Sample records for yeast guehomyces pullulans

  1. Occurrence and diversity of marine yeasts in Antarctica environments

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Hua, Mingxia; Song, Chunli; Chi, Zhenming

    2012-03-01

    A total of 28 yeast strains were obtained from the sea sediment of Antarctica. According to the results of routine identification and molecular characterization, the strains belonged to species of Yarrowia lipolytica, Debaryomyces hansenii, Rhodotorula slooffiae, Rhodotorula mucilaginosa, Sporidiobolus salmonicolor, Aureobasidium pullulans, Mrakia frigida and Guehomyces pullulans, respectively. The Antarctica yeasts have wide potential applications in biotechnology, for some of them can produce β-galactosidase and killer toxins.

  2. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    PubMed

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %).

  3. Effect of yeast extract addition to a mineral salts medium containing hydrolyzed plant xylan on fungal pullulan production.

    PubMed

    Kennedy Ii, Daniel E; West, Thomas P

    2018-05-16

    The ability of the fungus Aureobasidium pullulans ATCC 42023 to produce pullulan from yeast extract-supplemented xylan hydrolysates of the prairie grass prairie cordgrass was examined relative to polysaccharide and cell biomass production, yield, and pullulan content of the polysaccharide. A pullulan concentration of 11.2 g L-1 and yield of 0.79 g g-1 was produced by ATCC 42023 when grown for 168 h at 30°C on the phosphate-buffered hydrolysate supplemented with yeast extract. The highest biomass level being 8.8 g L-1 was produced by ATCC 42023 after 168 h on a yeast extract-supplemented, hydrolysate-containing complete medium lacking sodium chloride. The highest pullulan content of the polysaccharide produced by ATCC 42023 after 168 h on the hydrolysate medium supplemented with yeast extract and ammonium sulfate was 70%. The findings indicate that a polysaccharide with a high pullulan content can be produced at a relatively high yield by the fungus grown on a yeast extract-supplemented xylan hydrolysate, suggesting that pullulan could be produced using a biomass-based process.

  4. A new pullulan-producing yeast and medium optimization for its exopolysaccharide production

    NASA Astrophysics Data System (ADS)

    Zhao, Shuangzhi; Chi, Zhenming

    2003-04-01

    Yeast strain Y68 producing high level of pullulan was isolated from the phyton collected in Toulouse, France. This strain was identified to be Rhodotorula bacarum by BIOLOG analysis. This is the first report that pullulan was produced by Rhodotorula bacarum. The optimal medium (g L-1) for pullulan production by this strain was 80 glucose, 20 soybean cake hydrolysate, 5 K2HPO4, 1 NaCl, 0.2 MgSO4·7H2O, 0.6 (NH4)2SO4, pH 7.0. Under this condition, 54 gL-1 pullulan was produced within 60 h at 30°C. Pullulan is a better starting material for producing marine prodrugs.

  5. The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities

    NASA Astrophysics Data System (ADS)

    Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.

    2016-07-01

    The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species ( Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.

  6. Pullulan production by Aureobasidium pullulans grown on ethanol stillage as a nitrogen source.

    PubMed

    West, T P; Strohfus, B

    1996-01-01

    Pullulan production by Aureobasidium pullulans strain RP-1 using thin stillage from fuel ethanol production as a nitrogen source was studied in a medium using corn syrup as a carbon source. The use of 1% thin stillage as a nitrogen source instead of ammonium sulphate elevated polysaccharide production by strain RP-1 cells when grown on a concentration of up to 7.5% corn syrup, independent of yeast extract supplementation. Dry weights of cells grown in medium containing ammonium sulphate as the nitrogen source were higher than the stillage-grown cells after 7 days of growth. The viscosity of the polysaccharide on day 7 was higher for cells grown on thin stillage rather than ammonium sulphate as a nitrogen source. The pullulan content of the polysaccharide elaborated by ammonium sulphate-grown cells on day 7 was higher than the pullulan content of polysaccharide produced by stillage-grown cells regardless of whether yeast extract was added to the culture medium.

  7. Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1.

    PubMed

    Singh, Ram Sarup; Singh, Harpreet; Saini, Gaganpreet Kaur

    2009-01-01

    Culture conditions for pullulan production by Aureobasidium pullulans were optimized using response surface methodology at shake flask level without pH control. In the present investigation, a five-level with five-factor central composite rotatable design of experiments was employed to optimize the levels of five factors significantly affecting the pullulan production, biomass production, and sugar utilization in submerged cultivation. The selected factors included concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride. Using this methodology, the optimal values for concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride were 5.31%, 0.11%, 0.07%, 0.05%, and 0.15% (w/v), respectively. This optimized medium has projected a theoretically production of pullulan of 4.44%, biomass yield of 1.03%, and sugar utilization of 97.12%. The multiple correlation coefficient 'R' was 0.9976, 0.9761 and 0.9919 for pullulan production, biomass production, and sugar utilization, respectively. The value of R being very close to one justifies an excellent correlation between the predicted and the experimental data.

  8. The mechanism of improved pullulan production by nitrogen limitation in batch culture of Aureobasidium pullulans.

    PubMed

    Wang, Dahui; Chen, Feifei; Wei, Gongyuan; Jiang, Min; Dong, Mingsheng

    2015-08-20

    Batch culture of Aureobasidium pullulans CCTCC M 2012259 for pullulan production at different concentrations of ammonium sulfate and yeast extract was investigated. Increased pullulan production was obtained under nitrogen-limiting conditions, as compared to that without nitrogen limitation. The mechanism of nitrogen limitation favoring to pullulan overproduction was revealed by determining the activity as well as gene expression of key enzymes, and energy supply for pullulan biosynthesis. Results indicated that nitrogen limitation increased the activities of α-phosphoglucose mutase and glucosyltransferase, up-regulated the transcriptional levels of pgm1 and fks genes, and supplied more ATP intracellularly, which were propitious to further pullulan biosynthesis. The economic analysis of batch pullulan production indicated that nitrogen limitation could reduce more than one third of the cost of raw materials when glucose was supplemented to a total concentration of 70 g/L. This study also helps to understand the mechanism of other polysaccharide overproduction by nitrogen limitation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica.

    PubMed

    Martorell, María Martha; Ruberto, Lucas Adolfo Mauro; Fernández, Pablo Marcelo; Castellanos de Figueroa, Lucía Inés; Mac Cormack, Walter Patricio

    2017-06-01

    The aim of this study was to investigate the ability to produce extracellular hydrolytic enzymes at low temperature of yeasts isolated from 25 de Mayo island, Antarctica, and to identify those exhibiting one or more of the evaluated enzymatic activities. A total of 105 yeast isolates were obtained from different samples and 66 were identified. They belonged to 12 basidiomycetous and four ascomycetous genera. Most of the isolates were ascribed to the genera Cryptococcus, Mrakia, Cystobasidium, Rhodotorula, Gueomyces, Phenoliferia, Leucosporidium, and Pichia. Results from enzymes production at low temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which represent potential tools for biotechnological applications. While most the isolates proved to produce 2-4 of the investigated exoenzymes, two of them evidenced the six evaluated enzymatic activities: Pichia caribbica and Guehomyces pullulans, which were characterized as psycrotolerant and psycrophilic, respectively. In addition, P. caribbica could assimilate several n-alkanes and diesel fuel. The enzyme production profile and hydrocarbons assimilation capacity, combined with its high level of biomass production and the extended exponential growth phase make P. caribbica a promising tool for cold environments biotechnological purposes in the field of cold-enzymes production and oil spills bioremediation as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Liamocins from Aureobasidium pullulans: New and highly selective anti-streptococcal agents

    USDA-ARS?s Scientific Manuscript database

    The ubiquitous, black yeast Aureobasidium pullulans, which is used commercially to produce pullulan polysaccharide, also produces several polyol-lipids that we have named liamocins. A survey of >50 strains of A. pullulans identified 21 diverse strains that produce liamocins. Typically the liamocins ...

  11. Biotechnology of Aureobasidium pullulans: A phylogenetic perspective

    USDA-ARS?s Scientific Manuscript database

    Aureobasidium pullulans is a fungus historically included among the "black yeasts." Although many strains are predominantly yeast-like, the species is actually polymorphic, exhibiting complex forms ranging from blastic conidia and swollen cells to pseudophyphae, hyphae, and chlamydospores. A. pull...

  12. Simultaneous production of both high molecular weight pullulan and oligosaccharides by Aureobasdium melanogenum P16 isolated from a mangrove ecosystem.

    PubMed

    Liu, Nan-Nan; Chi, Zhe; Wang, Qin-Qing; Hong, Jiang; Liu, Guang-Lei; Hu, Zhong; Chi, Zhen-Ming

    2017-09-01

    After the compositional change of a pullulan production medium, a molecular weight (Mw) of the pullulan produced by Aureobasidium melanogenum P16 was 2.32×10 6 and a pullulan titer was 44.4g/L while a Mw of the pullulan produced by A. melanogenum P16 grown in the initial medium was only 3.47×10 5 and a pullulan titer was 65.3g/L. The increased Mw of the pullulan was due to the decreased activities of α-amylase, glucoamylase and pullulanase while the decreased pullulan titer was related to the decreased transcriptional levels of the genes encoding 6-P-glucose kinase, glucosyltransferase, α-phosphoglucose mutase, UDPG-pyrophosphorylase and pullulan synthetase. During the 10-L fermentation, when the yeast strain P16 was grown in the initial medium, the pullulan and oligosaccharide titers were 65.5g/L and 7.8g/L, respectively and the Mw of the produced pullulan was 4.42×10 5 while when the yeast strain P16 was grown in the compositionally changed medium, the pullulan and oligosaccharide titers were 46.4g/L and 27.8g/L, respectively and the Mw of the produced pullulan was 2.6×10 6 . Most of the oligosaccharides produced by the yeast strain P16 cultivated in the compositionally changed medium had degree of polymerization of 4 and 5. Therefore, both of the high Mw pullulan and oligosaccharides with high levels were produced by the yeast strain P16. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition.

    PubMed

    Li, Bing-xue; Zhang, Ning; Peng, Qing; Yin, Tie; Guan, Fei-fei; Wang, Gui-li; Li, Ying

    2009-08-01

    A black yeast strain "NG" was isolated from strawberry fruit and identified as Aureobasidium pullulans. Strain NG displayed yeast-like cell (YL), swollen cell (SC), septate swollen cell (SSC), meristematic structure (MS), and chlamydospore (CH) morphologies. pH was the key factor regulating cell morphogenesis of strain NG. Differentiation of YL controlled by extracellular pH had no relationship with nutrition level. YL was maintained at pH >6.0, but was transformed into SC at pH approximately 4.5. SC, a stable cell type of A. pullulans, could bud, septate, or transform into MS or CH, in response to nutrition level and low pH. SC produced swollen cell blastospores (SCB) at pH 2.1 with abundant nutrition, and could transform into MS at lower pH (1.5). SC was induced to form CH by low level nutrition and pH <3, and this transition was suppressed by adjusting pH to approximately 4.5. Crude polysaccharides without pigment (melanin) were produced by SC of strain NG. Pullulan content of the polysaccharides was very high (98.37%). Fourier-transform infrared spectroscopy confirmed that chemical structures of the polysaccharides and standard pullulan were identical. Swollen cells produced 2.08 mg/ml non-pigmented polysaccharides at 96 h in YPD medium. Controlling pH of fermentation is an effective and convenient method to harvest SC for melanin-free pullulan production.

  15. Efficient transformation of sucrose into high pullulan concentrations by Aureobasidium melanogenum TN1-2 isolated from a natural honey.

    PubMed

    Jiang, Hong; Xue, Si-Jia; Li, Yan-Feng; Liu, Guang-Lei; Chi, Zhen-Ming; Hu, Zhong; Chi, Zhe

    2018-08-15

    A very high pullulan producing yeast-like fungus, Aureobasidium melanogenum TN1-2 isolated from a natural honey was found to be able to produce 97.0 g/L of pullulan from 140.0 g/L sucrose at a flask level while it could yield 114.0 g/L of pullulan within 134 h during a 10-liter fermentation, the yield was 0.81 g/g and the productivity was 0.86 g/L/h. The high ability to biosynthesize pullulan by this yeast-like fungal strain TN1-2 was related to high glucosyltransferase activity, high phosphofructo-2-kinase activity, high content of its cellular glycerol and low glucose repressor. The Mw of the produced pullulan was 1.42 × 10 5  g/mol. The low Mw may be due to the high α-amylase, glucoamylase and isopullulanase activities. The intracellular level of trehalose had no influence on high pullulan production by the yeast-like fungal strain TN1-2. Copyright © 2018. Published by Elsevier Ltd.

  16. Optimization of physico-chemical and nutritional parameters for a novel pullulan-producing fungus, Eurotium chevalieri.

    PubMed

    Gaur, R; Singh, R; Tiwari, S; Yadav, S K; Daramwal, N S

    2010-09-01

    To isolate the novel nonmelanin pullulan-producing fungi from soil and to optimize the physico-chemical and nutritional parameters for pullulan production. A selective enrichment method was followed for the isolation, along with development of a suitable medium for pullulan production, using shake flask experiments. Pullulan content was confirmed using pure pullulan and pullulanase hydrolysate. Eurotium chevalieri was able to produce maximum pullulan (38 ± 1·0 g l(-1) ) at 35°C, pH 5·5, 2·5% sucrose, 0·3% ammonium sulfate and 0·2% yeast extract in a shake flash culture medium with an agitation rate of 30 rev min(-1) for 65 h. The novel pullulan-producing fungus was identified as E. chevalieri (MTCC no. 9614), which was able to produce nonmelanin pullulan at from poorer carbon and nitrogen sources than Aureobasidium pullulans and may therefore be useful for the commercial production of pullulan. Eurotium chevalieri could produce pullulan in similar amounts to A. pullulans. Therefore, in future, this fungus could also be used for commercial pullulan production, because it is neither polymorphic nor melanin producing, hence its handling during pullulan fermentation will be easier and more economical. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  17. Development of an oligonucleotide probe for Aureobasidium pullulans based on the small-subunit rRNA gene.

    PubMed Central

    Li, S; Cullen, D; Hjort, M; Spear, R; Andrews, J H

    1996-01-01

    Aureobasidium pullulans, a cosmopolitan yeast-like fungus, colonizes leaf surfaces and has potential as a biocontrol agent of pathogens. To assess the feasibility of rRNA as a target for A. pullulans-specific oligonucleotide probes, we compared the nucleotide sequences of the small-subunit rRNA (18S) genes of 12 geographically diverse A. pullulans strains. Extreme sequence conservation was observed. The consensus A. pullulans sequence was compared with other fungal sequences to identify potential probes. A 21-mer probe which hybridized to the 12 A. pullulans strains but not to 98 other fungi, including 82 isolates from the phylloplane, was identified. A 17-mer highly specific for Cladosporium herbarum was also identified. These probes have potential in monitoring and quantifying fungi in leaf surface and other microbial communities. PMID:8633850

  18. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    PubMed

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  19. Pullulan: biosynthesis, production, and applications.

    PubMed

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2011-10-01

    Pullulan is a linear glucosic polysaccharide produced by the polymorphic fungus Aureobasidium pullulans, which has long been applied for various applications from food additives to environmental remediation agents. This review article presents an overview of pullulan's chemistry, biosynthesis, applications, state-of-the-art advances in the enhancement of pullulan production through the investigations of enzyme regulations, molecular properties, cultivation parameters, and bioreactor design. The enzyme regulations are intended to illustrate the influences of metabolic pathway on pullulan production and its structural composition. Molecular properties, such as molecular weight distribution and pure pullulan content, of pullulan are crucial for pullulan applications and vary with different fermentation parameters. Studies on the effects of environmental parameters and new bioreactor design for enhancing pullulan production are getting attention. Finally, the potential applications of pullulan through chemical modification as a novel biologically active derivative are also discussed.

  20. Redefinition of Aureobasidium pullulans and its varieties

    PubMed Central

    Zalar, P.; Gostinčar, C.; de Hoog, G.S.; Uršič, V.; Sudhadham, M.; Gunde-Cimerman, N.

    2008-01-01

    Using media with low water activity, a large numbers of aureobasidium-like black yeasts were isolated from glacial and subglacial ice of three polythermal glaciers from the coastal Arctic environment of Kongsfjorden (Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and glacial meltwaters. To characterise the genetic variability of Aureobasidium pullulans strains originating from the Arctic and strains originating pan-globally, a multilocus molecular analysis was performed, through rDNA (internal transcribed spacers, partial 28 S rDNA), and partial introns and exons of genes encoding β-tubulin (TUB), translation elongation factor (EF1α) and elongase (ELO). Two globally ubiquitous varieties were distinguished: var. pullulans, occurring particularly in slightly osmotic substrates and in the phyllosphere; and var. melanogenum, mainly isolated from watery habitats. Both varieties were commonly isolated from the sampled Arctic habitats. However, some aureobasidium-like strains from subglacial ice from three different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to represent a new variety of A. pullulans. A strain from dolomitic marble in Namibia was found to belong to yet another variety. No molecular support has as yet been found for the previously described var. aubasidani. A partial elongase-encoding gene was successfully used as a phylogenetic marker at the (infra-)specific level. PMID:19287524

  1. A carboxymethyl cellulase from a marine yeast ( Aureobasidium pullulans 98): Its purification, characterization, gene cloning and carboxymethyl cellulose digestion

    NASA Astrophysics Data System (ADS)

    Rong, Yanjun; Zhang, Liang; Chi, Zhenming; Wang, Xianghong

    2015-10-01

    We have reported that A. pullulans 98 produces a high yield of cellulase. In this study, a carboxymethyl cellulase (CMCase) in the supernatant of the culture of A. pullulans 98 was purified to homogeneity, and the maximum production of CMCase was 4.51 U (mg protein)-1. The SDS-PAGE analysis showed that the molecular mass of the purified CMCase was 67.0 kDa. The optimal temperature of the purified enzyme with considerable thermosensitivity was 40°C, much lower than that of the CMCases from other fungi. The optimal pH of the enzyme was 5.6, and the activity profile was stable in a range of acidity (pH 5.0-6.0). The enzyme was activated by Na+, Mg2+, Ca2+, K+, Fe2+ and Cu2+, however, it was inhibited by Fe3+, Ba2+, Zn2+, Mn2+ and Ag+. K m and V max values of the purified enzyme were 4.7 mg mL-1 and 0.57 µmol L-1 min-1 (mg protein)-1, respectively. Only oligosaccharides with different sizes were released from carboxymethylcellulose (CMC) after hydrolysis with the purified CMCase. The putative gene encoding CMCase was cloned from A. pullulans 98, which contained an open reading frame of 954 bp (EU978473). The protein deduced contained the conserved domain of cellulase superfamily (glucosyl hydrolase family 5). The N-terminal amino acid sequence of the purified CMCase was M-A-P-H-A-E-P-Q-S-Q-T-T-E-Q-T-S-S-G-Q-F, which was consistent with that deduced from the cloned gene. This suggested that the purified CMCase was indeed encoded by the cloned CMCase gene in this yeast.

  2. Phylogenetic classification of Aureobasidium pullulans strains for production of pullulan and xylanase

    USDA-ARS?s Scientific Manuscript database

    This study tests the hypothesis that phylogenetic classification can predict whether A. pullulans strains will produce useful levels of the commercial polysaccharide, pullulan, or the valuable enzyme, xylanase. To test this hypothesis, 19 strains of A. pullulans with previously described phenotypes...

  3. Induction of stilbene phytoalexins in grapevine (Vitis vinifera) and transgenic stilbene synthase-apple plants (Malus domestica) by a culture filtrate of Aureobasidium pullulans.

    PubMed

    Rühmann, Susanne; Pfeiffer, Judith; Brunner, Philipp; Szankowski, Iris; Fischer, Thilo C; Forkmann, Gert; Treutter, Dieter

    2013-11-01

    Products containing the epiphytic yeast Aureobasidium pullulans are commercially available and applied by fruit growers to prevent several fungal and bacterial diseases of fruit trees. The proposed beneficial mechanisms relate to limitations of space and nutrients for the pathogens in presence of the rapidly proliferating yeast cells. These explanations ignore the potential of yeasts to elicit the plant's defense. Our experiments aim at clarifying if an autoclaved and centrifuged suspension of A. pullulans may induce defense mechanisms. As a model system, the biosynthesis and accumulation of stilbene phytoalexins in callus and shoots of grapevine Vitis vinifera grown in vitro was used. Yeast application to the plant tissue stimulated stilbene biosynthesis, sometimes at the cost of flavonoids. The expression of the gene encoding stilbene synthase was enhanced and the enzyme showed higher activity while chalcone synthase activity and expression was reduced in some cases. An accumulation of stilbenes was also found in transgenic apple trees (Malus domestica cv. Holsteiner Cox) harboring the stilbene synthase-gene under control of its own promoter. These results clearly show that the application of A. pullulans may induce defense mechanisms of the treated plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Optimization of high molecular weight pullulan production by Aureobasidium pullulans in batch fermentations.

    PubMed

    Gibson, Larry H; Coughlin, Robert W

    2002-01-01

    Of five strains of Aureobasidium pullulans studied, NRRL Y-2311-1 yielded the highest titer (26.2 g/L) of pullulan and formed the lowest amount of melanin-like pigment. Sucrose was superior to glucose as the carbon and energy source on the basis of yield and titer of pullulan produced. Pullulan titer was higher (26.2 vs 5.1 g/L), biomass concentration was lower (6.9 vs 12.7 g/L), and DO was lower (0 vs 60% of saturation) when the fermenter was agitated by a marine propeller compared to Rushton impellers. Pullulan produced by strain NRRL Y-2311-1 ranged in weight-average molar mass (M(w)) from 486 KDa and number-average molar mass (M(n)) from 220 Da on day 1 of growth to 390 KDa and 690 Da on day 6; M(w) declined by about 35% from day 1 to day 3, the day of maximum pullulan titer. For the other strains, the ranges of molar mass on the day of maximum pullulan titer were 338-614 KDa (M(w)) and 100-6820 Da (M(n)).

  5. Fungemia caused by Aureobasidium pullulans in a patient with advanced AIDS: a case report and review of the medical literature

    PubMed Central

    Mittal, Jaimie; Szymczak, Wendy A.; Pirofski, Liise-anne; Galen, Benjamin T.

    2018-01-01

    Introduction Aureobasidium pullulans is a dematiaceous, yeast-like fungus that is ubiquitous in nature and can colonize human hair and skin. It has been implicated clinically as causing skin and soft tissue infections, meningitis, splenic abscesses and peritonitis. We present, to our knowledge, the second case of isolation of this organism in a patient with AIDS along with a review of the literature on human infection with A. pullulans. Case presentation A 49-year-old man with advanced AIDS and a history of recurrent oesophageal candidiasis was admitted with nausea with vomiting, and odynophagia. He was treated as having a recurrence of oesophageal candidiasis. Given prior Candida albicans isolate susceptibilities and chronic suppression with fluconazole, he was started on micafungin with eventual improvement in his symptoms. A positive blood culture from admission was initially reported to be growing yeast, but four days later the isolate was recognized as a dematiaceous fungus. The final identification of A. pullulans was not available until 1 month after admission. He had completed a 3-week course of micafungin prior to the identification of the isolate, and repeat cultures were negative. Conclusion A. pullulans fungemia is rare but can occur in patients with immune suppression or indwelling catheters. The significance of isolating A. pullulans from a blood culture in terms of whether it is the causative agent of a state of disease often cannot be determined because skin colonization is possible. Further work is needed to clarify the clinical implications of A. pullulans fungemia. PMID:29868175

  6. Disseminated Nosocomial Fungal Infection by Aureobasidium pullulans var. melanigenum: a Case Report

    PubMed Central

    Bolignano, Giuseppe; Criseo, Giuseppe

    2003-01-01

    We report on a rare case of disseminated nosocomial fungal infection due to Aureobasidium pullulans var. melanigenum in a severely traumatized patient. Repeated blood and urine cultures yielded multicellular filamentous hyphal structures of varying size accompanied by budding yeast-like-cells of ellipsoidal morphology. The patient became asymptomatic after fluconazole therapy. PMID:12958301

  7. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  8. Discovering the role of the apolipoprotein gene and the genes in the putative pullulan biosynthesis pathway on the synthesis of pullulan, heavy oil and melanin in Aureobasidium pullulans.

    PubMed

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2017-12-18

    Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.

  9. Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp.

    PubMed

    Singh, R S; Saini, G K

    2008-06-01

    The studies were carried out for the isolation of efficient pullulan producing strains of Aureobasidium pullulans. Five strains were isolated from phylloplane of different plants. Amongst these, three were producing black pigment melanin, while the remaining two produced pink pigment. These two color variant isolates of A. pullulans were designated as FB-1 and FG-1, and obtained from phylloplane of Ficus benjamina and Ficus glometa, respectively. The parameters employed for the identification of the isolates included morphology, nutritional assimilation patterns and exopolysaccharide (EPS) production. Isolates were compared with standard cultures for EPS production. A. pullulans FB-1 was the best producer of pullulan giving up to 1.9, 1.4 and 1.7 times more pullulan than the control of A. pullulans NCIM 976, NCIM 1048 and NCIM 1049, respectively. The IR spectra of the isolates and standard strains revealed that the polysaccharide was pullulan, but not aubasidan. The study also supported the fact that A. pullulans is a ubiquitous organism and phylloplane being the important niche of the organism.

  10. Deoiledjatropha seed cake is a useful nutrient for pullulan production.

    PubMed

    Choudhury, Anirban Roy; Sharma, Nishat; Prasad, G S

    2012-03-30

    Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem.Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry. In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter. This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to development of a cost

  11. Deoiledjatropha seed cake is a useful nutrient for pullulan production

    PubMed Central

    2012-01-01

    Background Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem. Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry. Results In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter. Conclusion This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to

  12. Aureobasidium pullulans produced β-glucan is effective to enhance Kurosengoku soybean extract induced Thrombospondin-1 expression.

    PubMed

    Muramatsu, Daisuke; Okabe, Mitsuyasu; Takaoka, Akinori; Kida, Hiroshi; Iwai, Atsushi

    2017-06-06

    Black yeast, Aureobasidium pullulans is extracellularly produced β-(1,3), (1,6)-D-glucan (β-glucan) under certain conditions. In this study, using Glycine max cv. Kurosengoku (Kurosengoku soybeans), the production of β-glucan through fermentation of A. pullulans was evaluated, and the effects of A. pullulans cultured fluid (AP-CF) containing β-glucan made with Kurosengoku soybeans (kAP-CF) on a human monocyte derived cell line, Mono Mac 6 cells were investigated. Concentration of β-glucan in kAP-CF reached the same level as normal AP-CF. An anti-angiogenic protein, Thrombospondin-1 (THBS1) was effectively induced after the stimulation with kAP-CF for comparison with AP-CF. The THBS1 is also induced after stimulation with hot water extract of Kurosengoku soybeans (KS-E), while the combined stimulation of β-glucan with KS-E more effectively induced THBS1 than that with KS-E alone. These results suggest effects of A. pullulans-produced β-glucan on the enhancement of Kurosengoku soybean-induced THBS1 expression.

  13. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species.

    PubMed

    Gostinčar, Cene; Ohm, Robin A; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Zalar, Polona; Grube, Martin; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V; Gunde-Cimerman, Nina

    2014-07-01

    Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.

  14. The yeast flora of the coast redwood, Sequoia sempervirens.

    PubMed

    Middelhoven, W J

    2003-01-01

    Only four yeast species could be isolated from young and perannual shoots of the coast redwood tree, Sequoia sempervirens, and from soil beneath the trees, viz. both varieties of Debaryomyces hansenii, Trichosporon pullulans, T. porosum and an unidentified red basidiomycetous yeast.

  15. Maple sap predominant microbial contaminants are correlated with the physicochemical and sensorial properties of maple syrup.

    PubMed

    Filteau, Marie; Lagacé, Luc; Lapointe, Gisèle; Roy, Denis

    2012-03-01

    Maple sap processing and microbial contamination are significant aspects that affect maple syrup quality. In this study, two sample sets from 2005 and 2008 were used to assess the maple syrup quality variation and its relationship to microbial populations, with respect to processing, production site and harvesting period. The abundance of maple sap predominant bacteria (Pseudomonas fluorescens group and two subgroups, Rahnella spp., Janthinobacterium spp., Leuconostoc mesenteroides) and yeast (Mrakia spp., Mrakiella spp.,Guehomyces pullulans) was assessed by quantitative PCR. Maple syrup properties were analyzed by physicochemical and sensorial methods. Results indicate that P. fluorescens, Mrakia spp., Mrakiella spp. G. pullulans and Rahnella spp. are stable contaminants of maple sap, as they were found for every production site throughout the flow period. Multiple factor analysis reports a link between the relative abundance of P. fluorescens group and Mrakia spp. in maple sap with maple and vanilla odor as well as flavor of maple syrup. This evidence supports the contribution of these microorganisms or a consortium of predominant microbial contaminants to the characteristic properties of maple syrup. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species

    DOE PAGES

    Gostinčar, Cene; Ohm, Robin A.; Kogej, Tina; ...

    2014-07-01

    Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradationmore » of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. We observed redundancy in several gene families that can be linked to the nutritional versatility of these species and their particular stress tolerance. In conclusions, the availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.« less

  17. Association between sensitization to Aureobasidium pullulans (Pullularia sp) and severity of asthma.

    PubMed

    Niedoszytko, Marek; Chełmińska, Marta; Jassem, Ewa; Czestochowska, Eugenia

    2007-02-01

    Recent data indicate that fungi may contribute to increased severity of asthma. To determine the prevalence of allergy to 15 mold allergens among patients hospitalized because of exacerbation of asthma and to evaluate the relationship between the severity of the disease and allergy to particular molds. Skin prick tests with standard aeroallergens of airborne allergens, including grass, tree, Dermatophagoides pteronyssinus, Dermatophagoides farinae, feather, and cat and dog fur, and a panel of mold allergens, including Alternaria, Cladosporium, Aspergillus, Penicillium, Trichothecium, Chaetomium globosum, Epicoccum, Epidermophyton, Helminthosporium, Aureobasidium pullulans, Rhizopus nigricans, Fusarium, Mucor, Merulius lacrymans, and yeast mix, were performed in 105 asthmatic patients and 30 controls. Positive skin prick test results were found in 98% of asthmatic patients and 66% of controls. Sensitivity to A pullulans was significantly associated with more severe asthma (odds ratio, 1.4; 95% confidence interval, 1.09-1.75; P = .006). Sensitization to Helminthosporium was associated with an increased number of asthma exacerbations that required hospitalization (17% vs 38%; chi2 test P = .03). Sensitization to A pullulans is a risk factor for severe asthma. Sensitization to Helminthosporium may be related to asthma exacerbation that requires hospitalization.

  18. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  19. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode.

    PubMed

    Terán Hilares, Ruly; Orsi, Camila Ayres; Ahmed, Muhammad Ajaz; Marcelino, Paulo Franco; Menegatti, Carlos Renato; da Silva, Silvio Silvério; Dos Santos, Júlio César

    2017-04-01

    Pullulan is a polymer produced by Aureobasidium pullulans and the main bottleneck for its industrial production is the presence of melanin pigment. In this study, light-emitting diodes (LEDs) of different wavelengths were used to assist the fermentation process aiming to produce low-melanin containing pullulan by wild strain of A. pullulans LB83 with different carbon sources. Under white light using glucose-based medium, 11.75g.L -1 of pullulan with high melanin content (45.70UA 540nm .g -1 ) was obtained, this production improved in process assisted by blue LED light, that resulted in 15.77g.L -1 of pullulan with reduced content of melanin (4.46UA 540nm .g -1 ). By using sugarcane bagasse (SCB) hydrolysate as carbon source, similar concentration of pullulan (about 20g.L -1 ) was achieved using white and blue LED lights, with lower melanin contents in last. Use of LED light was found as a promising approach to assist biotechnological process for low-melanin containing pullulan production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Highly cold-active pectinases under wine-like conditions from non-Saccharomyces yeasts for enzymatic production during winemaking.

    PubMed

    Merín, M G; Morata de Ambrosini, V I

    2015-05-01

    The influence of oenological factors on cold-active pectinases from 15 preselected indigenous yeasts belonging to Aureobasidium pullulans, Filobasidium capsuligenum, Rhodotorula dairenensis, Cryptococcus saitoi and Saccharomyces cerevisiae was investigated. Pectinolytic enzymes were constitutive or partially constitutive; and high glucose concentration (200 g l(-1) ) did not affect or increased pectinase production at 12°C and pH 3·5 (up to 113·9 U mg(-1) ) only in A. pullulans strains. SO2 (120 mg l(-1) ) slightly affected the growth of A. pullulans strains but did not affect pectinase production levels. Ethanol (15%) barely affected pectinase activity of A. pullulans strains but diminished relative activity to 12-79% of basidiomycetous yeasts. Moreover, non-Saccharomyces strains showed promising properties of oenological interest. This study demonstrates that cold-active pectinases from some A. pullulans strains were able to remain active at glucose, ethanol and SO2 concentrations usually found in vinification, and suggests their potential use as processing aids for low-temperature winemaking. Nowadays, there is increasing interest in low-temperature winemaking. Nevertheless, commercial oenological pectinases, produced by fungi, are rarely active at low temperatures. Cold-active pectinases that are stable under vinification conditions are needed. This study indicated that cold-active and acid-tolerant pectinases from non-Saccharomcyes yeasts were able to remain active at glucose, ethanol and SO2 concentrations usually found in winemaking. Furthermore, not only are these yeasts a source of cold-active pectinases, but the yeasts themselves are also potential adjunct cultures for oenology to produce these enzymes during cold-winemaking. © 2015 The Society for Applied Microbiology.

  1. β-(1 → 3)-Glucanolytic yeasts from Brazilian grape microbiota: production and characterization of β-glucanolytic enzymes by Aureobasidium pullulans 1WA1 cultivated on fungal Mycelium.

    PubMed

    Bauermeister, Anelize; Amador, Ismael R; Pretti, Carla P; Giese, Ellen C; Oliveira, André L M

    2015-01-14

    A total of 95 yeast strains were isolated from the microbiota of different grapes collected at vineyards in southern Brazil. The yeasts were screened for β-(1 → 3)-glucanases using a newly developed zymogram method that relies upon the appearance of clearance zones around growing colonies cultured on agar–botryosphaeran medium and also by submerged fermentation on nutrient medium containing botryosphaeran, a (1 → 3),(1 → 6)-β-d-glucan. Among 14 β-(1 → 3)-glucanase-positive yeasts identified, four strains produced the highest β-glucanolytic activities and were evaluated for enzyme production on cellobiose, botryosphaeran, and mycelial biomass from Botryosphaeria rhodina (MAMB-05). Yeast strain 1WA1 produced the highest β-(1 → 3)-glucanase and β-glucosidase activities and was identified by molecular characterization as Aureobasidium pullulans. The physicochemical properties of the crude β-glucanolytic enzyme preparation were characterized, and the preparation was used to hydrolyze several β-d-glucans (laminarin, botryosphaeran, lasiodiplodan, pustulan, and curdlan). The production and physicochemical properties of the β-glucanolytic preparation enable its potential applications in wine enology and production of prebiotics through hydrolysis of β-d-glucans.

  2. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    PubMed

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  3. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans.

    PubMed

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2018-04-30

    Aureobasidium pullulans is a yeast-like fungus that can ferment xylose to generate high-value-added products, such as pullulan, heavy oil, and melanin. The combinatorial expression of two xylose reductase (XR) genes and two xylitol dehydrogenase (XDH) genes from Spathaspora passalidarum and the heterologous expression of the Piromyces sp. xylose isomerase (XI) gene were induced in A. pullulans to increase the consumption capability of A. pullulans on xylose. The overexpression of XYL1.2 (encoding XR) and XYL2.2 (encoding XDH) was the most beneficial for xylose utilization, resulting in a 17.76% increase in consumed xylose compared with the parent strain, whereas the introduction of the Piromyces sp. XI pathway failed to enhance xylose utilization efficiency. Mutants with superior xylose fermentation performance exhibited increased intracellular reducing equivalents. The fermentation performance of all recombinant strains was not affected when glucose or sucrose was utilized as the carbon source. The strain with overexpression of XYL1.2 and XYL2.2 exhibited excellent fermentation performance with mimicked hydrolysate, and pullulan production increased by 97.72% compared with that of the parent strain. The present work indicates that the P4 mutant (using the XR/XDH pathway) with overexpressed XYL1.2 and XYL2.2 exhibited the best xylose fermentation performance. The P4 strain showed the highest intracellular reducing equivalents and XR and XDH activity, with consequently improved pullulan productivity and reduced melanin production. This valuable development in aerobic fermentation by the P4 strain may provide guidance for the biotransformation of xylose to high-value products by A. pullulans through genetic approach.

  4. Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullulans.

    PubMed

    Franco, Diana L; Canessa, Paulo; Bellora, Nicolás; Risau-Gusman, Sebastián; Olivares-Yañez, Consuelo; Pérez-Lara, Rodrigo; Libkind, Diego; Larrondo, Luis F; Marpegan, Luciano

    2017-10-23

    Circadian systems enable organisms to synchronize their physiology to daily and seasonal environmental changes relying on endogenous pacemakers that oscillate with a period close to 24 h even in the absence of external timing cues. The oscillations are achieved by intracellular transcriptional/translational feedback loops thoroughly characterized for many organisms, but still little is known about the presence and characteristics of circadian clocks in fungi other than Neurospora crassa. We sought to characterize the circadian system of a natural isolate of Aureobasidium pullulans, a cold-adapted yeast bearing great biotechnological potential. A. pullulans formed daily concentric rings that were synchronized by light/dark cycles and were also formed in constant darkness with a period of 24.5 h. Moreover, these rhythms were temperature compensated, as evidenced by experiments conducted at temperatures as low as 10 °C. Finally, the expression of clock-essential genes, frequency, white collar-1, white collar-2 and vivid was confirmed. In summary, our results indicate the existence of a functional circadian clock in A. pullulans, capable of sustaining rhythms at very low temperatures and, based on the presence of conserved clock-gene homologues, suggest a molecular and functional relationship to well-described circadian systems.

  5. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process

    PubMed Central

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42oC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm. PMID:24031927

  6. Control of Molecular Weight Distribution of the Biopolymer Pullulan Produced by the Fungus Aureobasidium Pullulans

    DTIC Science & Technology

    1987-10-01

    Source ( 1 0%) [!H QH (%) (k) Fructose 5.44 3.76 27.0 1122 2.5 Sucrose 5.44 3.69 34.4 895 2.4 Maltose 5. 44 4.08 25.4 881 2. l Corn Syrup 5. 44 3.85...pullulan and found that the uptake of glucose at more acid pH was diverted to the synthesis of extra- cellular pullulan, and that high extracellular...at pH 5.5, pH 6.0, and pH 6.5, Phosphate concentrations of 0.2%-0,4% yielded high MW pullulan at the lower pH level. They reported that using

  7. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D.

    PubMed

    Xia, Jun; Xu, Jiaxing; Liu, Xiaoyan; Xu, Jiming; Wang, Xingfeng; Li, Xiangqian

    2017-02-23

    poly(L-malic acid) (PMA) is a water-soluble polyester with many attractive properties in medicine and food industries, but the high cost of PMA fermentation has restricted its further application for large-scale production. To overcome this problem, PMA production from Jerusalem artichoke tubers was successfully performed. Additionally, a valuable exopolysaccharide, pullulan, was co-produced with PMA by Aureobasidum pullulans HA-4D. The Jerusalem artichoke medium for PMA and pullulan co-production contained only 100 g/L hydrolysate sugar, 30 g/L CaCO 3 and 1 g/L NaNO 3 . Compared with the glucose medium, the Jerusalem artichoke medium resulted in a higher PMA concentration (114.4 g/L) and a lower pullulan concentration (14.3 g/L) in a 5 L bioreactor. Meanwhile, the activity of pyruvate carboxylase and malate dehydrogenas was significantly increased, while the activity of α-phosphoglucose mutase, UDP-glucose pyrophosphorylase and glucosyltransferase was not affected. To assay the economic-feasibility, large-scale production in a 1 t fermentor was performed, yielding 117.5 g/L PMA and 15.2 g/L pullulan. In this study, an economical co-production system for PMA and pullulan from Jerusalem artichoke was developed. The medium for PMA and pullulan co-production was significantly simplified when Jerusalem artichoke tubers were used. With the simplified medium, PMA production was obviously stimulated, which would be associated with the improved activity of pyruvate carboxylase and malate dehydrogenas.

  8. Cationized pullulan 3D matrices as new materials for gene transfer.

    PubMed

    San Juan, Aurélie; Hlawaty, Hanna; Chaubet, Frédéric; Letourneur, Didier; Feldman, Laurent J

    2007-08-01

    This study deals with the development of a novel biocompatible cationized pullulan three-dimensional matrix for gene delivery. A water-soluble cationic polysaccharide, diethylaminoethyl-pullulan (DEAE-pullulan), was first synthesized and characterized. Fluorescence quenching and gel retardation assays evidenced the complexation in solution of DNA with DEAE-pullulan, but not with neutral pullulan. On cultured smooth muscle cells (SMCs) incubated with DEAE-pullulan and a plasmid vector expressing a secreted form of alkaline phosphatase (pSEAP), SEAP activity was 150-fold higher than with pSEAP alone or pSEAP with neutral pullulan. DEAE-pullulan was then chemically crosslinked using phosphorus oxychloride. The resulting matrices were obtained in less than a minute and molded as discs of 12 mm diameter and 2 mm thickness. Such DEAE-pullulan 3D matrices were loaded with up to 50 microg of plasmid DNA, with a homogeneous plasmid loading observed with YOYO-1 fluorescence staining. Moreover, the DEAE-pullulan matrix was shown to protect pSEAP from DNase I degradation. Incubation of cultured SMCs with pSEAP-loaded DEAE-pullulan matrices resulted in significant gene transfer without cell toxicity. This study suggests that these cationized pullulan 3D matrices could be useful biomaterials for local gene transfer.

  9. Inactivation of virginiamycin by Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    Objective: To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans. Results: Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three...

  10. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system.

    PubMed

    Ma, Zai-Chao; Fu, Wen-Juan; Liu, Guang-Lei; Wang, Zhi-Peng; Chi, Zhen-Ming

    2014-06-01

    After over 100 strains of Aureobasidium spp. isolated from mangrove system were screened for their ability to produce exopolysaccharide (EPS), it was found that Aureobasidium pullulans var. melanogenium P16 strain among them could produce high level of EPS. Under the optimal conditions, 65.3 g/L EPS was produced by the P16 strain within 120 h at flask level. During 10-L batch fermentation, when the medium contained 120.0 g/L sucrose, 67.4 g/L of EPS and 23.1 g/L of cell dry weight in the culture were obtained within 120 h, leaving 0.78 g/L of reducing sugar and 11.4 g/L of total sugar in the fermented medium. It should be stressed that during the fermentation, no melanin was observed. After purification, the purified EPS was confirmed to be pullulan. This is the first time to report that A. pullulans var. melanogenium P16 strain isolated from the mangrove system can produce high level of pullulan.

  11. Growth inhibition of Candida species by Wickerhamomyces anomalus mycocin and a lactone compound of Aureobasidium pullulans.

    PubMed

    Tay, Sun-Tee; Lim, Su-Lin; Tan, Hui-Wee

    2014-11-08

    The increasing resistance of Candida yeasts towards antifungal compounds and the limited choice of therapeutic drugs have spurred great interest amongst the scientific community to search for alternative anti-Candida compounds. Mycocins and fungal metabolites have been reported to have the potential for treatment of fungal infections. In this study, the growth inhibition of Candida species by a mycocin produced by Wickerhamomyces anomalus and a lactone compound from Aureobasidium pullulans were investigated. Mycocin was purified from the culture supernatant of an environmental isolate of W. anomalus using Sephadex G-75 gel filtration column chromatography. The mycocin preparation was subjected to SDS-PAGE analysis followed by MALDI TOF/TOF mass spectrometry analysis. The thermal and temperature stability of the mycocin were determined. The glucanase activity of the mycocin was investigated by substrate staining of the mycocin with 4-methyl-umbelliferyl-ß-D-glucoside (MUG). Gas chromatography mass spectrometry (GCMS) analysis was used to identify anti-Candida metabolite in the culture supernatant of an environmental isolate of Aureobasidium pullulans. The inhibitory effects of the anti-Candida compound against planktonic and biofilm cultures of various Candida species were determined using broth microdilution and biofilm quantitation methods. A mycocin active against Candida mesorugosa but not C. albicans, C. parapsilosis and C. krusei was isolated from the culture supernatant of W. anomalus in this study. The mycocin, identified as exo-ß-1,3 glucanase by MALDI TOF/TOF mass spectrometry, was stable at pH 3-6 and temperature ranging from 4-37°C. The glucanase activity of the mycocin was confirmed by substrate staining with MUG. 5-hydroxy-2-decenoic acid lactone (HDCL) was identified from the culture supernatant of A. pullulans. Using a commercial source of HDCL, the planktonic and biofilm MICs of HDCL against various Candida species were determined in this study

  12. Effects of Topical Anesthetics on Pullularia pullulans and Debaryomyces hansenii

    PubMed Central

    Merdinger, Emanuel; Guthmann, Walter S.; Mangine, Francis W.

    1969-01-01

    The inhibitory effects of three topical anesthetics of various concentrations on the growth of Pullularia pullulans, Debaryomyces hansenii, and on pigment production by P. pullulans were investigated. The topical anesthetics were benoxinate hydrochloride, proparacaine hydrochloride, and tetracaine hydrochloride. In decreasing order, the inhibiting effects of the drugs on growth were benoxinate, tetracaine, and proparacaine for P. pullulans, and tetracaine, benoxinate, and proparacaine for D. hansenii. The pigment formation in P. pullulans was inhibited by the three drugs. PMID:5392897

  13. Effects of topical anesthetics on Pullalaria pullulans and Debaryomyces hansenii.

    PubMed

    Merdinger, E; Guthmann, W S; Mangine, F W

    1969-09-01

    The inhibitory effects of three topical anesthetics of various concentrations on the growth of Pullularia pullulans, Debaryomyces hansenii, and on pigment production by P. pullulans were investigated. The topical anesthetics were benoxinate hydrochloride, proparacaine hydrochloride, and tetracaine hydrochloride. In decreasing order, the inhibiting effects of the drugs on growth were benoxinate, tetracaine, and proparacaine for P. pullulans, and tetracaine, benoxinate, and proparacaine for D. hansenii. The pigment formation in P. pullulans was inhibited by the three drugs.

  14. [Complete genome sequencing of polymalic acid-producing strain Aureobasidium pullulans CCTCC M2012223].

    PubMed

    Wang, Yongkang; Song, Xiaodan; Li, Xiaorong; Yang, Sang-tian; Zou, Xiang

    2017-01-04

    To explore the genome sequence of Aureobasidium pullulans CCTCC M2012223, analyze the key genes related to the biosynthesis of important metabolites, and provide genetic background for metabolic engineering. Complete genome of A. pullulans CCTCC M2012223 was sequenced by Illumina HiSeq high throughput sequencing platform. Then, fragment assembly, gene prediction, functional annotation, and GO/COG cluster were analyzed in comparison with those of other five A. pullulans varieties. The complete genome sequence of A. pullulans CCTCC M2012223 was 30756831 bp with an average GC content of 47.49%, and 9452 genes were successfully predicted. Genome-wide analysis showed that A. pullulans CCTCC M2012223 had the biggest genome assembly size. Protein sequences involved in the pullulan and polymalic acid pathway were highly conservative in all of six A. pullulans varieties. Although both A. pullulans CCTCC M2012223 and A. pullulans var. melanogenum have a close affinity, some point mutation and inserts were occurred in protein sequences involved in melanin biosynthesis. Genome information of A. pullulans CCTCC M2012223 was annotated and genes involved in melanin, pullulan and polymalic acid pathway were compared, which would provide a theoretical basis for genetic modification of metabolic pathway in A. pullulans.

  15. Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate.

    PubMed

    Radulović, Milanka D; Cvetković, Olga G; Nikolić, Snezana D; Dordević, Dragana S; Jakovljević, Dragica M; Vrvić, Miroslav M

    2008-09-01

    It was demonstrated that during the growth of Aureobasidium pullulans strain CH-1 on the acid hydrolysate of peat from the Vlasina Lake, the content of metals (Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr) decreased due to biosorption. The reduction in the metal content was found to be in the range (%): 38.2-62.2, 67.7-97.3, 0.02-62.05, 0.05-23.97, 0.16-4.24, 3.45-51.72, 1.18-35.82, 0.86-44.44, for Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr, respectively. During this process, the metals were accumulated in the biomass, while pullulan, an extracellular polysaccharide produced by Aureobasidium pullulans strain CH-1, was found not to bind the above-mentioned metals.

  16. Recent insights on applications of pullulan in tissue engineering.

    PubMed

    Singh, Ram Sarup; Kaur, Navpreet; Rana, Vikas; Kennedy, John F

    2016-11-20

    Tissue engineering is a recently emerging line of act which assists the regeneration of damaged tissues, unable to self-repair themselves and in turn, enhances the natural healing potential of patients. The repair of injured tissue can be induced with the help of some artificially created polymer scaffolds for successful tissue regeneration. The pullulan composite scaffolds can be used to enhance the proliferation and differentiation of cells for tissue regeneration. The unique pattern of pullulan with α-(1→4) and α-(1→6) linkages along with the presence of nine hydroxyl groups on its surface, endows the polymer with distinctive physical features required for tissue engineering. Pullulan can be used for vascular engineering, bone repair and skin tissue engineering. Pullulan composite scaffolds can also be used for treatment of injured femoral condyle bone, skull bone and full thickness skin wound of murine models, transversal mandibular and tibial osteotomy in goat, etc. This review article highlights the latest developments on applications of pullulan and its derivatives in tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Preactivated thiolated pullulan as a versatile excipient for mucosal drug targeting.

    PubMed

    Leonaviciute, Gintare; Suchaoin, Wongsakorn; Matuszczak, Barbara; Lam, Hung Thanh; Mahmood, Arshad; Bernkop-Schnürch, Andreas

    2016-10-20

    The purpose of the present study was to generate a novel mucoadhesive thiolated pullulan with protected thiol moieties and to evaluate its suitability as mucosal drug delivery system. Two different synthetic pathways: bromination-nucleophilic substitution and reductive amination including periodate cleavage were utilized to synthesize such thiolated pullulans. The thiomer (pullulan-cysteamine) with the highest amount of free thiol groups was further enrolled in a reaction with 6-mercaptonicotinamide and its presence in pullulan structure was confirmed via NMR analysis. Furthermore, unmodified, thiolated and preactivated thiolated pullulan were investigated in terms of mucoadhesion via rotating cylinder studies and rheological synergism method as well as their toxicity potential over Caco-2 cells. Comparing both methods the reductive amination seems to be the method of choice resulting in comparatively higher coupling rates. Using this procedure pullulan-cysteamine conjugate displayed 1522±158μmol immobilized thiol groups and 280±70μmol free thiol groups per gram polymer. Furthermore, 82% of free thiol groups on this conjugate were linked with 6-mercaptonicotinamide (6-MNA). The adhesion time on the rotating cylinder was up to 46-fold prolonged in case of the thiolated polymer and up to 75-fold in case of the preactivated polymer. Rheological measurements of modified pullulan samples showed 98-fold and 160-fold increase in dynamic viscosity upon the addition of mucus within 60min, whereas unmodified pullulan did not show an increase in viscosity at all. Both conjugates had a minor effect on Caco-2 cell viability. Because of these features preactivated thiolated pullulan seems to represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  19. "Wetting enhancer" pullulan coating for antifog packaging applications.

    PubMed

    Introzzi, Laura; Fuentes-Alventosa, José María; Cozzolino, Carlo A; Trabattoni, Silvia; Tavazzi, Silvia; Bianchi, Claudia L; Schiraldi, Alberto; Piergiovanni, Luciano; Farris, Stefano

    2012-07-25

    A new antifog coating made of pullulan is described in this work. The antifog properties are discussed in terms of wettability, surface chemistry/morphology, and by quantitative assessment of the optical properties (haze and transparency) before and after fog formation. The work also presents the results of antifog tests simulating the typical storage conditions of fresh foods. In these tests, the antifog efficiency of the pullulan coating was compared with that of two commercial antifog films, whereas an untreated low-density polyethylene (LDPE) film was used as a reference. The obtained results revealed that the pullulan coating behaved as a "wetting enhancer", mainly due to the low water contact angle (∼24°), which in turn can be ascribed to the inherent hydrophilic nature of this polysaccharide, as also suggested by the X-ray photoelectron spectroscopy experiments. Unlike the case of untreated LDPE and commercial antifog samples, no discrete water formations (i.e., droplets or stains) were observed on the antifog pullulan coating on refrigeration during testing. Rather, an invisible, continuous and thin layer of water occurred on the biopolymer surface, which was the reason for the unaltered haze and increased transparency, with the layer of water possibly behaving as an antireflection layer. As confirmed by atomic force microscopy analysis, the even deposition of the coating on the plastic substrate compared to the patchy surfacing of the antifog additives in the commercial films is another important factor dictating the best performance of the antifog pullulan coating.

  20. Using pullulan-based edible coatings to extend shelf-life of fresh-cut 'Fuji' apples.

    PubMed

    Wu, Shengjun; Chen, Jinhua

    2013-04-01

    Pullulan is a thickener that can form semipermeable films, and glutathione is an effective reducing agent, while chitooligosaccharide has antibacterial activity. In this study, effect of pullulan-based coatings in combination with antibrowning and antibacterial agents (1% pullulan; 0.8% glutathione+1% chitooligosaccharides; and 0.8% glutathione+1% chitooligosaccharides+1% pullulan) on apple slices was investigated during hypothermia storage. Pullulan-coating treatments effectively retarded enzymatic browning, maintained firmness, decreased weight loss, and inhibited microbial growth and respiration rate of apple slices during hypothermia storage compared with that of the control (p<0.05). Results indicate that using pullulan-based coatings in combination with glutathione and chitooligosaccharides is a promising way to extend the shelf-life of apple slices. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Production of poly(β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation.

    PubMed

    Xia, Jun; Li, Rongqing; He, Aiyong; Xu, Jiaxing; Liu, Xiaoyan; Li, Xiangqian; Xu, Jiming

    2017-11-01

    Poly(β-l-malic acid) (PMA) production by Aureobasidium pullulans HA-4D was carried out through solid-state fermentation (SSF) using agro-industrial residues. Maximum PMA production (75.4mg/g substrate) was obtained from a mixed substrate of sweet potato residue and wheat bran (1:1, w/w) supplemented with NaNO 3 (0.8%, w/w) and CaCO 3 (2%, w/w), with an initial moisture content of 70% and inoculum size of 13% (v/w) for 8days. Repeated-batch SSF was successfully conducted for 5 cycles with a high productivity. The scanning electron microscopy showed that the yeast-like cells of A. pullulans HA-4D could grow well on the solid substrate surface. Moreover, the cost analysis showed that the unit price of PMA in SSF was much lower than that of SmF. This is the first report on PMA production via SSF, and this study provided a new method to produce PMA from inexpensive agro-industrial residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biological activities of organic extracts of four Aureobasidium pullulans varieties isolated from extreme marine and terrestrial habitats.

    PubMed

    Botić, Tanja; Kralj-Kunčič, Marjetka; Sepčić, Kristina; Batista, Urška; Zalar, Polona; Knez, Željko; Gunde-Cimerman, Nina

    2014-01-01

    We report on the screening for biological activities of organic extracts from seven strains that represent four varieties of the fungus Aureobasidium pullulans, that is A. pullulans var. melanogenum, A. pullulans var. pullulans, A. pullulans var. subglaciale and A. pullulans var. namibiae. We monitored haemolysis, cytotoxicity, antioxidant capacity and growth inhibition against three bacterial species. The haemolytic activity of A. pullulans var. pullulans EXF-150 strain was due to five different haemolytically active fractions. Extracts from all of the other varieties contained at least one haemolytically active fraction. Short-term exposure of cell lines to these haemolytically active organic extracts resulted in more than 95% cytotoxicity. Strong antioxidant capacity, corresponding to 163.88 μg ascorbic acid equivalent per gram of total solid, was measured in the organic extract of the strain EXF-3382, obtained from A. pullulans var. melanogenum, isolated from the deep sea. Organic extracts from selected varieties of A. pullulans exhibited weak antibacterial activities.

  3. Growth of Aureobasidium pullulans on straw hydrolysate.

    PubMed Central

    Han, Y W; Cheeke, P R; Anderson, A W; Lekprayoon, C

    1976-01-01

    Growth characteristics and cell properties of Aureobasidium (Pullularia) pullulans were studied. The organism grew well on an acid hydrolysate of ryegrass straw over a wide range of pH and temperature. The optimum temperature and pH for the growth of the organism were 32 degrees C and 5.5, respectively. A cell yield of 1.5 g/liter of straw hydrolysate was obtained. The dried cell mass contained 42.6% crude protein, 0.4% crude fat, and 6.4% nucleic acids. The essential amino acid profile of the microbial protein was comparable to that of Candida utilis. A rat feeding study indicated that the A. pullulans cells were not toxic and that the feed intake, weight gain, and protein efficiency ratio values were superior to those obtained with C. utilis. Once the question of mathogenicity is resolved, A. pullulans could be useful for production of single-cell protein from cellulosic wastes. PMID:12721

  4. Self-Assembly Behavior of Pullulan Abietate

    NASA Astrophysics Data System (ADS)

    Gradwell, Sheila; Esker, Alan; Glasser, Wolgang; Heinze, Thomas

    2003-03-01

    Wood is one of nature's most fascinating biological composites due to its toughness and resistance to fracture properties. These properties stem from the self-assembly of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin. In recent years, science has looked to nature for guidance in preparing synthetic materials with desirable physical properties. In order to study the self-assembly process in wood, a model system composed of a polysaccharide, pullulan abietate, and a biomimetic cellulose substrate prepared by the Langmuir-Blodgett technique has been developed. Interfacial tension and surface plasmon resonance measurements used to study the self-assembly process will be discussed for different pullulan derivatives.

  5. Laccases from Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    Laccases are polyphenol oxidases (EC 1.10.3.2) that have numerous industrial and bioremediation applications. Laccases are well known as lignin-degrading enzymes, but these enzymes can play numerous other roles in fungi. In this study, 41 strains of the fungus Aureobasidium pullulans were examined f...

  6. Temporal Changes in Microscale Colonization of the Phylloplane by Aureobasidium pullulans

    PubMed Central

    McGrath, Molly J.; Andrews, John H.

    2006-01-01

    Colonization of apple leaves by the yeastlike fungus Aureobasidium pullulans was followed quantitatively and spatially at a microscale level throughout two growing seasons. Ten field leaves were sampled on 11 dates in 2003 and 15 dates in 2004. Using an A. pullulans-specific fluorescence in situ hybridization probe and epifluorescence microscopy, we enumerated total cells, swollen-cells and chlamydospores (SCC), and blastospores/mm2 on leaf features, including the midvein, other (smaller) veins, and the interveinal regions. By 7 July 2003 and 7 June 2004, the total numbers of A. pullulans cells/mm2 were significantly higher (P < 0.05) on the midvein and other veins than in the interveinal regions. This pattern remained consistent thereafter. The primary colonizing morphotype in all regions at all dates was the SCC form, although blastospores always occurred in low numbers. Occupancy was quantified based on the percentage of microscope fields of a particular leaf feature containing ≥1 A. pullulans cell. In general, as seasons progressed, the percent occupancy of features increased and, for most midvein and veinal features, approximated 100% at the end of both growing seasons. Except for early collections, when A. pullulans cell numbers were low, the percent occupancy of interveinal regions was lower than that of the midvein or other veinal regions. A. pullulans was distributed primarily as single cells throughout the seasons in interveinal regions. On the midvein and other veins, colonies of ≥4 cells developed over time, and more cells occurred in colonies than as singletons by August. Our results demonstrate that A. pullulans primarily colonizes veins, where populations appear to increase by growth in situ. This pattern is established early in the growing season and persists. PMID:16957250

  7. Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources.

    PubMed

    Ma, Chunling; Ni, Xiumei; Chi, Zhenming; Ma, Liyan; Gao, Lingmei

    2007-01-01

    The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45 degrees C, respectively. The enzyme was activated by Cu(2+) (at a concentration of 1.0 mM) and Mn(2+) and inhibited by Hg(2+), Fe(2+), Fe(3+), Zn(2+), and Co(2+). The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1-10-phenanthroline, and iodoacetic acid. The K(m) and V(max) values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 micromol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.

  8. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    PubMed

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability. © 2016 Institute of Food Technologists®.

  9. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    Liamocins are unique heavier-than-water “oils” produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylog...

  10. Phylogenetic classification of Aureobasidium pullulans strains for production of feruloyl esterase

    USDA-ARS?s Scientific Manuscript database

    The objective was to phylogenetically classify diverse strains of A. pullulans and determine their production of feruloyl esterase. Seventeen strains from the A. pullulans literature were phylogenetically classified. Phenotypic traits of color variation and endo-ß-1,4-xylanase overproduction were as...

  11. Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches.

    PubMed

    Di Francesco, Alessandra; Roberti, Roberta; Martini, Camilla; Baraldi, Elena; Mari, Marta

    2015-12-01

    The Aureobasidium pullulans L1 and L8 strains are known as efficient biocontrol agents against several postharvest fungal pathogens. In order to better understand the mechanism of action underneath the antifungal activity of L1 and L8 strains, yeast cell filtrates grown at different times were evaluated in vivo against Monilinia laxa on peach. Lesion diameters on peach fruit were reduced by L1 and L8 culture filtrates of 42.5% and 67% respectively. The ability of these filtrates to inhibit M. laxa conidia germination and germ tube elongation was studied by in vitro assays. The results showed a 70% reduction of conidia germination for both strains while for germ tube elongation, it was 52% and 41% for L1 and L8 culture filtrates respectively. Finally, the activity of cell wall hydrolytic enzymes such as chitinase and glucanase in cell filtrates was analysed and the expression of genes encoding these activities was quantified during yeast growth. From 24h onward, both culture filtrates contained β,1-3,glucanase and. chitinase activities, the most pronounced of which was N-β-acetylglucosaminidase. Gene expression level encoding for these enzymes in L1 and L8 varied according to the strain. These results indicate that L1 and L8 strains culture filtrates retain the yeast antagonistic activity and suggest that the production of hydrolytic enzymes plays an important role in this activity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Augmented liver targeting of exosomes by surface modification with cationized pullulan.

    PubMed

    Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko

    2017-07-15

    Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse

  13. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  14. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria ananassa).

    PubMed

    Treviño-Garza, Mayra Z; García, Santos; del Socorro Flores-González, Ma; Arévalo-Niño, Katiushka

    2015-08-01

    Edible active coatings (EACs) based on pectin, pullulan, and chitosan incorporated with sodium benzoate and potassium sorbate were employed to improve the quality and shelf life of strawberries. Fruits were washed, disinfected, coated by dipping, packed, and stored at 4 °C for 15 d. Application of EACs reduced (P < 0.05) weight loss and fruit softening and delayed alteration of color (redness) and total soluble solids content. In contrast, pH and titratable acidity were not affected (P > 0.05) throughout storage, and ascorbic acid content was maintained in pectin-EAC coated strawberries. Microbiological analyses showed that application of EACs reduced (P < 0.05) microbial growth (total aerobic counts, molds, and yeasts) on strawberries. Chitosan-EAC coated strawberries presented the best results in microbial growth assays. Sensory quality (color, flavor, texture, and acceptance) improved and decay rate decreased (P < 0.05) in pectin-EAC, pullulan-EAC, and chitosan-EAC coated strawberries. In conclusion, EACs based on polysaccharides improved the physicochemical, microbiological, and sensory characteristics, increasing the shelf life of strawberries from 6 (control) to 15 d (coated fruits). © 2015 Institute of Food Technologists®

  15. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies.

    PubMed

    Cevher, Erdal; Salomon, Stefan K; Somavarapu, Satyanarayana; Brocchini, Steve; Alpar, H Oya

    2015-01-01

    Here, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route. Composite nanoparticles induced higher levels of IgG responses than particles formed with chitosan derivative and antigen. Nasally administered TMC-pullulan composites showed higher DT serum IgG titre when compared with the other composites. Co-encapsulation of CpG ODN within TMC-CMP-DT nanoparticles resulted in a balanced Th1/Th2 response. TMC/pullulan composite nanoparticles also induced highest cytokine levels compared to those of chitosan salts. These findings demonstrated that TMC-CMP-DT composite nanoparticles are promising delivery system for nasal vaccination.

  16. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.

    PubMed

    Wang, Xuefei; Glawe, Dean A; Kramer, Elizabeth; Weller, David; Okubara, Patricia A

    2018-06-01

    Native yeasts are of increasing interest to researchers, grape growers, and vintners because of their potential for biocontrol activity and their contributions to the aroma, flavor, and mouthfeel qualities of wines. To assess biocontrol activity, we tested 11 yeasts from Washington vineyards, representing isolates of Candida saitoana, Curvibasidium pallidicorallinum, Metschnikowia chrysoperlae, M. pulcherrima, Meyerozyma guilliermondii, Saccharomyces cerevisiae, and Wickerhamomyces anomalus, for ability to colonize Thompson Seedless grape berries, inhibit the growth of Botrytis cinerea in vitro, and suppress disease symptoms on isolated berries. The yeast-like fungus Aureobasidium pullulans was also included based on its known biocontrol activity against B. cinerea in studies on apple and grape. All yeast strains multiplied rapidly in grape berries and reached densities of over log 6 cells per wound as early as 2 days after inoculation with 200 cells. One of the Botrytis isolates used in this study was much less virulent than the others and was provisionally identified as B. prunorum based on multilocus sequence analysis. Suppression of the growth of B. cinerea isolates 111bb, 207a, 207cb, and 407cb occurred on berries treated with A. pullulans P01A006, Metschnikowia chrysoperlae P34A004 and P40A002, M. pulcherrima P01A016 and P01C004, Meyerozyma guilliermondii P34D003, and S. cerevisiae HNN11516. Inhibition of Botrytis isolates by the yeast strains was more common on berries than in vitro, suggesting the possibility that niche competition was a more likely biocontrol mechanism than antibiosis in planta. Metabolic profiling of yeast strains and B. cinerea isolates using Biolog YT plates revealed seven distinct metabolic groups. Furthermore, the yeast strains showed partial to complete tolerance to the commonly used fungicides fluopyram, triflumizole, metrafenone, pyraclostrobin, and boscalid. Implications of these findings for field deployment of native Washington

  17. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.

    PubMed

    Turk, Martina; Méjanelle, Laurence; Sentjurc, Marjeta; Grimalt, Joan O; Gunde-Cimerman, Nina; Plemenitas, Ana

    2004-02-01

    The halophilic melanized yeast-like fungi Hortaea werneckii, Phaeotheca triangularis, and the halotolerant Aureobasidium pullulans, isolated from salterns as their natural environment, were grown at different NaCl concentrations and their membrane lipid composition and fluidity were examined. Among sterols, besides ergosterol, which was the predominant one, 23 additional sterols were identified. Their total content did not change consistently or significantly in response to raised NaCl concentrations in studied melanized fungi. The major phospholipid classes were phosphatidylcholine and phosphatidylethanolamine, followed by anionic phospholipids. The most abundant fatty acids in phospholipids contained C16 and C18 chain lengths with a high percentage of C18:2Delta9,12. Salt stress caused an increase in the fatty acid unsaturation in the halophilic H. werneckii and halotolerant A. pullulans but a slight decrease in halophilic P. triangularis. All the halophilic fungi maintained their sterol-to-phospholipid ratio at a significantly lower level than did the salt-sensitive Saccharomyces cerevisiae and halotolerant A. pullulans. Electron paramagnetic resonance (EPR) spectroscopy measurements showed that the membranes of all halophilic fungi were more fluid than those of the halotolerant A. pullulans and salt-sensitive S. cerevisiae, which is in good agreement with the lipid composition observed in this study.

  18. Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: New approach to understand the influence of important variables in the process.

    PubMed

    Brumano, Larissa Pereira; Antunes, Felipe Antonio Fernandes; Souto, Sara Galeno; Dos Santos, Júlio Cesar; Venus, Joachim; Schneider, Roland; da Silva, Silvio Silvério

    2017-11-01

    Surfactants are amphiphilic molecules with large industrial applications produced currently by chemical routes mainly derived from oil industry. However, biotechnological process, aimed to develop new sustainable process configurations by using favorable microorganisms, already requires investigations in more details. Thus, we present a novel approach for biosurfactant production using the promising yeast Aureobasidium pullulans LB 83, in stirred tank reactor. A central composite face-centered design was carried out to evaluate the effect of the aeration rate (0.1-1.1min -1 ) and sucrose concentration (20-80g.L -1 ) in the biosurfactant maximum tensoactivity and productivity. Statistical analysis showed that the use of variables at high levels enhanced tensoactivity, showing 8.05cm in the oil spread test and productivity of 0.0838cm.h -1 . Also, unprecedented investigation of aeration rate and sucrose concentration relevance in biosurfactant production by A. pullulans in stirred tank reactor was detailed, demonstrating the importance to establish adequate conditions in bioreactors, aimed to scale-up process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of melanin on the accumulation of exopolysaccharides by Aureobasidium pullulans grown on nitrate.

    PubMed

    Zheng, Weifa; Campbell, Bradley S; McDougall, Barbara M; Seviour, Robert J

    2008-11-01

    Aureobasidium pullulans produced pullulan and melanin when grown in medium containing low nitrate levels. With high nitrate concentrations, however, this fungus produced a mixture of exopolysaccharides (EPS) without melanin synthesis. At 0.78 g l(-1) N as nitrate, where no melanin synthesis occurred, maximum EPS yields reached 6.92 g l(-1) and then decreased to the final yield of 2.36 g l(-1). Following melanin addition (0.1 g l(-1)), yields reached 7.02 g l(-1) at 48 h and fell to a final yield of 5.21 g l(-1). The EPS produced in high nitrate medium contained both pullulan and (1-->3)-beta-glucan, but only pullulan was produced with melanin-supplementation. With melanin addition a doubling of (1-->3)-beta-glucanase activity was observed in high nitrate medium compared to that without supplementation. On the other hand amylolytic activities disappeared in medium with melanin production or addition. Culture filtrates sustained a higher reducing capacity (RC) when melanin was present. Low RC appeared to reduce (1-->3)-beta-glucanase activity and increase amylolytic activities. Thus, higher RC appears to inhibit production/activity of amylose-degrading enzymes capable of degrading pullulan, and stimulates (1-->3)-beta-glucanase synthesis/activity, leading to a preferential accumulation of pullulan.

  20. The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line.

    PubMed

    Wang, Fang; Qiao, Linan; Chen, Liwei; Zhang, Cong; Wang, Yan; Wang, Yinsong; Liu, Yuanyuan; Zhang, Ning

    2016-05-01

    In this study, acidic and alkaline pullulan derivates were synthesized and their immunomodulatory activities compared to pullulan were investigated in human pDC-like CAL-1 cell line. Pullulan was reacted respectively with succinic anhydride and N-(-2-aminoethyl)-1,3-propanediamine/N,N-carbonyl diimidazole to form acidic pullulan monosuccinate (SUPL) and alkaline pullulan-g-N-(-2-aminoethyl)-1,3-propanediamine (AMPL). In CAL-1 cells, pullulan, SUPL and AMPL up-regulated the mRNA expressions of type I interferons (IFN), including IFN-α and IFN-β1, and some other proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-23 (IL-23), and also significantly enhanced the protein expressions of IFN-α and TNF-α. The activation of nuclear factor kappa B (NF-κB) and the nuclear translocations of interferon regulation factors (IRFs), including IRF-3 and IRF-5, exhibited pivotal roles in the immune responses induced by pullulan, SUPL and AMPL. By comparison, pullulan and SUPL displayed weak effects on the activation of CAL-1 cells, but AMPL showed remarkably enhanced immunomodulatory activities, which were comparable to that induced by R848, an agonist for Toll-like receptor (TLR) 7/8. Our results suggested that AMPL, as an alkaline pullulan derivative, could be used as a potent immunomodulatory agent in the food and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans.

    PubMed

    Wang, Yongkang; Song, Xiaodan; Zhang, Yongjun; Wang, Bochu; Zou, Xiang

    2016-08-22

    Polymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries. Its monomer, L-malic acid, is also a potential C4 platform chemical. However, little is known about the mechanism of PMA biosynthesis in the yeast-like fungus, Aureobasidium pullulans. In this study, the effects of different nitrogen concentration on cell growth and PMA biosynthesis were investigated via comparative transcriptomics and proteomics analyses, and a related signaling pathway was also evaluated. A high final PMA titer of 44.00 ± 3.65 g/L (49.9 ± 4.14 g/L of malic acid after hydrolysis) was achieved in a 5-L fermentor under low nitrogen concentration (2 g/L of NH4NO3), which was 18.3 % higher yield than that obtained under high nitrogen concentration (10 g/L of NH4NO3). Comparative transcriptomics profiling revealed that a set of genes, related to the ribosome, ribosome biogenesis, proteasome, and nitrogen metabolism, were significantly up- or down-regulated under nitrogen sufficient conditions, which could be regulated by the TOR signaling pathway. Fourteen protein spots were identified via proteomics analysis, and were found to be associated with cell division and growth, energy metabolism, and the glycolytic pathway. qRT-PCR further confirmed that the expression levels of key genes involved in the PMA biosynthetic pathway (GLK, CS, FUM, DAT, and MCL) and the TOR signaling pathway (GS, TOR1, Tap42, and Gat1) were upregulated due to nitrogen limitation. Under rapamycin stress, PMA biosynthesis was obviously inhibited in a dose-dependent manner, and the transcription levels of TOR1, MCL, and DAT were also downregulated. The level of nitrogen could regulate cell growth and PMA biosynthesis. Low concentration of nitrogen was beneficial for PMA biosynthesis, which could upregulate the expression of key genes involved in the PMA biosynthesis pathway. Cell growth and PMA biosynthesis might be mediated by the TOR signaling pathway in

  2. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage.

    PubMed

    Chen, Long; Tian, Yaoqi; Tong, Qunyi; Zhang, Zipei; Jin, Zhengyu

    2017-01-01

    The effects of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), and texture profile analysis (TPA). The addition of pullulan reduced the transversal relaxation time of rice starch gels during cold storage. The microstructure of rice starch gel with 0.5% pullulan was denser and more uniform compared with that of rice starch without pullulan in each period of storage time. With regard to textural properties, 0.01% pullulan addition did not significantly change the texture of rice starch gels, while 0.5% pullulan addition appeared to reduce the hardness and retain the springiness of rice starch gels (P⩽0.05). The restriction effects of pullulan on water mobility and starch retrogradation were hypothesized to be mainly responsible for the water retention, gel structure maintenance, and modification of the textural attributes of rice starch gels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Protection of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions with whey protein/pullulan microcapsules.

    PubMed

    Çabuk, Burcu; Tellioğlu Harsa, Şebnem

    2015-12-01

    In this research, whey protein/pullulan (WP/pullulan) microcapsules were developed in order to assess its protective effect on the viability of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions. Results demonstrated that WP/pullulan microencapsulated cells exhibited significantly (p ≤ 0.05) higher resistance to simulated gastric acid and bile salt. Pullulan incorporation into protein wall matrix resulted in improved survival as compared to free cells after 3 h incubation in simulated gastric solution. Moreover WP/pullulan microcapsules were found to release over 70% of encapsulated L. acidophilus NRRL-B 4495 cells within 1 h. The effect of encapsulation during refrigerated storage was also studied. Free bacteria exhibited 3.96 log reduction while, WP/pullulan encapsulated bacteria showed 1.64 log reduction after 4 weeks of storage. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Identification of Medically Relevant Species of Arthroconidial Yeasts by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories. PMID:23678074

  5. New exopolysaccharides produced by Aureobasidium pullulans grown on glucosamine.

    PubMed

    Cescutti, Paola; Pupulin, Raffaella; Delben, Franco; Abbate, Maria; Dentini, Mariella; Sparapano, Lorenzo; Rizzo, Roberto; Crescenzi, Vittorio

    2002-07-16

    The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues.

  6. Screening wild yeast strains for alcohol fermentation from various fruits.

    PubMed

    Lee, Yeon-Ju; Choi, Yu-Ri; Lee, So-Young; Park, Jong-Tae; Shim, Jae-Hoon; Park, Kwan-Hwa; Kim, Jung-Wan

    2011-03-01

    Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five α-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the α-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except α-amylase production, and fermented alcohol better than commercial wine yeasts.

  7. Isolation of New Aureobasidium Strains That Produce High-Molecular-Weight Pullulan with Reduced Pigmentation

    PubMed Central

    Pollock, Thomas J.; Thorne, Linda; Armentrout, Richard W.

    1992-01-01

    New isolates of Aureobasidium pullulans were obtained from plant leaf surfaces gathered in San Diego County. The new fungal isolates were identified as A. pullulans on the basis of the appearance of polymorphic colonies formed on agar plates, the electrophoretic profiles of repeated genomic DNA sequences, and the production of pullulan in shake flask cultures. The isolates showed different degrees of pigmentation. One of the natural isolates was nonpigmented under mock production conditions in liquid culture, but was still able to synthesize a reduced amount of pigment on agar plates at late times. A mutagenic treatment with ethidium bromide produced derivatives of normally pigmented natural isolates that exhibited an increased tendency toward yeastlike growth and reduced pigmentation. Additionally, some of the new isolates and mutant derivatives accumulated pullulan of relatively high molecular weight in the culture broths. Images PMID:16348676

  8. Heavy Oils Produced by Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    From a survey of more than 50 diverse strains of Aureobasidium pullulans, 21 strains were observed to produce extracellular heavy oils. These strains represented at least 6 phylogenetic clades, although more than half fell into clades 9 and 11. Oil colors ranged from bright yellow to malachite. M...

  9. Aureobasidium pullulans xylanase, gene and signal sequence

    DOEpatents

    Xin-Liang, Li; Ljungdahl, Lars G.

    1997-01-01

    A xylanase from Aureobasidium pullulans having a high specific activity is provided as well as a signal protein for controlling excretion into cell culture medium of proteins to which it is attached. DNA encoding these proteins is also provided.

  10. Aureobasidium pullulans xylanase, gene and signal sequence

    DOEpatents

    Li Xinliang; Ljungdahl, L.G.

    1997-01-07

    A xylanase from Aureobasidium pullulans having a high specific activity is provided, as well as a signal protein for controlling excretion into cell culture medium of proteins to which it is attached. DNA encoding these proteins is also provided. 4 figs.

  11. Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1.

    PubMed

    West, T P; Strohfus, B

    2001-08-01

    To isolate a reduced pigmentation mutant of Aureobasidium pullulans NYS-1 and characterize its cellular pigmentation plus its polysaccharide and biomass production relative to carbon source. Cellular pigmentation, polysaccharide levels and biomass production by the isolated mutant NYSRP-1 were analysed relative to carbon source. Cellular pigmentation of the mutant was lower than its parent strain using either carbon source. The mutant elaborated higher polysaccharide levels on sucrose than on corn syrup. The pullulan content of the polysaccharide synthesized and biomass production by the mutant rose as the carbon source concentration was increased. It is feasible to isolate a reduced pigmentation mutant from strain NYS-1 that exhibits elevated polysaccharide production using corn syrup as a carbon source. The mutant provides an advantage for commercial pullulan production because of its reduced pigmentation and enhanced polysaccharide synthesis.

  12. Biosynthesis and hyper production of pullulan by a newly isolated strain of Aspergillus japonicus-VIT-SB1.

    PubMed

    Mishra, Bishwambhar; Suneetha, V

    2014-07-01

    The main focus of this study was to screen and characterize novel microbial strains isolated from culinary leaf samples, capable of producing high concentrations of pullulan. Hundred isolates were screened from the phylloplane of different plants. The results revealed that eight strains had the capability to produce exopolysaccharide (EPS) and only one potential strain (designated as VIT-SB1) could produce the significant amount of EPS (3.9 ± 0.02%) on the 6th day of the fermentation without optimisation. The EPS synthesized by VIT-SB1 strain was confirmed to be pullulan on the basis of the results of FT-IR, HPLC and the enzymatic (Pullulanase) analysis. More than 91% hydrolysis of pullulan by pullulanase enzyme also indicated the presence of α (1 → 6) glycosidic linkages of α (1 → 4) linked maltotriose units. This VIT-SB1 strain was identified as Aspergillus japonicus based on the nucleotide sequence of the D1/D2 domain of Large-Subunit rRNA gene. The sequence was submitted to the GenBank Nucleotide sequence database with Accession No: KC128815. This study has confirmed that pullulan production capacity of this novel strain and Aureobasidium pullulans are comparable. Hence Aspergillus japonicus-VIT-SB1 strain can be commercially exploited as a potential pullulan producing strain.

  13. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells.

    PubMed

    Sarika, P R; James, Nirmala Rachel; Nishna, N; Anil Kumar, P R; Raj, Deepa K

    2015-09-01

    Galactosylated pullulan-curcumin conjugate (LANH2-Pu Ald-Cur SA) is developed for target specific delivery of curcumin to hepatocarcinoma cells by five step synthetic strategy, which includes oxidation of pullulan (Pu Ald), introduction of amino group to the targeting ligand (LANH2), grafting of the LANH2 to Pu Ald, modification of curcumin (Cur SA) and conjugation of Cur SA to pullulan. Nongalactosylated pullulan-curcumin conjugate (Pu-Cur SA) is also prepared to compare the enhancement in cytotoxicity offered by the targeting group. Both LANH2-Pu Ald-Cur SA and Pu-Cur SA conjugates could self assemble to micelle in water with hydrodynamic diameters of 355±9nm and 363±10nm, respectively. Both conjugates show spherical morphology and enhance stability of curcumin in physiological pH. Compared to Pu-Cur SA, LANH2-Pu Ald-Cur SA exhibits higher toxicity and internalization towards HepG2 cells. This indicates the enhanced uptake of LANH2-Pu Ald-Cur SA conjugate via ASGPR (asialoglycoprotein receptor) mediated endocytosis into HepG2 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Development of a one-step gene knock-out and knock-in method for metabolic engineering of Aureobasidium pullulans.

    PubMed

    Guo, Jian; Wang, Yuanhua; Li, Baozhong; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2017-06-10

    Aureobasidium pullulans is an increasingly attractive host for bio-production of pullulan, heavy oil, polymalic acid, and a large spectrum of extracellular enzymes. To date, genetic manipulation of A. pullulans mainly relies on time-consuming conventional restriction enzyme digestion and ligation methods. In this study, we present a one-step homologous recombination-based method for rapid genetic manipulation in A. pullulans. Overlaps measuring >40bp length and 10μg DNA segments for homologous recombination provided maximum benefits to transformation of A. pullulans. This optimized method was successfully applied to PKSIII gene (encodes polyketide synthase) knock-out and gltP gene (encodes glycolipid transfer protein) knock-in. After disruption of PKSIII gene, secretion of melanin decreased slightly. The melanin purified from disruptant showed lower reducing capacity compared with that of the parent strain, leading to a decrease in exopolysaccharide production. Knock-in of gltP gene resulted in at least 4.68-fold increase in heavy oil production depending on the carbon source used, indicating that gltP can regulate heavy oil synthesis in A. pullulans. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Strain Selection and Optimization of Mixed Culture Conditions for Lactobacillus pentosus K1-23 with Antibacterial Activity and Aureobasidium pullulans NRRL 58012 Producing Immune-Enhancing β-Glucan.

    PubMed

    Sekar, Ashokkumar; Kim, Myoungjin; Jeong, Hyeong Chul; Kim, Keun

    2018-05-28

    Lactobacillus pentosus K1-23 was selected from among 25 lactic acid bacterial strains owing to its high inhibitory activity against several pathogenic bacteria, including Escherichia coli , Salmonella typhimurium , S. gallinarum , Staphylococcus aureus , Pseudomonas aeruginosa , Clostridium perfringens , and Listeria monocytogenes . Additionally, among 13 strains of Aureobasidium spp., A. pullulans NRRL 58012 was shown to produce the highest amount of β-glucan (15.45 ± 0.07%) and was selected. Next, the optimal conditions for a solid-phase mixed culture with these two different microorganisms (one bacterium and one yeast) were determined. The optimal inoculum sizes for L. pentosus and A. pullulans were 1% and 5%, respectively. The appropriate inoculation time for L. pentosus K1-23 was 3 days after the inoculation of A. pullulans to initiate fermentation. The addition of 0.5% corn steep powder and 0.1% FeSO₄ to the basal medium resulted in the increased production of lactic acid bacterial cells and β-glucan. The following optimal conditions for solid-phase mixed culture were also statistically determined by using the response surface method: 37.84°C, pH 5.25, moisture content of 60.82%, and culture time of 6.08 days for L. pentosus ; and 24.11°C, pH 5.65, moisture content of 60.08%, and culture time of 5.71 days for A. pullulans. Using the predicted optimal conditions, the experimental production values of L. pentosus cells and β-glucan were 3.15 ± 0.10 × 10⁸ CFU/g and 13.41 ± 0.04%, respectively. This mixed culture may function as a highly efficient antibiotic substitute based on the combined action of its anti-pathogenic bacterial and immune-enhancing activities.

  16. Morphological changes during the life cycle of Aureobasidium pullulans (de Bary) Arnaud.

    PubMed

    Kocková-Kratochvílová, A; Cernáková, M; Sláviková, E

    1980-01-01

    Aureobasidium pullulans (de Bary) Arnaud was isolated from different natural materials plant blossoms in particular. Elements of vegetative multiplication, structure of colonies and cultures in liquid media were analyzed in detail, leading to construction of the life cycle of this organism. Morphological polymorphism was found to be combined with the production of melanin and the polysaccharide pullulan. Morphological analysis served for a directed selection for studies of physiological properties of this organism and its practical application.

  17. Transparent Pullulan/Mica Nanocomposite Coatings with Outstanding Oxygen Barrier Properties

    PubMed Central

    Boyacı, Derya; Trabattoni, Silvia; Tavazzi, Silvia

    2017-01-01

    This study presents a new bionanocomposite coating on poly(ethylene terephthalate) (PET) made of pullulan and synthetic mica. Mica nanolayers have a very high aspect ratio (α), at levels much greater than that of conventional exfoliated clay layers (e.g., montmorillonite). A very small amount of mica (0.02 wt %, which is ϕ ≈ 0.00008) in pullulan coatings dramatically improved the oxygen barrier performance of the nanocomposite films under dry conditions, however, this performance was partly lost as the environmental relative humidity (RH) increased. This outcome was explained in terms of the perturbation of the spatial ordering of mica sheets within the main pullulan phase, because of RH fluctuations. This was confirmed by modelling of the experimental oxygen transmission rate (OTR) data according to Cussler’s model. The presence of the synthetic nanobuilding block (NBB) led to a decrease in both static and kinetic coefficients of friction, compared with neat PET (≈12% and 23%, respectively) and PET coated with unloaded pullulan (≈26% reduction in both coefficients). In spite of the presence of the filler, all of the coating formulations did not significantly impair the overall optical properties of the final material, which exhibited haze values below 3% and transmittance above 85%. The only exception to this was represented by the formulation with the highest loading of mica (1.5 wt %, which is ϕ ≈ 0.01). These findings revealed, for the first time, the potential of the NBB mica to produce nanocomposite coatings in combination with biopolymers for the generation of new functional features, such as transparent high oxygen barrier materials. PMID:28925951

  18. Aureobasidium pullulans morphology: two adapted polysaccharide stains.

    PubMed

    Oller, Anna R

    2005-12-01

    Morphological stages of Aureobasidium pullulans were investigated utilizing different media ingredients and were visualized by bright-field microscopy. A polysaccharide stain was developed to stain chlamydospores, cell walls, hyphae, and conidia, since current staining techniques do not reveal subcellular details to identify fungi, especially those that exhibit polysaccharide secretions.

  19. Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi.

    PubMed

    Hilber-Bodmer, Maja; Schmid, Michael; Ahrens, Christian H; Freimoser, Florian M

    2017-01-05

    While recent advances in next generation sequencing technologies have enabled researchers to readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order to characterize the plethora of microorganisms that are being identified and to point out species that may be used for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens, antagonists, and saprophytes. Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes, ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima, Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M. pulcherrima were able to grow with N-acetyl-glucosamine as carbon source. The competition assays and physiological experiments described here identified known antagonists that have been implicated in the biological control of plant pathogenic fungi in the past, but also little characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile than yeasts from

  20. Effect of Pullulan Coating on Postharvest Quality and Shelf-Life of Highbush Blueberry (Vaccinium corymbosum L.).

    PubMed

    Kraśniewska, Karolina; Ścibisz, Iwona; Gniewosz, Małgorzata; Mitek, Marta; Pobiega, Katarzyna; Cendrowski, Andrzej

    2017-08-18

    Fruits form an important part of a healthy human diet as they contain many ingredients with proven pro-health effects such as vitamins, phenolic compounds, organic acids, fiber, and minerals. The purpose of this work was to evaluate the effect of pullulan coating on the quality and shelf life of highbush blueberry during storage. General appearance, weight loss, dry matter, soluble solid content, reducing sugars, content of L-ascorbic acid, phenolic compounds (total phenolics, phenolics acids and anthocyanins) were determined in uncoated and coated blueberries fruits. The microbiological efficiency of pullulan coating was also evaluated. All parameters were monitored during storage at 4 °C and 16 °C by 28 and 14 days, respectively. The study showed that pullulan coating protects perishable food products especially susceptible to mechanical injury including fruits such as blueberries. Pullulan acts as a barrier that minimizes respiration rate, delaying deterioration and controlling microbial growth.

  1. Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review.

    PubMed

    Gientka, Iwona; Błażejak, Stanisław; Stasiak-Różańska, Lidia; Chlebowska-Śmigiel, Anna

    2015-01-01

    xopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates for. t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The

  2. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a

  3. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization.

    PubMed

    Amrita; Arora, Aditya; Sharma, Poonam; Katti, Dhirendra S

    2015-06-05

    Porous hydrogels have been explored for bone tissue engineering; however their poor mechanical properties make them less suitable as bone graft substitutes. Since incorporation of fillers is a well-accepted method for improving mechanical properties of hydrogels, in this work pullulan hydrogels were reinforced with nano-crystalline hydroxyapatite (nHAp) (5 wt% nHAp in hydrogel) and poly(3-hydroxybutyrate) (PHB) fibers (3 wt% fibers in hydrogel) containing nHAp (3 wt% nHAp in fibers). Addition of these fillers to pullulan hydrogel improved compressive modulus of the scaffold by 10 fold. However, the hydrophilicity of pullulan did not support adhesion and spreading of cells. To overcome this limitation, porous composite scaffolds were modified using a double diffusion method that enabled deposition of hydroxyapatite on pore walls. This method resulted in rapid and uniform coating of HAp throughout the three-dimensional scaffolds which not only rendered them osteoconductive in vitro but also led to an improvement in their compressive modulus. These results demonstrate the potential of mineralized pullulan-based composite scaffolds in non-load bearing bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Properties of edible films based on pullulan-chitosan blended film-forming solutions at different pH

    USDA-ARS?s Scientific Manuscript database

    Influences of solution pH on the properties of pullulan-chitosan blended (Pul-Chi) films and the rheological properties of film-forming solutions were investigated. The extended conformation of chitosan in pH 4.0 solution increased intermolecular interactions with pullulan compared to the more compa...

  5. Effect of Pullulan Coating on Postharvest Quality and Shelf-Life of Highbush Blueberry (Vaccinium corymbosum L.)

    PubMed Central

    Kraśniewska, Karolina; Ścibisz, Iwona; Mitek, Marta; Pobiega, Katarzyna; Cendrowski, Andrzej

    2017-01-01

    Fruits form an important part of a healthy human diet as they contain many ingredients with proven pro-health effects such as vitamins, phenolic compounds, organic acids, fiber, and minerals. The purpose of this work was to evaluate the effect of pullulan coating on the quality and shelf life of highbush blueberry during storage. General appearance, weight loss, dry matter, soluble solid content, reducing sugars, content of L-ascorbic acid, phenolic compounds (total phenolics, phenolics acids and anthocyanins) were determined in uncoated and coated blueberries fruits. The microbiological efficiency of pullulan coating was also evaluated. All parameters were monitored during storage at 4 °C and 16 °C by 28 and 14 days, respectively. The study showed that pullulan coating protects perishable food products especially susceptible to mechanical injury including fruits such as blueberries. Pullulan acts as a barrier that minimizes respiration rate, delaying deterioration and controlling microbial growth. PMID:28820473

  6. Efficacy of antimicrobial pullulan-based coating to improve internal quality and shelf-life of chicken eggs during storage.

    PubMed

    Morsy, Mohamed K; Sharoba, Ashraf M; Khalaf, Hassan H; El-Tanahy, Hassan H; Cutter, Catherine N

    2015-05-01

    There has been a growing interest in the use of natural materials as a delivery mechanism for antimicrobials and coatings in foods. The aim of the present study was to evaluate the effectiveness of pullulan coatings to improve internal quality and shelf-life of fresh eggs during 10 wk of storage at 25 and 4 °C. Three treatments of eggs were evaluated as follows; non-coated (control; C), coated with pullulan (P), and coated with pullulan containing nisin (N). The effects of the pullulan coatings on microbiological qualities, physical properties, and freshness parameters were investigated and compared with non-coated eggs. For non-coated eggs, as storage time increased, yolk index, albumen index, and Haugh unit value decreased and weight loss increased. However, pullulan coatings (P or N) minimized weight loss (<1.5%) and preserved the albumen and yolk quality of eggs (with a final B grade) 3 wk longer than non-coated eggs at 25 °C. At 4 °C, both P- and N-coated eggs went from AA to A grade after 9 wk and maintained the grade for 10 wk (4 wk longer than that of non-coated eggs). This study is the first to demonstrate that pullulan coatings can preserve the internal quality, prolong the shelf-life, and minimize weight loss of fresh eggs. © 2015 Institute of Food Technologists®

  7. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement.

    PubMed

    Krull, Scott M; Ma, Zhelun; Li, Meng; Davé, Rajesh N; Bilgili, Ecevit

    2016-01-01

    The aim of this study is to assess pullulan as a novel steric stabilizer during the wet-stirred media milling (WSMM) of griseofulvin, a model poorly water-soluble drug, and as a film-former in the preparation of strip films via casting-drying the wet-milled drug suspensions for dissolution and bioavailability enhancement. To this end, pullulan films, with xanthan gum (XG) as thickening agent and glycerin as plasticizer, were loaded with griseofulvin nanoparticles prepared by WSMM using pullulan in combination with sodium dodecyl sulfate (SDS) as an ionic stabilizer. The effects of drug loading and milling time on the particle size and suspension stability were investigated, as well as XG concentration and casting thickness on film properties and dissolution rate. The nanosuspensions prepared with pullulan-SDS combination were relatively stable over 7 days; hence, this combination was used for the film preparation. All pullulan-based strip films exhibited excellent content uniformity (most <3% RSD) despite containing only 0.3-1.3 mg drug, which was ensured by the use of precursor suspensions with >5000 cP viscosity. USP IV dissolution tests revealed fast/immediate drug release (t80 < 30 min) from films <120 μm thick. Thinner films, films with lower XG loading, or smaller drug particles led to faster drug dissolution, while drug loading had no discernible effect. Overall, these results suggest that pullulan may serve as an acceptable stabilizer for media milling in combination with surfactant as well as a fast-dissolving film former for the fast release of poorly water-soluble drug nanoparticles.

  8. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    PubMed

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effects of gene disruption of Kre6-like proteins on the phenotype of β-glucan-producing Aureobasidium pullulans.

    PubMed

    Uchiyama, Hirofumi; Iwai, Atsushi; Dohra, Hideo; Ohnishi, Toshiyuki; Kato, Tatsuya; Park, Enoch Y

    2018-05-01

    Killer toxin resistant 6 (Kre6) and its paralog, suppressor of Kre null 1 (Skn1), are thought to be involved in the biosynthesis of cell wall β-(1 → 6)-D-glucan in baker's yeast, Saccharomyces cerevisiae. The Δkre6Δskn1 mutant of S. cerevisiae and other fungi shows severe growth defects due to the failure to synthesize normal cell walls. In this study, two homologs of Kre6, namely, K6LP1 (Kre6-like protein 1) and K6LP2 (Kre6-like protein 2), were identified in Aureobasidium pullulans M-2 by draft genome analysis. The Δk6lp1, Δk6lp2, and Δk6lp1Δk6lp2 mutants were generated in order to confirm the functions of the Kre6-like proteins in A. pullulans M-2. The cell morphologies of Δk6lp1 and Δk6lp1Δk6lp2 appeared to be different from those of wild type and Δk6lp2 in both their yeast and hyphal forms. The productivity of the extracellular polysaccharides, mainly composed of β-(1 → 3),(1 → 6)-D-glucan (β-glucan), of the mutants was 5.1-17.3% less than that of wild type, and the degree of branching in the extracellular β-glucan of mutants was 14.5-16.8% lower than that of wild type. This study showed that the gene disruption of Kre6-like proteins affected the cell morphology, the productivity of extracellular polysaccharides, and the structure of extracellular β-glucan, but it did not have a definite effect on the cell viability even in Δk6lp1Δk6lp2, unlike in the Δkre6Δskn1 of S. cerevisiae.

  10. Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies.

    PubMed

    B P, Charitha; Rao, Padmalatha

    2018-06-01

    This work emphasizes the corrosion inhibition ability of pullulan, an environmentally benign fungal polysaccharide on acid corrosion of 6061Aluminum-15% (v) SiC (P) composite material (Al-CM). The electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) studies were carried out for the corrosion inhibition studies. Conditions were optimized to obtain maximum inhibition efficiency, by performing the experiment at varying concentrations of inhibitor, in the temperature range of 308K- 323K. Surface morphology studies were done to reaffirm the adsorption of inhibitor on the surface of composite material. Pullulan acted as mixed type of inhibitor with a maximum efficiency of 89% at 303K for the addition of 1.0 gL -1 of inhibitor. Evaluation of kinetic and thermodynamic parameters revealed that inhibitor underwent physical adsorption onto the surface of Al-CM and obeyed Freundlich adsorption isotherm. The surface characterization like SEM-EDX, AFM confirmed the adsorption of pullulan molecule. Pullulan can be considered as effective, eco friendly green inhibitor for the corrosion control of Al-CM. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Direct production of feruloyl oligosaccharides and hemicellulase inducement and distribution in a newly isolated Aureobasidium pullulans strain.

    PubMed

    Yu, Xiao-hong; Gu, Zhen-xin

    2014-02-01

    Studies were carried out to screen and identify strains that are able to directly produce ferulic oligosaccharides (FOs) from wheat bran (WB). The inducement and distribution of hemicellulases from strain 2012, which was identified as a non-melanin secreting strain of Aureobasidium pullulans (A. pullulans), were also determined. In a 60 g/L WB solution, A. pullulans could produce 545 nmol/L FOs, 64.12 IU/mL xylanase and 0.14 IU/mL ferulic acid esterase (FAE). A. pullulans was cultivated in media with WB, glucose, xylose, sucrose, lactose or xylan as the carbon source, and hemicellulases were mainly induced by xylan and WB and inhibited by glucose and sucrose. Xylanase and FAE were mainly present in the culture filtrate, xylosidase in the hyphal filaments and arabinofuranosidase was a membrane-bound enzyme. The yield of FOs was positively correlated to the hemicellulases activity, and significantly positively (P < 0.05) correlated to the xylanase activity (r = 0.992).

  12. Production of novel types of antibacterial liamocins by diverse strains of Aureobasidium pullulans grown on different culture media

    USDA-ARS?s Scientific Manuscript database

    Objective: The objective was to compare production of antibacterial liamocins by diverse strains of A. pullulans grown on different culture media. Results: Liamocins produced by strains of A. pullulans have potential agricultural and pharmaceutical applications as antibacterials with specificity aga...

  13. Fabrication of pullulan and pectin submicron fibers by electrospinning

    USDA-ARS?s Scientific Manuscript database

    Pullulan (PUL), a food grade polysaccharide, was fabricated into fibrous mats from fibers of submicron size by electrospinning. The effects of inorganic salts and polyanions present in the electrospinning solution on the properties of the resultant fibers was investigated. The inclusion of exogenous...

  14. Polyols, not sugars, determine the structural diversity of anti-streptococcal liamocins produced by Aureobasidium pullulans strain NRRL 50380

    USDA-ARS?s Scientific Manuscript database

    Liamocins are polyol-lipids produced by the fungus Aureobasidium pullulans, and have selective antibacterial activity against Streptococcus species. Liamocins produced by A. pullulans strain NRRL 50380 on sucrose medium have a D-mannitol head-group ester linked to 3,5-dihydroxydecanoate acyl chains,...

  15. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.

    PubMed

    Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-02-15

    An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Production of novel antibacterial liamocins by strains of Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    Certain strains of Aureobasidium pullulans produce liamocins, heavier-than-water “oils” that accumulate in liquid cultures. Liamocins are surface active, and inhibit mammalian cancer cell lines. Recently, we discovered that liamocins have antibacterial activity with specificity against Streptococcus...

  17. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    NASA Astrophysics Data System (ADS)

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  18. Yeast Identification During Fermentation of Turkish Gemlik Olives.

    PubMed

    Mujdeci, Gamze; Arévalo-Villena, María; Ozbas, Z Yesim; Briones Pérez, Ana

    2018-05-01

    Naturally fermented black table olives of the Gemlik variety are one of the most consumed fermented products in Turkey. The objective of this work was to identify yeast strains isolated during their natural fermentation by using Restriction Fragments Lengths Polymorphism-Polimerase Chain Reaction (RFLP-PCR) and DNA sequencing methods. The study also focused on determining the effect of regional differences on yeast microflora of naturally fermented Gemlik olives. A total of 47 yeast strains belonging to 12 different species which had been previously isolated from the natural brine of Akhisar and Iznik-Gemlik cv. olives were characterized by molecular methods. Forty-two of the tested strains could be identified by RFLP-PCR to species level. These yeast species were determined as Candida mycetangi, Candida hellenica, Candida membranaefaciens, Candida famata, Candida pelliculosa, Saccharomyces cerevisiae, and Zygosaccharomyces mrakii. Five strains were identified by DNA sequencing. These strains belonged to three different species: Aureobasidium pullulans, Kloeckera apiculate, and Cryptococcus saitoi. The most frequent species were C. famata and C. pelliculosa in both regions. This work studies the yeasts from Turkish table olives which could prove to be of importance to the food industry in that area. On the other hand, it compares identification by molecular and classical biochemical methods and offers an idea about the differences between the ecosystems of Gemlik olives in the Akhisar (AO) and Iznik (IO) regions. The study could be useful in characterizing a very important product and, in this way, could help to promote its marketing. © 2018 Institute of Food Technologists®.

  19. Partial Optimization of Endo-1, 4-Β-Xylanase Production by Aureobasidium pullulans Using Agro-Industrial Residues

    PubMed Central

    Nasr, Shaghayegh; Soudi, Mohammad Reza; Hatef Salmanian, Ali; Ghadam, Parinaz

    2013-01-01

    Objective(s) : Although bacteria and molds are the pioneering microorganisms for production of many enzymes, yet yeasts provide safe and reliable sources of enzymes with applications in food and feed. Materials and Methods: Single xylanase producer yeast was isolated from plant residues based on formation of transparent halo zones on xylan agar plates. The isolate showed much greater endo-1, 4-β-xylanase activity of 2.73 IU/ml after optimization of the initial extrinsic conditions. It was shown that the strain was also able to produce β-xylosidase (0.179 IU/ml) and α-arabinofuranosidase (0.063 IU/ml). Identification of the isolate was carried out and the endo-1, 4-β-xylanaseproduction by feeding the yeast cells on agro-industrial residues was optimized using one factor at a time approach. Results: The enzyme producer strain was identified as Aureobasidiumpullulans. Based on the optimization approach, an incubation time of 48 hr at 27°C, inoculum size of 2% (v/v), initial pH value of 4 and agitation rate of 90 rpm were found to be the optimal conditions for achieving maximum yield of the enzyme. Xylan, containing agricultural residues, was evaluated as low-cost alternative carbon source for production of xylanolytic enzymes. The production of xylanase enzyme in media containing wheat bran as the sole carbon source was very similar to that of the medium containing pure beechwoodxylan. Conclusion:This finding indicates the feasibility of growing of A. pullulans strain SN090 on wheat bran as an alternate economical substrate in order for reducing the costs of enzyme production and using this fortified agro-industrial byproduct in formulation of animal feed. PMID:24570830

  20. Production of novel types of antibacterial liamocins by diverse strains of Aureobasidium pullulans grown on different culture media.

    PubMed

    Leathers, Timothy D; Price, Neil P J; Bischoff, Kenneth M; Manitchotpisit, Pennapa; Skory, Christopher D

    2015-10-01

    To compare production of antibacterial liamocins (polyol lipids) by diverse strains of Aureobasidium pullulans grown on different culture media. Liamocins produced by strains of A. pullulans have potential agricultural and pharmaceutical applications as antibacterials with specificity against Streptococcus spp. Six strains of A. pullulans were characterized for liamocin production on four different culture media. The choice of strain and culture medium affected growth, liamocin yields, and production of contaminating pigments. Best growth and highest liamocin yields were obtained using A. pullulans strain NRRL 50384 grown on a sucrose basal medium. Unexpectedly, the choice of strain and culture medium also affected the structure of liamocins produced, providing novel types of liamocins. Liamocins varied not only in the ratios of trimer and tetramer polyester tail groups, but also in the nature of the polyol headgroup, which could include mannitol, arabitol, or glycerol. The ability to conveniently produce novel types of liamocins in good yields will provide novel antibacterials for applied uses, and facilitate structure-function studies on the mechanism of antibacterial activity.

  1. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle.

    PubMed

    Morimoto, Nobuyuki; Hirano, Sayaka; Takahashi, Haruko; Loethen, Scott; Thompson, David H; Akiyoshi, Kazunari

    2013-01-14

    A self-assembled nanogel, derived from an acid-labile cholesteryl-modified pullulan (acL-CHP), was prepared by grafting vinyl ether-cholesterol substituents onto a 100 kD pullulan main chain polymer backbone. Stable nanogels are formed by acL-CHP self-assemblies at neutral pH. The hydrodynamic radius of the nanogels, observed to be 26.5 ± 5.1 nm at pH 7.0, increased by ~135% upon acidification of the solution to pH 4.0. SEC analysis of the acL-CHP nanogel at pH 4.0 showed that the grafts were nearly 80% degraded after 24 h, whereas little or no degradation was observed over the same time period for a pH stable analog (acS-CHP) at pH 4.0 or the acL-CHP at pH 7.0. Complexation of BSA with the acL-CHP nanogel was observed at pH 7.0 with subsequent release of the protein upon acidification. These findings suggest that stimuli-responsive, self-assembled nanogels can release protein cargo in a manner that is controlled by the degradation rate of the cholesterol-pullulan grafting moiety.

  2. POLYSACCHARIDES FROM CELL WALLS OF AUREOBASIDIUM (PULLULARIA) PULLULANS. PART I. GLUCANS,

    DTIC Science & Technology

    The cell wall of Aureobasidium (Pullularia) pullulans contains three types of beta - glucan . One, extracted with dilute alkali, has a linear backbone...insoluble in dilute alkali contains a highly crystalline, essentially linear linked glucan and an amorphous glucan . (Author)

  3. Medium optimization for production of anti-streptococcal liamocins by Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    Liamocins are antimicrobial compounds with specificity for Streptococcus spp., produced by certain strains of the fungus Aureobasidium pullulans. Recent studies have identified strains and culture medium for liamocin production. However, this culture medium has not previously been optimized for liam...

  4. Antimicrobial activity of a pullulan-caraway essential oil coating on reduction of food microorganisms and quality in fresh baby carrot.

    PubMed

    Gniewosz, Małgorzata; Kraśniewska, Karolina; Woreta, Marcin; Kosakowska, Olga

    2013-08-01

    This research evaluated the antimicrobial efficacy of pullulan films containing caraway essential oil (CEO). The films were prepared from a 10% of pullulan, containing from 0.12% to 10.0% of CEO. The composition of the CEO was analyzed with the use of gas chromatography. The antimicrobial activity of the CEO was evaluated with the method of serial microdilutions, and the films containing CEO-with the agar diffusion method against selected Gram-negative, Gram-positive bacteria, and fungi. The structure of the film surface and its cross-section were analyzed using a scanning electron microscope (SEM). Analyses were also carried out to determine the efficacy of a pullulan coating with 10% CEO on baby carrots experimentally inoculated with Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae, or Aspergillus niger and stored at a room temperature for 7 d. At a concentration of 0.12%, CEO inhibited the growth of all the tested microorganisms. Pullulan films containing 8% to 10% of CEO were active against all tested microorganisms. Populations of S. aureus on carrot samples were reduced by approximately 3 log CFU/g, while those of A. niger and S. cerevisiae by, respectively, 5 and 4 log CFU/g, after 7 d of storage. S. enteritidis was the most resistant among the tested species, since it was not significantly reduced after 7 d of storage. At the end of storage, samples treated with pullulan-caraway oil coating maintained better visual acceptability than control samples. Results of this study suggest the feasibility of applying a pullulan film with incorporated CEO to extend the microbiological stability of minimally processed foods. © 2013 Institute of Food Technologists®

  5. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape.

    PubMed

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking.

  6. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape

    PubMed Central

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking. PMID:26413065

  7. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil.

    PubMed

    Hagler, A N; Rosa, C A; Morais, P B; Mendonça-Hagler, L C; Franco, G M; Araujo, F V; Soares, C A

    1993-10-01

    Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10,000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges-Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.

  8. The diversity and antifungal susceptibility of the yeasts isolated from coconut water and reconstituted fruit juices in Brazil.

    PubMed

    Maciel, Natália O P; Piló, Fernanda B; Freitas, Larissa F D; Gomes, Fátima C O; Johann, Susana; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2013-01-01

    The aims of this study were to characterise the yeasts present in the reconstituted fruit juices and coconut water extracted with "coconut machines", both collected from commercial outlets in a Brazilian city, and to investigate the antifungal resistance of isolates from these beverages that were able to grow at 37°C. The yeast population counts in the coconut water samples ranged from 1.7 to >6.5logcfu/ml, and in the reconstituted fruit juices, the counts ranged from 1.5 to >5.5logcfu/ml. Aureobasidium pullulans, Candida boidinii, Candidaintermedia, Candidaoleophila, Candidaparapsilosis, Candidasantamariae, Candidatropicalis, Clavispora lusitaniae, Kloeckera apis, Lachancea fermentati, Pichia fermentans and Rhodotorula mucilaginosa were the most frequent species isolated from these beverages. At least 18 yeast species isolated from these beverages have been reported as opportunistic pathogens. Eight yeast isolates were resistant to fluconazole, seven were resistant to itraconazole, and 26 to amphotericin B. Some yeast species were resistant to more than one of the antifungal drugs tested. Two isolates of C. tropicalis from the reconstituted fruit juices exhibited resistance to all three drugs. The presence of yeast strains that are resistant to commonly used antifungal drugs suggests a potential risk, at least to immunocompromised individuals who consume these beverages. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil

    PubMed Central

    Medeiros, Adriana O.; Missagia, Beatriz S.; Brandão, Luciana R.; Callisto, Marcos; Barbosa, Francisco A. R.; Rosa, Carlos A.

    2012-01-01

    Yeast communities were assessed in 14 rivers and four lakes from the Doce River basin in Brazil, during the rainy and dry seasons of the years 2000 and 2001. Water samples were collected at the subsurface in all sites. The following physical and chemical parameters were measured: temperature, dissolved oxygen, pH, electrical conductivity, total phosphorus, ortho-phosphate, ammonium, nitrate, nitrite and total nitrogen and the counts of faecal coliforms and heterotrophic bacteria were carried out to characterize the aquatic environmental sampled. The yeast counts were higher in aquatic environments with the highest counts of coliform and heterotrophic bacteria. These environments receive a high influx of domestic and industrial waste. A total of 317 isolates identified in forty eight yeast species were recorded in the sites sampled and the specie Aureobasidium pullulans were found in eleven out of eighteen sites sampled and some opportunistic pathogens such as the yeast species Candida krusei were isolated only in the polluted rivers with a positive correlation with the biotic and abiotic parameters that indicate sewage contamination. PMID:24031990

  10. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    NASA Astrophysics Data System (ADS)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  11. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    PubMed

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  12. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    PubMed Central

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  13. Poly(beta-L-malic acid) from agricultural substrates by Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    We report here for the first time the production of poly(beta-L-malic acid) (PMA) from agricultural substrates by the yeastlike fungus Aureobasidium pullulans. PMA is a natural biopolyester that has primarily been studied for biomedical uses as a drug carrier. However, PMA also has potential as a ...

  14. Green Fluorescent Protein as a Novel Indicator of Antimicrobial Susceptibility in Aureobasidium pullulans

    PubMed Central

    Webb, Jeremy S.; Barratt, Sarah R.; Sabev, Hristo; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Handley, Pauline S.; Robson, Geoffrey D.

    2001-01-01

    Presently there is no method available that allows noninvasive and real-time monitoring of fungal susceptibility to antimicrobial compounds. The green fluorescent protein (GFP) of the jellyfish Aequoria victoria was tested as a potential reporter molecule for this purpose. Aureobasidium pullulans was transformed to express cytosolic GFP using the vector pTEFEGFP (A. J. Vanden Wymelenberg, D. Cullen, R. N. Spear, B. Schoenike, and J. H. Andrews, BioTechniques 23:686–690, 1997). The transformed strain Ap1 gfp showed bright fluorescence that was amenable to quantification using fluorescence spectrophotometry. Fluorescence levels in Ap1 gfp blastospore suspensions were directly proportional to the number of viable cells determined by CFU plate counts (r2 > 0.99). The relationship between cell viability and GFP fluorescence was investigated by adding a range of concentrations of each of the biocides sodium hypochlorite and 2-n-octylisothiozolin-3-one (OIT) to suspensions of Ap1 gfp blastospores (pH 5 buffer). These biocides each caused a rapid (<25-min) loss of fluorescence of greater than 90% when used at concentrations of 150 μg of available chlorine ml−1 and 500 μg ml−1, respectively. Further, loss of GFP fluorescence from A. pullulans cells was highly correlated with a decrease in the number of viable cells (r2 > 0.92). Losses of GFP fluorescence and cell viability were highly dependent on external pH; maximum losses of fluorescence and viability occurred at pH 4, while reduction of GFP fluorescence was absent at pH 8.0 and was associated with a lower reduction in viability. When A. pullulans was attached to the surface of plasticized poly(vinylchloride) containing 500 ppm of OIT, fluorescence decreased more slowly than in cell suspensions, with >95% loss of fluorescence after 27 h. This technique should have broad applications in testing the susceptibility of A. pullulans and other fungal species to antimicrobial compounds. PMID:11722914

  15. Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride

    PubMed Central

    Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.

    2000-01-01

    Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769

  16. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans.

    PubMed

    Leathers, Timothy D; Price, Neil P J; Manitchotpisit, Pennapa; Bischoff, Kenneth M

    2016-12-01

    Liamocins are unique heavier-than-water "oils" produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, β-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.

  17. Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit.

    PubMed

    Ferraz, Luriany Pompeo; Cunha, Tatiane da; da Silva, Aline Caroline; Kupper, Katia Cristina

    2016-01-01

    Sour rot is a major postharvest disease of citrus fruit and is caused by the fungal pathogen Geotrichum citri-aurantii. A lack of chemicals certified for the control of this disease has led to the consideration of alternative methods and strategies, such as the use of yeasts as biocontrol agents. The purpose of the present study was to test the ability of yeasts isolated from leaves, flowers, fruit, and soil, and six Saccharomyces cerevisiae isolates to control citrus sour rot, to assess the mechanisms of action of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of G. citri-aurantii. In in vivo assays, three yeast isolates (ACBL-23, ACBL-44, and ACBL-77) showed a potential for controlling sour rot in citrus fruits, both preventatively and curatively. Most of the eight yeast isolates that were assessed for a mechanism of action did not produce antifungal compounds in an amount sufficient to inhibit the growth of the pathogen. Additionally, nutrient competition among the yeast strains was not found to be a biocontrol strategy. Instead, killer activity and hydrolytic enzyme production were identified as the major mechanisms involved in the biocontrol activity of the yeasts. Isolates ACBL-23, ACBL-44, and ACBL-77, which controlled sour rot most effectively, were identified as Rhodotorula minuta, Candida azyma, and Aureobasidium pullulans, respectively. To our knowledge, this is the first report of the potential of C. azyma as a biological control agent against a postharvest pathogen and its ability to produce a killer toxin. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities.

    PubMed

    Li, Xiaolei; Li, Dan; Park, Kwan-Hwa

    2013-06-01

    A gene encoding an amylopullulanase of the glycosyl hydrolase (GH) family 57 from Staphylothermus marinus (SMApu) was heterologously expressed in Escherichia coli. SMApu consisted of 639 amino acids with a molecular mass of 75.3 kDa. It only showed maximal amino acid identity of 17.1 % with that of Pyrococcus furiosus amylopullulanase in all identified amylases. Not like previously reported amylopullulanases, SMApu has no signal peptide but contains a continuous GH57N_Apu domain. It had the highest catalytic efficiency toward pullulan (k cat/K m , 342.34 s(-1) mL mg(-1)) and was extremely thermostable with maximal pullulan-degrading activity (42.1 U/mg) at 105 °C and pH 5.0 and a half-life of 50 min at 100 °C. Its activity increased to 116 % in the presence of 5 mM CaCl2. SMApu could also degrade cyclodextrins, which are resistant to the other amylopullulanases. The initial hydrolytic products from pullulan, γ-CD, and 6-O-maltooligosyl-β-CD were [6)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1→]n, maltooctaose, and single maltooligosaccharide plus β-CD, respectively. The final hydrolytic products from above-mentioned substrates were maltose and glucose. These results confirm that SMApu is a novel amylopullulanase of the family GH57 possessing the cyclodextrin-degrading activity of cyclomaltodextrinase.

  19. Pullulan-protamine as efficient haemocompatible gene delivery vector: synthesis and in vitro characterization.

    PubMed

    Priya, S S; Rekha, M R; Sharma, Chandra P

    2014-02-15

    Biodegradable non-viral vectors with good transfection efficiency is essential for successful gene delivery. The purpose of this study was to design a non-viral vector by conjugating protamine to pullulan and elucidate the potential use of pullulan protamine conjugate (PPA) as an effective, non toxic and haemocompatible gene delivery system. The particle size and surface charge were measured using Nanosizer. Derivatization was confirmed by NMR, FTIR and DSC analyses. Acid base titration revealed the buffering behaviour of the conjugate. The protection of DNA from nuclease enzyme and interaction of plasma components on the stability of nanoplexes were also analysed. The uptake studies confirmed the plasmid delivery into the nucleus and the inhibitor studies determined the uptake mechanism. Transfection experiments revealed the capability of PPA to cellular uptake in C6 cells and facilitate high gene expression. Thus, PPA proves to be a promising non-viral vector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Role of Pullulan in preparation of ceria nanoparticles and investigation of their biological activities

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad Bagher; Sadeghnia, Hamid Reza; Pasdar, Alireza; Ghayour-Mobarhan, Majid; Riahi-Zanjani, Bamdad; Darroudi, Majid

    2018-04-01

    Throughout this work, a facile, environmental-friendly, and "green" method is delineated for preparing ceria nanoparticles (CNPs), which utilizes nontoxic and renewable degraded polysaccharide polymer including pullulan as a natural matrix. Pullulan behaves as a suitable stabilizing (capping) agent for CNPs that are effectively formed at various high temperatures, while they are structurally analyzed through different techniques such as TGA/DTG, XRD, FESEM, and FTIR instruments. This procedure was found to be comparable to the ones that were acquired from conventional preparation methods that employ hazardous materials, which confirms this approach to be an exquisite alternative in preparing CNPs through the benefit of bioorganic materials. The in vitro cytotoxicity studies on Neuro2A cells have mentioned nontoxic particles in a range of concentrations (0.97-125 μg/ml) and thus, we reckon that the prepared particular CNPs will have persistent utilization in various fields of biology and medicine.

  1. [Lipids of Aureobasidium (Pullularia) pullulans].

    PubMed

    Elinov, N P; Iurlova, N A; Efimova, T P

    1975-01-01

    Fractional composition of free and bound lipids was studied in Aureobasidium (Pullularia) pullulans 8 by preparative TLC on Silufol. Bound lipids contained a fraction (27.76 +/- 0.5%) of dark brown colour, similar to melanin. The composition of fatty acids was studied by GLC. The following fatty acids were identified and determined quantitatively: C12:0, C14:0, C15:0, C16:0, C18:0, C18:1+C15:2. The following fatty acids predominated in free and bound lipids: C16:0, C18:1+C18:2. The ratio between unsaturated and saturated fatty acids in all fractions of free and bound lipids was more than unity. The following parameters were determined for lipids; ester number (173.89 and 178.53); iodine number (44.1 and 33.10), and saponification number (181.17 and 206.03) (the values are given for free and bound lipids, respectively).

  2. Antibacterial activity of liamocins oil from Aureobasidium pullulans is specific for species of Streptococcus

    USDA-ARS?s Scientific Manuscript database

    Liamocins are a heterogeneous mixture of denser-than-water oils produced by the fungus Aureobasidium pullulans. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of multiple 3,5-dihydroxydecanoic acid ester groups, some of which are ...

  3. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    USDA-ARS?s Scientific Manuscript database

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  4. Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Lux, Alexander; Vaculík, Marek; Lišková, Desana

    2016-05-01

    Four plants, Cirsium arvense (creeping thistle), Equisetum arvense (field horsetail), Oxalis acetosella (wood sorrel) and Phragmites australis (common reed), which grew in an abandoned Sb-mining area in Pernek (Malé Karpaty Mts., Slovakia), were investigated for the yeast species. Yeasts were isolated from both the leaves of the plants and the soil adjacent to the plants. In total, 65 yeast cultures, belonging to 11 ascomycetous and 5 basidiomycetous yeast species, were isolated. The species most frequently isolated from both the soil and leaf samples were Trichosporon porosum, Galactomyces candidus and Candida solani, whereas Aureobasidium pullulans, Candida tsuchiyae and Sporidiobolus metaroseus were isolated exclusively from the plant leaves. All the yeast species isolated were tested for their tolerance to two heavy metals (Cd, Zn) and three metalloids (As, Sb and Si). The yeasts isolated from both the leaves and soils exhibited a high tolerance level to both As and Sb, present in elevated concentrations at the locality. Among the yeast species tested, Cryptococcus musci, a close relative to Cryptococcus humicola, was the species most tolerant to all the chemical elements tested, with the exception of Si. It grew in the presence of 200 mmol/L Zn, 200 mmol/L Cd, 60 mmol/L As and 50 mmol/L Sb, and therefore, it can be considered as a multi-tolerant species. Some of the yeast species were tolerant to the individual chemical elements. The yeast-like species Trichosporon laibachii exhibited the highest tolerance to Si of all yeasts tested, and Cryptococcus flavescens and Lindnera saturnus showed the same tolerance as Cryptococcus musci to Zn and As, respectively. The majority of the yeasts showed a notably low tolerance to Cd (not exceeded 0.5 mmol/L), which was present in small amounts in the soil. However, Candida solani, isolated from the soil, exhibited a higher tolerance to Cd (20 mmol/L) than to As (2 mmol/L).

  5. Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles

    PubMed Central

    Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping

    2015-01-01

    We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259

  6. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    USDA-ARS?s Scientific Manuscript database

    The fungus Aureobasidium pullulans produces denser-than-water oils called liamocins. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of three, four or five 3,5-dihydroxydecanoic acid esters, some of which are O-acetylated. Broth di...

  7. Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation.

    PubMed

    Shao, Ping; Niu, Ben; Chen, Hangjun; Sun, Peilong

    2018-02-01

    Edible packaging films using polymer for food preservation have been developed for a long time. In this study, the effects of different concentrations (0.5%, 1%, 1.5%, w/v) of tea polyphenols incorporated into pullulan-Carboxymethylcellulose sodium (Pul-CMC) solutions on electrospun nanofiber films were evaluated. The fiber size distribution was characterized by scanning electron microscopy. The morphological features of nanofibers were modulated through adjusting process parameters (e.g. concentration of polymer solution, applied voltage and feeding rate). Increasing the applied voltage from 19 to 21kV and the feed rate from 0.36 to 0.6mL/h leads to a reduction in mean fiber diameter. Fruit packaging potential was evaluated using strawberry. The pullulan-CMC-TP nanofibers significantly decreased weight loss and maintained the firmness of the strawberries, and improved the quality of the fruit during storage. The findings demonstrate a facile packaging route to improve food sustainability and reduce waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Blending of soluble corn fiber with pullulan, sorbitol, or fructose attenuates glycemic and insulinemic responses in the dog and affects hydrolytic digestion in vitro.

    PubMed

    de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C

    2013-08-01

    The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P < 0.05) hydrolyzed monosaccharide concentrations. The SCFsd blends had intermediate to high amounts of monosaccharides released as a result of in vitro hydrolytic digestion. The SCFsd:pullulan blends were more digestible in vitro (approximately 91%; P < 0.05) than SCFsd:fructose or SCFsd:sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P < 0.05). The SCF:pullulan:sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in

  9. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.

    PubMed

    Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing

    2010-01-01

    The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.

  10. Water vapor barrier and sorption properties of edible films from pullulan and rice wax.

    USDA-ARS?s Scientific Manuscript database

    Edible films were prepared by using various ratios of pullulan and rice wax. Freestanding composite films were obtained with up to 46.4% rice wax. Water vapor barrier properties of the film were improved with increased addition of rice wax. Moisture sorption isotherms were also studied to examine...

  11. Optimization of tannase production by Aureobasidium pullulans DBS66.

    PubMed

    Banerjee, Debdulal; Pati, Bikas R

    2007-06-01

    Tannase production by Aureobasidium pullulans DBS66 was optimized. The organism produced maximum tannase in the presence of 1% tannic acid after 36 h. Maximum gallic acid accumulation was observed within 36 h and tannic acid in the fermented broth was completely degraded after 42 h of growth. Glucose had a stimulatory effect on tannase synthesis at 0.1% (w/v) concentration. The organism showed maximum tannase production with (NH4)2HPO4 as nitrogen source. Shaking speed of 120 rpm and 50-ml broth volume have been found to be suitable for maximum tannase production.

  12. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    PubMed Central

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue. PMID:26817622

  13. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  14. NMR spectroscopic structural characterization of a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans.

    PubMed

    Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa

    2017-10-15

    An unambiguous structural characterization of the water-soluble Aureobasidium pullulans β-(1→3, 1→6)-glucan is yet to be achieved, although this β-(1→3, 1→6)-glucan is expected to exhibit excellent biofunctional properties. Thus, we herein report the elucidation of the primary structure of the A. pullulans β-(1→3, 1→6)-glucan using nuclear magnetic resonance spectroscopy, followed by comparison of the obtained structure with that of schizophyllan (SPG). Structural characterization of the A. pullulans β-(1→3, 1→6)-glucan revealed that the structural units are a β-(1→3)-d-glucan backbone with four β-(1→6)-d-glucosyl side branching units every six residues. In addition, circular dichroism spectroscopic analysis revealed that the β-(1→3, 1→6)-glucan interacted with polyadenylic acid (poly(A)) chains in DMSO solution to form a complex similar to that obtained in the complexation of SPG/poly(A). This finding indicates that β-(1→3, 1→6)-glucan forms a triple-helical conformation in aqueous solution but exhibits a random coil structure in DMSO solution, which is similar to the behavior of SPG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of sugar and amino acid supplementation on Aureobasidium pullulans NRRL 58536 antifungal activity against four Aspergillus species.

    PubMed

    Prasongsuk, Sehanat; Ployngam, Saowaluck; Wacharasindhu, Sumrit; Lotrakul, Pongtharin; Punnapayak, Hunsa

    2013-09-01

    Cultured cell extracts from ten tropical strains of Aureobasidium pullulans were screened for antifungal activity against four pathogenic Aspergillus species (Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, and Aspergillus terreus) using the well diffusion and conidial germination inhibition assays. The crude cell extract from A. pullulans NRRL 58536 resulted in the greatest fungicidal activity against all four Aspergillus species and so was selected for further investigation into enhancing the production of antifungal activity through optimization of the culture medium, carbon source (sucrose and glucose) and amino acid (phenylalanine, proline, and leucine) supplementation. Sucrose did not support the production of any detectable antifungal activity, while glucose did with the greatest antifungal activity against all four Aspergillus species being produced in cells grown in medium containing 2.5 % (w/v) glucose. With respect to the amino acid supplements, variable trends between the different Aspergillus species and amino acid combinations were observed, with the greatest antifungal activities being obtained when grown with phenylalanine plus leucine supplementation for activity against A. flavus, proline plus leucine for A. terreus, and phenylalanine plus proline and leucine for A. niger and A. fumigatus. Thin layer chromatography, spectrophotometry, high-performance liquid chromatography, (1)H-nuclear magnetic resonance, and MALDI-TOF mass spectrometry analyses were all consistent with the main component of the A. pullulans NRRL 58536 extracts being aureobasidins.

  16. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.

    PubMed

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2015-05-01

    Strains belonging to the species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans, isolated from different food sources, were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic mold Botrytis cinerea. All yeast strains demonstrated antifungal activity at different levels depending on species and medium. Killer strains of W. anomalus and S. cerevisiae showed the highest biocontrol in vitro activity, as demonstrated by largest inhibition halos. The competition for iron and the ability to form biofilm and to colonize fruit wounds were hypothesized as the main action mechanisms for M. pulcherrima. The production of hydrolytic enzymes and the ability to colonize the wounds were the most important mechanisms for biocontrol activity in A. pullulans and W. anomalus, which also showed high ability to form biofilm. The production of volatile organic compounds (VOCs) with in vitro and in vivo inhibitory effect on pathogen growth was observed for the species W. anomalus, S. cerevisiae and M. pulcherrima. Our study clearly indicates that multiple modes of action may explain as M. pulcherrima provide excellent control of postharvest botrytis bunch rot of grape. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Adding yeasts with sugar to increase the number of effective insecticide classes to manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in cherry.

    PubMed

    Knight, Alan L; Basoalto, Esteban; Yee, Wee; Hilton, Rick; Kurtzman, Cletus P

    2016-08-01

    Drosophila suzukii is a major pest of cherry in the western United States. We evaluated whether the addition of sugary baits could improve the efficacy of two classes of insecticides not considered to be sufficiently effective for this pest, diamides and spinosyns, in laboratory and field trials in cherry. Adding cane sugar alone or in combination with the yeasts Saccharomyces cerevisiae or Aureobasidium pullulans significantly improved insecticide efficacy. However, the significance of adding yeasts to the sugar plus insecticide on fly mortality varied with respect to both the insecticide and yeast species. The addition of S. cerevisiae to sugar also did not significantly reduce egg densities in fruit compared with sugar alone. The addition of a yeast plus sugar significantly reduced egg densities in three field trials with cyantraniliprole and in two out of three trials with spinosad. The addition of cane sugar with or without yeast can improve the effectiveness of diamide and spinosyn insecticides for D. suzukii in cherry. Inclusion of these two insecticides in D. suzukii management programs may alleviate the strong selection pressure currently being imposed on a few mode-of-action insecticide classes used by growers to maintain fly suppression over long continuous harvest periods of mixed cultivars. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. QUANTITATIVE IMAGING AND STATISTICAL ANALYSIS OF FLUORESCENCE IN SITU HYBRIDIZATION (FISH) OF AUREOBASIDIUM PULLULANS. (R823845)

    EPA Science Inventory

    Abstract

    Image and multifactorial statistical analyses were used to evaluate the intensity of fluorescence signal from cells of three strains of A. pullulans and one strain of Rhodosporidium toruloides, as an outgroup, hybridized with either a universal o...

  19. Yeast β-1,6-Glucan Is a Primary Target for the Saccharomyces cerevisiae K2 Toxin

    PubMed Central

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius

    2015-01-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. PMID:25710965

  20. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  1. Characterization and enzymatic hydrolysis of hydrothermally treated β-1,3-1,6-glucan from Aureobasidium pullulans.

    PubMed

    Hirabayashi, Katsuki; Kondo, Nobuhiro; Hayashi, Sachio

    2016-12-01

    The chemical structure of hydrothermally treated β-1,3-1,6-glucan from Aureobasidium pullulans was characterized using techniques such as gas chromatography/mass spectrometry (GC/MS) and nuclear magnetic resonance (NMR). The chemical shifts of anomeric carbons observed in the 13 C-NMR spectra suggested the presence of single flexible chains of polysaccharide in the sample. β-1,3-1,6-Glucan from A. pullulans became water-soluble, with an average molecular weight of 128,000 Da after hydrothermal treatment, and the solubility in water was approximately 10% (w/w). Sample (3% w/v) was completely hydrolyzed to glucose by enzymatic reaction with Lysing enzymes from Trichoderma harzianum. Gentiobiose (Glcβ1 → 6Glc) and glucose were released as products during the reaction, and the maximum yield of gentiobiose was approximately 70% (w/w). The molar ratio of gentiobiose to glucose after 1 h reaction suggested that the sample is likely highly branched. Sample (3% w/v) was also hydrolyzed to glucose by Uskizyme from Trichoderma sp., indicating that it is very sensitive to enzymatic hydrolysis.

  2. Ergothioneine production using Methylobacterium species, yeast, and fungi.

    PubMed

    Fujitani, Yoshiko; Alamgir, Kabir Md; Tani, Akio

    2018-06-14

    Ergothioneine (EGT) is a sulfur-containing, anti-oxidative amino acid derived from histidine. EGT is synthesized in bacteria and fungi but not in animals and plants, and is now recognized as important for human health. Its cost-effective fermentative production has not been elucidated due to the lack of information for productive microorganisms. In this study, we doubled the gene copy for EGT synthesis and deleted the histidine ammonia-lyase gene in a potent EGT-producing methylotrophic bacterium Methylobacterium aquaticum strain 22A, and optimized its culture conditions, resulting in increased EGT production of 7.0 mg EGT/g dry cell weight and 100 μg EGT/5 mL/7 days. In addition, through screening we found EGT-producing eukaryotic strains of Aureobasidium pullulans and Rhodotorula mucilaginosa, which can produce 1.0 and 3.2 mg EGT/g dry cell weight, 70 and 120 μg EGT/5 mL/7 days, respectively. This study proposes practical uses of potent EGT-producing recombinant Methylobacterium species and non-recombinant yeast and fungal strains. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    PubMed

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. [Amylase production by Aureobasidium pullulans in liquid and solid media].

    PubMed

    Lodato, P B; Forchiassin, F; Segovia de Huergo, M B

    1997-01-01

    Amylase production by a strain of Aureobasidium pullulans isolated in the laboratory was evaluated in liquid media (complex and synthetic) and in solid medium (wheat bran). There was an inhibitory effect in amylase production or amylase secretion by glucose. Asparagine was the best nitrogen source for amylase production (4-6 g/l). Only chlamidospores and melanin but not, amylase activity, were obtained with ammonium sulfate. Amylase production in solid culture was higher than the production obtained in the liquid media assayed. Optimum initial moisture content in solid culture ranged between 57 and 74%. No difference was observed in amylase production between solid media inoculated with cells grown in liquid or solid media.

  5. Iodoacetyl-functionalized pullulan: A supplemental enhancer for single-domain antibody-polyclonal antibody sandwich enzyme-linked immunosorbent assay for detection of survivin.

    PubMed

    Matsushita, Takahiko; Arai, Hidenao; Koyama, Tetsuo; Hatano, Ken; Nemoto, Naoto; Matsuoka, Koji

    2017-11-01

    Survivin, an inhibitor of the apoptosis protein family, is a potent tumor marker for diagnosis and prognosis. The enzyme-linked immunosorbent assay (ELISA) is one of the methods that has been used for detection of survivin. However, ELISA has several disadvantages caused by the use of conventional antibodies, and we have therefore been trying to develop a novel ELISA system using camelid single-domain antibodies (VHHs) as advantageous replacements. Here we report a supplemental approach to improve the VHH-polyclonal antibody sandwich ELISA for survivin detection. Iodoacetyl-functionalized pullulan was synthesized, and its thiol reactivity was characterized by a model reaction with l-cysteine. The thiophilic pullulan was applied to an immunoassay asan additive upon coating of standard assay plates with an anti-survivin VHH fusion protein with C-terminal cysteine. The results showed that the mole ratio of the additive to VHH had a significant effect on the consequent response. Mole ratios of 0.07, 0.7, and 7 led to 90% lower, 15% higher, and 69% lower responses, respectively, than the response of a positive control in which no additive was used. The background levels observed in any additive conditions were as low as that of a negative control lacking both VHH and the additive. These results indicate the applicability of the thiol-reactive pullulan as a response enhancer to VHH-based ELISA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Two-dimensional NMR data of a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans and schizophyllan from Schizophyllum commune.

    PubMed

    Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa

    2017-12-01

    This article contains two-dimensional (2D) NMR experimental data, obtained by the Bruker BioSpin 500 MHz NMR spectrometer (Germany) which can used for the determination of primary structures of schizophyllan from Schizophyllum commune (SPG) and a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans . Data include analyzed the 2D NMR spectra of these β-glucans, which are related to the subject of an article in Carbohydrate Polymers , entitled "NMR spectroscopic structural characterization of a water-soluble β-(1→3, 1→6)-glucan from A. pullulans " (Kono et al., 2017) [1]. Data can help to assign the 1 H and 13 C chemical shifts of the structurally complex polysaccharides.

  7. Nontoxic Genetic Engineering of Mesenchymal Stem Cells Using Serum-Compatible Pullulan-Spermine/DNA Anioplexes

    PubMed Central

    Thakor, Devang K.; Obata, Hideaki; Nagane, Kentaro; Saito, Shigeru

    2011-01-01

    Genetic modification of stem cells could be applied to initiate/enhance their secretion of therapeutic molecules, alter their biological properties, or label them for in vivo tracking. We recently developed a negatively charged gene carrier (“anioplex”) based on pullulan-spermine, a conjugate prepared from a natural polysaccharide and polyamine. In rat mesenchymal stem cells (MSCs), anioplex-derived reporter gene activity was comparable to or exceeded that obtained using a commercial cationic lipid reagent. Transfection in the growth medium with 15% serum and antibiotics was approximately sevenfold more effective than in serum-free conditions. Cytotoxicity was essentially indiscernible after 24 h of anioplex transfection with 20 μg/mL DNA, in contrast to cationic lipid transfection that resulted in 40%–60% death of target MSCs. Anioplex-derived reporter gene activity persisted throughout the entire 3-week study, with post-transfection MSCs appearing to maintain osteogenic, adipogenic, and chondrogenic multipotency. In particular, chondrogenic pellet formation of differentiating human MSCs was significantly inhibited after lipofection but not after aniofection, which further indicates the biological inertness of pullulan-spermine/DNA anioplexes. Collectively, these data introduce a straightforward technology for genetic engineering of adult stem/progenitor cells under physiological niche-like conditions. Moreover, reporter gene activity was observed in rat spinal cords after minimally invasive intrathecal implantation, suggesting effective engraftment of donor MSCs. It is therefore plausible that anioplex-transfected MSCs or other stem/progenitor cells with autologous potential could be applied to disorders such as neurotrauma or neuropathic pain that involve the spinal cord and brain. PMID:20698746

  8. Deterioration of expanded polystyrene caused by Aureobasidium pullulans var. melanogenum.

    PubMed

    Castiglia, Valeria C; Kuhar, Francisco

    2015-01-01

    An expanded-polystyrene factory located in northern Buenos Aires reported unusual dark spots causing esthetic damage in their production. A fungal strain forming black-olive colonies on extract malt agar medium was isolated from the damaged material and identified as Aureobasidium pullullans var. melanogenum. This fungus is particularly known for its capacity to produce hydrolytic enzymes and a biodegradable extracellular polysaccharide known as pullulan, which is used in the manufacture of packaging material for food and medicine. Laboratory tests were conducted to characterize its growth parameters. It was found that the organism was resistant to a wide range of pHs but did not survive at temperatures over 65°C. The proposed action plan includes drying of the material prior to packaging and disinfection of the machinery used in the manufacturing process and of the silos used for raw material storage. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Biosynthesis of Novel Exopolymers by Aureobasidium pullulans

    PubMed Central

    Lee, Jin W.; Yeomans, Walter G.; Allen, Alfred L.; Deng, Fang; Gross, Richard A.; Kaplan, David L.

    1999-01-01

    Aureobasidium pullulans ATCC 42023 was cultured under aerobic conditions with glucose, mannose, and glucose analogs as energy sources. The exopolymer extracts produced under these conditions were composed of glucose and mannose. The molar ratio of glucose to mannose in the exopolymer extract and the molecular weight of the exopolymer varied depending on the energy source and culture time. The glucose content of exopolymer extracts formed with glucose and mannose as the carbon sources was between 91 and 87%. The molecular weight decreased from 3.5 × 106 to 2.12 × 106 to 0.85 × 106 to 0.77 × 106 with culture time. As the culture time increased, the glucose content of the exopolymer extract formed with glucosamine decreased from 55 ± 3 to 29 ± 2 mol%, and the molecular weight increased from 2.73 × 106 to 4.86 × 106. There was no evidence that glucosamine was directly incorporated into exopolymers. The molar ratios of glucose to mannose in exopolymer extracts ranged from 87 ± 3:13 ± 3 to 28 ± 2:72 ± 2 and were affected by the energy source added. On the basis of the results of an enzyme hydrolysis analysis of the exopolymer extracts and the compositional changes observed, mannose (a repeating unit) was substituted for glucose, which gave rise to a new family of exopolymer analogs. PMID:10583975

  10. Aureobasidium pullulansas a biocontrol agent of blue mold in "Rocha" pear.

    PubMed

    Ferreira-Pinto, M M; Moura-Guedes, M C; Barreiro, M G; Pais, I; Santos, M R; Silva, M J

    2006-01-01

    The blue mold of "Rocha" pear caused by Penicillium expansum is an important postharvest disease which is adequately controlled by application of synthetic fungicides. In recent years, strategies like biological control have been considered a desirable alternative to chemicals. Several studies have demonstrated the potential of the yeast-like fungus Aureobasidium pullulans for control of postharvest decay of pear. A Portuguese isolate of Aureobasidium pullulans was characterized and evaluated for its activity in reducing postharvest blue mold decay of "Rocha" pear caused by Penicillium expansum. Study of optimal conditions for antagonist growth was carried out in six different culture media. The effect of four maturity stages of fruits in the development of A. pullulans was also studied. Biocontrol studies were performed with two concentrations of the antagonist (3 x 10(8) and 4 x 10(9) CFU/ml). A. pullulans growth was significantly different (P < or = 0.001) according to the various media and time of incubation. Best results were obtained in Corn Meal Agar (CMA) and Potato Dextrose Agar (PDA) media which contains the higher concentration of glucose (20 mg/l). Medium resulted from fruits of the first harvest date presented lower colony diameter. Inoculation of A. pullulans at 3 x 10(8) and 4 x 10(9) CFU/ml reduced the incidence of the disease by 23 and 63%, and reduced the lesion diameter by 36 and 46%, respectively.

  11. Diagnostic medium containing inositol, urea, and caffeic acid for selective growth of Cryptococcus neoformans.

    PubMed Central

    Healy, M E; Dillavou, C L; Taylor, G E

    1977-01-01

    An agar medium containing inositol and urea as sole carbon and nitrogen sources, caffeic acid and ferric citrate as agents for the selective pigmentation of Cryptococcus neoformans, gentamicin as a broad-spectrum bacterial antibiotic, and yeast nitrogen base without amino acids and ammonium sulfate (Difco) was tested against 137 clinical isolates, 4 survey specimens, and 11 ATCC yeast and yeast-like strains. All 28 strains of C. neoformans showed heavy growth and dark brown pigmentation after 36 h. All other tested species of Cryptococcus showed heavy growth after 36 h but only light brown pigmentation after 48 h. No growth was observed in any tested strains of Geotrichum, Pityrosporum, Rhodotorula, Saccharomyces, and Torulopsis. Only the Cryptococcus-like Candida humicola grew of the 8 species and 62 strains of Candida tested. Six of 15 strains of Trichosporon cutaneum and 1 of 2 strains of Trichosporon pullulans showed moderate growth after 48 h. Very different colonial and microscopic morphology and/or the absence of brown pigmentation easily differentiated these strains of T. cutaneum, T. pullulans, and C. humicola from C. neoformans. The growth- and pigmentation-providing characteristics of the medium were unaffected by 2 h of exposure to 254 nm of ultraviolet light. PMID:334795

  12. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  13. Yeast Infection (Vaginal)

    MedlinePlus

    Yeast infection (vaginal) Overview A vaginal yeast infection is a fungal infection that causes irritation, discharge and intense itchiness ... symptoms Causes The fungus candida causes a vaginal yeast infection. Your vagina naturally contains a balanced mix of yeast, including ...

  14. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  16. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  17. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  18. Yeast for virus research

    PubMed Central

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  19. L-arabinose fermenting yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  20. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  1. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK

    PubMed Central

    Lowes, K. F.; Shearman, C. A.; Payne, J.; MacKenzie, D.; Archer, D. B.; Merry, R. J.; Gasson, M. J.

    2000-01-01

    The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts. PMID:10698773

  2. Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier.

    PubMed

    Yang, Wenzhi; Wang, Miaomiao; Ma, Lilan; Li, Haiying; Huang, Le

    2014-01-01

    A series of biotin modified cholesteryl pullulan (Bio-CHSP) conjugates with different degrees of substitution (DS) of biotin moiety were synthesized and characterized by Fourier transform infrared (FT-IR), proton nuclear magnetic resonance ((1)H NMR) and X-ray diffraction (XRD). Bio-CHSP conjugates were amphiphilic in nature and their self-aggregation behavior in aqueous media was evaluated by the fluorescence probe technique. Bio-CHSP self-aggregated nanoparticles (Bio-CHSP NPs) were prepared and analyzed by dynamic light scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. These novel nanoparticles were almost spherical in shape, and their size, ranging from 178.8 to 100.0 nm. The safety of Bio-CHSP NPs was studied through single dose toxicity test in mice, and the result showed that Bio-CHSP NPs were well tolerated at the intravenous dose of 200 mg/kg in mice. Moreover, as a model anticancer drug, mitoxantrone loaded Bio-CHSP NPs were also prepared and characterized in this study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Production and Properties of a Thermostable, pH-Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace.

    PubMed

    Bennamoun, Leila; Hiligsmann, Serge; Dakhmouche, Scheherazad; Ait-Kaki, Amel; Labbani, Fatima-Zohra Kenza; Nouadri, Tahar; Meraihi, Zahia; Turchetti, Benedetta; Buzzini, Pietro; Thonart, Philippe

    2016-10-29

    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans , was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl₂0.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5-90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0-10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product.

  4. Bone engineering by phosphorylated-pullulan and β-TCP composite.

    PubMed

    Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro

    2015-11-20

    A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.

  5. Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts.

    PubMed

    Ganga, M A; Martínez, C

    2004-01-01

    The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of beta-glycosidase. The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non-Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions.

  6. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  8. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  9. Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment

    PubMed Central

    Katz, Michael; Knecht, Wolfgang; Compagno, Concetta; Piškur, Jure

    2018-01-01

    There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits. PMID:29624585

  10. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-11-04

    Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Production and Properties of a Thermostable, pH—Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace

    PubMed Central

    Bennamoun, Leila; Hiligsmann, Serge; Dakhmouche, Scheherazad; Ait-Kaki, Amel; Labbani, Fatima-Zohra Kenza; Nouadri, Tahar; Meraihi, Zahia; Turchetti, Benedetta; Buzzini, Pietro; Thonart, Philippe

    2016-01-01

    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl20.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5–90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0–10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product. PMID:28231166

  12. New yeasts-new brews: modern approaches to brewing yeast design and development.

    PubMed

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  14. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  15. Marine yeast isolation and industrial application.

    PubMed

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-09-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. © 2014 The Authors FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  16. Yeast ecology of Kombucha fermentation.

    PubMed

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  17. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  18. Strategies for the production of high-content fructo-oligosaccharides through the removal of small saccharides by co-culture or successive fermentation with yeast.

    PubMed

    Nobre, C; Castro, C C; Hantson, A-L; Teixeira, J A; De Weireld, G; Rodrigues, L R

    2016-01-20

    Fructo-oligosaccharides (FOS) obtained by fermentation of sucrose may be purified at large-scale by continuous chromatography (Simulated Moving Bed: SMB). In order to improve the efficiency of the subsequent SMB purification, the optimization of the fermentative broth composition in salts and sugars was investigated. Fermentations conducted at reduced amount of salts, using Aureobasidium pullulans whole cells, yielded 0.63 ± 0.03 g of FOS per gram of initial sucrose. Additionally, a microbial treatment was proposed to reduce the amount of small saccharides in the mixture. Two approaches were evaluated, namely a co-culture of A. pullulans with Saccharomyces cerevisiae; and a two-step fermentation in which FOS were first synthesized by A. pullulans and then the small saccharides were metabolized by S. cerevisiae. Assays were performed in 100mL shaken flasks and further scaled-up to a 3 L working volume bioreactor. Fermentations in two-step were found to be more efficient than the co-culture ones. FOS were obtained with a purity of 81.6 ± 0.8% (w/w), on a dry weight basis, after the second-step fermentation with S. cerevisiae. The sucrose amount was reduced from 13.5 to 5.4% in total sugars, which suggests that FOS from this culture broth will be more efficiently separated by SMB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics.

    PubMed

    Wei, Peilian; Cheng, Chi; Lin, Meng; Zhou, Yipin; Yang, Shang-Tian

    2017-01-01

    Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Wine yeasts for the future.

    PubMed

    Fleet, Graham H

    2008-11-01

    International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.

  1. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    USDA-ARS?s Scientific Manuscript database

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  2. Ultrasound-assisted pullulan/montmorillonite bionanocomposite coating with high oxygen barrier properties.

    PubMed

    Introzzi, Laura; Blomfeldt, Thomas O J; Trabattoni, Silvia; Tavazzi, Silvia; Santo, Nadia; Schiraldi, Alberto; Piergiovanni, Luciano; Farris, Stefano

    2012-07-31

    In this paper, the preparation and characterization of oxygen barrier pullulan sodium montmorillonite (Na(+)-MMT) nanocomposite coatings are presented for the first time. Full exfoliation of platelets during preparation of the coating water dispersions was mediated by ultrasonic treatment, which turned out to be a pivotal factor in the oxygen barrier performance of the final material even at high relative humidity (RH) conditions [oxygen permeability coefficients ~1.43 ± 0.39 and 258.05 ± 13.78 mL·μm·m(-2)·(24 h)(-1)·atm(-1) at 23 °C and 0% RH and 70% RH, respectively]. At the micro- and nanoscale, the reasons are discussed. The final morphology of the coatings revealed that clay lamellae were stacked on top of one another, probably due to the forced confinement of the platelets within the coating thickness after solvent evaporation. This was also confirmed by modeling the experimental oxygen permeability data with the well-known Nielsen and Cussler permeation theoretical models, which suggested a reasonable aspect ratio (α) of ~100. Electron microscopic analyses also disclosed a peculiar cell-like arrangement of the platelets. The stacking of the clay lamellae and the cell-like arrangement create the excellent oxygen barrier properties. Finally, we demonstrated that the slight haze increase in the bionanocomposite coating materials arising from the addition of the clays depends on the clay concentration but not so much on the sonication time, due to the balance of opposite effects after sonication (an increase in the number of scattering centers but a reduction in their size).

  3. Influence of zinc, lead, and cadmium pollutants on the microflora of hawthorn leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewley, R.J.F.; Campbell, R.

    1980-01-01

    Transect studies were conducted to determine the relative effects of zinc, lead, and cadmium pollution on microorganisms occurring on hawthorn leaves at varying distances from a smelting complex. Sporobolomyces roseus was absent from the most heavily contaminated leaves but, although lead was inhibitory, other environmental factors were also important in determining its overall population level. Conversely, Aureobasidium pullulans and nonpigmented yeasts showed a significant partial positive correlation with lead but were inhibited by zinc and/or cadmium. Numbers of bacterial colonies were only slightly reduced by the combined effect of all three metals, but total numbers of bacteria were highly negativelymore » correlated with lead. Filamentous fungi, isolated by leaf washing, were only slightly inhibited by all three metals, and the degree of mycelial proliferation on senescent leaves was little affected by heavy metal pollution. Computer-generated maps were produced of the distribution of A. pullulans in relation to zinc and lead fallout. 14 references, 7 figures, 2 tables.« less

  4. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  5. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  7. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  8. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis...

  9. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  10. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  11. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  12. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  13. Yeast flocculation: New story in fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  14. The effects of sperminated pullulans on cornea permeability to puerarin and the toxicity.

    PubMed

    Yu, Nannan; Dong, Guo; Ge, Hongyan; Jin, Di; Cui, Hao; Liu, Ping

    2012-10-01

    To investigate the varied effects of sperminated pullulans (SP) with different amino residues on cornea permeability and its local toxicity. Three groups of rabbits were used: control, low-amino residue content SP (SP-L), and high-amino residue content SP (SP-H). The in vitro and in vivo spreading assays were combined with high performance liquid chromatography (HPLC) to measure the concentration of puerarin in the external medium or aqueous humor when 0% SP, 0.2% SP-L, and 0.2% SP-H were included. The toxicity of SP was determined by corneal hydration values, Draize score, aqueous humor protein concentration, corneal endothelial evaluation, as well as light microscopy and electron microscopy. The application of 0.2% SP-L and 0.2% SP-H to the cornea in vitro increased puerarin apparent permeability coefficient by 1.96-fold (P<0.05) and 2.95-fold (P<0.01), respectively. SP-H showed stronger effect than SP-L (P<0.05). For the in vivo assay, those were 1.81-fold (P<0.05) and 3.71-fold (P<0.01), respectively. With the SP application, the corneal hydration values were <83% and Draize scores were <4, with no apparent changes in histological observations. SP is one potential adjuvant promoting puerarin permeability to the cornea, and the high-content amino residue SP showed stronger effect, without ocular toxicity.

  15. Brewing characteristics of piezosensitive sake yeasts

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  16. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and dried cell walls of the yeast...

  17. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  18. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  19. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    PubMed

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  1. Anti-skin-aging benefits of exopolymers from Aureobasidium pullulans SM2001.

    PubMed

    Kim, Kyung Hu; Park, Soo Jin; Lee, Ji Eun; Lee, Young Joon; Song, Chang Hyun; Choi, Seong Hun; Ku, Sae Kwang; Kang, Su Jin

    2014-01-01

    There have been many attempts to search for affordable and effective functional cosmetic ingredients, especially from natural sources. As research into developing a functional cosmetic ingredient, we investigated whether exopolymers from Aureobasidium pullulans SM2001 (E-AP-SM2001) exert antioxidant, antiwrinkle, whitening, and skin moisturizing effects. Antioxidant effects of E-AP-SM2001 were determined by measuring free radical scavenging capacity and superoxide dismutase (SOD)-like activity. Antiwrinkle effects were assessed through the inhibition of hyaluronidase, elastase, collagenase, and matrix metalloproteinase (MMP)-1. Whitening effects were measured by tyrosinase inhibition assay, and by melanin formation test in B16/F10 melanoma cells. Skin moisturizing effects were detected by mouse skin water content test. E-AP-SM2001 showed potent DPPH radical scavenging activity and SOD-like effects. Additionally, hyaluronidase, elastase, collagenase, and MMP-1 activities were significantly inhibited by E-AP-SM2001. We also observed that E-AP-SM2001 effectively reduced melanin production by B16/F10 melanoma cells and mushroom tyrosinase activities. Furthermore, significant increases in skin water content were detected in E-AP-SM2001- treated mouse skin, as compared with vehicle-treated control skin. Notably, a mask pack containing E-AP-SM2001 showed a >twofold more extensive moisturizing effect compared with one containing Saccharomycopsis ferment filtrate. Our results suggest that E-AP-SM2001 has adequate antiaging, antiwrinkle, and whitening benefits and skin moisturizing effect. These effects involve reducing hyaluronidase, elastase, collagenase, and MMP-1 activities, as well as inhibition of melanin production and tyrosinase activities. Therefore, the antioxidant E-AP-SM2001 may serve as a predictable functional ingredient.

  2. Removal of the commercial pesticides Novadim Progress, Bordeaux mixture and Karate Zeon by pullulan derivatives based flocculants.

    PubMed

    Ghimici, Luminita; Constantin, Marieta

    2018-04-14

    Cationic pullulan derivatives have been synthesized and evaluated, for the first time, as flocculants for the separation of the commercial pesticides, Novadim Progress (organophosphoric type), Bordeax mixture and Karate Zeon (pyrethroid type) from synthetic wastewater. The investigated polymer samples contained either pendent tertiary amine or quaternary ammonium salts groups. The separation efficiency was followed by UV-Vis spectroscopy, while the information regarding the mechanism involved in the separation of pesticide particles have been obtained by zeta potential. UV-Vis spectroscopy data showed strong pesticide particles/polycation interactions in case of Novadim Progress and Bordeaux mixture (maximum pesticide removal between 90% and 98%). Good separation efficiency (around 80%) of Karate Zeon emulsion was also noticed. The zeta potential measurements indicated that the charge neutralization was the common flocculation mechanism for the removal of these pesticides. In addition, the hydrogen bondings and chelation of copper ions by amide and/or tertiary amino groups of the polycations had a noteworthy contribution to the pesticide removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  4. Yeasts as distinct life forms of fungi

    USDA-ARS?s Scientific Manuscript database

    This review describes all presently recognized genera of the Ascomycete yeasts (Saccharomycotina, budding yeasts, and the Taphrinomycotina, fission yeasts and related) as well as all currently recognized genera of the Basidiomycete yeasts. This update will be the lead chapter for a book entitled “Ye...

  5. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  6. Evolutionary History of Ascomyceteous Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with amore » large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.« less

  7. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes.

  8. Oral yeast colonization throughout pregnancy

    PubMed Central

    Rio, Rute; Simões-Silva, Liliana; Garro, Sofia; Silva, Mário-Jorge; Azevedo, Álvaro

    2017-01-01

    Background Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. Material and Methods The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Results Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Conclusions Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment. Key words:Oral yeast, fungi, pregnancy, saliva pH. PMID:28160578

  9. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    PubMed

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  10. Nutrient supplements boost yeast transformation efficiency

    PubMed Central

    Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.

    2016-01-01

    Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994

  11. Effect of sperminated pullulans on drug permeation through isolated rabbit cornea and determination of ocular irritation.

    PubMed

    Yu, N; Xun, Y; Jin, D; Yang, H; Hang, T; Cui, H

    2010-01-01

    The aim of this study was to investigate the effect of two sperminated pullulans (SP) with a different number of amino groups (SP-L, amino group content 0.124 mmol/g polymer; and SP-H, amino group content 0.578 mmol/g polymer) on the permeation of drugs through isolated rabbit corneas. Determination of corneal hydration levels and Draize eye tests were performed to assess the safety of SP both in vitro and in vivo. For 0.2% (w/v) SP-L and 0.2% (w/v) SP-H, the enhancement ratios (ERs) with dexamethasone of 1.34 and 1.42, respectively, were not statistically significant. For ofloxacin, tobramycin and sodium fluorescein, the ERs with 0.2% SP-L were 1.37, 2.02 and 2.12, respectively, and with 0.2% SP-H the ERs were 1.84, 4.69 and 6.87, respectively; these ERs were all statistically significant. Enhancement increased with increasing amino group content of the SP. The improved transcorneal drug absorption via the paracellular route indicated opening of the tight junctions in the corneal epithelium. Irritation tests indicated that 0.2% SP-L and 0.2% SP-H did not damage the corneal tissues.

  12. Virgin olive oil yeasts: A review.

    PubMed

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast, Saccharomyces...

  14. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  15. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  16. History of genome editing in yeast.

    PubMed

    Fraczek, Marcin G; Naseeb, Samina; Delneri, Daniela

    2018-05-01

    For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas. © 2018 The Authors. Yeast published by John Wiley & Sons, Ltd.

  17. Inventions on baker's yeast strains and specialty ingredients.

    PubMed

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  18. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  19. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  20. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  1. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  2. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    PubMed

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  3. Between science and industry-applied yeast research.

    PubMed

    Korhola, Matti

    2018-03-01

    I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.

  4. Fatal Hormonema dematioides Peritonitis in a Patient on Continuous Ambulatory Peritoneal Dialysis: Criteria for Organism Identification and Review of Other Known Fungal Etiologic Agents

    PubMed Central

    Shin, Jong Hee; Lee, Sang Ku; Suh, Soon Pal; Ryang, Dong Wook; Kim, Nam Ho; Rinaldi, Michael G.; Sutton, Deanna A.

    1998-01-01

    We report a fatal case a fungal peritonitis caused by the yeast-like dematiaceous mould Hormonema dematioides in a 45-year-old woman. The woman had a 13-year history of insulin-dependent diabetes mellitus and had been on continuous ambulatory peritoneal dialysis for chronic renal failure. H. dematioides was repeatedly isolated from the dialysate culture specimens collected on days 3, 9, 16, and 20 of her hospital stay. Preliminary culture reports on day 7 of the growth of a yeast-like fungus, a probable Candida species, prompted the administration of fluconazole (FLU). Intraperitoneal and intravenous FLU failed to eliminate the mould, and the patient expired on day 21 of her hospital stay. We use this case to present what appears to be the first report of fungal peritonitis due to H. dematioides, to provide laboratorians with criteria for differentiating this organism from the similar mould Aureobasidium pullulans and from various yeast genera, and to provide a review of known fungal taxa inciting peritonitis. PMID:9650991

  5. Yeast-based biosensors: design and applications.

    PubMed

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  6. Oral yeast colonization throughout pregnancy.

    PubMed

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  7. Yeasts of the soil – obscure but precious

    PubMed Central

    2018-01-01

    Abstract Pioneering studies performed in the nineteenth century demonstrated that yeasts are present in below‐ground sources. Soils were regarded more as a reservoir for yeasts that reside in habitats above it. Later studies showed that yeast communities in soils are taxonomically diverse and different from those above‐ground. Soil yeasts possess extraordinary adaptations that allow them to survive in a wide range of environmental conditions. A few species are promising sources of yeast oils and have been used in agriculture as potential antagonists of soil‐borne plant pathogens or as plant growth promoters. Yeasts have been studied mainly in managed soils such as vineyards, orchards and agricultural fields, and to a lesser extent under forests and grasslands. Our knowledge of soil yeasts is further biased towards temperate and boreal forests, whereas data from Africa, the Americas and Asia are scarce. Although soil yeast communities are often species‐poor in a single sample, they are more diverse on the biotope level. Soil yeasts display pronounced endemism along with a surprisingly high proportion of currently unidentified species. However, like other soil inhabitants, yeasts are threatened by habitat alterations owing to anthropogenic activities such as agriculture, deforestation and urbanization. In view of the rapid decline of many natural habitats, the study of soil yeasts in undisturbed or low‐managed biotopes is extremely valuable. The purpose of this review is to encourage researchers, both biologists and soil scientists, to include soil yeasts in future studies. PMID:29365211

  8. Electron transport chain in a thermotolerant yeast.

    PubMed

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  9. Yeasts in floral nectar: a quantitative survey

    PubMed Central

    Herrera, Carlos M.; de Vega, Clara; Canto, Azucena; Pozo, María I.

    2009-01-01

    Background and Aims One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. Methods The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37–63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. Key Results Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 × 105 cells mm−3). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 104 cells mm−3 were commonplace, and densities >105 cells mm−3 were not rare. About one-fifth of species at each site had mean yeast cell densities >104 cells mm−3. Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. Conclusions Incorporating nectar yeasts into the scenario of plant–pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence

  10. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed Central

    Hoang, Don; Kopp, Artyom

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker’s yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host–microbe interactions can have profound effects on host biology, the results from D. melanogaster–S. cerevisiae laboratory experiments may not be fully representative of host–microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  11. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  12. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  13. Genomics and the making of yeast biodiversity.

    PubMed

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  15. [Groups and sources of yeasts in house dust].

    PubMed

    Glushakova, A M; Zheltikova, T M; Chernov, I Iu

    2004-01-01

    House dust contains bacteria, mycelial fungi, microarthropods, and yeasts. The house dust samples collected in 25 apartments in Moscow and the Moscow region were found to contain yeasts belonging to the genera Candida, Cryptococcus, Debaryomyces, Rhodotorula, Sporobolomyces, and Trichosporon. The most frequently encountered microorganisms were typical epiphytic yeasts, such as Cryptococcus diffluens and Rhodotorula mucilaginosa, which are capable of long-term preservation in an inactive state. The direct source of epiphytic yeasts occurring in the house dust might be the indoor plants, which were contaminated with these yeasts, albeit to a lesser degree than outdoor plants. Along with the typical epiphytic yeasts, the house dust contained the opportunistic yeast pathogens Candida catenulata, C. guillermondii, C. haemulonii, C. rugosa, and C. tropicalis, which are known as the causal agents of candidiasis. We failed to reveal any correlation between the abundance of particular yeast species in the house dust, residential characteristics, and the atopic dermatitis of the inhabitants.

  16. Genomics and the making of yeast biodiversity

    USDA-ARS?s Scientific Manuscript database

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  17. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae, Saccharomyces...

  18. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  19. Genetics of Yeasts

    NASA Astrophysics Data System (ADS)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  20. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  1. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  2. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  3. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  4. Yeasts in sustainable bioethanol production: A review.

    PubMed

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  5. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  6. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  7. Cholesteryl Pullulan Encapsulated TNF-α Nanoparticles Are an Effective Mucosal Vaccine Adjuvant against Influenza Virus

    PubMed Central

    Nagatomo, Daiki; Taniai, Madoka; Ariyasu, Harumi; Taniguchi, Mutsuko; Aga, Miho; Ariyasu, Toshio; Ohta, Tsunetaka; Fukuda, Shigeharu

    2015-01-01

    We encapsulated tumor necrosis factor-α (TNF-α), a major proinflammatory cytokine, into cholesteryl pullulan (CHP) to prepare TNF/CHP nanoparticles. In this report, we describe the immune-enhancing capability of the nanoparticles to act as a vaccine adjuvant. TNF/CHP nanoparticles showed excellent storage stability and enhanced host immune responses to external immunogens. The nanoparticles were effective via the nasal route of administration for inducing systemic IgG1 as well as mucosal IgA. We applied the nanoparticles in a model experimental influenza virus infection to investigate their adjuvant ability. TNF/CHP nanoparticles combined with a conventional split vaccine protected mice via nasal administration against a lethal challenge of A/PR/8/34 (H1N1) influenza virus. Mechanistic studies showed that the nanoparticles enhanced antigen uptake by dendritic cells (DCs) and moderately induced the expression of inflammation-related genes in nasopharynx lymphoid tissue (NALT), leading to the activation of both B and T cells. Preliminary safety study revealed no severe toxicity to TNF/CHP nanoparticles. Slight-to-moderate influences in nasal mucosa were observed only in the repeated administration and they seemed to be reversible. Our data show that TNF/CHP nanoparticles effectively enhance both humoral and cellular immunity and could be a potential adjuvant for vaccines against infectious diseases, especially in the mucosa. PMID:26421290

  8. Experimental Systems to Study Yeast Pexophagy.

    PubMed

    Yamashita, Shun-Ichi; Oku, Masahide; Sakai, Yasuyoshi; Fujiki, Yukio

    2017-01-01

    Peroxisome abundance is tightly regulated according to the physiological contexts, through regulations of both proliferation and degradation of the organelles. Here, we describe detailed methods to analyze processes for autophagic degradation of peroxisomes, termed pexophagy, in yeast organisms. The assay systems include a method for biochemical detection of pexophagy completion, and one for microscopic visualization of specialized membrane structures acting in pexophagy. As a model yeast organism utilized in studies of pexophagy, the methylotrophic yeast Komagataella phaffii (Pichia pastoris) is referred to in this chapter and related information on the studies with baker's yeast (Saccharomyces cerevisiae) is also included. The described techniques facilitate elucidation of molecular machineries for pexophagy and understanding of peroxisome-selective autophagic pathways.

  9. [Distiller Yeasts Producing Antibacterial Peptides].

    PubMed

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  10. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    PubMed Central

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  11. Made for Each Other: Ascomycete Yeasts and Insects.

    PubMed

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  12. The growth of solar radiated yeast

    NASA Technical Reports Server (NTRS)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  13. The growth of solar radiated yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, T.

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containersmore » with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.« less

  14. Freeze-drying of yeast cultures.

    PubMed

    Bond, Chris

    2007-01-01

    A method is described that allows yeast species to be stored using a variation on the standard freeze-drying method, which employs evaporative cooling in a two-stage process. Yeast cultures are placed in glass ampoules after having been mixed with a lyoprotectant. Primary drying is carried out using a centrifuge head connected to a standard freeze-dryer. Once the centrifuge head is running, air is removed and evaporated liquid is captured in the freeze-dryer. Centrifugation continues for 15 min and primary drying for a further 3 h. The ampoules are constricted using a glass blowing torch. They are then placed on the freeze-dryer manifold for secondary drying under vacuum overnight, using phosphorus pentoxide as a desiccant. The ampoules are sealed and removed from the manifold by melting the constricted section. Although the process causes an initial large drop in viability, further losses after storage are minimal. Yeast strains have remained viable for more than 30 yr when stored using this method and sufficient cells are recovered to produce new working stocks. Although survival rates are strain specific, nearly all National Collection of Yeast Cultures strains covering most yeast genera, have been successfully stored with little or no detectable change in strain characteristics.

  15. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    PubMed

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  16. Yeast proteome map (last update).

    PubMed

    Perrot, Michel; Moes, Suzette; Massoni, Aurélie; Jenoe, Paul; Boucherie, Hélian

    2009-10-01

    The identification of proteins separated on 2-D gels is essential to exploit the full potential of 2-D gel electrophoresis for proteomic investigations. For this purpose we have undertaken the systematic identification of Saccharomyces cerevisiae proteins separated on 2-D gels. We report here the identification by mass spectrometry of 100 novel yeast protein spots that have so far not been tackled due to their scarcity on our standard 2-D gels. These identifications extend the number of protein spots identified on our yeast 2-D proteome map to 716. They correspond to 485 unique proteins. Among these, 154 were resolved into several isoforms. The present data set can now be expanded to report for the first time a map of 363 protein isoforms that significantly deepens our knowledge of the yeast proteome. The reference map and a list of all identified proteins can be accessed on the Yeast Protein Map server (www.ibgc.u-bordeaux2.fr/YPM).

  17. Septin Organization and Functions in Budding Yeast

    PubMed Central

    Glomb, Oliver; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins. PMID:27857941

  18. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    PubMed

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  19. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  20. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    PubMed

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  1. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  2. Yeasts for Global Happiness: report of the 14th International Congress on Yeasts (ICY14) held in Awaji Island.

    PubMed

    Watanabe, Daisuke; Takagi, Hiroshi

    2017-02-01

    The 14th International Congress on Yeasts (ICY14) was held at Awaji Yumebutai International Conference Center (Awaji, Hyogo) in Japan from 11 to 15 September 2016. The main slogan of ICY14 was 'Yeasts for Global Happiness', which enabled us to acknowledge the high-potential usefulness of yeasts contributing to the global happiness in terms of food/beverage, health/medicine and energy/environment industries, as well as to basic biosciences. In addition, two more concepts were introduced: 'from Japan to the world' and 'from senior to junior'. As it was the first ICY meeting held in Japan or other Asian countries, ICY14 provided a good opportunity to widely spread the great achievements by Japanese and Asian yeast researchers, such as those by the 2016 Nobel Laureate Dr. Yoshinori Ohsumi, and also, to convey the fun and importance of yeasts to the next generation of researchers from Asia and all over the world. As a result, a total of 426 yeast lovers from 42 countries (225 overseas and 201 domestic participants) with different generations attended ICY14 to share the latest knowledge of a wide range of yeast research fields and to join active and constructive scientific discussions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  3. The secretory pathway: exploring yeast diversity.

    PubMed

    Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2013-11-01

    Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  5. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  6. Functional adaptation between yeast actin and its cognate myosin motors.

    PubMed

    Stark, Benjamin C; Wen, Kuo-Kuang; Allingham, John S; Rubenstein, Peter A; Lord, Matthew

    2011-09-02

    We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins.

  7. Genomic Evolution of the Ascomycete Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and amore » tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.« less

  8. Specialist nectar-yeasts decline with urbanization in Berlin

    NASA Astrophysics Data System (ADS)

    Wehner, Jeannine; Mittelbach, Moritz; Rillig, Matthias C.; Verbruggen, Erik

    2017-03-01

    Nectar yeasts are common inhabitants of insect-pollinated flowers but factors determining their distribution are not well understood. We studied the influence of host identity, environmental factors related to pollution/urbanization, and the distance to a target beehive on local distribution of nectar yeasts within Robinia pseudoacacia L. and Tilia tomentosa Moench in Berlin, Germany. Nectar samples of six individuals per species were collected at seven sites in a 2 km radius from each target beehive and plated on YM-Agar to visualise the different morphotypes, which were then identified by sequencing a section of the 26S rDNA gene. Multivariate linear models were used to analyze the effects of all investigated factors on yeast occurrence per tree. Yeast distribution was mainly driven by host identity. The influence of the environmental factors (NO2, height of construction, soil sealing) strongly depended on the radius around the tree, similar to the distance of the sampled beehive. Incidence of specialist nectar-borne yeast species decreased with increasing pollution/urbanization index. Given that specialist yeast species gave way to generalist yeasts that have a reduced dependency on pollinators for between-flower dispersal, our results indicate that increased urbanization may restrict the movement of nectar-specialized yeasts, via limitations of pollinator foraging behavior.

  9. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  10. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    PubMed Central

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  11. Yeast Can Affect Behavior and Learning.

    ERIC Educational Resources Information Center

    Crook, William G.

    1984-01-01

    A pediatrician recounts his experiences in diagnosing and treating allergies to common yeast germs that may result in behavior and learning problems. He lists characteristics that may predispose children to yeast-connected health problems. (CL)

  12. Chemical signaling and insect attraction is a conserved trait in yeasts.

    PubMed

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  13. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep

    2014-12-01

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP-PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX-CMP) via hydrazone and confirmed by FTIR and 1H-NMR. In vitro release studies of pH-sensitive DOX-CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP-PAA NCs or DOX-CMP-PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP-PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP-PAA NCs at 1:2 weight ratio. CMP-PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX-CMP-PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery.

  14. Yeast as a model for Ras signalling.

    PubMed

    Tisi, Renata; Belotti, Fiorella; Martegani, Enzo

    2014-01-01

    For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.

  15. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  16. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  17. Isolation and characterization of ethanol tolerant yeast strains

    PubMed Central

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha

    2013-01-01

    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  18. Phylogenetics of Saccharomycetales, the ascomycete yeasts.

    PubMed

    Suh, Sung-Oui; Blackwell, Meredith; Kurtzman, Cletus P; Lachance, Marc-André

    2006-01-01

    Ascomycete yeasts (phylum Ascomycota: subphylum Saccharomycotina: class Saccharomycetes: order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals and their interfaces. A few species account for most human mycotic infections, and fewer than 10 species are plant pathogens. Yeasts are responsible for important industrial and biotechnological processes, including baking, brewing and synthesis of recombinant proteins. Species such as Saccharomyces cerevisiae are model organisms in research, some of which led to a Nobel Prize. Yeasts usually reproduce asexually by budding, and their sexual states are not enclosed in a fruiting body. The group also is well defined by synapomorphies visible at the ultrastructural level. Yeast identification and classification changed dramatically with the availability of DNA sequencing. Species identification now benefits from a constantly updated sequence database and no longer relies on ambiguous growth tests. A phylogeny based on single gene analyses has shown the order to be remarkably divergent despite morphological similarities among members. The limits of many previously described genera are not supported by sequence comparisons, and multigene phylogenetic studies are under way to provide a stable circumscription of genera, families and orders. One recent multigene study has resolved species of the Saccharomycetaceae into genera that differ markedly from those defined by analysis of morphology and growth responses, and similar changes are likely to occur in other branches of the yeast tree as additional sequences become available.

  19. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223.

    PubMed

    Zou, Xiang; Tu, Guangwei; Zan, Zhanquan

    2014-10-01

    Polymalic acid (PMA) is a water-soluble polyester with many attractive properties for biomedical application. Its monomer L-malic acid is widely used in the food industry and also a potential C4 platform chemical. Cofactor and CO2 donor involved in the reductive routes were investigated for PMA production by Aureobasidium pullulans. Biotin as the key cofactor of pyruvate carboxylase was favor for the PMA biosynthesis. Na2CO3 as CO2 donor can obviously improved PMA titer when compared with no CO2 supplier NaOH, and also exhibit more advantages than the other donor CaCO3 because of its water-soluble characteristic. A combinational process with addition of biotin 70 mg/L and Na2CO3 as the CO2 donor was scaled-up in 50 L fermentor, achieving the high product 34.3 g/L of PMA and productivity of 0.41 g/L h. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  20. Yeast species associated with wine grapes in China.

    PubMed

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine

  1. Antimicrobial activity of yeasts against some pathogenic bacteria

    PubMed Central

    Younis, Gamal; Awad, Amal; Dawod, Rehab E.; Yousef, Nehal E.

    2017-01-01

    Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR) for detection of khs (kievitone hydratase) and pelA (pectate degrading enzyme)genes. Results: The recovery rate of yeasts from sausage was 20% (2/10) followed by kareish cheese, processed cheese, and butter 10% (1/10) each as well as raw milk 9% (9/100), and fruit yoghurt 30% (6/20). Different yeast species were recovered, namely, Candida kefyr (5 isolates), Saccharomyces cerevisiae (4 isolates), Candida intermedia (3 isolates), Candida tropicalis (2 isolates), Candida lusitaniae (2 isolates), and Candida krusei (1 isolate). khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food. PMID:28919693

  2. Genomic evolution of the ascomycetous yeasts

    USDA-ARS?s Scientific Manuscript database

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphr...

  3. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  4. Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column.

    PubMed

    Ye, Yuanyao; Yang, Jing; Jiang, Wei; Kang, Jianxiong; Hu, Ying; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen

    2018-01-15

    A magnesia-pullulan composite (MgOP) was previously shown to effectively remove fluoride from water. In the present study, a continuous fixed-bed column was used to examine the application of the composite at an industrial scale. The influencing parameters included bed mass (4.0, 6.0 and 8.0 g), influent flow rate (8, 16 and 32 mL/min), inlet fluoride concentration (5, 10 and 20 mg/L), reaction temperature (20, 30 and 40 °C), influent pH (4, 7 and 10) and other existing anions (HCO 3 - , SO 4 2- , Cl - and NO 3 - ), through which the breakthrough curves could be depicted for the experimental data analysis. The results indicated that MgOP is promising for fluoride removal with a defluoridation capacity of 16.6 mg/g at the bed mass of 6.0 g, influent flow rate of 16 mL/min and inlet fluoride concentration of 10 mg/L. The dynamics of the fluoride adsorption process were modeled using the Thomas and Yan models, in which the Yan model presented better predictions for the breakthrough curves than the Thomas model. Moreover, the concentration of magnesium in the effluent was monitored to determine Mg stability in the MgOP composite. Results indicated the effluent concentration of Mg 2+ ions could be kept at a safe level. Calcination of fluoride-loaded MgOP effectively regenerated the material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  6. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  7. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Making Sense of the Yeast Sphingolipid Pathway.

    PubMed

    Megyeri, Márton; Riezman, Howard; Schuldiner, Maya; Futerman, Anthony H

    2016-12-04

    Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Novel brewing yeast hybrids: creation and application.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  10. Improving industrial yeast strains: exploiting natural and artificial diversity

    PubMed Central

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  11. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    PubMed

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value<1.7. Two strains could not be identified at first as they represented a mix of two different species. These mixes were Rhodotorula babjevae with Meyerozyma caribbica and Clavispora lusitaniae with Debaryomyces hansenii. After separation, all four species could be correctly identified with scores>1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae, is used in the vast majority of the world’s bioprocesses, and its economic significance is unchallenged. It, however, represents only a small slice of yeast physiological diversity. Many other yeasts, are used in lesser known, but commercially important processes that take ...

  13. The yeast Golgi apparatus: insights and mysteries

    PubMed Central

    Papanikou, Effrosyni; Glick, Benjamin S.

    2009-01-01

    The Golgi apparatus is known to modify and sort newly synthesized secretory proteins. However, fundamental mysteries remain about the structure, operation, and dynamics of this organelle. Important insights have emerged from studying the Golgi in yeasts. For example, yeasts have provided direct evidence for Golgi cisternal maturation, a mechanism that is likely to be broadly conserved. Here, we highlight features of the yeast Golgi as well as challenges that lie ahead. PMID:19879270

  14. Evolution and variation of the yeast (Saccharomyces) genome.

    PubMed

    Mortimer, R K

    2000-04-01

    In this review we describe the role of the yeast Saccharomyces in the development of human societies including the use of this organism in the making of wine, bread, beer, and distilled beverages. We also discuss the tremendous diversity of yeast found in natural (i.e., noninoculated) wine fermentations and the scientific uses of yeast over the past 60 years. In conclusion, we present ideas on the model of "genome renewal" and the use of this model to explain the mode by which yeast has evolved and how diversity can be generated.

  15. Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: Part II.

    PubMed

    Moyad, Mark A

    2008-02-01

    Yeast is the term generally applied to a unicellular fungus, and there are hundreds of species now identified. One of the most notable and well-known species of yeast in health and wellness is known as Saccharomyces cerevisiae, which is also known by its more common names, brewer's yeast or baker's yeast. Typically, brewer's yeast is used as a protein supplement, energy booster, immune enhancer, or other vehicle where other compounds can be inserted to create a commercialized health product. For example, one of the most notable positive findings was the encouraging results from a large randomized trial of adults recently vaccinated for seasonal influenza who also received an over-the-counter daily adjuvant modified brewer's yeast-based product (EpiCor) to prevent colds and flu symptoms. The modified yeast-based product significantly reduced the incidence and duration of this common condition. Yeast-based technology is also being used as a molecular mechanistic model of caloric restriction (CR) with the goal of improving the human life span. The current and potential impact of yeast-based technology in medicine is encouraging and should receive more attention, but the recent preliminary positive results of CR in humans may be in part due to what has been already learned from brewer's yeast.

  16. The yeast spectrum of the 'tea fungus Kombucha'.

    PubMed

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  17. [Yeast species in vulvovaginitis candidosa].

    PubMed

    Nemes-Nikodém, Éva; Tamási, Béla; Mihalik, Noémi; Ostorházi, Eszter

    2015-01-04

    Vulvovaginal candidiasis is the most common mycosis, however, the available information about antifungal susceptibilities of these yeasts is limited. To compare the gold standard fungal culture with a new molecular identification method and report the incidence of yeast species in vulvovaginitis candidosa. The authors studied 370 yeasts isolated from vulvovaginal candidiasis and identified them by phenotypic and molecular methods. The most common species was Candida albicans (85%), followed by Candida glabrata, and other Candida species. At present there are no recommendations for the evaluation of antifungal susceptibility of pathogenic fungal species occurring in vulvovaginal candidiasis and the natural antifungal resistance of the different species is known only. Matrix Assisted Laser Desorption Ionization Time of Flight identification can be used to differentiate the fluconazole resistant Candida dubliniensis and the sensitive Candida albicans strains.

  18. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... conventional bakers yeast. (c) The additive may be used in yeast-leavened baked goods and baking mixes and yeast-leavened baked snack foods at levels not to exceed 400 International Units of vitamin D2 per 100...

  19. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ≈46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ≈30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ≈50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (≈1.5%) were only significant during the first 7days of incubations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nectar yeasts: a natural microcosm for ecology.

    PubMed

    Chappell, Callie R; Fukami, Tadashi

    2018-06-01

    The species of yeasts that colonize floral nectar can modify the mutualistic relationships between plants and pollinators by changing the chemical properties of nectar. Recent evidence supporting this possibility has led to increased interest among ecologists in studying these fungi as well as the bacteria that interact with them in nectar. Although not fully explored, nectar yeasts also constitute a promising natural microcosm that can be used to facilitate development of general ecological theory. We discuss the methodological and conceptual advantages of using nectar yeasts from this perspective, including simplicity of communities, tractability of dispersal, replicability of community assembly, and the ease with which the mechanisms of species interactions can be studied in complementary experiments conducted in the field and the laboratory. To illustrate the power of nectar yeasts as a study system, we discuss several topics in community ecology, including environmental filtering, priority effects, and metacommunity dynamics. An exciting new direction is to integrate metagenomics and comparative genomics into nectar yeast research to address these fundamental ecological topics. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Kinetics of growth and sugar consumption in yeasts.

    PubMed

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  2. The ecology of the Drosophila-yeast mutualism in wineries

    PubMed Central

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  3. The ecology of the Drosophila-yeast mutualism in wineries.

    PubMed

    Quan, Allison S; Eisen, Michael B

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila.

  4. Improving industrial yeast strains: exploiting natural and artificial diversity.

    PubMed

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  5. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. pH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly(ß-amino ester) cores for co-delivery of a gene and chemotherapeutic agent.

    PubMed

    Zhang, Sipei; Wang, Dan; Li, Yating; Li, Ling; Chen, Hongli; Xiong, Qingqing; Liu, Yuanyuan; Wang, Yinsong

    2018-08-10

    A novel pH- and redox-responsive nanoparticle system was designed based on a charge-reversible pullulan derivative (CAPL) and disulfide-containing poly(β-amino ester) (ssPBAE) for the co-delivery of a gene and chemotherapeutic agent targeting hepatoma. The end-alkene groups of ssPBAE were reacted with diethylenetriamine to form amino-modified ssPBAE (NH-ssPBAE). Methotrexate (MTX), a chemotherapy agent, was then conjugated to NH-ssPBAE via an amide bond to obtain the polymeric prodrug ssPBAE-MTX. ssPBAE-MTX exhibited a good capability for condensing genes, including plasmid DNA (pDNA) and tetramethyl rhodamine-labeled DNA (TAMRA-DNA), and almost completely condensed pDNA at the weight ratio of 5/1 to form spherical nanocomplexes with a uniform size. In a D,L-dithiothreitol solution, the ssPBAE-MTX/pDNA nanocomplexes showed rapid release of pDNA and MTX, indicating their redox-responsive capability. CAPL, a pullulan derivative containing β-carboxylic amide bond, was efficiently coated on the surfaces of ssPBAE-MTX/pDNA nanocomplexes to form polysaccharide shells, thus realizing co-loading of the gene and chemotherapeutic agent. CAPL/ssPBAE-MTX/pDNA nanoparticles displayed an obvious pH-responsive charge reversal ability due to the rupture of the β-carboxylic amide bond under the weakly acidic condition. In human hepatoma HepG2 cells, CAPL/ssPBAE-MTX/TAMRA-DNA nanoparticles were efficiently internalized via endocytosis and successfully escaped from the endo/lysosomes into the cytoplasm, and CAPL/ssPBAE-MTX/pDNA nanoparticles remarkably inhibited the cell growth. In summary, this nanoparticle system based on CAPL and ssPBAE showed great potential for combined gene/chemotherapy on hepatomas.

  7. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    PubMed

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  8. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast

    PubMed Central

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi

    2017-01-01

    ABSTRACT The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their “petite” strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic

  9. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... harmful microbial toxin. (d) The ingredient is used in food as a nutrient supplement as defined in § 170.3... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be...

  10. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... harmful microbial toxin. (d) The ingredient is used in food as a nutrient supplement as defined in § 170.3... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be...

  11. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... harmful microbial toxin. (d) The ingredient is used in food as a nutrient supplement as defined in § 170.3... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be...

  12. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... harmful microbial toxin. (d) The ingredient is used in food as a nutrient supplement as defined in § 170.3... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be...

  13. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    PubMed

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Inventions on baker's yeast storage and activation at the bakery plant.

    PubMed

    Gélinas, Pierre

    2010-01-01

    Baker's yeast is the gas-forming ingredient in bakery products. Methods have been invented to properly handle baker's yeast and optimize its activity at the bakery plant. Over the years, incentives for inventions on yeast storage and activation have greatly changed depending on trends in the baking industry. For example, retailer's devices for cutting bulk pressed yeast and techniques for activating dry yeast have now lost their importance. Review of patents for invention indicates that activation of baker's yeast activity has been a very important issue for bakers, for example, with baking ingredients called yeast foods. In the recent years and especially for highly automated bakeries, interest has moved to equipments and processes for optimized storage of liquid cream yeast to thoroughly control dough fermentation and bread quality.

  15. Guidelines and recommendations on yeast cell death nomenclature.

    PubMed

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.

  16. Guidelines and recommendations on yeast cell death nomenclature

    PubMed Central

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647

  17. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  18. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    PubMed

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  19. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to

  20. Heavy metal removal by caustic-treated yeast immobilized in alginate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Wilkins, E.

    1995-12-31

    Saccharomyces cerevisiae yeast biomass was treated with hot alkali to increase its biosorption capacity for heavy metals and then was immobilized in alginate gel. Biosorption capacities for Cu{sup 2+}, Cd{sup 2+}, and Zn{sup 2+} on alginate gel, native yeast, native yeast immobilized in alginate gel, and caustic-treated yeast immobilized in alginate gel were all compared. Immobilized yeasts could be reactivated and reused in a manner similar to the ion exchange resins. Immobilized caustic-treated yeast has high heavy metal biosorption capacity and high metal removal efficiency in a rather wide acidic pH region. The biosorption isotherm of immobilized caustic-treated yeast wasmore » studied, and empirical equations were obtained. The initial pH of polluted water affected the metal removal efficiency significantly, and the equilibrium biosorption capacity seemed to be temperature independent at lower initial metal concentrations.« less

  1. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  3. Organoleptic Analysis of Doughs Fermented with Yeasts From A Nigerian Palm Wine (Elaeis guineensis) and Certain Commercial Yeasts

    PubMed Central

    B, Boboye; I, Dayo-Owoyemi; F. A, Akinyosoye

    2008-01-01

    Yeasts isolated from a freshly tapped palm wine obtained from Akure, Nigeria were identified as Schizosaccharomyces pombe, Saccharomyces cerevisiae, Debaryomyces hansenii, Geotrichum lactis and Zygosaccharomyces rouxii. Each of the isolates was used to ferment wheat flour dough and baked. Sensory analysis of the doughs was carried out on leavening, texture, aroma, taste and appearance. Saccharomyces cerevisiae performed best in leavening the dough while Debaryomyces hansenii produced doughs with the best taste and aroma. Appearances of the doughs made with all the isolated yeasts did not differ significantly (P<0.05) from that of the dough that lacked yeast. PMID:19088921

  4. [Malassezia yeasts and their significance in dermatology].

    PubMed

    Hort, W; Nilles, M; Mayser, P

    2006-07-01

    Yeasts of the genus Malassezia belong to the normal microflora of the human skin. In addition they are known to cause a variety of skin diseases; the most frequent of which is pityriasis versicolor. Malassezia yeasts are also thought to be associated with seborrheic dermatitis, dandruff and Malassezia folliculitis. Recently the significance of Malassezia yeasts as a trigger factor for atopic dermatitis of the head and neck region has been pointed out. The role of the Malassezia yeasts in these different diseases has been controversial in the past and remains an issue because of difficulties in isolation, culture and differentiation of the organism. Thanks to molecular techniques, 10 species can actually be differentiated. The article presents the different Malassezia-associated diseases, their clinical picture, diagnosis and appropriate therapy. In addition the speciation of Malassezia is reviewed.

  5. Yeast as a tool to identify anti-aging compounds

    PubMed Central

    Zimmermann, Andreas; Hofer, Sebastian; Pendl, Tobias; Kainz, Katharina; Madeo, Frank; Carmona-Gutierrez, Didac

    2018-01-01

    Abstract In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification. PMID:29905792

  6. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    NASA Astrophysics Data System (ADS)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  7. [Treatment of oil-manufacturing wastewater by yeast-SBR system].

    PubMed

    Lü, Wen-zhou; Liu, Ying; Huang, Yi-zhen

    2008-04-01

    Eight yeast strains were applied to a sequencing batch reactor (SBR) to treat high-strength oil-containing wastewater. The removal performance, yeast cultivation method and key factors affecting the stability of system were discussed. The results show yeast sludge with MLSS of 19 g/L and SVI of 35 mL/g can be obtained in 6 d in an open system without any molds and bacteria inhibitor addition; In 30 d continuous wastewater treatment, COD and oil removal rate achieve 86.8%-96.9% and above 99.5% respectively under the influent conditions of the COD of 9000-23000 mg/L and oil of 4500-16000 mg/L; Short period of pH impact brings reversible effects on the system and the sludge retention time can affect the SVI of the yeast; Absence of nitrogen induces morphology conversion of some yeast cells from single cell to filamentous one and impairs the settling capability of the yeast.

  8. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  9. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  10. Yeasts as important agents of onychomycosis: in vitro activity of propolis against yeasts isolated from patients with nail infection.

    PubMed

    Khosravi, Ali Reza; Shokri, Hojjatollah; Nikaein, Donya; Mansouri, Parvin; Erfanmanesh, Ahmad; Chalangari, Reza; Katalin, Martis

    2013-01-01

    The purposes of this study were to determine the frequency of the yeast species obtained from patients with clinical features of onychomycosis and the in vitro antifungal susceptibility of the yeast species to propolis. A prospective study was carried out at the Mycology Research Center in Iran from 2010 to 2011. Clinical diagnosis was performed by direct microscopic examination and culture. Different yeast species were identified by morphological and biochemical tests. An antifungal susceptibility test to fluconazole (FLU) and propolis by the broth microdilution method was performed on each isolate. One hundred and twenty-eight fungal isolates were obtained. The most prevalent fungi were yeasts (81, 63.2%), dermatophytes (36, 28.1%), and nondermatophyte fungi (11, 8.6%). Fingernails were more affected than toenails (65.4% vs. 19.8%, respectively). The most frequently found species was Candida albicans (38.5%), followed by Candida spp. (23.1%), C. tropicalis (10.8%), C. kefyr (6.2%), C. krusei (3.1%), Malassezia globosa (4.6%), M. slooffiae (4.6%), and M. pachydermatis (1.5%). Of all yeast isolates (65), seven showed resistance to FLU. The average MIC of propolis for FLU-susceptible isolates was 5.8 μg/mL, whereas this value was 12.25 μg/mL for FLU-resistant isolates. Our results proved that the propolis inhibits the growth of pathogenic yeasts and confirmed the efficiency of propolis as an anti-Candida and anti-Malassezia agent.

  11. Astaxanthinogenesis in the yeast Phaffia rhodozyma - optimization of low-cost culture media and yeast cell-wall lysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontana, J.D.; Baron, M.; Guimaraes, M.F.

    Astaxanthin is a diketo-dihydroxy-carotenoid produced by Phaffia rhodozyma, a basidiomicetous yeast. A low-cost fermentation medium consisting of raw sugarcane juice and urea was developed to exploit the active sucrolytic/urelolytic enzyme apparatus inherent to the yeast. As compared to the beneficial effect of 0.1 g% urea, a ready nitrogen source, mild phosphoric pre inversion of juice sucrose to glucose and fructose, promptly fermentable carbon sources, resulted in smaller benefits. Corn steep liquor (CSL) was found to be a valuable supplement for both yeast biomass yield (9.2 g dry cells/L) and astaxanthin production (1.3 mg/g cells). Distillery effluent (vinace), despite only amore » slightly positive effect on yeast growth, allowed for the highest pigment productivity (1.9 mg/g cells). Trace amounts of Ni{sup 2} (1 mg/L, as a cofactor for urease) resulted in controversial effects, namely, biomass decrease and astaxanthin increase, with no effect on the release (and uptake) of ammonium ion from urea. 13 refs., 6 figs.« less

  12. The yeast replicative aging model.

    PubMed

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  13. New lager yeast strains generated by interspecific hybridization.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  14. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  15. Vaginal Yeast Infections

    MedlinePlus

    ... for sure if yogurt with Lactobacillus or other probiotics can prevent or treat vaginal yeast infections. If ... Chen, H., et al. (2013). Impact of eating probiotic yogurt on colonization by Candida species of the ...

  16. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  17. [Yeast microbiota in artisanal cheeses from Corrientes, Argentina].

    PubMed

    Cardozo, Marina C; Fusco, Ángel J V; Carrasco, Marta S

    The artisanal cheese from Corrientes (from the Spanish acronym QAC-Queso Artesanal de Corrientes/Artisanal Cheese from Corrientes) is a soft cheese elaborated with raw cow milk and an artisanal coagulant agent. Lactic bacteria contitute the main flora of this cheese although yeasts are also present in high quantities as secondary microbiota and might play a relevant role in cheese ripening. The aim of this work was to evaluate yeast occurrence during QAC elaboration and ripening, and the effect of seasonal variation. Yeasts were isolated and purified from raw materials and cheese at different ripening stagesl elaborated during the different seasons. Yeast sample counts were in the order of 10 3 - 10 7 UFC/ml o UFC/g. Ninety yeast strains were classified: 9 from milk, 28 from the coagulant agent, 10 from curd and 43 from cheese. Candida predominated in milk samples while other yeast genera had low incidence. Candida also predominated in the coagulant agent samples, followed by genera Myxozyma and Debaryomyces. The isolates obtained from cheese belonged to the same genera predominating in the coagulant agent, and showed the same order of prevalence. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    PubMed

    Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  19. The impact of yeast fermentation on dough matrix properties.

    PubMed

    Rezaei, Mohammad N; Jayaram, Vinay B; Verstrepen, Kevin J; Courtin, Christophe M

    2016-08-01

    Most studies on dough properties are performed on yeastless dough to exclude the complicating, time-dependent effect of yeast. Baker's yeast, however, impacts dough matrix properties during fermentation, probably through the production of primary (CO2 and ethanol) and secondary (glycerol, acetic acid and succinic acid) metabolites. The aim of this study is to obtain a better understanding of the changes in yeasted dough behavior introduced by fermentation, by investigating the impact of yeast fermentation on Farinograph dough consistency, dough spread, Kieffer rig dough extensibility and gluten agglomeration behavior in a fermented dough-batter gluten starch separation system. Results show that fermentation leads to a dough with less flow and lower extensibility that breaks more easily under stress and strain. The dough showed less elastic and more plastic deformation behavior. Gluten agglomerates were smaller for yeasted dough than for the unyeasted control. These changes probably have to be attributed to metabolites generated during fermentation. Indeed, organic acids and also ethanol in concentrations produced by yeast were previously shown to have similar effects in yeastless dough. These findings imply the high importance of yeast fermentation metabolites on dough matrix properties in industrial bread production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Yeast as a model system for mammalian seven-transmembrane segment receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeansonne, N.E.

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomalmore » location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.« less

  1. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  2. Diversity and killer activity of yeasts in Malaysian fermented food samples.

    PubMed

    Lim, S L; Tay, S T

    2011-08-01

    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.

  3. Yeast Infection Test

    MedlinePlus

    ... infections of the skin and genitals. Serious yeast infections occur more often in hospital patients and in people with weakened immune systems. References Centers for Disease Control and Prevention [Internet]. Atlanta: U.S. Department of Health ...

  4. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  5. Efforts to make and apply humanized yeast

    PubMed Central

    Laurent, Jon M.; Young, Jonathan H.; Kachroo, Aashiq H.

    2016-01-01

    Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  6. The Influence of Heating Mains on Yeast Communities in Urban Soils

    NASA Astrophysics Data System (ADS)

    Tepeeva, A. N.; Glushakova, A. M.; Kachalkin, A. V.

    2018-04-01

    The number and species diversity of yeasts in urban soils (urbanozems) affected by heating mains and in epiphytic yeast complexes of grasses growing above them were studied. The number of yeasts in the soil reached 103-104 CFU/g; on the plants, 107 CFU/g. Significant (by an order of magnitude) increase in the total number of soil yeasts in the zone of heating mains in comparison with the surrounding soil was found in winter period. Overall, 25 species of yeasts were isolated in our study. Yeast community of studied urbanozems was dominated by the Candida sake, an eurybiont of the temperate zone and other natural ecotopes with relatively low temperatures, but its share was minimal in the zone of heating mains. In general, the structure of soil and epiphytic yeast complexes in the zones of heating mains differed from that in the surrounding area by higher species diversity and a lower share of pigmented species among the epiphytic yeasts. The study demonstrated that the number and species structure of soil yeast communities in urban soils change significantly under the influence of the temperature factor and acquire a mosaic distribution pattern.

  7. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection

    PubMed Central

    Guillamón, José M.; Barrio, Eladio

    2017-01-01

    The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties. PMID:28522998

  8. Nectar yeasts warm the flowers of a winter-blooming plant

    PubMed Central

    Herrera, Carlos M.; Pozo, María I.

    2010-01-01

    Yeasts are ubiquitous in terrestrial and aquatic microbiota, yet their ecological functionality remains relatively unexplored in comparison with other micro-organisms. This paper formulates and tests the novel hypothesis that heat produced by the sugar catabolism of yeast populations inhabiting floral nectar can increase the temperature of floral nectar and, more generally, modify the within-flower thermal microenvironment. Two field experiments were designed to test this hypothesis for the winter-blooming herb Helleborus foetidus (Ranunculaceae). In experiment 1, the effect of yeasts on the within-flower thermal environment was tested by excluding them from flowers, while in experiment 2 the test involved artificial inoculation of virgin flowers with yeasts. Nectary temperature (Tnect), within-flower air temperature (Tflow) and external air temperature (Tair) were measured on experimental and control flowers in both experiments. Experimental exclusion of yeasts from the nectaries significantly reduced, and experimental addition of yeasts significantly increased, the temperature excess of nectaries (ΔTnect = Tnect − Tair) and the air space inside flowers in relation to the air just outside the flowers. In non-experimental flowers exposed to natural pollinator visitation, ΔTnect was linearly related to log yeast cell density in nectar, and reached +6°C in nectaries with the densest yeast populations. The warming effect of nectar-dwelling yeasts documented in this study suggests novel ecological mechanisms potentially linking nectarivorous microbes with winter-blooming plants and their insect pollinators. PMID:20147331

  9. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.

    PubMed

    Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  10. Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: part I.

    PubMed

    Moyad, Mark A

    2007-12-01

    Yeast is the term generally applied to a unicellular fungus, and there are hundreds of species now identified. One of the most notable and well-known species of yeast in health and wellness is known as Saccharomyces cerevisiae, which is also known by its more common names, brewer's yeast or baker's yeast. It is usually grown on hops or another substrate similar to the plant utilized in the beer-making industry, after which it is harvested and killed. The final product is generally half composed of protein, as well as a large amount of B vitamins and minerals, and depending on the technology, a diverse number of other healthy compounds. Typically, brewer's yeast is used as a protein supplement, energy booster, immune enhancer, or other vehicle where other compounds can be inserted to create a commercialized health product. A more extensive review of the preventive medical aspects of yeast will be covered in Part 2 of this article to be published in a future issue of Urologic Nursing. Yeast-based technology is also being used as a molecular mechanistic model of caloric restriction with the goal of improving the human life span. The current and potential impact of yeast-based technology in medicine is encouraging.

  11. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast

    PubMed Central

    Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast. PMID:29761062

  12. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  13. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    PubMed

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Biosorption of nickel by yeasts in an osmotically unsuitable environment.

    PubMed

    Breierová, Emilia; Certík, Milan; Kovárová, Annamaria; Gregor, Tomas

    2008-01-01

    The tolerance, sorption of nickel(II) ions, and changes in the production and composition of exopolymers of eight yeast strains grown under nickel presence with/without NaCl were studied. Strains of Pichia anomala and Candida maltosa known as the most resistant yeasts against nickel tolerated up to 3 mM Ni2+. NaCl addition decreased both the resistance of the yeast strains toward nickel ions and the sorption of metal ions into cells. All yeasts absorbed nickel predominantly into exopolymers (glycoproteins) and on the surface of cells. However, while the amount of polysaccharide moieties of exoglycoproteins of most of the resistant yeasts was induced by stress conditions, the ratio polysaccharide/protein in the exopolymers remained unchanged in the sensitive species Cystofilobasidium. The exopolymer composition might play a key role in yeast adaptation to stress conditions caused by heavy metal ions.

  15. Cellodextrin transport in yeast for improved biofuel production.

    PubMed

    Galazka, Jonathan M; Tian, Chaoguang; Beeson, William T; Martinez, Bruno; Glass, N Louise; Cate, Jamie H D

    2010-10-01

    Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.

  16. Yeast: An Experimental Organism for Modern Biology.

    ERIC Educational Resources Information Center

    Botstein, David; Fink, Gerald R.

    1988-01-01

    Discusses the applicability and advantages of using yeasts as popular and ideal model systems for studying and understanding eukaryotic biology at the cellular and molecular levels. Cites experimental tractability and the cooperative tradition of the research community of yeast biologists as reasons for this success. (RT)

  17. Characterization of Hyaluronan-Degrading Enzymes from Yeasts.

    PubMed

    Smirnou, Dzianis; Krčmář, Martin; Kulhánek, Jaromír; Hermannová, Martina; Bobková, Lenka; Franke, Lukáš; Pepeliaev, Stanislav; Velebný, Vladimír

    2015-10-01

    Hyaluronidases (HAases) from yeasts were characterized for the first time. The study elucidated that hyaluronate 4-glycanohydrolase and hyaluronan (HA) lyase can be produced by yeasts. Six yeasts producing HAases were found through express screening of activities. The extracellular HAases from two of the yeast isolates, Pseudozyma aphidis and Cryptococcus laurentii, were characterized among them. P. aphidis HAase hydrolyzed β-1,4 glycosidic bonds of HA, yielding even-numbered oligosaccharides with N-acetyl-D-glucosamine at the reducing end. C. laurentii produced hyaluronan lyase, which cleaved β-1,4 glycosidic bonds of HA in β-elimination reaction, and the products of HA degradation were different-sized even-numbered oligosaccharides. The shortest detected HA oligomer was dimer. The enzymes' pH and temperature optima were pH 3.0 and 37-45 °C (P. aphidis) and pH 6.0 and 37 °C (C. laurentii), respectively. Both HAases showed good thermostability.

  18. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    PubMed

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  19. Responses of Yeast Biocontrol Agents to Environmental Stress

    PubMed Central

    Sui, Yuan; Wisniewski, Michael; Droby, Samir

    2015-01-01

    Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance. PMID:25710368

  20. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, suchmore » as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.« less

  1. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    PubMed

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  2. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  3. Formulation and evaluation of dried yeast tablets using different techniques.

    PubMed

    Al-Mohizea, Abdullah M; Ahmed, Mahrous O; Al-jenoobi, Fahad I; Mahrous, Gamal M; Abdel-Rahman, Aly A

    2007-08-01

    The aim of this study was to prepare and evaluate dried yeast tablets using both direct compression and dry granulation techniques in comparison with the conventional wet granulation as well as commercial product. Wet granulation technique is not favorable for producing the yeast tablets due to the problems of color darkening and the reduction of the fermentation power of the yeast as a result of the early start of the fermentation process due to the presence of moisture. Twenty six formulae of dried yeast tablets were prepared and evaluated. Certain directly compressible vehicles were employed for preparing these tablets. The quality control tests (weight uniformity, friability, disintegration time and hardness) of the prepared dried yeast tablets were performed according to B.P. 1998 limits. All batches of the prepared tablets complied with the B.P. limits of weight uniformity. Moreover, small values of friability % (1% or less) were obtained for all batches of dried yeast tablets with acceptable hardness values, indicating good mechanical properties which can withstand handling. On the other hand, not all batches complied with the limit of disintegration test which may be attributed to various formulation component variables. Therefore, four disintegrating agents were investigated for their disintegrating effect. It was found that the method of preparation, whether it is direct compression, dry granulation or wet granulation, has an effect on disintegration time of these dried yeast tablets and short disintegration times were obtained for some of the formulae. The shortest disintegration time was obtained with those tablets prepared by direct compression among the other techniques. Therefore, the direct compression is considered the best technique for preparation of dried yeast tablets and the best formula (which showed shorter disintegration time and better organoleptic properties than the available commercial yeast tablets) was chosen. Drug content for dried

  4. Cross-referencing yeast genetics and mammalian genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hieter, P.; Basset, D.; Boguski, M.

    1994-09-01

    We have initiated a project that will systematically transfer information about yeast genes onto the genetic maps of mice and human beings. Rapidly expanding human EST data will serve as a source of candidate human homologs that will be repeatedly searched using yeast protein sequence queries. Search results will be automatically reported to participating labs. Human cDNA sequences from which the ESTs are derived will be mapped at high resolution in the human and mouse genomes. The comparative mapping information cross-references the genomic position of novel human cDNAs with functional information known about the cognate yeast genes. This should facilitatemore » the initial identification of genes responsible for mammalian mutant phenotypes, including human disease. In addition, the identification of mammalian homologs of yeast genes provides reagents for determining evolutionary conservation and for performing direct experiments in multicellular eukaryotes to enhance study of the yeast protein`s function. For example, ESTs homologous to CDC27 and CDC16 were identified, and the corresponding cDNA clones were obtained from ATTC, completely sequenced, and mapped on human and mouse chromosomes. In addition, the CDC17hs cDNA has been used to raise antisera to the CDC27Hs protein and used in subcellular localization experiments and junctional studies in mammalian cells. We have received funding from the National Center for Human Genome Research to provide a community resource which will establish comprehensive cross-referencing among yeast, human, and mouse loci. The project is set up as a service and information on how to communicate with this effort will be provided.« less

  5. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vitamin D2 bakers yeast. 172.381 Section 172.381... CONSUMPTION Special Dietary and Nutritional Additives § 172.381 Vitamin D2 bakers yeast. Vitamin D2 bakers yeast may be used safely in foods as a source of vitamin D2 and as a leavening agent in accordance with...

  6. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    PubMed Central

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  7. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    PubMed

    Guo, Yi-Cheng; Zhang, Lin; Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  8. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage. PMID:27152421

  9. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  10. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    PubMed Central

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  11. Functional conservation of the yeast and Arabidopsis RAD54-like genes.

    PubMed

    Klutstein, Michael; Shaked, Hezi; Sherman, Amir; Avivi-Ragolsky, Naomi; Shema, Efrat; Zenvirth, Drora; Levy, Avraham A; Simchen, Giora

    2008-04-01

    The Saccharomyces cerevisiae RAD54 gene has critical roles in DNA double-strand break repair, homologous recombination, and gene targeting. Previous results show that the yeast gene enhances gene targeting when expressed in Arabidopsis thaliana. In this work we address the trans-species compatibility of Rad54 functions. We show that overexpression of yeast RAD54 in Arabidopsis enhances DNA damage resistance severalfold. Thus, the yeast gene is active in the Arabidopsis homologous-recombination repair system. Moreover, we have identified an A. thaliana ortholog of yeast RAD54, named AtRAD54. This gene, with close sequence similarity to RAD54, complements methylmethane sulfonate (MMS) sensitivity but not UV sensitivity or gene targeting defects of rad54Delta mutant yeast cells. Overexpression of AtRAD54 in Arabidopsis leads to enhanced resistance to DNA damage. This gene's assignment as a RAD54 ortholog is further supported by the interaction of AtRad54 with AtRad51 and the interactions between alien proteins (i.e., yeast Rad54 with AtRAD51 and yeast Rad51 with AtRad54) in a yeast two-hybrid experiment. These interactions hint at the molecular nature of this interkingdom complementation, although the stronger effect of the yeast Rad54 in plants than AtRad54 in yeast might be explained by an ability of the Rad54 protein to act alone, independently of its interaction with Rad51.

  12. Carbohydrate and energy-yielding metabolism in non-conventional yeasts.

    PubMed

    Flores, C L; Rodríguez, C; Petit, T; Gancedo, C

    2000-10-01

    Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.

  13. Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition.

    PubMed

    Di Francesco, A; Mari, M; Ugolini, L; Baraldi, E

    2018-06-01

    Kiwifruit, wounded at the equator or by pedicel removal, to simulate the stem end wound, were treated with Aureobasidium pullulans (L1 and L8 strains) and subsequently inoculated with conidia of Botrytis cinerea. Fruits were stored at -1 °C in normal refrigeration (NR) or in controlled atmosphere (CA) (2% O 2 ; 4.5% CO 2 ). After 4 months, both antagonists significantly reduced the disease in all experiments, L1 better than L8. In NR, their efficacy was higher than 80%. In CA, the disease reduction was lower: between 30% (L1) and 60% (L8). The ability of both strains to compete with the pathogen for nutrients was tested in kiwifruit juice (0.5%) by in vitro experiments. Antagonists significantly reduced pathogen conidia germination in water and in juice. An HPLC analysis was performed to define the amino acid composition of kiwifruit juice upon L1 and L8 treatment. L1 and L8 greatly increased the concentration of both glutamic and aspartic acids and stimulated the production of new amino acids, although at low concentrations. Each amino acid displayed an antifungal effect against mycelium growth of B. cinerea. Finally, L1 and L8, cold tolerant and active strains in CA, can be effectively applied to control the stem end rot of kiwifruit in long storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster.

    PubMed

    Palanca, Loida; Gaskett, Anne C; Günther, Catrin S; Newcomb, Richard D; Goddard, Matthew R

    2013-01-01

    Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent.

  15. Yeasts: providing questions and answers for modern biology.

    PubMed

    Dickinson, J R

    2000-01-01

    Yeasts are to be found in virtually every conceivable niche on this planet and are amazingly varied in their shapes ('morphologies'), life cycles, metabolic capabilities, potentials for use in industrial processes, abilities to spoil food and drink or to act as dangerous human pathogens. This review describes four very different species of yeast to illustrate some of the diversity which exists and, in the case of one of them, Saccharomyces cerevisiae (the familiar baker's or brewer's yeast), the extent of both our knowledge and ignorance.

  16. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker’s Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast

    PubMed Central

    Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker’s yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker’s yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  17. The relationship between salivary histatin levels and oral yeast carriage.

    PubMed

    Jainkittivong, A; Johnson, D A; Yeh, C K

    1998-06-01

    Candida species are common commensal inhabitants of the oral cavity. Human saliva contains antifungal proteins called histatins. We tested the hypothesis that oral yeast status is related to salivary histatin levels. Thirty subjects were divided into two groups based on the presence (n = 15) or absence (n = 15) of yeast on oral mucosa surfaces. Unstimulated and stimulated submandibular and sublingual and parotid saliva was collected from each subject. Salivary flow rates were measured and histatin concentrations were determined in the stimulated saliva samples. The yeast colony positive group showed lower median unstimulated parotid saliva flow rates as well as lower median concentrations of total histatins in submandibular and sublingual saliva. There was a negative correlation between yeast colony-forming units and unstimulated parotid saliva flow rates and between yeast colony-forming units and submandibular and sublingual saliva histatin concentration and secretion. The results suggest that oral yeast status may be influenced by unstimulated parotid saliva flow rates and by submandibular and sublingual histatin concentration and secretion.

  18. The ecology of insect-yeast relationships and its relevance to human industry.

    PubMed

    Madden, Anne A; Epps, Mary Jane; Fukami, Tadashi; Irwin, Rebecca E; Sheppard, John; Sorger, D Magdalena; Dunn, Robert R

    2018-03-28

    Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a 'dispersal-encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry. © 2018 The Author(s).

  19. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  20. Independent and Additive Effects of Glutamic Acid and Methionine on Yeast Longevity

    PubMed Central

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan. PMID:24244480

  1. The ecology of insect–yeast relationships and its relevance to human industry

    PubMed Central

    Epps, Mary Jane; Sheppard, John; Sorger, D. Magdalena; Dunn, Robert R.

    2018-01-01

    Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a ‘dispersal–encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry. PMID:29563264

  2. Antarctic Yeasts: Biodiversity and Potential Applications

    NASA Astrophysics Data System (ADS)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  3. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    PubMed

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  4. Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina.

    PubMed

    Fernández, Natalia V; Mestre, M Cecilia; Marchelli, Paula; Fontenla, Sonia B

    2012-04-01

    Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way towardmore » the individual tracking of proteins of interest inside living yeast cells.« less

  6. Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers.

    PubMed

    Monapathi, M E; Bezuidenhout, C C; Rhode, O H J

    2017-03-01

    Yeasts from water sources have been associated with diseases ranging from superficial mucosal infections to life threatening diseases. The aim of this study was to determine the water quality as well as diversity and antifungal susceptibility of yeasts from two rivers. Yeast levels and physico-chemical parameter data were analyzed by principal component analysis to determine correlations between physico-chemical data and yeast levels. Yeast morphotypes were identified by biochemical tests and 26S rRNA gene sequencing. Disk diffusion antifungal susceptibility tests were conducted. Physico-chemical parameters of the water were within target water quality range (TWQR) for livestock farming. For irrigational use, total dissolved solids and nitrates were not within the TWQR. Yeast levels ranged between 27 ± 10 and 2,573 ± 306 cfu/L. Only non-pigmented, ascomycetous yeasts were isolated. Saccharomyces cerevisiae and Candida glabrata were most frequently isolated. Several other opportunistic pathogens were also isolated. A large number of isolates were resistant to azoles, especially fluconazole, but also to other antifungal classes. Candida species were resistant to almost all the antifungal classes. These water sources are used for recreation and religious as well as for watering livestock and irrigation. Of particular concern is the direct contact of individuals with opportunistic yeast, especially the immune-compromised. Resistance of these yeast species to antifungal agents is a further health concern.

  7. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles.

  8. Yeast biotechnology: teaching the old dog new tricks.

    PubMed

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  9. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    PubMed Central

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664

  10. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.

    PubMed

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  11. A low-cost procedure for production of fresh autochthonous wine yeast.

    PubMed

    Maqueda, Matilde; Pérez-Nevado, Francisco; Regodón, José A; Zamora, Emiliano; Alvarez, María L; Rebollo, José E; Ramírez, Manuel

    2011-03-01

    A low-cost procedure was designed for easy and rapid response-on-demand production of fresh wine yeast for local wine-making. The pilot plant produced fresh yeast culture concentrate with good microbial quality and excellent oenological properties from four selected wine yeasts. The best production yields were obtained using 2% sugar beet molasses and a working culture volume of less than 60% of the fermenter capacity. The yeast yield using 2% sugar grape juice was low and had poor cell viability after freeze storage, although the resulting yeast would be directly available for use in the winery. The performance of these yeasts in commercial wineries was excellent; they dominated must fermentation and improved its kinetics, as well as improving the physicochemical parameters and the organoleptic quality of red and white wines.

  12. Checkpoint independence of most DNA replication origins in fission yeast

    PubMed Central

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  13. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals.

    PubMed

    Rapoport, Alexander; Turchetti, Benedetta; Buzzini, Pietro

    2016-06-01

    Dehydration of yeast cells causes them to enter a state of anhydrobiosis in which their metabolism is temporarily and reversibly suspended. This unique state among organisms is currently used in the production of active dry yeasts, mainly used in baking and winemaking. In recent decades non-conventional applications of yeast dehydration have been proposed for various modern biotechnologies. This mini-review briefly summarises current information on the application of dry yeasts in traditional and innovative fields. It has been shown that dry yeast preparations can be used for the efficient protection, purification and bioremediation of the environment from heavy metals. The high sorption activity of dehydrated yeasts can be used as an interesting tool in winemaking due to their effects on quality and taste. Dry yeasts are also used in agricultural animal feed. Another interesting application of yeast dehydration is as an additional stage in new methods for the stable immobilisation of microorganisms, especially in cases when biotechnologically important strains have no affinity with the carrier. Such immobilisation methods also provide a new approach for the successful conservation of yeast strains that are very sensitive to dehydration. In addition, the application of dehydration procedures opens up new possibilities for the use of yeast as a model system. Separate sections of this review also discuss possible uses of dry yeasts in biocontrol, bioprotection and biotransformations, in analytical methods as well as in some other areas.

  14. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    PubMed

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  15. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    PubMed Central

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  16. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    PubMed

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  17. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡

    PubMed Central

    Broadway, Paul R.; Carroll, Jeffery A.; Burdick Sanchez, Nicole C.

    2015-01-01

    More livestock producers are seeking natural alternatives to antibiotics and antimicrobials, and searching for supplements to enhance growth performance, and general animal health and well-being. Some of the compounds currently being utilized and studied are live yeast and yeast-based products derived from the strain Saccharomyces cerevisiae. These products have been reported to have positive effects both directly and indirectly on the immune system and its subsequent biomarkers, thereby mitigating negative effects associated with stress and disease. These yeast-based products have also been reported to simultaneously enhance growth and performance by enhancing dry matter intake (DMI) and average daily gain (ADG) perhaps through the establishment of a healthy gastrointestinal tract. These products may be especially useful in times of potential stress such as during birth, weaning, early lactation, and during the receiving period at the feedlot. Overall, yeast supplements appear to possess the ability to improve animal health and metabolism while decreasing morbidity, thereby enhancing profitability of these animals. PMID:27682097

  18. Advances in yeast genome engineering.

    PubMed

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  19. The yeast stands alone: the future of protein biologic production.

    PubMed

    Love, Kerry R; Dalvie, Neil C; Love, J Christopher

    2017-12-22

    Yeasts are promising alternative hosts for the manufacturing of recombinant protein therapeutics because they simply and efficiently meet needs for both platform and small-market drugs. Fast accumulation of biomass and low-cost media reduce the cost-of-goods when using yeast, which in turn can enable agile, small-volume manufacturing facilities. Small, tractable yeast genomes are amenable to rapid process development, facilitating strain and product quality by design. Specifically, Pichia pastoris is becoming a widely accepted yeast for biopharmaceutical manufacturing in much of the world owing to a clean secreted product and the rapidly expanding understanding of its cell biology as a host organism. We advocate for a near term partnership spanning industry and academia to promote open source, timely development of yeast hosts. Copyright © 2017. Published by Elsevier Ltd.

  20. Gut yeast communities in Larus michahellis from various breeding colonies.

    PubMed

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; Piarroux, Renaud; Ranque, Stéphane; Mauffrey, Jean-François

    2017-06-01

    Yellow-legged gulls have been reported to carry antibiotic-resistant Enterobacteriaceae; however, the gut mycobiota of these birds has not yet been described. In this study, we analyzed the gut yeast communities in five yellow-legged gull breeding colonies along the Mediterranean littoral in southern France. Gull fecal samples were inoculated onto four types of culture media, including one supplemented with itraconazole. Yeast species richness, abundance, and diversity were estimated, and factorial analysis was used to highlight correspondences between breeding colonies. Yeast grew in 113 of 177 cultures, and 17 distinct yeast species were identified. The most frequent species were Candida krusei (53.5%), Galactomyces geotrichum (44.1%), C. glabrata (40.9%), C. albicans (20.5%), and Saccharomyces cerevisiae (18.1%). Gut yeast community structure in the gulls at both Pierre-Blanche Lagoon (PB) and Frioul Archipelago (F) were characterized by greater species richness and diversity than in those at the two cities of La Grande-Motte (GM) and Palavas-les-Flots (PF) as well as Riou Archipelago (R). Gulls in these latter three sites probably share a similar type of anthropogenic diet. Notably, the proportion of anthropic yeast species, including C. albicans and C. glabrata, in the gull mycobiota increased with gull colony synanthropy. Antifungal resistance was found in each of the five most frequent yeast species. We found that the gut yeast communities of these yellow-legged gulls include antifungal-resistant human pathogens. Further studies should assess the public health impact of these common synanthropic seabirds, which represent a reservoir and disseminator of drug-resistant human pathogenic yeast into the environment. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)

    PubMed Central

    Dujon, Bernard A.; Louis, Edward J.

    2017-01-01

    Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance. PMID:28592505

  2. Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent.

    PubMed

    Jenjob, Ratchapol; Kun, Na; Ghee, Jung Yeon; Shen, Zheyu; Wu, Xiaoxia; Cho, Steve K; Lee, Don Haeng; Yang, Su-Geun

    2016-04-01

    In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd(3+), chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd(3+) in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd(3+) incubated with Ca(2+) was performed by using a dialysis membrane (MWCO 100-500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd(3+), the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd(3+) were released from Gd-DTPA-Pullulan after 2h incubation with Ca(2+) and Fe(2+), respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t1/2,α=0.43 h, t1/2,β=2.32 h), much longer than 0.11h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    PubMed

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. Analysis of the yeast short-term Crabtree effect and its origin

    PubMed Central

    Hagman, Arne; Säll, Torbjörn; Piškur, Jure

    2014-01-01

    The short-term Crabtree effect is defined as the immediate occurrence of aerobic alcoholic fermentation in response to provision of a pulse of excess sugar to sugar-limited yeast cultures. Here we have characterized ten yeast species with a clearly defined phylogenetic relationship. Yeast species were cultivated under glucose-limited conditions, and we studied their general carbon metabolism in response to a glucose pulse. We generated an extensive collection of data on glucose and oxygen consumption, and ethanol and carbon dioxide generation. We conclude that the Pichia,Debaryomyces,Eremothecium and Kluyveromyces marxianus yeasts do not exhibit any significant ethanol formation, while Kluyveromyces lactis behaves as an intermediate yeast, and Lachancea,Torulaspora,Vanderwaltozyma and Saccharomyces yeasts exhibit rapid ethanol accumulation. Based on the present data and our previous data relating to the presence of the long-term Crabtree effect in over 40 yeast species, we speculate that the origin of the short-term effect may coincide with the origin of the long-term Crabtree effect in the Saccharomycetales lineage, occurring ∼ 150 million years ago. PMID:25161062

  5. Unique phagocytic properties of hemocytes of Pacific oyster Crassostrea gigas against yeast and yeast cell-wall derivatives.

    PubMed

    Takahashi, Keisuke G; Izumi-Nakajima, Nakako; Mori, Katsuyoshi

    2017-11-01

    For a marine bivalve mollusk such as Pacific oyster Crassostrea gigas, the elimination of foreign particles via hemocyte phagocytosis plays an important role in host defense mechanisms. The hemocytes of C. gigas have a high phagocytic ability for baker's yeast (Saccharomyces cerevisiae) and its cell-wall product zymosan. C. gigas hemocytes might phagocytose yeast cells after binding to polysaccharides on the cell-wall surface, but it is unknown how and what kinds of polysaccharide molecules are recognized. We conducted experiments to determine differences in the phagocytic ability of C. gigas hemocytes against heat-killed yeast (HK yeast), zymosan and zymocel, which are similarly sized and shaped but differ in the polysaccharide composition of their particle surface. We found that both the agranulocytes and granulocytes exerted strong phagocytic ability on all tested particles. The phagocytic index (PI) of granulocytes for zymosan was 9.4 ± 1.7, which significantly differed with that for HK yeast and zymocel (P < 0.05). To evaluate the PI for the three types of particles, and especially to understand the outcome of the much higher PI for zymosan, PI was gauged in increments of 5 (1-5, 6-10, 11-15, and ≥16), and the phagocytic frequencies were compared according to these increments. The results show that a markedly high PI of ≥16 was exhibited by 18.1% of granulocytes for zymosan, significantly higher than 1.7% and 3.9% shown for HK yeast and zymocel, respectively (P < 0.05). These findings indicate that the relatively high PI for zymosan could not be attributed to a situation wherein all phagocytic hemocytes shared a high mean PI, but rather to the ability of some hemocytes to phagocytose a larger portion of zymosan. To determine whether the phagocytosis of these respective particles depended on the recognition of specific polysaccharide receptors on the hemocyte surface, C. gigas hemocytes were pretreated with soluble α-mannan or β-laminarin and

  6. Crossflow microfiltration of yeast suspensions in tubular filters.

    PubMed

    Redkar, S G; Davis, R H

    1993-01-01

    Crossflow microfiltration experiments were performed on yeast suspensions through 0.2-microns pore size ceramic and polypropylene tubes at various operating conditions. The initial transient flux decline follows dead-end filtration theory, with the membrane resistance determined from the initial flux and the specific cake resistance determined from the rate of flux decline due to cake buildup. For long times, the observed fluxes reach steady or nearly steady values, presumably as a result of the cake growth being arrested by the shear exerted at its surface. The steady-state fluxes increase with increasing shear rate and decreasing feed concentration, and they are nearly independent of transmembrane pressure. The steady-state fluxes for unwashed yeast in deionized water or fermentation media are typically 2-4 times lower than those predicted by a model based on the properties of nonadhesive, rigid spheres undergoing shear-induced back-diffusion. In contrast, the steady-state fluxes observed for washed yeast cells in deionized water are only 10-30% below the predicted values. The washed yeast cells also exhibited specific cake resistances that are an order of magnitude lower than those for the unwashed yeast. The differences are due to the presence of extracellular proteins and other macromolecules in the unwashed yeast suspensions. These biopolymers cause higher cell adhesion and resistance in the cake layer, so that the cells at the top edge are not free to diffuse away. This is manifested as a concentration jump from the edge of the cake layer to the sheared suspension adjacent to it.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. A Yeast Model of FUS/TLS-Dependent Cytotoxicity

    PubMed Central

    Ju, Shulin; Tardiff, Daniel F.; Han, Haesun; Divya, Kanneganti; Zhong, Quan; Maquat, Lynne E.; Bosco, Daryl A.; Hayward, Lawrence J.; Brown, Robert H.; Lindquist, Susan; Ringe, Dagmar; Petsko, Gregory A.

    2011-01-01

    FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression. PMID:21541368

  8. Influence of aeration during propagation of pitching yeast on fermentation and beer flavor.

    PubMed

    Cheong, Chul; Wackerbauer, Karl; Kang, Soon Ah

    2007-02-01

    The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.

  9. Recognition of Yeast Species from Gene Sequence Comparisons

    USDA-ARS?s Scientific Manuscript database

    This review discusses recognition of yeast species from gene sequence comparisons, which have been responsible for doubling the number of known yeasts over the past decade. The resolution provided by various single gene sequences is examined for both ascomycetous and basidiomycetous species, and th...

  10. Tapping into yeast diversity.

    PubMed

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  11. Male Yeast Infection: How Can I Tell if I Have One?

    MedlinePlus

    ... tell if I have one? Can men get yeast infections? What are the signs and symptoms of a male yeast infection? Answers from James M. Steckelberg, M.D. Yes, men can get yeast infections, too, which can lead to a condition ...

  12. New insights on the baker's yeast-mediated hydration of oleic acid: the bacterial contaminants of yeast are responsible for the stereoselective formation of (R)-10-hydroxystearic acid.

    PubMed

    Serra, S; De Simeis, D

    2018-03-01

    The preparation of the high-value flavour γ-dodecalactone is based on the biotransformation of natural 10-HSA, which is in turn obtained by microbial hydration of oleic acid. We want to establish a reliable baker's yeast-mediated procedure for 10-HSA preparation. The previously reported yeast-mediated hydration procedures are unreliable because bacteria-free baker's yeast is not able to hydrate oleic acid. The actual responsible for performing this reaction are the bacterial contaminants present in baker's yeast. Moreover, we demonstrated that the enantioselectivity in the production of (R)-10-HSA is affected mainly by the temperature used in the biotransformation. We demonstrated that Saccharomyces cerevisiae is not able to hydrate oleic acid, whereas different bacterial strains present in baker's yeast transform oleic acid into (R)-10-HSA. We reported a general procedure for the preparation of (R)-10-HSA starting from oleic acid and using commercially available baker's yeast. This study holds both scientific and industrial interest. It unambiguously establishes that the eukaryote micro-organisms present in baker's yeast are not able to hydrate oleic acid. The isolation of oleic acid hydrating bacterial strains from commercial baker's yeast points to their prospective use for the industrial synthesis of 10-HSA. © 2017 The Society for Applied Microbiology.

  13. Brettanomyces bruxellensis yeasts: impact on wine and winemaking.

    PubMed

    Agnolucci, Monica; Tirelli, Antonio; Cocolin, Luca; Toffanin, Annita

    2017-09-21

    Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.

  14. The complexity and implications of yeast prion domains

    PubMed Central

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731

  15. Yeast biotechnology: teaching the old dog new tricks

    PubMed Central

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  16. Yeast selection for fuel ethanol production in Brazil.

    PubMed

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  17. Downsides and benefits of unicellularity in budding yeast

    NASA Astrophysics Data System (ADS)

    Balazsi, Gabor; Chen, Lin; Kuzdzal-Fick, Jennie

    Yeast cells that do not separate after cell division form clumps. Clumping was shown to aid utilization of certain sugars, but its effects in stressful conditions are unknown. Generally speaking, what are the costs and benefits of unicellularity versus clumping multicellularity in normal and stressful conditions? To address this question, we evolved clumping yeast towards unicellularity by continuously propagating only those cells that remain suspended in liquid culture after settling. Whole-genome sequencing indicated that mutations in the AMN1 (antagonist of mitotic exit network) gene underlie the changes from clumping to unicellular phenotypes in these evolved yeast cells. Simple models predict that clumping should hinder growth in normal conditions while being protective in stress. Accordingly, we find experimentally that yeast clumps are more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts. On the other hand, unicellularity seems to be advantageous in normal conditions. Overall, these results reveal the downsides and benefits of unicellularity in different environmental conditions and uncover its genetic bases in yeast. This research was supported by the NIH Director's New Innovator Award Program (1DP2 OD006481-01), by NSF/IOS 1021675 and the Laufer Center for Physical & Quantitative Biology.

  18. Yeast Prions: Structure, Biology, and Prion-Handling Systems

    PubMed Central

    Shewmaker, Frank P.; Bateman, David A.; Edskes, Herman K.; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E.

    2015-01-01

    SUMMARY A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  19. Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts.

    PubMed

    Zhang, Ning; Fan, Yuxuan; Li, Chen; Wang, Qiming; Leksawasdi, Noppol; Li, Fuli; Wang, Shi'an

    2018-05-01

    Non-model yeasts within basidiomycetes have considerable importance in agriculture, industry, and environment, but they are not as well studied as ascomycetous yeasts. Serving as a basic technique, nuclear DNA staining is widely used in physiology, ecology, cell biology, and genetics. However, it is unclear whether the classical nuclear DNA staining method for ascomycetous yeasts is applicable to basidiomycetous yeasts. In this study, 5 yeasts ineffectively stained by the classical propidium iodide (PI) staining method were identified from 23 representative basidiomycetous yeasts. Pretreatment of cells using dimethyl sulfoxide (DMSO) or snailase markedly improved cell penetration to PI and thus enabled DNA content determination by flow cytometry on the recalcitrant yeasts. The pretreatments are efficient, simple, and fast, avoiding tedious mutagenesis or genetic engineering used in previous reports. The heterogeneity of cell penetration to PI among basidiomycetous yeasts was attributed to the discrepancy in cell wall polysaccharides instead of capsule or plasma membrane. This study also indicated that care must be taken in attributing PI-negative staining as viable cells when studying non-model microorganisms.

  20. Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding

    PubMed Central

    Ohnuki, Shinsuke; Okada, Hiroki; Friedrich, Anne; Kanno, Yoichiro; Goshima, Tetsuya; Hasuda, Hirokazu; Inahashi, Masaaki; Okazaki, Naoto; Tamura, Hiroyasu; Nakamura, Ryo; Hirata, Dai; Fukuda, Hisashi; Shimoi, Hitoshi; Kitamoto, Katsuhiko; Watanabe, Daisuke; Schacherer, Joseph; Akao, Takeshi; Ohya, Yoshikazu

    2017-01-01

    Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomyces cerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies. PMID:28642365

  1. Genetic and phenotypic characteristics of baker's yeast: relevance to baking.

    PubMed

    Randez-Gil, Francisca; Córcoles-Sáez, Isaac; Prieto, José A

    2013-01-01

    Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.

  2. Cellular and molecular effects of yeast probiotics on cancer.

    PubMed

    Saber, Amir; Alipour, Beitollah; Faghfoori, Zeinab; Yari Khosroushahi, Ahmad

    2017-02-01

    The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.

  3. Dietary glucose regulates yeast consumption in adult Drosophila males.

    PubMed

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  4. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  5. The making of biodiversity across the yeast subphyllum

    USDA-ARS?s Scientific Manuscript database

    Goals for this research project are to determine how the functional diversity of the yeast subphylum is encoded, and to reconstruct the history of yeasts to elucidate the tempo and mode of functional diversification. The impact of this work will be to integrate discoveries within broadly disseminate...

  6. Distribution of dimorphic yeast species in commercial extra virgin olive oil.

    PubMed

    Zullo, B A; Cioccia, G; Ciafardini, G

    2010-12-01

    Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient

  7. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selection of oleaginous yeasts for fatty acid production.

    PubMed

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  9. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs.

    PubMed

    White, L A; Newman, M C; Cromwell, G L; Lindemann, M D

    2002-10-01

    Brewers dried yeast, a source of mannan oligosaccharides (MOS), was assessed as an alternative to an antimicrobial agent (carbadox) for young pigs in two experiments. The yeast contained 5.2% MOS. Agglutination tests confirmed adsorption of several serovars of E. coli and Salmonella spp. onto the yeast product. In Exp. 1, seven replicates (five pigs per pen) of 22-d-old pigs were fed a nonmedicated basal diet or the basal diet with carbadox (55 mg/kg), yeast (3%), or a combination of 3% yeast and 2% citric acid for 28 d. Carbadox did not improve growth performance. Growth rate and feed intake were depressed (P < 0.05) in pigs fed yeast alone or in combination with acid. Log counts of total coliforms, Escherichia coli, and Clostridium perfringens in feces were not affected by diet, but Bifidobacteria spp. counts were lower (P < 0.05) in pigs fed the yeast + acid diet and lactobacilli counts were higher (P < 0.05) in pigs fed yeast. Fecal pH and VFA concentrations and intestinal morphological traits were not consistently affected by diet. Serum IgG levels were elevated in the yeast + acid (P < 0.01) group. In Exp. 2, the effects of yeast and carbadox additions to the diet on enteric microbial populations in young pigs housed in isolation units were evaluated. Pigs (n = 24) were weaned at 11 d of age (4.1 kg BW) and placed in isolation chambers (two pigs per chamber) equipped with individual air filtering systems and excrement containers. Treatments were a nonmedicated basal diet and the basal diet with 55 mg/kg of carbadox or with 3% yeast. Diets were fed for 29 d, then each pig was orally dosed with approximately 9.5 x 10(8) CFU of E. coli K88. Daily fecal E. coli K88 counts were not different (P > 0.05) among treatments, but fecal shedding of carbadox-resistant coliforms was higher (P < 0.01) during the 9-d period in pigs fed carbadox. Total fecal coliforms were consistently lower throughout the postinoculation period in pigs fed yeast (P < 0.05). Yeast reduced

  11. Comparative genomics of biotechnologically important yeasts

    PubMed Central

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H.; Lopes, Mariana R.; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A.; Wisecaver, Jennifer H.; Long, Tanya M.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y.; Deshpande, Shweta; Douglass, Alexander P.; Hanson, Sara J.; Klenk, Hans-Peter; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Meier-Kolthoff, Jan P.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Rosa, Carlos A.; Scheuner, Carmen; Sibirny, Andriy A.; Slot, Jason C.; Stielow, J. Benjamin; Sun, Hui; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor V.

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  12. Production of a yeast artificial chromosome for stable expression of a synthetic xylose isomerase-xylulokinase polyprotein in a fuel ethanol yeast strain

    USDA-ARS?s Scientific Manuscript database

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. A yeast artificial chromosome (YAC) was engineered to contain a polyprotein gene construct expressing xylos...

  13. Spent yeast as natural source of functional food additives

    PubMed

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  14. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper

  15. Yeast Communities of Chestnut Soils under Vineyards in Dagestan

    NASA Astrophysics Data System (ADS)

    Abdullabekova, D. A.; Magomedova, E. S.; Magomedov, G. G.; Aliverdieva, D. A.; Kachalkin, A. V.

    2017-12-01

    The study of yeast communities in chestnut soils (Kastanozems) under vineyards in the Republic of Dagestan made it possible to isolate 20 yeast species. Most of the yeasts under vineyards belonged to ascomycetes, among which species of the Saccharomycetaceae family (in particular, Saccharomyces cerevisiae) comprised a significant part. The obtained results indicate that the soils under vineyards keep the pool of microbial diversity and ensure preservation of many species typical for grapes. The method of enrichment culture on grape juice medium proved to be more efficient than other methods of analysis with respect to the number of isolated species and the rate of their detection. However, implementation of different techniques to study yeasts' diversity can give somewhat different results; a set of methods should be used for an integrated analysis.

  16. Mitochondrial inheritance in budding yeasts: towards an integrated understanding.

    PubMed

    Solieri, Lisa

    2010-11-01

    Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    NASA Astrophysics Data System (ADS)

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as β -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  18. Yeast Infection and Diabetes Mellitus among Pregnant Mother in Malaysia

    PubMed Central

    Sopian, Iylia Liyana; Shahabudin, Sa’adiah; Ahmed, Mowaffaq Adam; Lung, Leslie Than Thian; Sandai, Doblin

    2016-01-01

    Background Vaginal yeast infection refers to irritation of the vagina due to the presence of opportunistic yeast of the genus Candida (mostly Candida albicans). About 75% of women will have at least one episode of vaginal yeast infection during their lifetime. Several studies have shown that pregnancy and uncontrolled diabetes increase the infection risk. Reproductive hormone fluctuations during pregnancy and elevated glucose levels characteristic of diabetes provide the carbon needed for Candida overgrowth and infection. The goal of this study was to determine the prevalence of vaginal yeast infection among pregnant women with and without diabetes. Methods This was a case-control study using cases reports from Kepala Batas Health Clinic, Penang State, Malaysia from 2006 to 2012. In total, 740 pregnant ladies were chosen as sample of which 370 were diabetic and 370 were non-diabetic cases. Results No relationship between diabetes and the occurrence of vaginal yeast infection in pregnant women was detected, and there was no significant association between infection and age group, race or education level. Conclusion In conclusion, within radius of this study, vaginal yeast infection can occur randomly in pregnant women. PMID:27540323

  19. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.

    PubMed

    Alexandre, Hervé

    2013-10-15

    The aging of certain white wines is dependent on the presence of yeast strains that develop a biofilm on the wine surface after the alcoholic fermentation. These strains belong to the genus Saccharomyces and are called flor yeasts. These strains possess distinctive characteristics compared with Saccharomyces cerevisiae fermenting strain. The most important one is their capacity to form a biofilm on the air-liquid interface of the wine. The major gene involved in this phenotype is FLO11, however other genes are also involved in velum formation by these yeast and will be detailed. Other striking features presented in this review are their aneuploidy, and their mitochondrial DNA polymorphism which seems to reflect adaptive evolution of the yeast to a stressful environment where acetaldehyde and ethanol are present at elevated concentration. The biofilm assures access to oxygen and therefore permits continued growth on non-fermentable ethanol. This specific metabolism explains the peculiar organoleptic profile of these wines, especially their content in acetaldehyde and sotolon. This review deals with these different specificities of flor yeasts and will also underline the existing gaps regarding these astonishing yeasts. © 2013.

  20. Extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) inhibit dexamethasone-induced muscle atrophy in mice

    PubMed Central

    Cho, Hyung-Rae; Park, Dong-Chan; Jung, Go-Woon

    2018-01-01

    The present study assessed the beneficial skeletal muscle-preserving effects of extracellular polysaccharides from Aureobasidium pullulans SM-2001 (Polycan) (EAP) on dexamethasone (DEXA)-induced catabolic muscle atrophy in mice. To investigate whether EAP prevented catabolic DEXA-induced muscle atrophy, and to examine its mechanisms of action, EAP (100, 200 and 400 mg/kg) was administered orally, once a day for 24 days. EAP treatment was initiated 2 weeks prior to DEXA treatment (1 mg/kg, once a day for 10 days) in mice. Body weight alterations, serum biochemistry, calf thickness, calf muscle strength, gastrocnemius muscle thickness and weight, gastrocnemius muscle antioxidant defense parameters, gastrocnemius muscle mRNA expression, histology and histomorphometry were subsequently assessed. After 24 days, DEXA control mice exhibited muscle atrophy according to all criteria indices. However, these muscle atrophy symptoms were significantly inhibited by oral treatment with all three doses of EAP. Regarding possible mechanisms of action, EAP exhibited favorable ameliorating effects on DEXA-induced catabolic muscle atrophy via antioxidant and anti-inflammatory effects; these effects were mediated by modulation of the expression of genes involved in muscle protein synthesis (AKT serine/threonine kinase 1, phosphatidylinositol 3-kinase, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4) and degradation (atrogin-1, muscle RING-finger protein-1, myostatin and sirtuin 1). Therefore, these results indicated that EAP may be helpful in improving muscle atrophies of various etiologies. EAP at 400 mg/kg exhibited favorable muscle protective effects against DEXA-induced catabolic muscle atrophy, comparable with the effects of oxymetholone (50 mg/kg), which has been used to treat various muscle disorders. PMID:29138805

  1. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  3. Conditions of activation of yeast plasma membrane ATPase.

    PubMed

    Sychrová, H; Kotyk, A

    1985-04-08

    The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.

  4. Production of Cellulolytic and Hemicellulolytic Enzymes From Aureobasidium pulluans on Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Leite, Rodrigo Simões Ribeiro; Bocchini, Daniela Alonso; da Silva Martins, Eduardo; Silva, Dênis; Gomes, Eleni; da Silva, Roberto

    This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme remaining 100% active when incubated at 75°C for 1 h.

  5. Co-fermentation of glucose, xylose and/or cellobiose by yeast

    DOEpatents

    Jeffries, Thomas W.; Willis, Laura B.; Long, Tanya M.; Su, Yi-Kai

    2013-09-10

    Provided herein are methods of using yeast cells to produce ethanol by contacting a mixture comprising xylose with a Spathaspora yeast cell under conditions suitable to allow the yeast to ferment at least a portion of the xylose to ethanol. The methods allow for efficient ethanol production from hydrolysates derived from lignocellulosic material and sugar mixtures including at least xylose and glucose or xylose, glucose and cellobiose.

  6. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    PubMed

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Yeast prions: structure, biology, and prion-handling systems.

    PubMed

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A polyphasic study on the taxonomic position of industrial sour dough yeasts.

    PubMed

    Mäntynen, V H; Korhola, M; Gudmundsson, H; Turakainen, H; Alfredsson, G A; Salovaara, H; Lindström, K

    1999-02-01

    The sour dough bread making process is extensively used to produce wholesome palatable rye bread. The process is traditionally done using a back-slopping procedure. Traditional sour doughs in Finland comprise of lactic acid bacteria and yeasts. The yeasts present in these doughs have been enriched in the doughs due to their metabolic activities, e.g. acid tolerance. We characterized the yeasts in five major sour bread bakeries in Finland. We found that most of the commercial sour doughs contained yeasts which were similar to Candida milleri on the basis of 18S rDNA and EF-3 PCR-RFLP patterns and metabolic activities. Some of the bakery yeasts exhibited extensive karyotype polymorphism. The minimum growth temperature was 8 degrees C for C. milleri and also for most of sour dough yeasts.

  9. Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies.

    PubMed

    Kitagaki, Hiroshi; Takagi, Hiroshi

    2014-04-01

    Mitochondria are sites of oxidative respiration. During sake brewing, sake yeasts are exposed to long periods of hypoxia; the structure, role, and metabolism of mitochondria of sake yeasts have not been studied in detail. It was first elucidated that the mitochondrial structure of sake yeast transforms from filamentous to dotted structure during sake brewing, which affects malate metabolism. Based on the information of yeast mitochondria during sake brewing, practical technologies have been developed; (i) breeding pyruvate-underproducing sake yeast by the isolation of a mutant resistant to an inhibitor of mitochondrial pyruvate transport; and (ii) modifying malate and succinate production by manipulating mitochondrial activity. During the bread-making process, baker's yeast cells are exposed to a variety of baking-associated stresses, such as freeze-thaw, air-drying, and high sucrose concentrations. These treatments induce oxidative stress generating reactive oxygen species due to mitochondrial damage. A novel metabolism of proline and arginine catalyzed by N-acetyltransferase Mpr1 in the mitochondria eventually leads to synthesis of nitric oxide, which confers oxidative stress tolerance on yeast cells. The enhancement of proline and arginine metabolism could be promising for breeding novel baker's yeast strains that are tolerant to multiple baking-associated stresses. These new and practical methods provide approaches to improve the processes in the field of industrial fermentation technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species

    PubMed Central

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-01-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698

  11. Solving ethanol production problems with genetically modified yeast strains

    PubMed Central

    Abreu-Cavalheiro, A.; Monteiro, G.

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432

  12. Solving ethanol production problems with genetically modified yeast strains.

    PubMed

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  13. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast

    PubMed Central

    Jespersen, Lene; Cesar, Lene B.; Meaden, Philip G.; Jakobsen, Mogens

    1999-01-01

    Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure. PMID:9925567

  14. Association between Grape Yeast Communities and the Vineyard Ecosystems

    PubMed Central

    Drumonde-Neves, João; Lima, Teresa; Schuller, Dorit; Pais, Célia

    2017-01-01

    The grape yeast biota from several wine-producing areas, with distinct soil types and grapevine training systems, was assessed on five islands of Azores Archipelago, and differences in yeast communities composition associated with the geographic origin of the grapes were explored. Fifty-seven grape samples belonging to the Vitis vinifera grapevine cultivars Verdelho dos Açores (Verdelho), Arinto da Terceira (Arinto) and Terrantez do Pico (Terrantez) were collected in two consecutive years and 40 spontaneous fermentations were achieved. A total of 1710 yeast isolates were obtained from freshly crushed grapes and 1200 from final stage of fermentations. Twenty-eight species were identified, Hanseniaspura uvarum, Pichia terricola and Metschnikowia pulcherrima being the three most representative species isolated. Candida carpophila was encountered for the first time as an inhabitant of grape or wine-associated environments. In both sampling years, a higher proportion of H. uvarum in fresh grapes from Verdelho cultivar was observed, in comparison with Arinto cultivar. Qualitatively significant differences were found among yeast communities from several locations on five islands of the Archipelago, particularly in locations with distinctive agro-ecological compositions. Our results are in agreement with the statement that grape-associated microbial biogeography is non-randomly associated with interactions of climate, soil, cultivar, and vine training systems in vineyard ecosystems. Our observations strongly support a possible linkage between grape yeast and wine typicality, reinforcing the statement that different viticultural terroirs harbor distinctive yeast biota, in particular in vineyards with very distinctive environmental conditions. PMID:28085916

  15. Characterization of the interaction of yeast enolase with polynucleotides.

    PubMed

    al-Giery, A G; Brewer, J M

    1992-09-23

    Yeast enolase is inhibited under certain conditions by DNA. The enzyme binds to single-stranded DNA-cellulose. Inhibition was used for routine characterization of the interaction. The presence of the substrate 2-phospho-D-glycerate reduces inhibition and binding. Both yeast enolase isozymes behave similarly. Impure yeast enolase was purified by adsorption onto a single-stranded DNA-cellulose column followed by elution with substrate. Interaction with RNA, double-stranded DNA, or degraded DNA results in less inhibition, suggesting that yeast enolase preferentially binds single-stranded DNA. However, yeast enolase is not a DNA-unwinding protein. The enzyme is inhibited by the short synthetic oligodeoxynucleotides G6, G8 and G10 but not T8 or T6, suggesting some base specificity in the interaction. The interaction is stronger at more acid pH values, with an apparent pK of 5.6. The interaction is prevented by 0.3 M KCl, suggesting that electrostatic factors are important. Histidine or lysine reverse the inhibition at lower concentrations, while phosphate is still more effective. Binding of single-stranded DNA to enolase reduces the reaction of protein histidyl residues with diethylpyrocarbonate. The inhibition of yeast enolase by single-stranded DNA is not total, and suggests the active site is not directly involved in the interaction. Binding of substrate may induce a conformational change in the enzyme that interferes with DNA binding and vice versa.

  16. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  17. The Yeast Copper Response Is Regulated by DNA Damage

    PubMed Central

    Dong, Kangzhen; Addinall, Stephen G.; Lydall, David

    2013-01-01

    Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798

  18. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    PubMed

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast Copyright © 2013 John Wiley & Sons, Ltd.

  19. Clinical and tree hollow populations of human pathogenic yeast in Hamilton, Ontario, Canada are different.

    PubMed

    Carvalho, Chris; Yang, Jiaqi; Vogan, Aaron; Maganti, Harinad; Yamamura, Deborah; Xu, Jianping

    2014-05-01

    Yeast are among the most frequent pathogens in humans. The dominant yeast causing human infections belong to the genus Candida and Candida albicans is the most frequently isolated species. However, several non-C. albicans species are becoming increasingly common in patients worldwide. The relationships between yeast in humans and the natural environments remain poorly understood. Furthermore, it is often difficult to identify or exclude the origins of disease-causing yeast from specific environmental reservoirs. In this study, we compared the yeast isolates from tree hollows and from clinics in Hamilton, Ontario, Canada. Our surveys and analyses showed significant differences in yeast species composition, in their temporal dynamics, and in yeast genotypes between isolates from tree hollows and hospitals. Our results are inconsistent with the hypothesis that yeast from trees constitute a significant source of pathogenic yeast in humans in this region. Similarly, the yeast in humans and clinics do not appear to contribute to yeast in tree hollows. © 2013 Blackwell Verlag GmbH.

  20. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  1. [Antivirus effect of polysaccharides of brewer yeast in vitro].

    PubMed

    Li, F; Shi, Y; Guan, X; Zhang, S; Tian, T

    1998-03-01

    The antivirus effect of polysaccharides of brewer yeast from yeast mud on 13 kinds of viruses including DNA and RNA virus along with their mechanisms were studied. The result showed that this effect was remarkable on the infections with poliovirus III, adenovirus III, ECHO6 virus, enterovirus 71, vesicular stomatitis virus, herpesvirus I, II, coxsackie A16 virus and coxsackie B3 virus. The polysaccharides of brewer yeast could also inhibit the development of cytopathic effect(CPE) and protect cultural cells from being infected with the above viruses.

  2. RNA interactome capture in yeast.

    PubMed

    Beckmann, Benedikt M

    2017-04-15

    RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3days to complete. Next to a comprehensive explanation of the method, we focus on our findings about the choice of crosslinking in yeast and discuss the rationale of individual steps in the protocol. Copyright © 2016. Published by Elsevier Inc.

  3. The Yeast Nuclear Pore Complex

    PubMed Central

    Rout, Michael P.; Aitchison, John D.; Suprapto, Adisetyantari; Hjertaas, Kelly; Zhao, Yingming; Chait, Brian T.

    2000-01-01

    An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport. PMID:10684247

  4. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.

    PubMed

    Urbanczyk, Henryk; Noguchi, Chiemi; Wu, Hong; Watanabe, Daisuke; Akao, Takeshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2011-07-01

    Sake yeast strains produce a high concentration of ethanol during sake brewing compared to laboratory yeast strains. As ethanol fermentation by yeast cells continues even after cell growth stops, analysis of the physiological state of the stationary phase cells is very important for understanding the mechanism of producing higher concentrations of ethanol. We compared the physiological characteristics of stationary phase cells of both sake and laboratory yeast strains in an aerobic batch culture and under sake brewing conditions. We unexpectedly found that sake yeast cells in the stationary phase had a lower buoyant density and stress tolerance than did the laboratory yeast cells under both experimental conditions. These results suggest that it is difficult for sake yeast cells to enter a quiescent state after cell growth has stopped, which may be one reason for the higher fermentation rate of sake yeast compared to laboratory yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    PubMed

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Light-mediated control of DNA transcription in yeast

    PubMed Central

    Hughes, Robert M.; Bolger, Steven; Tapadia, Hersh; Tucker, Chandra L.

    2012-01-01

    A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light / cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems. PMID:22922268

  7. Yeast diversity of sourdoughs and associated metabolic properties and functionalities.

    PubMed

    De Vuyst, Luc; Harth, Henning; Van Kerrebroeck, Simon; Leroy, Frédéric

    2016-12-19

    Together with acidifying lactic acid bacteria, yeasts play a key role in the production process of sourdough, where they are either naturally present or added as a starter culture. Worldwide, a diversity of yeast species is encountered, with Saccharomyces cerevisiae, Candida humilis, Kazachstania exigua, Pichia kudriavzevii, Wickerhamomyces anomalus, and Torulaspora delbrueckii among the most common ones. Sourdough-adapted yeasts are able to withstand the stress conditions encountered during their growth, including nutrient starvation as well as the effects of acidic, oxidative, thermal, and osmotic stresses. From a technological point of view, their metabolism primarily contributes to the leavening and flavour of sourdough products. Besides ethanol and carbon dioxide, yeasts can produce metabolites that specifically affect flavour, such as organic acids, diacetyl, higher alcohols from branched-chain amino acids, and esters derived thereof. Additionally, several yeast strains possess functional properties that can potentially lead to nutritional and safety advantages. These properties encompass the production of vitamins, an improvement of the bioavailability of phenolic compounds, the dephosphorylation of phytic acid, the presence of probiotic potential, and the inhibition of fungi and their mycotoxin production. Strains of diverse species are new candidate functional starter cultures, offering opportunities beyond the conventional use of baker's yeast. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Buzzini, Pietro; Turchetti, Benedetta; Diolaiuti, Guglielmina; D'Agata, Carlo; Martini, Alessandro; Smiraglia, Claudio

    The meltwaters draining from two glaciers in the Italian Alps contain metabolically active yeasts isolable by culture-based laboratory procedures. The average number of culturable yeast cells in the meltwaters was 10 20 colony-forming units (CFU) L-1, whereas supraglacial stream waters originating from overlying glacier ice contained <1 CFU L-1. Yeast cell number increased as the suspended-sediment content of the water samples increased. Basidiomycetous yeasts represent >80% of isolated strains (Cryptococcus spp. and Rhodotorula spp. were 33.3% and 17.8% of total strains, respectively). Culturable yeasts were psychrotolerant, predominantly obligate aerobes and able to degrade organic macromolecules (e.g. starch, esters, lipids, proteins). To the authors' knowledge, this is the first study to report the presence of culturable yeasts in meltwaters originating from glaciers. On the basis of these results, it is reasonable to suppose that the viable yeasts observed in meltwaters derived predominantly from the subglacial zone and that they originated from the subglacial microbial community. Their metabolic abilities could contribute to the microbial activity occurring in subglacial environments.

  9. Synthetic genome engineering forging new frontiers for wine yeast.

    PubMed

    Pretorius, Isak S

    2017-02-01

    Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future

  10. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  11. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  12. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  13. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  14. Non-conventional Yeast Species for Lowering Ethanol Content of Wines

    PubMed Central

    Ciani, Maurizio; Morales, Pilar; Comitini, Francesca; Tronchoni, Jordi; Canonico, Laura; Curiel, José A.; Oro, Lucia; Rodrigues, Alda J.; Gonzalez, Ramon

    2016-01-01

    Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must. PMID:27199967

  15. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  16. Analysis of non-Saccharomyces yeast populations isolated from grape musts from Sicily (Italy).

    PubMed

    Romancino, D P; Di Maio, S; Muriella, R; Oliva, D

    2008-12-01

    The aim of this study was to identify the non-Saccharomyces yeast populations present in the grape must microflora from wineries from different areas around the island of Sicily. Yeasts identification was conducted on 2575 colonies isolated from six musts, characterized using Wallerstein Laboratory (WL) nutrient agar, restriction analysis of the amplified 5.8S-internal transcribed spacer region and restriction profiles of amplified 26S rDNA. In those colonies, we identified 11 different yeast species originating from wine musts from two different geographical areas of the island of Sicily. We isolated non-Saccharomyces yeasts and described the microflora in grape musts from different areas of Sicily. Moreover, we discovered two new colony morphologies for yeasts on WL agar never previously described. This investigation is a first step in understanding the distribution of non-Saccharomyces yeasts in grape musts from Sicily. The contribution is important as a tool for monitoring the microflora in grape musts and for establishing a new non-Saccharomyces yeast collection; in the future, this collection will be used for understanding the significance of these yeasts in oenology.

  17. The presence of Enterococcus, coliforms and E. coli in a commercial yeast manufacturing process.

    PubMed

    O'Brien, S S; Lindsay, D; von Holy, A

    2004-07-01

    This study evaluated a typical commercial yeast manufacturing process for bacterial contamination. Product line samples of a commercial yeast manufacturing process and the corresponding seed yeast manufacturing process were obtained upstream from the final compressed and dry yeast products. All samples were analysed before (non-PI) and after preliminary incubation (PI) at 37 degrees C for 24 h. The PI procedure was incorporated for amplification of bacterial counts below the lower detection limit. Enterococcus, coliform and Escherichia coli counts were quantified by standard pour-plate techniques using selective media. Presence at all stages and progressive increases in counts of Enterococcus, coliforms and E. coli during processing in the commercial manufacturing operation suggested that the primary source of contamination of both compressed and dry yeast with these bacteria was the seed yeast manufacturing process and that contamination was amplified throughout the commercial yeast manufacturing process. This was confirmed by surveys of the seed yeast manufacturing process which indicated that contamination of the seed yeast with Enterococcus, coliforms and E. coli occurred during scale up of seed yeast biomass destined as inoculum for the commercial fermentation.

  18. [Study on mechanism of inactivated cider yeast adsorbing patulin by Fourier transform infrared spectroscopy].

    PubMed

    Guo, Cai-Xia; Yue, Tian-Li; Yuan, Ya-Hong; Wang, Zhou-Li; Wang, Ling; Cai, Rui

    2013-03-01

    The mechanism of patulin adsorption by inactivated cider yeast was studied by chemical modification and FTIR The results of patulin removal by various modified yeast biomass showed that the ability of patulin biosorption by acetone-treated yeast and NaOH-treated yeast increased siginificantly, while the methylation of amino group and esterification of carboxylate functionalities of yeast cell surface caused a decrease in patulin binding, which indicated that amino group and carboxyl group presented in the cell walls of yeast might be involved in the binding of patulin to the yeast. The FTIR analysis indicated that the main functional groups were amino group, carboxyl group and hydroxy group which are associated with protein and polysaccharides.

  19. Divergence of iron metabolism in wild Malaysian yeast.

    PubMed

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  20. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts

    PubMed Central

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase. PMID:24949272