Sample records for yeast genetically modified

  1. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  2. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  3. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  4. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  5. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  6. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  7. A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.

    PubMed

    Nishida, Nao; Noguchi, Misa; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2014-01-01

    We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.

  8. Solving ethanol production problems with genetically modified yeast strains

    PubMed Central

    Abreu-Cavalheiro, A.; Monteiro, G.

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432

  9. Solving ethanol production problems with genetically modified yeast strains.

    PubMed

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  10. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  11. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    PubMed

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  12. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry.

    PubMed

    Schuller, Dorit; Casal, Margarida

    2005-08-01

    In recent decades, science and food technology have contributed at an accelerated rate to the introduction of new products to satisfy nutritional, socio-economic and quality requirements. With the emergence of modern molecular genetics, the industrial importance of Saccharomyces cerevisiae, is continuously extended. The demand for suitable genetically modified (GM) S. cerevisiae strains for the biofuel, bakery and beverage industries or for the production of biotechnological products (e.g. enzymes, pharmaceutical products) will continuously grow in the future. Numerous specialised S. cerevisiae wine strains were obtained in recent years, possessing a wide range of optimised or novel oenological properties, capable of satisfying the demanding nature of modern winemaking practise. The unlocking of transcriptome, proteome and metabolome complexities will contribute decisively to the knowledge about the genetic make-up of commercial yeast strains and will influence wine strain improvement via genetic engineering. The most relevant advances regarding the importance and implications of the use of GM yeast strains in the wine industry are discussed in this mini-review. In this work, various aspects are considered including the strategies used for the construction of strains with respect to current legislation requirements, the environmental risk evaluations concerning the deliberate release of genetically modified yeast strains, the methods for detection of recombinant DNA and protein that are currently under evaluation, and the reasons behind the critical public perception towards the application of such strains.

  13. The potential of genetic engineering for improving brewing, wine-making and baking yeasts.

    PubMed

    Dequin, S

    2001-09-01

    The end of the twentieth century was marked by major advances in life technology, particularly in areas related to genetics and more recently genomics. Considerable progress was made in the development of genetically improved yeast strains for the wine, brewing and baking industries. In the last decade, recombinant DNA technology widened the possibilities for introducing new properties. The most remarkable advances, which are discussed in this Mini-Review, are improved process performance, off-flavor elimination, increased formation of by-products, improved hygienic properties or extension of substrate utilization. Although the introduction of this technology into traditional industries is currently limited by public perception, the number of potential applications of genetically modified industrial yeast is likely to increase in the coming years, as our knowledge derived from genomic analyses increases.

  14. Effect of storage and processing on plasmid, yeast and plant genomic DNA stability in juice from genetically modified oranges.

    PubMed

    Weiss, Julia; Ros-Chumillas, Maria; Peña, Leandro; Egea-Cortines, Marcos

    2007-01-30

    Recombinant DNA technology is an important tool in the development of plant varieties with new favourable features. There is strong opposition towards this technology due to the potential risk of horizontal gene transfer between genetically modified plant material and food-associated bacteria, especially if genes for antibiotic resistance are involved. Since horizontal transfer efficiency depends on size and length of homologous sequences, we investigated the effect of conditions required for orange juice processing on the stability of DNA from three different origins: plasmid DNA, yeast genomic DNA and endogenous genomic DNA from transgenic sweet orange (C. sinensis L. Osb.). Acidic orange juice matrix had a strong degrading effect on plasmid DNA which becomes apparent in a conformation change from supercoiled structure to nicked, linear structure within 5h of storage at 4 degrees C. Genomic yeast DNA was degraded during exposure to acidic orange juice matrix within 4 days, and also the genomic DNA of C. sinensis suffered degradation within 2 days of storage as indicated by amplification results from transgene markers. Standard pasteurization procedures affected DNA integrity depending on the method and time used. Our data show that the current standard industrial procedures to pasteurize orange juice as well as its acidic nature causes a strong degradation of both yeast and endogenous genomic DNA below sizes reported to be suitable for horizontal gene transfer.

  15. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  17. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  18. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection

    PubMed Central

    Guillamón, José M.; Barrio, Eladio

    2017-01-01

    The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties. PMID:28522998

  19. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  20. From drug to protein: using yeast genetics for high-throughput target discovery.

    PubMed

    Armour, Christopher D; Lum, Pek Yee

    2005-02-01

    The budding yeast Saccharomyces cerevisiae has long been an effective eukaryotic model system for understanding basic cellular processes. The genetic tractability and ease of manipulation in the laboratory make yeast well suited for large-scale chemical and genetic screens. Several recent studies describing the use of yeast genetics for high-throughput drug target identification are discussed in this review.

  1. Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?

    ERIC Educational Resources Information Center

    Brandner, Diana L.

    2002-01-01

    Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)

  2. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    PubMed

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.

  3. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges

    PubMed Central

    Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren

    2016-01-01

    Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines. PMID:26793188

  4. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges.

    PubMed

    Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren

    2015-01-01

    Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.

  5. A CTG Clade Candida Yeast Genetically Engineered for the Genotype-Phenotype Characterization of Azole Antifungal Resistance in Human-Pathogenic Yeasts.

    PubMed

    Accoceberry, Isabelle; Rougeron, Amandine; Biteau, Nicolas; Chevrel, Pauline; Fitton-Ouhabi, Valérie; Noël, Thierry

    2018-01-01

    A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae , allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianus Candida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus , plays a critical role in fluconazole resistance. Copyright © 2017 American Society for Microbiology.

  6. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  7. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  8. Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts

    PubMed Central

    Dujon, Bernard

    2012-01-01

    Summary: Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes. PMID:23204364

  9. Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment.

    PubMed

    Ando, Akira; Suzuki, Chise; Shima, Jun

    2005-11-01

    Although genetic engineering techniques for baker's yeast might improve the yeast's fermentation characteristics, the lack of scientific data on the survival of such strains in natural environments as well as the effects on human health prevent their commercial use. Disruption of acid trehalase gene (ATH1) improves freeze tolerance, which is a crucial characteristic in frozen-dough baking. In this study, ATH1 disruptants constructed by genetic modification (GM) and self-cloning (SC) techniques were used as models to study such effects because these strains have higher freeze tolerance and are expected to be used commercially. Behavior of the strains in simulated natural environments, namely, in soil and water, was studied by measuring the change in the number of viable cells and in the concentration of DNA that contains ATH1 loci. Measurements were made using a real-time PCR method during 40 days of cultivation. Results showed that the number of viable cells of GM and SC strains decreased in a time-dependent manner and that the decrease rate was nearly equal to or higher than that for wild-type (WT) yeast. For all three strains (SC, GM, and WT) in the two simulated natural environments (water and soil), the DNA remained longer than did viable cells but the decrease patterns of either the DNA or the viable cells of SC and GM strains had tendencies similar to those of the WT strain. In conclusion, disruption of ATH1 by genetic engineering apparently does not promote the survival of viable cells and DNA in natural environments.

  10. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii

    PubMed Central

    Douradinha, Bruno; Reis, Viviane CB; Rogers, Matthew B; Torres, Fernando AG; Evans, Jared D; Marques Jr, Ernesto TA

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (>96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest. PMID:24013355

  11. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.

    PubMed

    Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.

  12. Genetically modified foods and allergy.

    PubMed

    Lee, T H; Ho, H K; Leung, T F

    2017-06-01

    2015 marked the 25th anniversary of the commercial use and availability of genetically modified crops. The area of planted biotech crops cultivated globally occupies a cumulative two billion hectares, equivalent to twice the land size of China or the United States. Foods derived from genetically modified plants are widely consumed in many countries and genetically modified soybean protein is extensively used in processed foods throughout the industrialised countries. Genetically modified food technology offers a possible solution to meet current and future challenges in food and medicine. Yet there is a strong undercurrent of anxiety that genetically modified foods are unsafe for human consumption, sometimes fuelled by criticisms based on little or no firm evidence. This has resulted in some countries turning away food destined for famine relief because of the perceived health risks of genetically modified foods. The major concerns include their possible allergenicity and toxicity despite the vigorous testing of genetically modified foods prior to marketing approval. It is imperative that scientists engage the public in a constructive evidence-based dialogue to address these concerns. At the same time, improved validated ways to test the safety of new foods should be developed. A post-launch strategy should be established routinely to allay concerns. Mandatory labelling of genetically modified ingredients should be adopted for the sake of transparency. Such ingredient listing and information facilitate tracing and recall if required.

  13. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    PubMed Central

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  14. Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of Tuberous Sclerosis

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast to Elucidate the Molecular Pathology of...DATES COVERED 1 July 2014 - 30 June 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using Genetic Buffering Relationships Identified in Fission Yeast ...SUPPLEMENTARY NOTES 14. ABSTRACT Using the genetically tractable fission yeast as a model, we sought to exploit recent advances in gene interaction

  15. Genetic Modifiers and Oligogenic Inheritance

    PubMed Central

    Kousi, Maria; Katsanis, Nicholas

    2015-01-01

    Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets. PMID:26033081

  16. Genetic Analysis of Haploids from Industrial Strains of Baker's Yeast

    PubMed Central

    Oda, Yuji; Ouchi, Kozo

    1989-01-01

    Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATα MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains. PMID:16347967

  17. Genetic and phenotypic characteristics of baker's yeast: relevance to baking.

    PubMed

    Randez-Gil, Francisca; Córcoles-Sáez, Isaac; Prieto, José A

    2013-01-01

    Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.

  18. Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment

    PubMed Central

    Katz, Michael; Knecht, Wolfgang; Compagno, Concetta; Piškur, Jure

    2018-01-01

    There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits. PMID:29624585

  19. Cross-referencing yeast genetics and mammalian genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hieter, P.; Basset, D.; Boguski, M.

    1994-09-01

    We have initiated a project that will systematically transfer information about yeast genes onto the genetic maps of mice and human beings. Rapidly expanding human EST data will serve as a source of candidate human homologs that will be repeatedly searched using yeast protein sequence queries. Search results will be automatically reported to participating labs. Human cDNA sequences from which the ESTs are derived will be mapped at high resolution in the human and mouse genomes. The comparative mapping information cross-references the genomic position of novel human cDNAs with functional information known about the cognate yeast genes. This should facilitatemore » the initial identification of genes responsible for mammalian mutant phenotypes, including human disease. In addition, the identification of mammalian homologs of yeast genes provides reagents for determining evolutionary conservation and for performing direct experiments in multicellular eukaryotes to enhance study of the yeast protein`s function. For example, ESTs homologous to CDC27 and CDC16 were identified, and the corresponding cDNA clones were obtained from ATTC, completely sequenced, and mapped on human and mouse chromosomes. In addition, the CDC17hs cDNA has been used to raise antisera to the CDC27Hs protein and used in subcellular localization experiments and junctional studies in mammalian cells. We have received funding from the National Center for Human Genome Research to provide a community resource which will establish comprehensive cross-referencing among yeast, human, and mouse loci. The project is set up as a service and information on how to communicate with this effort will be provided.« less

  20. [Genetically modified food--unnecessary controversy?].

    PubMed

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  1. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  2. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Hu, X H; Wang, M H; Tan, T; Li, J R; Yang, H; Leach, L; Zhang, R M; Luo, Z W

    2007-03-01

    Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.

  3. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  4. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation

    PubMed Central

    Steenwyk, Jacob L.; Rokas, Antonis

    2018-01-01

    In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond. PMID:29520259

  5. Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA.

    PubMed

    Miklenić, Marina; Štafa, Anamarija; Bajić, Ana; Žunar, Bojan; Lisnić, Berislav; Svetec, Ivan-Krešimir

    2013-05-01

    Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/ PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/microg DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.

  6. Chemical-genetic profile analysis of five inhibitory compounds in yeast.

    PubMed

    Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan

    2010-08-06

    Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  7. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sangjo; Lee, Minho; Chang, Hyeshik

    Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defectmore » measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)« less

  8. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.

    PubMed

    Thein, Swee Lay

    2017-01-01

    β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α 2 γ 2 ).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.

  10. Edible safety requirements and assessment standards for agricultural genetically modified organisms.

    PubMed

    Deng, Pingjian; Zhou, Xiangyang; Zhou, Peng; Du, Zhong; Hou, Hongli; Yang, Dongyan; Tan, Jianjun; Wu, Xiaojin; Zhang, Jinzhou; Yang, Yongcun; Liu, Jin; Liu, Guihua; Li, Yonghong; Liu, Jianjun; Yu, Lei; Fang, Shisong; Yang, Xiaoke

    2008-05-01

    This paper describes the background, principles, concepts and methods of framing the technical regulation for edible safety requirement and assessment of agricultural genetically modified organisms (agri-GMOs) for Shenzhen Special Economic Zone in the People's Republic of China. It provides a set of systematic criteria for edible safety requirements and the assessment process for agri-GMOs. First, focusing on the degree of risk and impact of different agri-GMOs, we developed hazard grades for toxicity, allergenicity, anti-nutrition effects, and unintended effects and standards for the impact type of genetic manipulation. Second, for assessing edible safety, we developed indexes and standards for different hazard grades of recipient organisms, for the influence of types of genetic manipulation and hazard grades of agri-GMOs. To evaluate the applicability of these criteria and their congruency with other safety assessment systems for GMOs applied by related organizations all over the world, we selected some agri-GMOs (soybean, maize, potato, capsicum and yeast) as cases to put through our new assessment system, and compared our results with the previous assessments. It turned out that the result of each of the cases was congruent with the original assessment.

  11. CE separation of proteins and yeasts dynamically modified by PEG pyrenebutanoate with fluorescence detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2007-07-01

    The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.

  12. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  13. Genetics of Yeasts

    NASA Astrophysics Data System (ADS)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  14. Genetic variation in adaptability and pleiotropy in budding yeast

    PubMed Central

    Mitchell, James Kameron; Bloom, Joshua S; Kruglyak, Leonid

    2017-01-01

    Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation. PMID:28826486

  15. Genetic variation in adaptability and pleiotropy in budding yeast.

    PubMed

    Jerison, Elizabeth R; Kryazhimskiy, Sergey; Mitchell, James Kameron; Bloom, Joshua S; Kruglyak, Leonid; Desai, Michael M

    2017-08-17

    Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.

  16. Genetic relationship and biological status of the industrially important yeast Saccharomyces eubayanus Sampaio et al.

    PubMed

    Naumov, G I

    2017-03-01

    The genomes of the recently discovered yeast Saccharomyces eubayanus and traditional S. cerevisiae are known to be found in the yeast S. pastorianus (syn. S. carlsbergensis), which are essential for brewing. The cryotolerant yeast S. bayanus var. uvarum is of great importance for production of some wines. Based on ascospore viability and meiotic recombination of the control parental markers in hybrids, we have shown that there is no complete interspecies post-zygotic isolation between the yeasts S. eubayanus, S. bayanus var. bayanus and S. bayanus var. uvarum. The genetic data presented indicate that all of the three taxa belong to the same species.

  17. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  18. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Feng, Quanzhou; Weber, Scott A.; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production. PMID:29621349

  19. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.

    PubMed

    Feng, Quanzhou; Liu, Z Lewis; Weber, Scott A; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production.

  20. Genetically Modified Foods and Consumer Perspective.

    PubMed

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  1. Disease-modifying genetic factors in cystic fibrosis.

    PubMed

    Marson, Fernando A L

    2018-05-01

    To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.

  2. Genetic Modifiers of Duchenne and Facioscapulohumeral Muscular Dystrophies

    PubMed Central

    Hightower, Rylie M.; Alexander, Matthew S.

    2017-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost, have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. PMID:28877560

  3. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.

    PubMed

    Hightower, Rylie M; Alexander, Matthew S

    2018-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.

  4. Genetic Modifiers of Sickle Cell Disease

    PubMed Central

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  5. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    PubMed

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  6. Environmental and Genetic Determinants of Colony Morphology in Yeast

    PubMed Central

    Granek, Joshua A.; Magwene, Paul M.

    2010-01-01

    Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key environmental signals involved in its induction have heretofore remained poorly understood. By surveying multiple strain backgrounds and a large number of growth conditions, we show that limitation for fermentable carbon sources coupled with a rich nitrogen source is the primary trigger for the colony morphology response in budding yeast. Using knockout mutants and transposon-mediated mutagenesis, we demonstrate that two key signaling networks regulating this response are the filamentous growth MAP kinase cascade and the Ras-cAMP-PKA pathway. We further show synergistic epistasis between Rim15, a kinase involved in integration of nutrient signals, and other genes in these pathways. Ploidy, mating-type, and genotype-by-environment interactions also appear to play a role in the controlling colony morphology. Our study highlights the high degree of network reuse in this model eukaryote; yeast use the same core signaling pathways in multiple contexts to integrate information about environmental and physiological states and generate diverse developmental outputs. PMID:20107600

  7. Winemaking and Bioprocesses Strongly Shaped the Genetic Diversity of the Ubiquitous Yeast Torulaspora delbrueckii

    PubMed Central

    Comte, Guillaume; Panfili, Aurélie; Delcamp, Adline; Salin, Franck; Marullo, Philippe; Bely, Marina

    2014-01-01

    The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (∼1900 years ago), and to the Neolithic era for bioprocesses (∼4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses. PMID:24718638

  8. Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii.

    PubMed

    Albertin, Warren; Chasseriaud, Laura; Comte, Guillaume; Panfili, Aurélie; Delcamp, Adline; Salin, Franck; Marullo, Philippe; Bely, Marina

    2014-01-01

    The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (∼ 1900 years ago), and to the Neolithic era for bioprocesses (∼ 4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses.

  9. [Assessment of allergenicity of genetically modified food crops].

    PubMed

    Schauzu, M; Pöting, A; Rubin, D; Lampen, A

    2012-03-01

    The placing on the European Union's market of genetically modified crops requires authorization by the European Commission which is based on the proof that the derived foods are as safe as their conventional counterparts. The assessment of potential allergenicity is part of the necessary investigations recommended in the updated Guidance Document of the Scientific Panel on Genetically Modified Organisms (GMO) of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. All genetically modified crops which so far have been authorized in the European Union were evaluated by the EFSA GMO Panel which considered it unlikely that their overall allergenicity has been altered.

  10. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    PubMed

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    PubMed

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.

  12. The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments.

    PubMed

    Masneuf-Pomarede, Isabelle; Juquin, Elodie; Miot-Sertier, Cécile; Renault, Philippe; Laizet, Yec'han; Salin, Franck; Alexandre, Hervé; Capozzi, Vittorio; Cocolin, Luca; Colonna-Ceccaldi, Benoit; Englezos, Vasileios; Girard, Patrick; Gonzalez, Beatriz; Lucas, Patrick; Mas, Albert; Nisiotou, Aspasia; Sipiczki, Matthias; Spano, Giuseppe; Tassou, Chrysoula; Bely, Marina; Albertin, Warren

    2015-08-01

    The yeast Candida zemplinina (Starmerella bacillaris) is frequently isolated from grape and wine environments. Its enological use in mixed fermentation with Saccharomyces cerevisiae has been extensively investigated these last few years, and several interesting features including low ethanol production, fructophily, glycerol and other metabolites production, have been described. In addition, molecular tools allowing the characterization of yeast populations have been developed, both at the inter- and intraspecific levels. However, most of these fingerprinting methods are not compatible with population genetics or ecological studies. In this work, we developed 10 microsatellite markers for the C. zemplinina species that were used for the genotyping of 163 strains from nature or various enological regions (28 vineyards/wineries from seven countries). We show that the genetic diversity of C. zemplinina is shaped by geographical localization. Populations isolated from winemaking environments are quite diverse at the genetic level: neither clonal-like behaviour nor specific genetic signature were associated with the different vineyards/wineries. Altogether, these results suggest that C. zemplinina is not under selective pressure in winemaking environments. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Genetically Modified Plants: Public and Scientific Perceptions

    PubMed Central

    2013-01-01

    The potential of genetically modified plants to meet the requirements of growing population is not being recognized at present. This is a consequence of concerns raised by the public and the critics about their applications and release into the environment. These include effect on human health and environment, biosafety, world trade monopolies, trustworthiness of public institutions, integrity of regulatory agencies, loss of individual choice, and ethics as well as skepticism about the real potential of the genetically modified plants, and so on. Such concerns are enormous and prevalent even today. However, it should be acknowledged that most of them are not specific for genetically modified plants, and the public should not forget that the conventionally bred plants consumed by them are also associated with similar risks where no information about the gene(s) transfer is available. Moreover, most of the concerns are hypothetical and lack scientific background. Though a few concerns are still to be disproved, it is viewed that, with proper management, these genetically modified plants have immense potential for the betterment of mankind. In the present paper, an overview of the raised concerns and wherever possible reasons assigned to explain their intensity or unsuitability are reviewed. PMID:25937981

  14. A Modified MuDPIT Separation Identified 4,488 Proteins in a System Wide Analysis of Quiescence in Yeast

    PubMed Central

    Webb, Kristofor J.; Xu, Tao; Park, Sung Kyu; Yates, John R.

    2013-01-01

    A modified multidimensional protein identification technology (MudPIT) separation was coupled to an LTQ Orbitrap Velos mass spectrometer and used to rapidly identify the near complete yeast proteome from a whole cell tryptic digest. This modified on-line two dimensional liquid chromatography separation consists of 39 strong cation exchange steps followed by a short 18.5 min reversed-phase (RP) gradient. A total of 4,269 protein identifications were made from 4,189 distinguishable protein families from yeast during log phase growth. The “Micro” MudPIT separation performed as well as a standard MudPIT separation in 40% less gradient time. The majority of the yeast proteome can now be routinely covered in less than a days’ time with high reproducibility and sensitivity. The newly devised separation method was used to detect changes in protein expression during cellular quiescence in yeast. An enrichment in the GO annotations ‘oxidation reduction’, ‘catabolic processing’ and ‘cellular response to oxidative stress’ was seen in the quiescent cellular fraction, consistent with their long lived stress resistant phenotypes. Heterogeneity was observed in the stationary phase fraction with a less dense cell population showing reductions in KEGG pathway categories of ‘Ribosome’ and ‘Proteasome’, further defining the complex nature of yeast populations present during stationary phase growth. In total 4,488 distinguishable protein families were identified in all cellular conditions tested. PMID:23540446

  15. [Consumer reaction to information on the labels of genetically modified food].

    PubMed

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-02-01

    To analyze consumer opinion on genetically modified foods and the information included on the label. A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline - via PubMed -, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors "organisms, genetically modified" and "food labeling". The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modified products and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies.

  16. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.

    PubMed

    García-Ríos, Estéfani; Morard, Miguel; Parts, Leopold; Liti, Gianni; Guillamón, José M

    2017-02-14

    Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci. In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions' adaptive nature. The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.

  17. The genetics of a putative social trait in natural populations of yeast

    PubMed Central

    Bozdag, G O; Greig, D

    2014-01-01

    The sharing of secreted invertase by yeast cells is a well-established laboratory model for cooperation, but the only evidence that such cooperation occurs in nature is that the SUC loci, which encode invertase, vary in number and functionality. Genotypes that do not produce invertase can act as ‘cheats’ in laboratory experiments, growing on the glucose that is released when invertase producers, or ‘cooperators’, digest sucrose. However, genetic variation for invertase production might instead be explained by adaptation of different populations to different local availabilities of sucrose, the substrate for invertase. Here we find that 110 wild yeast strains isolated from natural habitats, and all contained a single SUC locus and produced invertase; none were ‘cheats’. The only genetic variants we found were three strains isolated instead from sucrose-rich nectar, which produced higher levels of invertase from three additional SUC loci at their subtelomeres. We argue that the pattern of SUC gene variation is better explained by local adaptation than by social conflict. PMID:25169714

  18. Acceptance of genetically modified foods: the relation between technology and evaluation.

    PubMed

    Tenbült, Petra; De Vries, Nanne K; van Breukelen, Gerard; Dreezens, Ellen; Martijn, Carolien

    2008-07-01

    This study investigates why consumers accept different genetically modified food products to different extents. The study shows that whether food products are genetically modified or not and whether they are processed or not are the two important features that affect the acceptance of food products and their evaluation (in terms of perceived healthiness, naturalness, necessity and tastiness). The extent to which these evaluation attributes and acceptance of a product are affected by genetic modification or processing depends on whether the product is negatively affected by the other technology: Any technological change to a 'natural' product (when nonprocessed products are genetically modified or when non-genetically modified products are processed) affect evaluation and acceptance stronger than a change to an technologically adapted product (when processed products are also genetically modified or vice versa). Furthermore, evaluation attributes appear to mediate the effects of genetic modification and processing on acceptance.

  19. [Genetically modified food and allergies - an update].

    PubMed

    Niemann, Birgit; Pöting, Annette; Braeuning, Albert; Lampen, Alfonso

    2016-07-01

    Approval by the European Commission is mandatory for placing genetically modified plants as food or feed on the market in member states of the European Union (EU). The approval is preceded by a safety assessment based on the guidance of the European Food Safety Authority EFSA. The assessment of allergenicity of genetically modified plants and their newly expressed proteins is an integral part of this assessment process. Guidance documents for the assessment of allergenicity are currently under revision. For this purpose, an expert workshop was conducted in Brussels on June 17, 2015. There, methodological improvements for the assessment of coeliac disease-causing properties of proteins, as well as the use of complex models for in vitro digestion of proteins were discussed. Using such techniques a refinement of the current, proven system of allergenicity assessment of genetically modified plants can be achieved.

  20. Made for Each Other: Ascomycete Yeasts and Insects.

    PubMed

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  1. [Genetically modified food--great unknown].

    PubMed

    Cichosz, G; Wiackowski, S K

    2012-08-01

    Genetically modified food (GMF) creates evident threat to consumers' health. In spite of assurances of biotechnologists, DNA of transgenic plants is instable, so, synthesis of foreign, allergenic proteins is possible. Due to high trypsin inhibitor content the GMF is digested much more slowly what, alike Bt toxin presence, increases probability of alimentary canal diseases. Next threats are bound to the presence of fitoestrogens and residues of Roundup pesticide, that can diminish reproductiveness; and even lead to cancerogenic transformation through disturbance of human hormonal metabolism. In spite of food producers and distributors assurances that food made of GMF raw materials is marked, de facto consumers have no choice. Moreover, along the food law products containing less than 0.9% of GMF protein are not included into genetically modified food.

  2. The Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Schober, Heiko; Gasser, Susan M.

    2010-01-01

    The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704

  3. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    PubMed

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters.

  4. Mitochondrial genetics in Bakers' yeast: a molecular mechanism for recombinational polarity and suppressiveness.

    PubMed

    Perlman, P S; Birky, C W

    1974-11-01

    Recombinational polarity and suppressiveness are two well-known but puzzling cytoplasmic genetic phenomena in bakers' yeast, Saccharomyces cerevisiae. Little progress has been made in characterizing the underlying molecular mechanisms of these phenomena. In this paper we describe a molecular model for recombinational polarity that is compatible with the available genetic evidence. The model stresses the role of small deletions and excision/repair processes in otherwise canonical recombinational events. According to the model, both phenomena require recombination and may share mechanistic elements.

  5. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments.

    PubMed

    Lopandic, Ksenija

    2018-01-01

    The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. MATERNAL EFFECTS IN ADVANCED HYBRIDS OF GENETICALLY MODIFIED AND NON-GENETICALLY MODIFIED BRASSICA SPECIES

    EPA Science Inventory

    Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...

  7. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.

    PubMed

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; St Onge, Robert P

    2016-09-01

    The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here. © 2016 Cold Spring Harbor Laboratory Press.

  8. Genetic Evidence for a Silent SUC Gene in Yeast

    PubMed Central

    Carlson, Marian; Osmond, Barbara C.; Botstein, David

    1981-01-01

    The SUC genes (SUC1–SUC7) of Saccharomyces are a family of genes that are dispersed in the yeast genome. A SUC+ allele at any locus confers the ability to produce the enzyme invertase and, thus, to ferment sucrose. Most yeast strains do not carry SUC+ alleles at all possible SUC loci. We have investigated the naturally occurring negative (suc0) alleles present at SUC loci with the aim of distinguishing between two possible models for the structure of suc0 alleles: (1) suc0 alleles correspond to a simple absence of SUC genetic information; (2) suc0 alleles are "silent" SUC genes that either produce a defective product or are not expressed. To facilitate these studies, sucrose-nonfermenting strains were constructed that are congenic to S. cerevisiae strain S288C (SUC2+), but carry at the SUC2 locus the naturally occurring negative allele, suc20, of strain FL100 (Lacroute 1968). These strains were used to study the genetic properties of the suc20 allele of FL100 and the suc0 alleles (suc10, suc30, etc.) of S288C. The suc20 allele was shown to revert to an active Suc+ state and to provide functional information at three points in the SUC2 gene in recombination experiments; this suc20 gene thus appears to be a "silent" gene. Similar tests for silent SUC genes in S288C (corresponding to loci other than SUC2) failed to reveal any additional silent genes. PMID:7040164

  9. Consumer reaction to information on the labels of genetically modified food

    PubMed Central

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-01-01

    OBJECTIVE To analyze consumer opinion on genetically modified foods and the information included on the label. METHODS A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline – via PubMed –, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors “organisms, genetically modified” and “food labeling”. The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. RESULTS Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. CONCLUSIONS Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modifiedproducts and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes

  10. Genetically modified foods and social concerns.

    PubMed

    Maghari, Behrokh Mohajer; Ardekani, Ali M

    2011-07-01

    Biotechnology is providing us with a wide range of options for how we can use agricultural and commercial forestry lands. The cultivation of genetically modified (GM) crops on millions of hectares of lands and their injection into our food chain is a huge global genetic experiment involving all living beings. Considering the fast pace of new advances in production of genetically modified crops, consumers, farmers and policymakers worldwide are challenged to reach a consensus on a clear vision for the future of world food supply. The current food biotechnology debate illustrates the serious conflict between two groups: 1) Agri-biotech investors and their affiliated scientists who consider agricultural biotechnology as a solution to food shortage, the scarcity of environmental resources and weeds and pests infestations; and 2) independent scientists, environmentalists, farmers and consumers who warn that genetically modified food introduces new risks to food security, the environment and human health such as loss of biodiversity; the emergence of superweeds and superpests; the increase of antibiotic resistance, food allergies and other unintended effects. This article reviews major viewpoints which are currently debated in the food biotechnology sector in the world. It also lays the ground-work for deep debate on benefits and risks of Biotech-crops for human health, ecosystems and biodiversity. In this context, although some regulations exist, there is a need for continuous vigilance for all countries involved in producing genetically engineered food to follow the international scientific bio-safety testing guidelines containing reliable pre-release experiments and post-release track of transgenic plants to protect public health and avoid future environmental harm.

  11. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.

    2018-03-01

    A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

  12. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-03

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process.

    PubMed

    Paulino de Souza, Jonas; Dias do Prado, Cleiton; Eleutherio, Elis C A; Bonatto, Diego; Malavazi, Iran; Ferreira da Cunha, Anderson

    2018-06-01

    In Brazil, bioethanol is produced by sucrose fermentation from sugarcane by Saccharomyces cerevisiae in a fed-batch process that uses high density of yeast cells (15-25 % of wet weight/v) and high sugar concentration (18-22 % of total sugars). Several research efforts have been employed to improve the efficiency of this process through the isolation of yeasts better adapted to the Brazilian fermentation conditions. Two important wild strains named CAT-1 and PE-2 were isolated during the fermentation process and were responsible for almost 60 % of the total ethanol production in Brazil. However, in the last decade the fermentative substrate composition was much modified, since new sugar cane crops were developed, the use of molasses instead of sugar cane juice increase and with the prohibition of burning of sugarcane prior harvest. As consequence, these previously isolated strains are being replaced by new wild yeasts in most of ethanol plants. In this new scenario the isolation of novel better adapted yeasts with improved fermentative characteristics is still a big challenge. Here, we discuss the main aspects of Brazilian ethanol production and the efforts for the selection, characterization and genetic modifications of new strains with important phenotypic traits such as thermotolerance. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    PubMed Central

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  15. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.

    PubMed

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-07-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  17. [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food].

    PubMed

    Aris, A; Paris, K

    2010-12-01

    Endometriosis is an oestrogen-dependent inflammatory disease affecting 10 % of reproductive-aged women. Often accompanied by chronic pelvic pain and infertility, endometriosis rigorously interferes with women's quality of life. Although the pathophysiology of endometriosis remains unclear, a growing body of evidence points to the implication of environmental toxicants. Over the last decade, an increase in the incidence of endometriosis has been reported and coincides with the introduction of genetically modified foods in our diet. Even though assessments of genetically modified food risk have not indicated any hazard on human health, xenobiotics-associated genetically modified food, such as pesticides residues and xenoproteins, could be harmful in the long-term. The "low-dose hypothesis", accumulation and biotransformation of pesticides-associated genetically modified food and the multiplied toxicity of pesticides-formulation adjuvants support this hypothesis. This review summarizes toxic effects (in vitro and on animal models) of some xenobiotics-associated genetically modified food, such as glyphosate and Cry1Ab protein, and extrapolates on their potential role in the pathophysiology of endometriosis. Their roles as immune toxicants, pro-oxidants, endocrine disruptors and epigenetic modulators are discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  18. Scaling laws and universality for the strength of genetic interactions in yeast

    NASA Astrophysics Data System (ADS)

    Velenich, Andrea; Dai, Mingjie; Gore, Jeff

    2012-02-01

    Genetic interactions provide a window to the organization of the thousands of biochemical reactions in living cells. If two mutations affect unrelated cellular functions, the fitness effects of their combination can be easily predicted from the two separate fitness effects. However, because of interactions, for some pairs of mutations their combined fitness effect deviates from the naive prediction. We study genetic interactions in yeast cells by analyzing a publicly available database containing experimental growth rates of 5 million double mutants. We show that the characteristic strength of genetic interactions has a simple power law dependence on the fitness effects of the two interacting mutations and that the probability distribution of genetic interactions is a universal function. We further argue that the strength of genetic interactions depends only on the fitness effects of the interacting mutations and not on their biological origin in terms of single point mutations, entire gene knockouts or even more complicated physiological perturbations. Finally, we discuss the implications of the power law scaling of genetic interactions on the ruggedness of fitness landscapes and the consequent evolutionary dynamics.

  19. A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes

    PubMed Central

    Bergström, Anders; Simpson, Jared T.; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N.; Moses, Alan M.; Louis, Edward J.; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni

    2014-01-01

    The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies. PMID:24425782

  20. Genetic modifiers of Huntington's disease.

    PubMed

    Gusella, James F; MacDonald, Marcy E; Lee, Jong-Min

    2014-09-15

    Huntington's disease (HD) is a devastating neurodegenerative disorder that directly affects more than 1 in 10,000 persons in Western societies but, as a family disorder with a long, costly, debilitating course, it has an indirect impact on a far greater proportion of the population. Although some palliative treatments are used, no effective treatment exists for preventing clinical onset of the disorder or for delaying its inevitable progression toward premature death, approximately 15 years after diagnosis. Huntington's disease involves a movement disorder characterized by chorea, as well as a variety of psychiatric disturbances and intellectual decline, with a gradual loss of independence. A dire need exists for effective HD therapies to alleviate the suffering and costs to the individual, family, and health care system. In past decades, genetics, the study of DNA sequence variation and its consequences, provided the tools to map the HD gene to chromosome 4 and ultimately to identify its mutation as an expanded CAG trinucleotide repeat in the coding sequence of a large protein, dubbed huntingtin. Now, advances in genetic technology offer an unbiased route to the identification of genetic factors that are disease-modifying agents in human patients. Such genetic modifiers are expected to highlight processes capable of altering the course of HD and therefore to provide new, human-validated targets for traditional drug development, with the goal of developing rational treatments to delay or prevent onset of HD clinical signs. © 2014 International Parkinson and Movement Disorder Society.

  1. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  2. L-arabinose fermenting yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  3. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  4. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    PubMed Central

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-01-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771

  5. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE PAGES

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...

    2016-03-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  6. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  7. [Safety assessment of foods derived from genetically modified plants].

    PubMed

    Pöting, A; Schauzu, M

    2010-06-01

    The placing of genetically modified plants and derived food on the market falls under Regulation (EC) No. 1829/2003. According to this regulation, applicants need to perform a safety assessment according to the Guidance Document of the Scientific Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. This article gives an overview of the underlying legislation as well as the strategy and scientific criteria for the safety assessment, which should generally be based on the concept of substantial equivalence and carried out in relation to an unmodified conventional counterpart. Besides the intended genetic modification, potential unintended changes also have to be assessed with regard to potential adverse effects for the consumer. All genetically modified plants and derived food products, which have been evaluated by EFSA so far, were considered to be as safe as products derived from the respective conventional plants.

  8. Plasticity of genetic interactions in metabolic networks of yeast.

    PubMed

    Harrison, Richard; Papp, Balázs; Pál, Csaba; Oliver, Stephen G; Delneri, Daniela

    2007-02-13

    Why are most genes dispensable? The impact of gene deletions may depend on the environment (plasticity), the presence of compensatory mechanisms (mutational robustness), or both. Here, we analyze the interaction between these two forces by exploring the condition-dependence of synthetic genetic interactions that define redundant functions and alternative pathways. We performed systems-level flux balance analysis of the yeast (Saccharomyces cerevisiae) metabolic network to identify genetic interactions and then tested the model's predictions with in vivo gene-deletion studies. We found that the majority of synthetic genetic interactions are restricted to certain environmental conditions, partly because of the lack of compensation under some (but not all) nutrient conditions. Moreover, the phylogenetic cooccurrence of synthetically interacting pairs is not significantly different from random expectation. These findings suggest that these gene pairs have at least partially independent functions, and, hence, compensation is only a byproduct of their evolutionary history. Experimental analyses that used multiple gene deletion strains not only confirmed predictions of the model but also showed that investigation of false predictions may both improve functional annotation within the model and also lead to the discovery of higher-order genetic interactions. Our work supports the view that functional redundancy may be more apparent than real, and it offers a unified framework for the evolution of environmental adaptation and mutational robustness.

  9. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  10. PCR on yeast colonies: an improved method for glyco-engineered Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Saccharomyces cerevisiae is extensively used in bio-industries. However, its genetic engineering to introduce new metabolism pathways can cause unexpected phenotypic alterations. For example, humanisation of the glycosylation pathways is a high priority pharmaceutical industry goal for production of therapeutic glycoproteins in yeast. Genomic modifications can lead to several described physiological changes: biomass yields decrease, temperature sensitivity or cell wall structure modifications. We have observed that deletion of several N-mannosyltransferases in Saccharomyces cerevisiae, results in strains that can no longer be analyzed by classical PCR on yeast colonies. Findings In order to validate our glyco-engineered Saccharomyces cerevisiae strains, we developed a new protocol to carry out PCR directly on genetically modified yeast colonies. A liquid culture phase, combined with the use of a Hot Start DNA polymerase, allows a 3-fold improvement of PCR efficiency. The results obtained are repeatable and independent of the targeted sequence; as such the protocol is well adapted for intensive screening applications. Conclusions The developed protocol enables by-passing of many of the difficulties associated with PCR caused by phenotypic modifications brought about by humanisation of the glycosylation in yeast and allows rapid validation of glyco-engineered Saccharomyces cerevisiae cells. It has the potential to be extended to other yeast strains presenting cell wall structure modifications. PMID:23688076

  11. Modifying Knowledge, Emotions, and Attitudes Regarding Genetically Modified Foods

    ERIC Educational Resources Information Center

    Heddy, Benjamin C.; Danielson, Robert W.; Sinatra, Gale M.; Graham, Jesse

    2017-01-01

    The purpose of this study was to explore whether conceptual change predicted emotional and attitudinal change while learning about genetically modified foods (GMFs). Participants were 322 college students; half read a refutation text designed to shift conceptual knowledge, emotions, and attitudes, while the other half served as a control group.…

  12. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    PubMed Central

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  13. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    NASA Astrophysics Data System (ADS)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  14. Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material.

    PubMed

    Cappello, M S; Poltronieri, P; Blaiotta, G; Zacheo, G

    2010-11-15

    The knowledge about wine yeasts remains largely dominated by the extensive studies on Saccharomyces (S.) cerevisiae. Molecular methods, allowing discrimination of both species and strains in winemaking, can profitably be applied for characterization of the microflora occurring in winemaking and for monitoring the fermentation process. Recently, some novel yeast isolates have been described as hybrid between S. cerevisiae and Saccharomyces species, leaving the Saccharomyces strains containing non-Saccharomyces hybrids essentially unexplored. In this study, we have analyzed a yeast strain isolated from "Primitivo" grape (http://www.ispa.cnr.it/index.php?page=collezioni&lang=en accession number 12998) and we found that, in addition to the S. cerevisiae genome, it has acquired genetic material from a non-Saccharomyces species. The study was focused on the analysis of chromosomal and mitochondrial gene sequences (ITS and 26S rRNA, SSU and COXII, ACTIN-1 and TEF), 2D-PAGE mitochondrial proteins, and spore viability. The results allowed us to formulate the hypothesis that in the MSH199 isolate a DNA containing an rDNA sequence from Hanseniaspora vineae, a non-Saccharomyces yeast, was incorporated through homologous recombination in the grape environment where yeast species are propagated. Moreover, physiological characterization showed that the MSH199 isolate possesses high technological quality traits (fermentation performance) and glycerol production, resistance to ethanol, SO₂ and temperature) useful for industrial application. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  16. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    PubMed

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  17. Genetic and Biochemical Analysis of High Iron Toxicity in Yeast

    PubMed Central

    Lin, Huilan; Li, Liangtao; Jia, Xuan; Ward, Diane McVey; Kaplan, Jerry

    2011-01-01

    Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity. PMID:21115478

  18. Genetic Basis of Variations in Nitrogen Source Utilization in Four Wine Commercial Yeast Strains

    PubMed Central

    Gutiérrez, Alicia; Beltran, Gemma; Warringer, Jonas; Guillamón, Jose M.

    2013-01-01

    The capacity of wine yeast to utilize the nitrogen available in grape must directly correlates with the fermentation and growth rates of all wine yeast fermentation stages and is, thus, of critical importance for wine production. Here we precisely quantified the ability of low complexity nitrogen compounds to support fast, efficient and rapidly initiated growth of four commercially important wine strains. Nitrogen substrate abundance in grape must failed to correlate with the rate or the efficiency of nitrogen source utilization, but well predicted lag phase length. Thus, human domestication of yeast for grape must growth has had, at the most, a marginal impact on wine yeast growth rates and efficiencies, but may have left a surprising imprint on the time required to adjust metabolism from non growth to growth. Wine yeast nitrogen source utilization deviated from that of the lab strain experimentation, but also varied between wine strains. Each wine yeast lineage harbored nitrogen source utilization defects that were private to that strain. By a massive hemizygote analysis, we traced the genetic basis of the most glaring of these defects, near inability of the PDM wine strain to utilize methionine, as consequence of mutations in its ARO8, ADE5,7 and VBA3 alleles. We also identified candidate causative mutations in these genes. The methionine defect of PDM is potentially very interesting as the strain can, in some circumstances, overproduce foul tasting H2S, a trait which likely stems from insufficient methionine catabolization. The poor adaptation of wine yeast to the grape must nitrogen environment, and the presence of defects in each lineage, open up wine strain optimization through biotechnological endeavors. PMID:23826223

  19. MS-based analytical methodologies to characterize genetically modified crops.

    PubMed

    García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro

    2011-01-01

    The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.

  20. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes

    PubMed Central

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-01-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221

  1. HYBRIDIZATION STUDY BETWEEN GENETICALLY MODIFIED BRASSICA NAPUS AND NON-GENETICALLY MODIFIED B. NAPUS AND B. RAPA

    EPA Science Inventory

    Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...

  2. Testing for Genetically Modified Foods Using PCR

    ERIC Educational Resources Information Center

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  3. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  4. Attitudes towards genetically modified and organic foods.

    PubMed

    Saher, Marieke; Lindeman, Marjaana; Hursti, Ulla-Kaisa Koivisto

    2006-05-01

    Finnish students (N=3261) filled out a questionnaire on attitudes towards genetically modified and organic food, plus the rational-experiential inventory, the magical thinking about food and health scale, Schwartz's value survey and the behavioural inhibition scale. In addition, they reported their eating of meat. Structural equation modelling of these measures had greater explanatory power for attitudes towards genetically modified (GM) foods than for attitudes towards organic foods (OF). GM attitudes were best predicted by natural science education and magical food and health beliefs, which mediated the influence of thinking styles. Positive attitudes towards organic food, on the other hand, were more directly related to such individual differences as thinking styles and set of values. The results of the study indicate that OF attitudes are rooted in more fundamental personal attributes than GM attitudes, which are embedded in a more complex but also in a more modifiable network of characteristics.

  5. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.

    PubMed

    Mimitsuka, Takashi; Sawai, Kenji; Kobayashi, Koji; Tsukada, Takeshi; Takeuchi, Norihiro; Yamada, Katsushige; Ogino, Hiroyasu; Yonehara, Tetsu

    2015-01-01

    Poly d-lactic acid is an important polymer because it improves the thermostability of poly l-lactic acid by stereo complex formation. To demonstrate potency of continuous fermentation using a membrane-integrated fermentation reactor (MFR) system, continuous fermentation using genetically modified Saccharomyces cerevisiae which produces d-lactic acid was performed at the low pH and microaerobic conditions. d-Lactic acid continuous fermentation using the MFR system by genetically modified yeast increased production rate by 11-fold compared with batch fermentation. In addition, the carbon yield of d-lactic acid in continuous fermentation was improved to 74.6 ± 2.3% compared to 39.0 ± 1.7% with batch fermentation. This dramatic improvement in carbon yield could not be explained by a reduction in carbon consumption to form cells compared to batch fermentation. Further detailed analysis at batch fermentation revealed that the carbon yield increased to 76.8% at late stationary phase. S. cerevisiae, which exhibits the Crabtree-positive effect, demonstrated significant changes in metabolic activities at low sugar concentrations (Rossignol et al., Yeast, 20, 1369-1385, 2003). Moreover, lactate-producing S. cerevisiae requires ATP supplied not only from the glycolytic pathway but also from the TCA cycle (van Maris et al., Appl. Environ. Microbiol., 70, 2898-2905, 2004). Our finding was revealed that continuous fermentation, which can maintain the conditions of both a low sugar concentration and air supply, results in Crabtree-positive and lactate-producing S. cerevisiae for suitable conditions of d-lactic acid production with respect to redox balance and ATP generation because of releasing the yeast from the Crabtree effect. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries

    DTIC Science & Technology

    2010-07-01

    TITLE: Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries PRINCIPAL INVESTIGATOR: David H. Sachs, M.D...4. TITLE AND SUBTITLE Genetically Modified Porcine Skin Grafts for Treatment of 5a. CONTRACT NUMBER Severe Burn Injuries 5b. GRANT NUMBER...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Burns, skin grafts , genetic

  7. Genetic basis of priority effects: insights from nectar yeast

    PubMed Central

    Hartwig, Thomas

    2016-01-01

    Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects. PMID:27708148

  8. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.

    PubMed

    Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  9. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast

    PubMed Central

    Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast. PMID:29761062

  10. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food

    PubMed Central

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-01-01

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China’s major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans. PMID:26380899

  11. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    PubMed

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  12. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    PubMed

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. [Impacts of genetically modified soybean leaf residues on Folsomia candida.

    PubMed

    Zhou, Lin; Wang, Bai Feng; Liu, Xin Ying; Jiang, Ying; Wang, Da Ming; Feng, Shu Dan; Song, Xin Yuan

    2016-09-01

    When the genetically modified soybean is planted in the field, the expression product of exogenous gene could be exposed in the soil ecosystem and bring potential risk to the soil fauna, with the form of leaves and other debris. A few of genetically modified soybeans developed by China independently were used in our study as materials. They were Phytophthora-resistant soybean harboring hrpZm gene (B4J8049), leaf-feeding insect-resistant soybean harboring Cry1C gene (A2A8001) and Leguminivora glycinivorella-resistant soybean harboring Cry1Iem gene (C802). By feeding Folsomia candida with the three genetically modified soybeans for continuous 60 days, the surviving rate, reproductive rate and changes on the body length of F. candida were studied. The results showed that all the three genetically modified soybeans of B4J8049, A2A8001 and C802 had no significant adverse effects on the growth of F. candida, as an environmental indicator organism. It was initially inferred that they were environmentally safe under short-term exposure, which provided basic data of ecological safety for their wide cultivation.

  15. The uses of AFLP for detecting DNA polymorphism, genotype identification and genetic diversity between yeasts isolated from Mexican agave-distilled beverages and from grape musts.

    PubMed

    Flores Berrios, E P; Alba González, J F; Arrizon Gaviño, J P; Romano, P; Capece, A; Gschaedler Mathis, A

    2005-01-01

    The objectives were to determine the variability and to compare the genetic diversity obtained using amplified fragment length polymorphism (AFLP) markers in analyses of wine, tequila, mezcal, sotol and raicilla yeasts. A molecular characterization of yeasts isolated from Mexican agave musts, has been performed by AFLP marker analysis, using reference wine strains from Italian and South African regions. A direct co-relation between genetic profile, origin and fermentation process of strains was found especially in strains isolated from agave must. In addition, unique molecular markers were obtained for all the strains using six combination primers, confirming the discriminatory power of AFLP markers. This is the first report of molecular characterization between yeasts isolated from different Mexican traditional agave-distilled beverages, which shows high genetic differences with respect to wine strains.

  16. Multiple organ histopathological changes in broiler chickens fed on genetically modified organism.

    PubMed

    Cîrnatu, Daniela; Jompan, A; Sin, Anca Ileana; Zugravu, Cornelia Aurelia

    2011-01-01

    Diet can influence the structural characteristics of internal organs. An experiment involving 130 meat broilers was conducted during 42 days (life term for a meat broiler) to study the effect of feed with protein from genetically modified soy. The 1-day-old birds were randomly allocated to five study groups, fed with soy, sunflower, wheat, fish flour, PC starter. In the diet of each group, an amount of protein from soy was replaced with genetically modified soy (I - 0%, II - 25%, III - 50%, IV - 75%, V - 100% protein from genetically modified soy). The level of protein in soy, either modified, or non-modified, was the same. Organs and carcass weights were measured at about 42 days of age of the birds and histopathology exams were performed during May-June 2009. No statistically significant differences were observed in mortality, growth performance variables or carcass and organ yields between broilers consuming diets produced with genetically modified soybean fractions and those consuming diets produced with near-isoline control soybean fractions. Inflammatory and degenerative liver lesions, muscle hypertrophy, hemorrhagic necrosis of bursa, kidney focal tubular necrosis, necrosis and superficial ulceration of bowel and pancreatic dystrophies were found in tissues from broilers fed on protein from genetically modified soy. Different types of lesions found in our study might be due to other causes (parasites, viral) superimposed but their presence exclusively in groups fed with modified soy raises some serious questions about the consequences of use of this type of feed.

  17. Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis

    PubMed Central

    Vizeacoumar, Franco J.; van Dyk, Nydia; S.Vizeacoumar, Frederick; Cheung, Vincent; Li, Jingjing; Sydorskyy, Yaroslav; Case, Nicolle; Li, Zhijian; Datti, Alessandro; Nislow, Corey; Raught, Brian; Zhang, Zhaolei; Frey, Brendan; Bloom, Kerry

    2010-01-01

    We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involved in spindle function. We focused on a subset of genes that appear to define a highly conserved mitotic spindle disassembly pathway, which is known to involve Ipl1p, the yeast aurora B kinase, as well as the cell cycle regulatory networks mitotic exit network (MEN) and fourteen early anaphase release (FEAR). We also dissected the function of the kinetochore protein Mcm21p, showing that sumoylation of Mcm21p regulates the enrichment of Ipl1p and other chromosomal passenger proteins to the spindle midzone to mediate spindle disassembly. Although we focused on spindle disassembly in a proof-of-principle study, our integrated HCS-SGA method can be applied to virtually any pathway, making it a powerful means for identifying specific cellular functions. PMID:20065090

  18. Detection and traceability of genetically modified organisms in the food production chain.

    PubMed

    Miraglia, M; Berdal, K G; Brera, C; Corbisier, P; Holst-Jensen, A; Kok, E J; Marvin, H J P; Schimmel, H; Rentsch, J; van Rie, J P P F; Zagon, J

    2004-07-01

    Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials

  19. New Lager Brewery Strains Obtained by Crossing Techniques Using Cachaça (Brazilian Spirit) Yeasts

    PubMed Central

    Figueiredo, Bruna Inez Carvalho; Saraiva, Margarete Alice Fontes; de Souza Pimenta, Paloma Patrick; de Souza Testasicca, Miriam Conceição; Sampaio, Geraldo Magela Santos; da Cunha, Aureliano Claret; Afonso, Luis Carlos Crocco; Vieira de Queiroz, Marisa; de Miranda Castro, Ieso

    2017-01-01

    ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in

  20. Improving industrial yeast strains: exploiting natural and artificial diversity

    PubMed Central

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  1. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast

    PubMed Central

    Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo

    2011-01-01

    Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement. PMID:21873232

  2. Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast.

    PubMed

    Herrera, C M; Pozo, M I; Bazaga, P

    2011-11-01

    Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety-one isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band-based methods and model- and nonmodel-based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite-dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φ(st)  = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite-dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality. © 2011 Blackwell Publishing Ltd.

  3. Genetically modified yeast of the species Issatchenkia orientalis and closely relates species, and fermentation processes using same

    DOEpatents

    Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Pentilla, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Ruohonen, Laura [Helsinki, FI; Koivuranta, Kari [Vantaa, FI; Roberg-Perez, Kevin [Minneapolis, MN

    2012-01-17

    Cells of the species Issatchenkia orientalis and closely related yeast species are transformed with a vector to introduce an exogenous lactate dehydrogenase gene. The cells produce lactic acid efficiently and are resistant at low pH, high lactate titer conditions.

  4. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06more » and 0.1 measured directly in cell extracts.« less

  5. Relative Contribution of Genetic and Non-genetic Modifiers to Intestinal Obstruction in Cystic Fibrosis

    PubMed Central

    Blackman, Scott M.; Deering-Brose, Rebecca; McWilliams, Rita; Naughton, Kathleen; Coleman, Barbara; Lai, Teresa; Algire, Marilyn; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Fallin, M. Daniele; West, Kristen; Arking, Dan E.; Chakravarti, Aravinda; Cutler, David J.; Cutting, Garry R

    2006-01-01

    Background & Aims Neonatal intestinal obstruction (meconium ileus or MI) occurs in 15% of patients with cystic fibrosis (CF). Our aim was to determine the relative contribution of genetic and non-genetic modifiers to the development of this major complication of CF. Methods Using clinical data and DNA collected by the CF Twin and Sibling Study, 65 monozygous twin pairs, 23 dizygous twin/triplet sets, and 349 sets of siblings with CF were analyzed for MI status, significant covariates, and genome-wide linkage. Results Specific mutations in CFTR, the gene responsible for CF, correlated with MI indicating a role for CFTR genotype. Monozygous twins showed substantially greater concordance for MI than dizygous twins and siblings (p=1×10−5) demonstrating that modifier genes independent of CFTR contribute substantially to this trait. Regression analysis revealed that MI was correlated with distal intestinal obstruction syndrome (DIOS; p=8×10−4). Unlike MI, concordance analysis indicated that the risk for development of DIOS in CF patients is primarily due to non-genetic factors. Regions of suggestive linkage (logarithm of the odds of linkage >2.0) for modifier genes that cause MI (chromosomes 4q35.1, 8p23.1, and 11q25) or protect from MI (chromosomes 20p11.22 and 21q22.3) were identified by genome-wide analyses. These analyses did not support the existence of a major modifier gene within the CFM1 region on chromosome 19 that had previously been linked to MI. Conclusions The CFTR gene along with two or more modifier genes are the major determinants of intestinal obstruction in newborn CF patients, while intestinal obstruction in older CF patients is primarily due to non-genetic factors. PMID:17030173

  6. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network

    PubMed Central

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-01-01

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812

  7. Genomics and the making of yeast biodiversity.

    PubMed

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    PubMed Central

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664

  9. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.

    PubMed

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  10. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    PubMed

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.

  11. Improving industrial yeast strains: exploiting natural and artificial diversity.

    PubMed

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  12. Genetically Modified Food: Knowledge and Attitude of Teachers and Students

    NASA Astrophysics Data System (ADS)

    Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara

    2010-10-01

    The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.

  13. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii.

    PubMed

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M K; Brewer, Bonita J

    2011-02-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. 2010 John Wiley & Sons, Ltd.

  14. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii

    PubMed Central

    Di Rienzi, Sara C.; Lindstrom, Kimberly C.; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M. K.; Brewer, Bonita J.

    2011-01-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. PMID:21246627

  15. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network.

    PubMed

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-05-05

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.

  16. Genetic incorporation of Nε-acetyllysine reveals a novel acetylation-sumoylation switch in yeast.

    PubMed

    Kim, Sang-Woo; Lee, Kyung Jin; Kim, Sinil; Kim, Jihyo; Cho, Kyukwang; Ro, Hyeon-Su; Park, Hee-Sung

    2017-11-01

    The lysine acetylation of proteins plays a key role in regulating protein functions, thereby controlling a wide range of cellular processes. Despite the prevalence and significance of lysine acetylation in eukaryotes, however, its systematic study has been challenged by the technical limitations of conventional approaches for selective lysine acetylation in vivo. Here, we report the in vivo study of lysine acetylation via the genetic incorporation of N ε -acetyllysine in yeast. We demonstrate that a newly discovered acetylation-sumoylation switch precisely controls the localization and cellular function of the yeast septin protein, Cdc11, during the cell cycle. This approach should facilitate the comprehensive in vivo study of lysine acetylation across a wide range of proteins in eukaryotic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  18. Genetic instability of an oligomycin resistance mutation in yeast is associated with an amplification of a mitochondrial DNA segment.

    PubMed Central

    Ragnini, A; Fukuhara, H

    1989-01-01

    In the yeast Kluyveromyces lactis, mutations affecting mitochondrial functions are often highly unstable. In order to understand the basis of this genetic instability, we examined the case of an oligomycin resistant mutant. When the mutant was grown in the absence of the drug, the resistance was rapidly lost. This character showed a typical cytoplasmic inheritance. The unstable resistance was found to be associated with the presence of a repetitive DNA in which the repeating unit was a specific segment of the mitochondrial DNA. The amplified molecules were co-replicating with the wild type genome in the mutant cells. The spontaneous loss of the drug resistance was accompanied by the disappearance of the amplified DNA. The repetitive sequence came from a 405 base-pair segment immediately downstream of a cluster of two transfer RNA genes (threonyl 2 and glutamyl). Modified processing of these tRNAs was detected in the mutant. A possible mechanism by which these events could lead to drug resistance is discussed. Images PMID:2780315

  19. Efforts to make and apply humanized yeast

    PubMed Central

    Laurent, Jon M.; Young, Jonathan H.; Kachroo, Aashiq H.

    2016-01-01

    Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  20. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  1. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    PubMed

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    increased mitochondrial activity. This novel discovery will enable the selection of favorable brewery yeasts by monitoring the copy numbers of specific chromosomes through a process that does not involve generation/use of genetically modified organisms. Copyright © 2017 American Society for Microbiology.

  2. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast

    PubMed Central

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi

    2017-01-01

    of increased mitochondrial activity. This novel discovery will enable the selection of favorable brewery yeasts by monitoring the copy numbers of specific chromosomes through a process that does not involve generation/use of genetically modified organisms. PMID:28986374

  3. Avoiding genetically modified foods in GMO Ground Zero: A reflective self-narrative.

    PubMed

    Edwards, Sachi

    2015-05-01

    I engage in a reflective self-narrative of my experience attempting to maintain a diet free of genetically modified organisms. Social tension over the genetically modified organism industry in Hawai'i, United States, has led to public debates over jobs and social identities. Drawing on local media sources, grassroots organizations, and blog posts, I describe the way this tension has shaped my experience with food, eating, and being with others as a genetically modified organism avoider. I utilize discursive positioning to make sense of my experiences by locating them within the ongoing public conversations that give structure to the daily lives of Hawai'i's residents. © The Author(s) 2015.

  4. [A Modified Procedure to Isolate Synchronous Cells from Yeasts with Continuous Percoll Density Gradient and Their Raman Discrimination].

    PubMed

    Huang, Shu-shi; Lai, Jun-zhuo; Lu, Ming-qian; Cheng, Qin; Liao, Wei; Chen, Li-mei

    2015-08-01

    A modified procedure of Percoll density gradient centrifugation was developed to isolate and fractionate synchronous cells from stationary phase (sp) cultures of different yeast strains, as well as Raman spectra discrimination of single yeast cells was reported. About 1.75 mL Percoll solution in 2 mL polypropylene centrifugal tube was centrifuged at 19,320 g, 20 °C with an angle rotor for 15 min to form continuous densities gradient (1.00~1.31 g · mL(-1)), approximately 100 μL sample was overlaid onto the preformed continuous density gradient carefully, subsequently, centrifuged at 400 g for 60 min in a tabletop centrifuge equipped with a angle rotor at 25 °C. Yeast samples could be observed that the suspensions were separated into two cell fractions obviously. Both fractions of different yeast strains were respectively determined by differential interference contrast (DIC), phase contrast microscope and synchronous culture to distinguish their morphological and growth trait. The results showed that the lower fraction cells were unbudded, mostly unicellular, highly refractive, homogeneous and uniform in size, and represented growth characteristic synchronously; Their protoplasm had relatively high density, and contained significant concentrations of glycogen; all of which were accordant with description of quiescent yeast cells and G0 cells in previously published paper. It was shown that lower fraction was quiescent cells, synchronous G0 cells as well. A Raman tweezers setup was used to investigate the differences between two fractions, G0 cells and non G0 cells, at a single cell level. The result showed that both G0 cells and the non G0 cells had the same characteristic peaks corresponding biological macromolecules including proteins, carbohydrates and nucleic acids, but all characteristic peak intensities of G0 cells were higher than that of non G0 cells, implied that the macromolecular substance content of G0 cells was more higher. Principal component

  5. [Genetically modified organisms in food--production, detection and risks].

    PubMed

    Zeljezić, Davor

    2004-11-01

    The first genetically modified plant (GMP) was a tobacco resistant to antibiotics in 1983. In 1996, the first genetically altered crop, a delayed-ripening tomato was commercially released. In the year 2003, the estimated global area of GM crops for was 67.7 million hectares. To produce such a plant a gene of interest has to be isolated from the donor. Together with a promoter, terminator sequence and marker gene it has to be introduced into the plant cell which is then stimulated to generate a whole GMP expressing new characteristics (herbicide/insect resistance, delayed ripening). The last few months have seen a strong public debate over genetically modified organisms which has raised scientific, economic, political, and ethical issues. Some questions concerning the safety of GMPs are still to be answered, and decisions about their future should be based on scientifically validated information.

  6. Hypothetical link between infertility and genetically modified food.

    PubMed

    Gao, Mingxia; Li, Bin; Yuan, Wenzhen; Zhao, Lihui; Zhang, Xuehong

    2014-01-01

    It is speculated that genetically modified food (GMF)/genetically modified organism (GMO) is responsible for infertility development. The risk linked with a wide use of GMFs/GMOs offers the basic elements for social criticism. However, to date, it has not been justified whether the bad effects are directly resulted from products of genetic modifications or trans-genesis process. Extensive experience with the risk assessment of whole foods has been applied recently on the safety and nutritional testing of GMFs/GMOs. Investigations have tested the safety of GMFs including sub-acute, chronic, reproductive, multi-generation and carcinogenicity studies. We extrapolated the potential risks associated with GMFs/GMOs on reproduction, and analyzed the multi-aspect linked between infertility and GMFs/GMOs. It could be conjectured that GMFs/GMOs could be potential hazard on reproduction, linking to the development of infertility through influencing the endocrine metabolism, endometriosis. However, little evidence shows the impaction on embryo or reproductive related tumor due to the limited literatures, and needs further research. The article presents some related patents on GMFs/GMOs, and some methods for tracking GMOs.

  7. Genetic diversity in commercial wineries: effects of the farming system and vinification management on wine yeasts.

    PubMed

    Tello, J; Cordero-Bueso, G; Aporta, I; Cabellos, J M; Arroyo, T

    2012-02-01

    Analysis of the diversity and distribution of wine yeasts isolated from organically and conventionally grown grapes, and during the subsequent fermentation with or without starter cultures in six different commercial wineries. PCR-RFLP screening of isolates revealed the involvement of ten different species. Saccharomyces cerevisiae, scarcely isolated from grapes, was the dominant species during the latter phases of fermentation, identifying 108 different genotypes by means of SSR analysis. Species and strains' diversity and presence were strongly influenced by the farming system used to grow the grapes and the system of vinification. Organic farming management was more beneficial in terms of diversity and abundance than the conventional one. Induced fermentation generated a great replacement of native yeasts. Although winery-resident yeasts resulted to be predominant in the process, some noncommercial strains originally in the vineyard were found in final stages of the fermentation, confirming that autochthonous strains of S. cerevisiae are capable to conduct the fermentation process up to its end. The study of natural yeast communities from commercial vineyards and wineries is an important step towards the preservation of native genetic resources. Our results have special relevance because it is the first time that the real situation of the yeast ecology of alcoholic fermentation in commercial wineries belonging to the relevant wine-producing Appellation of Origin 'Vinos de Madrid' is shown. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  8. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  10. Attitudes to genetically modified food over time: How trust in organizations and the media cycle predict support.

    PubMed

    Marques, Mathew D; Critchley, Christine R; Walshe, Jarrod

    2015-07-01

    This research examined public opinion toward genetically modified plants and animals for food, and how trust in organizations and media coverage explained attitudes toward these organisms. Nationally representative samples (N=8821) over 10 years showed Australians were less positive toward genetically modified animals compared to genetically modified plants for food, especially in years where media coverage was high. Structural equation modeling found that positive attitudes toward different genetically modified organisms for food were significantly associated with higher trust in scientists and regulators (e.g. governments), and with lower trust in watchdogs (e.g. environmental movement). Public trust in scientists and watchdogs was a stronger predictor of attitudes toward the use of genetically modified plants for food than animals, but only when media coverage was low. Results are discussed regarding the moral acceptability of genetically modified organisms for food, the media's role in shaping public opinion, and the role public trust in organizations has on attitudes toward genetically modified organisms. © The Author(s) 2014.

  11. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii.

    PubMed

    Naumov, Gennadi I; Lee, Ching-Fu; Naumova, Elena S

    2013-01-01

    Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.

  12. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    PubMed

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  13. Genetic basis and detection of unintended effects in genetically modified crop plants

    USDA-ARS?s Scientific Manuscript database

    In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 s...

  14. How scary! An analysis of visual communication concerning genetically modified organisms in Italy.

    PubMed

    Ventura, Vera; Frisio, Dario G; Ferrazzi, Giovanni; Siletti, Elena

    2017-07-01

    Several studies provide evidence of the role of written communication in influencing public perception towards genetically modified organisms, whereas visual communication has been sparsely investigated. This article aims to evaluate the exposure of the Italian population to scary genetically modified organism-related images. A set of 517 images collected through Google are classified considering fearful attributes, and an index that accounts for the scary impact of these images is built. Then, through an ordinary least-squares regression, we estimate the relationship between the Scary Impact Index and a set of variables that describes the context in which the images appear. The results reveal that the first (and most viewed) Google result images contain the most frightful contents. In addition, the agri-food sector in Italy is strongly oriented towards offering a negative representation of genetically modified organisms. Exposure to scary images could be a factor that affects the negative perception of genetically modified organisms in Italy.

  15. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    PubMed Central

    Viel, Alessia; Legras, Jean-Luc; Nadai, Chiara; Carlot, Milena; Lombardi, Angiolella; Crespan, Manna; Migliaro, Daniele; Giacomini, Alessio; Corich, Viviana

    2017-01-01

    In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota. PMID:28883812

  16. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

    PubMed Central

    Scannell, Devin R.; Zill, Oliver A.; Rokas, Antonis; Payen, Celia; Dunham, Maitreya J.; Eisen, Michael B.; Rine, Jasper; Johnston, Mark; Hittinger, Chris Todd

    2011-01-01

    High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org. PMID:22384314

  17. Genetic modifiers of Velo- cardio- facial syndrome/DiGeorge syndrome

    PubMed Central

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2009-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that Tbx1, a T- box containing transcription factor present on the deleted region, is likely responsible for the etiology of the syndrome. Furthermore, mutations in TBX1 have been found in rare non-deleted patients. Despite having the same sized deletion, most VCFS/DGS patients exhibit significant clinical variability. Stochastic, environmental and genetic factors likely modify the phenotype of patients with the disorder. Here, we review mouse genetics studies which may help identify genetic modifiers for VCFS/DGS. PMID:18636633

  18. Review: Genetically modified plants for the promotion of human health.

    PubMed

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components.

  19. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    PubMed

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  20. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs

    PubMed Central

    Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.

    2012-01-01

    A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571

  1. Implantation of Vascular Grafts Lined with Genetically Modified Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Wilson, James M.; Birinyi, Louis K.; Salomon, Robert N.; Libby, Peter; Callow, Allan D.; Mulligan, Richard C.

    1989-06-01

    The possibility of using the vascular endothelial cell as a target for gene replacement therapy was explored. Recombinant retroviruses were used to transduce the lacZ gene into endothelial cells harvested from mongrel dogs. Prosthetic vascular grafts seeded with the genetically modified cells were implanted as carotid interposition grafts into the dogs from which the original cells were harvested. Analysis of the graft 5 weeks after implantation revealed genetically modified endothelial cells lining the luminal surface of the graft. This technology could be used in the treatment of atherosclerosis disease and the design of new drug delivery systems.

  2. Intervening in disease through genetically-modified bacteria.

    PubMed

    Ferreira, Adilson K; Mambelli, Lisley I; Pillai, Saravanan Y

    2017-12-01

    The comprehension of the molecular basis of different diseases is rapidly being dissected as a consequence of advancing technology. Consequently, proteins with potential therapeutic usefulness, including cytokines and signaling molecules have been identified in the last decades. However, their clinical use is hampered by disadvantageous functional and economic considerations. One of the most important of these considerations is targeted topical delivery and also the synthesis of such proteins, which for intravenous use requires rigorous purification whereas proteins often do not withstand digestive degradation and thus cannot be applied per os. Recently, the idea of using genetically modified bacteria has emerged as an attempt to evade these important barriers. Using such bacteria can deliver therapeutic proteins or other molecules at place of disease, especially when disease is at a mucosal surface. Further, whereas intravenously applied therapeutic proteins require expensive methodology in order to become endotoxin-free, this is not necessary for local application of therapeutic proteins in the intestine. In addition, once created further propagation of genetically modified bacteria is both cheap and requires relatively little in conditioning with respect to transport of the medication, making such organisms also suitable for combating disease in developing countries with poor infrastructure. Although first human trials with such bacteria were already performed more as a decade ago, the recent revolution in our understanding of the role of human gut microbiome in health and diseases has unleashed a revolution in this field resulting in a plethora of potential novel prophylactic and therapeutic intervention against disease onset and development employing such organisms. Today, the engineering of human microbiome for health benefits and related applications now chances many aspects of biology, nanotechnology and chemistry. Here, we review genetically modified

  3. The Case of the "Tainted" Taco Shells: A Case Study on Genetically Modified Foods

    ERIC Educational Resources Information Center

    Taylor, Ann T. S.

    2004-01-01

    This case study introduces students to the use of genetically modified foods. Students learn how genetically modified plants are made, and then they read primary literature papers to evaluate the environmental, economic, and health issues. (Contains 2 figures.)

  4. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking.

    PubMed

    Donalies, Ute E B; Nguyen, Huyen T T; Stahl, Ulf; Nevoigt, Elke

    2008-01-01

    Yeast was the first microorganism domesticated by mankind. Indeed, the production of bread and alcoholic beverages such as beer and wine dates from antiquity, even though the fact that the origin of alcoholic fermentation is a microorganism was not known until the nineteenth century. The use of starter cultures in yeast industries became a common practice after methods for the isolation of pure yeast strains were developed. Moreover, effort has been undertaken to improve these strains, first by classical genetic methods and later by genetic engineering. In general, yeast strain development has aimed at improving the velocity and efficiency of the respective production process and the quality of the final products. This review highlights the achievements in genetic engineering of Saccharomyces yeast strains applied in food and beverage industry.

  5. Current perspectives on genetically modified crops and detection methods.

    PubMed

    Kamle, Madhu; Kumar, Pradeep; Patra, Jayanta Kumar; Bajpai, Vivek K

    2017-07-01

    Genetically modified (GM) crops are the fastest adopted commodities in the agribiotech industry. This market penetration should provide a sustainable basis for ensuring food supply for growing global populations. The successful completion of two decades of commercial GM crop production (1996-2015) is underscored by the increasing rate of adoption of genetic engineering technology by farmers worldwide. With the advent of introduction of multiple traits stacked together in GM crops for combined herbicide tolerance, insect resistance, drought tolerance or disease resistance, the requirement of reliable and sensitive detection methods for tracing and labeling genetically modified organisms in the food/feed chain has become increasingly important. In addition, several countries have established threshold levels for GM content which trigger legally binding labeling schemes. The labeling of GM crops is mandatory in many countries (such as China, EU, Russia, Australia, New Zealand, Brazil, Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia, Thailand), whereas in Canada, Hong Kong, USA, South Africa, and Argentina voluntary labeling schemes operate. The rapid adoption of GM crops has increased controversies, and mitigating these issues pertaining to the implementation of effective regulatory measures for the detection of GM crops is essential. DNA-based detection methods have been successfully employed, while the whole genome sequencing using next-generation sequencing (NGS) technologies provides an advanced means for detecting genetically modified organisms and foods/feeds in GM crops. This review article describes the current status of GM crop commercialization and discusses the benefits and shortcomings of common and advanced detection systems for GMs in foods and animal feeds.

  6. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.

    PubMed

    Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying

    2015-07-01

    Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.

  7. Legal protection of public health through control over genetically modified food.

    PubMed

    Gutorova, Nataliya; Batyhina, Olena; Trotska, Maryna

    2018-01-01

    Introduction: Science is constantly being developed which leads to both positive and negative changes in public health and the environment. One of the results of scientific progress is introduction of food based on genetically modified organisms whose effects on human health, to date, remain scantily studied and are ambiguous. The aim: to determine how human health can be influenced by food production based on genetically modified organisms. Materials and methods: international acts, data of international organizations and conclusions of scientists have been examined and used in the study. The article also summarizes information from scientific journals and monographs from a medical and legal point of view with scientific methods. This article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. Conclusions: Genetically modified organisms are specific human-made organisms being a result of using modern biotechnology techniques. They have both positive and negative effects on human health and the environment. The main disadvantage is not sufficient study of them in various spheres of public life.

  8. Yeast as a tool to identify anti-aging compounds

    PubMed Central

    Zimmermann, Andreas; Hofer, Sebastian; Pendl, Tobias; Kainz, Katharina; Madeo, Frank; Carmona-Gutierrez, Didac

    2018-01-01

    Abstract In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification. PMID:29905792

  9. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    NASA Astrophysics Data System (ADS)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  10. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  11. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF).

    PubMed

    Jurkiewicz, Anna; Zagórski, Jerzy; Bujak, Franciszek; Lachowski, Stanisław; Florek-Łuszczki, Magdalena

    2014-01-01

    The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents' emotional attitude towards scientific achievements in the area of live genetically modified organisms. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined 'know rather little' or 'very little know' about this problem. In respondents' opinions the results of reliable studies pertaining to the health effects of consumption of GMO 'rather do not exist'. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  12. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  13. Genealogy of principal strains of the yeast genetic stock center.

    PubMed

    Mortimer, R K; Johnston, J R

    1986-05-01

    We have constructed a genealogy of strain S288C, from which many of the mutant and segregant strains currently used in studies on the genetics and molecular biology of Saccharomyces cerevisiae have been derived. We have determined that its six progenitor strains were EM93, EM126, NRRL YB-210 and the three baking strains Yeast Foam, FLD and LK. We have estimated that approximately 88% of the gene pool of S288C is contributed by strain EM93. The principal ancestral genotypes were those of segregant strains EM93-1C and EM93-3B, initially distributed by C. C. Lindegren to several laboratories. We have analyzed an isolate of lyophilized culture of strain EM93 and determined its genotype as MATa/MAT alpha SUC2/SUC2 GAL2/gal2 MAL/MAL mel/mel CUP1/cup1 FLO1/flo1. Strain EM93 is therefore the probable origin of genes SUC2, gal2, CUP1 and flo1 of S288C. We give details of the current availability of several of the progenitor strains and propose that this genealogy should be of assistance in elucidating the origins of several types of genetic and molecular heterogeneities in Saccharomyces.

  14. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.

    PubMed

    Alexandre, Hervé

    2013-10-15

    The aging of certain white wines is dependent on the presence of yeast strains that develop a biofilm on the wine surface after the alcoholic fermentation. These strains belong to the genus Saccharomyces and are called flor yeasts. These strains possess distinctive characteristics compared with Saccharomyces cerevisiae fermenting strain. The most important one is their capacity to form a biofilm on the air-liquid interface of the wine. The major gene involved in this phenotype is FLO11, however other genes are also involved in velum formation by these yeast and will be detailed. Other striking features presented in this review are their aneuploidy, and their mitochondrial DNA polymorphism which seems to reflect adaptive evolution of the yeast to a stressful environment where acetaldehyde and ethanol are present at elevated concentration. The biofilm assures access to oxygen and therefore permits continued growth on non-fermentable ethanol. This specific metabolism explains the peculiar organoleptic profile of these wines, especially their content in acetaldehyde and sotolon. This review deals with these different specificities of flor yeasts and will also underline the existing gaps regarding these astonishing yeasts. © 2013.

  15. [Genetically modified plants and food safety. State of the art and discussion in the European Union].

    PubMed

    Schauzu, M

    2004-09-01

    Placing genetically modified (GM) plants and derived products on the European Union's (EU) market has been regulated by a Community Directive since 1990. This directive was complemented by a regulation specific for genetically modified and other novel foods in 1997. Specific labelling requirements have been applicable for GM foods since 1998. The law requires a pre-market safety assessment for which criteria have been elaborated and continuously adapted in accordance with the state of the art by national and international bodies and organisations. Consequently, only genetically modified products that have been demonstrated to be as safe as their conventional counterparts can be commercialized. However, the poor acceptance of genetically modified foods has led to a de facto moratorium since 1998. It is based on the lack of a qualified majority of EU member states necessary for authorization to place genetically modified plants and derived foods on the market. New Community Regulations are intended to end this moratorium by providing a harmonized and transparent safety assessment, a centralised authorization procedure, extended labelling provisions and a traceability system for genetically modified organisms (GMO) and derived food and feed.

  16. Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.

    PubMed

    Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong

    2013-08-01

    To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Genetically Modified (GM) Foods and Ethical Eating.

    PubMed

    Dizon, Francis; Costa, Sarah; Rock, Cheryl; Harris, Amanda; Husk, Cierra; Mei, Jenny

    2016-02-01

    The ability to manipulate and customize the genetic code of living organisms has brought forth the production of genetically modified organisms (GMOs) and consumption of genetically modified (GM) foods. The potential for GM foods to improve the efficiency of food production, increase customer satisfaction, and provide potential health benefits has contributed to the rapid incorporation of GM foods into the American diet. However, GM foods and GMOs are also a topic of ethical debate. The use of GM foods and GM technology is surrounded by ethical concerns and situational judgment, and should ideally adhere to the ethical standards placed upon food and nutrition professionals, such as: beneficence, nonmaleficence, justice and autonomy. The future of GM foods involves many aspects and trends, including enhanced nutritional value in foods, strict labeling laws, and potential beneficial economic conditions in developing nations. This paper briefly reviews the origin and background of GM foods, while delving thoroughly into 3 areas: (1) GMO labeling, (2) ethical concerns, and (3) health and industry applications. This paper also examines the relationship between the various applications of GM foods and their corresponding ethical issues. Ethical concerns were evaluated in the context of the code of ethics developed by the Academy of Nutrition and Dietetics (AND) that govern the work of food and nutrition professionals. Overall, there is a need to stay vigilant about the many ethical implications of producing and consuming GM foods and GMOs. © 2015 Institute of Food Technologists®

  18. Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wilmes, Anja; Hanna, Reem; Heathcott, Rosemary W; Northcote, Peter T; Atkinson, Paul H; Bellows, David S; Miller, John H

    2012-04-15

    Peloruside A, a microtubule-stabilising agent from a New Zealand marine sponge, inhibits mammalian cell division by a similar mechanism to that of the anticancer drug paclitaxel. Wild type budding yeast Saccharomyces cerevisiae (haploid strain BY4741) showed growth sensitivity to peloruside A with an IC(50) of 35μM. Sensitivity was increased in a mad2Δ (Mitotic Arrest Deficient 2) deletion mutant (IC(50)=19μM). Mad2 is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. Haploid mad2Δ cells were much less sensitive to paclitaxel than to peloruside A, possibly because the peloruside binding site on yeast tubulin is more similar to mammalian tubulin than the taxoid site where paclitaxel binds. In order to obtain information on the primary and secondary targets of peloruside A in yeast, a microarray analysis of yeast heterozygous and homozygous deletion mutant sets was carried out. Haploinsufficiency profiling (HIP) failed to provide hits that could be validated, but homozygous profiling (HOP) generated twelve validated genes that interact with peloruside A in cells. Five of these were particularly significant: RTS1, SAC1, MAD1, MAD2, and LSM1. In addition to its known target tubulin, based on these microarray 'hits', peloruside A was seen to interact genetically with other cell proteins involved in the cell cycle, mitosis, RNA splicing, and membrane trafficking. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Yeast for virus research

    PubMed Central

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  20. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two

  1. Genetically modified pigs produced with a nonviral episomal vector

    PubMed Central

    Manzini, Stefano; Vargiolu, Alessia; Stehle, Isa M; Bacci, Maria Laura; Cerrito, Maria Grazia; Giovannoni, Roberto; Zannoni, Augusta; Bianco, Maria Rosaria; Forni, Monica; Donini, Pierluigi; Papa, Michele; Lipps, Hans J; Lavitrano, Marialuisa

    2006-01-01

    Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy. PMID:17101993

  2. Tapping into yeast diversity.

    PubMed

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  3. Yeast flocculation: New story in fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  4. Overview of the current status of genetically modified plants in Europe as compared to the USA.

    PubMed

    Brandt, Peter

    2003-07-01

    Genetically modified crops have been tested in 1,726 experimental releases in the EU member states and in 7,815 experimental releases in the USA. The global commercial cultivation area of genetically modified crops is likely to reach 50 million hectares in 2001, however, the commercial production of genetically modified crops in the EU amounts to only a few thousand hectares and accounts for only some 0.03% of the world production. A significant gap exists between the more than fifty genetically modified crop species already permitted to be cultivated and to be placed on the market in the USA, Canada and other countries and the five genetically modified crop species permitted for the same use in the EU member states, which are still pending inclusion in the Common Catalogue of agricultural plant species. The further development of the "green gene technology" in the EU will be a matter of public acceptance and administrative legislation.

  5. The yeast Golgi apparatus: insights and mysteries

    PubMed Central

    Papanikou, Effrosyni; Glick, Benjamin S.

    2009-01-01

    The Golgi apparatus is known to modify and sort newly synthesized secretory proteins. However, fundamental mysteries remain about the structure, operation, and dynamics of this organelle. Important insights have emerged from studying the Golgi in yeasts. For example, yeasts have provided direct evidence for Golgi cisternal maturation, a mechanism that is likely to be broadly conserved. Here, we highlight features of the yeast Golgi as well as challenges that lie ahead. PMID:19879270

  6. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    PubMed

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  7. Yeast as a model system for mammalian seven-transmembrane segment receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeansonne, N.E.

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomalmore » location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.« less

  8. Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: Part II.

    PubMed

    Moyad, Mark A

    2008-02-01

    Yeast is the term generally applied to a unicellular fungus, and there are hundreds of species now identified. One of the most notable and well-known species of yeast in health and wellness is known as Saccharomyces cerevisiae, which is also known by its more common names, brewer's yeast or baker's yeast. Typically, brewer's yeast is used as a protein supplement, energy booster, immune enhancer, or other vehicle where other compounds can be inserted to create a commercialized health product. For example, one of the most notable positive findings was the encouraging results from a large randomized trial of adults recently vaccinated for seasonal influenza who also received an over-the-counter daily adjuvant modified brewer's yeast-based product (EpiCor) to prevent colds and flu symptoms. The modified yeast-based product significantly reduced the incidence and duration of this common condition. Yeast-based technology is also being used as a molecular mechanistic model of caloric restriction (CR) with the goal of improving the human life span. The current and potential impact of yeast-based technology in medicine is encouraging and should receive more attention, but the recent preliminary positive results of CR in humans may be in part due to what has been already learned from brewer's yeast.

  9. [Detection of genetically modified soy (Roundup-Ready) in processed food products].

    PubMed

    Hagen, M; Beneke, B

    2000-01-01

    In this study, the application of a qualitative and a quantitative method of analysis to detect genetically modified RR-Soy (Roundup-Ready Soy) in processed foods is described. A total of 179 various products containing soy such as baby food and diet products, soy drinks and desserts, tofu and tofu products, soy based meat substitutes, soy protein, breads, flour, granules, cereals, noodles, soy bean sprouts, fats and oils as well as condiments were investigated following the pattern of the section 35 LMBG-method L 23.01.22-1. The DNA was extracted from the samples and analysed using a soybean specific lectin gene PCR as well as a PCR, specific for the genetic modification. Additional, by means of PCR in combination with fluorescence-detection (TaqMan 5'-Nuclease Assay), suspicious samples were subjected to a real-time quantification of the percentage of genetically modified RR-Soy. The methods of analysis proved to be extremely sensitive and specific in regard to the food groups checked. The fats and oils, as well as the condiments were the exceptions in which amplifiable soy DNA could not be detected. The genetic modification of RR-Soy was detected in 34 samples. Eight of these samples contained more than 1% of RR-Soy. It is necessary to determine the percentage of transgenic soy in order to assess whether genetically modified ingredients were deliberately added, or whether they were caused by technically unavoidable contamination (for example during transportation and processing).

  10. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  11. Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding

    PubMed Central

    Ohnuki, Shinsuke; Okada, Hiroki; Friedrich, Anne; Kanno, Yoichiro; Goshima, Tetsuya; Hasuda, Hirokazu; Inahashi, Masaaki; Okazaki, Naoto; Tamura, Hiroyasu; Nakamura, Ryo; Hirata, Dai; Fukuda, Hisashi; Shimoi, Hitoshi; Kitamoto, Katsuhiko; Watanabe, Daisuke; Schacherer, Joseph; Akao, Takeshi; Ohya, Yoshikazu

    2017-01-01

    Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomyces cerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies. PMID:28642365

  12. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    PubMed

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  13. Genetic structure of Kurtzmaniella cleridarum, a cactus flower beetle yeast of the Sonoran and Mojave Deserts: speciation by distance?

    PubMed

    Lachance, Marc-André; Perri, Ami M; Farahbakhsh, Amy S; Starmer, William T

    2013-11-01

    We studied 95 isolates of the yeast species Kurtzmaniella cleridarum recovered from nitidulid beetles collected in flowers of cacti of the Sonoran Desert of southern Arizona and the Mojave Desert of California. They were characterized on the basis of mating type and ten polymorphic DNA markers in relation to their geographic distribution. Although all loci appeared to be free of strong linkage, the recovered haplotypes represented but a small fraction of possible combinations, indicating that abundant asexual reproduction of local genotypes accounts for much of population growth, even though the yeast is capable of sexual recombination in nature. Much of the genetic differentiation took place at the local level, indicating that gene flow across the various localities is limited. However, a relationship exists between overall genetic differentiation and geography over long distances. We estimated that populations separated by c. 1300 km would share no alleles in common and that such a separation might be enough to favor the onset of speciation. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Identification of Associations Between Genetic Factors and Asthma that are Modified by Obesity

    DTIC Science & Technology

    2016-06-01

    AFRL-SA-WP-TR-2016-0010 Identification of Associations Between Genetic Factors and Asthma That Are Modified by Obesity Andrew T...Between Genetic Factors and Asthma That Are Modified by Obesity 5a. CONTRACT NUMBER FA8650-13-2-6371 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...among African American women in the Women’s Health Initiative study. 15. SUBJECT TERMS Body mass index, SNP, asthma, obesity , genome, genes 16

  15. Genome-wide bisulfite sensitivity profiling of yeast suggests bisulfite inhibits transcription.

    PubMed

    Segovia, Romulo; Mathew, Veena; Tam, Annie S; Stirling, Peter C

    2017-09-01

    Bisulfite, in the form of sodium bisulfite or metabisulfite, is used commercially as a food preservative. Bisulfite is used in the laboratory as a single-stranded DNA mutagen in epigenomic analyses of DNA methylation. Recently it has also been used on whole yeast cells to induce mutations in exposed single-stranded regions in vivo. To understand the effects of bisulfite on live cells we conducted a genome-wide screen for bisulfite sensitive mutants in yeast. Screening the deletion mutant array, and collections of essential gene mutants we define a genetic network of bisulfite sensitive mutants. Validation of screen hits revealed hyper-sensitivity of transcription and RNA processing mutants, rather than DNA repair pathways and follow-up analyses support a role in perturbation of RNA transactions. We propose a model in which bisulfite-modified nucleotides may interfere with transcription or RNA metabolism when used in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Infection by ME7 prion is not modified in transgenic mice expressing the yeast chaperone Hsp104 in neurons.

    PubMed

    Dandoy-Dron, Françoise; Bogdanova, Anna; Beringue, Vincent; Bailly, Yannick; Tovey, Michael G; Laude, Hubert; Dron, Michel

    2006-09-25

    The Hsp104 chaperone induces thermo-tolerance in yeast and rescues proteins trapped in aggregates. In this study, we showed that xenogenic expression of Hsp104 dramatically increased the viability of the neuronal mouse CAD cell line after exposure to heat shock. These results indicate that the Hsp104 protein confers thermo-resistance to mammalian neuronal cells, the canonical property of Hsp104 in yeast. Hsp104 also determines the prion state of prion-like proteins in yeast and to investigate whether Hsp104 expression may modify mammalian prion infection in vivo, transgenic mice with specific expression of Hsp104 in neurons were generated. Mice develop and reproduce normally, they show no detectable physical defect and may constitute valuable model for the study of aggregation-prone neuropathological disorders. Hsp104 transgenic and control littermates were infected intracerebrally with the ME7 strain of scrapie. No differences in the incubation time of the disease or in PrP(Sc) accumulation were observed between transgenic and control mice. These results suggest that the heat-shock protein Hsp104 is not efficient to modulate the multiplication of mammalian prions and/or to counteract neurodegeneration in the brain of scrapie-infected mice.

  17. How do yeast cells become tolerant to high ethanol concentrations?

    PubMed

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance.

  18. Production of arabitol by yeasts: current status and future prospects.

    PubMed

    Kordowska-Wiater, M

    2015-08-01

    Arabitol belongs to the pentitol family and is used in the food industry as a sweetener and in the production of human therapeutics as an anticariogenic agent and an adipose tissue reducer. It can also be utilized as a substrate for chemical products such as arabinoic and xylonic acids, propylene, ethylene glycol, xylitol and others. It is included on the list of 12 building block C3-C6 compounds, designated for further biotechnological research. This polyol can be produced by yeasts in the processes of bioconversion or biotransformation of waste materials from agriculture, the forest industry (l-arabinose, glucose) and the biodiesel industry (glycerol). The present review discusses research on native yeasts from the genera Candida, Pichia, Debaryomyces and Zygosaccharomyces as well as genetically modified strains of Saccharomyces cerevisiae which are able to utilize biomass hydrolysates to effectively produce L- or D-arabitol. The metabolic pathways of these yeasts leading from sugars and glycerol to arabitol are presented. Although the number of reports concerning microbial production of arabitol is rather limited, the research on this topic has been growing for the last several years, with researchers looking for new micro-organisms, substrates and technologies. © 2015 The Society for Applied Microbiology.

  19. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury

    PubMed Central

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C.; Warner, James L.; Vo, Andy H.; Hadhazy, Michele; Demonbreun, Alexis R.; Spencer, Melissa J.; McNally, Elizabeth M.

    2017-01-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy. PMID:29065150

  20. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury.

    PubMed

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C; Warner, James L; Vo, Andy H; Earley, Judy U; Hadhazy, Michele; Demonbreun, Alexis R; Spencer, Melissa J; McNally, Elizabeth M

    2017-10-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.

  1. Regulatory science requirements of labeling of genetically modified food.

    PubMed

    Moghissi, A Alan; Jaeger, Lisa M; Shafei, Dania; Bloom, Lindsey L

    2018-05-01

    This paper provides an overview of the evolution of food labeling in the USA. It briefly describes the three phases of agricultural development consisting of naturally occurring, cross-bred, and genetically engineered, edited or modified crops, otherwise known as Genetically Modified Organisms (GMO). It uses the Best Available Regulatory Science (BARS) and Metrics for Evaluation of Regulatory Science Claims (MERSC) to evaluate the scientific validity of claims applicable to GMO and the Best Available Public Information (BAPI) to evaluate the pronouncements by public media and others. Subsequently claims on health risk, ecological risk, consumer choice, and corporate greed are evaluated based on BARS/MERSC and BAPI. The paper concludes by suggesting that labeling of food containing GMO should consider the consumer's choice, such as the food used by those who desire kosher and halal food. Furthermore, the consumer choice is already met by the exclusion of GMO in organic food.

  2. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. History of genome editing in yeast.

    PubMed

    Fraczek, Marcin G; Naseeb, Samina; Delneri, Daniela

    2018-05-01

    For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas. © 2018 The Authors. Yeast published by John Wiley & Sons, Ltd.

  4. Genetically modified T cells in cancer therapy: opportunities and challenges

    PubMed Central

    Sharpe, Michaela; Mount, Natalie

    2015-01-01

    Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies. PMID:26035842

  5. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Carbohydrate and energy-yielding metabolism in non-conventional yeasts.

    PubMed

    Flores, C L; Rodríguez, C; Petit, T; Gancedo, C

    2000-10-01

    Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.

  7. Recombination walking: genetic selection of clones from pooled libraries of yeast artificial chromosomes by homologous recombination.

    PubMed Central

    Miller, A M; Savinelli, E A; Couture, S M; Hannigan, G M; Han, Z; Selden, R F; Treco, D A

    1993-01-01

    Recombination walking is based on the genetic selection of specific human clones from a yeast artificial chromosome (YAC) library by homologous recombination. The desired clone is selected from a pooled (unordered) YAC library, eliminating labor-intensive steps typically used in organizing and maintaining ordered YAC libraries. Recombination walking represents an efficient approach to library screening and is well suited for chromosome-walking approaches to the isolation of genes associated with common diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8367472

  8. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    PubMed

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  9. The Detection of Genetically Modified Organisms: An Overview

    NASA Astrophysics Data System (ADS)

    Ovesná, Jaroslava; Demnerová, Kateřina; Pouchová, Vladimíra

    Genetically modified organisms (GMOs) are those whose genetic material has been altered by the insertion of a new gene or by the deletion of an existing one(s). Modern biotechnology, in particular, the rise of genetic engineering, has supported the development of GMOs suitable for research purposes and practical applications (Gepts, 2002; Novoselova,Meuwissen, & Huirne, 2007; Sakakibara & Saito, 2006). For over 20 years GM bacteria and other GM organisms have been used in laboratories for the study of gene functions (Maliga & Small, 2007; Ratledge & Kristiansen, 2006). Agricultural plants were the first GMOs to be released into the environment and placed on the market. Farmers around the world use GMsoybeans, GMcorn and GM cotton that are herbicide tolerant, or insect resistant, or combine several traits that reduce the costs associated with crop production (Corinne, Fernandez-Cornejo, & Goodhue, 2004).

  10. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    PubMed

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts.

    PubMed

    Zhang, Ning; Fan, Yuxuan; Li, Chen; Wang, Qiming; Leksawasdi, Noppol; Li, Fuli; Wang, Shi'an

    2018-05-01

    Non-model yeasts within basidiomycetes have considerable importance in agriculture, industry, and environment, but they are not as well studied as ascomycetous yeasts. Serving as a basic technique, nuclear DNA staining is widely used in physiology, ecology, cell biology, and genetics. However, it is unclear whether the classical nuclear DNA staining method for ascomycetous yeasts is applicable to basidiomycetous yeasts. In this study, 5 yeasts ineffectively stained by the classical propidium iodide (PI) staining method were identified from 23 representative basidiomycetous yeasts. Pretreatment of cells using dimethyl sulfoxide (DMSO) or snailase markedly improved cell penetration to PI and thus enabled DNA content determination by flow cytometry on the recalcitrant yeasts. The pretreatments are efficient, simple, and fast, avoiding tedious mutagenesis or genetic engineering used in previous reports. The heterogeneity of cell penetration to PI among basidiomycetous yeasts was attributed to the discrepancy in cell wall polysaccharides instead of capsule or plasma membrane. This study also indicated that care must be taken in attributing PI-negative staining as viable cells when studying non-model microorganisms.

  12. Application of genetics to the development of starch-fermenting yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattoon, J.R.; Kim, K.; Laluce, C.

    1987-01-01

    Yeast strains capable of direct fermentation of manioc starch were developed by hybridizing strains of Saccharomyces diastaticus and Saccharomyces cerevisiae. Hybrids were evaluated for speed of alcohol production, and yields and speed of formation of glycoamylase. Up to 6% solutions of Lintner starch could be fermented directly with about 80% conversion to alcohol. Pretreatment of crude 40% manioc starch suspensions with alpha-amylase, followed by fermentations with a starch-fermenting yeast strain, permitted accumulation of 12% ethanol within three days. Starch conversion was almost 100%. A fragment of DNA was cloned from S. diastaticus using the yeast-E. coli shuttle vector, YEp13, andmore » was used to transform a strain of S. cerevisiae to a starch-fermenting state. Supported by National Science Foundation grant INT 7927328 and National Institutes of Health grant GM 27860. Dr. Laluce was supported by a grant from Fundacao de Amparo a Pesquisa do Estado do Sao Paulo and by her university. (Refs. 5).« less

  13. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  14. Dynamics of list-server discussion on genetically modified foods.

    PubMed

    Triunfol, Marcia L; Hines, Pamela J

    2004-04-01

    Computer-mediated discussion lists, or list-servers, are popular tools in settings ranging from professional to personal to educational. A discussion list on genetically modified food (GMF) was created in September 2000 as part of the Forum on Genetically Modified Food developed by Science Controversies: Online Partnerships in Education (SCOPE), an educational project that uses computer resources to aid research and learning around unresolved scientific questions. The discussion list "GMF-Science" was actively supported from January 2001 to May 2002. The GMF-Science list welcomed anyone interested in discussing the controversies surrounding GMF. Here, we analyze the dynamics of the discussions and how the GMF-Science list may contribute to learning. Activity on the GMF-Science discussion list reflected some but not all the controversies that were appearing in more traditional publication formats, broached other topics not well represented in the published literature, and tended to leave undiscussed the more technical research developments.

  15. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    PubMed

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  16. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  17. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  18. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  19. Unraveling Genetic Modifiers in the Gria4 Mouse Model of Absence Epilepsy

    PubMed Central

    Frankel, Wayne N.; Mahaffey, Connie L.; McGarr, Tracy C.; Beyer, Barbara J.; Letts, Verity A.

    2014-01-01

    Absence epilepsy (AE) is a common type of genetic generalized epilepsy (GGE), particularly in children. AE and GGE are complex genetic diseases with few causal variants identified to date. Gria4 deficient mice provide a model of AE, one for which the common laboratory inbred strain C3H/HeJ (HeJ) harbors a natural IAP retrotransposon insertion in Gria4 that reduces its expression 8-fold. Between C3H and non-seizing strains such as C57BL/6, genetic modifiers alter disease severity. Even C3H substrains have surprising variation in the duration and incidence of spike-wave discharges (SWD), the characteristic electroencephalographic feature of absence seizures. Here we discovered extensive IAP retrotransposition in the C3H substrain, and identified a HeJ-private IAP in the Pcnxl2 gene, which encodes a putative multi-transmembrane protein of unknown function, resulting in decreased expression. By creating new Pcnxl2 frameshift alleles using TALEN mutagenesis, we show that Pcnxl2 deficiency is responsible for mitigating the seizure phenotype – making Pcnxl2 the first known modifier gene for absence seizures in any species. This finding gave us a handle on genetic complexity between strains, directing us to use another C3H substrain to map additional modifiers including validation of a Chr 15 locus that profoundly affects the severity of SWD episodes. Together these new findings expand our knowledge of how natural variation modulates seizures, and highlights the feasibility of characterizing and validating modifiers in mouse strains and substrains in the post-genome sequence era. PMID:25010494

  20. Genetically modified organisms (GMOs) and aquaculture.

    PubMed

    Beardmore, J A; Porter, Joanne S

    2003-01-01

    This paper reviews the nature of genetically modified organisms (GMOs), the range of aquatic species in which GMOs have been produced, the methods and target genes employed, the benefits to aquaculture, the problems attached to use of GMOs in aquatic species and the regulatory and other social frameworks surrounding them. A set of recommendations aimed at best practice is appended. This states the potential value of GMOs in aquaculture but also calls for improved knowledge particularly of sites of integration, risk analysis, progress in achieving sterility in fish for production and better dissemination of relevant information.

  1. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    PubMed

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Irradiation influence on the detection of genetic-modified soybeans

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-09-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.

  3. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  4. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    NASA Astrophysics Data System (ADS)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  5. Functional mapping of yeast genomes by saturated transposition

    PubMed Central

    Michel, Agnès H; Hatakeyama, Riko; Kimmig, Philipp; Arter, Meret; Peter, Matthias; Matos, Joao; De Virgilio, Claudio; Kornmann, Benoît

    2017-01-01

    Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput. DOI: http://dx.doi.org/10.7554/eLife.23570.001 PMID:28481201

  6. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  7. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    PubMed

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Inventions on baker's yeast strains and specialty ingredients.

    PubMed

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  9. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    PubMed

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  10. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  11. Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy.

    PubMed

    Wisniewski, Jean-Pierre; Frangne, Nathalie; Massonneau, Agnès; Dumas, Christian

    2002-11-01

    Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.

  12. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  13. [Genetically modified organisms: a new threat to food safety].

    PubMed

    Spendeler, Liliane

    2005-01-01

    This article analyzes all of the food safety-related aspects related to the use of genetically modified organisms into agriculture and food. A discussion is provided as to the uncertainties related to the insertion of foreign genes into organisms, providing examples of unforeseen, undesirable effects and of instabilities of the organisms thus artificially fabricated. Data is then provided from both official agencies as well as existing literature questioning the accuracy and reliability of the risk analyses as to these organisms being harmless to health and discusses the almost total lack of scientific studies analyzing the health safety/dangerousness of transgenic foods. Given all these unknowns, other factors must be taken into account, particularly genetic contamination of the non-genetically modified crops, which is now starting to become widespread in some parts of the world. Not being able of reversing the situation in the even of problems is irresponsible. Other major aspects are the impacts on the environment (such as insects building up resistances, the loss of biodiversity, the increase in chemical products employed) with indirect repercussions on health and/or future food production. Lastly, thoughts for discussion are added concerning food safety in terms of food availability and food sovereignty, given that the transgenic seed and related agrochemicals market is currently cornered by five large-scale transnational companies. The conclusion entails an analysis of biotechnological agriculture's contribution to sustainability.

  14. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    PubMed

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast Copyright © 2013 John Wiley & Sons, Ltd.

  15. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  16. Class Teacher Candidates' Opinions on Genetically Modified Organisms (GMO)

    ERIC Educational Resources Information Center

    Ural Keles, Pinar; Aydin, Suleyman

    2017-01-01

    This study was conducted to determine the Class teacher candidates' opinions on Genetically Modified Organisms. The study was carried out with 101 teacher candidates who were studying in the 3rd grade of Agri Ibrahim Çeçen University Classroom Teacher Department in 2016-2017 academic year. Of the students who participated in the survey, 56 were…

  17. Regulating genetically modified food. Policy trajectories, political culture, and risk perceptions in the U.S., Canada, and EU.

    PubMed

    Wohlers, Anton E

    2010-09-01

    This paper examines whether national differences in political culture add an explanatory dimension to the formulation of policy in the area of biotechnology, especially with respect to genetically modified food. The analysis links the formulation of protective regulatory policies governing genetically modified food to both country and region-specific differences in uncertainty tolerance levels and risk perceptions in the United States, Canada, and European Union. Based on polling data and document analysis, the findings illustrate that these differences matter. Following a mostly opportunistic risk perception within an environment of high tolerance for uncertainty, policymakers in the United States and Canada modified existing regulatory frameworks that govern genetically modified food in their respective countries. In contrast, the mostly cautious perception of new food technologies and low tolerance for uncertainty among European Union member states has contributed to the creation of elaborate and stringent regulatory policies governing genetically modified food.

  18. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles.

  19. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    PubMed

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  20. Biocontainment of genetically modified organisms by synthetic protein design

    PubMed Central

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-01-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient either because they impose evolutionary pressure on the organism to eject the safeguard, because they can be circumvented by environmentally available compounds, or because they can be overcome by horizontal gene transfer (HGT). Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code to confer metabolic dependence on nonstandard amino acids for survival. The resulting GMOs cannot metabolically circumvent their biocontainment mechanisms using environmentally available compounds, and they exhibit unprecedented resistance to evolutionary escape via mutagenesis and HGT. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by reliance on synthetic metabolites. PMID:25607366

  1. Biocontainment of genetically modified organisms by synthetic protein design.

    PubMed

    Mandell, Daniel J; Lajoie, Marc J; Mee, Michael T; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E; Gregg, Christopher J; Stoddard, Barry L; Church, George M

    2015-02-05

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  2. Biocontainment of genetically modified organisms by synthetic protein design

    NASA Astrophysics Data System (ADS)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  3. Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States.

    PubMed

    Scott, Sydney E; Inbar, Yoel; Rozin, Paul

    2016-05-01

    Public opposition to genetic modification (GM) technology in the food domain is widespread (Frewer et al., 2013). In a survey of U.S. residents representative of the population on gender, age, and income, 64% opposed GM, and 71% of GM opponents (45% of the entire sample) were "absolutely" opposed-that is, they agreed that GM should be prohibited no matter the risks and benefits. "Absolutist" opponents were more disgust sensitive in general and more disgusted by the consumption of genetically modified food than were non-absolutist opponents or supporters. Furthermore, disgust predicted support for legal restrictions on genetically modified foods, even after controlling for explicit risk-benefit assessments. This research suggests that many opponents are evidence insensitive and will not be influenced by arguments about risks and benefits. © The Author(s) 2016.

  4. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  5. Readiness of adolescents to use genetically modified organisms according to their knowledge and emotional attitude towards GMOs.

    PubMed

    Lachowski, Stanisław; Jurkiewicz, Anna; Choina, Piotr; Florek-Łuszczki, Magdalena; Buczaj, Agnieszka; Goździewska, Małgorzata

    2017-06-07

    Agriculture based on genetically modified organisms plays an increasingly important role in feeding the world population, which is evidenced by a considerable growth in the size of land under genetically modified crops (GM). Uncertainty and controversy around GM products are mainly due to the lack of accurate and reliable information, and lack of knowledge concerning the essence of genetic modifications, and the effect of GM food on the human organism, and consequently, a negative emotional attitude towards what is unknown. The objective of the presented study was to discover to what extent knowledge and the emotional attitude of adolescents towards genetically modified organisms is related with acceptance of growing genetically modified plants or breeding GM animals on own farm or allotment garden, and the purchase and consumption of GM food, as well as the use of GMOs in medicine. The study was conducted by the method of a diagnostic survey using a questionnaire designed by the author, which covered a group of 500 adolescents completing secondary school on the level of maturity examination. The collected material was subjected to statistical analysis. Research hypotheses were verified using chi-square test (χ 2 ), t-Student test, and stepwise regression analysis. Stepwise regression analysis showed that the readiness of adolescents to use genetically modified organisms as food or for the production of pharmaceuticals, the production of GM plants or animals on own farm, depends on an emotional-evaluative attitude towards GMOs, and the level of knowledge concerning the essence of genetic modifications.

  6. The genetic incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast.

    PubMed

    Supekova, Lubica; Zambaldo, Claudio; Choi, Seihyun; Lim, Reyna; Luo, Xiaozhou; Kazane, Stephanie A; Young, Travis S; Schultz, Peter G

    2018-05-15

    The noncanonical amino acid p-azidomethyl-l-phenylalanine can be genetically incorporated into proteins in bacteria, and has been used both as a spectroscopic probe and for the selective modification of proteins by alkynes using click chemistry. Here we report identification of Escherichia coli tyrosyl tRNA synthetase mutants that allow incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast. When expressed together with the cognate E. coli tRNA CUA Tyr , the new mutant tyrosyl tRNA synthetases directed robust incorporation of p-azidomethyl-l-phenylalanine into a model protein, human superoxide dismutase, in response to the UAG amber nonsense codon. Mass spectrometry analysis of purified superoxide dismutase proteins confirmed the efficient site-specific incorporation of p-azidomethyl-l-phenylalanine. This work provides an additional tool for the selective modification of proteins in eukaryotic cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts

    PubMed Central

    García, Verónica; Salinas, Francisco; Aguilera, Omayra; Liti, Gianni; Martínez, Claudio

    2014-01-01

    Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism. PMID:24466135

  8. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    PubMed Central

    2012-01-01

    Background Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the wild O/HN/CHA/93 virus

  9. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    PubMed Central

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  10. Whole Genome Analysis of a Wine Yeast Strain

    PubMed Central

    Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902

  11. Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA.

    PubMed

    Lu, Song; Chow, Christie C; Zhou, Junwei; Leung, Po Sing; Tsui, Stephen K; Lui, Kathy O

    2016-01-01

    In this chapter, we describe a highly efficient genetic modification strategy for human pancreatic progenitor cells using modified mRNA-encoding GFP and Neurogenin-3. The properties of modified mRNA offer an invaluable platform to drive protein expression, which has broad applicability in pathway regulation, directed differentiation, and lineage specification. This approach can also be used to regulate expression of other pivotal transcription factors during pancreas development and might have potential therapeutic values in regenerative medicine.

  12. Strategies for identifying new prions in yeast

    PubMed Central

    MacLea, Kyle S

    2011-01-01

    The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology. PMID:22052351

  13. Biocontainment of genetically modified organisms by synthetic protein design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass theirmore » biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.« less

  14. Biocontainment of genetically modified organisms by synthetic protein design

    DOE PAGES

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; ...

    2015-01-21

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass theirmore » biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.« less

  15. Detection of Genetically Modified Maize in Processed Foods Sold Commercially in Iran by Qualitative PCR

    PubMed Central

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  16. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.

  17. Managing major data of genetically modified mice: from scientific demands to legal obligations.

    PubMed

    Staudt, Michael; Trauth, Jürgen; Hindi, Iris El; Galuschka, Claudia; Sitek, Dagmar; Schenkel, Johannes

    2012-10-01

    The number of genetically modified mice is increasing rapidly. Several limitations when working with these animals are to be considered: small colonies, the continued danger of loss, often a limited breeding-success, the need to keep those mutants in stock, difficult and costly import-procedures, and also a major (scientific) value of those mutants often available only with major restrictions. To gather relevant information about all active and archived genetically modified mouse lines available in-house (>1.500) and to deal with a unique resource for several, quite different purposes, a data base was developed enabling optimum knowledge management and easy access. The data base covers also legal restraints and is being linked with the institutional publication repository. To identify the lines available detailed information is provided for each line, as the international designation, a short name, the characterization/description, and the genetic modification including the technique used therefore. The origin of the mutation (gene-ID# and donor organism), the origin of regulatory elements and their donors are listed as well as the genetic background, back-cross generation, phenotype, possible publications, keywords, and some in-house information. Also aspects of animal welfare, obligations to record genetically modified organisms, and technology transfer are displayed; the latter to make licenses possible (if legally permitted). Material transfer agreements, patents, or legal restrictions are listed. This data base helps to avoid double-imports, saves animals and costs since a redundant generation or import can be omitted. However, this is a contribution to the 3R principles developed by Russell and Burch.

  18. Genetically Modified Crops and Nuisance: Exploring the Role of Precaution in Private Law

    ERIC Educational Resources Information Center

    Craik, Neil; Culver, Keith; Siebrasse, Norman

    2007-01-01

    This article critically considers calls for the precautionary principle to inform judicial decision making in a private law context in light of the Hoffman litigation, where it is alleged that the potential for genetic contamination from genetically modified (GM) crops causes an unreasonable interference with the rights of organic farmers to use…

  19. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    ERIC Educational Resources Information Center

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-01-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about…

  20. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  1. Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified agricultural landscape: implications for conservation.

    PubMed

    Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel

    2015-12-01

    It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.

  2. Three-generation reproduction toxicity study of genetically modified rice with insect resistant genes.

    PubMed

    Hu, Yichun; Zhuo, Qin; Gong, Zhaolong; Piao, Jianhua; Yang, Xiaoguang

    2017-01-01

    In the present work, we evaluated the three generation reproductive toxicity of the genetically modified rice with insectresistant cry1Ac and sck genes. 120 Sprague-Dawley (SD) rats were divided into three groups which were fed with genetically modified rice diet (GM group), parental control rice diet (PR group) and AIN-93 control diet (both used as negative control) respectively. Bodyweight, food consumption, reproductive data, hematological parameters, serum chemistry, relative organ weights and histopathology for each generation were examined respectively. All the hematology and serum chemistry parameters, organ/body weight indicators were within the normal range or no change to the adverse direction was observed, although several differences in hematology and serum chemistry parameters (WBC, BUN, LDH of male rat, PLT, PCT, MPV of female rats), reproductive data (rate of morphologically abnormal sperm) were observed between GM rice group and two control groups. No macroscopic or histological adverse effects were found or considered as treatment-related, either. Overall, the three generation study of genetically modified rice with cry1Ac and sck genes at a high level showed no unintended adverse effects on rats's reproductive system. Copyright © 2016. Published by Elsevier Ltd.

  3. [Labeling of food containing genetically modified organisms: international policies and Brazilian legislation].

    PubMed

    Costa, Thadeu Estevam Moreira Maramaldo; Marin, Victor Augustus

    2011-08-01

    The increase in surface area planted with genetically modified crops, with the subsequent transfer of such crops into the general environment for commercial trade, has raised questions about the safety of these products. The introduction of the Cartagena Protocol on Biosafety has led to the need to produce information and ensure training in this area for the implementation of policies on biosafety and for decision-making on the part of governments at the national, regional and international level. This article presents two main standpoints regarding the labeling of GM products (one adopted by the United States and the other by the European Union), as well as the position adopted by Brazil and its current legislation on labeling and commercial release of genetically modified (GM) products.

  4. Genetically modified foods: safety, risks and public concerns-a review.

    PubMed

    Bawa, A S; Anilakumar, K R

    2013-12-01

    Genetic modification is a special set of gene technology that alters the genetic machinery of such living organisms as animals, plants or microorganisms. Combining genes from different organisms is known as recombinant DNA technology and the resulting organism is said to be 'Genetically modified (GM)', 'Genetically engineered' or 'Transgenic'. The principal transgenic crops grown commercially in field are herbicide and insecticide resistant soybeans, corn, cotton and canola. Other crops grown commercially and/or field-tested are sweet potato resistant to a virus that could destroy most of the African harvest, rice with increased iron and vitamins that may alleviate chronic malnutrition in Asian countries and a variety of plants that are able to survive weather extremes. There are bananas that produce human vaccines against infectious diseases such as hepatitis B, fish that mature more quickly, fruit and nut trees that yield years earlier and plants that produce new plastics with unique properties. Technologies for genetically modifying foods offer dramatic promise for meeting some areas of greatest challenge for the 21st century. Like all new technologies, they also pose some risks, both known and unknown. Controversies and public concern surrounding GM foods and crops commonly focus on human and environmental safety, labelling and consumer choice, intellectual property rights, ethics, food security, poverty reduction and environmental conservation. With this new technology on gene manipulation what are the risks of "tampering with Mother Nature"?, what effects will this have on the environment?, what are the health concerns that consumers should be aware of? and is recombinant technology really beneficial? This review will also address some major concerns about the safety, environmental and ecological risks and health hazards involved with GM foods and recombinant technology.

  5. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.

    PubMed

    Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2013-01-02

    Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the

  6. [Methods of identification and assessment of safety of genetically modified microorganisms in manufacture food production].

    PubMed

    Khovaev, A A; Nesterenko, L N; Naroditskiĭ, B S

    2011-01-01

    Methods of identification of genetically modified microorganisms (GMM), used in manufacture food on control probes are presented. Results of microbiological and molecular and genetic analyses of food products and their components important in microbiological and genetic expert examination of GMM in foods are considered. Examination of biosafety of GMM are indicated.

  7. BAPJ69-4A: a yeast two-hybrid strain for both positive and negative genetic selection.

    PubMed

    Shaffer, Hally Anne; Rood, Michael Kenneth; Kashlan, Badar; Chang, Eileen I-ling; Doyle, Donald Francis; Azizi, Bahareh

    2012-10-01

    Genetic selection systems, such as the yeast two-hybrid system, are efficient methods to detect protein-protein and protein-ligand interactions. These systems have been further developed to assess negative interactions, such as inhibition, using the URA3 genetic selection marker. Previously, chemical complementation was used to assess positive selection in Saccharomyces cerevisiae. In this work, a new S. cerevisiae strain, called BAPJ69-4A, containing three selective markers ADE2, HIS3, and URA3 as well as the lacZ gene controlled by Gal4 response elements, was developed and characterized using the retinoid X receptor (RXR) and its ligand 9-cis retinoic acid (9cRA). Further characterization was performed using RXR variants and the synthetic ligand LG335. To assess the functionality of the strain, RXR was compared to the parent strain PJ69-4A in adenine, histidine, and uracil selective media. In positive selection, associating partners that lead to cell growth were observed in all media in the presence of ligand, whereas partners that did not associate due to the absence of ligand displayed no growth. Conversely, in negative selection, partners that did not associate in 5-FOA medium did not display cell death due to the lack of expression of the URA3 gene. The creation of the BAPJ69-4A yeast strain provides a high-throughput selection system, called negative chemical complementation, which can be used for both positive and negative selection, providing a fast, powerful tool for discovering novel ligand receptor pairs for applications in drug discovery and protein engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Bee genera, diversity and abundance in genetically modified canola fields.

    PubMed

    O'Brien, Colton; Arathi, H S

    2018-01-02

    Intensive agricultural practices resulting in large scale habitat loss ranks as the top contributing factors in the global bee decline. Growing Genetically Modified Herbicide Tolerant (GMHT) crops as large monocultures has resulted extensive applications of herbicides leading to the degradation of natural habitats surrounding farmlands. Herbicide tolerance trait is beneficial for crops such as Canola (Brassica napus) that are extremely vulnerable to weed competition. While the trait in itself does not harm pollinators, growing genetically modified herbicide tolerant cultivars indirectly contributes towards pollinator declines through habitat loss. Canola, a mass-flowering crop is highly attractive to bee pollinators and the extensive adoption of the herbicide tolerant trait has led to depletion of non-crop floral resources. Extensive use of herbicide in and near fields with herbicide tolerant cultivars systematically eliminates semi-natural habitats around agricultural fields which consist of non-crop flowering plants. Planting pollinator strips provides floral resources for bees after crop flowering. We document the bee genera in canola and the adjoining pollinator strip. The overlap in bee genera reinforces the importance of pollinator habitats in agricultural landscape.

  9. A Novel Method to Generate and Expand Clinical-Grade, Genetically Modified, Tumor-Infiltrating Lymphocytes

    PubMed Central

    Forget, Marie-Andrée; Tavera, René J.; Haymaker, Cara; Ramachandran, Renjith; Malu, Shuti; Zhang, Minying; Wardell, Seth; Fulbright, Orenthial J.; Toth, Chistopher Leroy; Gonzalez, Audrey M.; Thorsen, Shawne T.; Flores, Esteban; Wahl, Arely; Peng, Weiyi; Amaria, Rodabe N.; Hwu, Patrick; Bernatchez, Chantale

    2017-01-01

    Following the clinical success achieved with the first generation of adoptive cell therapy (ACT) utilizing in vitro expanded tumor-infiltrating lymphocytes (TILs), the second and third generations of TIL ACT are evolving toward the use of genetically modified TIL. TIL therapy generally involves the transfer of a high number of TIL, ranging from 109 to 1011 cells. One of the technical difficulties in genetically modifying TIL, using a retroviral vector, is the ability to achieve large expansion of transduced TIL, while keeping the technique suitable to a Good Manufacturing Practices (GMP) environment. Consequently, we developed and optimized a novel method for the efficient production of large numbers of GMP-grade, gene-modified TIL for the treatment of patients with ACT. The chemokine receptor CXCR2 was used as the gene of interest for methodology development. The optimized procedure is currently used in the production of gene-modified TIL for two clinical trials for the treatment of metastatic melanoma at MD Anderson Cancer Center. PMID:28824634

  10. Automated multiplex genome-scale engineering in yeast

    PubMed Central

    Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin

    2017-01-01

    Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255

  11. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    PubMed

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  12. Yeast as a model for Ras signalling.

    PubMed

    Tisi, Renata; Belotti, Fiorella; Martegani, Enzo

    2014-01-01

    For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.

  13. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  14. The yeast replicative aging model.

    PubMed

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  15. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.

    PubMed

    Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R

    2004-07-01

    The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.

  16. An intein with genetically selectable markers provides a new approach to internally label proteins with GFP.

    PubMed

    Ramsden, Richard; Arms, Luther; Davis, Trisha N; Muller, Eric G D

    2011-06-27

    Inteins are proteins that catalyze their own removal from within larger precursor proteins. In the process they splice the flanking protein sequences, termed the N-and C-terminal exteins. Large inteins frequently have a homing endonuclease that is involved in maintaining the intein in the host. Splicing and nuclease activity are independent and distinct domains in the folded structure. We show here that other biochemical activities can be incorporated into an intein in place of the endonuclease without affecting splicing and that these activities can provide genetic selection for the intein. We have coupled such a genetically marked intein with GFP as the N-terminal extein to create a cassette to introduce GFP within the interior of a targeted protein. The Pch PRP8 mini-intein of Penicillium chrysogenum was modified to include: 1) aminoglycoside phosphotransferase; 2) imidazoleglycerol-phosphate dehydratase, His5 from S. pombe ; 3) hygromycin B phosphotransferase; and 4) the transcriptional activator LexA-VP16. The proteins were inserted at the site of the lost endonuclease. When expressed in E. coli, all of the modified inteins spliced at high efficiency. Splicing efficiency was also greater than 96% when expressed from a plasmid in S. cerevisiae. In addition the inteins conferred either G418 or hygromycin resistance, or histidine or leucine prototropy, depending on the inserted marker and the yeast genetic background. DNA encoding the marked inteins coupled to GFP as the N-terminal extein was PCR amplified with ends homologous to an internal site in the yeast calmodulin gene CMD1. The DNA was transformed into yeast and integrants obtained by direct selection for the intein's marker. The His5-marked intein yielded a fully functional calmodulin that was tagged with GFP within its central linker. Inteins continue to show their flexibility as tools in molecular biology. The Pch PRP8 intein can successfully tolerate a variety of genetic markers and still retain high

  17. CRISPR/Cas system for yeast genome engineering: advances and applications

    PubMed Central

    Stovicek, Vratislav; Holkenbrink, Carina

    2017-01-01

    Abstract The methods based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system have quickly gained popularity for genome editing and transcriptional regulation in many organisms, including yeast. This review aims to provide a comprehensive overview of CRISPR application for different yeast species: from basic principles and genetic design to applications. PMID:28505256

  18. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    PubMed

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Population growth of the floricolous yeast Metschnikowia reukaufii: effects of nectar host, yeast genotype, and host × genotype interaction.

    PubMed

    Herrera, Carlos M

    2014-05-01

    Genetic diversity and genotypic diversity of wild populations of the floricolous yeast Metschnikowia reukaufii exhibit a strong host-mediated component, with genotypes being nonrandomly distributed among flowers of different plant species. To unravel the causal mechanism of this pattern of host-mediated genetic diversity, this paper examines experimentally whether floral nectars of different host plants differ in their quality as a growing substrate for M. reukaufii and also whether genetically distinct yeast strains differ in their relative ability to thrive in nectars of different species (host × genotype interaction). Genetically distinct M. reukaufii strains were grown in natural nectar of different hosts under controlled conditions. Population growth varied widely among nectar hosts, revealing that different host plants provided microhabitats of different quality for M. reukaufii. Different M. reukaufii strains responded in different ways to interspecific nectar variation, and variable growth responses were significantly associated with genetic differences between strains, thus leading to a significant host × genotype interaction. Results of this study provide support for the diversifying selection hypothesis as the underlying mechanism preserving high genetic diversity in wild M. reukaufii populations and also suggest that consequences of functional plant-pollinator diversity may surpass the domain of the mutualistic organisms to implicate associated microorganisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  1. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  2. Growth promotion of genetically modified hematopoietic progenitors using an antibody/c-Mpl chimera.

    PubMed

    Kawahara, Masahiro; Chen, Jianhong; Sogo, Takahiro; Teng, Jinying; Otsu, Makoto; Onodera, Masafumi; Nakauchi, Hiromitsu; Ueda, Hiroshi; Nagamune, Teruyuki

    2011-09-01

    Thrombopoietin is a potent cytokine that exerts proliferation of hematopoietic stem cells (HSCs) through its cognate receptor, c-Mpl. Therefore, mimicry of c-Mpl signaling by a receptor recognizing an artificial ligand would be attractive to attain specific expansion of genetically modified HSCs. Here we propose a system enabling selective expansion of genetically modified cells using an antibody/receptor chimera that can be activated by a specific antigen. We constructed an antibody/c-Mpl chimera, in which single-chain Fv (ScFv) of an anti-fluorescein antibody was tethered to the extracellular D2 domain of the erythropoietin receptor and transmembrane/cytoplasmic domains of c-Mpl. When the chimera was expressed in interleukin (IL)-3-dependent pro-B cell line Ba/F3, genetically modified cells were selectively expanded in the presence of fluorescein-conjugated BSA (BSA-FL) as a specific antigen. Furthermore, highly purified mouse HSCs transduced with the retrovirus carrying antibody/c-Mpl chimera gene proliferated in vitro in response to BSA-FL, and the cells retained in vivo long-term repopulating abilities. These results demonstrate that the antibody/c-Mpl chimera is capable of signal transduction that mimics wild-type c-Mpl signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Nectar yeasts: a natural microcosm for ecology.

    PubMed

    Chappell, Callie R; Fukami, Tadashi

    2018-06-01

    The species of yeasts that colonize floral nectar can modify the mutualistic relationships between plants and pollinators by changing the chemical properties of nectar. Recent evidence supporting this possibility has led to increased interest among ecologists in studying these fungi as well as the bacteria that interact with them in nectar. Although not fully explored, nectar yeasts also constitute a promising natural microcosm that can be used to facilitate development of general ecological theory. We discuss the methodological and conceptual advantages of using nectar yeasts from this perspective, including simplicity of communities, tractability of dispersal, replicability of community assembly, and the ease with which the mechanisms of species interactions can be studied in complementary experiments conducted in the field and the laboratory. To illustrate the power of nectar yeasts as a study system, we discuss several topics in community ecology, including environmental filtering, priority effects, and metacommunity dynamics. An exciting new direction is to integrate metagenomics and comparative genomics into nectar yeast research to address these fundamental ecological topics. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Aquaculture: Incorporating risk assessment and risk management into public policies on genetically modified finfish and shellfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallerman, E.M.; Kapuscinski, A.R.

    Genetically modified finfish and shellfish pose economic benefits to aquaculture, but also pose ecological and genetic risks to ecosystems receiving such organisms. Realization of benefits with minimization of risks posed by a new technology can be addressed through the processes of risk assessment and risk management. Public policies adopted by individual countries will reflect differences in the outocme of risk assessment and risk management processes resulting from differences among the receiving ecosystems and sets of human values at issue. A number of countries and international institutions have begun development of policies for oversight of genetically modified aquatic organisms. In themore » United States, a working group commissioned by the U.S. Department of Agriculture incorporated risk assessment and risk management principles into draft performance standards for safely conducting research with genetically modified finfish and shellfish. The performance standards address research with a broad range of aquatic GMO`s and compliance is intended to be voluntary. In contrast, the Canadian policy mandates adherence to specified guidelines for experiments with transgenic aquatic organisms; establishment as national policy is expended soon.« less

  5. Genetic Evidence for Modifying Oceanic Boundaries Relative to Fiji.

    PubMed

    Shipley, Gerhard P; Taylor, Diana A; N'Yeurt, Antoine D R; Tyagi, Anand; Tiwari, Geetanjali; Redd, Alan J

    2016-07-01

    We present the most comprehensive genetic characterization to date of five Fijian island populations: Viti Levu, Vanua Levu, Kadavu, the Lau Islands, and Rotuma, including nonrecombinant Y (NRY) chromosome and mitochondrial DNA (mtDNA) haplotypes and haplogroups. As a whole, Fijians are genetically intermediate between Melanesians and Polynesians, but the individual Fijian island populations exhibit significant genetic structure reflecting different settlement experiences in which the Rotumans and the Lau Islanders were more influenced by Polynesians, and the other Fijian island populations were more influenced by Melanesians. In particular, Rotuman and Lau Islander NRY chromosomal and mtDNA haplogroup frequencies and Rotuman mtDNA hypervariable segment 1 region haplotypes more closely resemble those of Polynesians, while genetic markers of the other populations more closely resemble those of the Near Oceanic Melanesians. Our findings provide genetic evidence supportive of modifying regional boundaries relative to Fiji, as has been suggested by others based on a variety of nongenetic evidence. Specifically, for the traditional Melanesia/Polynesia/Micronesia scheme, our findings support moving the Melanesia-Polynesia boundary to include Rotuma and the Lau Islands in Polynesia. For the newer Near/Remote Oceania scheme, our findings support keeping Rotuma and the Lau Islands in Remote Oceania and locating the other Fijian island populations in an intermediate or "Central Oceania" region to better reflect the great diversity of Oceania.

  6. Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii

    PubMed Central

    Hudson, Lauren E.; Fasken, Milo B.; McDermott, Courtney D.; McBride, Shonna M.; Kuiper, Emily G.; Guiliano, David B.; Corbett, Anita H.; Lamb, Tracey J.

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders. PMID:25391025

  7. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    PubMed

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  8. Prevalence of genetically modified rice, maize, and soy in Saudi food products.

    PubMed

    Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy

    2013-10-01

    Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain <3 % of genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

  9. ASSESSING POSSIBLE ECOLOGICAL RISKS OF GENETICALLY MODIFIED CROPS: GENE EXPRESSION ASSAYS AND GENETIC MONITORING OF NON-TARGET ORGANISMS

    EPA Science Inventory

    Widespread planting of genetically modified crops with the Bt transgene pesticide has led to concern over non-target effects of Bt compounds in agroecosystems. While some research suggests that non-target organisms exposed to Bt toxin exhibit reduced fecundity and increased morta...

  10. Evolutionary biology through the lens of budding yeast comparative genomics.

    PubMed

    Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R

    2017-10-01

    The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.

  11. Yeast as factory and factotum.

    PubMed

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering.

  12. Comparative evaluation of 13 yeast species in the Yarrowia clade on lignocellulosic biomass hydrolysate and genetic engineering of inhibitor tolerant strains for lipid and biofuel production

    USDA-ARS?s Scientific Manuscript database

    Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...

  13. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products.

    PubMed

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-07-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.

  14. Chinese newspaper coverage of genetically modified organisms

    PubMed Central

    2012-01-01

    Background Debates persist around the world over the development and use of genetically modified organisms (GMO). News media has been shown to both reflect and influence public perceptions of health and science related debates, as well as policy development. To better understand the news coverage of GMOs in China, we analyzed the content of articles in two Chinese newspapers that relate to the development and promotion of genetically modified technologies and GMOs. Methods Searching in the Chinese National Knowledge Infrastructure Core Newspaper Database (CNKI-CND), we collected 77 articles, including news reports, comments and notes, published between January 2002 and August 2011 in two of the major Chinese newspapers: People’s Daily and Guangming Daily. We examined articles for perspectives that were discussed and/or mentioned regarding GMOs, the risks and benefits of GMOs, and the tone of news articles. Results The newspaper articles reported on 29 different kinds of GMOs. Compared with the possible risks, the benefits of GMOs were much more frequently discussed in the articles. 48.1% of articles were largely supportive of the GM technology research and development programs and the adoption of GM cottons, while 51.9% of articles were neutral on the subject of GMOs. Risks associated with GMOs were mentioned in the newspaper articles, but none of the articles expressed negative tones in regards to GMOs. Conclusion This study demonstrates that the Chinese print media is largely supportive of GMOs. It also indicates that the print media describes the Chinese government as actively pursuing national GMO research and development programs and the promotion of GM cotton usage. So far, discussion of the risks associated with GMOs is minimal in the news reports. The media, scientists, and the government should work together to ensure that science communication is accurate and balanced. PMID:22551150

  15. Chinese newspaper coverage of genetically modified organisms.

    PubMed

    Du, Li; Rachul, Christen

    2012-06-08

    Debates persist around the world over the development and use of genetically modified organisms (GMO). News media has been shown to both reflect and influence public perceptions of health and science related debates, as well as policy development. To better understand the news coverage of GMOs in China, we analyzed the content of articles in two Chinese newspapers that relate to the development and promotion of genetically modified technologies and GMOs. Searching in the Chinese National Knowledge Infrastructure Core Newspaper Database (CNKI-CND), we collected 77 articles, including news reports, comments and notes, published between January 2002 and August 2011 in two of the major Chinese newspapers: People's Daily and Guangming Daily. We examined articles for perspectives that were discussed and/or mentioned regarding GMOs, the risks and benefits of GMOs, and the tone of news articles. The newspaper articles reported on 29 different kinds of GMOs. Compared with the possible risks, the benefits of GMOs were much more frequently discussed in the articles. 48.1% of articles were largely supportive of the GM technology research and development programs and the adoption of GM cottons, while 51.9% of articles were neutral on the subject of GMOs. Risks associated with GMOs were mentioned in the newspaper articles, but none of the articles expressed negative tones in regards to GMOs. This study demonstrates that the Chinese print media is largely supportive of GMOs. It also indicates that the print media describes the Chinese government as actively pursuing national GMO research and development programs and the promotion of GM cotton usage. So far, discussion of the risks associated with GMOs is minimal in the news reports. The media, scientists, and the government should work together to ensure that science communication is accurate and balanced.

  16. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the ‘yeast mitochondrial genetic code’

    PubMed Central

    Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš

    2017-01-01

    Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063

  17. Effects of genetically modified T2A-1 rice on the GI health of rats after 90-day supplement

    PubMed Central

    Yuan, Yanfang; Xu, Wentao; He, Xiaoyun; Liu, Haiyan; Cao, Sishuo; Qi, Xiaozhe; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Bacillus thuringiensis insecticidal toxin (Bt) rice will be commercialized as a main food source. Traditional safety assessments on genetically modified products pay little attention on gastrointestinal (GI) health. More data about GI health of Bt rice must be provided to dispel public' doubts about the potential effects on human health. We constructed an improved safety assessment animal model using a basic subchronic toxicity experiment, measuring a range of parameters including microflora composition, intestinal permeability, epithelial structure, fecal enzymes, bacterial activity, and intestinal immunity. Significant differences were found between rice-fed groups and AIN93G-fed control groups in several parameters, whereas no differences were observed between genetically modified and non-genetically modified groups. No adverse effects were found on GI health resulting from genetically modified T2A-1 rice. In conclusion, this study may offer a systematic safety assessment model for GM material with respect to the effects on GI health. PMID:23752350

  18. A risk-based classification scheme for genetically modified foods. I: Conceptual development.

    PubMed

    Chao, Eunice; Krewski, Daniel

    2008-12-01

    The predominant paradigm for the premarket assessment of genetically modified (GM) foods reflects heightened public concern by focusing on foods modified by recombinant deoxyribonucleic acid (rDNA) techniques, while foods modified by other methods of genetic modification are generally not assessed for safety. To determine whether a GM product requires less or more regulatory oversight and testing, we developed and evaluated a risk-based classification scheme (RBCS) for crop-derived GM foods. The results of this research are presented in three papers. This paper describes the conceptual development of the proposed RBCS that focuses on two categories of adverse health effects: (1) toxic and antinutritional effects, and (2) allergenic effects. The factors that may affect the level of potential health risks of GM foods are identified. For each factor identified, criteria for differentiating health risk potential are developed. The extent to which a GM food satisfies applicable criteria for each factor is rated separately. A concern level for each category of health effects is then determined by aggregating the ratings for the factors using predetermined aggregation rules. An overview of the proposed scheme is presented, as well as the application of the scheme to a hypothetical GM food.

  19. Molecular Basis and Genetic Modifiers of Thalassemia.

    PubMed

    Mettananda, Sachith; Higgs, Douglas R

    2018-04-01

    Thalassemia is a disorder of hemoglobin characterized by reduced or absent production of one of the globin chains in human red blood cells with relative excess of the other. Impaired synthesis of β-globin results in β-thalassemia, whereas defective synthesis of α-globin leads to α-thalassemia. Despite being a monogenic disorder, thalassemia exhibits remarkable clinical heterogeneity that is directly related to the intracellular imbalance between α- and β-like globin chains. Novel insights into the genetic modifiers have contributed to the understanding of the correlation between genotype and phenotype and are being explored as therapeutic pathways to cure this life-limiting disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Genetic improvement of native xylose-fermenting yeasts for ethanol production.

    PubMed

    Harner, Nicole K; Wen, Xin; Bajwa, Paramjit K; Austin, Glen D; Ho, Chi-Yip; Habash, Marc B; Trevors, Jack T; Lee, Hung

    2015-01-01

    Lignocellulosic substrates are the largest source of fermentable sugars for bioconversion to fuel ethanol and other valuable compounds. To improve the economics of biomass conversion, it is essential that all sugars in potential hydrolysates be converted efficiently into the desired product(s). While hexoses are fermented into ethanol and some high-value chemicals, the bioconversion of pentoses in hydrolysates remains inefficient. This remains one of the key challenges in lignocellulosic biomass conversion. Native pentose-fermenting yeasts can ferment both glucose and xylose in lignocellulosic biomass to ethanol. However, they perform poorly in the presence of hydrolysate inhibitors, exhibit low ethanol tolerance and glucose repression, and ferment pentoses less efficiently than the main hexoses glucose and mannose. This paper reviews classical and molecular strain improvement strategies applied to native pentose-fermenting yeasts for improved ethanol production from xylose and lignocellulosic substrates. We focus on Pachysolen tannophilus, Scheffersomyces (Candida) shehatae, Scheffersomyces (Pichia) stipitis, and Spathaspora passalidarum which are good ethanol producers among the native xylose-fermenting yeasts. Strains obtained thus far are not robust enough for efficient ethanol production from lignocellulosic hydrolysates and can benefit from further improvements.

  1. Mixtures of genetically modified wheat lines outperform monocultures.

    PubMed

    Zeller, Simon L; Kalinina, Olena; Flynn, Dan F B; Schmid, Bernhard

    2012-09-01

    Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical. We grew three such genotypes or lines in monocultures or two-line mixtures. Phenotypic measurements were taken at the level of individual plants and of entire plots (population level). We found that resistance to mildew increased with both GM richness (0, 1, or 2 Pm3 transgenes with different resistance specificities per plot) and GM concentration (0%, 50%, or 100% of all plants in a plot with a Pm3 transgene). Plots with two transgenes had 34.6% less mildew infection and as a consequence 7.3% higher seed yield than plots with one transgene. We conclude that combining genetic modification with mixed cropping techniques could be a promising approach to increase sustainability and productivity in agricultural systems, as the fitness cost of stacking transgenes within individuals may thus be avoided.

  2. [Contamination with genetically modified maize MON863 of processed foods on the market].

    PubMed

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  3. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect.

    PubMed

    Wegmann, Udo; Carvalho, Ana Lucia; Stocks, Martin; Carding, Simon R

    2017-05-23

    The use of live, genetically modified bacteria as delivery vehicles for biologics is of considerable interest scientifically and has attracted significant commercial investment. We have pioneered the use of the commensal gut bacterium Bacteroides ovatus for the oral delivery of therapeutics to the gastrointestinal tract. Here we report on our investigations of the biological safety of engineered B. ovatus bacteria that includes the use of thymineless death as a containment strategy and the potential for the spread of transgenes in vivo in the mammalian gastrointestinal tract. We demonstrate the ability of GM-strains of Bacteroides to survive thymine starvation and overcome it through the exchange of genetic material. We also provide evidence for horizontal gene transfer in the mammalian gastrointestinal tract resulting in transgene-carrying wild type bacteria. These findings sound a strong note of caution on the employment of live genetically modified bacteria for the delivery of biologics.

  4. Genetically modified plants for law enforcement applications

    NASA Astrophysics Data System (ADS)

    Stewart, C. Neal, Jr.

    2002-08-01

    Plants are ubiquitous in the environment and have the unique ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several law enforcement applications for this technology. One involves using tagging and perhaps modifying drug plants genetically. In one instance, we could tag them for destruction. In another, we could adulterate them directly. Another application is one that falls into the chemical terrorism and bioterrorism countermeasures category. We are developing plants to sense toxins and whole organisms covertly. Plants are well adapted to monitor large geographic areas; biosurveillance. Some examples of research being performed focus on plants with plant pathogen inducible promoters fused to GFP for disease sensing, and algae biosensors for chemicals.

  5. Two Pathways of Sphingolipid Biosynthesis Are Separated in the Yeast Pichia pastoris*

    PubMed Central

    Ternes, Philipp; Wobbe, Tobias; Schwarz, Marnie; Albrecht, Sandra; Feussner, Kirstin; Riezman, Isabelle; Cregg, James M.; Heinz, Ernst; Riezman, Howard; Feussner, Ivo; Warnecke, Dirk

    2011-01-01

    Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C16/C18 acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis. PMID:21303904

  6. Genetically modified crops: detection strategies and biosafety issues.

    PubMed

    Kamle, Suchitra; Ali, Sher

    2013-06-15

    Genetically modified (GM) crops are increasingly gaining acceptance but concurrently consumers' concerns are also increasing. The introduction of Bacillus thuringiensis (Bt) genes into the plants has raised issues related to its risk assessment and biosafety. The International Regulations and the Codex guidelines regulate the biosafety requirements of the GM crops. In addition, these bodies synergize and harmonize the ethical issues related to the release and use of GM products. The labeling of GM crops and their products are mandatory if the genetically modified organism (GMO) content exceeds the levels of a recommended threshold. The new and upcoming GM crops carrying multiple stacked traits likely to be commercialized soon warrant sensitive detection methods both at the DNA and protein levels. Therefore, traceability of the transgene and its protein expression in GM crops is an important issue that needs to be addressed on a priority basis. The advancement in the area of molecular biology has made available several bioanalytical options for the detection of GM crops based on DNA and protein markers. Since the insertion of a gene into the host genome may even cause copy number variation, this may be uncovered using real time PCR. Besides, assessing the exact number of mRNA transcripts of a gene, correlation between the template activity and expressed protein may be established. Here, we present an overview on the production of GM crops, their acceptabilities, detection strategies, biosafety issues and potential impact on society. Further, overall future prospects are also highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. [Study on mechanism of inactivated cider yeast adsorbing patulin by Fourier transform infrared spectroscopy].

    PubMed

    Guo, Cai-Xia; Yue, Tian-Li; Yuan, Ya-Hong; Wang, Zhou-Li; Wang, Ling; Cai, Rui

    2013-03-01

    The mechanism of patulin adsorption by inactivated cider yeast was studied by chemical modification and FTIR The results of patulin removal by various modified yeast biomass showed that the ability of patulin biosorption by acetone-treated yeast and NaOH-treated yeast increased siginificantly, while the methylation of amino group and esterification of carboxylate functionalities of yeast cell surface caused a decrease in patulin binding, which indicated that amino group and carboxyl group presented in the cell walls of yeast might be involved in the binding of patulin to the yeast. The FTIR analysis indicated that the main functional groups were amino group, carboxyl group and hydroxy group which are associated with protein and polysaccharides.

  8. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias.

    PubMed

    Pando Bedriñana, R; Querol Simón, A; Suárez Valles, B

    2010-06-01

    This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22' and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of beta-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3' and 19') to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with beta-glucosidase activity are reported for the first time in autochthonous cider yeasts. 2009 Elsevier Ltd. All rights reserved.

  9. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  10. Molecular Genetic Characterization of Mutagenesis Using a Highly Sensitive Single-Stranded DNA Reporter System in Budding Yeast.

    PubMed

    Chan, Kin

    2018-01-01

    Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.

  11. Safety assessment, detection and traceability, and societal aspects of genetically modified foods. European Network on Safety Assessment of Genetically Modified Food Crops (ENTRANSFOOD). Concluding remarks.

    PubMed

    Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I

    2004-07-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.

  12. Genetic modifiers of nutritional status in cystic fibrosis1234

    PubMed Central

    Bradley, Gia M; Blackman, Scott M; Watson, Christopher P; Doshi, Vishal K; Cutting, Garry R

    2012-01-01

    Background: Improved nutrition early in life is associated with better pulmonary function for patients with cystic fibrosis (CF). However, nutritional status is poorly correlated with the CFTR genotype. Objective: We investigated the extent to which modifier genes influence nutrition in children with CF. Design: BMI data were longitudinally collected from the CF Twin-Sibling Study and Cystic Fibrosis Foundation Patient Registry for twins and siblings from 2000 to 2010. A nutritional phenotype was derived for 1124 subjects by calculating the average BMI z score from 5–10 y of age (BMI-z5to10). The genetic contribution to the variation in BMI-z5to10 (ie, heritability) was estimated by comparing the similarity of the phenotype in monozygous twins to that in dizygous twins and siblings. Linkage analysis identified potential modifier-gene loci. Results: The median BMI-z5to10 was −0.07 (range: −3.89 to 2.30), which corresponded to the 47th CDC percentile. BMI-z5to10 was negatively correlated with pancreatic insufficiency, history of meconium ileus, and female sex but positively correlated with later birth cohorts and lung function. Monozygous twins showed greater concordance for BMI-z5to10 than did dizygous twins and siblings; heritability estimates from same-sex twin-only analyses ranged from 0.54 to 0.82. For 1010 subjects with pancreatic insufficiency, genome-wide significant linkage was identified on chromosomes 1p36.1 [log of odds (LOD): 5.3] and 5q14 (LOD: 5.1). These loci explained ≥16% and ≥15%, respectively, of the BMI variance. Conclusions: The analysis of twins and siblings with CF indicates a prominent role for genes other than CFTR to BMI variation. Specifically, regions on chromosomes 1 and 5 appear to harbor genetic modifiers of substantial effect. PMID:23134884

  13. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    PubMed Central

    JIN, Li-Fang; LI, Jin-Song

    2016-01-01

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  14. Improving genetic immobilization of a cellulase on yeast cell surface for bioethanol production using cellulose.

    PubMed

    Yang, Jinying; Dang, Hongyue; Lu, Jian Ren

    2013-04-01

    In this study, Saccharomyces cerevisiae was genetically engineered to harbor the capability of utilizing celluloses for bioethanol production by displaying active cellulolytic enzymes on the cell surface. An endo-1,4-β-glucanase gene egX was cloned from Bacillus pumilus C-9 and its expression products, the EGX cellulases, were displayed on the cell surface of S. cerevisiae by fusing egX with aga2 that encodes the binding subunit of the S. cerevisiae cell wall protein α-agglutinin. To achieve high gene copies and stability, multicopy integration was obtained by integrating the fusion aga2-egX gene into the rDNA region of the S. cerevisiae chromosome. To achieve high expression and surface display efficiency, the aga2-egX gene was expressed under the control of a strong promoter. The presence of the enzymatically active cellulase fusion proteins on the S. cerevisiae cell surface was verified by carboxymethyl cellulase activity assay and immunofluorescence microscopy. This work presented a promising strategy to genetically engineer yeasts to perform efficient fermentation of cellulosic materials for bioethanol production. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  16. Genetic variations in taste perception modify alcohol drinking behavior in Koreans.

    PubMed

    Choi, Jeong-Hwa; Lee, Jeonghee; Yang, Sarah; Kim, Jeongseon

    2017-06-01

    The sensory components of alcohol affect the onset of individual's drinking. Therefore, variations in taste receptor genes may lead to differential sensitivity for alcohol taste, which may modify an individual's drinking behavior. This study examined the influence of genetic variants in the taste-sensing mechanism on alcohol drinking behavior and the choice of alcoholic beverages. A total of 1829 Koreans were analyzed for their alcohol drinking status (drinker/non-drinker), total alcohol consumption (g/day), heavy drinking (≥30 g/day) and type of regularly consumed alcoholic beverages. Twenty-one genetic variations in bitterness, sweetness, umami and fatty acid sensing were also genotyped. Our findings suggested that multiple genetic variants modified individuals' alcohol drinking behavior. Genetic variations in the T2R bitterness receptor family were associated with overall drinking behavior. Subjects with the TAS2R38 AVI haplotype were less likely to be a drinker [odds ratio (OR): 0.75, 95% confidence interval (CI): 0.59-0.95], and TAS2R5 rs2227264 predicted the level of total alcohol consumption (p = 0.01). In contrast, the T1R sweet and umami receptor family was associated with heavy drinking. TAS1R3 rs307355 CT carriers were more likely to be heavy drinkers (OR: 1.53, 95% CI: 1.06-2.19). The genetic variants were also associated with the choice of alcoholic beverages. The homo-recessive type of TAS2R4 rs2233998 (OR: 1.62, 95% CI: 1.11-2.37) and TAS2R5 rs2227264 (OR: 1.72, 95% CI: 1.14-2.58) were associated with consumption of rice wine. However, TAS1R2 rs35874116 was associated with wine drinking (OR: 0.65, 95% CI: 0.43-0.98) and the consumption level (p = 0.04). These findings suggest that multiple genetic variations in taste receptors influence drinking behavior in Koreans. Genetic variations are also responsible for the preference of particular alcoholic beverages, which may contribute to an individual's alcohol drinking behavior. Copyright © 2017

  17. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System.

    PubMed

    Hoffman, Charles S; Wood, Valerie; Fantes, Peter A

    2015-10-01

    The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe. Copyright © 2015 by the Genetics Society of America.

  18. Gene-nutrient interaction markedly influences yeast chronological lifespan.

    PubMed

    Smith, Daniel L; Maharrey, Crystal H; Carey, Christopher R; White, Richard A; Hartman, John L

    2016-12-15

    Research into the genetic mechanisms of aging has expanded rapidly over the past two decades. This has in part been the result of the use of model organisms (particularly yeast, worms and flies) and high-throughput technologies, combined with a growing interest in aging research. Despite this progress, widespread consensus regarding the pathways that are fundamental to the modulation of cellular aging and lifespan for all organisms has been limited due to discrepancies between different studies. We have compared results from published genome-wide, chronological lifespan (CLS) screens of individual gene deletion strains in Saccharomyces cerevisiae in order to identify gene deletion strains with consistent influences on longevity as possible indicators of fundamental aging processes from this single-celled, eukaryotic model organism. Three previous reports have described genetic modifiers of chronological aging in the budding yeast (S. cerevisiae) using the yeast gene deletion strain collection. We performed a comparison among the data sets using correlation and decile distribution analysis to describe concordance between screens and identify strains that consistently increased or decreased CLS. We used gene enrichment analysis in an effort to understand the biology underlying genes identified in multiple studies. We attempted to replicate the different experimental conditions employed by the screens to identify potential sources of variability in CLS worth further investigating. Among 3209 strains present in all three screens, nine deletions strains were in common in the longest-lived decile (2.80%) and thirteen were in common in the shortest-lived decile (4.05%) of all three screens. Similarly, pairwise overlap between screens was low. When the same comparison was extended to three deciles to include more mutants studied in common between the three screens, enrichment of cellular processes based on gene ontology analysis in the long-lived strains remained very

  19. Gene-Nutrient Interaction Markedly Influences Yeast Chronological Lifespan

    PubMed Central

    Smith, Daniel L.; Maharrey, Crystal H.; Carey, Christopher R.; White, Richard A.; Hartman, John L.

    2016-01-01

    Purpose Research into the genetic mechanisms of aging has expanded rapidly over the past two decades. This has in part been the result of the use of model organisms (particularly yeast, worms and flies) and high-throughput technologies, combined with a growing interest in aging research. Despite this progress, widespread consensus regarding the pathways that are fundamental to the modulation of cellular aging and lifespan for all organisms has been limited due to discrepancies between different studies. We have compared results from published genome-wide, chronological lifespan (CLS) screens of individual gene deletion strains in S. cerevisiae in order to identify gene deletion strains with consistent influences on longevity as possible indicators of fundamental aging processes from this single-celled, eukaryotic model organism. Methods Three previous reports have described genetic modifiers of chronological aging in the budding yeast (S. cerevisiae) using the yeast gene deletion strain collection. We performed a comparison among the data sets using correlation and decile distribution analysis to describe concordance between screens and identify strains that consistently increased or decreased CLS. We used gene enrichment analysis in an effort to understand the biology underlying genes identified in multiple studies. We attempted to replicate the different experimental conditions employed by the screens to identify potential sources of variability in CLS worth further investigating. Results Among 3209 strains present in all three screens, nine (2.80%) deletions strains were in common in the longest-lived decile and thirteen (4.05%) were in common in the shortest-lived decile for all three screens. Similarly, pairwise overlap between screens was low. When the same comparison was extended to three deciles to include more mutants studied in common between the three screens, enrichment of cellular processes based on gene ontology analysis in the long-lived strains

  20. Experimental evolution of a sexually selected display in yeast

    PubMed Central

    Rogers, David W.; Greig, Duncan

    2008-01-01

    The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection. PMID:18842545

  1. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  2. Preliminary assessment of framework conditions for release of genetically modified mosquitoes in Burkina Faso.

    PubMed

    De Freece, Chenoa; Paré Toé, Léa; Esposito, Fulvio; Diabaté, Abdoulaye; Favia, Guido

    2014-09-01

    Genetically modified mosquitoes (GMMs) are emerging as a measure to control mosquito-borne diseases, but before any genetically modified organisms (GMOs) are released into the environment, it is imperative to establish regulatory standards incorporating public engagement. A previous project in Burkina Faso introduced a type of genetically modified cotton [Bacillus thuringiensis (Bt)] cotton) that produces insecticide, and incorporated policies on public engagement. We explored the perspectives of Burkinabè (citizens of Burkina Faso) on bio-agricultural exposure to GMOs and their receptiveness to the use of GMOs. Interviews were conducted in a village (Bondoukuy) and with representatives from stakeholder organizations. The population may be very receptive to the use of GMMs against malaria, but may voice unfounded concerns that GMMs can transmit other diseases. It is important to constantly supply the population with correct and factual information. Investigating the application of Burkina Faso's biotechnology policies with regard to Bt cotton has shown that it may be conceivable in the future to have open discussions about the merits of GMM release. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations.

    PubMed

    Cubillos, Francisco A; Vásquez, Claudia; Faugeron, Sylvain; Ganga, Angélica; Martínez, Claudio

    2009-01-01

    Saccharomyces cerevisiae is a model eukaryotic organism for classical genetics and genomics, and yet its ecology is still largely unknown. In this work, a population genetic analysis was performed on five yeast populations isolated from wine-making areas with different enological practices using simple sequence repeats and restriction fragment length polymorphism of mitochondrial DNA as molecular markers on 292 strains. In accordance with other studies, genome size estimation suggests that native S. cerevisiae strains are mainly homothallic and diploids. Analysis of mtDNA data showed that yeast populations from nonindustrial areas have 40% higher genetic diversity than populations isolated from industrial areas, demonstrating that industrial enological practices are likely to affect native yeast populations negatively by reducing its biodiversity. On the other hand, genetic differentiation analysis based on their microsatellite showed no correlation between genetic and geographic distance and a nonsignificant value when a Mantel test was applied. Finally, in the five populations studied, positive inbreeding (F(is)) values from 0.4 to 0.75, a low but significant level of linkage disequilibrium and a high number of multilocus genotypes were detected. These results strongly advocate that sexual reproduction is frequent enough to erase clonal signature in natural populations and that self-fertilization is the main mating system.

  4. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  5. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  6. Benefits and risks associated with genetically modified food products.

    PubMed

    Kramkowska, Marta; Grzelak, Teresa; Czyżewska, Krystyna

    2013-01-01

    Scientists employing methods of genetic engineering have developed a new group of living organisms, termed 'modified organisms', which found application in, among others, medicine, the pharmaceutical industry and food distribution. The introduction of transgenic products to the food market resulted in them becoming a controversial topic, with their proponents and contestants. The presented study aims to systematize objective data on the potential benefits and risks resulting from the consumption of transgenic food. Genetic modifications of plants and animals are justified by the potential for improvement of the food situation worldwide, an increase in yield crops, an increase in the nutritional value of food, and the development of pharmaceutical preparations of proven clinical significance. In the opinions of critics, however, transgenic food may unfavourably affect the health of consumers. Therefore, particular attention was devoted to the short- and long-lasting undesirable effects, such as alimentary allergies, synthesis of toxic agents or resistance to antibiotics. Examples arguing for the justified character of genetic modifications and cases proving that their use can be dangerous are innumerable. In view of the presented facts, however, complex studies are indispensable which, in a reliable way, evaluate effects linked to the consumption of food produced with the application of genetic engineering techniques. Whether one backs up or negates transgenic products, the choice between traditional and non-conventional food remains to be decided exclusively by the consumers.

  7. The power of fission: yeast as a tool for understanding complex splicing.

    PubMed

    Fair, Benjamin Jung; Pleiss, Jeffrey A

    2017-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.

  8. Mouse Sperm Cryopreservation and Recovery of Genetically Modified Mice.

    PubMed

    Low, Benjamin E; Taft, Rob A; Wiles, Michael V

    2016-01-01

    Highly definable genetically, the humble mouse is the "reagent" mammal of choice with which to probe and begin to understand the human condition in all its complexities. With the recent advance in direct genome editing via targeted nucleases, e.g., TALEN and CRISPR/Cas9, the possibilities in using these sophisticated tools have increased substantially leading to a massive increase in the variety of strain numbers of genetically modified lines. With this increase comes a greater need to economically and creatively manage their numbers. Further, once characterized, lines may be of limited use but still need to be archived in a format allowing their rapid resurrection. Further, maintaining colonies on "the shelf" is financially draining and carries potential risks including natural disaster loss, disease, and strain contamination. Here we outline a simple and economic protocol to cryopreserve mouse sperm from many different genetic backgrounds, and outline its recovery via in vitro fertilization (IVF). The combined use of sperm cryopreservation and IVF now allows a freedom and versatility in mouse management facilitating rapid line close down with the option to later recover and rapidly expand as needed.

  9. The fascinating and secret wild life of the budding yeast S. cerevisiae

    PubMed Central

    Liti, Gianni

    2015-01-01

    The budding yeast Saccharomyces cerevisiae has been used in laboratory experiments for over a century and has been instrumental in understanding virtually every aspect of molecular biology and genetics. However, it wasn't until a decade ago that the scientific community started to realise how little was known about this yeast's ecology and natural history, and how this information was vitally important for interpreting its biology. Recent large-scale population genomics studies coupled with intensive field surveys have revealed a previously unappreciated wild lifestyle of S. cerevisiae outside the restrictions of human environments and laboratories. The recent discovery that Chinese isolates harbour almost twice as much genetic variation as isolates from the rest of the world combined suggests that Asia is the likely origin of the modern budding yeast. DOI: http://dx.doi.org/10.7554/eLife.05835.001 PMID:25807086

  10. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur.

    PubMed

    Naseeb, Samina; James, Stephen A; Alsammar, Haya; Michaels, Christopher J; Gini, Beatrice; Nueno-Palop, Carmen; Bond, Christopher J; McGhie, Henry; Roberts, Ian N; Delneri, Daniela

    2017-06-01

    Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain.

  11. Puromycin and Methotrexate Resistance Cassettes and Optimized cre-recombinase Expression Plasmids for use in Yeast

    PubMed Central

    MacDonald, Chris; Piper, Robert C.

    2015-01-01

    Here we expand the set of tools for genetically manipulating Saccharomyces cerevisiae. We show that puromycin-resistance can be achieved in yeast through expression of a bacterial puromycin-resistance gene optimized to the yeast codon bias, which in turn serves as an easy to use dominant genetic marker suitable for gene disruption. We have constructed a similar DNA cassette expressing yeast codon-optimized mutant human dihydrofolate reductase (DHFR) that confers resistance to methotrexate and can also be used as a dominant selectable marker. Both of these drug-resistant marker cassettes are flanked by loxP sites allowing for their excision from the genome following expression of cre-recombinase. Finally, we have created a series of plasmids for low-level constitutive expression of cre-recombinase in yeast that allows for efficient excision of loxP-flanked markers. PMID:25688547

  12. Selection of oleaginous yeasts for fatty acid production.

    PubMed

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  13. Comparative genomics of biotechnologically important yeasts

    PubMed Central

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H.; Lopes, Mariana R.; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A.; Wisecaver, Jennifer H.; Long, Tanya M.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y.; Deshpande, Shweta; Douglass, Alexander P.; Hanson, Sara J.; Klenk, Hans-Peter; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Meier-Kolthoff, Jan P.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Rosa, Carlos A.; Scheuner, Carmen; Sibirny, Andriy A.; Slot, Jason C.; Stielow, J. Benjamin; Sun, Hui; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor V.

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  14. Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor.

    PubMed

    Kohlwein, Sepp D

    2017-05-01

    Lipids are essential biomolecules with diverse biological functions, ranging from building blocks for all biological membranes to energy substrates, signaling molecules, and protein modifiers. Despite advances in lipid analytics by mass spectrometry, the extraction and quantitative analysis of the diverse classes of lipids are still an experimental challenge. Yeast is a model organism that provides several advantages for studying lipid metabolism, because most biosynthetic pathways are well described and a great deal of information is available on the regulatory mechanisms that control lipid homeostasis. In addition, the composition of yeast lipids is much less complex than that of mammalian lipids, making yeast an excellent reference system for studying lipid-associated cell functions. © 2017 Cold Spring Harbor Laboratory Press.

  15. Transporter engineering in biomass utilization by yeast.

    PubMed

    Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko

    2017-11-01

    Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. [Application of DNA extraction kit, 'GM quicker' for detection of genetically modified soybeans].

    PubMed

    Sato, Noriko; Sugiura, Yoshitsugu; Tanaka, Toshitsugu

    2012-01-01

    Several DNA extraction methods have been officially introduced to detect genetically modified soybeans, but the choice of DNA extraction kits depend on the nature of the samples, such as grains or processed foods. To overcome this disadvantage, we examined whether the GM quicker kit is available for both grains and processed foods. We compared GM quicker with four approved DNA extraction kits in respect of DNA purity, copy numbers of lectin gene, and working time. We found that the DNA quality of GM quicker was superior to that of the other kits for grains, and the procedure was faster. However, in the case of processed foods, GM quicker was not superior to the other kits. We therefore investigated an unapproved GM quicker 3 kit, which is available for DNA extraction from processed foods, such as tofu and boiled soybeans. The GM quicker 3 kit provided good DNA quality from both grains and processed foods, so we made a minor modification of the GM quicker-based protocol that was suitable for processed foods, using GM quicker and its reagents. The modified method enhanced the performance of GM quicker with processed foods. We believe that GM quicker with the modified protocol is an excellent tool to obtain high-quality DNA from grains and processed foods for detection of genetically modified soybeans.

  17. Construction of a recombinant wine yeast strain expressing beta-(1,4)-endoglucanase and its use in microvinification processes.

    PubMed Central

    Pérez-González, J A; González, R; Querol, A; Sendra, J; Ramón, D

    1993-01-01

    A genetic transformation system for an industrial wine yeast strain is presented here. The system is based on the acquisition of cycloheximide resistance and is a direct adaptation of a previously published procedure for brewing yeasts (L. Del Pozo, D. Abarca, M. G. Claros, and A. Jiménez, Curr. Genet. 19:353-358, 1991). Transformants arose at an optimal frequency of 0.5 transformant per microgram of DNA, are stable in the absence of selective pressure, and produce wine in the same way as the untransformed industrial strain. By using this transformation protocol, a filamentous fungal beta-(1,4)-endoglucanase gene has been expressed in an industrial wine yeast under the control of the yeast actin gene promoter. Endoglucanolytic wine yeast secretes the fungal enzyme to the must, producing a wine with an increased fruity aroma. Images PMID:8215355

  18. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor.

    PubMed

    Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2018-04-01

    Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Is genetically modified crop the answer for the next green revolution?

    PubMed

    Basu, Saikat Kumar; Dutta, Madhuleema; Goyal, Aakash; Bhowmik, Pankaj Kumar; Kumar, Jitendra; Nandy, Sanjib; Scagliusi, Sandra Mansun; Prasad, Rajib

    2010-01-01

    Post-green revolution advances made in biotechnology paved the way of cultivating the high-yielding, stress and disease resistant genetically modified (GM) varieties of wheat, rice, maize cotton and several other crops. The recent rapid commercialization of the genetically modified crops in Asia, Americas and Australia indicates the potentiality of this new technology. GM crops give higher yields and are rich in nutritional values containing vitamins and minerals and can thus can help to alleviate hunger and malnutrition of the growing population in the under developed and developing countries. It could also be possible to develop more biotic and abiotic stress resistant genotypes in these crops where it was difficult to develop due to the unavailability of genes of resistance in the crossing germplasms. However, further research and investigations are needed to popularize the cultivation of these crops in different parts of the world. This review provides an insight of the impact of GM crops on contemporary agriculture across the past few decades, traces its' history across time, highlights new achievements and breakthroughs and discusses the future implication of this powerful technology in the coming few decades.

  20. Model studies on the detectability of genetically modified feeds in milk.

    PubMed

    Poms, R E; Hochsteiner, W; Luger, K; Glössl, J; Foissy, H

    2003-02-01

    Detecting the use of genetically modified feeds in milk has become important, because the voluntary labeling of milk and dairy products as "GMO free" or as "organically grown" prohibits the employment of genetically modified organisms (GMOs). The aim of this work was to investigate whether a DNA transfer from foodstuffs like soya and maize was analytically detectable in cow's milk after digestion and transportation via the bloodstream of dairy cows and, thus, whether milk could report for the employment of transgene feeds. Blood, milk, urine, and feces of dairy cows were examined, and foreign DNA was detected by polymerase chain reaction by specifically amplifying a 226-bp fragment of the maize invertase gene and a 118-bp fragment of the soya lectin gene. An intravenous application of purified plant DNA showed a fast elimination of marker DNA in blood or its reduction below the detection limit. With feeding experiments, it could be demonstrated that a specific DNA transfer from feeds into milk was not detectable. Therefore, foreign DNA in milk cannot serve as an indicator for the employment of transgene feeds unless milk is directly contaminated with feed components or airborne feed particles.

  1. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    PubMed

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  2. ASSESSMENT OF ALLERGENIC POTENTIAL OF GENETICALLY MODIFIED FOODS: AN AGENDA FOR FUTURE RESEARCH

    EPA Science Inventory

    Abstract
    Speakers and participants in the Workshop Assessment of the Allergenic Potential of Genetically Modified Foods met in breakout groups to discuss a number of issues including needs for future research. There was agreement that research should move forward quickly in t...

  3. Compositions and methods for increased ethanol titer from biomass

    DOEpatents

    Jessen, Holly J.; Yi, Jian

    2016-11-15

    The present application discloses the identification of novel I. orientalis ADH1, ADHa, and ADHb genes, and the production and characterization of genetically modified yeast cells in which these genes were altered. Provided herein are isolated I. orientalis ADH1, ADHa, and ADHb polynucleotides and polypeptides, genetically modified yeast cells that overexpress I. orientalis ADH1 and/or contain deletions or disruptions of ADHa and/or ADHb, and methods of using culturing these modified cells to produce ethanol.

  4. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs).

    PubMed

    Nesvold, Håvard; Kristoffersen, Anja Bråthen; Holst-Jensen, Arne; Berdal, Knut G

    2005-05-01

    Unknown genetically modified organisms (GMOs) have not undergone a risk evaluation, and hence might pose a danger to health and environment. There are, today, no methods for detecting unknown GMOs. In this paper we propose a novel method intended as a first step in an approach for detecting unknown genetically modified (GM) material in a single plant. A model is designed where biological and combinatorial reduction rules are applied to a set of DNA chip probes containing all possible sequences of uniform length n, creating probes capable of detecting unknown GMOs. The model is theoretically tested for Arabidopsis thaliana Columbia, and the probabilities for detecting inserts and receiving false positives are assessed for various parameters for this organism. From a theoretical standpoint, the model looks very promising but should be tested further in the laboratory. The model and algorithms will be available upon request to the corresponding author.

  5. Metabolic engineering of yeast for production of fuels and chemicals.

    PubMed

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Naumovozyma castellii: an alternative model for budding yeast molecular biology.

    PubMed

    Karademir Andersson, Ahu; Cohn, Marita

    2017-03-01

    Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. A High-Throughput Genetic Complementation Assay in Yeast Cells Identified Selective Inhibitors of Sphingosine Kinase 1 Not Found Using a Cell-Free Enzyme Assay.

    PubMed

    Kashem, Mohammed A; Kennedy, Charles A; Fogarty, Kylie E; Dimock, Janice R; Zhang, Yunlong; Sanville-Ross, Mary L; Skow, Donna J; Brunette, Steven R; Swantek, Jennifer L; Hummel, Heidi S; Swindle, John; Nelson, Richard M

    2016-01-01

    Sphingosine kinase 1 (SphK1) is a lipid kinase that phosphorylates sphingosine to produce the bioactive sphingolipid, sphingosine-1-phosphate (S1P), and therefore represents a potential drug target for a variety of pathological processes such as fibrosis, inflammation, and cancer. We developed two assays compatible with high-throughput screening to identify small-molecule inhibitors of SphK1: a purified component enzyme assay and a genetic complementation assay in yeast cells. The biochemical enzyme assay measures the phosphorylation of sphingosine-fluorescein to S1P-fluorescein by recombinant human full-length SphK1 using an immobilized metal affinity for phosphochemicals (IMAP) time-resolved fluorescence resonance energy transfer format. The yeast assay employs an engineered strain of Saccharomyces cerevisiae, in which the human gene encoding SphK1 replaced the yeast ortholog and quantitates cell viability by measuring intracellular adenosine 5'-triphosphate (ATP) using a luciferase-based luminescent readout. In this assay, expression of human SphK1 was toxic, and the resulting yeast cell death was prevented by SphK1 inhibitors. We optimized both assays in a 384-well format and screened ∼10(6) compounds selected from the Boehringer Ingelheim library. The biochemical IMAP high-throughput screen identified 5,561 concentration-responsive hits, most of which were ATP competitive and not selective over sphingosine kinase 2 (SphK2). The yeast screen identified 205 concentration-responsive hits, including several distinct compound series that were selective against SphK2 and were not ATP competitive.

  8. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2017-04-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  9. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-06-01

    A large-scale cross-sectional study ( N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  10. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    PubMed

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  11. Investigating Novice and Expert Conceptions of Genetically Modified Organisms

    PubMed Central

    Potter, Lisa M.; Bissonnette, Sarah A.; Knight, Jonathan D.; Tanner, Kimberly D.

    2017-01-01

    The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students’ conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non–biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales. PMID:28821537

  12. Learning to Argue as a Biotechnologist: Disprivileging Opposition to Genetically Modified Food

    ERIC Educational Resources Information Center

    Solli, Anne; Bach, Frank; Åkerman, Björn

    2014-01-01

    In the public discussion of genetically modified (GM) food the representations of science as a social good, conducted in the public interest to solve major problems are being subjected to intense scrutiny and questioning. Scientists working in these areas have been seen to struggle for the position of science in society. However few in situ…

  13. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur

    PubMed Central

    Alsammar, Haya; Michaels, Christopher J.; Gini, Beatrice; Nueno-Palop, Carmen; Bond, Christopher J.; McGhie, Henry; Roberts, Ian N.

    2017-01-01

    Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain. PMID:28639933

  14. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  15. Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding.

    PubMed

    Knop, Michael

    2006-07-01

    The term 'breeding system' is used to describe the morphological and behavioural aspects of the sexual life cycle of a species. The yeast breeding system provides three alternatives that enable hapoids to return to the diploid state that is necessary for meiosis: mating of unrelated haploids (amphimixis), mating between spores from the same tetrad (intratetrad mating, automixis) and mother daughter mating upon mating type switching (haplo-selfing). The frequency of specific mating events affects the level of heterozygosity present in individuals and the genetic diversity of populations. This review discusses the reproductive strategies of yeasts, in particular S. cerevisiae (Bakers' or budding yeast). Emphasis is put on intratetrad mating, its implication for diversity, and how the particular genome structure could have evolved to ensure the preservation of a high degree of heterozygosity in conjunction with frequent intratetrad matings. I also discuss how the ability of yeast to control the number of spores that are formed accounts for high intratetrad mating rates and for enhanced transmission of genomic variation. I extend the discussion to natural genetic variation and propose that a high level of plasticity is inherent in the yeast breeding system, which may allow variation of the breeding behaviour in accordance with the needs imposed by the environment. (c) 2006 Wiley Periodicals, Inc.

  16. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease

    PubMed Central

    Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.

    2015-01-01

    The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739

  17. Detecting un-authorized genetically modified organisms (GMOs) and derived materials.

    PubMed

    Holst-Jensen, Arne; Bertheau, Yves; de Loose, Marc; Grohmann, Lutz; Hamels, Sandrine; Hougs, Lotte; Morisset, Dany; Pecoraro, Sven; Pla, Maria; Van den Bulcke, Marc; Wulff, Doerte

    2012-01-01

    Genetically modified plants, in the following referred to as genetically modified organisms or GMOs, have been commercially grown for almost two decades. In 2010 approximately 10% of the total global crop acreage was planted with GMOs (James, 2011). More than 30 countries have been growing commercial GMOs, and many more have performed field trials. Although the majority of commercial GMOs both in terms of acreage and specific events belong to the four species: soybean, maize, cotton and rapeseed, there are another 20+ species where GMOs are commercialized or in the pipeline for commercialization. The number of GMOs cultivated in field trials or for commercial production has constantly increased during this time period. So have the number of species, the number of countries involved, the diversity of novel (added) genetic elements and the global trade. All of these factors contribute to the increasing complexity of detecting and correctly identifying GMO derived material. Many jurisdictions, including the European Union (EU), legally distinguish between authorized (and therefore legal) and un-authorized (and therefore illegal) GMOs. Information about the developments, field trials, authorizations, cultivation, trade and observations made in the official GMO control laboratories in different countries around the world is often limited, despite several attempts such as the OECD BioTrack for voluntary dissemination of data. This lack of information inevitably makes it challenging to detect and identify GMOs, especially the un-authorized GMOs. The present paper reviews the state of the art technologies and approaches in light of coverage, practicability, sensitivity and limitations. Emphasis is put on exemplifying practical detection of un-authorized GMOs. Although this paper has a European (EU) bias when examples are given, the contents have global relevance. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. O-ribosyl-phosphate purine as a constant modified nucleotide located at position 64 in cytoplasmic initiator tRNAs(Met) of yeasts.

    PubMed Central

    Glasser, A L; Desgres, J; Heitzler, J; Gehrke, C W; Keith, G

    1991-01-01

    The unknown modified nucleotide G*, isolated from both Schizosaccharomyces pombe and Torulopsis utilis initiator tRNAs(Met), has been identified as an O-ribosyl-(1"----2')-guanosine-5"-phosphate, called Gr(p), by means of HPLC, UV-absorption, mass spectrometry and periodate oxidation procedures. By comparison with the previously published structure of Ar(p) isolated from Saccharomyces cerevisiae initiator tRNA(Met), the (1"----2')-glycosidic bond in Gr(p) has been postulated to have a beta-spatial conformation. The modified nucleotide Gr(p) is located at position 64 in the tRNA(Met) molecules, i.e. at the same position as Ar(p). Since we have also characterized Gr(p) in Candida albicans initiator tRNA(Met), the phosphoribosylation of purine 64 can be considered as a constant nucleotide modification in the cytoplasmic initiator tRNAs(Met) of all yeast species so far sequenced. Precise evidence for the presence of Gr(p) in initiator tRNAs(Met) of several plants is also reported. PMID:1656390

  19. Safety assessment and detection methods of genetically modified organisms.

    PubMed

    Xu, Rong; Zheng, Zhe; Jiao, Guanglian

    2014-01-01

    Genetically modified organisms (GMOs), are gaining importance in agriculture as well as the production of food and feed. Along with the development of GMOs, health and food safety concerns have been raised. These concerns for these new GMOs make it necessary to set up strict system on food safety assessment of GMOs. The food safety assessment of GMOs, current development status of safety and precise transgenic technologies and GMOs detection have been discussed in this review. The recent patents about GMOs and their detection methods are also reviewed. This review can provide elementary introduction on how to assess and detect GMOs.

  20. Unintended Effects in Genetically Modified Food/Feed Safety: A Way Forward.

    PubMed

    Fernandez, Antonio; Paoletti, Claudia

    2018-04-20

    Identifying and assessing unintended effects in genetically modified food and feed are considered paramount by the Food and Agricultural Organization (FAO), World Health Organization (WHO), and Codex Alimentarius, despite heated debate. This paper addresses outstanding needs: building consensus on the history-of-safe-use concept, harmonizing criteria to select appropriate conventional counterparts, and improving endpoint selection to identify unintended effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, Marjanka K; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B.; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A.M.; Meijers-Heijboer, Hanne E.J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P.G.; Hoogerbrugge, Nicoline; Ausems, Margreet G.E.M.; van Doorn, Helena C.; Collée, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan

    2014-01-01

    Background BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes. Methods Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. Results The observed p-values of association ranged between 0.005-1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. Conclusion There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Impact Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. PMID:25336561

  2. Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.

    PubMed

    Kogje, Anushree B; Ghosalkar, Anand

    2017-06-01

    Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5' and 3' delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L -1  h -1 ) over the control strain XP (81 mg L -1  h -1 ). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L -1  h -1 and titre of 47 g L -1 of xylitol at 12 g L -1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol -1 ) was significantly lower than glucose (23.7 mol mol -1 ). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.

  3. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  4. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25

    PubMed Central

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-01-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053

  5. Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?

    PubMed

    Bermúdez-Humarán, Luis G; Langella, Philippe

    2017-09-01

    Probiotics are live, nonpathogenic microorganisms that confer benefits to human health when administered in adequate amounts. Among the frequent proposed health benefits attributed to probiotics, their ability to interact with the host immune system is now well demonstrated. Although history has revealed that probiotics were part of fermented foods in the past, clinicians have started to use them therapeutically in regular diets. Moreover, the use of genetically modified probiotics to deliver molecules of therapeutic interest is gaining importance as an extension of the probiotic concept. This chapter summarizes some of the recent findings and perspectives on the use of both traditional and genetically modified probiotics to treat human diseases as well as what the future may hold concerning the use of these probiotics in humans.

  6. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed Central

    Hoang, Don; Kopp, Artyom

    2015-01-01

    . melanogaster when given the choice between a naturally associated yeast and S. cerevisiae. We do not find a correlation between preferred yeasts and those that persist in the intestine. Notably, in no instances is S. cerevisiae preferred over the naturally associated strains. Overall, our results show that D. melanogaster-yeast interactions are more complex than might be revealed in experiments that use only S. cerevisiae. We propose that future research utilize other yeasts, and especially those that are naturally associated with Drosophila, to more fully understand the role of yeasts in Drosophila biology. Since the genetic basis of host–microbe interactions is shared across taxa and since many of these genes are initially discovered in D. melanogaster, a more realistic fly-yeast model system will benefit our understanding of host–microbe interactions throughout the animal kingdom. PMID:26336636

  7. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    . melanogaster when given the choice between a naturally associated yeast and S. cerevisiae. We do not find a correlation between preferred yeasts and those that persist in the intestine. Notably, in no instances is S. cerevisiae preferred over the naturally associated strains. Overall, our results show that D. melanogaster-yeast interactions are more complex than might be revealed in experiments that use only S. cerevisiae. We propose that future research utilize other yeasts, and especially those that are naturally associated with Drosophila, to more fully understand the role of yeasts in Drosophila biology. Since the genetic basis of host-microbe interactions is shared across taxa and since many of these genes are initially discovered in D. melanogaster, a more realistic fly-yeast model system will benefit our understanding of host-microbe interactions throughout the animal kingdom.

  8. Development of a Rapid Immunochromatographic Lateral Flow Device Capable of Differentiating Phytase Expressed from Recombinant Aspergillus niger phyA2 and Genetically Modified Corn.

    PubMed

    Zhou, Xiaojin; Hui, Elizabeth; Yu, Xiao-Lin; Lin, Zhen; Pu, Ling-Kui; Tu, Zhiguan; Zhang, Jun; Liu, Qi; Zheng, Jian; Zhang, Juan

    2015-05-06

    Phytase is a phosphohydrolase considered highly specific for the degradation of phytate to release bound phosphorus for animal consumption and aid in the reduction of environmental nutrient loading. New sources of phytase have been sought that are economically and efficiently productive including the construction of genetically modified (GM) phytase products designed to bypass the costs associated with feed processing. Four monoclonal antibodies (EH10a, FA7, AF9a, and CC1) raised against recombinant Aspergillus niger phyA2 were used to develop a highly specific and sensitive immunochromatographic lateral flow device for rapid detection of transgenic phytase, such as in GM corn. Antibodies sequentially paired and tested along lateral flow strips showed that the EH10a-FA7 antibody pair was able to detect the recombinant yeast-phytase at 5 ng/mL, whereas the AF9a-CC1 antibody pair to GM phytase corn was able to detect at 2 ng/mL. Concurrent to this development, evidence was revealed which suggests that antibody binding sites may be glycosylated.

  9. Nectar yeasts warm the flowers of a winter-blooming plant

    PubMed Central

    Herrera, Carlos M.; Pozo, María I.

    2010-01-01

    Yeasts are ubiquitous in terrestrial and aquatic microbiota, yet their ecological functionality remains relatively unexplored in comparison with other micro-organisms. This paper formulates and tests the novel hypothesis that heat produced by the sugar catabolism of yeast populations inhabiting floral nectar can increase the temperature of floral nectar and, more generally, modify the within-flower thermal microenvironment. Two field experiments were designed to test this hypothesis for the winter-blooming herb Helleborus foetidus (Ranunculaceae). In experiment 1, the effect of yeasts on the within-flower thermal environment was tested by excluding them from flowers, while in experiment 2 the test involved artificial inoculation of virgin flowers with yeasts. Nectary temperature (Tnect), within-flower air temperature (Tflow) and external air temperature (Tair) were measured on experimental and control flowers in both experiments. Experimental exclusion of yeasts from the nectaries significantly reduced, and experimental addition of yeasts significantly increased, the temperature excess of nectaries (ΔTnect = Tnect − Tair) and the air space inside flowers in relation to the air just outside the flowers. In non-experimental flowers exposed to natural pollinator visitation, ΔTnect was linearly related to log yeast cell density in nectar, and reached +6°C in nectaries with the densest yeast populations. The warming effect of nectar-dwelling yeasts documented in this study suggests novel ecological mechanisms potentially linking nectarivorous microbes with winter-blooming plants and their insect pollinators. PMID:20147331

  10. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses.

    PubMed

    Cubillos, Francisco A; Brice, Claire; Molinet, Jennifer; Tisné, Sebastién; Abarca, Valentina; Tapia, Sebastián M; Oporto, Christian; García, Verónica; Liti, Gianni; Martínez, Claudio

    2017-06-07

    Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1 , PDC1 , CPS1 , ASI2 , LYP1 , and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics. Copyright © 2017 Cubillos et al.

  11. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses

    PubMed Central

    Cubillos, Francisco A.; Brice, Claire; Molinet, Jennifer; Tisné, Sebastién; Abarca, Valentina; Tapia, Sebastián M.; Oporto, Christian; García, Verónica; Liti, Gianni; Martínez, Claudio

    2017-01-01

    Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics. PMID:28592651

  12. Clinical potential and challenges of using genetically modified cells for articular cartilage repair.

    PubMed

    Madry, Henning; Cucchiarini, Magali

    2011-06-01

    Articular cartilage defects do not regenerate. Transplantation of autologous articular chondrocytes, which is clinically being performed since several decades, laid the foundation for the transplantation of genetically modified cells, which may serve the dual role of providing a cell population capable of chondrogenesis and an additional stimulus for targeted articular cartilage repair. Experimental data generated so far have shown that genetically modified articular chondrocytes and mesenchymal stem cells (MSC) allow for sustained transgene expression when transplanted into articular cartilage defects in vivo. Overexpression of therapeutic factors enhances the structural features of the cartilaginous repair tissue. Combined overexpression of genes with complementary mechanisms of action is also feasible, holding promises for further enhancement of articular cartilage repair. Significant benefits have been also observed in preclinical animal models that are, in principle, more appropriate to the clinical situation. Finally, there is convincing proof of concept based on a phase I clinical gene therapy study in which transduced fibroblasts were injected into the metacarpophalangeal joints of patients without adverse events. To realize the full clinical potential of this approach, issues that need to be addressed include its safety, the choice of the ideal gene vector system allowing for a long-term transgene expression, the identification of the optimal therapeutic gene(s), the transplantation without or with supportive biomaterials, and the establishment of the optimal dose of modified cells. As safe techniques for generating genetically engineered articular chondrocytes and MSCs are available, they may eventually represent new avenues for improved cell-based therapies for articular cartilage repair. This, in turn, may provide an important step toward the unanswered question of articular cartilage regeneration.

  13. TRACKING GENE FLOW FROM A GENETICALLY MODIFIED CREEPING BENTGRASS -- METHODS, MEASURES AND LESSONS LEARNED

    EPA Science Inventory

    Creeping bentgrass (CBG) expressing an engineered gene for resistance to glyphosate herbicide is one of the first genetically modified (GM) perennial crops to undergo regulatory review for commercial release by the US Department of Agriculture Animal Plant Health and Inspection S...

  14. Safety assessment of EPA-rich triglyceride oil produced from yeast: genotoxicity and 28-day oral toxicity in rats.

    PubMed

    Belcher, Leigh A; MacKenzie, Susan A; Donner, Maria; Sykes, Greg P; Frame, Steven R; Gillies, Peter J

    2011-02-01

    The 28-day repeat-dose oral and genetic toxicity of eicosapentaenoic acid triglyceride oil (EPA oil) produced from genetically modified Yarrowia lipolytica yeast were assessed. Groups of rats received 0 (olive oil), 940, 1880, or 2820 mg EPA oil/kg/day, or fish oil (sardine/anchovy source) by oral gavage. Lower total serum cholesterol was seen in all EPA and fish oil groups. Liver weights were increased in the medium and high-dose EPA (male only), and fish oil groups but were considered non-adverse physiologically adaptive responses. Increased thyroid follicular cell hypertrophy was observed in male high-dose EPA and fish oil groups, and was considered to be an adaptive response to high levels of polyunsaturated fatty acids. No adverse test substance-related effects were observed on body weight, nutritional, or other clinical or anatomic pathology parameters. The oil was not mutagenic in the in vitro Ames or mouse lymphoma assay, and was not clastogenic in the in vivo mouse micronucleus test. In conclusion, exposure for 28 days to EPA oil derived from yeast did not produce adverse effects at doses up to 2820 mg/kg/day and was not genotoxic. The safety profile of the EPA oil in these tests was comparable to a commercial fish oil. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system

    USDA-ARS?s Scientific Manuscript database

    A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a differ...

  16. Health risks of genetically modified foods.

    PubMed

    Dona, Artemis; Arvanitoyannis, Ioannis S

    2009-02-01

    As genetically modified (GM) foods are starting to intrude in our diet concerns have been expressed regarding GM food safety. These concerns as well as the limitations of the procedures followed in the evaluation of their safety are presented. Animal toxicity studies with certain GM foods have shown that they may toxically affect several organs and systems. The review of these studies should not be conducted separately for each GM food, but according to the effects exerted on certain organs it may help us create a better picture of the possible health effects on human beings. The results of most studies with GM foods indicate that they may cause some common toxic effects such as hepatic, pancreatic, renal, or reproductive effects and may alter the hematological, biochemical, and immunologic parameters. However, many years of research with animals and clinical trials are required for this assessment. The use of recombinant GH or its expression in animals should be re-examined since it has been shown that it increases IGF-1 which may promote cancer.

  17. Genetically Modified Crops and Food Security

    PubMed Central

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15–20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy. PMID:23755155

  18. Genetically modified crops and food security.

    PubMed

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  19. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding.

    PubMed

    Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M

    1999-02-01

    Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.

  20. Mutants of the Paf1 Complex Alter Phenotypic Expression of the Yeast Prion [PSI+

    PubMed Central

    Strawn, Lisa A.; Lin, Changyi A.; Tank, Elizabeth M.H.; Osman, Morwan M.; Simpson, Sarah A.

    2009-01-01

    The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability. PMID:19225160

  1. Downsides and benefits of unicellularity in budding yeast

    NASA Astrophysics Data System (ADS)

    Balazsi, Gabor; Chen, Lin; Kuzdzal-Fick, Jennie

    Yeast cells that do not separate after cell division form clumps. Clumping was shown to aid utilization of certain sugars, but its effects in stressful conditions are unknown. Generally speaking, what are the costs and benefits of unicellularity versus clumping multicellularity in normal and stressful conditions? To address this question, we evolved clumping yeast towards unicellularity by continuously propagating only those cells that remain suspended in liquid culture after settling. Whole-genome sequencing indicated that mutations in the AMN1 (antagonist of mitotic exit network) gene underlie the changes from clumping to unicellular phenotypes in these evolved yeast cells. Simple models predict that clumping should hinder growth in normal conditions while being protective in stress. Accordingly, we find experimentally that yeast clumps are more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts. On the other hand, unicellularity seems to be advantageous in normal conditions. Overall, these results reveal the downsides and benefits of unicellularity in different environmental conditions and uncover its genetic bases in yeast. This research was supported by the NIH Director's New Innovator Award Program (1DP2 OD006481-01), by NSF/IOS 1021675 and the Laufer Center for Physical & Quantitative Biology.

  2. Physico-Chemical Properties and Biodegradability of Genetically Modified Populus trichocarpa and Pinus taeda

    NASA Astrophysics Data System (ADS)

    Edmunds, Charles Warren

    Increasing concerns over greenhouse gas emissions and the finite supply of fossil fuels lead to the goal of utilizing lignocellulosic feedstocks for biofuels, platform chemicals, and biocomposites. Lignin is responsible for the recalcitrance of lignocellulosic biomass and is a major barrier to its deconstruction. Great progress has been made in mapping and modifying the lignin biosynthetic pathway. However, the link between the genetic modification, resulting chemical and physical properties of the wood, and how these properties influence the thermomechanical and recalcitrance to biological and chemical degradation needs further investigation. In this dissertation, the study of modified Populus trichocarpa and Pinus taeda were utilized to accomplish this goal. Thermo-mechanical properties of genetically modified P. trichocarpa with altered lignin content and/or lignin structure were measured with a series of tools including; dynamic mechanical analysis, nuclear magnetic resonance, and wet chemistry techniques. Results demonstrated lignin content and lignin structure likely influence the glass transition temperature (Tg), and that decreased lignin content and the corresponding higher proportion of cell wall carbohydrates may contribute to increased molecular mobility in the wood polymer structure. The effect of lignin biosynthetic pathway modification on biological degradation of these transgenic wood specimens was of interest. However, experimental methods for fungal treatment on small young greenhouse-grown wood specimens are not well established. Therefore, a project was undertaken to develop a method for fungal inoculation and incubation for these unique specimens. Several parameters were tested, and a fungal treatment method was identified with sufficient weight loss after decay and significant reduction in variation of weight loss between replicates compared to previous experiments by direct inoculation of wood with liquid malt extract fungal culture

  3. [Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].

    PubMed

    Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B

    2016-01-01

    For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.

  4. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    PubMed

    Guo, Yi-Cheng; Zhang, Lin; Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  5. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage. PMID:27152421

  6. Systematic exploration of essential yeast gene function with temperature-sensitive mutants

    PubMed Central

    Li, Zhijian; Vizeacoumar, Franco J; Bahr, Sondra; Li, Jingjing; Warringer, Jonas; Vizeacoumar, Frederick S; Min, Renqiang; VanderSluis, Benjamin; Bellay, Jeremy; DeVit, Michael; Fleming, James A; Stephens, Andrew; Haase, Julian; Lin, Zhen-Yuan; Baryshnikova, Anastasia; Lu, Hong; Yan, Zhun; Jin, Ke; Barker, Sarah; Datti, Alessandro; Giaever, Guri; Nislow, Corey; Bulawa, Chris; Myers, Chad L; Costanzo, Michael; Gingras, Anne-Claude; Zhang, Zhaolei; Blomberg, Anders; Bloom, Kerry; Andrews, Brenda; Boone, Charles

    2012-01-01

    Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes. PMID:21441928

  7. Mutant power: using mutant allele collections for yeast functional genomics.

    PubMed

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast.

    PubMed

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A

    2016-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3' end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. Copyright © 2016 Larson et al.

  9. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast

    PubMed Central

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A.

    2016-01-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183

  10. STS-115 MS MacLean holds Yeast GAP in the FWD MDDK of the Space Shuttle Atlantis during Joint Operations

    NASA Image and Video Library

    2006-09-19

    S115-E-07273 (9-21 Sept. 2006) --- Astronaut Heidemarie M. Stefanyshyn-Piper, STS-115 mission specialist, works with the Yeast-Group Activation Packs (Yeast-GAP) on the middeck of Space Shuttle Atlantis. Yeast-GAP experiment studies the effects of genetic changes of yeast cells exposed to the space environment. The results will help scientists to understand how cells respond to radiation and microgravity.

  11. STS-115 MS MacLean holds Yeast GAP in the FWD MDDK of the Space Shuttle Atlantis during Joint Operations

    NASA Image and Video Library

    2006-09-19

    S115-E-07274 (9-21 Sept. 2006) --- Astronaut Heidemarie M. Stefanyshyn-Piper, STS-115 mission specialist, works with the Yeast-Group Activation Packs (Yeast-GAP) on the middeck of Space Shuttle Atlantis. Yeast-GAP experiment studies the effects of genetic changes of yeast cells exposed to the space environment. The results will help scientists to understand how cells respond to radiation and microgravity.

  12. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    PubMed

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Safety assessment of genetically modified plants with deliberately altered composition

    PubMed Central

    Halford, Nigel G; Hudson, Elizabeth; Gimson, Amy; Weightman, Richard; Shewry, Peter R; Tompkins, Steven

    2014-01-01

    The development and marketing of ‘novel’ genetically modified (GM) crops in which composition has been deliberately altered poses a challenge to the European Union (EU)'s risk assessment processes, which are based on the concept of substantial equivalence with a non-GM comparator. This article gives some examples of these novel GM crops and summarizes the conclusions of a report that was commissioned by the European Food Safety Authority on how the EU's risk assessment processes could be adapted to enable their safety to be assessed. PMID:24735114

  14. [The lack of information on genetically modified organisms in Brazil].

    PubMed

    Ribeiro, Isabelle Geoffroy; Marin, Victor Augustus

    2012-02-01

    This article presents a review about the labeling of products that have Genetically Modified Organisms (GMO), also called transgenic elements in their composition. It addresses the conventions, laws and regulations relating to such products currently governing the market, the adequacy of these existing standards and their acceptance by society. It also examines the importance of the cautionary principle when assessing the application of new technologies or technologies where little is known or where there is no relevant scientific knowledge about the potential risks to the environment, human health and society.

  15. Comparison of Yeasts as Hosts for Recombinant Protein Production.

    PubMed

    Vieira Gomes, Antonio Milton; Souza Carmo, Talita; Silva Carvalho, Lucas; Mendonça Bahia, Frederico; Parachin, Nádia Skorupa

    2018-04-29

    Recombinant protein production emerged in the early 1980s with the development of genetic engineering tools, which represented a compelling alternative to protein extraction from natural sources. Over the years, a high level of heterologous protein was made possible in a variety of hosts ranging from the bacteria Escherichia coli to mammalian cells. Recombinant protein importance is represented by its market size, which reached $1654 million in 2016 and is expected to reach $2850.5 million by 2022. Among the available hosts, yeasts have been used for producing a great variety of proteins applied to chemicals, fuels, food, and pharmaceuticals, being one of the most used hosts for recombinant production nowadays. Historically, Saccharomyces cerevisiae was the dominant yeast host for heterologous protein production. Lately, other yeasts such as Komagataella sp., Kluyveromyces lactis , and Yarrowia lipolytica have emerged as advantageous hosts. In this review, a comparative analysis is done listing the advantages and disadvantages of using each host regarding the availability of genetic tools, strategies for cultivation in bioreactors, and the main techniques utilized for protein purification. Finally, examples of each host will be discussed regarding the total amount of protein recovered and its bioactivity due to correct folding and glycosylation patterns.

  16. An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae

    PubMed Central

    Lee, Insuk; Li, Zhihua; Marcotte, Edward M.

    2007-01-01

    Background Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org. PMID:17912365

  17. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  19. Opinion Building on a Socio-Scientific Issue: The Case of Genetically Modified Plants

    ERIC Educational Resources Information Center

    Ekborg, Margareta

    2008-01-01

    This paper presents results from a study with the following research questions: (a) are pupils' opinions on genetically modified organisms (GMOs) influenced by biology teaching; and (b) what is important for the opinion pupils hold and how does knowledge work together with other parameters such as values? 64 pupils in an upper secondary school…

  20. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast.

    PubMed

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A

    2014-03-01

    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.

  1. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    PubMed Central

    Erickson, J. R.; Johnston, M.

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When yeast is cotransformed with linearized plasmid and lambda clone DNA, Ura(+) transformants are obtained by a recombination event between the lambda clone and the plasmid vector that generates an autonomously replicating plasmid containing the cloned yeast DNA sequences. Genes whose genetic map positions are known can easily be identified and recovered in this plasmid by testing only those lambda clones that map to the relevant region of the yeast genome for their ability to complement the mutant phenotype. This technique facilitates the isolation of yeast genes that resist cloning either because (1) they are underrepresented in yeast genomic libraries amplified in E. coli, (2) they provide phenotypes that are too marginal to allow selection of the gene by genetic complementation or (3) they provide phenotypes that are laborious to score. We demonstrate the utility of this technique by isolating three genes, GAL83, SSN2 and MAK7, each of which presents one of these problems for cloning. PMID:8514124

  2. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    PubMed

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Construction of a lactose-assimilating strain of baker's yeast.

    PubMed

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey. Copyright 1999 John Wiley & Sons, Ltd.

  4. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-04

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.

  5. Traceability of genetically modified organisms.

    PubMed

    Aarts, Henk J M; van Rie, Jean-Paul P F; Kok, Esther J

    2002-01-01

    EU regulations stipulate the labeling of food products containing genetically modified organisms (GMOs) unless the GMO content is due to adventitious and unintended 'contamination' and not exceeding the 1% level at ingredient basis. In addition, member states have to ensure full traceability at all stages of the placing on the market of GMOs. Both requirements ensure consumers 'right to know', facilitate enforcement of regulatory requirements and are of importance for environmental monitoring and postmarket surveillance. Besides administrative procedures, such as used in quality certification systems, the significance of adequate molecular methods becomes more and more apparent. During the last decade a considerable number of molecular methods have been developed and validated that enable the detection, identification and quantification of GMO impurities. Most of them rely on the PCR technology and can only detect one specific stretch of DNA. It can, however, be anticipated that in the near future the situation will become more complex. The number of GMO varieties, including 'stacked-gene' varieties, which will enter the European Market will increase and it is likely that these varieties will harbor more variable constructs. New tools will be necessary to keep up with these developments. One of the most promising techniques is microarray analysis. This technique enables the screening for a large number of different GMOs within a single experiment.

  6. The hydrolytic activity of esterases in the yeast Saccharomyces cerevisiae is strain dependent.

    PubMed

    Kwolek-Mirek, Magdalena; Bednarska, Sabina; Zadrąg-Tęcza, Renata; Bartosz, Grzegorz

    2011-11-01

    Ester precursors of fluorogenic or chromogenic probes are often employed in studies of yeast cell biology. This study was aimed at a comparison of the ability of several commonly used laboratory wild-type Saccharomyces cerevisiae strains to hydrolyse the following model esters: fluorescein diacetate, 2-naphthyl acetate, PNPA (p-nitrophenyl acetate) and AMQI (7-acetoxy-1-methylquinolinum iodide). In all the strains, the esterase activity was localized mainly to the cytosol. Considerable differences in esterase activity were observed between various wild-type laboratory yeast strains. The phase of growth also contributed to the variation in esterase activity of the yeast. This diversity implies the need for caution in using intracellularly hydrolysed probes for a comparison of yeast strains with various genetic backgrounds.

  7. Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    PubMed Central

    Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  8. Engineering baker's yeast: room for improvement.

    PubMed

    Randez-Gil, F; Sanz, P; Prieto, J A

    1999-06-01

    Bread making is one of the oldest food-manufacturing processes. However, it is only in the past few years that recombinant-DNA technology has led to dramatic changes in formulation, ingredients or processing conditions. New strains of baker's yeast that produce CO2 more rapidly, are more resistant to stress or produce proteins or metabolites that can modify bread flavour, dough rheology or shelf-life are now emerging.

  9. a Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks

    NASA Astrophysics Data System (ADS)

    Heidari, A. A.; Delavar, M. R.

    2016-06-01

    In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.

  10. Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models

    PubMed Central

    Uchida, Aki; Zigman, Jeffrey M.; Perelló, Mario

    2013-01-01

    Ghrelin is an octanoylated peptide hormone, produced by endocrine cells of the stomach, which acts in the brain to increase food intake and body weight. Our understanding of the mechanisms underlying ghrelin's effects on eating behaviors has been greatly improved by the generation and study of several genetically manipulated mouse models. These models include mice overexpressing ghrelin and also mice with genetic deletion of ghrelin, the ghrelin receptor [the growth hormone secretagogue receptor (GHSR)] or the enzyme that post-translationally modifies ghrelin [ghrelin O-acyltransferase (GOAT)]. In addition, a GHSR-null mouse model in which GHSR transcription is globally blocked but can be cell-specifically reactivated in a Cre recombinase-mediated fashion has been generated. Here, we summarize findings obtained with these genetically manipulated mice, with the aim to highlight the significance of the ghrelin system in the regulation of both homeostatic and hedonic eating, including that occurring in the setting of chronic psychosocial stress. PMID:23882175

  11. Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism.

    PubMed

    Abugable, Arwa A; Awwad, Dahlia A; Fleifel, Dalia; Ali, Mohamed M; El-Khamisy, Sherif; Elserafy, Menattallah

    2017-01-01

    Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.

  12. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, W.R.; Sterne, R.; Thorner, J.

    1989-07-28

    The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast-a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay.more » The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations. 50 refs., 3 figs., 3 tabs.« less

  13. Gateway Vectors for Efficient Artificial Gene Assembly In Vitro and Expression in Yeast Saccharomyces cerevisiae

    PubMed Central

    Giuraniuc, Claudiu V.; MacPherson, Murray; Saka, Yasushi

    2013-01-01

    Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and their expression in the budding yeast Saccharomyces cerevisiae. Our method enables the rapid construction of an artificial gene from a promoter and an open reading frame (ORF) cassette by one-step recombination reaction in vitro. Furthermore, the plasmid thus created can readily be introduced into yeast cells to test the assembled gene’s functionality. As flexible regulatory components of a synthetic genetic network, we also created new versions of the tetracycline-regulated transactivators tTA and rtTA by fusing them to the auxin-inducible degron (AID). Using our gene assembly approach, we made yeast expression vectors of these engineered transactivators, AIDtTA and AIDrtTA and then tested their functions in yeast. We showed that these factors can be regulated by doxycycline and degraded rapidly after addition of auxin to the medium. Taken together, the method for combinatorial gene assembly described here is versatile and would be a valuable tool for yeast synthetic biology. PMID:23675537

  14. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa.

    PubMed

    Liu, Jia; Li, Guangkun; Sui, Yuan

    2017-01-01

    Viable biomass production is a key determinant of suitability of antagonistic yeasts as potential biocontrol agents. This study investigated the effects of three metal ions (magnesium, ferrous, and zinc) on biomass production and viability of the antagonistic yeast, Candida diversa . Using response surface methodology to optimize medium components, a maximum biomass was obtained, when the collective Mg 2+ , Fe 2+ , and Zn 2+ concentrations were adjusted in a minimal mineral (MM) medium. Compared with the unmodified MM, and three ion-deficient MM media, yeast cells cultured in the three ion-modified MM medium exhibited a lower level of cellular oxidative damage, and a higher level of antioxidant enzyme activity. A biocontrol assay indicated that C. diversa grown in the ion-modified MM exhibited the greatest level of control of gray mold on apple fruit. These results provide new information on culture medium optimization to grow yeast antagonists in order to improve biomass production and biocontrol efficacy.

  15. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa

    PubMed Central

    Liu, Jia; Li, Guangkun; Sui, Yuan

    2017-01-01

    Viable biomass production is a key determinant of suitability of antagonistic yeasts as potential biocontrol agents. This study investigated the effects of three metal ions (magnesium, ferrous, and zinc) on biomass production and viability of the antagonistic yeast, Candida diversa. Using response surface methodology to optimize medium components, a maximum biomass was obtained, when the collective Mg2+, Fe2+, and Zn2+ concentrations were adjusted in a minimal mineral (MM) medium. Compared with the unmodified MM, and three ion-deficient MM media, yeast cells cultured in the three ion-modified MM medium exhibited a lower level of cellular oxidative damage, and a higher level of antioxidant enzyme activity. A biocontrol assay indicated that C. diversa grown in the ion-modified MM exhibited the greatest level of control of gray mold on apple fruit. These results provide new information on culture medium optimization to grow yeast antagonists in order to improve biomass production and biocontrol efficacy. PMID:29089939

  16. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster.

    PubMed

    Palanca, Loida; Gaskett, Anne C; Günther, Catrin S; Newcomb, Richard D; Goddard, Matthew R

    2013-01-01

    Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent.

  17. Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy.

    PubMed

    Brinkmeyer-Langford, Candice; Balog-Alvarez, Cynthia; Cai, James J; Davis, Brian W; Kornegay, Joe N

    2016-08-22

    Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes.

  18. Allelopathic effect of methanolic extracts of genetically modified and non-genetically modified canola on soybean.

    PubMed

    Syed, Kashmala; Shinwari, Zabta Khan

    2016-03-01

    This study on the effect of genetically modified (GM) and non-GM canola on soybean was carried out for physiological and biochemical biosafety assessment of GM canola. Methanolic extracts of GM and non-GM canola were assessed on seed germination and growth of soybean (Glycine max L.) under sterilized conditions. The extracts applied were of 3, 5, and 10% concentrations. The results showed that methanolic extracts of both GM and non-GM canola improved the germination percentage. However, germination rate index was significantly decreased with concomitant increase in mean germination time of soybean. A significant rate of decrease was observed in root fresh weight while increase in shoot length took place; when treatment of GM canola extracts were applied, however, no effect was observed in shoot fresh weight. A significant increase in protein contents, as well as phenolic, carotenoids, proline, and chlorophyll a content, was observed when different GM canola treatments (3, 5, and 10%) were applied to soybean; however, a significant rate of reduction in chlorophyll b content was observed by the application of GM canola treatment. Similar results were observed for superoxide dismutase, peroxidase, and catalase activities. A significant increase in the sugar content levels was observed when GM canola treatments (3, 5, and 10%) were applied to soybean. © The Author(s) 2013.

  19. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  20. Organization and dynamics of yeast mitochondrial nucleoids

    PubMed Central

    MIYAKAWA, Isamu

    2017-01-01

    Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics. PMID:28496055

  1. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    PubMed

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  2. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  3. Technological properties of bakers' yeasts in durum wheat semolina dough.

    PubMed

    Giannone, Virgilio; Longo, Chiara; Damigella, Arcangelo; Raspagliesi, Domenico; Spina, Alfio; Palumbo, Massimo

    2010-04-01

    Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.

  4. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)

    PubMed Central

    Dujon, Bernard A.; Louis, Edward J.

    2017-01-01

    Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance. PMID:28592505

  5. Reconstructing the Qo Site of Plasmodium falciparum bc 1 Complex in the Yeast Enzyme

    PubMed Central

    Vallières, Cindy; Fisher, Nicholas; Meunier, Brigitte

    2013-01-01

    The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials. PMID:23951230

  6. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.

    PubMed

    Adrio, José L

    2017-09-01

    Oleaginous yeasts have a unique physiology that makes them the best suited hosts for the production of lipids, oleochemicals, and diesel-like fuels. Their high lipogenesis, capability of growing on many different carbon sources (including lignocellulosic sugars), easy large-scale cultivation, and an increasing number of genetic tools are some of the advantages that have encouraged their use to develop sustainable processes. This mini-review summarizes the metabolic engineering strategies developed in oleaginous yeasts within the last 2 years to improve process metrics (titer, yield, and productivity) for the production of lipids, free fatty acids, fatty acid-based chemicals (e.g., fatty alcohols, fatty acid ethyl esters), and alkanes. During this short period of time, tremendous progress has been made in Yarrowia lipolytica, the model oleaginous yeast, which has been engineered to improve lipid production by different strategies including increasing lipogenic pathway flux and biosynthetic precursors, and blocking degradation pathways. Moreover, remarkable advances have also been reported in Rhodosporidium toruloides and Lipomyces starkey despite the limited genetic tools available for these two very promising hosts. Biotechnol. Bioeng. 2017;114: 1915-1920. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes.

    PubMed

    Goldberg, Alexander A; Richard, Vincent R; Kyryakov, Pavlo; Bourque, Simon D; Beach, Adam; Burstein, Michelle T; Glebov, Anastasia; Koupaki, Olivia; Boukh-Viner, Tatiana; Gregg, Christopher; Juneau, Mylène; English, Ann M; Thomas, David Y; Titorenko, Vladimir I

    2010-07-01

    In chronologically aging yeast, longevity can be extended by administering a caloric restriction (CR) diet or some small molecules. These life-extending interventions target the adaptable target of rapamycin (TOR) and cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the stringent control of calorie availability. We designed a chemical genetic screen for small molecules that increase the chronological life span of yeast under CR by targeting lipid metabolism and modulating housekeeping longevity pathways that regulate longevity irrespective of the number of available calories. Our screen identifies lithocholic acid (LCA) as one of such molecules. We reveal two mechanisms underlying the life-extending effect of LCA in chronologically aging yeast. One mechanism operates in a calorie availability-independent fashion and involves the LCA-governed modulation of housekeeping longevity assurance pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways. The other mechanism extends yeast longevity under non-CR conditions and consists in LCA-driven unmasking of the previously unknown anti-aging potential of PKA. We provide evidence that LCA modulates housekeeping longevity assurance pathways by suppressing lipid-induced necrosis, attenuating mitochondrial fragmentation, altering oxidation-reduction processes in mitochondria, enhancing resistance to oxidative and thermal stresses, suppressing mitochondria-controlled apoptosis, and enhancing stability of nuclear and mitochondrial DNA.

  8. Genetically modified (GM) crops: milestones and new advances in crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2016-09-01

    New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.

  9. A Yeast Model of FUS/TLS-Dependent Cytotoxicity

    PubMed Central

    Ju, Shulin; Tardiff, Daniel F.; Han, Haesun; Divya, Kanneganti; Zhong, Quan; Maquat, Lynne E.; Bosco, Daryl A.; Hayward, Lawrence J.; Brown, Robert H.; Lindquist, Susan; Ringe, Dagmar; Petsko, Gregory A.

    2011-01-01

    FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression. PMID:21541368

  10. Efficient assembly of full-length infectious clone of Brazilian IBDV isolate by homologous recombination in yeast

    PubMed Central

    Silva, J.V.J.; Arenhart, S.; Santos, H.F.; Almeida-Queiroz, S.R.; Silva, A.N.M.R.; Trevisol, I.M.; Bertani, G.R.; Gil, L.H.V.G.

    2014-01-01

    The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world’s first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development. PMID:25763067

  11. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  12. Growth control of genetically modified cells using an antibody/c-Kit chimera.

    PubMed

    Kaneko, Etsuji; Kawahara, Masahiro; Ueda, Hiroshi; Nagamune, Teruyuki

    2012-05-01

    Gene therapy has been regarded as an innovative potential treatment against serious congenital diseases. However, applications of gene therapy remain limited, partly because its clinical success depends on therapeutic gene-transduced cells acquiring a proliferative advantage. To address this problem, we have developed the antigen-mediated genetically modified cell amplification (AMEGA) system, which uses chimeric receptors to enable the selective proliferation of gene-transduced cells. In this report, we describe mimicry of c-Kit signaling and its application to the AMEGA system. We created an antibody/c-Kit chimera in which the extracellular domain of c-Kit is replaced with an anti-fluorescein single-chain Fv antibody fragment and the extracellular D2 domain of the erythropoietin receptor. A genetically modified mouse pro-B cell line carrying this chimera showed selective expansion in the presence of fluorescein-conjugated BSA (BSA-FL) as a growth inducer. By further engineering the transmembrane domain of the chimera to reduce interchain interaction we attained stricter ligand-dependency. Since c-Kit is an important molecule in the expansion of hematopoietic stem cells (HSCs), this antibody/c-Kit chimera could be a promising tool for gene therapy targeting HSCs. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Assessing Website Quality in Context: Retrieving Information about Genetically Modified Food on the Web

    ERIC Educational Resources Information Center

    McInerney, Claire R.; Bird, Nora J.

    2005-01-01

    Introduction: Knowing the credibility of information about genetically modified food on the Internet is critical to the everyday life information seeking of consumers as they form opinions about this nascent agricultural technology. The Website Quality Evaluation Tool (WQET) is a valuable instrument that can be used to determine the credibility of…

  14. Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics.

    PubMed

    Taylor, Alexander I; Holliger, Philipp

    2018-06-01

    This unit describes the application of "synthetic genetics," i.e., the replication of xeno nucleic acids (XNAs), artificial analogs of DNA and RNA bearing alternative backbone or sugar congeners, to the directed evolution of synthetic oligonucleotide ligands (XNA aptamers) specific for target proteins or nucleic acid motifs, using a cross-chemistry selective exponential enrichment (X-SELEX) approach. Protocols are described for synthesis of diverse-sequence XNA repertoires (typically 10 14 molecules) using DNA templates, isolation and panning for functional XNA sequences using targets immobilized on solid phase or gel shift induced by target binding in solution, and XNA reverse transcription to allow cDNA amplification or sequencing. The method may be generally applied to select fully-modified XNA aptamers specific for a wide range of target molecules. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  15. Evidence for the establishment and persistence of genetically modified canola populations in the U.S.

    EPA Science Inventory

    Background/Questions/Methods Concerns surrounding the commercial release of genetically modified crops include the risks of escape from cultivation, naturalization, and the transfer of beneficial traits to native and weedy species. Among the crops commonly grown in the U.S., a l...

  16. A Genetic and Pharmacological Analysis of Isoprenoid Pathway by LC-MS/MS in Fission Yeast

    PubMed Central

    Takami, Tomonori; Fang, Yue; Zhou, Xin; Jaiseng, Wurentuya; Ma, Yan; Kuno, Takayoshi

    2012-01-01

    Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level. PMID:23145048

  17. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing.

    PubMed

    Laun, Peter; Bruschi, Carlo V; Dickinson, J Richard; Rinnerthaler, Mark; Heeren, Gino; Schwimbersky, Richard; Rid, Raphaela; Breitenbach, Michael

    2007-01-01

    Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.

  18. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing

    PubMed Central

    Laun, Peter; Bruschi, Carlo V.; Dickinson, J. Richard; Rinnerthaler, Mark; Heeren, Gino; Schwimbersky, Richard; Rid, Raphaela; Breitenbach, Michael

    2007-01-01

    Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast. PMID:17986449

  19. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species

    PubMed Central

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-01-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698

  20. Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies.

    PubMed

    Kitagaki, Hiroshi; Takagi, Hiroshi

    2014-04-01

    Mitochondria are sites of oxidative respiration. During sake brewing, sake yeasts are exposed to long periods of hypoxia; the structure, role, and metabolism of mitochondria of sake yeasts have not been studied in detail. It was first elucidated that the mitochondrial structure of sake yeast transforms from filamentous to dotted structure during sake brewing, which affects malate metabolism. Based on the information of yeast mitochondria during sake brewing, practical technologies have been developed; (i) breeding pyruvate-underproducing sake yeast by the isolation of a mutant resistant to an inhibitor of mitochondrial pyruvate transport; and (ii) modifying malate and succinate production by manipulating mitochondrial activity. During the bread-making process, baker's yeast cells are exposed to a variety of baking-associated stresses, such as freeze-thaw, air-drying, and high sucrose concentrations. These treatments induce oxidative stress generating reactive oxygen species due to mitochondrial damage. A novel metabolism of proline and arginine catalyzed by N-acetyltransferase Mpr1 in the mitochondria eventually leads to synthesis of nitric oxide, which confers oxidative stress tolerance on yeast cells. The enhancement of proline and arginine metabolism could be promising for breeding novel baker's yeast strains that are tolerant to multiple baking-associated stresses. These new and practical methods provide approaches to improve the processes in the field of industrial fermentation technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  2. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize.

    PubMed

    Roda, A; Mirasoli, M; Guardigli, M; Michelini, E; Simoni, P; Magliulo, M

    2006-03-01

    Proteins from the Cry 1 family, in particular Cry 1Ab, are commonly expressed in genetically modified Bt maize in order to control chewing insect pests. A sensitive chemiluminescent sandwich enzyme immunoassay for the detection of Cry1Ab protein from genetically modified Bt maize has been developed and validated. A Cry1Ab protein-specific antibody was immobilized on 96- or 384-well microtiter plates in order to capture the Cry1Ab toxin in the sample; the bound toxin was then detected by employing a second anti-Cry1Ab antibody and a horseradish peroxidase-labeled anti-antibody, followed by measurement of the enzyme activity with an enhanced chemiluminescent system. The chemiluminescent assay fulfilled all the requirements of accuracy and precision and exhibited limits of detection of a few pg mL(-1) Cry1Ab (3 or 5 pg mL(-1), depending on the assay format), which are significantly lower than that achievable using conventional colorimetric detection of peroxidase activity and also represent an improvement compared to previously developed Cry1Ab immunoassays. High-throughput analysis can be performed using the 384-well microtiter plate format immunoassay, which also allows one to reduce the consumption of samples and reagents. Validation of the assay, performed by analyzing certified reference materials, proved that the immunoassay is able to detect the presence of the Cry1Ab protein in certified reference samples containing as low as 0.1% of MON 810 genetically modified Bt maize. This value is below the threshold requiring mandatory labeling of foods containing genetically modified material according to the actual EU regulation.

  3. Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines.

    PubMed

    Bellon, Jennifer R; Eglinton, Jeffery M; Siebert, Tracey E; Pollnitz, Alan P; Rose, Louisa; de Barros Lopes, Miguel; Chambers, Paul J

    2011-08-01

    Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.

  4. News Media Use, Informed Issue Evaluation, and South Koreans' Support for Genetically Modified Foods

    ERIC Educational Resources Information Center

    Kim, Sei-Hill; Kim, Jeong-Nam; Choi, Doo-Hun; Jun, Sangil

    2015-01-01

    Analyzing survey data on the issue of genetically modified foods in South Korea, this study explores the role of news media in facilitating informed issue evaluation. Respondents who read a newspaper more often were more knowledgeable about the issue. Also, heavy newspaper readers were more able than light readers to hold "consistent"…

  5. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    PubMed

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications.

  6. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  7. Investigating Novice and Expert Conceptions of Genetically Modified Organisms.

    PubMed

    Potter, Lisa M; Bissonnette, Sarah A; Knight, Jonathan D; Tanner, Kimberly D

    2017-01-01

    The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students' conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non-biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales. © 2017 L. M. Potter et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. [Immunotoxicologic assessment of genetically modified drought-resistant wheat T349 with GmDREB1].

    PubMed

    Liang, Chun-lai; Li, Yong-ning; Zhang, Xiao-peng; Song, Yan; Wang, Wei; Fang, Jin; Cui, Wen-ming; Jia, Xu-dong

    2012-06-01

    To assess the immunotoxicologic effects of genetically modified drought resistant wheat T349 with GmDREB1 gene. A total of 250 female BALB/c mice (6-8 week-old, weight 18-22 g) were divided into five large groups (50 mice for each large group) by body weight randomly. In each large group, the mice were divided into five groups (10 mice for each group) by body weight randomly, which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control and positive control group were fed with feedstuff AIN-93G, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (proportion up to 76%) for 30 days, then body weight, organ coefficient of spleen and thymus, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell (PFC), serum 50% hemolytic value (HC50), mitogen-induced splenocyte proliferation, delayed-type hypersensitivity (DTH) reaction and phagocytic activities of phagocytes were detected respectively. After 30 days raise, among negative control group, common wheat group, non-genetically modified parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, mice body weight were (21.0±0.3), (20.4±0.7), (21.1±1.0), (21.1±1.0), (19.4±1.0) g, respectively (F=7.47, P<0.01); organ coefficient of spleen were (0.407±0.047)%, (0.390±0.028)%, (0.402±0.042)%, (0.421±0.041)%, (0.304±0.048)%, respectively (F=12.41, P<0.01); organ coefficient of thymus were (0.234±0.032)%, (0.246±0.028)%, (0.249±0.040)%, (0.234±0.034)%, (0.185±0.039)%, respectively (F=5.58, P<0.01); the percentage of T cell in peripheral blood were (70.43±4.44)%, (68.33±5.37)%, (73.04±2.68)%, (74.42±2.86)%, (90.42±1.66)%, respectively (F=57.51, P<0.01); the percentage of B

  9. The impact of genetically modified crops on soil microbial communities.

    PubMed

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  10. Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: a survey and the discovery of eight new yeast species.

    PubMed

    Sylvester, Kayla; Wang, Qi-Ming; James, Brielle; Mendez, Russell; Hulfachor, Amanda Beth; Hittinger, Chris Todd

    2015-05-01

    Compared to its status as an experimental model system and importance to industry, the ecology and genetic diversity of the genus Saccharomyces has received less attention. To investigate systematically the biogeography, community members and habitat of these important yeasts, we isolated and identified nearly 600 yeast strains using sugar-rich enrichment protocols. Isolates were highly diverse and contained representatives of more than 80 species from over 30 genera, including eight novel species that we describe here: Kwoniella betulae f.a. (yHKS285(T) = NRRL Y-63732(T) = CBS 13896(T)), Kwoniella newhampshirensis f.a. (yHKS256(T) = NRRL Y-63731(T) = CBS 13917(T)), Cryptococcus wisconsinensis (yHKS301(T) = NRRL Y-63733(T) = CBS 13895(T)), Cryptococcus tahquamenonensis (yHAB242(T) = NRRL Y-63730(T) = CBS 13897(T)), Kodamaea meredithiae f.a. (yHAB239(T) = NRRL Y-63729(T) = CBS 13899(T)), Blastobotrys buckinghamii (yHAB196(T) = NRRL Y-63727(T) = CBS 13900(T)), Candida sungouii (yHBJ21(T) = NRRL Y-63726(T) = CBS 13907(T)) and Cyberlindnera culbertsonii f.a. (yHAB218(T) = NRRL Y-63728(T) = CBS 13898(T)), spp. nov. Saccharomyces paradoxus was one of the most frequently isolated species and was represented by three genetically distinct lineages in Wisconsin alone. We found a statistically significant association between Quercus (oak) samples and the isolation of S. paradoxus, as well as several novel associations. Variation in temperature preference was widespread across taxonomic ranks and evolutionary timescales. This survey highlights the genetic and taxonomic diversity of yeasts and suggests that host and temperature preferences are major ecological factors. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Detection of genetically modified organisms in foods by DNA amplification techniques.

    PubMed

    García-Cañas, Virginia; Cifuentes, Alejandro; González, Ramón

    2004-01-01

    In this article, the different DNA amplification techniques that are being used for detecting genetically modified organisms (GMOs) in foods are examined. This study intends to provide an updated overview (including works published till June 2002) on the principal applications of such techniques together with their main advantages and drawbacks in GMO detection in foods. Some relevant facts on sampling, DNA isolation, and DNA amplification methods are discussed. Moreover; these analytical protocols are discuissed from a quantitative point of view, including the newest investigations on multiplex detection of GMOs in foods and validation of methods.

  12. Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context

    PubMed Central

    Sancenon, Vicente; Lee, Sue-Ann; Patrick, Christina; Griffith, Janice; Paulino, Amy; Outeiro, Tiago F.; Reggiori, Fulvio; Masliah, Eliezer; Muchowski, Paul J.

    2012-01-01

    The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies. PMID:22357655

  13. Awareness and support of release of genetically modified "sterile" mosquitoes, Key West, Florida, USA.

    PubMed

    Ernst, Kacey C; Haenchen, Steven; Dickinson, Katherine; Doyle, Michael S; Walker, Kathleen; Monaghan, Andrew J; Hayden, Mary H

    2015-02-01

    After a dengue outbreak in Key West, Florida, during 2009-2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement.

  14. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    PubMed Central

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  15. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats.

    PubMed

    Rhee, Gyu Seek; Cho, Dae Hyun; Won, Yong Hyuck; Seok, Ji Hyun; Kim, Soon Sun; Kwack, Seung Jun; Lee, Rhee Da; Chae, Soo Yeong; Kim, Jae Woo; Lee, Byung Mu; Park, Kui Lea; Choi, Kwang Sik

    2005-12-10

    Each specific protein has an individual gene encoding it, and a foreign gene introduced to a plant can be used to synthesize a new protein. The identification of potential reproductive and developmental toxicity from novel proteins produced by genetically modified (GM) crops is a difficult task. A science-based risk assessment is needed in order to use GM crops as a conventional foodstuff. In this study, the specific characteristics of GM food and low-level chronic exposure were examined using a five-generation animal study. In each generation, rats were fed a solid pellet containing 5% GM potato and non-GM potato for 10 wk prior to mating in order to assess the potential reproductive and developmental toxic effects. In the multigeneration animal study, there were no GM potato-related changes in body weight, food consumption, reproductive performance, and organ weight. Polymerase chain reaction (PCR) was carried out using extracted genomic DNA to examine the possibility of gene persistence in the organ tissues after a long-term exposure to low levels of GM feed. In each generation, the gene responsible for bar was not found in any of the reproductive organs of the GM potato-treated male and female rats, and the litter-related indexes did not show any genetically modified organism (GMO)-related changes. The results suggest that genetically modified crops have no adverse effects on the multigeneration reproductive-developmental ability.

  16. Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection.

    PubMed

    Yang, Litao; Quan, Sheng; Zhang, Dabing

    2017-01-01

    Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.

  17. Electrochemiluminescence-PCR detection of genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Xing, Da; Shen, Xingyan; Zhu, Debin

    2005-01-01

    The detection methods for genetically modified (GM) components in foods have been developed recently. But many of them are complicated and time-consuming; some of them need to use the carcinogenic substance, and can"t avoid false-positive results. In this study, an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection GM tobaccos is proposed. The Cauliflower mosaic virus 35S (CaMV35S) promoter was amplified by PCR, Then hybridized with a Ru(bpy)32+ (TBR)-labeled and a biotinylated probe. The hybridization products were captured onto streptavidin-coated paramagnetic beads, and detected by measuring the electrochemiluminescence (ECL) signal of the TBR label. Whether the tobaccos contain GM components was discriminated by detecting the ECL signal of CaMV35S promoter. The experiment results show that the detection limit for CaMV35S promoter is 100 fmol, and the GM components can be clearly identified in GM tobaccos. The ECL-PCR method provide a new means in GMOs detection due to its safety, simplicity and high efficiency.

  18. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways

    PubMed Central

    Boucher, Benjamin; Lee, Anna Y.; Hallett, Michael; Jenna, Sarah

    2016-01-01

    A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution. PMID:26871911

  19. Listened to, but not heard! The failure to represent the public in genetically modified food policies.

    PubMed

    Lassen, Jesper

    2018-04-01

    'In the mid-1990s, a mismatch was addressed between European genetically modified food policy, which focused primarily on risks and economic prospects, and public anxieties, which also included other concerns, and there was a development in European food policy toward the inclusion of what were referred to as "ethical aspects." Using parliamentary debates in Denmark in 2002 and 2015 as a case, this article examines how three storylines of concern that were visible in public discourse at the time were represented by the decision makers in parliament. It shows that core public concerns raising fundamental questions about genetically modified foods, and in particular their perceived unnaturalness, were not considered in the parliamentary debates. It is suggested that the failure of the parliament to represent the public may undermine the legitimacy of politicians and lead to disillusionment with parliamentary government.

  20. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    PubMed

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (C f ) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined C f for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  1. Genetically modified organisms and visceral leishmaniasis.

    PubMed

    Chhajer, Rudra; Ali, Nahid

    2014-01-01

    Vaccination is the most effective method of preventing infectious diseases. Since the eradication of small pox in 1976, many other potentially life compromising if not threatening diseases have been dealt with subsequently. This event was a major leap not only in the scientific world already burdened with many diseases but also in the mindset of the common man who became more receptive to novel treatment options. Among the many protozoan diseases, the leishmaniases have emerged as one of the largest parasite killers of the world, second only to malaria. There are three types of leishmaniasis namely cutaneous (CL), mucocutaneous (ML), and visceral (VL), caused by a group of more than 20 species of Leishmania parasites. Visceral leishmaniasis, also known as kala-azar is the most severe form and almost fatal if untreated. Since the first attempts at leishmanization, we have killed parasite vaccines, subunit protein, or DNA vaccines, and now we have live recombinant carrier vaccines and live attenuated parasite vaccines under various stages of development. Although some research has shown promising results, many more potential genes need to be evaluated as live attenuated vaccine candidates. This mini-review attempts to summarize the success and failures of genetically modified organisms used in vaccination against some of major parasitic diseases for their application in leishmaniasis.

  2. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  3. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    PubMed Central

    2011-01-01

    Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations. PMID:21595919

  4. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  6. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Yeast Infection (Vaginal)

    MedlinePlus

    Yeast infection (vaginal) Overview A vaginal yeast infection is a fungal infection that causes irritation, discharge and intense itchiness ... symptoms Causes The fungus candida causes a vaginal yeast infection. Your vagina naturally contains a balanced mix of yeast, including ...

  8. Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae.

    PubMed

    Robertson, Aaron; Schaltz, Kyle; Neimanis, Karina; Staples, James F; McDonald, Allison E

    2016-10-01

    Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.

  9. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection

    PubMed Central

    Gelperin, Daniel M.; White, Michael A.; Wilkinson, Martha L.; Kon, Yoshiko; Kung, Li A.; Wise, Kevin J.; Lopez-Hoyo, Nelson; Jiang, Lixia; Piccirillo, Stacy; Yu, Haiyuan; Gerstein, Mark; Dumont, Mark E.; Phizicky, Eric M.; Snyder, Michael; Grayhack, Elizabeth J.

    2005-01-01

    Functional analysis of the proteome is an essential part of genomic research. To facilitate different proteomic approaches, a MORF (moveable ORF) library of 5854 yeast expression plasmids was constructed, each expressing a sequence-verified ORF as a C-terminal ORF fusion protein, under regulated control. Analysis of 5573 MORFs demonstrates that nearly all verified ORFs are expressed, suggests the authenticity of 48 ORFs characterized as dubious, and implicates specific processes including cytoskeletal organization and transcriptional control in growth inhibition caused by overexpression. Global analysis of glycosylated proteins identifies 109 new confirmed N-linked and 345 candidate glycoproteins, nearly doubling the known yeast glycome. PMID:16322557

  10. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation.

    PubMed

    Ludlow, Catherine L; Cromie, Gareth A; Garmendia-Torres, Cecilia; Sirr, Amy; Hays, Michelle; Field, Colburn; Jeffery, Eric W; Fay, Justin C; Dudley, Aimée M

    2016-04-04

    Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1, 2]. Selecting favorable fermentation products created specialized strains of Saccharomyces cerevisiae [3, 4] that were transported along with grapevines. Today, S. cerevisiae strains residing in vineyards around the world are genetically similar, and their population structure suggests a common origin that followed the path of human migration [3-7]. Like wine, coffee and cacao depend on microbial fermentation [8, 9] and have been globally dispersed by humans. Theobroma cacao originated in the Amazon and Orinoco basins of Colombia and Venezuela [10], was cultivated in Central America by Mesoamerican peoples, and was introduced to Europeans by Hernán Cortés in 1530 [11]. Coffea, native to Ethiopia, was disseminated by Arab traders throughout the Middle East and North Africa in the 6(th) century and was introduced to European consumers in the 17(th) century [12]. Here, we tested whether the yeasts associated with coffee and cacao are genetically similar, crop-specific populations or genetically diverse, geography-specific populations. Our results uncovered populations that, while defined by niche and geography, also bear signatures of admixture between major populations in events independent of the transport of the plants. Thus, human-associated fermentation and migration may have affected the distribution of yeast involved in the production of coffee and chocolate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.

    PubMed

    Caspeta, Luis; Nielsen, Jens

    2015-07-21

    A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥ 40 °C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40 °C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3 °C, whereas they showed a growth trade-off at temperatures below 34 °C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49 °C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass

  12. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System

    PubMed Central

    Hoffman, Charles S.; Wood, Valerie; Fantes, Peter A.

    2015-01-01

    The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe. PMID:26447128

  13. Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations

    NASA Astrophysics Data System (ADS)

    Hammond, Timothy G.; Allen, Patricia L.; Gunter, Margaret A.; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Birdsall, Holly H.

    2018-05-01

    Baker's yeast ( Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or `giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

  14. Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations

    NASA Astrophysics Data System (ADS)

    Hammond, Timothy G.; Allen, Patricia L.; Gunter, Margaret A.; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Birdsall, Holly H.

    2017-12-01

    Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or `giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

  15. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity.

    PubMed

    Herrera, Carlos M; Pozo, María I; Medrano, Mónica

    2013-02-01

    Through their effects on physicochemical features of floral nectar, nectar-dwelling yeasts can alter pollinator behavior, but the effect of such changes on pollination success and plant reproduction is unknown. We present results of experiments testing the effects of nectar yeasts on foraging patterns of captive and free-ranging bumble bees, and also on pollination success and fecundity of the early-blooming, bumble bee-pollinated Helleborus foetidus (Ranunculaceae). Under controlled experimental conditions, inexperienced Bombus terrestris workers responded positively to the presence of yeasts in artificial sugar solutions mimicking floral nectar by visiting proportionally more yeast-containing artificial flowers. Free-ranging bumble bees also preferred yeast-containing nectar in the field. Experiments conducted in two different years consistently showed that natural and artificial nectars containing yeasts were more thoroughly removed than nectars without yeasts. Experimental yeast inoculation of the nectar of H. foetidus flowers was significantly associated with reductions in number of pollen tubes in the style, fruit set, seed set, and mass of individual seeds produced. These results provide the first direct evidence to date that nectar yeasts can modify pollinator foraging patterns, pollination success, and the quantity and quality of seeds produced by insect-pollinated plants.

  16. Kazachstania gamospora and Wickerhamomyces subpelliculosus: Two alternative baker's yeasts in the modern bakery.

    PubMed

    Zhou, Nerve; Schifferdecker, Anna Judith; Gamero, Amparo; Compagno, Concetta; Boekhout, Teun; Piškur, Jure; Knecht, Wolfgang

    2017-06-05

    Saccharomyces cerevisiae, the conventional baker's yeast, remains the most domesticated yeast monopolizing the baking industry. Its rapid consumption of sugars and production of CO 2 are the most important attributes required to leaven the dough. New research attempts highlight that these attributes are not unique to S. cerevisiae, but also found in several non-conventional yeast species. A small number of these yeast species with similar properties have been described, but remain poorly studied. They present a vast untapped potential for the use as leavening agents and flavor producers due to their genetic and phylogenetic diversity. We assessed the potential of several non-conventional yeasts as leavening agents and flavor producers in dough-like conditions in the presence of high sugar concentrations and stressful environments mimicking conditions found in flour dough. We tested the capabilities of bread leavening and aroma formation in a microbread platform as well as in a bakery setup. Bread leavened with Kazachstania gamospora and Wickerhamomyces subpelliculosus had better overall results compared to control baker's yeast. In addition, both displayed higher stress tolerance and broader aroma profiles than the control baker's yeast. These attributes are important in bread and other farinaceous products, making K. gamospora and W. subpelliculosus highly applicable as alternative baker's yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Variant forms of mitochondrial translation products in yeast: evidence for location of determinants on mitochondrial DNA.

    PubMed

    Douglas, M G; Butow, R A

    1976-04-01

    Products of mitochondrial protein synthesis in yeast have been labeled in vivo with 35SO42-. More than 20 polypeptide species fulfilling the criteria of mitochondrial translation products have been detected by analysis on sodium dodecyl sulfate-exponential polyacrylamide slab gels. A comparison of mitochondrial translation products in two wild-type strains has revealed variant forms of some polypeptide species which show genetic behavior consistent with the location of their structural genes on mtDNA. Our results demonstrate the feasibility of performing genetic analysis on putative gene products of mtDNA in wild-type yeast by direct examination of the segregation and recombination behavior of specific polypeptide species.

  18. Endogenous allergens and compositional analysis in the allergenicity assessment of genetically modified plants.

    PubMed

    Fernandez, A; Mills, E N C; Lovik, M; Spoek, A; Germini, A; Mikalsen, A; Wal, J M

    2013-12-01

    Allergenicity assessment of genetically modified (GM) plants is one of the key pillars in the safety assessment process of these products. As part of this evaluation, one of the concerns is to assess that unintended effects (e.g. over-expression of endogenous allergens) relevant for the food safety have not occurred due to the genetic modification. Novel technologies are now available and could be used as complementary and/or alternative methods to those based on human sera for the assessment of endogenous allergenicity. In view of these developments and as a step forward in the allergenicity assessment of GM plants, it is recommended that known endogenous allergens are included in the compositional analysis as additional parameters to be measured. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Demographic, genetic, and environmental factors that modify disease course.

    PubMed

    Marrie, Ruth Ann

    2011-05-01

    As with susceptibility to disease, it is likely that multiple factors interact to influence the phenotype of multiple sclerosis and long-term disease outcomes. Such factors may include genetic factors, socioeconomic status, comorbid diseases, and health behaviors, as well as environmental exposures. An improved understanding of the influence of these factors on disease course may reap several benefits, such as improved prognostication, allowing us to tailor disease management with respect to intensity of disease-modifying therapies and changes in specific health behaviors, in the broad context of coexisting health issues. Such information can facilitate appropriately adjusted comparisons within and between populations. Elucidation of these factors will require careful study of well-characterized populations in which the roles of multiple factors are considered simultaneously. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Biosafety management and commercial use of genetically modified crops in China.

    PubMed

    Li, Yunhe; Peng, Yufa; Hallerman, Eric M; Wu, Kongming

    2014-04-01

    As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.