-02-01

    Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases. PMID:26104550

  6. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment.

    PubMed

    Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E

    2015-12-01

    Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P<0.05) improved (>40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (P<0.05) improved (25%, 20%, and 40%, respectively) by HP pretreatment of IPP. Protein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (P<0.05) improved (80%) ferric reducing antioxidant power. The protein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP.

  7. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro.

    PubMed

    Williams, Allan G; Withers, Susan; Sutherland, Alastair D

    2013-01-01

    The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed-eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown-seaweed polysaccharides. Only nine isolates out of 65 utilized >90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production. PMID:23170956

  8. Red yeast rice for dysipidemia.

    PubMed

    Shamim, Shariq; Al Badarin, Firas J; DiNicolantonio, James J; Lavie, Carl J; O'Keefe, James H

    2013-01-01

    Red yeast rice is an ancient Chinese food product that contains monacolins, chemical substances that are similar to statins in their mechanisms of action and lipid lowering properties. Several studies have found red yeast rice to be moderately effective at improving the lipid profile, particularly for lowering the low-density lipoprotein cholesterol levels. One large randomized controlled study from China found that red yeast rice significantly improved risk of major adverse cardiovascular events and overall survival in patients following myocardial infarction. Thus, red yeast rice is a potentially useful over-the-counter cholesterol-lowering agent. However, many red yeast rice formulations are non-standardized and unregulated food supplements, and there is a need for further research and regulation of production.

  9. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes.

  10. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes. PMID:27072563

  11. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis.

    PubMed

    Colla, Giuseppe; Rouphael, Youssef; Canaguier, Renaud; Svecova, Eva; Cardarelli, Mariateresa

    2014-01-01

    The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances. PMID:25250039

  12. [Preparation and nutritional characteristics of a hydrolysate from pepitona (Arca zebra)].

    PubMed

    Arbej, J; Luna, G

    1985-12-01

    Two soluble products resulting from the hydrolysis of pepitona (Arca zebra) were prepared as flour. Papain at its optimum hydrolysis conditions, previously established, was the enzyme used (40 degrees C for two hours at a pH of 7 in the proportion of 0.3% weight/enzyme/100 g meat). The hydrolysate obtained was then subjected to two different dehydration techniques: drum drying at 121 degrees C and 18 seconds retention, and spray drying at 101 degrees C and 40 psi pressure. The products were then stored for a five-month period at a temperature of 25 degrees C +/- 2 degrees C, time during which chemical determinations were performed in both hydrolysates. Findings showed that the time of storage does exert a significant effect of deterioration on the products. The greater and more significant quality losses occur during the first two months. The dehydration techniques used also affect significantly the soluble nitrogen content, and non-protein nitrogen and soluble solids content, as well as color of pepitona hydrolysates. Spray-drying dehydration technique does not have a significant deteriorating effect. Biological studies undertaken demonstrated that the quality of both hydrolysates is satisfactory from the nutritional and amino acid composition points of view. A protein efficiency ratio (PER) of 2.27 and 2.29 was determined for the hydrolysate dehydrated by drum drier and for the dehydrated by spray drier, respectively. With regard to amino acid composition, both had satisfactory levels of essential amino acids, with a lysine content of 6.9 g/100 g protein for the hydrolysate dehydrated by drum drying, and 8.6 g/100 g protein for the other hydrolysate dehydrated by spray drying. PMID:3842922

  13. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

    PubMed Central

    Colla, Giuseppe; Rouphael, Youssef; Canaguier, Renaud; Svecova, Eva; Cardarelli, Mariateresa

    2014-01-01

    The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances. PMID:25250039

  14. Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain

    PubMed Central

    Ha, Go Eun; Chang, Oun Ki; Han, Gi Sung; Ham, Jun Sang; Park, Beom-Young; Jeong, Seok-Geun

    2015-01-01

    Milk proteins have many potential sequences within their primary structure, each with a specific biological activity. In this study, we compared and investigated the bioactivities of hydrolysates of the domestic (A, B) and imported (C, D) skim milk powders generated using papain digestion. MALDI-TOF analysis revealed that all milk powder proteins were intact, indicating no autolysis. Electrophoretic analysis of hydrolysates showed papain treatment caused degradation of milk proteins into peptides of various size. The antioxidant activity of the hydrolysates, determined using 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and total phenolic contents (TPC) assays, increased with incubation times. In all skim milk powders, the antioxidant activities of hydrolysates were highest following 24 h papain treatment (TPC: A, 196.48 μM GE/L; B, 194.52 μM GE/L; C, 194.76 μM GE/L; D, 163.75 μM GE/L; ABTS: A, 75%; B, 72%; C, 72%; D, 57%). The number of peptide derived from skim milk powders, as determined by LC-MS/MS, was 308 for A, 283 for B, 208 for C, and 135 for D. Hydrolysate A had the highest antioxidant activity and the most potential antioxidant peptides amongst the four skim milk powder hydrolysates. A total of 4 β-lactoglobulin, 4 αs1-casein, and 56 β-casein peptide fragments were identified as potential antioxidant peptides in hydrolysate A by LC-MS/MS. These results suggest that domestic skim milk could have applications in various industries, i.e., in the development of functional foods. PMID:26761850

  15. Interaction of Ddc1 and RPA with single-stranded/double-stranded DNA junctions in yeast whole cell extracts: Proteolytic degradation of the large subunit of replication protein A in ddc1Δ strains.

    PubMed

    Sukhanova, Maria V; D'Herin, Claudine; Boiteux, Serge; Lavrik, Olga I

    2014-10-01

    To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome.

  16. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus.

    PubMed

    Oliva, Jose Miguel; Sáez, Felicia; Ballesteros, Ignacio; González, Alberto; Negro, Maria José; Manzanares, Paloma; Ballesteros, Mercedes

    2003-01-01

    The filtrate from steam-pretreated poplar was analyzed to identify degradation compounds. The effect of selected compounds on growth and ethanolic fermentation of the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875 was tested. Several fermentations on glucose medium, containing individual inhibitory compounds found in the hydrolysate, were carried out. The degree of inhibition on yeast strain growth and ethanolic fermentation was determined. At concentrations found in the prehy-drolysate, none of the individual compounds significantly affected the fermentation. For all tested compounds, growth was inhibited to a lesser extent than ethanol production. Lower concentrations of catechol (0.96 g/L) and 4-hydroxybenzaldehyde (1.02 g/L) were required to produce the 50% reduction in cell mass in comparison to other tested compounds.

  17. Isolation and Identification of Yeasts from Wild Flowers Collected around Jangseong Lake in Jeollanam-do, Republic of Korea, and Characterization of the Unrecorded Yeast Bullera coprosmaensis.

    PubMed

    Han, Sang-Min; Hyun, Se-Hee; Lee, Hyang Burm; Lee, Hye Won; Kim, Ha-Kun; Lee, Jong-Soo

    2015-09-01

    Several types of yeasts were isolated from wild flowers around Jangseong Lake in Jeollanam-do, Republic of Korea and identified by comparing the nucleotide sequences of the PCR amplicons for the D1/D2 variable domain of the 26S ribosomal DNA using Basic Local Alignment Search Tool (BLAST) analysis. In total, 60 strains from 18 species were isolated, and Pseudozyma spp. (27 strains), which included Pseudozyma rugulosa (7 strains) and Pseudozyma aphidis (6 strains), was dominant species. Among the 60 strains, Bullera coprosmaensis JS00600 represented a newly recorded yeast strain in Korea, and its microbiological characteristics were investigated. The yeast cell has an oval-shaped morphology measuring 1.4 × 1.7 µm in size. Bullera coprosmaensis JS00600 is an asporous yeast that exhibits no pseudomycelium formation. It grew well in vitamin-free medium as well as in yeast extract-malt extract broth and yeast extract-peptone-dextrose (YPD) broth, and it is halotolerant growing in 10% NaCl-containing YPD broth.

  18. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate.

    PubMed

    Yokoigawa, Kumio; Sato, Machiko; Soda, Kenji

    2006-09-01

    We examined the effect of poly-gamma-glutamate (PGA) on the freeze-tolerance of four types of commercial bakers' yeast (freeze-tolerant, osmotic-tolerant, low-temperature-sensitive, and ordinary bakers' yeasts). The survival ratio of ordinary bakers' yeast cells frozen at -30 degrees C for 3 d in a medium (0.5% yeast extract, 0.5% peptone, and 2% glucose: YPD medium) was improved by adding more than 1% PGA to the medium; the survival ratio increased from about 10% to more than 70%. All PGA preparations, which differed in average molecular mass (50, 2,000, 4,000, 6,000, 8,000, and 10,000 kDa), showed a similar cryoprotecive effect on the cells. Similar results were also obtained with other types of bakers' yeast, sake yeast and beer yeast. When the four types of bakers' yeast cell were frozen at -30 degrees C for 3 d in dough supplemented with more than 1% PGA, the cells (after freezing and thawing) showed higher leavening ability than those frozen in dough without PGA, irrespective of the molecular mass of PGA. Thus, PGA appears to protect bakers' yeast from lethal freeze injury, leading to a high leavening ability after freezing and thawing. PGA did not decrease the original leavening ability of the bakers' yeast, and was not decomposed by the yeast cells. PGA suppressed the decrease in leavening ability during a prolonged fermentation time, probably because PGA adsorbed inhibitory metabolites accumulated in the dough. PGA could prove useful for improving the freeze-tolerance of bakers' yeast by its addition to dough.

  19. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate.

    PubMed

    Yokoigawa, Kumio; Sato, Machiko; Soda, Kenji

    2006-09-01

    We examined the effect of poly-gamma-glutamate (PGA) on the freeze-tolerance of four types of commercial bakers' yeast (freeze-tolerant, osmotic-tolerant, low-temperature-sensitive, and ordinary bakers' yeasts). The survival ratio of ordinary bakers' yeast cells frozen at -30 degrees C for 3 d in a medium (0.5% yeast extract, 0.5% peptone, and 2% glucose: YPD medium) was improved by adding more than 1% PGA to the medium; the survival ratio increased from about 10% to more than 70%. All PGA preparations, which differed in average molecular mass (50, 2,000, 4,000, 6,000, 8,000, and 10,000 kDa), showed a similar cryoprotecive effect on the cells. Similar results were also obtained with other types of bakers' yeast, sake yeast and beer yeast. When the four types of bakers' yeast cell were frozen at -30 degrees C for 3 d in dough supplemented with more than 1% PGA, the cells (after freezing and thawing) showed higher leavening ability than those frozen in dough without PGA, irrespective of the molecular mass of PGA. Thus, PGA appears to protect bakers' yeast from lethal freeze injury, leading to a high leavening ability after freezing and thawing. PGA did not decrease the original leavening ability of the bakers' yeast, and was not decomposed by the yeast cells. PGA suppressed the decrease in leavening ability during a prolonged fermentation time, probably because PGA adsorbed inhibitory metabolites accumulated in the dough. PGA could prove useful for improving the freeze-tolerance of bakers' yeast by its addition to dough. PMID:17046536

  20. Assessment of Taste Attributes of Peanut Meal Enzymatic-Hydrolysis Hydrolysates Using an Electronic Tongue

    PubMed Central

    Wang, Li; Niu, Qunfeng; Hui, Yanbo; Jin, Huali; Chen, Shengsheng

    2015-01-01

    Peanut meal is the byproduct of high-temperature peanut oil extraction; it is mainly composed of proteins, which have complex tastes after enzymatic hydrolysis to free amino acids and small peptides. The enzymatic hydrolysis method was adopted by using two compound proteases of trypsin and flavorzyme to hydrolyze peanut meal aiming to provide a flavor base. Hence, it is necessary to assess the taste attributes and assign definite taste scores of peanut meal double enzymatic hydrolysis hydrolysates (DEH). Conventionally, sensory analysis is used to assess taste intensity in DEH. However, it has disadvantages because it is expensive and laborious. Hence, in this study, both taste attributes and taste scores of peanut meal DEH were evaluated using an electronic tongue. In this regard, the response characteristics of the electronic tongue to the DEH samples and standard five taste samples were researched to qualitatively assess the taste attributes using PCA and DFA. PLS and RBF neural network (RBFNN) quantitative prediction models were employed to compare predictive abilities and to correlate results obtained from the electronic tongue and sensory analysis, respectively. The results showed that all prediction models had good correlations between the predicted scores from electronic tongue and those obtained from sensory analysis. The PLS and RBFNN prediction models constructed using the voltage response values from the sensors exhibited higher correlation and prediction ability than that of principal components. As compared with the taste performance by PLS model, that of RBFNN models was better. This study exhibits potential advantages and a concise objective taste assessment tool using the electronic tongue in the assessment of DEH taste attributes in the food industry. PMID:25985162