Sample records for yeast one-hybrid analysis

  1. Novel brewing yeast hybrids: creation and application.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  2. Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens

    PubMed Central

    Kalay, Gizem; Lusk, Richard; Dome, Mackenzie; Hens, Korneel; Deplancke, Bart; Wittkopp, Patricia J.

    2016-01-01

    The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming. PMID:27527791

  3. Yeast One-Hybrid Gγ Recruitment System for Identification of Protein Lipidation Motifs

    PubMed Central

    Fukuda, Nobuo; Doi, Motomichi; Honda, Shinya

    2013-01-01

    Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs. PMID:23922919

  4. Yeast Two-Hybrid and One-Hybrid Screenings Identify Regulators of hsp70 Gene Expression.

    PubMed

    Saito, Youhei; Nakagawa, Takanobu; Kakihana, Ayana; Nakamura, Yoshia; Nabika, Tomomi; Kasai, Michihiro; Takamori, Mai; Yamagishi, Nobuyuki; Kuga, Takahisa; Hatayama, Takumi; Nakayama, Yuji

    2016-09-01

    The mammalian stress protein Hsp105β, which is specifically expressed during mild heat shock and localizes to the nucleus, induces the major stress protein Hsp70. In the present study, we performed yeast two-hybrid and one-hybrid screenings to identify the regulators of Hsp105β-mediated hsp70 gene expression. Six and two proteins were detected as Hsp105β- and hsp70 promoter-binding proteins, respectively. A luciferase reporter gene assay revealed that hsp70 promoter activation is enhanced by the transcriptional co-activator AF9 and splicing mediator SNRPE, but suppressed by the coiled-coil domain-containing protein CCDC127. Of these proteins, the knockdown of SNRPE suppressed the expression of Hsp70 irrespective of the presence of Hsp105β, indicating that SNRPE essentially functions as a transcriptional activator of hsp70 gene expression. The overexpression of HSP70 in tumor cells has been associated with cell survival and drug resistance. We here identified novel regulators of Hsp70 expression in stress signaling and also provided important insights into Hsp70-targeted anti-cancer therapy. J. Cell. Biochem. 117: 2109-2117, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. New lager yeast strains generated by interspecific hybridization.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  6. A novel, easy and rapid method for constructing yeast two-hybrid vectors using In-Fusion technology.

    PubMed

    Yu, Deshui; Liao, Libing; Zhang, Ju; Zhang, Yi; Xu, Kedong; Liu, Kun; Li, Xiaoli; Tan, Guangxuan; Chen, Ran; Wang, Yulu; Liu, Xia; Zhang, Xuan; Han, Xiaomeng; Wei, Zhangkun; Li, Chengwei

    2018-05-01

    Yeast two-hybrid systems are powerful tools for analyzing interactions between proteins. Vector construction is an essential step in yeast two-hybrid experiments, which require bait and prey plasmids. In this study, we modified the multiple cloning site sequence of the yeast plasmid pGADT7 by site-directed mutagenesis PCR to generate the pGADT7-In vector, which resulted in an easy and rapid method for constructing yeast two-hybrid vectors using the In-Fusion cloning technique. This method has three key advantages: only one pair of primers and one round of PCR are needed to generate bait and prey plasmids for each gene, it is restriction endonuclease- and ligase-independent, and it is fast and easily performed.

  7. Detection of Protein Interactions in T3S Systems Using Yeast Two-Hybrid Analysis.

    PubMed

    Nilles, Matthew L

    2017-01-01

    Two-hybrid systems, sometimes termed interaction traps, are genetic systems designed to find and analyze interactions between proteins. The most common systems are yeast based (commonly Saccharomyces cerevisae) and rely on the functional reconstitution of the GAL4 transcriptional activator. Reporter genes, such as the lacZ gene of Escherichia coli (encodes β-galactosidase), are placed under GAL4-dependent transcriptional control to provide quick and reliable detection of protein interactions. In this method the use of a yeast-based two-hybrid system is described to study protein interactions between components of type III secretion systems.

  8. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    PubMed

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  9. Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid

    PubMed Central

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-01-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production. PMID:19261625

  10. Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts

    PubMed Central

    Dujon, Bernard

    2012-01-01

    Summary: Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes. PMID:23204364

  11. Quality parameters and RAPD-PCR differentiation of commercial baker's yeast and hybrid strains.

    PubMed

    El-Fiky, Zaki A; Hassan, Gamal M; Emam, Ahmed M

    2012-06-01

    Baker's yeast, Saccharomyces cerevisiae, is a key component in bread baking. Total of 12 commercial baker's yeast and 2 hybrid strains were compared using traditional quality parameters. Total of 5 strains with high leavening power and the 2 hybrid strains were selected and evaluated for their alpha-amylase, maltase, glucoamylase enzymes, and compared using random amplified polymorphic DNA (RAPD). The results revealed that all selected yeast strains have a low level of alpha-amylase and a high level of maltase and glucoamylase enzymes. Meanwhile, the Egyptian yeast strain (EY) had the highest content of alpha-amylase and maltase enzymes followed by the hybrid YH strain. The EY and YH strains have the highest content of glucoamylase enzyme almost with the same level. The RAPD banding patterns showed a wide variation among commercial yeast and hybrid strains. The closely related Egyptian yeast strains (EY and AL) demonstrated close similarity of their genotypes. The 2 hybrid strains were clustered to Turkish and European strains in 1 group. The authors conclude that the identification of strains and hybrids using RAPD technique was useful in determining their genetic relationship. These results can be useful not only for the basic research, but also for the quality control in baking factories. © 2012 Institute of Food Technologists®

  12. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast.

    PubMed

    Smukowski Heil, Caiti S; DeSevo, Christopher G; Pai, Dave A; Tucker, Cheryl M; Hoang, Margaret L; Dunham, Maitreya J

    2017-07-01

    Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we examine hybrid genome evolution using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae × Saccharomyces uvarum and their parentals. We evolved these strains in nutrient-limited conditions for hundreds of generations and sequenced the resulting cultures identifying numerous point mutations, copy number changes, and loss of heterozygosity (LOH) events, including species-biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated LOH at the high-affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the LOH is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C.

    PubMed

    Smukowski Heil, Caiti; Burton, Joshua N; Liachko, Ivan; Friedrich, Anne; Hanson, Noah A; Morris, Cody L; Schacherer, Joseph; Shendure, Jay; Thomas, James H; Dunham, Maitreya J

    2018-01-01

    Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines.

    PubMed

    Bellon, Jennifer R; Eglinton, Jeffery M; Siebert, Tracey E; Pollnitz, Alan P; Rose, Louisa; de Barros Lopes, Miguel; Chambers, Paul J

    2011-08-01

    Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.

  15. A yeast 2-hybrid analysis of human GTP cyclohydrolase I protein interactions

    PubMed Central

    Swick, Lance; Kapatos, Gregory

    2008-01-01

    The yeast 2-hybrid system was used to identify protein domains involved in the oligomerization of human guanosine 5′-triphosphate (GTP) Cyclohydrolase I (GCH1) and the interaction of GCH1 with its regulatory partner, GCH1 feedback regulatory protein (GFRP). When interpreted within the structural framework derived from crystallography, our results indicate that the GCH1 N-terminal α-helices are not the only domains involved in the formation of dimers from monomers and also suggest an important role for the C-terminal α-helix in the assembly of dimers to form decamers. Moreover, a previously unknown role of the extended N-terminal α–helix in the interaction of GCH1 and GFRP was revealed. To discover novel GCH1 protein binding partners, we used the yeast 2-hybrid system to screen a human brain library with GCH1 N-terminal amino acids 1–96 as prey. This protruding extension of GCH1 contains two canonical Type-I Src homology-3 (SH3) ligand domains located within amino acids 1–42. Our screen yielded seven unique clones that were subsequently shown to require amino acids 1–42 for binding to GCH1. The interaction of one of these clones, Activator of Heat Shock 90 kDa Protein (Aha1), with GCH1 was validated by glutathione-s-transferase (GST) pull-down assay. Although the physiological relevance of the Aha1–GCH1 interaction requires further study, Aha1 may recruit GCH1 into the endothelial nitric oxide synthase/heat shock protein (eNOS/Hsp90) complex to support changes in endothelial nitric oxide production through the local synthesis of BH4. PMID:16696853

  16. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments.

    PubMed

    Lopandic, Ksenija

    2018-01-01

    The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Speciation driven by hybridization and chromosomal plasticity in a wild yeast.

    PubMed

    Leducq, Jean-Baptiste; Nielly-Thibault, Lou; Charron, Guillaume; Eberlein, Chris; Verta, Jukka-Pekka; Samani, Pedram; Sylvester, Kayla; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2016-01-11

    Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.

  18. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast

    PubMed Central

    Kelemen, Zsolt; Sebastian, Alvaro; Xu, Wenjia; Grain, Damaris; Salsac, Fabien; Avon, Alexandra; Berger, Nathalie; Tran, Joseph; Dubreucq, Bertrand; Lurin, Claire; Lepiniec, Loïc; Contreras-Moreira, Bruno; Dubos, Christian

    2015-01-01

    The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences. PMID:26484765

  19. Use of The Yeast Two-Hybrid System to Identify Targets of Fungal Effectors

    USDA-ARS?s Scientific Manuscript database

    The yeast-two hybrid (Y2H) system is a binary method widely used to determine direct interactions between paired proteins. Although having certain limitations, this method has become one of the two main systemic tools (along with affinity purification/mass spectrometry) for interactome mapping in mo...

  20. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast

    PubMed Central

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-01-01

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI: http://dx.doi.org/10.7554/eLife.02630.001 PMID:24963140

  1. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast.

    PubMed

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-06-24

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation.DOI: http://dx.doi.org/10.7554/eLife.02630.001. Copyright © 2014, Zanders et al.

  2. Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-transferase P enhancer I.

    PubMed

    Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De

    2002-03-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  3. Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens.

    PubMed

    Ben Daniel, Bat-Hen; Cattan, Esther; Wachtel, Chaim; Avrahami, Dorit; Glick, Yair; Malichy, Asaf; Gerber, Doron; Miller, Gad

    2016-08-01

    To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses. © 2016 Scandinavian Plant Physiology Society.

  4. High-throughput analysis of the protein sequence-stability landscape using a quantitative "yeast surface two-hybrid" system and fragment reconstitution

    PubMed Central

    Dutta, Sanjib; Koide, Akiko; Koide, Shohei

    2008-01-01

    Stability evaluation of many mutants can lead to a better understanding of the sequence determinants of a structural motif and of factors governing protein stability and protein evolution. The traditional biophysical analysis of protein stability is low throughput, limiting our ability to widely explore the sequence space in a quantitative manner. In this study, we have developed a high-throughput library screening method for quantifying stability changes, which is based on protein fragment reconstitution and yeast surface display. Our method exploits the thermodynamic linkage between protein stability and fragment reconstitution and the ability of the yeast surface display technique to quantitatively evaluate protein-protein interactions. The method was applied to a fibronectin type III (FN3) domain. Characterization of fragment reconstitution was facilitated by the co-expression of two FN3 fragments, thus establishing a "yeast surface two-hybrid" method. Importantly, our method does not rely on competition between clones and thus eliminates a common limitation of high-throughput selection methods in which the most stable variants are predominantly recovered. Thus, it allows for the isolation of sequences that exhibits a desired level of stability. We identified over one hundred unique sequences for a β-bulge motif, which was significantly more informative than natural sequences of the FN3 family in revealing the sequence determinants for the β-bulge. Our method provides a powerful means to rapidly assess stability of many variants, to systematically assess contribution of different factors to protein stability and to enhance protein stability. PMID:18674545

  5. New yeasts-new brews: modern approaches to brewing yeast design and development.

    PubMed

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    PubMed

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  7. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii

    PubMed Central

    2017-01-01

    ABSTRACT Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression

  8. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    PubMed

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  9. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    PubMed Central

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  10. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.

    PubMed

    Ortiz-Merino, Raúl A; Kuanyshev, Nurzhan; Byrne, Kevin P; Varela, Javier A; Morrissey, John P; Porro, Danilo; Wolfe, Kenneth H; Branduardi, Paola

    2018-03-01

    Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii 's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase ( FDH ) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns

  11. One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

    DOE PAGES

    Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...

    2016-11-16

    Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less

  12. One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herricks, Thurston; Dilworth, David J.; Mast, Fred D.

    Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less

  13. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation.

    PubMed

    Odell, Anahi V; Tran, Fanny; Foderaro, Jenna E; Poupart, Séverine; Pathak, Ravi; Westwood, Nicholas J; Ward, Gary E

    2015-01-01

    Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.

  14. Synthesis of a beta-estradiol-biotin chimera that potently heterodimerizes estrogen receptor and streptavidin proteins in a yeast three-hybrid system.

    PubMed

    Hussey, Stephen L; Muddana, Smita S; Peterson, Blake R

    2003-04-02

    Small molecules that dimerize proteins in living cells provide powerful probes of biological processes and have potential as tools for the identification of protein targets of natural products. We synthesized 7-alpha-substituted derivatives of beta-estradiol tethered to the natural product biotin to regulate heterodimerization of estrogen receptor (ER) and streptavidin (SA) proteins expressed as components of a yeast three-hybrid system. Addition of an estradiol-biotin chimera bearing a 19-atom linker to yeast expressing DNA-bound ER-alpha or ER-beta LexA fusion proteins and wild-type SA protein fused to the B42 activation domain activated reporter gene expression by as much as 450-fold in vivo (10 muM ligand). Comparative analysis of lower affinity Y43A (biotin Kd approximately 100 pM) and W120A (biotin Kd approximately 100 nM) mutants of SA indicated that moderate affinity interactions can be readily detected with this system. Comparison of a 7-alpha-substituted estradiol-biotin chimera with a structurally similar dexamethasone-biotin chimera revealed that yeast expressing ER proteins can detect cognate ligands with up to 5-fold greater potency and 70-fold higher activity than yeast expressing analogous glucocorticoid receptor (GR) proteins. This approach may facilitate the identification of protein targets of biologically active small molecules screened against genetically encoded libraries of proteins expressed in yeast three-hybrid systems.

  15. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  16. Male Yeast Infection: How Can I Tell if I Have One?

    MedlinePlus

    ... tell if I have one? Can men get yeast infections? What are the signs and symptoms of a male yeast infection? Answers from James M. Steckelberg, M.D. Yes, men can get yeast infections, too, which can lead to a condition ...

  17. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system.

    PubMed

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease.

  18. QTL mapping of sake brewing characteristics of yeast.

    PubMed

    Katou, Taku; Namise, Masahiro; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2009-04-01

    A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.

  19. Interaction of CSFV E2 Protein with Swine Host Factors as Detected by Yeast Two-Hybrid System

    PubMed Central

    Gladue, Douglas P.; Baker-Bransetter, Ryan; Holinka, Lauren G.; Fernandez-Sainz, Ignacio J.; O’Donnell, Vivian; Fletcher, Paige; Lu, Zhiqiang; Borca, Manuel V.

    2014-01-01

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle. PMID:24416391

  20. Genetic Analysis of Haploids from Industrial Strains of Baker's Yeast

    PubMed Central

    Oda, Yuji; Ouchi, Kozo

    1989-01-01

    Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATα MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains. PMID:16347967

  1. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system

    PubMed Central

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    OBJECTIVE To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. METHODS Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. RESULTS Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. CONCLUSION The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease. PMID:18651010

  2. Characterization of single chain antibody targets through yeast two hybrid

    PubMed Central

    2010-01-01

    Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s) is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s) using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID), efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise domain mapping for linear

  3. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    PubMed

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd

    2016-07-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  5. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peris, David; Langdon, Quinn K.; Moriarty, Ryan V.

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike alestyle beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains tomore » each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. Furthermore, we conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.« less

  6. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus

    PubMed Central

    Sylvester, Kayla; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R.; Libkind, Diego; Hittinger, Chris Todd

    2016-01-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes. PMID:27385107

  7. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus

    DOE PAGES

    Peris, David; Langdon, Quinn K.; Moriarty, Ryan V.; ...

    2016-07-06

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike alestyle beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains tomore » each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. Furthermore, we conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.« less

  8. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment.

    PubMed

    Salam, Jaseetha Abdul; Das, Nilanjana

    2015-03-01

    The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.

  9. A Large Set of Newly Created Interspecific Saccharomyces Hybrids Increases Aromatic Diversity in Lager Beers

    PubMed Central

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido

    2015-01-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, “Saaz” and “Frohberg.” This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. PMID:26407881

  10. Yeast Two-Hybrid: State of the Art

    PubMed Central

    Beyaert, Rudi

    1999-01-01

    Genome projects are approaching completion and are saturating sequence databases. This paper discusses the role of the two-hybrid system as a generator of hypotheses. Apart from this rather exhaustive, financially and labour intensive procedure, more refined functional studies can be undertaken. Indeed, by making hybrids of two-hybrid systems, customised approaches can be developed in order to attack specific function-related problems. For example, one could set-up a "differential" screen by combining a forward and a reverse approach in a three-hybrid set-up. Another very interesting project is the use of peptide libraries in two-hybrid approaches. This could enable the identification of peptides with very high specificity comparable to "real" antibodies. With the technology available, the only limitation is imagination. PMID:12734586

  11. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  12. A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers.

    PubMed

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido; Verstrepen, Kevin J

    2015-12-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids.

    PubMed

    Krogerus, Kristoffer; Seppänen-Laakso, Tuulikki; Castillo, Sandra; Gibson, Brian

    2017-04-21

    Interspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains. To further enhance the value of hybridization for strain development, it would be desirable to combine phenotypic traits from more than two parent strains, as well as remove unwanted traits from hybrids. One such trait, that has limited the industrial use of de novo lager yeast hybrids, is their inherent tendency to produce phenolic off-flavours; an undesirable trait inherited from the Saccharomyces eubayanus parent. Trait removal and the addition of traits from a third strain could be achieved through sporulation and meiotic recombination or further mating. However, interspecies hybrids tend to be sterile, which impedes this opportunity. Here we generated a set of five hybrids from three different parent strains, two of which contained DNA from all three parent strains. These hybrids were constructed with fertile allotetraploid intermediates, which were capable of efficient sporulation. We used these eight brewing strains to examine two brewing-relevant phenotypes: stress tolerance and phenolic off-flavour formation. Lipidomics and multivariate analysis revealed links between several lipid species and the ability to ferment in low temperatures and high ethanol concentrations. Unsaturated fatty acids, such as oleic acid, and ergosterol were shown to positively influence growth at high ethanol concentrations. The ability to produce phenolic off-flavours was also successfully removed from one of the hybrids, Hybrid T2, through meiotic segregation. The potential application of these strains in industrial fermentations was demonstrated in wort fermentations, which revealed that the meiotic segregant Hybrid T2 not only didn't produce any phenolic off-flavours, but also reached the highest ethanol concentration and consumed the most maltotriose. Our study demonstrates the

  14. Search for protein partners of mitochondrial single-stranded DNA-binding protein Rim1p using a yeast two-hybrid system.

    PubMed

    Kucejová, B; Foury, F

    2003-01-01

    RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.

  15. Mapping protein-protein interactions using yeast two-hybrid assays.

    PubMed

    Mehla, Jitender; Caufield, J Harry; Uetz, Peter

    2015-05-01

    Yeast two-hybrid (Y2H) screens are an efficient system for mapping protein-protein interactions and whole interactomes. The screens can be performed using random libraries or collections of defined open reading frames (ORFs) called ORFeomes. This protocol describes both library and array-based Y2H screening, with an emphasis on array-based assays. Array-based Y2H is commonly used to test a number of "prey" proteins for interactions with a single "bait" (target) protein or pool of proteins. The advantage of this approach is the direct identification of interacting protein pairs without further downstream experiments: The identity of the preys is known and does not require further confirmation. In contrast, constructing and screening a random prey library requires identification of individual prey clones and systematic retesting. Retesting is typically performed in an array format. © 2015 Cold Spring Harbor Laboratory Press.

  16. Strong FANCA/FANCG but weak FANCA/FANCC interaction in the yeast 2-hybrid system.

    PubMed

    Reuter, T; Herterich, S; Bernhard, O; Hoehn, H; Gross, H J

    2000-01-15

    Three of at least 8 Fanconi anemia (FA) genes have been cloned (FANCA, FANCC, FANCG), but their functions remain unknown. Using the yeast 2-hybrid system and full-length cDNA, the authors found a strong interaction between FANCA and FANCG proteins. They also obtained evidence for a weak interaction between FANCA and FANCC. Neither FANCA nor FANCC was found to interact with itself. These results support the notion of a functional association between the FA gene products. (Blood. 2000;95:719-720)

  17. Multiple Origins of the Pathogenic Yeast Candida orthopsilosis by Separate Hybridizations between Two Parental Species.

    PubMed

    Schröder, Markus S; Martinez de San Vicente, Kontxi; Prandini, Tâmara H R; Hammel, Stephen; Higgins, Desmond G; Bagagli, Eduardo; Wolfe, Kenneth H; Butler, Geraldine

    2016-11-01

    Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.

  18. Investigating flavour characteristics of British ale yeasts: techniques, resources and opportunities for innovation

    PubMed Central

    Parker, Neva; James, Steve; Dicks, Jo; Bond, Chris; Nueno-Palop, Carmen; White, Chris; Roberts, Ian N

    2015-01-01

    Five British ale yeast strains were subjected to flavour profiling under brewery fermentation conditions in which all other brewing parameters were kept constant. Significant variation was observed in the timing and quantity of flavour-related chemicals produced. Genetic tests showed no evidence of hybrid origins in any of the strains, including one strain previously reported as a possible hybrid of Saccharomyces cerevisiae and S. bayanus. Variation maintained in historical S. cerevisiae ale yeast collections is highlighted as a potential source of novelty in innovative strain improvement for bioflavour production. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25361168

  19. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    PubMed

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)

    PubMed Central

    Dujon, Bernard A.; Louis, Edward J.

    2017-01-01

    Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance. PMID:28592505

  1. Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment

    PubMed Central

    Erny, C.; Raoult, P.; Alais, A.; Butterlin, G.; Delobel, P.; Matei-Radoi, F.; Casaregola, S.

    2012-01-01

    The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)2 genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates. PMID:22344648

  2. Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding

    PubMed Central

    Ohnuki, Shinsuke; Okada, Hiroki; Friedrich, Anne; Kanno, Yoichiro; Goshima, Tetsuya; Hasuda, Hirokazu; Inahashi, Masaaki; Okazaki, Naoto; Tamura, Hiroyasu; Nakamura, Ryo; Hirata, Dai; Fukuda, Hisashi; Shimoi, Hitoshi; Kitamoto, Katsuhiko; Watanabe, Daisuke; Schacherer, Joseph; Akao, Takeshi; Ohya, Yoshikazu

    2017-01-01

    Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomyces cerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies. PMID:28642365

  3. Assessment of Multi Fragment Melting Analysis System (MFMAS) for the Identification of Food-Borne Yeasts.

    PubMed

    Kesmen, Zülal; Büyükkiraz, Mine E; Özbekar, Esra; Çelik, Mete; Özkök, F Özge; Kılıç, Özge; Çetin, Bülent; Yetim, Hasan

    2018-06-01

    Multi Fragment Melting Analysis System (MFMAS) is a novel approach that was developed for the species-level identification of microorganisms. It is a software-assisted system that performs concurrent melting analysis of 8 different DNA fragments to obtain a fingerprint of each strain analyzed. The identification is performed according to the comparison of these fingerprints with the fingerprints of known yeast species recorded in a database to obtain the best possible match. In this study, applicability of the yeast version of the MFMAS (MFMAS-yeast) was evaluated for the identification of food-associated yeast species. For this purpose, in this study, a total of 145 yeast strains originated from foods and beverages and 19 standard yeast strains were tested. The DNAs isolated from these yeast strains were analyzed by the MFMAS, and their species were successfully identified with a similarity rate of 95% or higher. It was shown that the strains belonged to 43 different yeast species that are widely found in the foods. A clear discrimination was also observed in the phylogenetically related species. In conclusion, it might be suggested that the MFMAS-yeast seems to be a highly promising approach for a rapid, accurate, and one-step identification of the yeasts isolated from food products and/or their processing environments.

  4. Yeast one-hybrid screening the potential regulator of CYP6B6 overexpression of Helicoverpa armigera under 2-tridecanone stress.

    PubMed

    Zhao, J; Liu, X N; Li, F; Zhuang, S Z; Huang, L N; Ma, J; Gao, X W

    2016-04-01

    In insect, the cytochrome P450 plays a pivotal role in detoxification to toxic allelochemicals. Helicoverpa armigera can tolerate and survive in 2-tridecanone treatment owing to the CYP6B6 responsive expression, which is controlled by some regulatory DNA sequences and transcription regulators. Therefore, the 2-tridecanone responsive region and transcription regulators of the CYP6B6 are responsible for detoxification of cotton bollworm. In this study, we used yeast one-hybrid to screen two potential transcription regulators of the CYP6B6 from H. armigera that respond to the plant secondary toxicant 2-tridecanone, which were named Prey1 and Prey2, respectively. According to the NCBI database blast, Prey1 is the homology with FK506 binding protein (FKBP) of Manduca sexta and Bombyx mori that belongs to the FKBP-C superfamily, while Prey2 may be a homology of an unknown protein of Papilio or the fcaL24 protein homology of B. mori. The electrophoretic mobility shift assays revealed that the FKBP of prokaryotic expression could specifically bind to the active region of the CYP6B6 promoter. After the 6th instar larvae of H. armigera reared on 2-tridecanone artificial diet, we found there were similar patterns of CYP6B6 and FKBP expression of the cotton bollworm treated with 10 mg g-1 2-tridecanone for 48 h, which correlation coefficient was the highest (0.923). Thus, the FKBP is identified as a strong candidate for regulation of the CYP6B6 expression, when the cotton bollworm is treated with 2-tridecanone. This may lead us to a better understanding of transcriptional mechanism of CYP6B6 and provide very useful information for the pest control.

  5. Development and application of a DNA microarray-based yeast two-hybrid system

    PubMed Central

    Suter, Bernhard; Fontaine, Jean-Fred; Yildirimman, Reha; Raskó, Tamás; Schaefer, Martin H.; Rasche, Axel; Porras, Pablo; Vázquez-Álvarez, Blanca M.; Russ, Jenny; Rau, Kirstin; Foulle, Raphaele; Zenkner, Martina; Saar, Kathrin; Herwig, Ralf; Andrade-Navarro, Miguel A.; Wanker, Erich E.

    2013-01-01

    The yeast two-hybrid (Y2H) system is the most widely applied methodology for systematic protein–protein interaction (PPI) screening and the generation of comprehensive interaction networks. We developed a novel Y2H interaction screening procedure using DNA microarrays for high-throughput quantitative PPI detection. Applying a global pooling and selection scheme to a large collection of human open reading frames, proof-of-principle Y2H interaction screens were performed for the human neurodegenerative disease proteins huntingtin and ataxin-1. Using systematic controls for unspecific Y2H results and quantitative benchmarking, we identified and scored a large number of known and novel partner proteins for both huntingtin and ataxin-1. Moreover, we show that this parallelized screening procedure and the global inspection of Y2H interaction data are uniquely suited to define specific PPI patterns and their alteration by disease-causing mutations in huntingtin and ataxin-1. This approach takes advantage of the specificity and flexibility of DNA microarrays and of the existence of solid-related statistical methods for the analysis of DNA microarray data, and allows a quantitative approach toward interaction screens in human and in model organisms. PMID:23275563

  6. [Identification of C(2)M interacting proteins by yeast two-hybrid screening].

    PubMed

    Yue, Shan-shan; Xia, Lai-xin

    2015-11-01

    The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.

  7. A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5.

    PubMed

    Lev, Ifat; Shemesh, Keren; Volpe, Marina; Sau, Soumitra; Levinton, Nelly; Molco, Maya; Singh, Shivani; Liefshitz, Batia; Ben Aroya, Shay; Kupiec, Martin

    2017-07-01

    The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans -acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA. Copyright © 2017 by the Genetics Society of America.

  8. Alternative Saccharomyces interspecies hybrid combinations and their potential for low‐temperature wort fermentation

    PubMed Central

    Nikulin, Jarkko; Krogerus, Kristoffer

    2017-01-01

    Abstract The lager yeast hybrid (Saccharomyces cerevisiae × Saccharomyces eubayanus) possesses two key characteristics that are essential for lager brewing: efficient sugar utilization and cold tolerance. Here we explore the possibility that the lager yeast phenotype can be recreated by hybridizing S. cerevisiae ale yeast with a number of cold‐tolerant Saccharomyces species including Saccharomyces arboricola, Saccharomyces eubayanus, Saccharomyces mikatae and Saccharomyces uvarum. Interspecies hybrids performed better than parental strains in lager brewing conditions (12°C and 12°P wort), with the S. mikatae hybrid performing as well as the S. eubayanus hybrid. Where the S. cerevisiae parent was capable of utilizing maltotriose, this trait was inherited by the hybrids. A greater production of higher alcohols and esters by the hybrids resulted in the production of more aromatic beers relative to the parents. Strong fermentation performance relative to the parents was dependent on ploidy, with polyploid hybrids (3n, 4n) performing better than diploid hybrids. All hybrids produced 4‐vinyl guaiacol, a smoke/clove aroma generally considered an off flavour in lager beer. This characteristic could however be eliminated by isolating spore clones from a fertile hybrid of S. cerevisiae and S. mikatae. The results suggest that S. eubayanus is dispensable when constructing yeast hybrids that express the typical lager yeast phenotype. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:28755430

  9. A Novel Hybrid Yeast-Human Network Analysis Reveals an Essential Role for FNBP1L in Antibacterial Autophagy1

    PubMed Central

    Huett, Alan; Ng, Aylwin; Cao, Zhifang; Kuballa, Petric; Komatsu, Masaaki; Daly, Mark J.; Podolsky, Daniel K.; Xavier, Ramnik J.

    2009-01-01

    Autophagy is a conserved cellular process required for the removal of defective organelles, protein aggregates, and intracellular pathogens. We used a network analysis strategy to identify novel human autophagy components based upon the yeast interactome centered on the core yeast autophagy proteins. This revealed the potential involvement of 14 novel mammalian genes in autophagy, several of which have known or predicted roles in membrane organization or dynamics. We selected one of these membrane interactors, FNBP1L (formin binding protein 1-like), an F-BAR-containing protein (also termed Toca-1), for further study based upon a predicted interaction with ATG3. We confirmed the FNBP1L/ATG3 interaction biochemically and mapped the FNBP1L domains responsible. Using a functional RNA interference approach, we determined that FNBP1L is essential for autophagy of the intracellular pathogen Salmonella enterica serovar Typhimurium and show that the autophagy process serves to restrict the growth of intracellular bacteria. However, FNBP1L appears dispensable for other forms of autophagy induced by serum starvation or rapamycin. We present a model where FNBP1L is essential for autophagy of intracellular pathogens and identify FNBP1L as a differentially used molecule in specific autophagic contexts. By using network biology to derive functional biological information, we demonstrate the utility of integrated genomics to novel molecule discovery in autophagy. PMID:19342671

  10. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.

    PubMed

    Felgueiras, Juliana; Silva, Joana Vieira; Fardilha, Margarida

    2018-01-16

    "A man is known by the company he keeps" is a popular expression that perfectly fits proteins. A common approach to characterize the function of a target protein is to identify its interacting partners and thus infer its roles based on the known functions of the interactors. Protein-protein interaction networks (PPINs) have been created for several organisms, including humans, primarily as results of high-throughput screenings, such as yeast two-hybrid (Y2H). Their unequivocal use to understand events underlying human pathophysiology is promising in identifying genes and proteins associated with diseases. Therefore, numerous opportunities have emerged for PPINs as tools for clinical management of diseases: network-based disease classification systems, discovery of biomarkers and identification of therapeutic targets. Despite the great advantages of PPINs, their use is still unrecognised by several researchers who generate high-throughput data to generally characterize interactions in a certain model or to select an interaction to study in detail. We strongly believe that both approaches are not exclusive and that we can use PPINs as a complementary methodology and rich-source of information to the initial study proposal. Here, we suggest a pipeline to deal with Y2H results using bioinformatics tools freely available for academics. Yeast two-hybrid is widely-used to identify protein-protein interactions. Conventionally, the positive clones that result from a yeast two-hybrid screening are sequenced to identify the interactors of the protein of interest (also known as bait protein), and few interactions, thought as potentially relevant for the model in study, are selected for further validation using biochemical methods (e.g. co-immunoprecipitation and co-localization). The huge amount of data that is potentially lost during this conservative approach motivated us to write this tutorial-like review, so that researchers feel encouraged to take advantage of

  11. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast

    PubMed Central

    Jespersen, Lene; Cesar, Lene B.; Meaden, Philip G.; Jakobsen, Mogens

    1999-01-01

    Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure. PMID:9925567

  12. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    NASA Astrophysics Data System (ADS)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  13. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    PubMed

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  14. New Lager Brewery Strains Obtained by Crossing Techniques Using Cachaça (Brazilian Spirit) Yeasts

    PubMed Central

    Figueiredo, Bruna Inez Carvalho; Saraiva, Margarete Alice Fontes; de Souza Pimenta, Paloma Patrick; de Souza Testasicca, Miriam Conceição; Sampaio, Geraldo Magela Santos; da Cunha, Aureliano Claret; Afonso, Luis Carlos Crocco; Vieira de Queiroz, Marisa; de Miranda Castro, Ieso

    2017-01-01

    ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in

  15. Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System

    PubMed Central

    Stynen, Bram; Tournu, Hélène; Tavernier, Jan

    2012-01-01

    Summary: The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays. PMID:22688816

  16. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.

    PubMed

    Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin

    2011-07-01

    Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration. 2011 Elsevier B.V. All rights reserved.

  17. Nutrient supplements boost yeast transformation efficiency

    PubMed Central

    Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.

    2016-01-01

    Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994

  18. Reconstruction of the evolutionary history of Saccharomyces cerevisiae x S. kudriavzevii hybrids based on multilocus sequence analysis.

    PubMed

    Peris, David; Lopes, Christian A; Arias, Armando; Barrio, Eladio

    2012-01-01

    In recent years, interspecific hybridization and introgression are increasingly recognized as significant events in the evolution of Saccharomyces yeasts. These mechanisms have probably been involved in the origin of novel yeast genotypes and phenotypes, which in due course were to colonize and predominate in the new fermentative environments created by human manipulation. The particular conditions in which hybrids arose are still unknown, as well as the number of possible hybridization events that generated the whole set of natural hybrids described in the literature during recent years. In this study, we could infer at least six different hybridization events that originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both fermentative and non-fermentative environments. Different wine S. cerevisiae strains and European S. kudriavzevii strains were probably involved in the hybridization events according to gene sequence information, as well as from previous data on their genome composition and ploidy. Finally, we postulate that these hybrids may have originated after the introduction of vine growing and winemaking practices by the Romans to the present Northern vine-growing limits and spread during the expansion of improved viticulture and enology practices that occurred during the Late Middle Ages.

  19. Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species.

    PubMed

    de Barros Lopes, Miguel; Bellon, Jennifer R; Shirley, Neil J; Ganter, Philip F

    2002-01-01

    Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastorianus. The genome structure of CBS 380(T), the type strain of Saccharomyces bayanus, is also consistent with S. pastorianus gene transfer. The results indicate that the cider yeast, CID1, possesses nuclear DNA from three separate species. Mating experiments show that there are no barriers to interspecific conjugation of haploid cells. Furthermore, the allopolyploid strains were able to undergo further hybridizations with other Saccharomyces sensu stricto yeasts. These results demonstrate that introgression between the Saccharomyces sensu stricto species is likely.

  20. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    PubMed

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The

  1. Long-read sequencing data analysis for yeasts.

    PubMed

    Yue, Jia-Xing; Liti, Gianni

    2018-06-01

    Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.

  2. Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes.

    PubMed

    Bellon, Jennifer R; Yang, Fei; Day, Martin P; Inglis, Debra L; Chambers, Paul J

    2015-10-01

    To remain competitive in increasingly overcrowded markets, yeast strain development programmes are crucial for fermentation-based food and beverage industries. In a winemaking context, there are many yeast phenotypes that stand to be improved. For example, winemakers endeavouring to produce sweet dessert wines wrestle with fermentation challenges particular to fermenting high-sugar juices, which can lead to elevated volatile acidity levels and extended fermentation times. In the current study, we used natural yeast breeding techniques to generate Saccharomyces spp. interspecific hybrids as a non-genetically modified (GM) strategy to introduce targeted improvements in important, wine-relevant traits. The hybrids were generated by mating a robust wine strain of Saccharomyces cerevisiae with a wine isolate of Saccharomyces bayanus, a species previously reported to produce wines with low concentrations of acetic acid. Two hybrids generated from the cross showed robust fermentation properties in high-sugar grape juice and produced botrytised Riesling wines with much lower concentrations of acetic acid relative to the industrial wine yeast parent. The hybrids also displayed suitability for icewine production when bench-marked against an industry standard icewine yeast, by delivering icewines with lower levels of acetic acid. Additionally, the hybrid yeast produced wines with novel aroma and flavour profiles and established that choice of yeast strain impacts on wine colour. These new hybrid yeasts display the desired targeted fermentation phenotypes from both parents, robust fermentation in high-sugar juice and the production of wines with low volatile acidity, thus establishing their suitability for wine styles that are traditionally troubled by excessive volatile acidity levels.

  3. Hybridation of different chiral separation techniques with ICP-MS detection for the separation and determination of selenomethionine enantiomers: chiral speciation of selenized yeast.

    PubMed

    Méndez, S P; González, E B; Sanz-Medel, A

    2001-05-01

    Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast. Copyright 2001 John Wiley & Sons, Ltd.

  4. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts

    DOE PAGES

    Baker, Emily Clare; Wang, Bing; Bellora, Nicolas; ...

    2015-08-11

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae ( S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts havemore » experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. In conclusion, our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.« less

  5. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts

    PubMed Central

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A.; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-01-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. PMID:26269586

  6. Etest and Sensititre YeastOne Susceptibility Testing of Echinocandins against Candida Species from a Single Center in Austria.

    PubMed

    Aigner, Maria; Erbeznik, Thomas; Gschwentner, Martin; Lass-Flörl, Cornelia

    2017-08-01

    Candida species were tested for susceptibility to caspofungin, anidulafungin, and micafungin in order to evaluate the roles of Etest and Sensititre YeastOne in antifungal susceptibility testing for daily routines and to survey resistance. A total of 104 Candida species isolates detected from blood cultures were investigated. With EUCAST broth microdilution as the reference method, essential agreement (EA), categorical agreement (CA), very major errors (VME), major errors (ME), and minor (MIN) errors were assessed by reading MICs at 18, 24, and 48 h. By use of EUCAST broth microdilution and species-specific clinical breakpoints (CBPs), echinocandin resistance was not detected during the study period. Using EUCAST CBPs, MIC readings at 24 h for the Etest and Sensititre YeastOne resulted in CA levels of 99% and 93% for anidulafungin and 99% and 97% for micafungin. Using revised CLSI CBPs for caspofungin, CA levels were 92% and 99% for Etest and Sensititre YeastOne. The Etest proved an excellent, easy-to-handle alternative method for testing susceptibility to anidulafungin and micafungin. Due to misclassifications, the Etest is less suitable for testing susceptibility to caspofungin (8% of isolates falsely tested resistant). The CA levels of Sensititre YeastOne were 93% and 97% for anidulafungin and micafungin (24 h) by use of EUCAST CBPs and increased to 100% for both antifungals if CLSI CBPs were applied and to 100% and 99% if Sensititre YeastOne epidemiological cutoff values (ECOFFs) were applied. No one echinocandin could be demonstrated to be superior to another in vitro Since resistance was lacking among our Candida isolates, we cannot derive any recommendation from accurate resistance detection by the Etest and Sensititre YeastOne. Copyright © 2017 American Society for Microbiology.

  7. Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.

    PubMed

    Picazo, C; Gamero-Sandemetrio, E; Orozco, H; Albertin, W; Marullo, P; Matallana, E; Aranda, A

    2015-03-01

    Mitochondria are the cell's powerhouse when organisms are grown in the presence of oxygen. They are also the source of reactive oxygen species that cause damage to the biochemical components of the cell and lead to cellular ageing and death. Under winemaking conditions, Saccharomyces yeasts exclusively have a fermentative metabolism due to the high sugar content of grape must. However, their production as an active dry yeast (ADY) form required aerobic propagation and a dehydration process. In these industrial steps, oxidative stress is particularly harmful for the cell. In this work, we analysed the impact of the mitochondrial genome on oxidative stress response, longevity and dehydration tolerance using the synthetic interspecific hybrids obtained between two S. cerevisiae and S. uvarum strains. The isogenic nature of nuclear DNA of such hybrids allowed us to analyse the impact of mitochondrial DNA for fermentative and oxidative stress conditions. Under grape must conditions, the inheritance of mitochondrial DNA poorly impacted the fermentative performance of interspecific hybrids, unlike the hybrids with S. cerevisiae mitochondrial inheritance, which displayed increased tolerance to oxidative stress and dehydration, and showed an extended chronological longevity when cells were grown with aeration. In modern oenology, yeast starters are employed to inoculate grape juice, usually in the form of active dry yeast (ADY). The dehydration process implies stressful conditions that lead to oxidative damage. Other yeast species and interspecific hybrids other than Saccharomyces cerevisiae may be used to confer novel properties to the final product. However, these yeasts are usually more sensitive to drying. Understanding the causes of oxidative stress tolerance is therefore necessary for developing the use of these organisms in industry. This study indicates the impact of mitochondrial DNA inheritance for oxidative stress resistance in an interspecific context using

  8. Screening of binding proteins that interact with Chinese sacbrood virus VP3 capsid protein in Apis cerana larvae cDNA library by the yeast two-hybrid method.

    PubMed

    Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao

    2018-03-15

    Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Network topological analysis reveals the functional cohesiveness for the newly discovered links by Yeast 2 Hybrid approach

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan; Pevzner, Sam; Rolland, Thomas; Tassan, Murat; Barabasi, Albert Laszlo; Vidal, Mark; CCNR, Northeastern University Collaboration; Dana Farber Cancer Institute Collaboration

    2014-03-01

    Protein-protein interaction maps and interactomes are the blueprint of Network Medicine and systems biology and are being experimentally studied by different groups. Despite the wide usage of Literature Curated Interactome (LCI), these sources are biased towards different parameters such as highly studied proteins. Yeast two hybrid method is a high throughput experimental setup which screens proteins in an unbiased fashion. Current knowledge of protein interactions is far from complete. In fact the previous offered data from Y2H method (2005), is estimated to offer only 5% of all potential protein interactions. Currently this coverage has increased to 20% of what is known as reference HI In this work we study the topological properties of Y2H protein-protein interactions network with LCI and show although they both agree on some properties, LCI shows a clear unbiased nature of interaction selections. Most importantly, we assess the properties of PPI as it evolves with increasing the coverage. We show that, the newly discovered interactions tend to connect proteins that have been closer than average in the previous PPI release. reinforcing the modular structure of PPI. Furthermore, we show, some unseen effects on PPI (as opposed to LCI) can be explained by its incompleteness.

  10. Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii.

    PubMed

    Xu, Jianping; Yan, Zhun; Guo, Hong

    2009-06-01

    The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii. The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii, but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.

  11. Reconstruction of the Evolutionary History of Saccharomyces cerevisiae x S. kudriavzevii Hybrids Based on Multilocus Sequence Analysis

    PubMed Central

    Peris, David; Lopes, Christian A.; Arias, Armando; Barrio, Eladio

    2012-01-01

    In recent years, interspecific hybridization and introgression are increasingly recognized as significant events in the evolution of Saccharomyces yeasts. These mechanisms have probably been involved in the origin of novel yeast genotypes and phenotypes, which in due course were to colonize and predominate in the new fermentative environments created by human manipulation. The particular conditions in which hybrids arose are still unknown, as well as the number of possible hybridization events that generated the whole set of natural hybrids described in the literature during recent years. In this study, we could infer at least six different hybridization events that originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both fermentative and non-fermentative environments. Different wine S. cerevisiae strains and European S. kudriavzevii strains were probably involved in the hybridization events according to gene sequence information, as well as from previous data on their genome composition and ploidy. Finally, we postulate that these hybrids may have originated after the introduction of vine growing and winemaking practices by the Romans to the present Northern vine-growing limits and spread during the expansion of improved viticulture and enology practices that occurred during the Late Middle Ages. PMID:23049811

  12. A protein domain-centric approach for the comparative analysis of human and yeast phenotypically relevant mutations

    PubMed Central

    2013-01-01

    Background The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the population size needed to have adequate statistical power. One way to circumvent this problem, which is critical for the study of rare diseases, is to study the molecular patterns emerging from functional studies of existing disease mutations. Current gene-centric analyses to study mutations in coding regions are limited by their inability to account for the functional modularity of the protein. Previous studies of the functional patterns of known human disease mutations have shown a significant tendency to cluster at protein domain positions, namely position-based domain hotspots of disease mutations. However, the limited number of known disease mutations remains the main factor hindering the advancement of mutation studies at a functional level. In this paper, we address this problem by incorporating mutations known to be disruptive of phenotypes in other species. Focusing on two evolutionarily distant organisms, human and yeast, we describe the first inter-species analysis of mutations of phenotypic relevance at the protein domain level. Results The results of this analysis reveal that phenotypic mutations from yeast cluster at specific positions on protein domains, a characteristic previously revealed to be displayed by human disease mutations. We found over one hundred domain hotspots in yeast with approximately 50% in the exact same domain position as known human disease mutations. Conclusions We describe an analysis using protein domains as a framework for transferring functional information by studying domain hotspots in human and yeast and relating phenotypic changes in yeast to diseases in

  13. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system.

    PubMed

    Singh, Raksha; Lee, Jae-Eun; Dangol, Sarmina; Choi, Jihyun; Yoo, Ran Hee; Moon, Jae Sun; Shim, Jae-Kyung; Rakwal, Randeep; Agrawal, Ganesh Kumar; Jwa, Nam-Soo

    2014-01-01

    The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New family of pectinase genes PGU1b-PGU3b of the pectinolytic yeast Saccharomyces bayanus var. uvarum.

    PubMed

    Naumov, G I; Shalamitskiy, M Yu; Naumova, E S

    2016-03-01

    Using yeast genome databases and literature data, we have conducted a phylogenetic analysis of pectinase PGU genes from Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and hybrid taxon S. pastorianus (syn. S. carlsbergensis). Single PGU genes were observed in all Saccharomyces species, except S. bayanus. The superfamily of divergent PGU genes has been documented in S. bayanus var. uvarum for the first time. Chromosomal localization of new PGU1b, PGU2b, and PGU3b genes in the yeast S. bayanus var. uvarum has been determined by molecular karyotyping and Southern hybridization.

  15. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    PubMed

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material.

    PubMed

    Cappello, M S; Poltronieri, P; Blaiotta, G; Zacheo, G

    2010-11-15

    The knowledge about wine yeasts remains largely dominated by the extensive studies on Saccharomyces (S.) cerevisiae. Molecular methods, allowing discrimination of both species and strains in winemaking, can profitably be applied for characterization of the microflora occurring in winemaking and for monitoring the fermentation process. Recently, some novel yeast isolates have been described as hybrid between S. cerevisiae and Saccharomyces species, leaving the Saccharomyces strains containing non-Saccharomyces hybrids essentially unexplored. In this study, we have analyzed a yeast strain isolated from "Primitivo" grape (http://www.ispa.cnr.it/index.php?page=collezioni&lang=en accession number 12998) and we found that, in addition to the S. cerevisiae genome, it has acquired genetic material from a non-Saccharomyces species. The study was focused on the analysis of chromosomal and mitochondrial gene sequences (ITS and 26S rRNA, SSU and COXII, ACTIN-1 and TEF), 2D-PAGE mitochondrial proteins, and spore viability. The results allowed us to formulate the hypothesis that in the MSH199 isolate a DNA containing an rDNA sequence from Hanseniaspora vineae, a non-Saccharomyces yeast, was incorporated through homologous recombination in the grape environment where yeast species are propagated. Moreover, physiological characterization showed that the MSH199 isolate possesses high technological quality traits (fermentation performance) and glycerol production, resistance to ethanol, SO₂ and temperature) useful for industrial application. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    PubMed Central

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  18. Identification of proteins interacting with Toxoplasma SRCAP by yeast two-hybrid screening.

    PubMed

    Nallani, Karuna C; Sullivan, William J

    2005-03-01

    Toxoplasma gondii is an opportunistic protozoan parasite that differentiates into latent cysts (bradyzoite) that can be reactivated during immunosuppression. TgSRCAP (Toxoplasma gondii Snf2-related CBP activator protein) is a SWI2/SNF2 family chromatin remodeler whose expression increases during cyst development. Identifying the proteins associating with TgSRCAP during the pre-cyst stage (tachyzoite) will increase our understanding of how parasite differentiation is initiated. We employed the yeast two-hybrid system to identify proteins that may interact directly with TgSRCAP. A stretch of 1,060 amino acids between ATPase subdomains IV and V of TgSRCAP was chosen as "bait" since the corresponding region in human SRCAP interacts with other proteins, including CREB binding protein. We have identified several novel parasite-specific transcription factors predicted to be in the T. gondii genome. Metabolic enzymes that may participate in cyst development were also identified as interacting with TgSRCAP.

  19. Application of genetics to the development of starch-fermenting yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattoon, J.R.; Kim, K.; Laluce, C.

    1987-01-01

    Yeast strains capable of direct fermentation of manioc starch were developed by hybridizing strains of Saccharomyces diastaticus and Saccharomyces cerevisiae. Hybrids were evaluated for speed of alcohol production, and yields and speed of formation of glycoamylase. Up to 6% solutions of Lintner starch could be fermented directly with about 80% conversion to alcohol. Pretreatment of crude 40% manioc starch suspensions with alpha-amylase, followed by fermentations with a starch-fermenting yeast strain, permitted accumulation of 12% ethanol within three days. Starch conversion was almost 100%. A fragment of DNA was cloned from S. diastaticus using the yeast-E. coli shuttle vector, YEp13, andmore » was used to transform a strain of S. cerevisiae to a starch-fermenting state. Supported by National Science Foundation grant INT 7927328 and National Institutes of Health grant GM 27860. Dr. Laluce was supported by a grant from Fundacao de Amparo a Pesquisa do Estado do Sao Paulo and by her university. (Refs. 5).« less

  20. Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70.

    PubMed

    Cousseau, F E M; Alves, S L; Trichez, D; Stambuk, B U

    2013-01-01

    The genome from the Saccharomyces pastorianus industrial lager brewing strain Weihenstephan 34/70, a natural Saccharomyces cerevisiae/Saccharomyces eubayanus hybrid, indicated the presence of two different maltotriose transporter genes: a new gene in the S. eubayanus subgenome with 81% of homology to the AGT1 permease from S. cerevisiae, and an amplification of the S. eubayanus MTY1 maltotriose permease previously identified in S. pastorianus yeasts. To characterize these S. eubayanus transporter genes, we used a S. cerevisiae strain deleted in the AGT1 permease and introduced the desired permease gene(s) into this locus through homologous recombination. Our results indicate that both the MTY1 and AGT1 genes from the S. eubayanus subgenome encode functional maltotriose transporters that allow fermentation of this sugar by yeast cells, despite their apparent differences in the kinetics of maltotriose-H(+) symport activity. The presence of two maltotriose transporters in the S. eubayanus subgenome not only highlights the importance of sugar transport for efficient maltotriose utilization by industrial yeasts, but these new genes can be used in breeding and/or selection programs aimed at increasing yeast fitness for the efficient fermentation of brewer's wort. © 2012 The Society for Applied Microbiology.

  1. Visualization and Image Analysis of Yeast Cells.

    PubMed

    Bagley, Steve

    2016-01-01

    When converting real-life data via visualization to numbers and then onto statistics the whole system needs to be considered so that conversion from the analogue to the digital is accurate and repeatable. Here we describe the points to consider when approaching yeast cell analysis visualization, processing, and analysis of a population by screening techniques.

  2. Organoleptic Analysis of Doughs Fermented with Yeasts From A Nigerian Palm Wine (Elaeis guineensis) and Certain Commercial Yeasts

    PubMed Central

    B, Boboye; I, Dayo-Owoyemi; F. A, Akinyosoye

    2008-01-01

    Yeasts isolated from a freshly tapped palm wine obtained from Akure, Nigeria were identified as Schizosaccharomyces pombe, Saccharomyces cerevisiae, Debaryomyces hansenii, Geotrichum lactis and Zygosaccharomyces rouxii. Each of the isolates was used to ferment wheat flour dough and baked. Sensory analysis of the doughs was carried out on leavening, texture, aroma, taste and appearance. Saccharomyces cerevisiae performed best in leavening the dough while Debaryomyces hansenii produced doughs with the best taste and aroma. Appearances of the doughs made with all the isolated yeasts did not differ significantly (P<0.05) from that of the dough that lacked yeast. PMID:19088921

  3. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.

    PubMed

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard

    2016-10-18

    Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby

  4. From the Cover: Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins

    NASA Astrophysics Data System (ADS)

    Ito, Takashi; Tashiro, Kosuke; Muta, Shigeru; Ozawa, Ritsuko; Chiba, Tomoko; Nishizawa, Mayumi; Yamamoto, Kiyoshi; Kuhara, Satoru; Sakaki, Yoshiyuki

    2000-02-01

    Protein-protein interactions play pivotal roles in various aspects of the structural and functional organization of the cell, and their complete description is indispensable to thorough understanding of the cell. As an approach toward this goal, here we report a comprehensive system to examine two-hybrid interactions in all of the possible combinations between proteins of Saccharomyces cerevisiae. We cloned all of the yeast ORFs individually as a DNA-binding domain fusion ("bait") in a MATa strain and as an activation domain fusion ("prey") in a MATα strain, and subsequently divided them into pools, each containing 96 clones. These bait and prey clone pools were systematically mated with each other, and the transformants were subjected to strict selection for the activation of three reporter genes followed by sequence tagging. Our initial examination of ≈4 × 106 different combinations, constituting ≈10% of the total to be tested, has revealed 183 independent two-hybrid interactions, more than half of which are entirely novel. Notably, the obtained binary data allow us to extract more complex interaction networks, including the one that may explain a currently unsolved mechanism for the connection between distinct steps of vesicular transport. The approach described here thus will provide many leads for integration of various cellular functions and serve as a major driving force in the completion of the protein-protein interaction map.

  5. The development of an unconventional food regeneration process: Quantifying the nutritional components of a model methylotrophic yeast

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Stokes, B. O.

    1986-01-01

    A hybrid chemical/biological approach to unconventional food regeneration is discussed. Carbon dioxide and water, the major wastes of human metabolism would be converted to methanol by one of several physiochemical processes available (thermal, photocatalytic, etc.). Methanol is then used to supply carbon and energy for the culture of microorganisms which in turn produce biological useful basic food stuffs for human nutrition. Our work has focused on increasing the carbohydrate levels of a candidate methylotrophic yeast to more nearly coincide with human nutritional requirements. Yeasts were chosen due to their high carbohydrate levels compared to bacteria and their present familiarity in the human diet. The initial candidate yeast studied was a thermotolerant strain of Hansenula polymor pha, DL-1. The quantitative results that permit an evaluation of the overall efficiency in hybrid chemical/biological food production schemes are discussed. A preliminary evaluation of the overall efficiency of such schemes is also discussed.

  6. Global Gene Expression Analysis of Yeast Cells during Sake Brewing▿ †

    PubMed Central

    Wu, Hong; Zheng, Xiaohong; Araki, Yoshio; Sahara, Hiroshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2006-01-01

    During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process. PMID:16997994

  7. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    PubMed Central

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  8. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  9. Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved.

    PubMed

    Urcuqui-Inchima, S; Walter, J; Drugeon, G; German-Retana, S; Haenni, A L; Candresse, T; Bernardi, F; Le Gall, O

    1999-05-25

    Using the yeast two-hybrid system, a screen was performed for possible interactions between the proteins encoded by the 5' region of potyviral genomes [P1, helper component-proteinase (HC-Pro), and P3]. A positive self-interaction involving HC-Pro was detected with lettuce mosaic virus (LMV) and potato virus Y (PVY). The possibility of heterologous interaction between the HC-Pro of LMV and of PVY was also demonstrated. No interaction involving either the P1 or the P3 proteins was detected. A series of ordered deletions from either the N- or C-terminal end of the LMV HC-Pro was used to map the domain involved in interaction to the 72 N-terminal amino acids of the protein, a region known to be dispensable for virus viability but necessary for aphid transmission. A similar but less detailed analysis mapped the interacting domain to the N-terminal half of the PVY HC-Pro. Copyright 1999 Academic Press.

  10. Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression

    PubMed Central

    Dunn, Barbara; Paulish, Terry; Stanbery, Alison; Piotrowski, Jeff; Koniges, Gregory; Kroll, Evgueny; Louis, Edward J.; Liti, Gianni; Sherlock, Gavin; Rosenzweig, Frank

    2013-01-01

    Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ∼1-kb region of chromosome 14, and all producing an “interspecific fusion junction” within the MEP2 gene coding sequence, such that the 5′ portion derives from S. cerevisiae and the 3′ portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in

  11. High-throughput analysis of yeast replicative aging using a microfluidic system

    PubMed Central

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-01-01

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  12. Whole Genome Analysis of a Wine Yeast Strain

    PubMed Central

    Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902

  13. Monitoring Recombination During Meiosis in Budding Yeast.

    PubMed

    Owens, Shannon; Tang, Shangming; Hunter, Neil

    2018-01-01

    Homologous recombination is fundamental to sexual reproduction, facilitating accurate segregation of homologous chromosomes at the first division of meiosis, and creating novel allele combinations that fuel evolution. Following initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs), homologous pairing and DNA strand exchange form joint molecule (JM) intermediates that are ultimately resolved into crossover and noncrossover repair products. Physical monitoring of the DNA steps of meiotic recombination in Saccharomyces cerevisiae (budding yeast) cultures undergoing synchronous meiosis has provided seminal insights into the molecular basis of meiotic recombination and affords a powerful tool for dissecting the molecular roles of recombination factors. This chapter describes a suit of electrophoretic and Southern hybridization techniques used to detect and quantify the DNA intermediates of meiotic recombination at recombination hotspots in budding yeast. DSBs and recombination products (crossovers and noncrossovers) are resolved using one-dimensional electrophoresis and distinguished by restriction site polymorphisms between the parental chromosomes. Psoralen cross-linking is used to stabilize branched JMs, which are resolved from linear species by native/native two-dimensional electrophoresis. Native/denaturing two-dimensional electrophoresis is employed to determine the component DNA strands of JMs and to measure the processing of DSBs. These techniques are generally applicable to any locus where the frequency of recombination is high enough to detect intermediates by Southern hybridization. © 2018 Elsevier Inc. All rights reserved.

  14. Fermentation of cacao (Theobroma cacao L.) seeds with a hybrid Kluyveromyces marxianus strain improved product quality attributes.

    PubMed

    Leal, Gildemberg Amorim; Gomes, Luiz Humberto; Efraim, Priscilla; de Almeida Tavares, Flavio Cesar; Figueira, Antonio

    2008-08-01

    Fermentation of Theobroma cacao (cacao) seeds is an absolute requirement for the full development of chocolate flavor precursors. An adequate aeration of the fermenting cacao seed mass is a fundamental prerequisite for a satisfactory fermentation. Here, we evaluated whether a controlled inoculation of cacao seed fermentation using a Kluyveromyces marxianus hybrid yeast strain, with an increased pectinolytic activity, would improve an earlier liquid drainage ('sweatings') from the fermentation mass, developing a superior final product quality. Inoculation with K. marxianus increased by one third the volume of drained liquid and affected the microorganism population structure during fermentation, which was detectable up to the end of the process. Introduction of the hybrid yeast affected the profile of total seed protein degradation evaluated by polyacrylamide gel electrophoresis, with improved seed protein degradation, and reduction of titrable acidity. Sensorial evaluation of the chocolate obtained from beans fermented with the K. marxianus inoculation was more accepted by analysts in comparison with the one from cocoa obtained through natural fermentation. The increase in mass aeration during the first 24 h seemed to be fundamental for the improvement of fermentation quality, demonstrating the potential application of this improved hybrid yeast strain with superior exogenous pectinolytic activity.

  15. Improvement of flavor profiles in Chinese rice wine by creating fermenting yeast with superior ethanol tolerance and fermentation activity.

    PubMed

    Yang, Yijin; Xia, Yongjun; Lin, Xiangna; Wang, Guangqiang; Zhang, Hui; Xiong, Zhiqiang; Yu, Haiyan; Yu, Jianshen; Ai, Lianzhong

    2018-06-01

    Producing alcoholic beverages with novel flavor are desirable for winemakers. We created fermenting yeast with superior ethanol tolerance and fermentation activity to improve the flavor profiles of Chinese rice wine. Strategies of ethanol domestication, ultraviolet mutagenesis (UV) and protoplast fusion were conducted to create yeast hybrids with excellent oenological characteristic. The obtained diploid hybrid F23 showed a cell viability of 6.2% under 25% ethanol, whereas its diploid parental strains could not survive under 20% ethanol. During Chinese rice wine-making, compared to diploid parents, F23 produced 7.07%-12.44% higher yield of ethanol. Flavor analysis indicated that the total content of flavor compounds in F23 wine was 19.99-26.55% higher than that of parent wines. Specifically, F23 exhibited higher capacity in producing 2-phenylethanol, short-chain and long-chain fatty-acid ethyl-ester than diploid parents. Compared to diploid parents, F23 introduced more flavor contributors with odor activity values (OAVs) above one to Chinese rice wine, and those contributors were found with higher OAVs. Based on principal component analysis (PCA), the flavor characteristic of F23 wine was similar to each of parent wine. Additionally, sensory evaluation showed that F23 wine was highly assessed for its intensive levels in fruit-aroma, alcohol-aroma and mouthfeel. Hybrid F23 not only displayed superior flavor production and oenological performance in making Chinese rice wine, but also could act as potential "mixed-like" starter to enrich wine style and differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Advanced tools for the analysis of protein phosphorylation in yeast mitochondria.

    PubMed

    Walter, Corvin; Gonczarowska-Jorge, Humberto; Sickmann, Albert; Zahedi, René P; Meisinger, Chris; Schmidt, Oliver

    2018-05-24

    The biochemical analysis of protein phosphorylation in mitochondria lags behind that of cytosolic signaling events. One reason is the poor stability of many phosphorylation sites during common isolation procedures for mitochondria. We present here an optimized, fast protocol for the purification of yeast mitochondria that greatly increases recovery of phosphorylated mitochondrial proteins. Moreover, we describe improved protocols for the biochemical analysis of mitochondrial protein phosphorylation by Zn 2+ -Phos-tag electrophoresis under both denaturing and - for the first time - native conditions, and demonstrate that they outperform previously applied methods. Copyright © 2018. Published by Elsevier Inc.

  17. One-pot synthesis of MnO2-chitin hybrids for effective removal of methylene blue.

    PubMed

    Dassanayake, Rohan S; Rajakaruna, Erandathi; Moussa, Hanna; Abidi, Noureddine

    2016-12-01

    Manganese dioxide (MnO 2 )-chitin-hybrid material was prepared by a facile "one-pot" synthesis method. MnO 2 -chitin hybrid was used for the effective removal of methylene blue (MB) from liquid solution as model for wastewater treatment. The hybrid obtained was characterized by field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The effect of pH and temperature were studied. MnO 2 -chitin hybrid showed high performance for oxidative decolorization and removal of MB. Typically, 25mL of MB (20mg/L) can be completely decolorized in 2.5min with 8.5mg of the MnO 2 -chitin hybrid. The hybrid material exhibited excellent recyclability and durability with the degradation value of 99% for MB after ten consecutive cycles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Use of one- and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii.

    PubMed

    Zaitseva, A S; Arlyapov, V A; Yudina, N Yu; Alferov, S V; Reshetilov, A N

    2017-03-01

    We investigated the use of one- and two-mediator systems in amperometric BOD biosensors (BOD, biochemical oxygen demand) based on the yeast Debaryomyces hansenii. Screening of nine mediators potentially capable of electron transfer - ferrocene, 1,1'-dimethylferrocene, ferrocenecarboxaldehyde, ferroceneacetonitrile, neutral red, 2,6-dichlorophenolindophenol, thionine, methylene blue and potassium ferricyanide - showed only ferrocene and neutral red to be efficient electron carriers for the eukaryotes studied. Two-mediator systems based on combinations of the investigated compounds were used to increase the efficiency of electron transfer. The developed two-mediator biosensors exceeded their one-mediator analogs by their characteristics. The most preferable two-mediator system for developing a BOD biosensor was a ferrocene-methylene blue combination that ensured a satisfactory long-time stability (43 days), selectivity, sensitivity (the lower limit of the determined BOD 5 concentrations, 2.5mg О 2 /dm 3 ) and speed (assay time for one sample, not greater than 10min) of BOD determination. Analysis of water samples showed that the use of a ferrocene-methylene blue two-mediator system and the yeast D. hansenii enabled registration of data that highly correlated with the results of the standard method (R=0.9913). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome

    PubMed Central

    Miura, Fumihito; Kawaguchi, Noriko; Sese, Jun; Toyoda, Atsushi; Hattori, Masahira; Morishita, Shinichi; Ito, Takashi

    2006-01-01

    We performed a large-scale cDNA analysis to explore the transcriptome of the budding yeast Saccharomyces cerevisiae. We sequenced two cDNA libraries, one from the cells exponentially growing in a minimal medium and the other from meiotic cells. Both libraries were generated by using a vector-capping method that allows the accurate mapping of transcription start sites (TSSs). Consequently, we identified 11,575 TSSs associated with 3,638 annotated genomic features, including 3,599 ORFs, to suggest that most yeast genes have two or more TSSs. In addition, we identified 45 previously undescribed introns, including those affecting current ORF annotations and those spliced alternatively. Furthermore, the analysis revealed 667 transcription units in the intergenic regions and transcripts derived from antisense strands of 367 known features. We also found that 348 ORFs carry TSSs in their 3′-halves to generate sense transcripts starting from inside the ORFs. These results indicate that the budding yeast transcriptome is considerably more complex than previously thought, and it shares many recently revealed characteristics with the transcriptomes of mammals and other higher eukaryotes. Thus, the genome-wide active transcription that generates novel classes of transcripts appears to be an intrinsic feature of the eukaryotic cells. The budding yeast will serve as a versatile model for the studies on these aspects of transcriptome, and the full-length cDNA clones can function as an invaluable resource in such studies. PMID:17101987

  20. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing.

    PubMed

    Codón, Antonio C; Rincón, Ana M; Moreno-Mateos, Miguel A; Delgado-Jarana, Jesús; Rey, Manuel; Limón, Carmen; Rosado, Ivan V; Cubero, Beatriz; Peñate, Xenia; Castrejón, Francisco; Benítez, Tahía

    2003-01-15

    Three procedures were used to obtain new Saccharomyces cerevisiae baker's yeasts with increased storage stability at -20, 4, 22, and 30 degrees C. The first used mitochondria from highly ethanol-tolerant wine yeast, which were transferred to baker's strains. Viability of the heteroplasmons was improved shortly after freezing. However, after prolonged storage, viability dramatically decreased and was accompanied by an increase in the frequency of respiratory-deficient (petite) mutant formation. This indicated that mitochondria were not stable and were incompatible with the nucleus. The strains tested regained their original resistance to freezing after recovering their own mitochondria. The second procedure used hybrid formation after protoplast fusion and isolation on selective media of fusants from baker's yeast meiotic products resistant to parafluorphenylalanine and cycloheximide, respectively. No hybrids were obtained when using the parentals, probably due to the high ploidy of the baker's strains. Hybrids obtained from nonisogenic strains manifested in all cases a resistance to freezing intermediate between those of their parental strains. Hybrids from crosses between meiotic products of the same strain were always more sensitive than their parentals. The third method was used to develop baker's yeast mutants resistant to 2-deoxy-d-glucose (DOG) and deregulated for maltose and sucrose metabolism. Mutant DOG21 displayed a slight increase in trehalose content and viability both in frozen doughs and during storage at 4 and 22 degrees C. This mutant also displayed a capacity to ferment, under laboratory conditions, both lean and sweet fresh and frozen doughs. For industrial uses, fermented lean and sweet bakery products, both from fresh and frozen doughs obtained with mutant DOG21, were of better quality with regard to volume, texture, and organoleptic properties than those produced by the wild type.

  1. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts

    PubMed Central

    Hein, Eva-Maria; Hayen, Heiko

    2012-01-01

    Glycerophospholipids (GP) are the building blocks of cellular membranes and play essential roles in cell compartmentation, membrane fluidity or apoptosis. In addition, GPs are sources for multifunctional second messengers. Whereas the genome and proteome of the most intensively studied eukaryotic model organism, the baker’s yeast (Saccharomyces cerevisiae), are well characterized, the analysis of its lipid composition is still at the beginning. Moreover, different yeast species can be distinguished on the DNA, RNA and protein level, but it is currently unknown if they can also be differentiated by determination of their GP pattern. Therefore, the GP compositions of five different yeast strains, grown under identical environmental conditions, were elucidated using high performance liquid chromatography coupled to negative electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry in single and multistage mode. Using this approach, relative quantification of more than 100 molecular species belonging to nine GP classes was achieved. The comparative lipidomic profiling of Saccharomyces cerevisiae, Saccharomyces bayanus, Kluyveromyces thermotolerans, Pichia angusta, and Yarrowia lipolytica revealed characteristic GP profiles for each strain. However, genetically related yeast strains show similarities in their GP compositions, e.g., Saccharomyces cerevisiae and Saccharomyces bayanus. PMID:24957378

  2. Yeasts in sustainable bioethanol production: A review.

    PubMed

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  3. Analysis of non-Saccharomyces yeast populations isolated from grape musts from Sicily (Italy).

    PubMed

    Romancino, D P; Di Maio, S; Muriella, R; Oliva, D

    2008-12-01

    The aim of this study was to identify the non-Saccharomyces yeast populations present in the grape must microflora from wineries from different areas around the island of Sicily. Yeasts identification was conducted on 2575 colonies isolated from six musts, characterized using Wallerstein Laboratory (WL) nutrient agar, restriction analysis of the amplified 5.8S-internal transcribed spacer region and restriction profiles of amplified 26S rDNA. In those colonies, we identified 11 different yeast species originating from wine musts from two different geographical areas of the island of Sicily. We isolated non-Saccharomyces yeasts and described the microflora in grape musts from different areas of Sicily. Moreover, we discovered two new colony morphologies for yeasts on WL agar never previously described. This investigation is a first step in understanding the distribution of non-Saccharomyces yeasts in grape musts from Sicily. The contribution is important as a tool for monitoring the microflora in grape musts and for establishing a new non-Saccharomyces yeast collection; in the future, this collection will be used for understanding the significance of these yeasts in oenology.

  4. Dynamical analysis of yeast protein interaction network during the sake brewing process.

    PubMed

    Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N

    2011-12-01

    Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.

  5. Interaction with Polyglutamine-expanded Huntingtin Alters Cellular Distribution and RNA Processing of Huntingtin Yeast Two-hybrid Protein A (HYPA)*

    PubMed Central

    Jiang, Ya-Jun; Che, Mei-Xia; Yuan, Jin-Qiao; Xie, Yuan-Yuan; Yan, Xian-Zhong; Hu, Hong-Yu

    2011-01-01

    Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD. PMID:21566141

  6. Interaction with polyglutamine-expanded huntingtin alters cellular distribution and RNA processing of huntingtin yeast two-hybrid protein A (HYPA).

    PubMed

    Jiang, Ya-Jun; Che, Mei-Xia; Yuan, Jin-Qiao; Xie, Yuan-Yuan; Yan, Xian-Zhong; Hu, Hong-Yu

    2011-07-15

    Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD.

  7. Diversity and killer activity of yeasts in Malaysian fermented food samples.

    PubMed

    Lim, S L; Tay, S T

    2011-08-01

    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.

  8. A Theoretical Analysis of Why Hybrid Ensembles Work.

    PubMed

    Hsu, Kuo-Wei

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.

  9. Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset.

    PubMed

    Watson, Nathanial E; Parsons, Brendon A; Synovec, Robert E

    2016-08-12

    Performance of tile-based Fisher Ratio (F-ratio) data analysis, recently developed for discovery-based studies using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS), is evaluated with a metabolomics dataset that had been previously analyzed in great detail, but while taking a brute force approach. The previously analyzed data (referred to herein as the benchmark dataset) were intracellular extracts from Saccharomyces cerevisiae (yeast), either metabolizing glucose (repressed) or ethanol (derepressed), which define the two classes in the discovery-based analysis to find metabolites that are statistically different in concentration between the two classes. Beneficially, this previously analyzed dataset provides a concrete means to validate the tile-based F-ratio software. Herein, we demonstrate and validate the significant benefits of applying tile-based F-ratio analysis. The yeast metabolomics data are analyzed more rapidly in about one week versus one year for the prior studies with this dataset. Furthermore, a null distribution analysis is implemented to statistically determine an adequate F-ratio threshold, whereby the variables with F-ratio values below the threshold can be ignored as not class distinguishing, which provides the analyst with confidence when analyzing the hit table. Forty-six of the fifty-four benchmarked changing metabolites were discovered by the new methodology while consistently excluding all but one of the benchmarked nineteen false positive metabolites previously identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.

    PubMed

    Ejsing, Christer S; Sampaio, Julio L; Surendranath, Vineeth; Duchoslav, Eva; Ekroos, Kim; Klemm, Robin W; Simons, Kai; Shevchenko, Andrej

    2009-02-17

    Although the transcriptome, proteome, and interactome of several eukaryotic model organisms have been described in detail, lipidomes remain relatively uncharacterized. Using Saccharomyces cerevisiae as an example, we demonstrate that automated shotgun lipidomics analysis enabled lipidome-wide absolute quantification of individual molecular lipid species by streamlined processing of a single sample of only 2 million yeast cells. By comparative lipidomics, we achieved the absolute quantification of 250 molecular lipid species covering 21 major lipid classes. This analysis provided approximately 95% coverage of the yeast lipidome achieved with 125-fold improvement in sensitivity compared with previous approaches. Comparative lipidomics demonstrated that growth temperature and defects in lipid biosynthesis induce ripple effects throughout the molecular composition of the yeast lipidome. This work serves as a resource for molecular characterization of eukaryotic lipidomes, and establishes shotgun lipidomics as a powerful platform for complementing biochemical studies and other systems-level approaches.

  11. Exploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking.

    PubMed

    Magalhães, Frederico; Krogerus, Kristoffer; Castillo, Sandra; Ortiz-Julien, Anne; Dequin, Sylvie; Gibson, Brian

    2017-08-01

    Yeast cryotolerance brings some advantages for wine fermentations, including the improved aromatic complexity of white wines. Naturally cold-tolerant strains are generally less adept at wine fermentation but fermentative fitness can potentially be improved through hybridization. Here we studied the potential of using hybrids involving Saccharomyces eubayanus and a S. cerevisiae wine strain for low-temperature winemaking. Through screening the performance in response to variable concentrations of sugar, nitrogen and temperature, we isolated one hybrid strain that exhibited the superior performance. This hybrid strain was propagated and dried in pilot scale and tested for the fermentation of Macabeu and Sauvignon blanc grape musts. We obtained highly viable active dry yeast, which was able to efficiently ferment the grape musts with superior production of aroma active volatiles, in particular, 2-phenylethanol. The genome sequences of the hybrid strains revealed variable chromosome inheritance among hybrids, particularly within the S. cerevisiae subgenome. With the present paper, we expand the knowledge on the potentialities of using S. eubayanus hybrids in industrial fermentation at beverages other than lager beer. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Identification of the sulphate ion as one of the key components of yeast spoilage of a sports drink through genome-wide expression analysis.

    PubMed

    Jayakody, Lahiru N; Tsuge, Keisuke; Suzuki, Akihiro; Shimoi, Hitoshi; Kitagaki, Hiroshi

    2013-01-01

    Because of the growing market for sports drinks, prevention of yeast contamination of these beverages is of significant concern. This research was performed to achieve insight into the physiology of yeast growing in sports drinks through a genome-wide approach to prevent microbial spoilage of sports drinks. The genome-wide gene expression profile of Saccharomyces cerevisiae growing in the representative sports drink was investigated. Genes that were relevant to sulphate ion starvation response were upregulated in the yeast cells growing in the drink. These results suggest that yeast cells are suffering from deficiency of extracellular sulphate ions during growth in the sports drink. Indeed, the concentration of sulphate ions was far lower in the sports drink than in a medium that allows the optimal growth of yeast. To prove the starvation of sulphate ions of yeast, several ions were added to the beverage and its effects were investigated. The addition of sulphate ions, but not chloride ions or sodium ions, to the beverage stimulated yeast growth in the beverage in a dose-dependent manner. Moreover, the addition of sulphate ions to the sports drink increased the biosynthesis of sulphur-containing amino acids in yeast cells and hydrogen sulphide in the beverage. These results indicate that sulphate ion concentration should be regulated to prevent microbial spoilage of sports drinks.

  13. Environmental Factors Can Influence Mitochondrial Inheritance in the Saccharomyces Yeast Hybrids.

    PubMed

    Hsu, Yu-Yi; Chou, Jui-Yu

    2017-01-01

    Mitochondria play a critical role in the generation of metabolic energy and are crucial for eukaryotic cell survival and proliferation. In most sexual eukaryotes, mitochondrial DNA (mtDNA) is inherited from only one parent in non-Mendelian inheritance in contrast to the inheritance of nuclear DNA. The model organism Saccharomyces cerevisiae is commonly used to study mitochondrial biology. It has two mating types: MATa and MATα. Previous studies have suggested that the mtDNA inheritance patterns in hybrid diploid cells depend on the genetic background of parental strains. However, the underlying mechanisms remain unclear. To elucidate the mechanisms, we examined the effects of environmental factors on the mtDNA inheritance patterns in hybrids obtained by crossing S. cerevisiae with its close relative S. paradoxus. The results demonstrated that environmental factors can influence mtDNA transmission in hybrid diploids, and that the inheritance patterns are strain dependent. The fitness competition assay results showed that the fitness differences can explain the mtDNA inheritance patterns under specific conditions. However, in this study, we found that fitness differences cannot fully be explained by mitochondrial activity in hybrids under stress conditions.

  14. Environmental Factors Can Influence Mitochondrial Inheritance in the Saccharomyces Yeast Hybrids

    PubMed Central

    Hsu, Yu-Yi; Chou, Jui-Yu

    2017-01-01

    Mitochondria play a critical role in the generation of metabolic energy and are crucial for eukaryotic cell survival and proliferation. In most sexual eukaryotes, mitochondrial DNA (mtDNA) is inherited from only one parent in non-Mendelian inheritance in contrast to the inheritance of nuclear DNA. The model organism Saccharomyces cerevisiae is commonly used to study mitochondrial biology. It has two mating types: MATa and MATα. Previous studies have suggested that the mtDNA inheritance patterns in hybrid diploid cells depend on the genetic background of parental strains. However, the underlying mechanisms remain unclear. To elucidate the mechanisms, we examined the effects of environmental factors on the mtDNA inheritance patterns in hybrids obtained by crossing S. cerevisiae with its close relative S. paradoxus. The results demonstrated that environmental factors can influence mtDNA transmission in hybrid diploids, and that the inheritance patterns are strain dependent. The fitness competition assay results showed that the fitness differences can explain the mtDNA inheritance patterns under specific conditions. However, in this study, we found that fitness differences cannot fully be explained by mitochondrial activity in hybrids under stress conditions. PMID:28081193

  15. A Theoretical Analysis of Why Hybrid Ensembles Work

    PubMed Central

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles. PMID:28255296

  16. No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system.

    PubMed

    Charron, Guillaume; Landry, Christian R

    2017-06-01

    Although microorganisms account for the largest fraction of Earth's biodiversity, we know little about how their reproductive barriers evolve. Sexual microorganisms such as Saccharomyces yeasts rapidly develop strong intrinsic post-zygotic isolation, but the role of extrinsic isolation in the early speciation process remains to be investigated. We measured the growth of F 1 hybrids between two incipient species of Saccharomyces paradoxus to assess the presence of extrinsic post-zygotic isolation across 32 environments. More than 80% of hybrids showed either partial dominance of the best parent or over-dominance for growth, revealing no fitness defects in F 1 hybrids. Extrinsic reproductive isolation therefore likely plays little role in limiting gene flow between incipient yeast species and is not a requirement for speciation. © 2017 The Author(s).

  17. Yeast viability and concentration analysis using lens-free computational microscopy and machine learning

    NASA Astrophysics Data System (ADS)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2017-03-01

    Research laboratories and the industry rely on yeast viability and concentration measurements to adjust fermentation parameters such as pH, temperature, and pressure. Beer-brewing processes as well as biofuel production can especially utilize a cost-effective and portable way of obtaining data on cell viability and concentration. However, current methods of analysis are relatively costly and tedious. Here, we demonstrate a rapid, portable, and cost-effective platform for imaging and measuring viability and concentration of yeast cells. Our platform features a lens-free microscope that weighs 70 g and has dimensions of 12 × 4 × 4 cm. A partially-coherent illumination source (a light-emitting-diode), a band-pass optical filter, and a multimode optical fiber are used to illuminate the sample. The yeast sample is directly placed on a complementary metal-oxide semiconductor (CMOS) image sensor chip, which captures an in-line hologram of the sample over a large field-of-view of >20 mm2. The hologram is transferred to a touch-screen interface, where a trained Support Vector Machine model classifies yeast cells stained with methylene blue as live or dead and measures cell viability as well as concentration. We tested the accuracy of our platform against manual counting of live and dead cells using fluorescent exclusion staining and a bench-top fluorescence microscope. Our regression analysis showed no significant difference between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells/mL. This compact and cost-effective yeast analysis platform will enable automatic quantification of yeast viability and concentration in field settings and resource-limited environments.

  18. A protein interaction network analysis for yeast integral membrane protein.

    PubMed

    Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling

    2008-01-01

    Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.

  19. Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts.

    PubMed

    Ganga, M A; Martínez, C

    2004-01-01

    The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of beta-glycosidase. The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non-Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions.

  20. Yeast for virus research

    PubMed Central

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  1. One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Hrach, R.

    2007-04-01

    One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.

  2. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Duhig, Trevor; Nam, Miyoung; Palmer, Georgia; Han, Sangjo; Jeffery, Linda; Baek, Seung-Tae; Lee, Hyemi; Shim, Young Sam; Lee, Minho; Kim, Lila; Heo, Kyung-Sun; Noh, Eun Joo; Lee, Ah-Reum; Jang, Young-Joo; Chung, Kyung-Sook; Choi, Shin-Jung; Park, Jo-Young; Park, Youngwoo; Kim, Hwan Mook; Park, Song-Kyu; Park, Hae-Joon; Kang, Eun-Jung; Kim, Hyong Bai; Kang, Hyun-Sam; Park, Hee-Moon; Kim, Kyunghoon; Song, Kiwon; Song, Kyung Bin; Nurse, Paul; Hoe, Kwang-Lae

    2014-01-01

    SUMMARY We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome. This resource provides a powerful tool for biotechnological and eukaryotic cell biology research. Comprehensive gene dispensability comparisons with budding yeast, the first time such studies have been possible between two eukaryotes, revealed that 83% of single copy orthologues in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than non-essential genes to be single copy, broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth. PMID:20473289

  3. Yeast species diversity in apple juice for cider production evidenced by culture-based method.

    PubMed

    Lorenzini, Marilinda; Simonato, Barbara; Zapparoli, Giacomo

    2018-05-07

    Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.

  4. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes*

    PubMed Central

    Hu, Qing-bi; He, Yu; Zhou, Xun

    2015-01-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182

  5. Isolation and Characterization of a Gene Specific to Lager Brewing Yeast That Encodes a Branched-Chain Amino Acid Permease

    PubMed Central

    Kodama, Yukiko; Omura, Fumihiko; Ashikari, Toshihiko

    2001-01-01

    We found two types of branched-chain amino acid permease gene (BAP2) in the lager brewing yeast Saccharomyces pastorianus BH-225 and cloned one type of BAP2 gene (Lg-BAP2), which is identical to that of Saccharomyces bayanus (by-BAP2-1). The other BAP2 gene of the lager brewing yeast (cer-BAP2) is very similar to the Saccharomyces cerevisiae BAP2 gene. This result substantiates the notion that lager brewing yeast is a hybrid of S. cerevisiae and S. bayanus. The amino acid sequence homology between S. cerevisiae Bap2p and Lg-Bap2p was 88%. The transcription of Lg-BAP2 was not induced by the addition of leucine to the growth medium, while that of cer-BAP2 was induced. The transcription of Lg-BAP2 was repressed by the presence of ethanol and weak organic acid, while that of cer-BAP2 was not affected by these compounds. Furthermore, Northern analysis during beer fermentation revealed that the transcription of Lg-BAP2 was repressed at the beginning of the fermentation, while cer-BAP2 was highly expressed throughout the fermentation. These results suggest that the transcription of Lg-BAP2 is regulated differently from that of cer-BAP2 in lager brewing yeasts. PMID:11472919

  6. One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy.

    PubMed

    Yofe, Ido; Weill, Uri; Meurer, Matthias; Chuartzman, Silvia; Zalckvar, Einat; Goldman, Omer; Ben-Dor, Shifra; Schütze, Conny; Wiedemann, Nils; Knop, Michael; Khmelinskii, Anton; Schuldiner, Maya

    2016-04-01

    The yeast Saccharomyces cerevisiae is ideal for systematic studies relying on collections of modified strains (libraries). Despite the significance of yeast libraries and the immense variety of available tags and regulatory elements, only a few such libraries exist, as their construction is extremely expensive and laborious. To overcome these limitations, we developed a SWAp-Tag (SWAT) method that enables one parental library to be modified easily and efficiently to give rise to an endless variety of libraries of choice. To showcase the versatility of the SWAT approach, we constructed and investigated a library of ∼1,800 strains carrying SWAT-GFP modules at the amino termini of endomembrane proteins and then used it to create two new libraries (mCherry and seamless GFP). Our work demonstrates how the SWAT method allows fast and effortless creation of yeast libraries, opening the door to new ways of systematically studying cell biology.

  7. A PROP1-binding factor, AES cloned by yeast two-hybrid assay represses PROP1-induced Pit-1 gene expression.

    PubMed

    Sugiyama, Yuka; Ikeshita, Nobuko; Shibahara, Hiromi; Yamamoto, Daisuke; Kawagishi, Mayuko; Iguchi, Genzo; Iida, Keiji; Takahashi, Yutaka; Kaji, Hidesuke; Chihara, Kazuo; Okimura, Yasuhiko

    2013-08-25

    PROP1 mutation causes combined pituitary hormone deficiency (CPHD). Several mutations are located in a transactivation domain (TAD) of Prop1, and the loss of TAD binding to cofactors is likely the cause of CPHD. PROP1 cofactors have not yet been identified. In the present study, we aimed to identify the PROP1-interacting proteins from the human brain cDNA library. Using a yeast two-hybrid assay, we cloned nine candidate proteins that may bind to PROP1. Of those nine candidates, amino-terminal enhancer of split (AES) was the most abundant, and we analyzed the AES function. AES dose-dependently decreased the PROP1-induced Pit-1 reporter gene expression. An immunoprecipitation assay revealed the relationship between AES and PROP1. In a mammalian two-hybrid assay, a leucine zipper-like motif of the AES Q domain was identified as a region that interacted with TAD. These results indicated that AES was a corepressor of PROP1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Improved microarray methods for profiling the yeast knockout strain collection

    PubMed Central

    Yuan, Daniel S.; Pan, Xuewen; Ooi, Siew Loon; Peyser, Brian D.; Spencer, Forrest A.; Irizarry, Rafael A.; Boeke, Jef D.

    2005-01-01

    A remarkable feature of the Yeast Knockout strain collection is the presence of two unique 20mer TAG sequences in almost every strain. In principle, the relative abundances of strains in a complex mixture can be profiled swiftly and quantitatively by amplifying these sequences and hybridizing them to microarrays, but TAG microarrays have not been widely used. Here, we introduce a TAG microarray design with sophisticated controls and describe a robust method for hybridizing high concentrations of dye-labeled TAGs in single-stranded form. We also highlight the importance of avoiding PCR contamination and provide procedures for detection and eradication. Validation experiments using these methods yielded false positive (FP) and false negative (FN) rates for individual TAG detection of 3–6% and 15–18%, respectively. Analysis demonstrated that cross-hybridization was the chief source of FPs, while TAG amplification defects were the main cause of FNs. The materials, protocols, data and associated software described here comprise a suite of experimental resources that should facilitate the use of TAG microarrays for a wide variety of genetic screens. PMID:15994458

  9. Yeast as a model to study apoptosis?

    PubMed

    Fleury, Christophe; Pampin, Mathieu; Tarze, Agathe; Mignotte, Bernard

    2002-02-01

    Programmed cell death (PCD) serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Despite the striking heterogeneity of cell death induction pathways, the execution of the death program is often associated with characteristic morphological and biochemical changes termed apoptosis. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of programmed cell death. This crucial position of mitochondria in programmed cell death control is not due to a simple loss of function (deficit in energy supplying), but rather to an active process in the regulation of effector mechanisms. The large diversity of regulators of apoptosis in mammals and their numerous interactions complicate the analysis of their individual functions. Yeast, eukaryotic but unicellular organism, lack the main regulators of apoptosis (caspases, Bcl-2 family members, ...) found in mammals. This absence render them a powerful tool for heterologous expression, functional studies, and even cloning of new regulators of apoptosis. Great advances have thus been made in our understanding of the molecular mechanisms of Bcl-2 family members interactions with themselves and other cellular proteins, specially thanks to the two hybrid system and the easy manipulation of yeast (molecular biology and genetics). This review will focus on the use of yeast as a tool to identify new regulators and study function of mammalian apoptosis regulators.

  10. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  11. Estrogenic activities of chemicals related to food contact plastics and rubbers tested by the yeast two-hybrid assay.

    PubMed

    Ogawa, Yuko; Kawamura, Yoko; Wakui, Chiseko; Mutsuga, Motoh; Nishimura, Tetsuji; Tanamoto, Kenichi

    2006-04-01

    Food contact plastics and rubbers possibly contain many kinds of chemicals such as monomers, oligomers, additives, degradation products of polymers and additives, and impurities. Among them, bisphenol A, nonylphenol, benzylbutyl phthalate, styrene oligomers and hydroxylated benzophenones have been reported to possess estrogenic activities. In this study, other chemicals related to food contact plastics and rubbers, and their metabolites induced by the S9-mixture were tested for their estrogenic activities using the yeast two-hybrid assay. Among the 150 chemicals, 10 chemicals such as bis(4-hydroxyphenyl) methane, 4-cyclohexylphenol, 4-phenylphenol, 4,4'-isopropylidenediphenol alkylphosphite, two type of styrenated phenol (including mono type), tris(nonylphenyl) phosphite, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone and 2,4-diphenyl-4-methyl-1-pentene, their metabolites and the metabolites of 6 other chemicals, such as 2-(phenylmethyl) phenol, styrenated phenol (di and tri type), 1-(N-phenylamino)naphthalene, 4-tert-butylphenylsalicylate, nonylphenol ethoxylates and 2-methyl-6-tert-butylphenol, displayed estrogenic activities. All of them contained a phenol group in their chemical structures or formed one easily by hydrolysis or metabolism. However, most of the chemicals related to food contact plastics and rubbers, and their metabolites did not show any estrogenicity.

  12. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection

    PubMed Central

    Gelperin, Daniel M.; White, Michael A.; Wilkinson, Martha L.; Kon, Yoshiko; Kung, Li A.; Wise, Kevin J.; Lopez-Hoyo, Nelson; Jiang, Lixia; Piccirillo, Stacy; Yu, Haiyuan; Gerstein, Mark; Dumont, Mark E.; Phizicky, Eric M.; Snyder, Michael; Grayhack, Elizabeth J.

    2005-01-01

    Functional analysis of the proteome is an essential part of genomic research. To facilitate different proteomic approaches, a MORF (moveable ORF) library of 5854 yeast expression plasmids was constructed, each expressing a sequence-verified ORF as a C-terminal ORF fusion protein, under regulated control. Analysis of 5573 MORFs demonstrates that nearly all verified ORFs are expressed, suggests the authenticity of 48 ORFs characterized as dubious, and implicates specific processes including cytoskeletal organization and transcriptional control in growth inhibition caused by overexpression. Global analysis of glycosylated proteins identifies 109 new confirmed N-linked and 345 candidate glycoproteins, nearly doubling the known yeast glycome. PMID:16322557

  13. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    PubMed

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy.

    PubMed

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, Sc Alt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1 , alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display Lk Alt1 and Kl Alt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that Kl Alt1 and Lk Alt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that Sc Alt2 conserves 64% identity with

  15. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    PubMed Central

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64% identity with LkAlt1

  16. Genetic relationship and biological status of the industrially important yeast Saccharomyces eubayanus Sampaio et al.

    PubMed

    Naumov, G I

    2017-03-01

    The genomes of the recently discovered yeast Saccharomyces eubayanus and traditional S. cerevisiae are known to be found in the yeast S. pastorianus (syn. S. carlsbergensis), which are essential for brewing. The cryotolerant yeast S. bayanus var. uvarum is of great importance for production of some wines. Based on ascospore viability and meiotic recombination of the control parental markers in hybrids, we have shown that there is no complete interspecies post-zygotic isolation between the yeasts S. eubayanus, S. bayanus var. bayanus and S. bayanus var. uvarum. The genetic data presented indicate that all of the three taxa belong to the same species.

  17. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    PubMed Central

    2011-01-01

    Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy. PMID:22014111

  18. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen.

    PubMed

    Le Breton, Marc; Meyniel-Schicklin, Laurène; Deloire, Alexandre; Coutard, Bruno; Canard, Bruno; de Lamballerie, Xavier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent; Davoust, Nathalie

    2011-10-20

    The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  19. Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. region.

    PubMed

    Marin-Menguiano, Miriam; Romero-Sanchez, Sandra; Barrales, Ramón R; Ibeas, Jose I

    2017-03-06

    Fino is the most popular sherry wine produced in southern Spain. Fino is matured by biological aging under a yeast biofilm constituted of Saccharomyces cerevisiae yeasts. Although different S. cerevisiae strains can be identified in such biofilms, their diversity and contribution to wine character have been poorly studied. In this work, we analyse the flor yeast population in five different wineries from the Montilla-Moriles D.O. (Denominación de Origen) in southern Spain. Yeasts present in wines of different ages were identified using two different culture-dependent molecular techniques. From 2000 individual yeast isolates, five different strains were identified with one of them dominating in four out of the five wineries analysed, and representing 76% of all the yeast isolates collected. Surprisingly, this strain is similar to the predominant strain isolated twenty years ago in Jerez D.O. wines, suggesting that this yeast is particularly able to adapt to such a stressful environment. Fino wine produced with pure cultures of three of the isolated strains resulted in different levels of acetaldehyde. Because acetaldehyde levels are a distinctive characteristic of fino wines and an indicator of fino aging, the use of molecular techniques for yeast identification and management of yeast populations may be of interest for fino wine producers looking to control one of the main features of this wine. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries.

    PubMed

    Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech). This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  1. Hybrid methods for cybersecurity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Warren Leon,; Dunlavy, Daniel M.

    2014-01-01

    Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling andmore » analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months

  2. Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.

    PubMed

    Vidgren, Virve; Ruohonen, Laura; Londesborough, John

    2005-12-01

    Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad substrate specificity transporters, such as Agt1p. Maltose transport by three lager strains was weakly inhibited by other alpha-glucosides, suggesting the use of narrow substrate specificity transporters. Hybridization studies showed that all five strains contained complete MAL1, MAL2, MAL3, and MAL4 loci, except for one ale strain, which lacked a MAL2 locus. All five strains also contained both AGT1 (coding a broad specificity alpha-glucoside transporter) and MAL11 alleles. MPH genes (maltose permease homologues) were present in the lager but not in the ale strains. During growth on maltose, the lager strains expressed AGT1 at low levels and MALx1 genes at high levels, whereas the ale strains expressed AGT1 at high levels and MALx1 genes at low levels. MPHx expression was negligible in all strains. The AGT1 sequences from the ale strains encoded full-length (616 amino acid) polypeptides, but those from both sequenced lager strains encoded truncated (394 amino acid) polypeptides that are unlikely to be functional transporters. Thus, despite the apparently similar genotypes of these ale and lager strains revealed by hybridization, maltose is predominantly carried by AGT1-encoded transporters in the ale strains and by MALx1-encoded transporters in the lager strains.

  3. Proteome analysis of yeast response to various nutrient limitations

    PubMed Central

    Kolkman, Annemieke; Daran-Lapujade, Pascale; Fullaondo, Asier; Olsthoorn, Maurien M A; Pronk, Jack T; Slijper, Monique; Heck, Albert J R

    2006-01-01

    We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and 15N metabolically labeled yeast cultures. A total of 928 proteins covering a wide range of isoelectric points, molecular weights and subcellular localizations were identified. Stringent statistical analysis identified 51 proteins upregulated in response to glucose limitation and 51 upregulated in response to ammonia limitation. Under glucose limitation, typical glucose-repressed genes encoding proteins involved in alternative carbon source utilization, fatty acids β-oxidation and oxidative phosphorylation displayed an increased protein level. Proteins upregulated in response to nitrogen limitation were mostly involved in scavenging of alternative nitrogen sources and protein degradation. Comparison of transcript and protein levels clearly showed that upregulation in response to glucose limitation was mainly transcriptionally controlled, whereas upregulation in response to nitrogen limitation was essentially controlled at the post-transcriptional level by increased translational efficiency and/or decreased protein degradation. These observations underline the need for multilevel analysis in yeast systems biology. PMID:16738570

  4. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    PubMed

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve.

    PubMed

    Piotrowski, Jeff S; Nagarajan, Saisubramanian; Kroll, Evgueny; Stanbery, Alison; Chiotti, Kami E; Kruckeberg, Arthur L; Dunn, Barbara; Sherlock, Gavin; Rosenzweig, Frank

    2012-04-02

    Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution, underscoring the importance of the ecological theatre in

  6. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    PubMed

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  7. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  9. Evolutionary History of Ascomyceteous Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with amore » large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.« less

  10. Extraction of the number of peroxisomes in yeast cells by automated image analysis.

    PubMed

    Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli

    2006-01-01

    An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.

  11. The Baker's Yeast Reduction of Keto-Esters in Organic Solvents: A One Week Research Project for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    North, Michael

    1998-05-01

    An experiment has been designed which allows final year undergraduate students to carry out a mini-research project in one week and thus get a flavour of the joys and tribulations of conducting chemical research before they undertake a major research project. The experiment is an investigation into the reduction of alpha- or beta-keto esters using non-fermenting Baker's yeast in petroleum ether. There are a number of advantages to this method of using Baker's yeast, including a reduction in the amount of organic solvent used, and a much simplified purification procedure. During the course of the mini-project, the substrate specificity of the yeast is investigated, and the conditions for the optimisation of a particular keto ester are determined. Each product is analysed by a variety of analytical techniques including polarimetry, IR, NMR, and GC. In addition, the use of correct stereochemical nomenclature to describe prochiral, and chiral compounds as well as chemical reactions are discussed.

  12. BAPJ69-4A: a yeast two-hybrid strain for both positive and negative genetic selection.

    PubMed

    Shaffer, Hally Anne; Rood, Michael Kenneth; Kashlan, Badar; Chang, Eileen I-ling; Doyle, Donald Francis; Azizi, Bahareh

    2012-10-01

    Genetic selection systems, such as the yeast two-hybrid system, are efficient methods to detect protein-protein and protein-ligand interactions. These systems have been further developed to assess negative interactions, such as inhibition, using the URA3 genetic selection marker. Previously, chemical complementation was used to assess positive selection in Saccharomyces cerevisiae. In this work, a new S. cerevisiae strain, called BAPJ69-4A, containing three selective markers ADE2, HIS3, and URA3 as well as the lacZ gene controlled by Gal4 response elements, was developed and characterized using the retinoid X receptor (RXR) and its ligand 9-cis retinoic acid (9cRA). Further characterization was performed using RXR variants and the synthetic ligand LG335. To assess the functionality of the strain, RXR was compared to the parent strain PJ69-4A in adenine, histidine, and uracil selective media. In positive selection, associating partners that lead to cell growth were observed in all media in the presence of ligand, whereas partners that did not associate due to the absence of ligand displayed no growth. Conversely, in negative selection, partners that did not associate in 5-FOA medium did not display cell death due to the lack of expression of the URA3 gene. The creation of the BAPJ69-4A yeast strain provides a high-throughput selection system, called negative chemical complementation, which can be used for both positive and negative selection, providing a fast, powerful tool for discovering novel ligand receptor pairs for applications in drug discovery and protein engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  14. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions

    PubMed Central

    Dillmann, Christine; Bely, Marina; la Guerche, Stéphane; Giraud, Christophe; Huet, Sylvie; Sicard, Delphine; Masneuf-Pomarede, Isabelle; de Vienne, Dominique; Marullo, Philippe

    2015-01-01

    Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait – kinetics parameters, life-history traits, enological parameters and aromas –, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making. PMID:25946464

  15. Neural network analysis of electrodynamic activity of yeast cells around 1 kHz

    NASA Astrophysics Data System (ADS)

    Janca, R.

    2011-12-01

    This paper deals with data analysis of electrodynamic activity of two mutants of yeast cells, cell cycle of which is synchronized and non-synchronized, respectively. We used data already published by Jelinek et al. and treat them with data mining method based on the multilayer neural network. Intersection of data mining and statistical distribution of the noise shows significant difference between synchronized and non-synchronized yeasts not only in total power, but also discrete frequencies.

  16. Functional conservation of the yeast and Arabidopsis RAD54-like genes.

    PubMed

    Klutstein, Michael; Shaked, Hezi; Sherman, Amir; Avivi-Ragolsky, Naomi; Shema, Efrat; Zenvirth, Drora; Levy, Avraham A; Simchen, Giora

    2008-04-01

    The Saccharomyces cerevisiae RAD54 gene has critical roles in DNA double-strand break repair, homologous recombination, and gene targeting. Previous results show that the yeast gene enhances gene targeting when expressed in Arabidopsis thaliana. In this work we address the trans-species compatibility of Rad54 functions. We show that overexpression of yeast RAD54 in Arabidopsis enhances DNA damage resistance severalfold. Thus, the yeast gene is active in the Arabidopsis homologous-recombination repair system. Moreover, we have identified an A. thaliana ortholog of yeast RAD54, named AtRAD54. This gene, with close sequence similarity to RAD54, complements methylmethane sulfonate (MMS) sensitivity but not UV sensitivity or gene targeting defects of rad54Delta mutant yeast cells. Overexpression of AtRAD54 in Arabidopsis leads to enhanced resistance to DNA damage. This gene's assignment as a RAD54 ortholog is further supported by the interaction of AtRad54 with AtRad51 and the interactions between alien proteins (i.e., yeast Rad54 with AtRAD51 and yeast Rad51 with AtRad54) in a yeast two-hybrid experiment. These interactions hint at the molecular nature of this interkingdom complementation, although the stronger effect of the yeast Rad54 in plants than AtRad54 in yeast might be explained by an ability of the Rad54 protein to act alone, independently of its interaction with Rad51.

  17. tRNA nuclear export in saccharomyces cerevisiae: in situ hybridization analysis.

    PubMed

    Sarkar, S; Hopper, A K

    1998-11-01

    To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support "feedback" of nucleus/cytosol exchange to the pre-tRNA splicing machinery.

  18. Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models

    PubMed Central

    Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.

    2014-01-01

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891

  19. Phylogenetics of Saccharomycetales, the ascomycete yeasts.

    PubMed

    Suh, Sung-Oui; Blackwell, Meredith; Kurtzman, Cletus P; Lachance, Marc-André

    2006-01-01

    Ascomycete yeasts (phylum Ascomycota: subphylum Saccharomycotina: class Saccharomycetes: order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals and their interfaces. A few species account for most human mycotic infections, and fewer than 10 species are plant pathogens. Yeasts are responsible for important industrial and biotechnological processes, including baking, brewing and synthesis of recombinant proteins. Species such as Saccharomyces cerevisiae are model organisms in research, some of which led to a Nobel Prize. Yeasts usually reproduce asexually by budding, and their sexual states are not enclosed in a fruiting body. The group also is well defined by synapomorphies visible at the ultrastructural level. Yeast identification and classification changed dramatically with the availability of DNA sequencing. Species identification now benefits from a constantly updated sequence database and no longer relies on ambiguous growth tests. A phylogeny based on single gene analyses has shown the order to be remarkably divergent despite morphological similarities among members. The limits of many previously described genera are not supported by sequence comparisons, and multigene phylogenetic studies are under way to provide a stable circumscription of genera, families and orders. One recent multigene study has resolved species of the Saccharomycetaceae into genera that differ markedly from those defined by analysis of morphology and growth responses, and similar changes are likely to occur in other branches of the yeast tree as additional sequences become available.

  20. "One-pot" preparation of basic amino acid-silica hybrid monolithic column for capillary electrochromatography.

    PubMed

    Xu, Hongrui; Xu, Zhendong; Yang, Limin; Wang, Qiuquan

    2011-08-01

    A novel "one-pot" strategy was developed for the preparation of amino acid (AA)-silica hybrid monolithic column. The basic AA (L-Arginine, L-Lysine and L-Histidine) was covalently incorporated into the silica hybrid skeleton via the epoxy ring-opening reaction between the amine group and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS), which was confirmed by elemental analysis and FT-IR studies, while the basic AA was also found to catalyze the polycondensation of tetramethoxysilane and GPTMS. The average mesopore and macropore sizes of the prepared basic AA-silica hybrid monolithic columns were 3.86 nm and 1.71 μm for the L-Lysine-silica hybrid monolith, 5.38 nm and 4.24 μm for the L-Arginine-silica hybrid monolith, and 6.38 nm and 1.24 μm for the L-Histidine-silica hybrid monolith. The hybrid monolith afforded a zwitterionic stationary phase for CEC, the direction and magnitude of EOF can be controlled by the pH of the mobile phase used. Besides an electrophoretic mechanism, the monoliths behave in a typical hydrophilic interaction with the analytes when ACN percentage in the mobile phase is over 40%. Four polar compounds (toluene, DMF, formamide and thiourea) were tested on the three AA-silica hybrid monolithic columns, and the best separation efficiency was observed in the L-Lysine-silica hybrid monolithic column, its theoretical plate height was down to 5.7 μm for thiourea when 20 mM HCOOH-HCOONH4 containing 20% ACN (pH 4.1) was used as a running buffer. The corresponding theoretical plate number for toluene, DMF, formamide and thiourea were 123,385, 103,620, 121,845 and 105,345 plates/m, respectively. Effective separation of phenols and peptides on the L-Lysine-silica hybrid monolithic column was achieved using CEC. We believe that this strategy paves a way for the easy preparation of various functional silica hybrid monolithic columns, aiming at different separation purposes. Copyright © 2011 WILEY-VCH Verlag Gmb

  1. Genetic and Biochemical Analysis of High Iron Toxicity in Yeast

    PubMed Central

    Lin, Huilan; Li, Liangtao; Jia, Xuan; Ward, Diane McVey; Kaplan, Jerry

    2011-01-01

    Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity. PMID:21115478

  2. Studying Functions of All Yeast Genes Simultaneously

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  3. Genetic analysis of Saccharomyces cerevisiae strains isolated from palm wine in eastern Nigeria. Comparison with other African strains.

    PubMed

    Ezeronye, O U; Legras, J-L

    2009-05-01

    To study the yeast diversity of Nigerian palm wines by comparison with other African strains. Twenty-three Saccharomyces cerevisiae strains were obtained from palm wine samples collected at four locations in eastern Nigeria, and characterized using different molecular techniques: internal transcribed spacer restriction fragment length polymorphism and sequence analysis, pulsed field gel electrophoresis, inter delta typing and microsatellite multilocus analysis. These techniques revealed that palm wine yeasts represent a group of closely related strains that includes other West African isolates (CBS400, NCYC110, DVPG6044). Population analysis revealed an excess of homozygote strains and an allelic richness similar to wine suggestive of local domestication. Several other African yeast strains were not connected to this group. Ghana sorghum beer strains and other African strains (DBVPG1853 and MUCL28071) displayed strikingly high relatedness with European bread, beer or wine strains, and the genome of strain MUCL30909 contained African and wine-type alleles, indicating its hybrid origin. Nigerian palm wine yeast represents a local specific yeast flora, whereas a European origin or hybrid was suspected for several other Africa isolates. This study presents the first genetic characterization of an autochthonous African palm wine yeast population and confirms the idea that human intervention has favoured yeast migration.

  4. Construction of human chromosome 21-specific yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, M.K.; Shero, J.H.; Hieter, P.A.

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to > 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtainedmore » from a mouse-human hybrid, ranging in size from 200 to > 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from {approx} 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.« less

  5. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  6. Dual phylogenetic staining protocol for simultaneous analysis of yeast and bacteria in artworks

    NASA Astrophysics Data System (ADS)

    González-Pérez, Marina; Brinco, Catarina; Vieira, Ricardo; Rosado, Tânia; Mauran, Guilhem; Pereira, António; Candeias, António; Caldeira, Ana Teresa

    2017-02-01

    The detection and analysis of metabolically active microorganisms are useful to determine those directly involved in the biodeterioration of cultural heritage (CH). Fluorescence in situ hybridization with oligonucleotide probes targeted at rRNA (RNA-FISH) has demonstrated to be a powerful tool for signaling them. However, more efforts are required for the technique to become a vital tool for the analysis of CH's microbiological communities. Simultaneous analysis of microorganisms belonging to different kingdoms, by RNA-FISH in-suspension approach, could represent an important progress: it could open the door for the future use of the technique to analyze the microbial communities by flow cytometry, which has shown to be a potent tool in environmental microbiology. Thus, in this work, various already implemented in-suspension RNA-FISH protocols for ex situ analysis of yeast and bacteria were investigated and adapted for allowing the simultaneous detection of these types of microorganisms. A deep investigation of the factors that can affect the results was carried out, focusing particular attention on the selection of the fluorochromes used for labelling the probe set. The resultant protocol, involving the use of EUK516-6-FAM/EUB338-Cy3 probes combination, was validated using artificial consortia and gave positive preliminary results when applied in samples from a real case study: the Paleolithic archaeological site of Escoural Cave (Alentejo, Portugal). This approach represents the first dual-staining RNA-FISH in-suspension protocol developed and applied for the simultaneous investigation of CH biodeteriogenic agents belonging to different kingdoms.

  7. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations

    PubMed Central

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino

    2015-01-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. PMID:26150457

  8. Yeasts in floral nectar: a quantitative survey

    PubMed Central

    Herrera, Carlos M.; de Vega, Clara; Canto, Azucena; Pozo, María I.

    2009-01-01

    Background and Aims One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. Methods The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37–63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. Key Results Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 × 105 cells mm−3). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 104 cells mm−3 were commonplace, and densities >105 cells mm−3 were not rare. About one-fifth of species at each site had mean yeast cell densities >104 cells mm−3. Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. Conclusions Incorporating nectar yeasts into the scenario of plant–pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence

  9. Genome Sequence of Saccharomyces carlsbergensis, the World’s First Pure Culture Lager Yeast

    PubMed Central

    Walther, Andrea; Hesselbart, Ana; Wendland, Jürgen

    2014-01-01

    Lager yeast beer production was revolutionized by the introduction of pure culture strains. The first established lager yeast strain is known as the bottom fermenting Saccharomyces carlsbergensis, which was originally termed Unterhefe No. 1 by Emil Chr. Hansen and has been used in production in since 1883. S. carlsbergensis belongs to group I/Saaz-type lager yeast strains and is better adapted to cold growth conditions than group II/Frohberg-type lager yeasts, e.g., the Weihenstephan strain WS34/70. Here, we sequenced S. carlsbergensis using next generation sequencing technologies. Lager yeasts are descendants from hybrids formed between a S. cerevisiae parent and a parent similar to S. eubayanus. Accordingly, the S. carlsbergensis 19.5-Mb genome is substantially larger than the 12-Mb S. cerevisiae genome. Based on the sequence scaffolds, synteny to the S. cerevisae genome, and by using directed polymerase chain reaction for gap closure, we generated a chromosomal map of S. carlsbergensis consisting of 29 unique chromosomes. We present evidence for genome and chromosome evolution within S. carlsbergensis via chromosome loss and loss of heterozygosity specifically of parts derived from the S. cerevisiae parent. Based on our sequence data and via fluorescence-activated cell-sorting analysis, we determined the ploidy of S. carlsbergensis. This inferred that this strain is basically triploid with a diploid S. eubayanus and haploid S. cerevisiae genome content. In contrast the Weihenstephan strain, which we resequenced, is essentially tetraploid composed of two diploid S. cerevisiae and S. eubayanus genomes. Based on conserved translocations between the parental genomes in S. carlsbergensis and the Weihenstephan strain we propose a joint evolutionary ancestry for lager yeast strains. PMID:24578374

  10. Analysis of cytoplasmic genomes in somatic hybrids between navel orange (Citrus sinensis Osb.) and 'Murcott' tangor.

    PubMed

    Kobayashi, S; Ohgawara, T; Fujiwara, K; Oiyama, I

    1991-07-01

    Somatic hybrid plants were produced by protoplast fusion of navel orange and 'Murcott' tangor. Hybridity of the plants was confirmed by the restriction endonuclease analysis of nuclear ribosomal DNA. All of the plants (16 clones) were normal, uniform, and had the amphidiploid chromosome number of 36 (2n=2x=18 for each parent). The cpDNA analysis showed that each of the 16 somatic hybrids contained either one parental chloroplast genome or the other. In all cases, the mitochondrial genomes of the regenerated somatic hybrids were of the navel orange type.

  11. A stable hybrid containing haploid genomes of two obligate diploid Candida species.

    PubMed

    Chakraborty, Uttara; Mohamed, Aiyaz; Kakade, Pallavi; Mugasimangalam, Raja C; Sadhale, Parag P; Sanyal, Kaustuv

    2013-08-01

    Candida albicans and Candida dubliniensis are diploid, predominantly asexual human-pathogenic yeasts. In this study, we constructed tetraploid (4n) strains of C. albicans of the same or different lineages by spheroplast fusion. Induction of chromosome loss in the tetraploid C. albicans generated diploid or near-diploid progeny strains but did not produce any haploid progeny. We also constructed stable heterotetraploid somatic hybrid strains (2n + 2n) of C. albicans and C. dubliniensis by spheroplast fusion. Heterodiploid (n + n) progeny hybrids were obtained after inducing chromosome loss in a stable heterotetraploid hybrid. To identify a subset of hybrid heterodiploid progeny strains carrying at least one copy of all chromosomes of both species, unique centromere sequences of various chromosomes of each species were used as markers in PCR analysis. The reduction of chromosome content was confirmed by a comparative genome hybridization (CGH) assay. The hybrid strains were found to be stably propagated. Chromatin immunoprecipitation (ChIP) assays with antibodies against centromere-specific histones (C. albicans Cse4/C. dubliniensis Cse4) revealed that the centromere identity of chromosomes of each species is maintained in the hybrid genomes of the heterotetraploid and heterodiploid strains. Thus, our results suggest that the diploid genome content is not obligatory for the survival of either C. albicans or C. dubliniensis. In keeping with the recent discovery of the existence of haploid C. albicans strains, the heterodiploid strains of our study can be excellent tools for further species-specific genome elimination, yielding true haploid progeny of C. albicans or C. dubliniensis in future.

  12. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  13. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  14. Network thermodynamic curation of human and yeast genome-scale metabolic models.

    PubMed

    Martínez, Verónica S; Quek, Lake-Ee; Nielsen, Lars K

    2014-07-15

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. A Simple and Reliable Method for Hybridization of Homothallic Wine Strains of Saccharomyces cerevisiae

    PubMed Central

    Ramírez, Manuel; Peréz, Francisco; Regodón, José A.

    1998-01-01

    A procedure was developed for the hybridization and improvement of homothallic industrial wine yeasts. Killer cycloheximide-sensitive strains were crossed with killer-sensitive cycloheximide-resistant strains to get killer cycloheximide-resistant hybrids, thereby enabling hybrid selection and identification. This procedure also allows backcrossing of spore colonies from the hybrids with parental strains. PMID:9835605

  16. Yeast diversity on grapes in two German wine growing regions.

    PubMed

    Brysch-Herzberg, Michael; Seidel, Martin

    2015-12-02

    The yeast diversity on wine grapes in Germany, one of the most northern wine growing regions of the world, was investigated by means of a culture dependent approach. All yeast isolates were identified by sequence analysis of the D1/D2 domain of the 26S rDNA and the ITS region. Besides Hanseniaspora uvarum and Metschnikowia pulcherrima, which are well known to be abundant on grapes, Metschnikowia viticola, Rhodosporidium babjevae, and Curvibasidium pallidicorallinum, as well as two potentially new species related to Sporidiobolus pararoseus and Filobasidium floriforme, turned out to be typical members of the grape yeast community. We found M. viticola in about half of the grape samples in high abundance. Our data strongly suggest that M. viticola is one of the most important fermenting yeast species on grapes in the temperate climate of Germany. The frequent occurrence of Cu. pallidicorallinum and strains related to F. floriforme is a new finding. The current investigation provides information on the distribution of recently described yeast species, some of which are known from a very few strains up to now. Interestingly yeasts known for their role in the wine making process, such as Saccharomyces cerevisiae, Saccharomyces bayanus ssp. uvarum, Torulaspora delbrueckii, and Zygosaccharomyces bailii, were not found in the grape samples. Copyright © 2015. Published by Elsevier B.V.

  17. tRNA Nuclear Export in Saccharomyces cerevisiae: In Situ Hybridization Analysis

    PubMed Central

    Sarkar, Srimonti; Hopper, Anita K.

    1998-01-01

    To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support “feedback” of nucleus/cytosol exchange to the pre-tRNA splicing machinery. PMID:9802895

  18. Physicochemical characterization and sensory analysis of yeast-leavened and sourdough soy breads.

    PubMed

    Yezbick, Gabrielle; Ahn-Jarvis, Jennifer; Schwartz, Steven J; Vodovotz, Yael

    2013-10-01

    Sourdough fermentation has been shown to have numerous beneficial effects on bread quality, and nutritionally enhance soy-supplemented bread by altering isoflavone chemical forms. Given this, the objective of this study was to compare the loaf quality and shelf life of sourdough and yeast-leavened soy breads by various physical, thermal, and sensorial methods, and to assess the effects of fermentation by various microorganisms on isoflavone profile in dough and breads using high-performance liquid chromatography analysis. Sourdough fermentation yielded a less extensible dough compared to yeast-leavened soy dough (P < 0.001), and resulted in a harder bread crumb (P < 0.05) and lighter crust color (P < 0.001), compared to yeast-leavened soy bread (Y-B). Sensory analysis revealed a significantly higher overall liking of Y-B compared to sourdough soy bread (SD-B) (P < 0.001). Segmentation analysis of the cohort suggests that overall liking and bread consumption frequency may be determinants of Y-B or SD-B preference. SD-B and Y-B exhibited similar shelf-life properties. Despite significantly different enthalpies associated with the melting of amylose-lipid complexes, thermal analysis of the 2 soy breads stored for 10 d (ambient conditions) demonstrated no significant difference in water distribution and starch retrogradation (P < 0.05). Lastly, SD-B was determined to have 32% of total isoflavones occurring in the aglycone form compared to 17% in Y-B. These findings warrant further investigation of sourdough fermentation as a processing technique for quality and nutritional enhancement of soy-based baked goods. © 2013 Institute of Food Technologists®

  19. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.

    PubMed

    Urbanczyk, Henryk; Noguchi, Chiemi; Wu, Hong; Watanabe, Daisuke; Akao, Takeshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2011-07-01

    Sake yeast strains produce a high concentration of ethanol during sake brewing compared to laboratory yeast strains. As ethanol fermentation by yeast cells continues even after cell growth stops, analysis of the physiological state of the stationary phase cells is very important for understanding the mechanism of producing higher concentrations of ethanol. We compared the physiological characteristics of stationary phase cells of both sake and laboratory yeast strains in an aerobic batch culture and under sake brewing conditions. We unexpectedly found that sake yeast cells in the stationary phase had a lower buoyant density and stress tolerance than did the laboratory yeast cells under both experimental conditions. These results suggest that it is difficult for sake yeast cells to enter a quiescent state after cell growth has stopped, which may be one reason for the higher fermentation rate of sake yeast compared to laboratory yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Differential identification of Candida species and other yeasts by analysis of (/sup 35/S)methionine-labeled polypeptide profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.D.; Choo, K.B.; Tsai, W.C.

    1988-12-01

    This paper describes a scheme for differential identification of Candida species and other yeasts based on autoradiographic analysis of protein profiles of (/sup 35/S)methionine-labeled cellular proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using ATCC strains as references, protein profile analysis showed that different Candida and other yeast species produced distinctively different patterns. Good agreement in results obtained with this approach and with other conventional systems was observed. Being accurate and reproducible, this approach provides a basis for the development of an alternative method for the identification of yeasts isolated from clinical specimens.

  1. A diversity study of Saccharomycopsis fibuligera in rice wine starter nuruk, reveals the evolutionary process associated with its interspecies hybrid.

    PubMed

    Farh, Mohamed El-Agamy; Cho, Yunjoo; Lim, Jae Yun; Seo, Jeong-Ah

    2017-05-01

    The amylolytic yeast Saccharomycopsis fibuligera is the predominant yeast in the starter product, nuruk, which is utilized for rice wine production in South Korea. Latest molecular studies explore a recently developed interspecific hybridization among stains of S. fibuligera with a unique genetic feature. However, the origin of the natural hybridization occurrence is still unclear. Thus, to respectively distinguish parental and hybrid strains, specific primer sets were applied on 141 yeast strains isolated from different nuruk samples fermented in different provinces. Sixty-seven strains were defined accordingly as parental species with genome A while 8 strains were defined as hybrid strains. Unexpectedly, another parental species with genome B could not be found among the strain pools yet. Furthermore, it was observed that hybrid strains are phenotypically different from A genome strains; asci containing tetrad ascospores were observed in A genome strains more frequent than in hybrid strains. Nevertheless, hybrid strains were slightly more thermotolerant than A genome strains. Interestingly, all hybrid strains were located only in Jeju province. Based on these sets of data, we speculated that the unique climate of Jeju province might play an evolutionary role in the interspecific hybridization between A genome strains, as well as the unculturable allopatric B genome strains.

  2. Differentiation of yeasts growing on dry-cured Iberian ham by mitochondrial DNA restriction analysis, RAPD-PCR and their volatile compounds production.

    PubMed

    Andrade, M J; Rodríguez, M; Casado, E M; Bermúdez, E; Córdoba, J J

    2009-09-01

    The efficiency of mitochondrial DNA (mtDNA) restriction analysis, RAPD-PCR and volatile compounds analysis to differentiate yeast biotypes involved in flavour development of dry-cured Iberian ham throughout the ripening process is evaluated. For this purpose, 86 yeasts isolated from Iberian hams in the main ripening stages at different industries of the four Protected Designations of Origin of this product, were used. The combination of mtDNA restriction analysis and RAPD-PCR using the primer (GACA)4 showed a higher variability in the yeast species detected than obtained using only mtDNA restriction analysis. Only two species, Debaryomyces hansenii and Candida zeylanoides, were identified throughout the whole ripening process and a wide diversity of biotypes was found in these two species, with those of D. hansenii predominating. Clear differences between biotypes were detected in the generation of volatile compounds, with the biotype C2-2 of D. hansenii showing the highest concentrations of volatiles. The combined use of mtDNA restriction analysis and RAPD-PCR distinguishes yeast biotypes with different production of volatile compounds. In addition, analysis of the production profile of volatile compounds is needed to differentiate yeast strains of the same biotype recovered at different stages of ripening. Thus, the combination of these three methods could be very useful to select or monitor yeasts as starter cultures in dry-cured meat products.

  3. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.

    PubMed

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; St Onge, Robert P

    2016-09-01

    The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here. © 2016 Cold Spring Harbor Laboratory Press.

  4. A hybrid monkey search algorithm for clustering analysis.

    PubMed

    Chen, Xin; Zhou, Yongquan; Luo, Qifang

    2014-01-01

    Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.

  5. Initiation preference at a yeast origin of replication.

    PubMed

    Brewer, B J; Fangman, W L

    1994-04-12

    Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.

  6. Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids.

    PubMed

    Pérez-Través, Laura; Querol, Amparo; Pérez-Torrado, Roberto

    2016-11-21

    Several wine quality aspects are influenced by yeast mannoproteins on account of aroma compounds retention, lactic-acid bacterial growth stimulation, protection against protein haze and astringency reduction. Thus selecting a yeast strain that produces high levels of mannoproteins is important for the winemaking industry. In this work, we observed increased levels of mannoproteins in S. cerevisiae×S. kudriavzevii hybrids, compared to the S. cerevisiae strain, in wine fermentations. Furthermore, the expression of a key gene related to mannoproteins biosynthesis, PMT1, increased in the S. cerevisiae×S. kudriavzevii hybrid. We showed that artificially constructed S. cerevisiae×S. kudriavzevii hybrids also increased the levels of mannoproteins. This work demonstrates that either natural or artificial S. cerevisiae×S. kudriavzevii hybrids present mannoprotein overproducing capacity under winemaking conditions, a desirable physiological feature for this industry. These results suggest that genome interaction in hybrids generates a physiological environment that enhances the release of mannoproteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. One-Pot Exfoliation of Graphite and Synthesis of Nanographene/Dimesitylporphyrin Hybrids

    PubMed Central

    Bernal, M. Mar; Pérez, Emilio M.

    2015-01-01

    A simple one-pot process to exfoliate graphite and synthesize nanographene-dimesitylporphyrin hybrids has been developed. Despite the bulky mesityl groups, which are expected to hinder the efficient π–π stacking between the porphyrin core and graphene, the liquid-phase exfoliation of graphite is significantly favored by the presence of the porphyrins. Metallation of the porphyrin further enhances this effect. The resulting graphene/porphyrin hybrids were characterized by spectroscopy (UV-visible, fluorescence, and Raman) and microscopy (STEM, scanning transmission electron microscopy). PMID:25984598

  8. The homologous recombination machinery modulates the formation of RNA–DNA hybrids and associated chromosome instability

    PubMed Central

    Wahba, Lamia; Gore, Steven K; Koshland, Douglas

    2013-01-01

    Genome instability in yeast and mammals is caused by RNA–DNA hybrids that form as a result of defects in different aspects of RNA biogenesis. We report that in yeast mutants defective for transcription repression and RNA degradation, hybrid formation requires Rad51p and Rad52p. These proteins normally promote DNA–DNA strand exchange in homologous recombination. We suggest they also directly promote the DNA–RNA strand exchange necessary for hybrid formation since we observed accumulation of Rad51p at a model hybrid-forming locus. Furthermore, we provide evidence that Rad51p mediates hybridization of transcripts to homologous chromosomal loci distinct from their site of synthesis. This hybrid formation in trans amplifies the genome-destabilizing potential of RNA and broadens the exclusive co-transcriptional models that pervade the field. The deleterious hybrid-forming activity of Rad51p is counteracted by Srs2p, a known Rad51p antagonist. Thus Srs2p serves as a novel anti-hybrid mechanism in vivo. DOI: http://dx.doi.org/10.7554/eLife.00505.001 PMID:23795288

  9. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    NASA Astrophysics Data System (ADS)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  10. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen.

    PubMed

    Santiago, Ednalise; Akamine, Pearl; Snider, Jamie; Wong, Victoria; Jessulat, Matthew; Deineko, Viktor; Gagarinova, Alla; Aoki, Hiroyuki; Minic, Zoran; Phanse, Sadhna; San Antonio, Andrea; Cubano, Luis A; Rymond, Brian C; Babu, Mohan; Stagljar, Igor; Rodriguez-Medina, Jose R

    2016-05-03

    Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis. Copyright © 2016 Santiago et al.

  11. Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs.

    PubMed

    Pastorini, Jennifer; Zaramody, Alphonse; Curtis, Deborah J; Nievergelt, Caroline M; Mundy, Nicholas I

    2009-02-05

    Hybrid zones generally represent areas of secondary contact after speciation. The nature of the interaction between genes of individuals in a hybrid zone is of interest in the study of evolutionary processes. In this study, data from nuclear microsatellites and mitochondrial DNA sequences were used to genetically characterize hybridization between wild mongoose lemurs (Eulemur mongoz) and brown lemurs (E. fulvus) at Anjamena in west Madagascar. Two segments of mtDNA have been sequenced and 12 microsatellite loci screened in 162 brown lemurs and mongoose lemurs. Among the mongoose lemur population at Anjamena, we identified two F1 hybrids (one also having the mtDNA haplotype of E. fulvus) and six other individuals with putative introgressed alleles in their genotype. Principal component analysis groups both hybrids as intermediate between E. mongoz and E. fulvus and admixture analyses revealed an admixed genotype for both animals. Paternity testing proved one F1 hybrid to be fertile. Of the eight brown lemurs genotyped, all have either putative introgressed microsatellite alleles and/or the mtDNA haplotype of E. mongoz. Introgression is bidirectional for the two species, with an indication that it is more frequent in brown lemurs than in mongoose lemurs. We conclude that this hybridization occurs because mongoose lemurs have expanded their range relatively recently. Introgressive hybridization may play an important role in the unique lemur radiation, as has already been shown in other rapidly evolving animals.

  12. Genomic Evolution of the Ascomycete Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and amore » tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.« less

  13. Analysis of light propagation in quasiregular and hybrid Rudin-Shapiro one-dimensional photonic crystals with superconducting layers

    NASA Astrophysics Data System (ADS)

    Gómez-Urrea, H. A.; Escorcia-García, J.; Duque, C. A.; Mora-Ramos, M. E.

    2017-11-01

    The transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin-Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin-Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter-Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc - a forbidden frequency band for propagation - that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin-Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity - which reaches a value of several tens - corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers.

  14. Analysis of the yeast short-term Crabtree effect and its origin

    PubMed Central

    Hagman, Arne; Säll, Torbjörn; Piškur, Jure

    2014-01-01

    The short-term Crabtree effect is defined as the immediate occurrence of aerobic alcoholic fermentation in response to provision of a pulse of excess sugar to sugar-limited yeast cultures. Here we have characterized ten yeast species with a clearly defined phylogenetic relationship. Yeast species were cultivated under glucose-limited conditions, and we studied their general carbon metabolism in response to a glucose pulse. We generated an extensive collection of data on glucose and oxygen consumption, and ethanol and carbon dioxide generation. We conclude that the Pichia,Debaryomyces,Eremothecium and Kluyveromyces marxianus yeasts do not exhibit any significant ethanol formation, while Kluyveromyces lactis behaves as an intermediate yeast, and Lachancea,Torulaspora,Vanderwaltozyma and Saccharomyces yeasts exhibit rapid ethanol accumulation. Based on the present data and our previous data relating to the presence of the long-term Crabtree effect in over 40 yeast species, we speculate that the origin of the short-term effect may coincide with the origin of the long-term Crabtree effect in the Saccharomycetales lineage, occurring ∼ 150 million years ago. PMID:25161062

  15. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations.

    PubMed

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino; Verstrepen, Kevin J

    2015-09-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Mapping replication origins in yeast chromosomes.

    PubMed

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  17. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609.

    PubMed

    Sambles, Christine; Middelhaufe, Sabine; Soanes, Darren; Kolak, Dagmara; Lux, Thomas; Moore, Karen; Matoušková, Petra; Parker, David; Lee, Rob; Love, John; Aves, Stephen J

    2017-09-01

    Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula ( Rhodosporidium ) toruloides (Pucciniomycotina) is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13 × coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251).

  18. Saccharomyces cerevisiae vaginitis: transmission from yeast used in baking.

    PubMed

    Nyirjesy, P; Vazquez, J A; Ufberg, D D; Sobel, J D; Boikov, D A; Buckley, H R

    1995-09-01

    To determine whether vaginitis due to Saccharomyces cerevisiae can be caused by exposure to exogenous sources of baker's yeast. Eight women with S cerevisiae vaginitis were identified from a cohort of women referred for the evaluation of chronic vaginal symptoms. In those with high-level exposure to exogenous sources of S cerevisiae, isolates from the vagina and those sources were sent in a blinded fashion for contour-clamped homogeneous electric-field electrophoresis. Four women from a cohort of approximately 750 referred patients had high-level exposures to S cerevisiae. In one of these patients, electrophoresis analysis revealed similarities between the strains isolated from her vagina, her husband's fingers, and the yeast he used in his pizza shop. Saccharomyces cerevisiae vaginitis can be the result of the inoculation of this yeast from exogenous sources.

  19. New Trends in the Uses of Yeasts in Oenology.

    PubMed

    Querol, Amparo; Pérez-Torrado, Roberto; Alonso-Del-Real, Javier; Minebois, Romain; Stribny, Jiri; Oliveira, Bruno M; Barrio, Eladio

    2018-01-01

    The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands. © 2018 Elsevier Inc. All rights reserved.

  20. Screening wild yeast strains for alcohol fermentation from various fruits.

    PubMed

    Lee, Yeon-Ju; Choi, Yu-Ri; Lee, So-Young; Park, Jong-Tae; Shim, Jae-Hoon; Park, Kwan-Hwa; Kim, Jung-Wan

    2011-03-01

    Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five α-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the α-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except α-amylase production, and fermented alcohol better than commercial wine yeasts.

  1. Selective inhibition of yeast regulons by daunorubicin: A transcriptome-wide analysis

    PubMed Central

    Rojas, Marta; Casado, Marta; Portugal, José; Piña, Benjamin

    2008-01-01

    Background The antitumor drug daunorubicin exerts some of its cytotoxic effects by binding to DNA and inhibiting the transcription of different genes. We analysed this effect in vivo at the transcriptome level using the budding yeast Saccharomyces cerevisiae as a model and sublethal (IC40) concentrations of the drug to minimise general toxic effects. Results Daunorubicin affected a minor proportion (14%) of the yeast transcriptome, increasing the expression of 195 genes and reducing expression of 280 genes. Daunorubicin down-regulated genes included essentially all genes involved in the glycolytic pathway, the tricarboxylic acid cycle and alcohol metabolism, whereas transcription of ribosomal protein genes was not affected or even slightly increased. This pattern is consistent with a specific inhibition of glucose usage in treated cells, with only minor effects on proliferation or other basic cell functions. Analysis of promoters of down-regulated genes showed that they belong to a limited number of transcriptional regulatory units (regulons). Consistently, data mining showed that daunorubicin-induced changes in expression patterns were similar to those observed in yeast strains deleted for some transcription factors functionally related to the glycolysis and/or the cAMP regulatory pathway, which appeared to be particularly sensitive to daunorubicin. Conclusion The effects of daunorubicin treatment on the yeast transcriptome are consistent with a model in which this drug impairs binding of different transcription factors by competing for their DNA binding sequences, therefore limiting their effectiveness and affecting the corresponding regulatory networks. This proposed mechanism might have broad therapeutic implications against cancer cells growing under hypoxic conditions. PMID:18667070

  2. Proteomic Analysis of Pachytene Spermatocytes of Sterile Hybrid Male Mice.

    PubMed

    Wang, Lu; Guo, Yueshuai; Liu, Wenjing; Zhao, Weidong; Song, Gendi; Zhou, Tao; Huang, Hefeng; Guo, Xuejiang; Sun, Fei

    2016-09-01

    Incompatibilities in interspecific hybrids, such as reduced hybrid fertility and lethality, are common features resulting from reproductive isolation that lead to speciation. Subspecies crosses of house mice produce offspring in which one sex is infertile or absent, yet the molecular mechanisms of hybrid sterility are poorly understood. In this study, we observed extensive asynapsis of chromosomes and disturbance of the sex body in pachytene spermatocytes of sterile F1 males (PWK/Ph female × C57BL/6J male). We report the high-confidence identification of 4005 proteins in the pachytene spermatocytes of fertile F1 males (PWK/Ph male × C57BL/6J female) and sterile F1 males (PWK/Ph female × C57BL/6J male), of which 215 were upregulated and 381 were downregulated. Bioinformatics analysis of the proteome led to the identification of 43 and 59 proteins known to be essential for male meiosis and spermatogenesis in mice, respectively. Characterization of the proteome of pachytene spermatocytes associated with hybrid male sterility provides an inventory of proteins that is useful for understanding meiosis and the mechanisms of hybrid male infertility. © 2016 by the Society for the Study of Reproduction, Inc.

  3. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  4. The dynamic three-dimensional organization of the diploid yeast genome

    PubMed Central

    Kim, Seungsoo; Liachko, Ivan; Brickner, Donna G; Cook, Kate; Noble, William S; Brickner, Jason H; Shendure, Jay; Dunham, Maitreya J

    2017-01-01

    The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization. DOI: http://dx.doi.org/10.7554/eLife.23623.001 PMID:28537556

  5. DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation.

    PubMed

    Nakama, Mina; Kawakami, Kei; Kajitani, Takuya; Urano, Takeshi; Murakami, Yota

    2012-03-01

    Certain noncoding RNAs (ncRNAs) implicated in the regulation of chromatin structure associate with chromatin. During the formation of RNAi-directed heterochromatin in fission yeast, ncRNAs transcribed from heterochromatin are thought to recruit the RNAi machinery to chromatin for the formation of heterochromatin; however, the molecular details of this association are not clear. Here, using RNA immunoprecipitation assay, we showed that the heterochromatic ncRNA was associated with chromatin via the formation of a DNA-RNA hybrid and bound to the RNA-induced transcriptional silencing (RITS) complex. The presence of DNA-RNA hybrid in the cell was also confirmed by immunofluorescence analysis using anti-DNA-RNA hybrid antibody. Over-expression and depletion of RNase H in vivo decreased and increased the amount of DNA-RNA hybrid formed, respectively, and both disturbed heterochromatin. Moreover, DNA-RNA hybrid was formed on, and over-expression of RNase H inhibited the formation of, artificial heterochromatin induced by tethering of RITS to mRNA. These results indicate that heterochromatic ncRNAs are retained on chromatin via the formation of DNA-RNA hybrids and provide a platform for the RNAi-directed heterochromatin assembly and suggest that DNA-RNA hybrid formation plays a role in chromatic ncRNA function. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  6. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  7. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  8. Hybrid Single-Incision Laparoscopic Colon Cancer Surgery Using One Additional 5 mm Trocar.

    PubMed

    Kim, Hyung Ook; Choi, Dae Jin; Lee, Donghyoun; Lee, Sung Ryol; Jung, Kyung Uk; Kim, Hungdai; Chun, Ho-Kyung

    2018-02-01

    Single-incision laparoscopic surgery (SILS) is a feasible and safe procedure for colorectal cancer. However, SILS has some technical limitations such as collision between instruments and inadequate countertraction. We present a hybrid single-incision laparoscopic surgery (hybrid SILS) technique for colon cancer that involves use of one additional 5 mm trocar. Hybrid SILS for colon cancer was attempted in 70 consecutive patients by a single surgeon between August 2014 and July 2016 at Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine. Using prospectively collected data, an observational study was performed on an intention-to-treat basis. Hybrid SILS was technically completed in 66 patients, with a failure rate of 5.7% (4/70). One patient was converted to open surgery for para-aortic lymph node dissection. Another was converted to open surgery due to severe peritoneal adhesion. An additional trocar was inserted for adhesiolysis in the other two cases. Median lengths of proximal and distal margins were 12.8 cm (interquartile range [IQR], 10.0-18.6), and 8.2 cm (IQR, 5.5-18.3), respectively. Median total number of lymph nodes harvested was 24 (IQR, 18-33). Overall rate of postoperative morbidity was 12.9%, but there were no Clavien-Dindo grade III or IV complications. There was no postoperative mortality or reoperation. Median postoperative hospital stay was 6 days (IQR, 5-7). Hybrid SILS using one additional 5 mm trocar is a safe and effective minimally invasive surgical technique for colon cancer. Experienced laparoscopic surgeons can perform hybrid SILS without a learning curve based on the formulaic surgical techniques presented in this article.

  9. Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host-pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii.

    PubMed

    Navarro-Arias, María J; Dementhon, Karine; Defosse, Tatiana A; Foureau, Emilien; Courdavault, Vincent; Clastre, Marc; Le Gal, Solène; Nevez, Gilles; Le Govic, Yohann; Bouchara, Jean-Philippe; Giglioli-Guivarc'h, Nathalie; Noël, Thierry; Mora-Montes, Hector M; Papon, Nicolas

    2017-09-01

    Hybrid histidine kinases (HHKs) progressively emerge as prominent sensing proteins in the fungal kingdom and as ideal targets for future therapeutics. The group X HHK is of major interest, since it was demonstrated to play an important role in stress adaptation, host-pathogen interactions and virulence in some yeast and mold models, and particularly Chk1, that corresponds to the sole group X HHK in Candida albicans. In the present work, we investigated the role of Chk1 in the low-virulence species Candida guilliermondii, in order to gain insight into putative conservation of the role of group X HHK in opportunistic yeasts. We demonstrated that disruption of the corresponding gene CHK1 does not influence growth, stress tolerance, drug susceptibility, protein glycosylation or cell wall composition in C. guilliermondii. In addition, we showed that loss of CHK1 does not affect C. guilliermondii ability to interact with macrophages and to stimulate cytokine production by human peripheral blood mononuclear cells. Finally, the C. guilliermondii chk1 null mutant was found to be as virulent as the wild-type strain in the experimental model Galleria mellonella. Taken together, our results demonstrate that group X HHK function is not conserved in Candida species. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  11. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  12. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2.

    PubMed

    Abécassis, V; Pompon, D; Truan, G

    2000-10-15

    The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and reduction of parental gene contamination were two major goals. Library characterization involved multiprobe hybridization on DNA macro-arrays. The statistical analysis of randomly selected clones revealed a high proportion of chimeric genes (86%) and a homogeneous representation of the parental contribution among the sequences (55.8 +/- 2.5% for parental sequence 1A2). A microtiter plate screening system was designed to achieve colorimetric detection of polycyclic hydrocarbon hydroxylation by transformed yeast cells. Full sequences of five randomly picked and five functionally selected clones were analyzed. Results confirmed the shuffling efficiency and allowed calculation of the average length of sequence exchange and mutation rates. The efficient and statistically representative generation of mosaic structures by this type of family shuffling in a yeast expression system constitutes a novel and promising tool for structure-function studies and tuning enzymatic activities of multicomponent eucaryote complexes involving non-soluble enzymes.

  13. Precision and recall estimates for two-hybrid screens

    PubMed Central

    Huang, Hailiang; Bader, Joel S.

    2009-01-01

    Motivation: Yeast two-hybrid screens are an important method to map pairwise protein interactions. This method can generate spurious interactions (false discoveries), and true interactions can be missed (false negatives). Previously, we reported a capture–recapture estimator for bait-specific precision and recall. Here, we present an improved method that better accounts for heterogeneity in bait-specific error rates. Result: For yeast, worm and fly screens, we estimate the overall false discovery rates (FDRs) to be 9.9%, 13.2% and 17.0% and the false negative rates (FNRs) to be 51%, 42% and 28%. Bait-specific FDRs and the estimated protein degrees are then used to identify protein categories that yield more (or fewer) false positive interactions and more (or fewer) interaction partners. While membrane proteins have been suggested to have elevated FDRs, the current analysis suggests that intrinsic membrane proteins may actually have reduced FDRs. Hydrophobicity is positively correlated with decreased error rates and fewer interaction partners. These methods will be useful for future two-hybrid screens, which could use ultra-high-throughput sequencing for deeper sampling of interacting bait–prey pairs. Availability: All software (C source) and datasets are available as supplemental files and at http://www.baderzone.org under the Lesser GPL v. 3 license. Contact: joel.bader@jhu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19091773

  14. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  15. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  16. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

    PubMed

    Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé

    2012-12-01

    There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Stability analysis of hybrid-driven underwater glider

    NASA Astrophysics Data System (ADS)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  18. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    PubMed

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids

    NASA Astrophysics Data System (ADS)

    Dinari, Mohammad; Gharahi, Fateme; Asadi, Parvin

    2018-03-01

    A new series of 1,3,5-triazine incorporating aromatic quinazolinone moieties as a potential antimicrobial agents is reported. The first chlorine group of the cyanuric chloride (1) was replaced by aniline and the second one was replaced by various aromatic amines. The prepared monochlorotriazine was allowed to react with hydrazine and subsequently it was reacted with 2-methyl-4H-benzo[1,3]oxazin-4-one to obtain novel triazine-quinazolinone based hybrids (9a-f). The chemical structure and purity of the hybrid compounds were evaluated by different techniques such as thin layer chromatography, melting point, Fourier-transform infrared (FTIR), 1H and 13C NMR spectra and elemental analysis. Antimicrobial activity of the hybrid compounds were study by three Gram-negative bacteria (Salmonella entritidis, Escherichia coli, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Listeria monocitogenes, Bacillus subtilis) as well as Candida albicansas a yeast-like fungus using the serial broth dilution method. Among them, compound 9d with benzenesulfonamide group showed higher antimicrobial activity with a minimum inhibitory concentration (MIC) value of 16 μg/mL. Furthermore, compounds 5d, 9a and 9b showed good activity against several tested strains. In addition, docking simulation was perform to position best antibacterial compounds in to the S. aureus dihydrofolate reductase (DHFR) active site to determine the probable binding conformations.

  20. Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection.

    PubMed

    Fadda, M E; Pisano, M B; Scaccabarozzi, L; Mossa, V; Deplano, M; Moroni, P; Liciardi, M; Cosentino, S

    2013-01-01

    This study reports a rapid PCR-based technique using a one-enzyme RFLP for discrimination of yeasts isolated from bovine clinical and subclinical mastitis milk samples. We analyzed a total of 1,486 milk samples collected over 1 yr in south Sardinia and northern Italy, and 142 yeast strains were preliminarily grouped based on their cultural morphology and physiological characteristics. Assimilation tests were conducted using the identification kit API ID 32C and APILAB Plus software (bioMérieux, Marcy l'Etoile, France). For PCR-RFLP analysis, the 18S-ITS1-5.8S ribosomal(r)DNA region was amplified and then digested with HaeIII, and dendrogram analysis of RFLP fragments was carried out. Furthermore, within each of the groups identified by the API or PCR-RFLP methods, the identification of isolates was confirmed by sequencing of the D1/D2 region using an ABI Prism 310 automatic sequencer (Applied Biosystems, Foster City, CA). The combined phenotypic and molecular approach enabled the identification of 17 yeast species belonging to the genera Candida (47.9%), Cryptococcus (21.1%), Trichosporon (19.7%), Geotrichum (7.1%), and Rhodotorula (4.2%). All Candida species were correctly identified by the API test and their identification confirmed by sequencing. All strains identified with the API system as Geotrichum candidum, Cryptococcus uniguttulatus, and Rhodotorula glutinis also produced characteristic restriction patterns and were confirmed as Galactomyces geotrichum (a teleomorph of G. candidum), Filobasidium uniguttulatum (teleomorph of Crypt. uniguttulatus), and R. glutinis, respectively, by D1/D2 rDNA sequencing. With regard to the genus Trichosporon, preliminary identification by API was problematic, whereas the RFLP technique used in this study gave characteristic restriction profiles for each species. Moreover, sequencing of the D1/D2 region allowed not only successful identification of Trichosporon gracile where API could not, but also correct identification of

  1. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  2. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    PubMed

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  3. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    PubMed

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  4. A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production.

    PubMed

    Bizaj, Etjen; Cordente, Antonio G; Bellon, Jennifer R; Raspor, Peter; Curtin, Chris D; Pretorius, Isak S

    2012-06-01

    Industrial food-grade yeast strains are selected for traits that enhance their application in quality production processes. Wine yeasts are required to survive in the harsh environment of fermenting grape must, while at the same time contributing to wine quality by producing desirable aromas and flavors. For this reason, there are hundreds of wine yeasts available, exhibiting characteristics that make them suitable for different fermentation conditions and winemaking practices. As wine styles evolve and technical winemaking requirements change, however, it becomes necessary to improve existing strains. This becomes a laborious and costly process when the targets for improvement involve flavor compound production. Here, we demonstrate a new approach harnessing preexisting industrial yeast strains that carry desirable flavor phenotypes - low hydrogen sulfide (H(2) S) production and high ester production. A low-H(2) S Saccharomyces cerevisiae strain previously generated by chemical mutagenesis was hybridized independently with two ester-producing natural interspecies hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Deficiencies in sporulation frequency and spore viability were overcome through use of complementary selectable traits, allowing successful isolation of several novel hybrids exhibiting both desired traits in a single round of selection. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii.

    PubMed

    Portugal, Cauré; Pinto, Luís; Ribeiro, Miguel; Tenorio, Carmen; Igrejas, Gilberto; Ruiz-Larrea, Fernanda

    2015-10-01

    Wine microbiota is complex and includes a wide diversity of yeast species. Few of them are able to survive under the restrictive conditions of dry red wines. In our study we detected and identified seven yeast species of the order Saccharomycetales that can be considered potential spoilers of wines due to physiological traits such as acidogenic metabolism and off-odor generation: Arthroascus schoenii, Candida ishiwadae, Meyerozyma guilliermondii, Pichia holstii, Pichia manshurica, Trigonopsis cantarellii, and Trigonopsis variabilis. Based on the prevalence of T. cantarellii isolates in the wine samples of our study, we further characterized this species, determined molecular and phenotypic features, and performed a proteomic analysis to identify differentially expressed proteins at mid-exponential growth phase in the presence of ethanol in the culture broth. This yeast species is shown to be able to grow in the presence of ethanol by expressing heat shock proteins (Hsp70, Hsp71) and a DNA damage-related protein (Rad24), and to be able to confer spoilage characteristics on wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Protein–protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling.

    PubMed

    Ishii, Jun; Fukuda, Nobuo; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2010-05-01

    For elucidating protein–protein interactions, many methodologies have been developed during the past two decades. For investigation of interactions inside cells under physiological conditions, yeast is an attractive organism with which to quickly screen for hopeful candidates using versatile genetic technologies, and various types of approaches are now available.Among them, a variety of unique systems using the guanine nucleotide-binding protein (G-protein) signaling pathway in yeast have been established to investigate the interactions of proteins for biological study and pharmaceutical research. G-proteins involved in various cellular processes are mainly divided into two groups: small monomeric G-proteins,and heterotrimeric G-proteins. In this minireview, we summarize the basic principles and applications of yeast-based screening systems, using these two types of G-protein, which are typically used for elucidating biological protein interactions but are differentiated from traditional yeast two-hybrid systems.

  7. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene.

    PubMed

    Gibson, Brian; Krogerus, Kristoffer; Ekberg, Jukka; Monroux, Adrien; Mattinen, Laura; Rautio, Jari; Vidgren, Virve

    2015-01-01

    A screen of 14 S. pastorianus lager-brewing strains showed as much as a nine-fold difference in wort total diacetyl concentration at equivalent stages of fermentation of 15°Plato brewer's wort. Two strains (A153 and W34), with relatively low and high diacetyl production, respectively, but which did not otherwise differ in fermentation performance, growth or flavour production, were selected for further investigation. Transcriptional analysis of key genes involved in valine biosynthesis showed differences between the two strains that were consistent with the differences in wort diacetyl concentration. In particular, the ILV6 gene, encoding a regulatory subunit of acetohydroxy acid synthase, showed early transcription (only 6 h after inoculation) and up to five-fold greater expression in W34 compared to A153. This earlier transcription was observed for both orthologues of ILV6 in the S. pastorianus hybrid (S. cerevisiae × S. eubayanus), although the S. cerevisiae form of ILV6 in W34 also showed a consistently higher transcript level throughout fermentation relative to the same gene in A153. Overexpression of either form of ILV6 (by placing it under the control of the PGK1 promoter) resulted in an identical two-fold increase in wort total diacetyl concentration relative to a control. The results confirm the role of the Ilv6 subunit in controlling α-acetolactate/diacetyl concentration and indicate no functional divergence between the two forms of Ilv6. The greater contribution of the S. cerevisiae ILV6 to acetolactate production in natural brewing yeast hybrids appears rather to be due to higher levels of transcription relative to the S. eubayanus form. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Experimental Systems to Study Yeast Pexophagy.

    PubMed

    Yamashita, Shun-Ichi; Oku, Masahide; Sakai, Yasuyoshi; Fujiki, Yukio

    2017-01-01

    Peroxisome abundance is tightly regulated according to the physiological contexts, through regulations of both proliferation and degradation of the organelles. Here, we describe detailed methods to analyze processes for autophagic degradation of peroxisomes, termed pexophagy, in yeast organisms. The assay systems include a method for biochemical detection of pexophagy completion, and one for microscopic visualization of specialized membrane structures acting in pexophagy. As a model yeast organism utilized in studies of pexophagy, the methylotrophic yeast Komagataella phaffii (Pichia pastoris) is referred to in this chapter and related information on the studies with baker's yeast (Saccharomyces cerevisiae) is also included. The described techniques facilitate elucidation of molecular machineries for pexophagy and understanding of peroxisome-selective autophagic pathways.

  9. Making Sense of the Yeast Sphingolipid Pathway.

    PubMed

    Megyeri, Márton; Riezman, Howard; Schuldiner, Maya; Futerman, Anthony H

    2016-12-04

    Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Quantitative real-time PCR as a sensitive protein-protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system.

    PubMed

    Maier, Richard H; Maier, Christina J; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2012-12-01

    Many functional proteomic experiments make use of high-throughput technologies such as mass spectrometry combined with two-dimensional polyacrylamide gel electrophoresis and the yeast two-hybrid (Y2H) system. Currently there are even automated versions of the Y2H system available that can be used for proteome-wide research. The Y2H system has the capacity to deliver a profusion of Y2H positive colonies from a single library screen. However, subsequent analysis of these numerous primary candidates with complementary methods can be overwhelming. Therefore, a method to select the most promising candidates with strong interaction properties might be useful to reduce the number of candidates requiring further analysis. The method described here offers a new way of quantifying and rating the performance of positive Y2H candidates. The novelty lies in the detection and measurement of mRNA expression instead of proteins or conventional Y2H genetic reporters. This method correlates well with the direct genetic reporter readouts usually used in the Y2H system, and has greater sensitivity for detecting and quantifying protein-protein interactions (PPIs) than the conventional Y2H system, as demonstrated by detection of the Y2H false-negative PPI of RXR/PPARG. Approximately 20% of all proteins are not suitable for the Y2H system, the so-called autoactivators. A further advantage of this method is the possibility to evaluate molecules that usually cannot be analyzed in the Y2H system, exemplified by a VDR-LXXLL motif peptide interaction. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Inventions on baker's yeast strains and specialty ingredients.

    PubMed

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  12. Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast *

    PubMed Central

    Clauser, Karl R.; Shen, Hongying; Kamer, Kimberli J.; Wells, James A.

    2017-01-01

    The majority of mitochondrial proteins are encoded in the nuclear genome, translated in the cytoplasm, and directed to the mitochondria by an N-terminal presequence that is cleaved upon import. Recently, N-proteome catalogs have been generated for mitochondria from yeast and from human U937 cells. Here, we applied the subtiligase method to determine N-termini for 327 proteins in mitochondria isolated from mouse liver and kidney. Comparative analysis between mitochondrial N-termini from mouse, human, and yeast proteins shows that whereas presequences are poorly conserved at the sequence level, other presequence properties are extremely conserved, including a length of ∼20–60 amino acids, a net charge between +3 to +6, and the presence of stabilizing amino acids at the N-terminus of mature proteins that follow the N-end rule from bacteria. As in yeast, ∼80% of mouse presequence cleavage sites match canonical motifs for three mitochondrial peptidases (MPP, Icp55, and Oct1), whereas the remainder do not match any known peptidase motifs. We show that mature mitochondrial proteins often exist with a spectrum of N-termini, consistent with a model of multiple cleavage events by MPP and Icp55. In addition to analysis of canonical targeting presequences, our N-terminal dataset allows the exploration of other cleavage events and provides support for polypeptide cleavage into two distinct enzymes (Hsd17b4), protein cleavages key for signaling (Oma1, Opa1, Htra2, Mavs, and Bcs2l13), and in several cases suggests novel protein isoforms (Scp2, Acadm, Adck3, Hsdl2, Dlst, and Ogdh). We present an integrated catalog of mammalian mitochondrial N-termini that can be used as a community resource to investigate individual proteins, to elucidate mechanisms of mammalian mitochondrial processing, and to allow researchers to engineer tags distally to the presequence cleavage. PMID:28122942

  13. The modest beginnings of one genome project.

    PubMed

    Kaback, David B

    2013-06-01

    One of the top things on a geneticist's wish list has to be a set of mutants for every gene in their particular organism. Such a set was produced for the yeast, Saccharomyces cerevisiae near the end of the 20th century by a consortium of yeast geneticists. However, the functional genomic analysis of one chromosome, its smallest, had already begun more than 25 years earlier as a project that was designed to define most or all of that chromosome's essential genes by temperature-sensitive lethal mutations. When far fewer than expected genes were uncovered, the relatively new field of molecular cloning enabled us and indeed, the entire community of yeast researchers to approach this problem more definitively. These studies ultimately led to cloning, genomic sequencing, and the production and phenotypic analysis of the entire set of knockout mutations for this model organism as well as a better concept of what defines an essential function, a wish fulfilled that enables this model eukaryote to continue at the forefront of research in modern biology.

  14. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  15. Gut yeast communities in Larus michahellis from various breeding colonies.

    PubMed

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; Piarroux, Renaud; Ranque, Stéphane; Mauffrey, Jean-François

    2017-06-01

    Yellow-legged gulls have been reported to carry antibiotic-resistant Enterobacteriaceae; however, the gut mycobiota of these birds has not yet been described. In this study, we analyzed the gut yeast communities in five yellow-legged gull breeding colonies along the Mediterranean littoral in southern France. Gull fecal samples were inoculated onto four types of culture media, including one supplemented with itraconazole. Yeast species richness, abundance, and diversity were estimated, and factorial analysis was used to highlight correspondences between breeding colonies. Yeast grew in 113 of 177 cultures, and 17 distinct yeast species were identified. The most frequent species were Candida krusei (53.5%), Galactomyces geotrichum (44.1%), C. glabrata (40.9%), C. albicans (20.5%), and Saccharomyces cerevisiae (18.1%). Gut yeast community structure in the gulls at both Pierre-Blanche Lagoon (PB) and Frioul Archipelago (F) were characterized by greater species richness and diversity than in those at the two cities of La Grande-Motte (GM) and Palavas-les-Flots (PF) as well as Riou Archipelago (R). Gulls in these latter three sites probably share a similar type of anthropogenic diet. Notably, the proportion of anthropic yeast species, including C. albicans and C. glabrata, in the gull mycobiota increased with gull colony synanthropy. Antifungal resistance was found in each of the five most frequent yeast species. We found that the gut yeast communities of these yellow-legged gulls include antifungal-resistant human pathogens. Further studies should assess the public health impact of these common synanthropic seabirds, which represent a reservoir and disseminator of drug-resistant human pathogenic yeast into the environment. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Rescue of Targeted Regions of Mammalian Chromosomes by in Vivo Recombination in Yeast

    PubMed Central

    Kouprina, Natalya; Kawamoto, Kensaku; Barrett, J. Carl; Larionov, Vladimir; Koi, Minoru

    1998-01-01

    In contrast to other animal cell lines, the chicken pre-B cell lymphoma line, DT40, exhibits a high level of homologous recombination, which can be exploited to generate site-specific alterations in defined target genes or regions. In addition, the ability to generate human/chicken monochromosomal hybrids in the DT40 cell line opens a way for specific targeting of human genes. Here we describe a new strategy for direct isolation of a human chromosomal region that is based on targeting of the chromosome with a vector containing a yeast selectable marker, centromere, and an ARS element. This procedure allows rescue of the targeted region by transfection of total genomic DNA into yeast spheroplasts. Selection for the yeast marker results in isolation of chromosome sequences in the form of large circular yeast artificial chromosomes (YACs) up to 170 kb in size containing the targeted region. These YACs are generated by homologous recombination in yeast between common repeated sequences in the targeted chromosomal fragment. Alternatively, the targeted region can be rescued as a linear YACs when a YAC fragmentation vector is included in the yeast transformation mixture. Because the entire isolation procedure of the chromosomal region, once a target insertion is obtained, can be accomplished in ∼1 week, the new method greatly expands the utility of the homologous recombinationproficient DT40 chicken cell system. PMID:9647640

  17. Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1.

    PubMed Central

    Kalenik, J L; Chen, D; Bradley, M E; Chen, S J; Lee, T C

    1997-01-01

    Muscle-restricted transcription of sarcomeric actin genes is negatively controlled by the zinc finger protein YY1, which is down-regulated at the protein level during myogenic differentiation. To identify cellular proteins that might mediate the function/stability of YY1 in muscle cells, we screened an adult human muscle cDNA library using the yeast two-hybrid cloning system. We report the isolation and characterization of a novel protein termed YAF2 (YY1- associated factor 2) that interacts with YY1. The YAF2 cDNA encodes a 180 amino acid basic protein (pI 10.5) containing a single N-terminal C2-X10-C2 zinc finger. Lysine clusters are present that may function as a nuclear localization signal. Domain mapping analysis shows that the first and second zinc fingers of YY1 are targeted for YAF2 protein interaction. In contrast to the down-regulation of YY1, YAF2 message levels increase during in vitro differentiation of both rat skeletal and cardiac muscle cells. YAF2 appears to have a promyogenic regulatory role, since overexpression of YAF2 in C2 myoblasts stimulates myogenic promoter activity normally restricted by YY1. Co-transfection of YY1 reverses the stimulatory effect of YAF2. YAF2 also greatly potentiates proteolytic cleavage of YY1 by the calcium- activated protease m-calpain. The isolation of YAF2 may help in understanding the mechanisms through which inhibitors of myogenic transcription may be antagonized or eliminated by proteolysis during muscle development. PMID:9016636

  18. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  19. Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: Part II.

    PubMed

    Moyad, Mark A

    2008-02-01

    Yeast is the term generally applied to a unicellular fungus, and there are hundreds of species now identified. One of the most notable and well-known species of yeast in health and wellness is known as Saccharomyces cerevisiae, which is also known by its more common names, brewer's yeast or baker's yeast. Typically, brewer's yeast is used as a protein supplement, energy booster, immune enhancer, or other vehicle where other compounds can be inserted to create a commercialized health product. For example, one of the most notable positive findings was the encouraging results from a large randomized trial of adults recently vaccinated for seasonal influenza who also received an over-the-counter daily adjuvant modified brewer's yeast-based product (EpiCor) to prevent colds and flu symptoms. The modified yeast-based product significantly reduced the incidence and duration of this common condition. Yeast-based technology is also being used as a molecular mechanistic model of caloric restriction (CR) with the goal of improving the human life span. The current and potential impact of yeast-based technology in medicine is encouraging and should receive more attention, but the recent preliminary positive results of CR in humans may be in part due to what has been already learned from brewer's yeast.

  20. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  1. Periodically-Scheduled Controller Analysis using Hybrid Systems Reachability and Continuization

    DTIC Science & Technology

    2015-12-01

    tools to verify specifications for hybrid automata do not perform well on such periodically scheduled models. This is due to a combination of the large...an additive nondeterministic input. Reachability tools for hybrid automata can better handle such systems. We further improve the analysis by...formally as a hybrid automaton. However, reachability tools to verify specifications for hybrid automata do not perform well on such periodically

  2. Functional mapping of yeast genomes by saturated transposition

    PubMed Central

    Michel, Agnès H; Hatakeyama, Riko; Kimmig, Philipp; Arter, Meret; Peter, Matthias; Matos, Joao; De Virgilio, Claudio; Kornmann, Benoît

    2017-01-01

    Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput. DOI: http://dx.doi.org/10.7554/eLife.23570.001 PMID:28481201

  3. Replication dynamics of the yeast genome.

    PubMed

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  4. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  5. Comparative analysis of the frequency, distribution and population sizes of yeasts associated with canine seborrheic dermatitis and healthy skin.

    PubMed

    Yurayart, Chompoonek; Chindamporn, Ariya; Suradhat, Sanipa; Tummaruk, Padet; Kajiwara, Susumu; Prapasarakul, Nuvee

    2011-03-24

    The purpose of this study was to investigate the diversity of yeast associated with the degree of canine seborrheic dermatitis (SD) by anatomical sites. Fifty-seven samples were divided as 17 healthy skin, 20 with primary seborrheic dermatitis (PSD), and 20 with secondary seborrheic dermatitis (SSD). Yeast isolation and characterization were carried out based on microscopical features and biochemical properties. DNA analysis at the internal transcribed spacer I of 26S rDNA region was utilized for species confirmation. Four species of yeast consisting Malassezia pachydermatis, Malassezia furfur, Candida parapsilosis and Candida tropicalis recovered from examined dogs. M. pachydermatis and C. parapsilosis were isolated from all dogs, but C. tropicalis and M. furfur were recovered from 3 healthy dogs and one diseased dog, respectively. The number of M. pachydermatis and C. parapsilosis in diseased dogs was higher than that of healthy specimens (P<0.01). High frequency and population size of C. parapsilosis were closely associated to PSD, while those of M. pachydermatis were associated with both PSD and SSD (P<0.01). C. parapsilosis were predominant at the perianal area. This study demonstrated the co-colonization of M. pachydermatis and C. parapsilosis in large amounts and frequency associated with stage of disease and anatomical site. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Yeast Infection (Vaginal)

    MedlinePlus

    Yeast infection (vaginal) Overview A vaginal yeast infection is a fungal infection that causes irritation, discharge and intense itchiness ... symptoms Causes The fungus candida causes a vaginal yeast infection. Your vagina naturally contains a balanced mix of yeast, including ...

  7. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less

  8. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa.

    PubMed

    Liu, J; Kipreos, E T

    2000-07-01

    Cyclin-dependent kinases (CDKs) function as central regulators of both the cell cycle and transcription. CDK activation depends on phosphorylation by a CDK-activating kinase (CAK). Different CAKs have been identified in budding yeast, fission yeast, and metazoans. All known CAKs belong to the extended CDK family. The sole budding yeast CAK, CAK1, and one of the two CAKs in fission yeast, csk1, have diverged considerably from other CDKs. Cell cycle regulatory components have been largely conserved in eukaryotes; however, orthologs of neither CAK1 nor csk1 have been identified in other species to date. To determine the evolutionary relationships of yeast and metazoan CAKs, we performed a phylogenetic analysis of the extended CDK family in budding yeast, fission yeast, humans, the fruit fly Drosophila melanogaster, and the nematode Caenorhabditis elegans. We observed that there were 10 clades for CDK-related genes, of which seven appeared ancestral, containing both yeast and metazoan genes. The four clades that contain CDKs that regulate transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA Polymerase II generally have only a single orthologous gene in each species of yeast and metazoans. In contrast, the ancestral cell cycle CDK (analogous to budding yeast CDC28) gave rise to a number of genes in metazoans, as did the ancestor of budding yeast PHO85. One ancestral clade is unique in that there are fission yeast and metazoan members, but there is no budding yeast ortholog, suggesting that it was lost subsequent to evolutionary divergence. Interestingly, CAK1 and csk1 branch together with high bootstrap support values. We used both the relative apparent synapomorphy analysis (RASA) method in combination with the S-F method of sampling reduced character sets and gamma-corrected distance methods to confirm that the CAK1/csk1 association was not an artifact of long-branch attraction. This result suggests that CAK1 and csk1 are orthologs and that a

  9. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions.

    PubMed

    Gamero, Amparo; Belloch, Carmela; Querol, Amparo

    2015-09-04

    Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S. cerevisiae × S. kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S. cerevisiae × S. kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S. kudriavzevii allele was more expressed than that of S. cerevisiae particularly at 12 °C. This study revealed high differences regarding allele composition and gene expression in two S. cerevisiae × S. kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.

  10. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    PubMed

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  11. Metabolic reconstruction and flux analysis of industrial Pichia yeasts.

    PubMed

    Chung, Bevan Kai-Sheng; Lakshmanan, Meiyappan; Klement, Maximilian; Ching, Chi Bun; Lee, Dong-Yup

    2013-03-01

    Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P. stipitis is capable of assimilating xylose to produce ethanol under oxygen-limited conditions. To harness these characteristics for biotechnological applications, it is highly required to characterize their metabolic behavior. Recently, following the genome sequencing of these two Pichia species, genome-scale metabolic networks have been reconstructed to model the yeasts' metabolism from a systems perspective. To date, there are three genome-scale models available for each of P. pastoris and P. stipitis. In this mini-review, we provide an overview of the models, discuss certain limitations of previous studies, and propose potential future works that can be conducted to better understand and engineer Pichia yeasts for industrial applications.

  12. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  13. Clinical utility of an array comparative genomic hybridization analysis for Williams syndrome.

    PubMed

    Yagihashi, Tatsuhiko; Torii, Chiharu; Takahashi, Reiko; Omori, Mikimasa; Kosaki, Rika; Yoshihashi, Hiroshi; Ihara, Masahiro; Minagawa-Kawai, Yasuyo; Yamamoto, Junichi; Takahashi, Takao; Kosaki, Kenjiro

    2014-11-01

    To reveal the relation between intellectual disability and the deleted intervals in Williams syndrome, we performed an array comparative genomic hybridization analysis and standardized developmental testing for 11 patients diagnosed as having Williams syndrome based on fluorescent in situ hybridization testing. One patient had a large 4.2-Mb deletion spanning distally beyond the common 1.5-Mb intervals observed in 10/11 patients. We formulated a linear equation describing the developmental age of the 10 patients with the common deletion; the developmental age of the patient with the 4.2-Mb deletion was significantly below the expectation (developmental age = 0.51 × chronological age). The large deletion may account for the severe intellectual disability; therefore, the use of array comparative genomic hybridization may provide practical information regarding individuals with Williams syndrome. © 2014 Japanese Teratology Society.

  14. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  15. Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Moca, Cǎtǎlin Paşcu; Kormos, Márton; Zaránd, Gergely

    2017-09-01

    We develop a hybrid semiclassical method to study the time evolution of one-dimensional quantum systems in and out of equilibrium. Our method handles internal degrees of freedom completely quantum mechanically by a modified time-evolving block decimation method while treating orbital quasiparticle motion classically. We can follow dynamics up to time scales well beyond the reach of standard numerical methods to observe the crossover between preequilibrated and locally phase equilibrated states. As an application, we investigate the quench dynamics and phase fluctuations of a pair of tunnel-coupled one-dimensional Bose condensates. We demonstrate the emergence of soliton-collision-induced phase propagation, soliton-entropy production, and multistep thermalization. Our method can be applied to a wide range of gapped one-dimensional systems.

  16. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A computational analysis of the ballistic performance of light-weight hybrid composite armors

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Pandurangan, B.; Koudela, K. L.; Cheeseman, B. A.

    2006-11-01

    The ability of hybrid light-weight fiber-reinforced polymer-matrix composite laminate armor to withstand the impact of a fragment simulating projectile (FSP) is investigated using a non-linear dynamics transient computational analysis. The hybrid armor is constructed using various combinations and stacking sequences of a high-strength/high-stiffness carbon fiber-reinforced epoxy (CFRE) and a high-ductility/high-toughness Kevlar fiber-reinforced epoxy (KFRE) composite laminates of different thicknesses. The results obtained indicate that at a fixed thickness of the armor both the stacking sequence and the number of CFRE/KFRE laminates substantially affect the ballistic performance of the armor. Specifically, it is found that the armor consisting of one layer of KFRE and one layer of CFRE, with KFRE laminate constituting the outer surface of the armor, possesses the maximum resistance towards the projectile-induced damage and failure. The results obtained are rationalized using an analysis of the elastic wave reflection and transmission behavior at the inter-laminate and laminate/air interfaces.

  18. Isolation and characterization of ethanol tolerant yeast strains

    PubMed Central

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha

    2013-01-01

    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  19. A systems-level approach for metabolic engineering of yeast cell factories.

    PubMed

    Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens

    2012-03-01

    The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  1. Process Analysis of Variables for Standardization of Antifungal Susceptibility Testing of Nonfermentative Yeasts

    PubMed Central

    Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel

    2011-01-01

    Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30

  2. Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA.

    PubMed

    Miklenić, Marina; Štafa, Anamarija; Bajić, Ana; Žunar, Bojan; Lisnić, Berislav; Svetec, Ivan-Krešimir

    2013-05-01

    Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/ PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/microg DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.

  3. Microbiological and fermentative properties of baker's yeast starter used in breadmaking.

    PubMed

    Reale, A; Di Renzo, T; Succi, M; Tremonte, P; Coppola, R; Sorrentino, E

    2013-08-01

    This study assessed the levels of microbial contaminants in liquid, compressed and dry commercial baker's yeasts used as starters in breadmaking. Eumycetes, Enterobacteriaceae, total and fecal coliforms, Bacillus spp., and lactic acid bacteria (LAB), in particular enterococci, were quantified. Results obtained in this study highlighted that baker's yeast could represent a potential vehicle of spoilage and undesirable microorganisms into the baking environment, even if these do not influence the leavening activity in the dough, as ascertained by rheofermentometer analysis. Different microbial groups, such as spore-forming bacteria and moulds, were found in baker's yeast starters. Moreover, different species of LAB, which are considered the main contaminants in large-scale yeast fermentations, were isolated and identified by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA sequencing. The most recurrent species were Lactobacillus plantarum, Enterococcus faecalis, and Enterococcus durans, isolated from both compressed and dry starters, whereas strains belonging to Leuconostoc and Pediococcus genera were found only in dry ones. Nested-Polymerase Chain Reaction (Nested-PCR) and Randomly Amplified Polymorphic DNA-PCR (RAPD-PCR) were also used to highlight the biodiversity of the different commercial yeast strains, and to ascertain the culture purity. © 2013 Institute of Food Technologists®

  4. The yeast spectrum of the 'tea fungus Kombucha'.

    PubMed

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  5. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human

    PubMed Central

    Takahashi, Yoh-hei; Westfield, Gerwin H.; Oleskie, Austin N.; Trievel, Raymond C.; Shilatifard, Ali; Skiniotis, Georgios

    2011-01-01

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies. PMID:22158900

  6. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human.

    PubMed

    Takahashi, Yoh-hei; Westfield, Gerwin H; Oleskie, Austin N; Trievel, Raymond C; Shilatifard, Ali; Skiniotis, Georgios

    2011-12-20

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies.

  7. Analysis of a diesel-electric hybrid urban bus system

    NASA Astrophysics Data System (ADS)

    Marr, W. W.; Sekar, R. R.; Ahlheim, M. C.

    A hybrid bus powered by a diesel engine and a battery pack was analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, were evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

  8. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  9. Experimental Study of Membrane Fouling during Crossflow Microfiltration of Yeast and Bacteria Suspensions: Towards an Analysis at the Microscopic Level

    PubMed Central

    Ben Hassan, Ines; Ennouri, Monia; Lafforgue, Christine; Schmitz, Philippe; Ayadi, Abdelmoneim

    2013-01-01

    Microfiltration of model cell suspensions combining macroscopic and microscopic approaches was studied in order to better understand microbial membrane fouling mechanisms. The respective impact of Saccharomyces cerevisiae yeast and Escherichia coli bacteria on crossflow microfiltration performances was investigated using a multichannel ceramic 0.2 µm membrane. Pure yeast suspensions (5 µm ovoid cells) and mixtures of yeast and bacteria (1 to 2.5 µm rod shape cells) were considered in order to analyse the effect of interaction between these two microorganisms on fouling reversibility. The resistances varied significantly with the concentration and characteristics of the microorganisms. Membrane fouling with pure yeast suspension was mainly reversible. For yeast and bacteria mixed suspensions (6 g L−1 yeast concentration) the increase in bacteria from 0.15 to 0.30 g L−1 increased the percentage of normalized reversible resistance. At 10 g L−1 yeast concentration, the addition of bacteria tends to increase the percentage of normalized irreversible resistance. For the objective of performing local analysis of fouling, an original filtration chamber allowing direct in situ observation of the cake by confocal laser scanning microscopy (CLSM) was designed, developed and validated. This device will be used in future studies to characterize cake structure at the microscopic scale. PMID:24958619

  10. One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA

    PubMed Central

    Parodi, Alessandro; Evangelopoulos, Michael; Corbo, Claudia; Scaria, Shilpa; Hu, Ye; Haddix, Seth G.; Corradetti, Bruna; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    This report describes a novel, one-pot synthesis of hybrid nanoparticles formed by a nanostructured inorganic silica core and an organic pH-responsive hydrogel shell. This easy-to-perform, oil-in-water emulsion process synthesizes fluorescently-doped silica nanoparticles wrapped within a tunable coating of cationic poly(2-diethylaminoethyl methacrylate) hydrogel in one step. Transmission electron microscopy and dynamic light scattering analysis demonstrated that the hydrogel-coated nanoparticles are uniformly dispersed in the aqueous phase. The formation of covalent chemical bonds between the silica and the polymer increases the stability of the organic phase around the inorganic core as demonstrated by thermogravimetric analysis. The cationic nature of the hydrogel is responsible for the pH buffering properties of the nanostructured system and was evaluated by titration experiments. Zeta-potential analysis demonstrated that the charge of the system was reversed when transitioned from acidic to basic pH and vice versa. Consequently, small interfering RNA (siRNA) can be loaded and released in an acidic pH environment thereby enabling the hybrid particles and their payload to avoid endosomal sequestration and enzymatic degradation. These nanoparticles, loaded with specific siRNA molecules directed towards the transcript of the membrane receptor CXCR4, significantly decreased the expression of this protein in a human breast cancer cell line (i.e., MDA-MB-231). Moreover, intravenous administration of siRNA-loaded nanoparticles demonstrated a preferential accumulation at the tumor site that resulted in a reduction of CXCR4 expression. PMID:26901429

  11. Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Joyce, Ryan T.; Kessler, Paul D.; Merrill, Raymond G.; Qu, Min

    2017-01-01

    The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.

  12. Yeast Communities of Chestnut Soils under Vineyards in Dagestan

    NASA Astrophysics Data System (ADS)

    Abdullabekova, D. A.; Magomedova, E. S.; Magomedov, G. G.; Aliverdieva, D. A.; Kachalkin, A. V.

    2017-12-01

    The study of yeast communities in chestnut soils (Kastanozems) under vineyards in the Republic of Dagestan made it possible to isolate 20 yeast species. Most of the yeasts under vineyards belonged to ascomycetes, among which species of the Saccharomycetaceae family (in particular, Saccharomyces cerevisiae) comprised a significant part. The obtained results indicate that the soils under vineyards keep the pool of microbial diversity and ensure preservation of many species typical for grapes. The method of enrichment culture on grape juice medium proved to be more efficient than other methods of analysis with respect to the number of isolated species and the rate of their detection. However, implementation of different techniques to study yeasts' diversity can give somewhat different results; a set of methods should be used for an integrated analysis.

  13. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    PubMed

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  14. Hybrid LES RANS technique based on a one-equation near-wall model

    NASA Astrophysics Data System (ADS)

    Breuer, M.; Jaffrézic, B.; Arora, K.

    2008-05-01

    In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196 205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid

  15. Analysis of fuel cell hybrid locomotives

    NASA Astrophysics Data System (ADS)

    Miller, Arnold R.; Peters, John; Smith, Brian E.; Velev, Omourtag A.

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109 t, 1.2 MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive

  16. Yeast diversity during the fermentation of Andean chicha: A comparison of high-throughput sequencing and culture-dependent approaches.

    PubMed

    Mendoza, Lucía M; Neef, Alexander; Vignolo, Graciela; Belloch, Carmela

    2017-10-01

    Diversity and dynamics of yeasts associated with the fermentation of Argentinian maize-based beverage chicha was investigated. Samples taken at different stages from two chicha productions were analyzed by culture-dependent and culture-independent methods. Five hundred and ninety six yeasts were isolated by classical microbiological methods and 16 species identified by RFLPs and sequencing of D1/D2 26S rRNA gene. Genetic typing of isolates from the dominant species, Saccharomyces cerevisiae, by PCR of delta elements revealed up to 42 different patterns. High-throughput sequencing (HTS) of D1/D2 26S rRNA gene amplicons from chicha samples detected more than one hundred yeast species and almost fifty filamentous fungi taxa. Analysis of the data revealed that yeasts dominated the fermentation, although, a significant percentage of filamentous fungi appeared in the first step of the process. Statistical analysis of results showed that very few taxa were represented by more than 1% of the reads per sample at any step of the process. S. cerevisiae represented more than 90% of the reads in the fermentative samples. Other yeast species dominated the pre-fermentative steps and abounded in fermented samples when S. cerevisiae was in percentages below 90%. Most yeasts species detected by pyrosequencing were not recovered by cultivation. In contrast, the cultivation-based methodology detected very few yeast taxa, and most of them corresponded with very few reads in the pyrosequencing analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanical analysis of CFRP-steel hybrid composites considering the interfacial adhesion

    NASA Astrophysics Data System (ADS)

    Jang, Jinhyeok; Sung, Minchang; Han, Sungjin; Shim, Wonbo; Yu, Woong-Ryeol

    2017-10-01

    Recently, hybrid composites of carbon fiber reinforced plastics (CFRP) and steel have attracted great attention from automotive engineers due to their high potential for lightweight and multi-materials structures. Interestingly, such hybrid composites have demonstrated increased breaking strain, i.e., the breaking strain of CFRP in the hybrid was larger than that of single CFRP. As such the mechanical properties of hybrid composites could not be calculated using the rule of mixture. In addition, such increase is strongly dependent on the adhesion between CFRP and steel. In this study, a numerical analysis model was built to investigate the mechanism behind increased breaking strain of CFRP in the hybrid structure. Using cohesive zone model, the adhesion between CFRP and steel was effectively considered. The numerical results showed that the simulated mechanical behavior of the hybrid composites did not change as much as observed in experimental as the interfacial adhesion varied. We will investigate this discrepancy in detail and will report new analysis method suitable for CFRP and steel hybrid composites.

  18. Efficiency of mitochondrial DNA restriction analysis and RAPD-PCR to characterize yeasts growing on dry-cured Iberian ham at the different geographic areas of ripening.

    PubMed

    Andrade, María J; Rodríguez, Mar; Casado, Eva; Córdoba, Juan J

    2010-03-01

    The efficiency of mitochondrial DNA (mtDNA) restriction analysis and random amplification of polymorphic DNA (RAPD)-PCR to characterize yeasts growing on dry-cured Iberian ham was evaluated. Besides, the distribution of the main species and biotypes of yeasts in the different ripening areas of this product was investigated. MtDNA restriction analysis allowed yeast characterization at species and strain level. RAPD-PCR with the primers (GACA)(4) and (GAC)(5) was inappropriate for characterization at species level. Most of the mtDNA restriction patterns detected in dry-cured Iberian ham were consistent with Debaryomyces hansenii. Several yeasts biotypes were associated to specific geographic areas of dry-cured Iberian ham ripening. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Analysis of differentially expressed genes in two immunologically distinct strains of Eimeria maxima using suppression subtractive hybridization and dot-blot hybridization

    PubMed Central

    2014-01-01

    Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832

  20. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  1. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  2. Made for Each Other: Ascomycete Yeasts and Insects.

    PubMed

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  3. Evidence for propagation of cold-adapted yeast in an ice core from a Siberian Altai glacier

    NASA Astrophysics Data System (ADS)

    Uetake, Jun; Kohshima, Shiro; Nakazawa, Fumio; Takeuchi, Nozomu; Fujita, Koji; Miyake, Takayuki; Narita, Hideki; Aizen, Vladimir; Nakawo, Masayoshi

    2011-03-01

    Cold environments, including glacier ice and snow, are known habitats for cold-adapted microorganisms. We investigated the potential for cold-adapted yeast to have propagated in the snow of the high-altitude Belukha glacier. We detected the presence of highly concentrated yeast (over 104 cells mL-1) in samples of both an ice core and firn snow. Increasing yeast cell concentrations in the same snow layer from July 2002 to July 2003 suggests that the yeast cells propagated in the glacier snow. A cold-adapted Rhodotorula sp. was isolated from the snow layer and found to be related to psychrophilic yeast previously found in other glacial environments (based on the D1/D2 26S rRNA domains). 26S rRNA clonal analysis directly amplified from meltwater within the ice core also revealed the presence of genus Rhodotorula. Analyses of the ice core showed that all peaks in yeast concentration corresponded to the peaks in indices of surface melting. These results support the hypothesis that occasional surface melting in an accumulation area is one of the major factors influencing cold-adapted yeast propagation.

  4. The secretory pathway: exploring yeast diversity.

    PubMed

    Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2013-11-01

    Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.

    PubMed

    Oda, Y; Tonomura, K

    1996-10-01

    The presence of any one of the five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 and MAL6) confers the ability to ferment maltose on the yeast Saccharomyces cerevisiae. Each locus is composed of three genes encoding maltose permease, alpha-glucosidase and MAL activator. Chromosomal DNA of seven representative baking strains has been separated by pulse-field gel electrophoresis and probed with three genes in MAL6 locus. The DNA bands to which all of the three MAL-derived probes simultaneously hybridized were chromosome VII carrying MAL1 in all of the strains tested, chromosome XI carrying MAL4 in six strains, chromosome III carrying MAL2 in three strains and chromosomes II and VIII carrying MAL3 and MAL6, respectively, in the one strain. The number of MAL loci in baking strains was comparable to those of brewing strains.

  6. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    PubMed

    Guo, Yi-Cheng; Zhang, Lin; Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  7. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage. PMID:27152421

  8. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    PubMed Central

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  9. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    PubMed

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  10. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2005-07-13

    Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.

  11. Biogenesis of the yeast cytochrome bc1 complex.

    PubMed

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  12. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations

    PubMed Central

    Mills, David A.; Johannsen, Eric A.; Cocolin, Luca

    2002-01-01

    Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (∼30°C) and ambient (∼20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations. PMID:12324335

  13. Exploring the Yeast Acetylome Using Functional Genomics

    PubMed Central

    Duffy, Supipi Kaluarachchi; Friesen, Helena; Baryshnikova, Anastasia; Lambert, Jean-Philippe; Chong, Yolanda T.; Figeys, Daniel; Andrews, Brenda

    2014-01-01

    SUMMARY Lysine acetylation is a dynamic posttranslational modification with a well-defined role in regulating histones. The impact of acetylation on other cellular functions remains relatively uncharacterized. We explored the budding yeast acetylome with a functional genomics approach, assessing the effects of gene overexpression in the absence of lysine deacetylases (KDACs). We generated a network of 463 synthetic dosage lethal (SDL) interactions involving class I and II KDACs, revealing many cellular pathways regulated by different KDACs. A biochemical survey of genes interacting with the KDAC RPD3 identified 72 proteins acetylated in vivo. In-depth analysis of one of these proteins, Swi4, revealed a role for acetylation in G1-specific gene expression. Acetylation of Swi4 regulates interaction with its partner Swi6, both components of the SBF transcription factor. This study expands our view of the yeast acetylome, demonstrates the utility of functional genomic screens for exploring enzymatic pathways, and provides functional information that can be mined for future studies. PMID:22579291

  14. Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity.

    PubMed

    Pérez-Través, Laura; Lopes, Christian A; González, Ramón; Barrio, Eladio; Querol, Amparo

    2015-07-16

    Yeast mannoproteins contribute to several aspects of wine quality by protecting wine against protein haze, reducing astringency, retaining aroma compounds and stimulating lactic-acid bacteria growth. The selection of a yeast strain that simultaneously overproduces mannoproteins and presents good fermentative characteristics is a difficult task. In this work, a Saccharomyces cerevisiae×S. cerevisiae hybrid bearing the two oenologically relevant features was constructed. According to the genomic characterisation of the hybrids, different copy numbers of some genes probably related with these physiological features were detected. The hybrid shared not only a similar copy number of genes SPR1, SWP1, MNN10 and YPS7 related to cell wall integrity with parental Sc1, but also a similar copy number of some glycolytic genes with parental Sc2, such as GPM1 and HXK1, as well as the genes involved in hexose transport, such as HXT9, HXT11 and HXT12. This work demonstrates that hybridisation and stabilisation under winemaking conditions constitute an effective approach to obtain yeast strains with desirable physiological features, like mannoprotein overproducing capacity and improved fermentation performance, which genetically depend of the expression of numerous genes (multigenic characters). Copyright © 2015. Published by Elsevier B.V.

  15. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  16. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  17. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  18. Potentiality of yeast Candida sp. SMN04 for degradation of cefdinir, a cephalosporin antibiotic: kinetics, enzyme analysis and biodegradation pathway.

    PubMed

    Selvi, A; Das, Devlina; Das, Nilanjana

    2015-01-01

    A new yeast strain isolated from the pharmaceutical wastewater was capable of utilizing cefdinir as a sole carbon source for their growth in mineral medium. The yeast was identified and named as Candida sp. SMN04 based on morphology and 18S-ITS-D1/D2/D3 rRNA sequence analysis. The interaction between factors pH (3.0-9.0), inoculum dosage (1-7%), time (1-11 day) and cefdinir concentration (50-450 mg/L) was studied using a Box-Behnken design. The factors were studied as a result of their effect on cell dry weight (R1; g/L), extended spectrum β-lactamase (ESBL) assay (R2; mm), P450 activity (R3; U/mL) and degradation (R4; %). Maximum values of R1, R2, R3 and R4 were obtained at central values of all the parameters. The isolated yeast strain efficiently degraded 84% of 250 mg L⁻¹ of cefdinir within 6 days with a half-life of 2.97 days and degradation rate constant of 0.2335 per day. Pseudo-first-order model efficiently described the process. Among the various enzymes tested, the order of activity at the end of Day 4 was noted to be: cytochrome P450 (1.76 ± 0.03) > NADPH reductase (1.51 ± 0.20) > manganese peroxidase and amylase (0.66 ± 0.15; 0.66 ± 0.70). Intermediates were successfully characterized by liquid chromatography-mass spectrometry. The opening of the β-lactam ring involving ESBL activity was considered as one of the major steps in the cefdinir degradation process. Fourier transform-infrared spectroscopy analysis showed the absence of spectral vibrations between 1766 and 1519 cm⁻¹ confirming the complete removal of lactam ring during cefdinir degradation. The results of the present study are promising for the use of isolated yeast Candida sp. SMN04 as a potential bioremediation agent.

  19. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts

    PubMed Central

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia

    2016-01-01

    ABSTRACT Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker’s yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. PMID:27795405

  20. The Effect of Dietary Supplementation with Spent Cider Yeast on the Swine Distal Gut Microbiome

    PubMed Central

    Upadrasta, Aditya; O’Sullivan, Lisa; O’Sullivan, Orla; Sexton, Noel; Lawlor, Peadar G.; Hill, Colin; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul

    2013-01-01

    Background There is an increasing need for alternatives to antibiotics for promoting animal health, given the increasing problems associated with antibiotic resistance. In this regard, we evaluated spent cider yeast as a potential probiotic for modifying the gut microbiota in weanling pigs using pyrosequencing of 16S rRNA gene libraries. Methodology and Principal Findings Piglets aged 24–26 days were assigned to one of two study groups; control (n = 12) and treatment (n = 12). The control animals were fed with a basal diet and the treatment animals were fed with basal diet in combination with cider yeast supplement (500 ml cider yeast containing ∼7.6 log CFU/ml) for 21 days. Faecal samples were collected for 16s rRNA gene compositional analysis. 16S rRNA compositional sequencing analysis of the faecal samples collected from day 0 and day 21 revealed marked differences in microbial diversity at both the phylum and genus levels between the control and treatment groups. This analysis confirmed that levels of Salmonella and Escherichia were significantly decreased in the treatment group, compared with the control (P<0.001). This data suggest a positive influence of dietary supplementation with live cider yeast on the microbial diversity of the pig distal gut. Conclusions/Significance The effect of dietary cider yeast on porcine gut microbial communities was characterized for the first time using 16S rRNA gene compositional sequencing. Dietary cider yeast can potentially alter the gut microbiota, however such changes depend on their endogenous microbiota that causes a divergence in relative response to that given diet. PMID:24130736

  1. Development and application of a recombination-based library versus library high- throughput yeast two-hybrid (RLL-Y2H) screening system.

    PubMed

    Yang, Fang; Lei, Yingying; Zhou, Meiling; Yao, Qili; Han, Yichao; Wu, Xiang; Zhong, Wanshun; Zhu, Chenghang; Xu, Weize; Tao, Ran; Chen, Xi; Lin, Da; Rahman, Khaista; Tyagi, Rohit; Habib, Zeshan; Xiao, Shaobo; Wang, Dang; Yu, Yang; Chen, Huanchun; Fu, Zhenfang; Cao, Gang

    2018-02-16

    Protein-protein interaction (PPI) network maintains proper function of all organisms. Simple high-throughput technologies are desperately needed to delineate the landscape of PPI networks. While recent state-of-the-art yeast two-hybrid (Y2H) systems improved screening efficiency, either individual colony isolation, library preparation arrays, gene barcoding or massive sequencing are still required. Here, we developed a recombination-based 'library vs library' Y2H system (RLL-Y2H), by which multi-library screening can be accomplished in a single pool without any individual treatment. This system is based on the phiC31 integrase-mediated integration between bait and prey plasmids. The integrated fragments were digested by MmeI and subjected to deep sequencing to decode the interaction matrix. We applied this system to decipher the trans-kingdom interactome between Mycobacterium tuberculosis and host cells and further identified Rv2427c interfering with the phagosome-lysosome fusion. This concept can also be applied to other systems to screen protein-RNA and protein-DNA interactions and delineate signaling landscape in cells.

  2. Yeasts: providing questions and answers for modern biology.

    PubMed

    Dickinson, J R

    2000-01-01

    Yeasts are to be found in virtually every conceivable niche on this planet and are amazingly varied in their shapes ('morphologies'), life cycles, metabolic capabilities, potentials for use in industrial processes, abilities to spoil food and drink or to act as dangerous human pathogens. This review describes four very different species of yeast to illustrate some of the diversity which exists and, in the case of one of them, Saccharomyces cerevisiae (the familiar baker's or brewer's yeast), the extent of both our knowledge and ignorance.

  3. Hybrid Laminates for Application in North Conditions

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.

    2016-11-01

    A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.

  4. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses.

    PubMed

    Liu, Hui; Jia, Zhenghu; Yang, Chengmao; Song, Mei; Jing, Zhe; Zhao, Yapu; Wu, Zhenzhou; Zhao, Liqing; Wei, Dongsheng; Yin, Zhinan; Hong, Zhangyong

    2018-06-01

    Aluminum salt (Alum) is one of the most important immune adjuvants approved for use in humans, however it is not suitable for vaccination against various chronic infectious diseases and cancers for not being able to induce cell-mediated (Th1) immunity. Here, we encapsulated an Alum colloid inside β-glucan particles (GPs), which are a type of natural particles derived from the yeast glucan shells, to prepare hybrid GP-Alum (GP-Al) adjuvant particles with a very uniform size of 2-4 μm. These hybrid particles can be used to load antigen proteins through a simple mixing procedure, and can be highly specifically targeted to antigen-presenting cells (APCs) and strongly activate dendritic cells (DCs) maturation and cytokine secretion. In an animal model, they elicit a strong Th1-biased immune response and extremely high antibody titer, and cause marked prophylactic and therapeutic effects against tumors. As Alum has been proven to be a safe adjuvant to induce strong humoral responses and β-glucans are safe for human use, this very uniform hybrid Alum particulate system could have important application as a vaccine carrier to stimulate humoral and cellular immune responses at the same time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kere, J.; Grzeschik, K.H.; Limon, J.

    1993-05-01

    Anhidrotic ectodermal dysplasia (EDA), an X-chromosomal recessive disorder, is expressed in a few females with chromosomal translocations involving bands Xq12-q13. Using available DNA markers from the region and somatic cell hybrids the authors mapped the X-chromosomal breakpoints in two such translocations. The breakpoints were further mapped within a yeast artificial chromosome contig constructed by chromosome walking techniques. Genomic DNA markers that map between the two translocation breakpoints were recovered representing putative portions of the EDA gene. 32 refs., 3 figs., 1 tab.

  6. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  7. The protein expression landscape of mitosis and meiosis in diploid budding yeast.

    PubMed

    Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael

    2017-03-06

    Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We

  8. Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions.

    PubMed

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2014-12-01

    We evaluated the genetic stabilization of artificial intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae × S. kudriavzevii) hybrids under wine fermentative conditions. Large-scale transitions in genome size and genome reorganizations were observed during this process. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns recovered among the derived clones was observed for intraspecific hybrids, particularly for those obtained by rare-mating. Molecular marker analyses revealed that unstable clones could change during the industrial process to obtain active dry yeast. When no changes in molecular markers and ploidy were observed after this process, no changes in genetic composition were confirmed by comparative genome hybridization, considering the clone as a stable hybrid. According to our results, under these conditions, fermentation steps 3 and 5 (30-50 generations) would suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  9. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles.

  10. Comparative analysis of Gram's stain, PNA-FISH and Sepsityper with MALDI-TOF MS for the identification of yeast direct from positive blood cultures.

    PubMed

    Gorton, Rebecca L; Ramnarain, P; Barker, K; Stone, N; Rattenbury, S; McHugh, T D; Kibbler, C C

    2014-10-01

    Fungaemia diagnosis could be improved by reducing the time to identification of yeast from blood cultures. This study aimed to evaluate three rapid methods for the identification of yeast direct from blood cultures; Gram's stain analysis, the AdvanDX Peptide Nucleic Acid in Situ Hybridisation Yeast Traffic Light system (PNA-FISH YTL) and Bruker Sepsityper alongside matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS). Fifty blood cultures spiked with a known single yeast strain were analysed by blinded operators experienced in each method. Identifications were compared with MALDI-TOF MS CHROMagar Candida culture and ITS rRNA sequence-based identifications. On first attempt, success rates of 96% (48/50) and 76% (36/50) were achieved using PNA-FISH YTL and Gram's stain respectively. MALDI-TOF MS demonstrated a success rate of 56% (28/50) when applying manufacturer's species log score thresholds and 76% (38/50) using in-house parameters, including lowering the species log score threshold to >1.5. In conclusion, PNA-FISH YTL demonstrated a high success rate successfully identifying yeast commonly encountered in fungaemia. Sepsityper(™) with MALDI-TOF MS was accurate but increased sensitivity is required. Due to the misidentification of commonly encountered yeast Gram's stain analysis demonstrated limited utility in this setting. © 2014 Blackwell Verlag GmbH.

  11. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    PubMed

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    PubMed

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  13. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  14. Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA.

    PubMed

    Röder, Christoph; König, Helmut; Fröhlich, Jürgen

    2007-09-01

    Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.

  15. T Cell Receptor Engineering and Analysis Using the Yeast Display Platform

    PubMed Central

    Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.

    2017-01-01

    The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072

  16. Trans-Lesion DNA Polymerases May Be Involved in Yeast Meiosis

    PubMed Central

    Arbel-Eden, Ayelet; Joseph-Strauss, Daphna; Masika, Hagit; Printzental, Oxana; Rachi, Eléanor; Simchen, Giora

    2013-01-01

    Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30. We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed. PMID:23550131

  17. [Treatment of oil-manufacturing wastewater by yeast-SBR system].

    PubMed

    Lü, Wen-zhou; Liu, Ying; Huang, Yi-zhen

    2008-04-01

    Eight yeast strains were applied to a sequencing batch reactor (SBR) to treat high-strength oil-containing wastewater. The removal performance, yeast cultivation method and key factors affecting the stability of system were discussed. The results show yeast sludge with MLSS of 19 g/L and SVI of 35 mL/g can be obtained in 6 d in an open system without any molds and bacteria inhibitor addition; In 30 d continuous wastewater treatment, COD and oil removal rate achieve 86.8%-96.9% and above 99.5% respectively under the influent conditions of the COD of 9000-23000 mg/L and oil of 4500-16000 mg/L; Short period of pH impact brings reversible effects on the system and the sludge retention time can affect the SVI of the yeast; Absence of nitrogen induces morphology conversion of some yeast cells from single cell to filamentous one and impairs the settling capability of the yeast.

  18. One-pot synthesis, quantum chemical calculations and X-ray diffraction studies of thiazolyl-coumarin hybrid compounds

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Arif, Mubeen; Erben, Mauricio F.; Flörke, Ulrich; Simpson, Jim

    2018-06-01

    Two closely related hybrid species containing both, thiazolyl and coumarin groups, were synthesized by using two different one-pot procedures from a common precursor. The reaction of α-bromoacetylcoumarin with thioacetamide in methanol furnished 3‑(2‑methylthiazol‑4‑yl)‑2H‑chromen‑2‑one (2), whereas refluxing α‑bromoacetylcoumarin with potassium thiocyanate in ethanol afforded 3‑(2‑ethoxythiazol‑4‑yl)‑2H‑chromen‑2‑one (3). Both derivatives were fully characterized by spectroscopic methods, elemental analysis and X-ray diffraction studies. Intramolecular C4sbnd H⋯N and C5‧sbnd H⋯Odbnd C hydrogen bonds between the heterocycles determine the conformational behavior. The co-planarity of the coumarin and thiazolyl rings favors the occurrence of two remote orbital interactions involving the oxygen and nitrogen lone pairs and the corresponding σ*Csbnd H electron acceptor, as demonstrated by Natural Bond Orbital population analysis. The 2-substitution of the thiazol‑4‑yl group has little effect on the molecular structures but causes significant differences in the crystal packing of the two compounds.

  19. Fluoride export (FEX) proteins from fungi, plants and animals are 'single barreled' channels containing one functional and one vestigial ion pore

    PubMed Central

    Berbasova, Tetyana; Nallur, Sunitha; Sells, Taylor; Smith, Kathryn D.; Gordon, Patricia B.; Tausta, Susan Lori

    2017-01-01

    The fluoride export protein (FEX) in yeast and other fungi provides tolerance to fluoride (F-), an environmentally ubiquitous anion. FEX efficiently eliminates intracellular fluoride that otherwise would accumulate at toxic concentrations. The FEX homolog in bacteria, Fluc, is a ‘double-barreled’ channel formed by dimerization of two identical or similar subunits. FEX in yeast and other eukaryotes is a monomer resulting from covalent fusion of the two subunits. As a result, both potential fluoride pores are created from different parts of the same protein. Here we identify FEX proteins from two multicellular eukaryotes, a plant Arabidopsis thaliana and an animal Amphimedon queenslandica, by demonstrating significant fluoride tolerance when these proteins are heterologously expressed in the yeast Saccharomyces cerevisiae. Residues important for eukaryotic FEX function were determined by phylogenetic sequence alignment and functional analysis using a yeast growth assay. Key residues of the fluoride channel are conserved in only one of the two potential fluoride-transporting pores. FEX activity is abolished upon mutation of residues in this conserved pore, suggesting that only one of the pores is functional. The same topology is conserved for the newly identified FEX proteins from plant and animal. These data suggest that FEX family of fluoride channels in eukaryotes are ‘single-barreled’ transporters containing one functional pore and a second non-functional vestigial remnant of a homologous gene fusion event. PMID:28472134

  20. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists.

    PubMed

    Vongsvivut, Jitraporn; Heraud, Philip; Gupta, Adarsha; Puri, Munish; McNaughton, Don; Barrow, Colin J

    2013-10-21

    The increase in polyunsaturated fatty acid (PUFA) consumption has prompted research into alternative resources other than fish oil. In this study, a new approach based on focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopy and multivariate data analysis was developed for the characterisation of some marine microorganisms. Cell and lipid compositions in lipid-rich marine yeasts collected from the Australian coast were characterised in comparison to a commercially available PUFA-producing marine fungoid protist, thraustochytrid. Multivariate classification methods provided good discriminative accuracy evidenced from (i) separation of the yeasts from thraustochytrids and distinct spectral clusters among the yeasts that conformed well to their biological identities, and (ii) correct classification of yeasts from a totally independent set using cross-validation testing. The findings further indicated additional capability of the developed FPA-FTIR methodology, when combined with partial least squares regression (PLSR) analysis, for rapid monitoring of lipid production in one of the yeasts during the growth period, which was achieved at a high accuracy compared to the results obtained from the traditional lipid analysis based on gas chromatography. The developed FTIR-based approach when coupled to programmable withdrawal devices and a cytocentrifugation module would have strong potential as a novel online monitoring technology suited for bioprocessing applications and large-scale production.

  1. One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block.

    PubMed

    Liu, Shengju; Peng, Jiaxi; Liu, Zheyi; Liu, Zhongshan; Zhang, Hongyan; Wu, Ren'an

    2016-10-04

    A facile "one-pot" approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1-11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m -1 ) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics.

  2. Analysis of laser-induction hybrid cladding processing conditions

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Zeng, Xiaoyan; Hu, Qianwu

    2007-12-01

    A new cladding approach based on laser-induction hybrid technique on flat sheets is presented in this paper. Coating is produced by means of 5kw cw CO II laser equipped with 100kw high frequent inductor, and the experiments set-up, involving a special machining-head, which can provide laser-induction hybrid heat resources simultaneously. The formation of thick NiCrSiB coating on a steel substrate by off-axial powder feeding is studied from an experimental point of view. A substrate melting energy model is developed to describe the energy relationship between laser-induction hybrid cladding and laser cladding alone quantitatively. By comparing the experimental results with the calculational ones, it is shown that the tendency of fusion zone height of theoretical calculation is in agreement with that of tests in laser-induction hybrid cladding. Via analyses and tests, the conclusions can be lead to that the fusion zone height can be increased easily and the good bond of cladding track can be achieved within wide cladding processing window in laser-induction hybrid processing. It shows that the induction heating has an obvious effect on substrate melting and metallurgical bond.

  3. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling.

    PubMed

    Ginovart, Marta; Carbó, Rosa; Blanco, Mónica; Portell, Xavier

    2017-01-01

    Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM- Saccha . Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then

  4. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling

    PubMed Central

    Ginovart, Marta; Carbó, Rosa; Blanco, Mónica; Portell, Xavier

    2018-01-01

    Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM-Saccha. Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then

  5. L-arabinose fermenting yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  6. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  7. Effects of Temperature on the Meiotic Recombination Landscape of the Yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Wu, Xue-Chang; Zheng, Dao-Qiong; Petes, Thomas D

    2017-12-19

    Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae , regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures. IMPORTANCE In the yeast Saccharomyces cerevisiae , recombination is usually studied in cells that undergo meiosis at 25°C or 30°C. In a genome-wide analysis, we showed that the locations of genomic regions with high and low levels of meiotic recombination (hot spots and cold spots, respectively) differed

  8. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil

    PubMed Central

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 102 UFC.g−1, there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases. PMID:24516434

  9. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil.

    PubMed

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 10(2) UFC.g(-1), there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  10. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK

    PubMed Central

    Lowes, K. F.; Shearman, C. A.; Payne, J.; MacKenzie, D.; Archer, D. B.; Merry, R. J.; Gasson, M. J.

    2000-01-01

    The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts. PMID:10698773

  11. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    PubMed

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  12. Detecting hybridization between Iranian wild wolf (Canis lupus pallipes) and free-ranging domestic dog (Canis familiaris) by analysis of microsatellite markers.

    PubMed

    Khosravi, Rasoul; Rezaei, Hamid Reza; Kaboli, Mohammad

    2013-01-01

    The genetic threat due to hybridization with free-ranging dogs is one major concern in wolf conservation. The identification of hybrids and extent of hybridization is important in the conservation and management of wolf populations. Genetic variation was analyzed at 15 unlinked loci in 28 dogs, 28 wolves, four known hybrids, two black wolves, and one dog with abnormal traits in Iran. Pritchard's model, multivariate ordination by principal component analysis and neighbor joining clustering were used for population clustering and individual assignment. Analysis of genetic variation showed that genetic variability is high in both wolf and dog populations in Iran. Values of H(E) in dog and wolf samples ranged from 0.75-0.92 and 0.77-0.92, respectively. The results of AMOVA showed that the two groups of dog and wolf were significantly different (F(ST) = 0.05 and R(ST) = 0.36; P < 0.001). In each of the three methods, wolf and dog samples were separated into two distinct clusters. Two dark wolves were assigned to the wolf cluster. Also these models detected D32 (dog with abnormal traits) and some other samples, which were assigned to more than one cluster and could be a hybrid. This study is the beginning of a genetic study in wolf populations in Iran, and our results reveal that as in other countries, hybridization between wolves and dogs is sporadic in Iran and can be a threat to wolf populations if human perturbations increase.

  13. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation

    PubMed Central

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-01-01

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast “biological process” and “cellular component” according to Gene Ontology Terminology (GO Terms) and, “pathways” was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production. PMID:28350350

  14. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-03-28

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast "biological process" and "cellular component" according to Gene Ontology Terminology (GO Terms) and, "pathways" was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.

  15. Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1982-01-01

    A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.

  16. Rapid Molecular Identification of Pathogenic Yeasts by Pyrosequencing Analysis of 35 Nucleotides of Internal Transcribed Spacer 2 ▿

    PubMed Central

    Borman, Andrew M.; Linton, Christopher J.; Oliver, Debra; Palmer, Michael D.; Szekely, Adrien; Johnson, Elizabeth M.

    2010-01-01

    Rapid identification of yeast species isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. Here, we have evaluated the utility of pyrosequencing analysis of a portion of the internal transcribed spacer 2 region (ITS2) for identification of pathogenic yeasts. A total of 477 clinical isolates encompassing 43 different fungal species were subjected to pyrosequencing analysis in a strictly blinded study. The molecular identifications produced by pyrosequencing were compared with those obtained using conventional biochemical tests (AUXACOLOR2) and following PCR amplification and sequencing of the D1-D2 portion of the nuclear 28S large rRNA gene. More than 98% (469/477) of isolates encompassing 40 of the 43 fungal species tested were correctly identified by pyrosequencing of only 35 bp of ITS2. Moreover, BLAST searches of the public synchronized databases with the ITS2 pyrosequencing signature sequences revealed that there was only minimal sequence redundancy in the ITS2 under analysis. In all cases, the pyrosequencing signature sequences were unique to the yeast species (or species complex) under investigation. Finally, when pyrosequencing was combined with the Whatman FTA paper technology for the rapid extraction of fungal genomic DNA, molecular identification could be accomplished within 6 h from the time of starting from pure cultures. PMID:20702674

  17. In Situ Analysis of Metabolic Characteristics Reveals the Key Yeast in the Spontaneous and Solid-State Fermentation Process of Chinese Light-Style Liquor

    PubMed Central

    Kong, Yu; Wu, Qun; Zhang, Yan

    2014-01-01

    The in situ metabolic characteristics of the yeasts involved in spontaneous fermentation process of Chinese light-style liquor are poorly understood. The covariation between metabolic profiles and yeast communities in Chinese light-style liquor was modeled using the partial least square (PLS) regression method. The diversity of yeast species was evaluated by sequence analysis of the 26S ribosomal DNA (rDNA) D1/D2 domains of cultivable yeasts, and the volatile compounds in fermented grains were analyzed by gas chromatography (GC)-mass spectrometry (MS). Eight yeast species and 58 volatile compounds were identified, respectively. The modulation of 16 of these volatile compounds was associated with variations in the yeast population (goodness of prediction [Q2] > 20%). The results showed that Pichia anomala was responsible for the characteristic aroma of Chinese liquor, through the regulation of several important volatile compounds, such as ethyl lactate, octanoic acid, and ethyl tetradecanoate. Correspondingly, almost all of the compounds associated with P. anomala were detected in a pure culture of this yeast. In contrast to the PLS regression results, however, ethyl lactate and ethyl isobutyrate were not detected in the same pure culture, which indicated that some metabolites could be generated by P. anomala only when it existed in a community with other yeast species. Furthermore, different yeast communities provided different volatile patterns in the fermented grains, which resulted in distinct flavor profiles in the resulting liquors. This study could help identify the key yeast species involved in spontaneous fermentation and provide a deeper understanding of the role of individual yeast species in the community. PMID:24727269

  18. The complexity and implications of yeast prion domains

    PubMed Central

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731

  19. Guidelines and recommendations on yeast cell death nomenclature.

    PubMed

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.

  20. Guidelines and recommendations on yeast cell death nomenclature

    PubMed Central

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647

  1. Yeast species associated with wine grapes in China.

    PubMed

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine

  2. Expressed Sequence Tag Analysis of the Human Pathogen Paracoccidioides brasiliensis Yeast Phase: Identification of Putative Homologues of Candida albicans Virulence and Pathogenicity Genes

    PubMed Central

    Goldman, Gustavo H.; dos Reis Marques, Everaldo; Custódio Duarte Ribeiro, Diógenes; Ângelo de Souza Bernardes, Luciano; Quiapin, Andréa Carla; Vitorelli, Patrícia Marostica; Savoldi, Marcela; Semighini, Camile P.; de Oliveira, Regina C.; Nunes, Luiz R.; Travassos, Luiz R.; Puccia, Rosana; Batista, Wagner L.; Ferreira, Leslie Ecker; Moreira, Júlio C.; Bogossian, Ana Paula; Tekaia, Fredj; Nobrega, Marina Pasetto; Nobrega, Francisco G.; Goldman, Maria Helena S.

    2003-01-01

    Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of the prevalent systemic mycosis in Latin America, paracoccidioidomycosis. We present here a survey of expressed genes in the yeast pathogenic phase of P. brasiliensis. We obtained 13,490 expressed sequence tags from both 5′ and 3′ ends. Clustering analysis yielded the partial sequences of 4,692 expressed genes that were functionally classified by similarity to known genes. We have identified several Candida albicans virulence and pathogenicity homologues in P. brasiliensis. Furthermore, we have analyzed the expression of some of these genes during the dimorphic yeast-mycelium-yeast transition by real-time quantitative reverse transcription-PCR. Clustering analysis of the mycelium-yeast transition revealed three groups: (i) RBT, hydrophobin, and isocitrate lyase; (ii) malate dehydrogenase, contigs Pb1067 and Pb1145, GPI, and alternative oxidase; and (iii) ubiquitin, delta-9-desaturase, HSP70, HSP82, and HSP104. The first two groups displayed high mRNA expression in the mycelial phase, whereas the third group showed higher mRNA expression in the yeast phase. Our results suggest the possible conservation of pathogenicity and virulence mechanisms among fungi, expand considerably gene identification in P. brasiliensis, and provide a broader basis for further progress in understanding its biological peculiarities. PMID:12582121

  3. Yeast two-hybrid and pull-down assays propose an interaction between P50 of apple chlorotic leaf spot virus and PR-10 of Malus sylvestris cv. R12740-7A.

    PubMed

    Wang, Y; Li, N; Zhao, X; Hu, J; He, Y; Hu, T; Wang, S; Wang, Y; Cao, K

    Apple chlorotic leaf spot virus (ACLSV) movement protein (P50) is involved in cell-to-cell transport and influences the long-distance spread of silencing activity. Previously, we obtained 69 P50-interacting proteins from Malus sylvestris cv. R12740-7A and using bioinformatics analyzed their biological functions. In this study, we used the GAL4-based two-hybrid yeast system and His pull-down assays to confirm an interaction between PR-10 of M. sylvestris cv. R12740-7A and ACLSV P50. Our results provide a theoretical basis for further research on the biological function of PR-10 in ACLSV infection and the interacting mechanism between host and virus.

  4. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments.

    PubMed

    Dunn, Barbara; Richter, Chandra; Kvitek, Daniel J; Pugh, Tom; Sherlock, Gavin

    2012-05-01

    Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species--i.e., its "pan-genome"--has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes-plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae.

  5. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments

    PubMed Central

    Dunn, Barbara; Richter, Chandra; Kvitek, Daniel J.; Pugh, Tom; Sherlock, Gavin

    2012-01-01

    Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species—i.e., its “pan-genome”—has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes–plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae. PMID:22369888

  6. Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts

    PubMed Central

    Rozpędowska, Elżbieta; Hellborg, Linda; Ishchuk, Olena P.; Orhan, Furkan; Galafassi, Silvia; Merico, Annamaria; Woolfit, Megan; Compagno, Concetta; Piškur, Jure

    2011-01-01

    Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make–accumulate–consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect. PMID:21556056

  7. Antimicrobial activity of yeasts against some pathogenic bacteria

    PubMed Central

    Younis, Gamal; Awad, Amal; Dawod, Rehab E.; Yousef, Nehal E.

    2017-01-01

    Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR) for detection of khs (kievitone hydratase) and pelA (pectate degrading enzyme)genes. Results: The recovery rate of yeasts from sausage was 20% (2/10) followed by kareish cheese, processed cheese, and butter 10% (1/10) each as well as raw milk 9% (9/100), and fruit yoghurt 30% (6/20). Different yeast species were recovered, namely, Candida kefyr (5 isolates), Saccharomyces cerevisiae (4 isolates), Candida intermedia (3 isolates), Candida tropicalis (2 isolates), Candida lusitaniae (2 isolates), and Candida krusei (1 isolate). khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food. PMID:28919693

  8. Comparison of the Vitek 2 Antifungal Susceptibility System with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest Techniques for In Vitro Detection of Antifungal Resistance in Yeast Isolates ▿ ‖

    PubMed Central

    Cuenca-Estrella, Manuel; Gomez-Lopez, Alicia; Alastruey-Izquierdo, Ana; Bernal-Martinez, Leticia; Cuesta, Isabel; Buitrago, Maria J.; Rodriguez-Tudela, Juan L.

    2010-01-01

    The commercial technique Vitek 2 system for antifungal susceptibility testing of yeast species was evaluated. A collection of 154 clinical yeast isolates, including amphotericin B- and azole-resistant organisms, was tested. Results were compared with those obtained by the reference procedures of both the CLSI and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Two other commercial techniques approved for clinical use, the Etest and the Sensititre YeastOne, were included in the comparative exercise as well. The average essential agreement (EA) between the Vitek 2 system and the reference procedures was >95%, comparable with the average EAs observed between the reference procedures and the Sensititre YeastOne and Etest. The EA values were >97% for Candida spp. and stood at 92% for Cryptococcus neoformans. Intraclass correlation coefficients (ICC) between the commercial techniques and the reference procedures were statistically significant (P < 0.01). Percentages of very major errors were 2.6% between Vitek 2 and the EUCAST technique and 1.6% between Vitek 2 and the CLSI technique. The Vitek 2 MIC results were available after 14 to 18 h of incubation for all Candida spp. (average time to reading, 15.5 h). The Vitek 2 system was shown to be a reliable technique to determine antifungal susceptibility testing of yeast species and a more rapid and easier alternative for clinical laboratories than the procedures developed by either the CLSI or EUCAST. PMID:20220169

  9. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    PubMed

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  10. Genetic analysis of a hybrid sterility gene that causes both pollen and embryo sac sterility in hybrids between Oryza sativa L. and Oryza longistaminata.

    PubMed

    Chen, H; Zhao, Z; Liu, L; Kong, W; Lin, Y; You, S; Bai, W; Xiao, Y; Zheng, H; Jiang, L; Li, J; Zhou, J; Tao, D; Wan, J

    2017-09-01

    Oryza longistaminata originates from African wild rice and contains valuable traits conferring tolerance to biotic and abiotic stress. However, interspecific crosses between O. longistaminata and Oryza sativa cultivars are hindered by reproductive barriers. To dissect the mechanism of interspecific hybrid sterility, we developed a near-isogenic line (NIL) using indica variety RD23 as the recipient parent and O. longistaminata as the donor parent. Both pollen and embryo sac semi-sterility were observed in F 1 hybrids between RD23 and NIL. Cytological analysis demonstrated that pollen abortion in F 1 hybrids occurred at the early bi-nucleate stage due to a failure of the first mitosis in microspores. Partial embryo sacs in the F 1 hybrids were defective during the functional megaspore formation stage. Most notably, nearly half of the male or female gametes were aborted in heterozygotes S40 i S40 l , regardless of their genotypes. Thus, S40 was indicated as a one-locus sporophytic sterility gene controlling both male and female fertility in hybrids between RD23 and O. longistaminata. A population of 16 802 plants derived from the hybrid RD23/NIL-S40 was developed to fine-map S40. Finally, the S40 locus was delimited to an 80-kb region on the short arm of chromosome 1 in terms with reference sequences of cv. 93-11. Eight open reading frames (ORFs) were localized in this region. On the basis of gene expression and genomic sequence analysis, ORF5 and ORF8 were identified as candidate genes for the S40 locus. These results are helpful in cloning the S40 gene and marker-assisted transferring of the corresponding neutral allele in rice breeding programs.

  11. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    PubMed

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  12. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    PubMed Central

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  13. Transcription profile of brewery yeast under fermentation conditions.

    PubMed

    James, T C; Campbell, S; Donnelly, D; Bond, U

    2003-01-01

    Yeast strains, used in the brewing industry, experience distinctive physiological conditions. During a brewing fermentation, yeast are exposed to anaerobic conditions, high pressure, high specific gravity and low temperatures. The purpose of this study was to examine the global gene expression profile of yeast subjected to brewing stress. We have carried out a microarray analysis of a typical brewer's yeast during the course of an 8-day fermentation in 15 degrees P wort. We used the probes derived from Saccharomyces cerevisiae genomic DNA on the chip and RNA isolated from three stages of brewing. This analysis shows a high level of expression of genes involved in fatty acid and ergosterol biosynthesis early in fermentation. Furthermore, genes involved in respiration and mitochondrial protein synthesis also show higher levels of expression. Surprisingly, we observed a complete repression of many stress response genes and genes involved in protein synthesis throughout the 8-day period compared with that at the start of fermentation. This microarray data set provides an analysis of gene expression under brewing fermentation conditions. The data provide an insight into the various metabolic processes altered or activated by brewing conditions of growth. This study leads to future experiments whereby selective alterations in brewing conditions could be introduced to take advantage of the changing transcript profile to improve the quality of the brew.

  14. The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan.

    PubMed

    Molon, Mateusz; Zadrag-Tecza, Renata; Bilinski, Tomasz

    2015-05-08

    Longevity of the selected "longevity mutants" of yeast was studied using two methods. The standard method was based on counting the number of daughter cells produced. Modification of that method allowed for establishing the length of life expressed in units of time. It appeared that all the studied "deletion longevity mutants" showed a statistically meaningful increase in the number of daughters produced (replicative lifespan), whereas only one of the mutants, previously regarded as "short lived", showed a meaningful increase in the time of life. The analysis of the available data shows that the time of life of most yeast strains is similar irrespective of their genetic background and mutations, which suggests a quasi-programmed nature of yeast death. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Robust dynamics in minimal hybrid models of genetic networks.

    PubMed

    Perkins, Theodore J; Wilds, Roy; Glass, Leon

    2010-11-13

    Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast.

  16. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    PubMed

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production

    Treesearch

    Nian-Qing Shi; Brian Davis; Fred Sherman; Jose Cruz; Thomas W. Jeffries

    1999-01-01

    The xylose-utilizing yeast, Pichia stipitis, has a complex respiratory system that contains cytochrome and non-cytochrome alternative electron transport chains in its mitochondria. To gain primary insights into the alternative respiratory pathway, a cytochrome c gene (PsCYC1, Accession No. AF030426) was cloned from wild-type P. stipitis CBS 6054 by cross-hybridization...

  18. [Onychomycosis by yeast not common in diabetics of a health center].

    PubMed

    Imbert, J L; G Gomez, J V; Escudero, R B; Blasco, J L

    2016-10-01

    Mexican diabetic population frequently presents mycosis under foot hyperkeratosis; however, in another type of onychomycosis as the ones that is assumed Candida albicans is the causal agent, it is unknown the frequency, the prevalence and if another Candida species or other yeasts are found. Evaluate the frequency of yeasts causing onychomycosis in diabetic patients looked after in public institutions of health of the State of Hidalgo, Mexico, and its association with clinical epidemiological variables. An observational, descriptive and transversal study was made on 261 patients, from which one nail sample of each one was obtained, used to isolate and identify dermatophytes and yeasts; the results were statistically correlated with 24 epidemiological parameters. The clinical study was done through interrogation and by medical exploration in order to evaluate Tinea pedis and onychomycosis. Onychomycosis were caused by Candida guilliermondii, Candida parapsilosis, Candida glabrata, Candida krusei, Candida spp., Kodamaea ohmeri, Prototheca wickerhamii and unidentified yeasts. The prevalence for general onychomycosis, by dermatophytes, mixed onychomycosis and by yeasts were: 24.1, 19.5, 2.3 and 14.6%, respectively. Patients with significant probability to be diagnosed as having onychomycosis by yeasts are those wearing open shoes (2.59%); technicians and professionals (10.49%) and alcohol drinkers (3.72%). The fact that Candida albicans is not present in this study as causal agent of onychomycosis, and emerging and non-common yeasts were indeed isolated, creates new challenges. It is remarked the clinical criterion that when onychomycosis is suspected in diabetics, the diagnosis for culturing dermatophytes and yeasts should be included. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  19. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-08-01

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.

  20. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance.

    PubMed

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-08-30

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.

  1. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance

    PubMed Central

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-01-01

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility. PMID:27573057

  2. One-step preparation of multiwall carbon nanotube/silicon hybrids for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lobiak, Egor V.; Bychanok, Dzmitry S.; Shlyakhova, Elena V.; Kuzhir, Polina P.; Maksimenko, Sergey A.; Bulusheva, Lyubov G.; Okotrub, Alexander V.

    2016-03-01

    The hybrid material consisting of a thin layer of multiwall carbon nanotubes (MWCNTs) on an n-doped silicon wafer was obtained in one step using an aerosol-assisted catalytic chemical vapor deposition. The MWCNTs were grown from a mixture of acetone and ethanol with ˜0.2 wt.% of iron polyoxomolybdate nanocluster of the keplerate-type structure. The samples produced at 800°C and 1050°C were tested as a solar energy converter. It was shown that photoresponse of the hybrid material significantly depends on the presence of structural defects in MWCNTs, being much higher in the case of more defective nanotubes. This is because defects lead to p-doping of nanotubes, whereas the p-n heterojunction between MWCNTs and silicon provides a high efficiency of the solar cell.

  3. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    PubMed Central

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  4. Phosphorylation and cellular function of the human Rpa2 N-terminus in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Ghospurkar, Padmaja L; Wilson, Timothy M; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N; Oakley, Gregory G; Haring, Stuart J

    2015-02-01

    Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    PubMed

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value<1.7. Two strains could not be identified at first as they represented a mix of two different species. These mixes were Rhodotorula babjevae with Meyerozyma caribbica and Clavispora lusitaniae with Debaryomyces hansenii. After separation, all four species could be correctly identified with scores>1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Vapor-fed bio-hybrid fuel cell.

    PubMed

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  7. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  9. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  10. Surface geometry of three packable and one hybrid composite after polishing.

    PubMed

    Jung, Martin; Bruegger, Hilka; Klimek, Joachim

    2003-01-01

    This study evaluated the surface quality of four composite materials after polishing with six different polishing techniques. Eighty specimens were made using three packable composites (Definite/Degussa, SureFil/ Dentsply and Solitaire/Heraeus-Kulzer) and one hybrid composite (Herculite XRV/Kerr). Five specimens of each material were polished using flexible Sof-Lex discs. The remaining 75 specimens of each composite were prepared using three finishing protocols: a single 30 microm diamond (n = 25), two finishing diamonds (30/20 microm; n = 25) and a 30 microm diamond followed by a tungsten carbide finishing bur (n = 25). Final polishing of each of the three finishing groups was accomplished with SuperBuff, Diafix-oral, OneGloss, Astropol and HaWe Composite Polishers (n = 5, each). Surface roughness was evaluated quantitatively by laser-stylus profilometry. Average roughness (R(a)) was calculated; statistical analysis of the data was performed with two-way ANOVA and Scheffé post-hoc tests. The polished surfaces were examined qualitatively by SEM. The results showed significant effects on surface roughness from the different composites (p = 0.011) and polishing systems (p < 0.001). After polishing, the Solitaire surfaces (R(a) = 0.72 microm) were smoother than Definite (R(a) = 0.87 microm) and SureFil (R(a) = 0.89 microm) and significantly smoother than Herculite (R(a) = 0.92 microm; p = 0.011). Three of the polishing methods (SuperBuff, Diafix-oral and Astropol) achieved lower R(a)-values than Sof-Lex discs. The polishing quality of the one-step systems SuperBuff and Diafix-oral was strongly affected by the initial finishing protocol.

  11. Hybrid Decompression Technique Versus Anterior Cervical Corpectomy and Fusion for Treating Multilevel Cervical Spondylotic Myelopathy: Which One Is Better?

    PubMed

    Liu, Jia-Ming; Peng, Hong-Wei; Liu, Zhi-Li; Long, Xin-Hua; Yu, Yan-Qing; Huang, Shan-Hu

    2015-12-01

    The hybrid decompression technique (corpectomy combined with discectomy) and anterior cervical corpectomy with fusion (ACCF) both provide good neurological recovery and disease stabilization for the treatment of multilevel cervical spondylotic myelopathy (CSM). However, no single study has been large enough to determine definitively which one is superior for this condition. A meta-analysis was conducted to compare the clinical efficacy and safety of the hybrid decompression technique versus ACCF for the treatment of multilevel CSM. Electronic databases such as PubMed, MEDLINE, EMBASE, Google Scholar, and the Cochrane Library were selected to search for potentially relevant trials up to April 2015 that compared the outcomes of the hybrid technique with ACCF for the treatment of multilevel CSM. Data extraction and quality assessment were performed according to Cochrane Collaboration guidelines. The outcome assessments were duration of surgery, blood loss, Cobb angle of C2-C7, segment angle, fusion rate, Japanese Orthopedics Association score, Neck Disability Index, and complications. The results were expressed as the odds ratio (OR) for dichotomous outcomes and the mean difference (MD) for continuous outcomes with a 95% confidence interval (CI). Five controlled clinical trials published between 2009 and 2013, involving 356 patients (hybrid, 196; ACCF, 160) with 3- or 4-level CSM were retrieved in this study. Overall, there were significant differences between the 2 treatment groups for blood loss (MD = -38.69, 95% CI = -54.62 to -22.76, P < 0.01), fusion rate (OR = 2.56, 95% CI = 1.11 to 5.93, P = 0.03), and complications (OR = 0.25, 95% CI = 0.15 to 0.43, P < 0.01). However, no significant differences were found for duration of surgery (MD = -4.50, 95% CI = -22.902 to 13.91, P = 0.63), Cobb angle of C2-C7 after surgery (MD = 3.32, 95% CI = -3.72 to 10.37, P = 0.35), segment angle after surgery (MD = 2.87, 95% CI = -2.47 to 8.21, P = 0.29), Japanese Orthopedics

  12. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  13. Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment

    PubMed Central

    Katz, Michael; Knecht, Wolfgang; Compagno, Concetta; Piškur, Jure

    2018-01-01

    There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits. PMID:29624585

  14. Comparison of Yeasts as Hosts for Recombinant Protein Production.

    PubMed

    Vieira Gomes, Antonio Milton; Souza Carmo, Talita; Silva Carvalho, Lucas; Mendonça Bahia, Frederico; Parachin, Nádia Skorupa

    2018-04-29

    Recombinant protein production emerged in the early 1980s with the development of genetic engineering tools, which represented a compelling alternative to protein extraction from natural sources. Over the years, a high level of heterologous protein was made possible in a variety of hosts ranging from the bacteria Escherichia coli to mammalian cells. Recombinant protein importance is represented by its market size, which reached $1654 million in 2016 and is expected to reach $2850.5 million by 2022. Among the available hosts, yeasts have been used for producing a great variety of proteins applied to chemicals, fuels, food, and pharmaceuticals, being one of the most used hosts for recombinant production nowadays. Historically, Saccharomyces cerevisiae was the dominant yeast host for heterologous protein production. Lately, other yeasts such as Komagataella sp., Kluyveromyces lactis , and Yarrowia lipolytica have emerged as advantageous hosts. In this review, a comparative analysis is done listing the advantages and disadvantages of using each host regarding the availability of genetic tools, strategies for cultivation in bioreactors, and the main techniques utilized for protein purification. Finally, examples of each host will be discussed regarding the total amount of protein recovered and its bioactivity due to correct folding and glycosylation patterns.

  15. Protective effect of Brewer's yeast on methimazole-induced-adrenal atrophy (a stereological study).

    PubMed

    Dehghani, Farzaneh; Zabolizadeh, Jamal; Noorafshan, Ali; Panjehshahin, Mohammad Reza; Karbalay-Doust, Saied

    2010-04-20

    Induction of hypothyroidism by thioamide drugs will cause adrenal gland atrophy and decrease in its hormones. To prevent side effect on the adrenal gland, brewer's yeast, a natural product rich in vitamins and minerals was used. Serological techniques were applied to measure the volume of adrenal gland. For this purpose, 48 Sprague-Dawley rats were randomly divided into one control and three experimental groups. In group 1, methimazole was administered at the dose of 30 mg/kg/day days, in group 2, 120 mg/kg/day of, brewer's yeast, in group 3, 30 mg/kg/day of methimazole plus 120 mg/kg/day of brewer yeast, and for the control group, an equal volume of saline (0.5 ml/rat/day) was orally given. After 30 days, all the animals were anesthetized and their adrenal glands were removed, fixed, embedded and stained. The volume of different zones of the adrenal glands was estimated by Cavalieri principle and point counting methods. statistical analysis was performed using Mann-Withney test and p < 0.05 was considered as statistically significant. The results indicated that methimazole decreased the volume of fasciculata zone in the cortex of the adrenal gland and also decreased the blood cortisol level. Brewer's yeast reduced the methimazole side effects on this zone. In conclusion, it seems that the use of brewer's yeast could prevent methimazole-induced atrophy of the adrenal gland.

  16. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    negative yeasts. Based on physiological data and flux analysis we identified the presence of one metabolic condition for S. stipitis under aerobic batch and chemostat cultivations, which shows similarities to the oxidative metabolism observed for S. cerevisiae under chemostat cultivations. Through metabolome analysis and genome-wide transcriptomic analysis several differences were identified. Interestingly, in silico analysis of transciption factors was useful to address a different regulation of mRNAs of genes involved in the central carbon metabolism. To our knowledge, this is the first time that the metabolism of S. stiptis is investigated in details and is compared to S. cerevisiae. Our study provides useful results and allows for the possibility to incorporate these data into recently developed genome-scaled metabolic, thus contributing to improve future industrial applications of S. stipitis as cell factory. PMID:23043429

  17. Harmonic analysis and suppression in hybrid wind & PV solar system

    NASA Astrophysics Data System (ADS)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  18. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  19. An aminoacylation-dependent nuclear tRNA export pathway in yeast.

    PubMed

    Grosshans, H; Hurt, E; Simos, G

    2000-04-01

    Yeast Los1p, the homolog of human exportin-t, mediates nuclear export of tRNA. Using fluorescence in situ hybridization, we could show that the export of some intronless tRNA species is not detectably affected by the disruption of LOS1. To find other factors that facilitate tRNA export, we performed a suppressor screen of a synthetically lethal los1 mutant and identified the essential translation elongation factor eEF-1A. Mutations in eEF-1A impaired nuclear export of all tRNAs tested, which included both spliced and intronless species. An even stronger defect in nuclear exit of tRNA was observed under conditions that inhibited tRNA aminoacylation. In all cases, inhibition of tRNA export led to nucleolar accumulation of mature tRNAs. Our data show that tRNA aminoacylation and eEF-1A are required for efficient nuclear tRNA export in yeast and suggest coordination between the protein translation and the nuclear tRNA processing and transport machineries.

  20. An aminoacylation-dependent nuclear tRNA export pathway in yeast

    PubMed Central

    Grosshans, Helge; Hurt, Ed; Simos, George

    2000-01-01

    Yeast Los1p, the homolog of human exportin-t, mediates nuclear export of tRNA. Using fluorescence in situ hybridization, we could show that the export of some intronless tRNA species is not detectably affected by the disruption of LOS1. To find other factors that facilitate tRNA export, we performed a suppressor screen of a synthetically lethal los1 mutant and identified the essential translation elongation factor eEF-1A. Mutations in eEF-1A impaired nuclear export of all tRNAs tested, which included both spliced and intronless species. An even stronger defect in nuclear exit of tRNA was observed under conditions that inhibited tRNA aminoacylation. In all cases, inhibition of tRNA export led to nucleolar accumulation of mature tRNAs. Our data show that tRNA aminoacylation and eEF-1A are required for efficient nuclear tRNA export in yeast and suggest coordination between the protein translation and the nuclear tRNA processing and transport machineries. PMID:10766739

  1. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.

    PubMed

    Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  2. Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: part I.

    PubMed

    Moyad, Mark A

    2007-12-01

    Yeast is the term generally applied to a unicellular fungus, and there are hundreds of species now identified. One of the most notable and well-known species of yeast in health and wellness is known as Saccharomyces cerevisiae, which is also known by its more common names, brewer's yeast or baker's yeast. It is usually grown on hops or another substrate similar to the plant utilized in the beer-making industry, after which it is harvested and killed. The final product is generally half composed of protein, as well as a large amount of B vitamins and minerals, and depending on the technology, a diverse number of other healthy compounds. Typically, brewer's yeast is used as a protein supplement, energy booster, immune enhancer, or other vehicle where other compounds can be inserted to create a commercialized health product. A more extensive review of the preventive medical aspects of yeast will be covered in Part 2 of this article to be published in a future issue of Urologic Nursing. Yeast-based technology is also being used as a molecular mechanistic model of caloric restriction with the goal of improving the human life span. The current and potential impact of yeast-based technology in medicine is encouraging.

  3. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast

    PubMed Central

    Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast. PMID:29761062

  4. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  5. Protocols and programs for high-throughput growth and aging phenotyping in yeast.

    PubMed

    Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L

    2015-01-01

    In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.

  6. Yeasts as important agents of onychomycosis: in vitro activity of propolis against yeasts isolated from patients with nail infection.

    PubMed

    Khosravi, Ali Reza; Shokri, Hojjatollah; Nikaein, Donya; Mansouri, Parvin; Erfanmanesh, Ahmad; Chalangari, Reza; Katalin, Martis

    2013-01-01

    The purposes of this study were to determine the frequency of the yeast species obtained from patients with clinical features of onychomycosis and the in vitro antifungal susceptibility of the yeast species to propolis. A prospective study was carried out at the Mycology Research Center in Iran from 2010 to 2011. Clinical diagnosis was performed by direct microscopic examination and culture. Different yeast species were identified by morphological and biochemical tests. An antifungal susceptibility test to fluconazole (FLU) and propolis by the broth microdilution method was performed on each isolate. One hundred and twenty-eight fungal isolates were obtained. The most prevalent fungi were yeasts (81, 63.2%), dermatophytes (36, 28.1%), and nondermatophyte fungi (11, 8.6%). Fingernails were more affected than toenails (65.4% vs. 19.8%, respectively). The most frequently found species was Candida albicans (38.5%), followed by Candida spp. (23.1%), C. tropicalis (10.8%), C. kefyr (6.2%), C. krusei (3.1%), Malassezia globosa (4.6%), M. slooffiae (4.6%), and M. pachydermatis (1.5%). Of all yeast isolates (65), seven showed resistance to FLU. The average MIC of propolis for FLU-susceptible isolates was 5.8 μg/mL, whereas this value was 12.25 μg/mL for FLU-resistant isolates. Our results proved that the propolis inhibits the growth of pathogenic yeasts and confirmed the efficiency of propolis as an anti-Candida and anti-Malassezia agent.

  7. The timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutation.

    PubMed

    James, A P; Kilbey, B J

    1977-10-01

    The mechanism of UV-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61 percent at survival levels of 90 and 77 percent, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective.

  8. Diversity of yeasts associated with the sea surface microlayer and underlying water along the northern coast of Taiwan.

    PubMed

    Chang, Chin-Feng; Lee, Ching-Fu; Lin, Kao-Yung; Liu, Shiu-Mei

    2016-01-01

    Yeast communities inhabiting the sea surface microlayer (SSML) on the northern coast of Taiwan were examined using a cultivation method and compared with those inhabiting the underlying water (UW) at a 50-cm depth. Culturable yeasts were recovered from the SSML and UW samples collected in the morning during 4 field campaigns, and 420 strains were isolated. The 420 isolates were grouped into 43 species using a polyphasic molecular approach, including sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS region. From the SSML samples, 12 genera and 39 species, including 7 new species of Cryptococcus sp. (1), Candida spp. (4), and Rhodotorula spp. (2), were isolated. From the UW samples, 10 genera and 21 species, including one new species of Rhodotorula sp. (1), were isolated. Rhodotorula mucilaginosa was the most abundant species present in the yeast community in SSML (37.6%) and UW (21.6%) samples. Basidiomycetous yeasts (63.6%) and pigmented yeasts (64.5%) comprised the major yeast population. The yeast community in the SSML had a higher species number and abundance than the UW. Moreover, although the majority of yeast community species were from the SSML, individual species distribution in the SSML was unequal. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    PubMed

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  10. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    PubMed Central

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  11. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    NASA Astrophysics Data System (ADS)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  12. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  13. Characterization of diverse internal binding specificities of PDZ domains by yeast two-hybrid screening of a special peptide library.

    PubMed

    Mu, Yi; Cai, Pengfei; Hu, Siqi; Ma, Sucan; Gao, Youhe

    2014-01-01

    Protein-protein interactions (PPIs) are essential events to play important roles in a series of biological processes. There are probably more ways of PPIs than we currently realized. Structural and functional investigations of weak PPIs have lagged behind those of strong PPIs due to technical difficulties. Weak PPIs are often short-lived, which may result in more dynamic signals with important biological roles within and/or between cells. For example, the characteristics of PSD-95/Dlg/ZO-1 (PDZ) domain binding to internal sequences, which are primarily weak interactions, have not yet been systematically explored. In the present study, we constructed a nearly random octapeptide yeast two-hybrid library. A total of 24 PDZ domains were used as baits for screening the library. Fourteen of these domains were able to bind internal PDZ-domain binding motifs (PBMs), and PBMs screened for nine PDZ domains exhibited strong preferences. Among 11 PDZ domains that have not been reported their internal PBM binding ability, six were confirmed to bind internal PBMs. The first PDZ domain of LNX2, which has not been reported to bind C-terminal PBMs, was found to bind internal PBMs. These results suggest that the internal PBMs binding ability of PDZ domains may have been underestimated. The data provided diverse internal binding properties for several PDZ domains that may help identify their novel binding partners.

  14. Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata.

    PubMed

    Gao, Jin-Xin; Jing, Jing; Yu, Chuan-Jin; Chen, Jie

    2015-06-01

    Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about 6.39 ×10(5) transformants/3 μg pGADT7-Rec. The titer of the primary cDNA library was 2.5×10(8) cfu/mL. The numbers for the cDNA library was 2.46×10(5). Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

  15. Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques.

    PubMed

    Söderström, C; Rudnitskaya, A; Legin, A; Krantz-Rülcker, C

    2005-09-29

    Two electronic tongues based on different measurement techniques were applied to the discrimination of four molds and one yeast. Chosen microorganisms were different species of Aspergillus and yeast specie Zygosaccharomyces bailii, which are known as food contaminants. The electronic tongue developed in Linköping University was based on voltammetry. Four working electrodes made of noble metals were used in a standard three-electrode configuration in this case. The St. Petersburg electronic tongue consisted of 27 potentiometric chemical sensors with enhanced cross-sensitivity. Sensors with chalcogenide glass and plasticized PVC membranes were used. Two sets of samples were measured using both electronic tongues. Firstly, broths were measured in which either one of the molds or the yeast grew until late logarithmic phase or border of the stationary phase. Broths inoculated by either one of molds or the yeast was measured at five different times during microorganism growth. Data were evaluated using principal component analysis (PCA), partial least square regression (PLS) and linear discriminant analysis (LDA). It was found that both measurement techniques could differentiate between fungi species. Merged data from both electronic tongues improved differentiation of the samples in selected cases.

  16. Genetic diversity in commercial wineries: effects of the farming system and vinification management on wine yeasts.

    PubMed

    Tello, J; Cordero-Bueso, G; Aporta, I; Cabellos, J M; Arroyo, T

    2012-02-01

    Analysis of the diversity and distribution of wine yeasts isolated from organically and conventionally grown grapes, and during the subsequent fermentation with or without starter cultures in six different commercial wineries. PCR-RFLP screening of isolates revealed the involvement of ten different species. Saccharomyces cerevisiae, scarcely isolated from grapes, was the dominant species during the latter phases of fermentation, identifying 108 different genotypes by means of SSR analysis. Species and strains' diversity and presence were strongly influenced by the farming system used to grow the grapes and the system of vinification. Organic farming management was more beneficial in terms of diversity and abundance than the conventional one. Induced fermentation generated a great replacement of native yeasts. Although winery-resident yeasts resulted to be predominant in the process, some noncommercial strains originally in the vineyard were found in final stages of the fermentation, confirming that autochthonous strains of S. cerevisiae are capable to conduct the fermentation process up to its end. The study of natural yeast communities from commercial vineyards and wineries is an important step towards the preservation of native genetic resources. Our results have special relevance because it is the first time that the real situation of the yeast ecology of alcoholic fermentation in commercial wineries belonging to the relevant wine-producing Appellation of Origin 'Vinos de Madrid' is shown. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  17. [Study on mechanism of inactivated cider yeast adsorbing patulin by Fourier transform infrared spectroscopy].

    PubMed

    Guo, Cai-Xia; Yue, Tian-Li; Yuan, Ya-Hong; Wang, Zhou-Li; Wang, Ling; Cai, Rui

    2013-03-01

    The mechanism of patulin adsorption by inactivated cider yeast was studied by chemical modification and FTIR The results of patulin removal by various modified yeast biomass showed that the ability of patulin biosorption by acetone-treated yeast and NaOH-treated yeast increased siginificantly, while the methylation of amino group and esterification of carboxylate functionalities of yeast cell surface caused a decrease in patulin binding, which indicated that amino group and carboxyl group presented in the cell walls of yeast might be involved in the binding of patulin to the yeast. The FTIR analysis indicated that the main functional groups were amino group, carboxyl group and hydroxy group which are associated with protein and polysaccharides.

  18. Cloning, expression analysis, and chromosomal localization of HIP1R, an isolog of huntingtin interacting protein (HIP1).

    PubMed

    Seki, N; Muramatsu, M; Sugano, S; Suzuki, Y; Nakagawara, A; Ohhira, M; Hayashi, A; Hori, T; Saito, T

    1998-01-01

    Huntington disease (HD) is an inherited neurodegenerative disorder which is associated with CAG expansion in the coding region of the gene for huntingtin protein. Recently, a huntingtin interacting protein, HIP1, was isolated by the yeast two-hybrid system. Here we report the isolation of a cDNA clone for HIP1R (huntingtin interacting protein-1 related), which encodes a predicted protein product sharing a striking homology with HIP1. RT-PCR analysis showed that the messenger RNA was ubiquitously expressed in various human tissues. Based on PCR-assisted analysis of a radiation hybrid panel and fluorescence in situ hybridization, HIP1R was localized to the q24 region of chromosome 12.

  19. "Omics" of Selenium Biology: A Prospective Study of Plasma Proteome Network Before and After Selenized-Yeast Supplementation in Healthy Men.

    PubMed

    Sinha, Indu; Karagoz, Kubra; Fogle, Rachel L; Hollenbeak, Christopher S; Zea, Arnold H; Arga, Kazim Y; Stanley, Anne E; Hawkes, Wayne C; Sinha, Raghu

    2016-04-01

    Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan, Chagas, and Kashin-Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associated with mutations in genes encoding for selenoproteins. Selenium biology is complex, and a systems biology approach to study global metabolomics, genomics, and/or proteomics may provide important clues to examining selenium-responsive markers in circulation. In the current investigation, we applied a global proteomics approach on plasma samples collected from a previously conducted, double-blinded placebo controlled clinical study, where men were supplemented with selenized-yeast (Se-Yeast; 300 μg/day, 3.8 μmol/day) or placebo-yeast for 48 weeks. Proteomic analysis was performed by iTRAQ on 8 plasma samples from each arm at baseline and 48 weeks. A total of 161 plasma proteins were identified in both arms. Twenty-two proteins were significantly altered following Se-Yeast supplementation and thirteen proteins were significantly changed after placebo-yeast supplementation in healthy men. The differentially expressed proteins were involved in complement and coagulation pathways, immune functions, lipid metabolism, and insulin resistance. Reconstruction and analysis of protein-protein interaction network around selected proteins revealed several hub proteins. One of the interactions suggested by our analysis, PHLD-APOA4, which is involved in insulin resistance, was subsequently validated by Western blot analysis. Our systems approach illustrates a viable platform for investigating responsive proteomic profile in 'before and after' condition following Se-Yeast supplementation. The nature of proteins identified suggests that selenium may play an important role in complement and coagulation pathways, and insulin resistance.

  20. Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.

    2012-01-01

    The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis. PMID:22393350

  1. Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps

    PubMed Central

    Huang, Hailiang; Jedynak, Bruno M; Bader, Joel S

    2007-01-01

    Yeast two-hybrid screens are an important method for mapping pairwise physical interactions between proteins. The fraction of interactions detected in independent screens can be very small, and an outstanding challenge is to determine the reason for the low overlap. Low overlap can arise from either a high false-discovery rate (interaction sets have low overlap because each set is contaminated by a large number of stochastic false-positive interactions) or a high false-negative rate (interaction sets have low overlap because each misses many true interactions). We extend capture–recapture theory to provide the first unified model for false-positive and false-negative rates for two-hybrid screens. Analysis of yeast, worm, and fly data indicates that 25% to 45% of the reported interactions are likely false positives. Membrane proteins have higher false-discovery rates on average, and signal transduction proteins have lower rates. The overall false-negative rate ranges from 75% for worm to 90% for fly, which arises from a roughly 50% false-negative rate due to statistical undersampling and a 55% to 85% false-negative rate due to proteins that appear to be systematically lost from the assays. Finally, statistical model selection conclusively rejects the Erdös-Rényi network model in favor of the power law model for yeast and the truncated power law for worm and fly degree distributions. Much as genome sequencing coverage estimates were essential for planning the human genome sequencing project, the coverage estimates developed here will be valuable for guiding future proteomic screens. All software and datasets are available in Datasets S1 and S2, Figures S1–S5, and Tables S1−S6, and are also available from our Web site, http://www.baderzone.org. PMID:18039026

  2. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases.

  3. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  4. Comparative genomics of biotechnologically important yeasts

    PubMed Central

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H.; Lopes, Mariana R.; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A.; Wisecaver, Jennifer H.; Long, Tanya M.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y.; Deshpande, Shweta; Douglass, Alexander P.; Hanson, Sara J.; Klenk, Hans-Peter; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Meier-Kolthoff, Jan P.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Rosa, Carlos A.; Scheuner, Carmen; Sibirny, Andriy A.; Slot, Jason C.; Stielow, J. Benjamin; Sun, Hui; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor V.

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  5. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  6. Evaluation of the Microbial Identification System for identification of clinically isolated yeasts.

    PubMed Central

    Crist, A E; Johnson, L M; Burke, P J

    1996-01-01

    The Microbial Identification System (MIS; Microbial ID, Inc., Newark, Del.) was evaluated for the identification of 550 clinically isolated yeasts. The organisms evaluated were fresh clinical isolates identified by methods routinely used in our laboratory (API 20C and conventional methods) and included Candida albicans (n = 294), C. glabrata (n = 145), C. tropicalis (n = 58), C. parapsilosis (n = 33), and other yeasts (n = 20). In preparation for fatty acid analysis, yeasts were inoculated onto Sabouraud dextrose agar and incubated at 28 degrees C for 24 h. Yeasts were harvested, saponified, derivatized, and extracted, and fatty acid analysis was performed according to the manufacturer's instructions. Fatty acid profiles were analyzed, and computer identifications were made with the Yeast Clinical Library (database version 3.8). Of the 550 isolates tested, 374 (68.0%) were correctly identified to the species level, with 87 (15.8%) being incorrectly identified and 89 (16.2%) giving no identification. Repeat testing of isolates giving no identification resulted in an additional 18 isolates being correctly identified. This gave the MIS an overall identification rate of 71.3%. The most frequently misidentified yeast was C. glabrata, which was identified as Saccharomyces cerevisiae 32.4% of the time. On the basis of these results, the MIS, with its current database, does not appear suitable for the routine identification of clinically important yeasts. PMID:8880489

  7. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  8. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to

  9. Elaboration, structural, spectroscopy, DSC investigations and Hirshfeld surface analysis of a one-dimensional self-assembled organic-inorganic hybrid compound

    NASA Astrophysics Data System (ADS)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha

    2017-01-01

    The new organic-inorganic hybrid of the formula [H2mela]Cu2Cl6, where mela = 1,3,5-triazine-2,4,6-triamine, has been synthesized by the reaction of 1,3,5-triazine-2,4,6-triamine and copper(II) chloride dihydrate in the presence of hydrochloric acid. This compound has been determined by X-ray diffraction analysis and characterized by FT-IR, Raman, NMR characterization, differential scanning calorimetric (DSC) analysis, dielectric measurements and Hirshfeld surface. 1,3,5-triazinidium-2,4,6-triamine hexachlorodicuprate(II) crystallizes in the monoclinic system with space group P21/c. The final refinement of the structure of the program led to the reliability factors unweighted R1 = 3.53% and weighted WR2 = 8.87%. The observed internal C3sbnd N31sbnd C1 and C3sbnd N23sbnd C2 angle (121.5 and 121.4°) at protanated N-atom are significantly greater the other ring angle C1sbnd N12sbnd C2 (117.1°). The titled compound crystallizes as an organic-inorganic one-dimensional (1D) structure. The crystal structure was stabilized by two types of hydrogen bonding Nsbnd H⋯Cl and Nsbnd H⋯N. The infrared spectra was recorded in the 4000-400 cm-1 frequency region and the Raman spectra was recorded in the external region of the anionic sublattice vibration 4000-50 cm-1 at room temperature. Solid-state 13C and 63Cu MAS-NMR spectroscopies are in agreement with the X-ray structure. The differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compound at 338 K. Hirshfeld surface analyses for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D fingerprint plots have been used to examine molecular shapes.

  10. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  11. Methods and materials for the production of L-lactic acid in yeast

    DOEpatents

    Hause, Ben [Jordan, MN; Rajgarhia, Vineet [Minnetonka, MN; Suominen, Pirkko [Maple Grove, MN

    2009-05-19

    Recombinant yeast are provided having, in one aspect, multiple exogenous LDH genes integrated into the genome, while leaving native PDC genes intact. In a second aspect, recombinant yeast are provided having an exogenous LDH gene integrated into its genome at the locus of a native PDC gene, with deletion of the native PDC gene. The recombinant yeast are useful in fermentation process for producing lactic acid.

  12. Simple method for the extraction and reversed-phase high-performance liquid chromatographic analysis of carotenoid pigments from red yeasts (Basidiomycota, Fungi).

    PubMed

    Weber, Roland W S; Anke, Heidrun; Davoli, Paolo

    2007-03-23

    A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions.

  13. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    PubMed

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  14. Robust dynamics in minimal hybrid models of genetic networks

    PubMed Central

    Perkins, Theodore J.; Wilds, Roy; Glass, Leon

    2010-01-01

    Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast. PMID:20921006

  15. Construction of a yeast artificial chromosome contig encompassing the chromosome 14 Alzheimer`s disease locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, V.; Bonnycastle, L.; Poorkai, P.

    1994-09-01

    We have constructed a yeast artificial chromosome (YAC) contig of chromosome 14q24.3 which encompasses the chromosome 14 Alzheimer`s disease locus (AD3). Determined by linkage analysis of early-onset Alzheimer`s disease kindreds, this interval is bounded by the genetic markers D14S61-D14S63 and spans approximately 15 centimorgans. The contig consists of 29 markers and 74 YACs of which 57 are defined by one or more sequence tagged sites (STSs). The STS markers comprise 5 genes, 16 short tandem repeat polymorphisms and 8 cDNA clones. An additional number of genes, expressed sequence tags and cDNA fragments have been identified and localized to the contigmore » by hybridization and sequence analysis of anonymous clones isolated by cDNA direct selection techniques. A minimal contig of about 15 YACs averaging 0.5-1.5 megabase in length will span this interval and is, at first approximation, in rough agreement with the genetic map. For two regions of the contig, our coverage has relied on L1/THE fingerprint and Alu-PCR hybridization data of YACs provided by CEPH/Genethon. We are currently developing sequence tagged sites from these to confirm the overlaps revealed by the fingerprint data. Among the genes which map to the contig are transforming growth factor beta 3, c-fos, and heat shock protein 2A (HSPA2). C-fos is not a candidate gene for AD3 based on the sequence analysis of affected and unaffected individuals. HSPA2 maps to the proximal edge of the contig and Calmodulin 1, a candidate gene from 4q24.3, maps outside of the region. The YAC contig is a framework physical map from which cosmid or P1 clone contigs can be constructed. As more genes and cDNAs are mapped, a highly resolved transcription map will emerge, a necessary step towards positionally cloning the AD3 gene.« less

  16. Marine yeast isolation and industrial application.

    PubMed

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-09-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. © 2014 The Authors FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  17. Quantitative analysis of chaperone network throughput in budding yeast

    PubMed Central

    Brownridge, Philip; Lawless, Craig; Payapilly, Aishwarya B; Lanthaler, Karin; Holman, Stephen W; Harman, Victoria M; Grant, Christopher M; Beynon, Robert J; Hubbard, Simon J

    2013-01-01

    The network of molecular chaperones mediates the folding and translocation of the many proteins encoded in the genome of eukaryotic organisms, as well as a response to stress. It has been particularly well characterised in the budding yeast, Saccharomyces cerevisiae, where 63 known chaperones have been annotated and recent affinity purification and MS/MS experiments have helped characterise the attendant network of chaperone targets to a high degree. In this study, we apply our QconCAT methodology to directly quantify the set of yeast chaperones in absolute terms (copies per cell) via SRM MS. Firstly, we compare these to existing quantitative estimates of these yeast proteins, highlighting differences between approaches. Secondly, we cast the results into the context of the chaperone target network and show a distinct relationship between abundance of individual chaperones and their targets. This allows us to characterise the ‘throughput’ of protein molecules passing through individual chaperones and their groups on a proteome-wide scale in an unstressed model eukaryote for the first time. The results demonstrate specialisations of the chaperone classes, which display different overall workloads, efficiencies and preference for the sub-cellular localisation of their targets. The novel integration of the interactome data with quantification supports re-estimates of the level of protein throughout going through molecular chaperones. Additionally, although chaperones target fewer than 40% of annotated proteins we show that they mediate the folding of the majority of protein molecules (∼62% of the total protein flux in the cell), highlighting their importance. PMID:23420633

  18. Comprehensive analysis of mitogen-activated protein kinase cascades in chrysanthemum

    PubMed Central

    Ding, Lian; Zhang, Xue; Li, Peiling; Liu, Ye

    2018-01-01

    Background Mitogen-activated protein kinase (MAPK) cascades, an important type of pathway in eukaryotic signaling networks, play a key role in plant defense responses, growth and development. Methods Phylogenetic analysis and conserved motif analysis of the MKK and MPK families in Arabidopsis thaliana, Helianthus annuus and Chrysanthemum morifolium classified MKK genes and MPK genes. qRT-PCR was used for the expression patterns of CmMPK and CmMKK genes, and yeast two-hybrid assay was applied to clear the interaction between CmMPKs and CmMKKs. Results We characterized six MKK genes and 11 MPK genes in chrysanthemum based on transcriptomic sequences and classified these genes into four groups. qRT-PCR analysis demonstrated that CmMKKs and CmMPKs exhibited various expression patterns in different organs of chrysanthemum and in response to abiotic stresses and phytohormone treatments. Furthermore, a yeast two-hybrid assay was applied to analyze the interaction between CmMKKs and CmMPKs and reveal the MAPK cascades in chrysanthemum. Discussion Our data led us to propose that CmMKK4-CmMPK13 and CmMKK2-CmMPK4 may be involved in regulating salt resistance and in the relationship between CmMKK9 and CmMPK6 and temperature stress. PMID:29942696

  19. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter.

    PubMed

    He, Weiguo; Qin, Qinbo; Liu, Shaojun; Li, Tangluo; Wang, Jing; Xiao, Jun; Xie, Lihua; Zhang, Chun; Liu, Yun

    2012-01-01

    Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae, 2n = 100) × topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂, Cultrinae, 2n = 48) were successfully produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence (designated class I-N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish genetics.

  20. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  1. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  2. GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus.

    PubMed

    Ma, Ni; Li, Zai-Yun; Cartagena, J A; Fukui, K

    2006-10-01

    New Brassica napus inbred lines with different petal colors and with canola quality and increased levels of oleic (approximately 70%, 10% higher than that of B. napus parent) and linoleic (28%) acids have been developed in the progenies of one B. napus cv. Oro x Orychophragmus violaceus F5 hybrid plant (2n = 31). Their genetic constituents were analyzed by using the methods of genomic in situ hybridization (GISH) and amplified fragments length polymorphism (AFLP). No intact chromosomes of O. violaceus origin were detected by GISH in their somatic cells of ovaries and root tips (2n = 38) and pollen mother cells (PMCs) with normal chromosome pairing (19 bivalents) and segregation (19:19), though signals of variable sizes and intensities were located mainly at terminal and centromeric parts of some mitotic chromosomes and meiotic bivalents at diakinesis or chromosomes in anaphase I groups and one large patch of chromatin was intensively labeled and separated spatially in some telophase I nuclei and metaphase II PMCs. AFLP analysis revealed that substantial genomic changes have occurred in these lines and O. violaceus-specific bands, deleted bands in 'Oro' and novel bands for two parents were detected. The possible mechanisms for these results were discussed.

  3. Hybrid vehicle assessment. Phase 1: Petroleum savings analysis

    NASA Technical Reports Server (NTRS)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H. C.

    1984-01-01

    The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified.

  4. Yeast ecology of Kombucha fermentation.

    PubMed

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  5. Energy-saving analysis of hydraulic hybrid excavator based on common pressure rail.

    PubMed

    Shen, Wei; Jiang, Jihai; Su, Xiaoyu; Karimi, Hamid Reza

    2013-01-01

    Energy-saving research of excavators is becoming one hot topic due to the increasing energy crisis and environmental deterioration recently. Hydraulic hybrid excavator based on common pressure rail (HHEC) provides an alternative with electric hybrid excavator because it has high power density and environment friendly and easy to modify based on the existing manufacture process. This paper is focused on the fuel consumption of HHEC and the actuator dynamic response to assure that the new system can save energy without sacrificing performance. Firstly, we introduce the basic principle of HHEC; then, the sizing process is presented; furthermore, the modeling period which combined mathematical analysis and experiment identification is listed. Finally, simulation results show that HHEC has a fast dynamic response which can be accepted in engineering and the fuel consumption can be reduced 21% to compare the original LS excavator and even 32% after adopting another smaller engine.

  6. Energy-Saving Analysis of Hydraulic Hybrid Excavator Based on Common Pressure Rail

    PubMed Central

    Jiang, Jihai; Su, Xiaoyu

    2013-01-01

    Energy-saving research of excavators is becoming one hot topic due to the increasing energy crisis and environmental deterioration recently. Hydraulic hybrid excavator based on common pressure rail (HHEC) provides an alternative with electric hybrid excavator because it has high power density and environment friendly and easy to modify based on the existing manufacture process. This paper is focused on the fuel consumption of HHEC and the actuator dynamic response to assure that the new system can save energy without sacrificing performance. Firstly, we introduce the basic principle of HHEC; then, the sizing process is presented; furthermore, the modeling period which combined mathematical analysis and experiment identification is listed. Finally, simulation results show that HHEC has a fast dynamic response which can be accepted in engineering and the fuel consumption can be reduced 21% to compare the original LS excavator and even 32% after adopting another smaller engine. PMID:24194683

  7. DGGE and multivariate analysis of a yeast community in spontaneous cocoa fermentation process.

    PubMed

    Ferreira, A C R; Marques, E L S; Dias, J C T; Rezende, R P

    2015-12-28

    Cocoa bean is the main raw material used in the production of chocolate. In southern Bahia, Brazil, cocoa farming and processing is an important economic activity. The fermentation of cocoa is the processing stage that yields important chocolate flavor precursors and complex microbial involvement is essential for this process. In this study, PCR-denaturing gradient gel electrophoreses (DGGE) was used to investigate the diversity of yeasts present during the spontaneous fermentation of cocoa in southern Bahia. The DGGE analysis revealed a richness of 8 to 13 distinct bands of varied intensities among the samples; and samples taken at 24, 36, and 48 h into the fermentation process were found to group with 70% similarity and showed the greatest diversity of bands. Hierarchical clustering showed that all samples had common operational taxonomic units (OTUs) and the highest number of OTUs was found in the 48 h sample. Variations in pH and temperature observed within the fermenting mass over time possibly had direct effects on the composition of the existing microbial community. The findings reported here indicate that a heterogeneous yeast community is involved in the complex cocoa fermentation process, which is known to involve a succession of specialized microorganisms.

  8. Formal methods for modeling and analysis of hybrid systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)

    2009-01-01

    A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.

  9. Identification of She3 as an SCFGrr1 Substrate in Budding Yeast

    PubMed Central

    Wang, Ruiwen; Solomon, Mark J.

    2012-01-01

    The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF) complex. Acting in concert with the substrate-binding F-box protein Grr1, SCFGrr1 promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth. PMID:23144720

  10. Cellular and molecular effects of yeast probiotics on cancer.

    PubMed

    Saber, Amir; Alipour, Beitollah; Faghfoori, Zeinab; Yari Khosroushahi, Ahmad

    2017-02-01

    The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.

  11. Deep functional analysis of synII, a 770 kb synthetic yeast chromosome

    PubMed Central

    Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A.; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A.; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M.; Jiang, Hui; French, Christopher E.; Nieduszynski, Conrad A.; Koszul, Romain; Marston, Adele L.; Yuan, Yingjin; Wang, Jian; Bader, Joel S.; Dai, Junbiao; Boeke, Jef D.; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-01-01

    Herein we report the successful design, construction and characterization of a 770 kb synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels, including phenomics, transcriptomics, proteomics, chromosome segregation and replication analysis to provide a thorough and comprehensive analysis of a synthetic chromosome. Our “Trans-Omics” analyses reveal a modest but potentially significant pervasive up-regulation of translational machinery observed in synII is mainly caused by the deletion of 13 tRNAs. By both complementation assays and SCRaMbLE, we targeted and debuged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the HOG response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. PMID:28280153

  12. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  13. Facile one-pot fabrication of nano-Fe3O4/carboxyl-functionalized baker's yeast composites and their application in methylene blue dye adsorption

    NASA Astrophysics Data System (ADS)

    Du, Zongjun; Zhang, Yue; Li, Zhengjie; Chen, Hui; Wang, Ying; Wang, Guangtu; Zou, Ping; Chen, Huaping; Zhang, Yunsong

    2017-01-01

    Nano-Fe3O4/carboxyl-functionalized baker's yeast composites (NF/CF-BYs) were prepared for the first time based on the ultrasonic cavitation assisted oxygen implosion method using single Fe2+ as iron source. The series of characterization analysis results showed that the obtained NF/CF-BYs had not only the superparamagnetic properties of nano-Fe3O4, but their surface also had plenty of functional groups (especially carboxyl groups) introduced by strong oxidization. The adsorption properties of NF/CF-BYs for methylene blue (MB) were also evaluated. The results displayed that the uptakes of NF/CF-BYs for MB were higher than that of pristine baker's yeast (P-BYs), and the adsorption process was followed by the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of NF/CF-BYs for MB was estimated to be 141.75 mg g-1 at pH 6. The regeneration efficiency of the obtained NF/CF-BYs was attained to be more than 90%.

  14. Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeast Hansenula polymorpha.

    PubMed

    Tikhomirova, L P; Ikonomova, R N; Kuznetsova, E N

    1986-01-01

    For the transformation of the yeast Hansenula polymorpha we have constructed a set of hybrid plasmids carrying the LEU2 gene of Saccharomyces cerevisiae as a selective marker and fragments of mitochondrial DNA of Candida utilis and H. polymorpha or chromosomal DNA fragments of H. polymorpha as replicator sequences. The replication properties of chimeric plasmids in the yeast H. polymorpha were investigated. We showed that for plasmids propagated autonomously in this yeast the plasmid monomers could be detected in the transformants only during the immediate time after the transformation event. Further growth under selective conditions led to the selection of polymeric forms of plasmid DNA as it was clearly shown for transformants carrying cosmid pL2 with mtDNA fragment of C. utilis. Such transformants carrying polymerized plasmids showed a remarkably increased stability of the transformed phenotype. Cosmid pL2 was able to shuttle between Escherichia coli, S. cerevisiae and H. polymorpha, whereas plasmids with DNA fragments from H. polymorpha did not transform S. cerevisiae effectively.

  15. Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers.

    PubMed

    Monapathi, M E; Bezuidenhout, C C; Rhode, O H J

    2017-03-01

    Yeasts from water sources have been associated with diseases ranging from superficial mucosal infections to life threatening diseases. The aim of this study was to determine the water quality as well as diversity and antifungal susceptibility of yeasts from two rivers. Yeast levels and physico-chemical parameter data were analyzed by principal component analysis to determine correlations between physico-chemical data and yeast levels. Yeast morphotypes were identified by biochemical tests and 26S rRNA gene sequencing. Disk diffusion antifungal susceptibility tests were conducted. Physico-chemical parameters of the water were within target water quality range (TWQR) for livestock farming. For irrigational use, total dissolved solids and nitrates were not within the TWQR. Yeast levels ranged between 27 ± 10 and 2,573 ± 306 cfu/L. Only non-pigmented, ascomycetous yeasts were isolated. Saccharomyces cerevisiae and Candida glabrata were most frequently isolated. Several other opportunistic pathogens were also isolated. A large number of isolates were resistant to azoles, especially fluconazole, but also to other antifungal classes. Candida species were resistant to almost all the antifungal classes. These water sources are used for recreation and religious as well as for watering livestock and irrigation. Of particular concern is the direct contact of individuals with opportunistic yeast, especially the immune-compromised. Resistance of these yeast species to antifungal agents is a further health concern.

  16. A Meta-Analysis of Red Yeast Rice: An Effective and Relatively Safe Alternative Approach for Dyslipidemia

    PubMed Central

    Li, Yinhua; Jiang, Long; Jia, Zhangrong; Xin, Wei; Yang, Shiwei; Yang, Qiu; Wang, Luya

    2014-01-01

    Objective To explore whether red yeast rice is a safe and effective alternative approach for dyslipidemia. Methods Pubmed, the Cochrane Library, EBSCO host, Chinese VIP Information (VIP), China National Knowledge Infrastructure (CNKI), Wanfang Databases were searched for appropriate articles. Randomized trials of RYR (not including Xuezhikang and Zhibituo) and placebo as control in patients with dyslipidemia were considered. Two authors read all papers and independently extracted all relevant information. The primary outcomes were serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The secondary outcomes were increased levels of alanine transaminase, aspartate aminotransferase, creatine kinase, creatinine and fasting blood glucose. Results A total of 13 randomized, placebo-controlled trials containing 804 participants were analyzed. Red yeast rice exhibited significant lowering effects on serum TC [WMD = −0.97 (95% CI: −1.13, −0.80) mmol/L, P<0.001], TG [WMD = −0.23 (95% CI: −0.31, −0.14) mmol/L, P<0.001], and LDL-C [WMD = −0.87 (95% CI: −1.03, −0.71) mmol/L, P<0.001] but no significant increasing effect on HDL-C [WMD = 0.08 (95% CI: −0.02, 0.19) mmol/L, P = 0.11] compared with placebo. No serious side effects were reported in all trials. Conclusions The meta-analysis suggests that red yeast rice is an effective and relatively safe approach for dyslipidemia. However, further long-term, rigorously designed randomized controlled trials are still warranted before red yeast rice could be recommended to patients with dyslipidemia, especially as an alternative to statins. PMID:24897342

  17. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.

    PubMed

    Wang, Xuefei; Glawe, Dean A; Kramer, Elizabeth; Weller, David; Okubara, Patricia A

    2018-06-01

    Native yeasts are of increasing interest to researchers, grape growers, and vintners because of their potential for biocontrol activity and their contributions to the aroma, flavor, and mouthfeel qualities of wines. To assess biocontrol activity, we tested 11 yeasts from Washington vineyards, representing isolates of Candida saitoana, Curvibasidium pallidicorallinum, Metschnikowia chrysoperlae, M. pulcherrima, Meyerozyma guilliermondii, Saccharomyces cerevisiae, and Wickerhamomyces anomalus, for ability to colonize Thompson Seedless grape berries, inhibit the growth of Botrytis cinerea in vitro, and suppress disease symptoms on isolated berries. The yeast-like fungus Aureobasidium pullulans was also included based on its known biocontrol activity against B. cinerea in studies on apple and grape. All yeast strains multiplied rapidly in grape berries and reached densities of over log 6 cells per wound as early as 2 days after inoculation with 200 cells. One of the Botrytis isolates used in this study was much less virulent than the others and was provisionally identified as B. prunorum based on multilocus sequence analysis. Suppression of the growth of B. cinerea isolates 111bb, 207a, 207cb, and 407cb occurred on berries treated with A. pullulans P01A006, Metschnikowia chrysoperlae P34A004 and P40A002, M. pulcherrima P01A016 and P01C004, Meyerozyma guilliermondii P34D003, and S. cerevisiae HNN11516. Inhibition of Botrytis isolates by the yeast strains was more common on berries than in vitro, suggesting the possibility that niche competition was a more likely biocontrol mechanism than antibiosis in planta. Metabolic profiling of yeast strains and B. cinerea isolates using Biolog YT plates revealed seven distinct metabolic groups. Furthermore, the yeast strains showed partial to complete tolerance to the commonly used fungicides fluopyram, triflumizole, metrafenone, pyraclostrobin, and boscalid. Implications of these findings for field deployment of native Washington

  18. The yeasts phosphorelay systems: a comparative view.

    PubMed

    Salas-Delgado, Griselda; Ongay-Larios, Laura; Kawasaki-Watanabe, Laura; López-Villaseñor, Imelda; Coria, Roberto

    2017-06-01

    Cells contain signal transduction pathways that mediate communication between the extracellular environment and the cell interior. These pathways control transcriptional programs and posttranscriptional processes that modify cell metabolism in order to maintain homeostasis. One type of these signal transduction systems are the so-called Two Component Systems (TCS), which conduct the transfer of phosphate groups between specific and conserved histidine and aspartate residues present in at least two proteins; the first protein is a sensor kinase which autophosphorylates a histidine residue in response to a stimulus, this phosphate is then transferred to an aspartic residue located in a response regulator protein. There are classical and hybrid TCS, whose difference consists in the number of proteins and functional domains involved in the phosphorelay. The TCS are widespread in bacteria where the sensor and its response regulator are mostly specific for a given stimulus. In eukaryotic organisms such as fungi, slime molds, and plants, TCS are present as hybrid multistep phosphorelays, with a variety of arrangements (Stock et al. in Annu Rev Biochem 69:183-215, 2000; Wuichet et al. in Curr Opin Microbiol 292:1039-1050, 2010). In these multistep phosphorelay systems, several phosphotransfer events take place between different histidine and aspartate residues localized in specific domains present in more than two proteins (Thomason and Kay, in J Cell Sci 113:3141-3150, 2000; Robinson et al. in Nat Struct Biol 7:626-633, 2000). This review presents a brief and succinct description of the Two-component systems of model yeasts, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Cryptococcus neoformans and Kluyveromyces lactis. We have focused on the comparison of domain organization and functions of each component present in these phosphorelay systems.

  19. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    PubMed

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  20. Non-introgressive genome chimerisation by malsegregation in autodiploidised allotetraploids during meiosis of Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids.

    PubMed

    Karanyicz, Edina; Antunovics, Zsuzsa; Kallai, Z; Sipiczki, M

    2017-06-01

    Saccharomyces strains with chimerical genomes consisting of mosaics of the genomes of different species ("natural hybrids") occur quite frequently among industrial and wine strains. The most widely endorsed hypothesis is that the mosaics are introgressions acquired via hybridisation and repeated backcrosses of the hybrids with one of the parental species. However, the interspecies hybrids are sterile, unable to mate with their parents. Here, we show by analysing synthetic Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids that mosaic (chimeric) genomes can arise without introgressive backcrosses. These species are biologically separated by a double sterility barrier (sterility of allodiploids and F1 sterility of allotetraploids). F1 sterility is due to the diploidisation of the tetraploid meiosis resulting in MAT a /MAT α heterozygosity which suppresses mating in the spores. This barrier can occasionally be broken down by malsegregation of autosyndetically paired chromosomes carrying the MAT loci (loss of MAT heterozygosity). Subsequent malsegregation of additional autosyndetically paired chromosomes and occasional allosyndetic interactions chimerise the hybrid genome. Chromosomes are preferentially lost from the S. kudriavzevii subgenome. The uniparental transmission of the mitochondrial DNA to the hybrids indicates that nucleo-mitochondrial interactions might affect the direction of the genomic changes. We propose the name GARMe (Genome AutoReduction in Meiosis) for this process of genome reduction and chimerisation which involves no introgressive backcrossings. It opens a way to transfer genetic information between species and thus to get one step ahead after hybridisation in the production of yeast strains with beneficial combinations of properties of different species.

  1. MPact: the MIPS protein interaction resource on yeast.

    PubMed

    Güldener, Ulrich; Münsterkötter, Martin; Oesterheld, Matthias; Pagel, Philipp; Ruepp, Andreas; Mewes, Hans-Werner; Stümpflen, Volker

    2006-01-01

    In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein-protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107-1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539-5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through http://mips.gsf.de/genre/proj/mpact.

  2. Multicenter Study Evaluating the Vitek MS System for Identification of Medically Important Yeasts

    PubMed Central

    Westblade, Lars F.; Jennemann, Rebecca; Branda, John A.; Bythrow, Maureen; Ferraro, Mary Jane; Garner, Omai B.; Ginocchio, Christine C.; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Rychert, Jenna A.; Sercia, Linda

    2013-01-01

    The optimal management of fungal infections is correlated with timely organism identification. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is revolutionizing the identification of yeasts isolated from clinical specimens. We present a multicenter study assessing the performance of the Vitek MS system (bioMérieux) in identifying medically important yeasts. A collection of 852 isolates was tested, including 20 Candida species (626 isolates, including 58 C. albicans, 62 C. glabrata, and 53 C. krusei isolates), 35 Cryptococcus neoformans isolates, and 191 other clinically relevant yeast isolates; in total, 31 different species were evaluated. Isolates were directly applied to a target plate, followed by a formic acid overlay. Mass spectra were acquired using the Vitek MS system and were analyzed using the Vitek MS v2.0 database. The gold standard for identification was sequence analysis of the D2 region of the 26S rRNA gene. In total, 823 isolates (96.6%) were identified to the genus level and 819 isolates (96.1%) were identified to the species level. Twenty-four isolates (2.8%) were not identified, and five isolates (0.6%) were misidentified. Misidentified isolates included one isolate of C. albicans (n = 58) identified as Candida dubliniensis, one isolate of Candida parapsilosis (n = 73) identified as Candida pelliculosa, and three isolates of Geotrichum klebahnii (n = 6) identified as Geotrichum candidum. The identification of clinically relevant yeasts using MS is superior to the phenotypic identification systems currently employed in clinical microbiology laboratories. PMID:23658267

  3. Multicenter study evaluating the Vitek MS system for identification of medically important yeasts.

    PubMed

    Westblade, Lars F; Jennemann, Rebecca; Branda, John A; Bythrow, Maureen; Ferraro, Mary Jane; Garner, Omai B; Ginocchio, Christine C; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Rychert, Jenna A; Sercia, Linda; Burnham, Carey-Ann D

    2013-07-01

    The optimal management of fungal infections is correlated with timely organism identification. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is revolutionizing the identification of yeasts isolated from clinical specimens. We present a multicenter study assessing the performance of the Vitek MS system (bioMérieux) in identifying medically important yeasts. A collection of 852 isolates was tested, including 20 Candida species (626 isolates, including 58 C. albicans, 62 C. glabrata, and 53 C. krusei isolates), 35 Cryptococcus neoformans isolates, and 191 other clinically relevant yeast isolates; in total, 31 different species were evaluated. Isolates were directly applied to a target plate, followed by a formic acid overlay. Mass spectra were acquired using the Vitek MS system and were analyzed using the Vitek MS v2.0 database. The gold standard for identification was sequence analysis of the D2 region of the 26S rRNA gene. In total, 823 isolates (96.6%) were identified to the genus level and 819 isolates (96.1%) were identified to the species level. Twenty-four isolates (2.8%) were not identified, and five isolates (0.6%) were misidentified. Misidentified isolates included one isolate of C. albicans (n = 58) identified as Candida dubliniensis, one isolate of Candida parapsilosis (n = 73) identified as Candida pelliculosa, and three isolates of Geotrichum klebahnii (n = 6) identified as Geotrichum candidum. The identification of clinically relevant yeasts using MS is superior to the phenotypic identification systems currently employed in clinical microbiology laboratories.

  4. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae.

    PubMed

    Inoue, Hiroyuki; Hashimoto, Seitaro; Matsushika, Akinori; Watanabe, Seiya; Sawayama, Shigeki

    2014-12-01

    The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.

  5. Analysis of Possibility of Yeast Production Increase at Maintained Carbon Dioxide Emission Level

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.

    2016-12-01

    Main parameters polluting of technological wastewater (dregs from decantation and thicken of the wort) from yeast industry are: nitrogen, potassium and COD. Such wastewater are utilized mostly on agricultural fields. Unfortunately, these fields can only accept a limited amount of wastes. The basic parameter limiting there the amount of wastewater is nitrogen. When capacity of the production is large sewages are often pretreated at an evaporator station. However, due to the fairly high running costs of the evaporator station currently such a solution is applied only to a small amount of wastes (just to meet legal requirements). Replacement of the earth gas with a biomass being supplied to the evaporator station from the agricultural fields will both allow to maintain the carbon dioxide emission level and enable the production growth. Moreover, the biomass growing on the agricultural fields being fertilized with the wastewater coming from the yeast production allows consequently to utilize the greater volume of wastewater. Theoretically, the possible increase in the yeasts production, with maintaining the carbon dioxide emission level, can reach even 70%. Therefore, the solution presented in this paper combines both intensification of the yeasts production and maintaining the carbon dioxide emission level.

  6. Identification and assessment of kefir yeast potential for sugar/ethanol-resistance

    PubMed Central

    Miguel, M.G.C.P.; Cardoso, P.G.; Magalhães-Guedes, K.T.; Schwan, R.F.

    2013-01-01

    Biochemical and molecular analysis was used for identification of different kefir yeasts species from Brazil, Canada and the United States of America. The sugar/ethanol-resistant activity of the yeasts was evaluated. Saccharomyces cerevisiae and Kluyveromyces marxianus had the highest growth rates, suggesting biotechnological applications possible for these strains. PMID:24159292

  7. Wine yeasts for the future.

    PubMed

    Fleet, Graham H

    2008-11-01

    International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.

  8. Proteomic analysis of Rhodotorula mucilaginosa: dealing with the issues of a non-conventional yeast.

    PubMed

    Addis, Maria Filippa; Tanca, Alessandro; Landolfo, Sara; Abbondio, Marcello; Cutzu, Raffaela; Biosa, Grazia; Pagnozzi, Daniela; Uzzau, Sergio; Mannazzu, Ilaria

    2016-08-01

    Red yeasts ascribed to the species Rhodotorula mucilaginosa are gaining increasing attention, due to their numerous biotechnological applications, spanning carotenoid production, liquid bioremediation, heavy metal biotransformation and antifungal and plant growth-promoting actions, but also for their role as opportunistic pathogens. Nevertheless, their characterization at the 'omic' level is still scarce. Here, we applied different proteomic workflows to R. mucilaginosa with the aim of assessing their potential in generating information on proteins and functions of biotechnological interest, with a particular focus on the carotenogenic pathway. After optimization of protein extraction, we tested several gel-based (including 2D-DIGE) and gel-free sample preparation techniques, followed by tandem mass spectrometry analysis. Contextually, we evaluated different bioinformatic strategies for protein identification and interpretation of the biological significance of the dataset. When 2D-DIGE analysis was applied, not all spots returned a unambiguous identification and no carotenogenic enzymes were identified, even upon the application of different database search strategies. Then, the application of shotgun proteomic workflows with varying levels of sensitivity provided a picture of the information depth that can be reached with different analytical resources, and resulted in a plethora of information on R. mucilaginosa metabolism. However, also in these cases no proteins related to the carotenogenic pathway were identified, thus indicating that further improvements in sequence databases and functional annotations are strictly needed for increasing the outcome of proteomic analysis of this and other non-conventional yeasts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Quantitative Analysis of a Hybrid Electric HMMWV for Fuel Economy Improvement

    DTIC Science & Technology

    2012-05-01

    HMMWV of equivalent size. Hybrid vehicle powertrains show improved fuel economy gains due to optimized engine operation and regenerative braking . In... regenerative braking . Validated vehicle models as well as data collected on test tracks are used in the quantitative analysis. The regenerative braking ...hybrid electric vehicle, drive cycle, fuel economy, engine efficiency, regenerative braking . 1 Introduction The US Army (Tank Automotive

  10. Yeast selection for fuel ethanol production in Brazil.

    PubMed

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  11. Understanding start-up problems in yeast glycolysis.

    PubMed

    Overal, Gosse B; Teusink, Bas; Bruggeman, Frank J; Hulshof, Josephus; Planqué, Robert

    2018-05-01

    Yeast glycolysis has been the focus of research for decades, yet a number of dynamical aspects of yeast glycolysis remain poorly understood at present. If nutrients are scarce, yeast will provide its catabolic and energetic needs with other pathways, but the enzymes catalysing upper glycolytic fluxes are still expressed. We conjecture that this overexpression facilitates the rapid transition to glycolysis in case of a sudden increase in nutrient concentration. However, if starved yeast is presented with abundant glucose, it can enter into an imbalanced state where glycolytic intermediates keep accumulating, leading to arrested growth and cell death. The bistability between regularly functioning and imbalanced phenotypes has been shown to depend on redox balance. We shed new light on these phenomena with a mathematical analysis of an ordinary differential equation model, including NADH to account for the redox balance. In order to gain qualitative insight, most of the analysis is parameter-free, i.e., without assigning a numerical value to any of the parameters. The model has a subtle bifurcation at the switch between an inviable equilibrium state and stable flux through glycolysis. This switch occurs if the ratio between the flux through upper glycolysis and ATP consumption rate of the cell exceeds a fixed threshold. If the enzymes of upper glycolysis would be barely expressed, our model predicts that there will be no glycolytic flux, even if external glucose would be at growth-permissable levels. The existence of the imbalanced state can be found for certain parameter conditions independent of the mentioned bifurcation. The parameter-free analysis proved too complex to directly gain insight into the imbalanced states, but the starting point of a branch of imbalanced states can be shown to exist in detail. Moreover, the analysis offers the key ingredients necessary for successful numerical continuation, which highlight the existence of this bistability and the

  12. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  13. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster.

    PubMed

    Palanca, Loida; Gaskett, Anne C; Günther, Catrin S; Newcomb, Richard D; Goddard, Matthew R

    2013-01-01

    Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent.

  14. Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor.

    PubMed

    Kohlwein, Sepp D

    2017-05-01

    Lipids are essential biomolecules with diverse biological functions, ranging from building blocks for all biological membranes to energy substrates, signaling molecules, and protein modifiers. Despite advances in lipid analytics by mass spectrometry, the extraction and quantitative analysis of the diverse classes of lipids are still an experimental challenge. Yeast is a model organism that provides several advantages for studying lipid metabolism, because most biosynthetic pathways are well described and a great deal of information is available on the regulatory mechanisms that control lipid homeostasis. In addition, the composition of yeast lipids is much less complex than that of mammalian lipids, making yeast an excellent reference system for studying lipid-associated cell functions. © 2017 Cold Spring Harbor Laboratory Press.

  15. Yeast Infection and Diabetes Mellitus among Pregnant Mother in Malaysia

    PubMed Central

    Sopian, Iylia Liyana; Shahabudin, Sa’adiah; Ahmed, Mowaffaq Adam; Lung, Leslie Than Thian; Sandai, Doblin

    2016-01-01

    Background Vaginal yeast infection refers to irritation of the vagina due to the presence of opportunistic yeast of the genus Candida (mostly Candida albicans). About 75% of women will have at least one episode of vaginal yeast infection during their lifetime. Several studies have shown that pregnancy and uncontrolled diabetes increase the infection risk. Reproductive hormone fluctuations during pregnancy and elevated glucose levels characteristic of diabetes provide the carbon needed for Candida overgrowth and infection. The goal of this study was to determine the prevalence of vaginal yeast infection among pregnant women with and without diabetes. Methods This was a case-control study using cases reports from Kepala Batas Health Clinic, Penang State, Malaysia from 2006 to 2012. In total, 740 pregnant ladies were chosen as sample of which 370 were diabetic and 370 were non-diabetic cases. Results No relationship between diabetes and the occurrence of vaginal yeast infection in pregnant women was detected, and there was no significant association between infection and age group, race or education level. Conclusion In conclusion, within radius of this study, vaginal yeast infection can occur randomly in pregnant women. PMID:27540323

  16. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.

    PubMed

    Alexandre, Hervé

    2013-10-15

    The aging of certain white wines is dependent on the presence of yeast strains that develop a biofilm on the wine surface after the alcoholic fermentation. These strains belong to the genus Saccharomyces and are called flor yeasts. These strains possess distinctive characteristics compared with Saccharomyces cerevisiae fermenting strain. The most important one is their capacity to form a biofilm on the air-liquid interface of the wine. The major gene involved in this phenotype is FLO11, however other genes are also involved in velum formation by these yeast and will be detailed. Other striking features presented in this review are their aneuploidy, and their mitochondrial DNA polymorphism which seems to reflect adaptive evolution of the yeast to a stressful environment where acetaldehyde and ethanol are present at elevated concentration. The biofilm assures access to oxygen and therefore permits continued growth on non-fermentable ethanol. This specific metabolism explains the peculiar organoleptic profile of these wines, especially their content in acetaldehyde and sotolon. This review deals with these different specificities of flor yeasts and will also underline the existing gaps regarding these astonishing yeasts. © 2013.

  17. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    USDA-ARS?s Scientific Manuscript database

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  18. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    PubMed

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.

  19. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing.

    PubMed

    Gagete, Andrés P; Riera, Marta; Franco, Luis; Rodrigo, M Isabel

    2009-01-01

    At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.

  20. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-17

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.

  1. Contribution of Fermentation Yeast to Final Amino Acid Profile in DDGS

    USDA-ARS?s Scientific Manuscript database

    One major factor affecting DDGS quality and market values is amino acid (AA) composition. DDGS proteins come from corn and yeast. Yet, the effect of fermentation yeast on DDGS protein quantity and quality (AA profile) has not been well documented. Based on literature review, there are at least 4 met...

  2. Hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis method for mid-frequency analysis of built-up systems with epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan

    2017-09-01

    Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.

  3. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    PubMed Central

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  4. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions.

    PubMed

    Urubschurov, Vladimir; Janczyk, Pawel; Pieper, Robert; Souffrant, Wolfgang B

    2008-12-01

    The study was conducted to determine yeasts present in the gastrointestinal tract (GIT) of piglets kept under experimental farm (EF) and commercial farm (CF) conditions. Ninety five German Landrace full- and half-sibling piglets were sacrificed at 39 days of age. Sixty eight piglets were weaned at 28th day of life, when they were offered one diet ad libitum. Twenty seven piglets remained unweaned by their dams. None of the piglets received any creep feed before weaning. Digesta samples were collected from 1/3 distal small intestine (SI), caecum and proximal colon. One hundred seventy three colonies of isolated yeasts were characterized by sequence analysis of the PCR-amplified D1/D2 domain of the 26S rRNA gene with following alignment of the recovered sequences to GenBank entries. From the 17 phylotypes found, isolates most closely related to Galactomyces geotrichum, Kazachstania slooffiae and Candida catenulata dominated in the GIT of CF piglets. Kazachstania slooffiae and Candida glabrata dominated in GIT of EF piglets. Sørenson and Morisita-Horn similarity indices between farms were low (0.44 and 0.54 respectively) and the Simpson diversity index was higher for EF (7.58) than for CF (4.34). The study brings new data on yeasts composition in the pig GIT and shows differences in yeasts biodiversity between farms operated at different hygiene conditions.

  5. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  6. Tapping into yeast diversity.

    PubMed

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  7. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    PubMed

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Probing the transition state for nucleic acid hybridization using phi-value analysis.

    PubMed

    Kim, Jandi; Shin, Jong-Shik

    2010-04-27

    Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.

  9. Saturation of low-threshold two-plasmon parametric decay leading to excitation of one localized upper hybrid wave

    NASA Astrophysics Data System (ADS)

    Gusakov, E. Z.; Popov, A. Yu.; Saveliev, A. N.

    2018-06-01

    We analyze the saturation of the low-threshold absolute parametric decay instability of an extraordinary pump wave leading to the excitation of two upper hybrid (UH) waves, only one of which is trapped in the vicinity of a local maximum of the plasma density profile. The pump depletion and the secondary decay of the localized daughter UH wave are treated as the most likely moderators of a primary two-plasmon decay instability. The reduced equations describing the nonlinear saturation phenomena are derived. The general analytical consideration is accompanied by the numerical analysis performed under the experimental conditions typical of the off-axis X2-mode ECRH experiments at TEXTOR. The possibility of substantial (up to 20%) anomalous absorption of the pump wave is predicted.

  10. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  11. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  12. The PathoYeastract database: an information system for the analysis of gene and genomic transcription regulation in pathogenic yeasts.

    PubMed

    Monteiro, Pedro Tiago; Pais, Pedro; Costa, Catarina; Manna, Sauvagya; Sá-Correia, Isabel; Teixeira, Miguel Cacho

    2017-01-04

    We present the PATHOgenic YEAst Search for Transcriptional Regulators And Consensus Tracking (PathoYeastract - http://pathoyeastract.org) database, a tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in the pathogenic yeasts Candida albicans and C. glabrata Upon data retrieval from hundreds of publications, followed by curation, the database currently includes 28 000 unique documented regulatory associations between transcription factors (TF) and target genes and 107 DNA binding sites, considering 134 TFs in both species. Following the structure used for the YEASTRACT database, PathoYeastract makes available bioinformatics tools that enable the user to exploit the existing information to predict the TFs involved in the regulation of a gene or genome-wide transcriptional response, while ranking those TFs in order of their relative importance. Each search can be filtered based on the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. Promoter analysis tools and interactive visualization tools for the representation of TF regulatory networks are also provided. The PathoYeastract database further provides simple tools for the prediction of gene and genomic regulation based on orthologous regulatory associations described for other yeast species, a comparative genomics setup for the study of cross-species evolution of regulatory networks. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis...

  14. Results of a 24-inch Hybrid Motor Performance Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Sims, Joseph D.; Coleman, Hugh W.

    1998-01-01

    The subscale (11 and 24-inch) hybrid motors at the Marshall Space Flight Center (MSFC) have been used as versatile and cost effective testbeds for developing new technology. Comparisons between motor configuration, ignition systems, feed systems, fuel formulations, and nozzle materials have been carried out without detailed consideration as to haw "good" the motor performance data were. For the 250,000 lb/thrust motor developed by the Hybrid Propulsion Demonstration Program consortium, this shortcoming is particularly risky because motor performance will likely be used as put of a set of downselect criteria to choose between competing ignition and feed systems under development. This analysis directly addresses that shortcoming by applying uncertainty analysis techniques to the experimental determination of the characteristic velocity, theoretical characteristic velocity, and characteristic velocity efficiency for a 24-inch motor firing. With the adoption of fuel-lined headends, flow restriction, and aft mixing chambers, state of the an 24-inch hybrid motors have become very efficient However, impossibly high combustion efficiencies (some computed as high as 108%) have been measured in some tests with 11-inch motors. This analysis has given new insight into explaining how these efficiencies were measured to be so high, and into which experimental measurements contribute the most to the overall uncertainty.

  15. Hybrid numerical method for solution of the radiative transfer equation in one, two, or three dimensions.

    PubMed

    Reinersman, Phillip N; Carder, Kendall L

    2004-05-01

    A hybrid method is presented by which Monte Carlo (MC) techniques are combined with an iterative relaxation algorithm to solve the radiative transfer equation in arbitrary one-, two-, or three-dimensional optical environments. The optical environments are first divided into contiguous subregions, or elements. MC techniques are employed to determine the optical response function of each type of element. The elements are combined, and relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. One-dimensional results compare well with a standard radiative transfer model. The light field beneath and adjacent to a long barge is modeled in two dimensions and displayed. Ramifications for underwater video imaging are discussed. The hybrid model is currently capable of providing estimates of the underwater light field needed to expedite inspection of ship hulls and port facilities.

  16. Genome-wide expression analyses of the stationary phase model of ageing in yeast.

    PubMed

    Wanichthanarak, Kwanjeera; Wongtosrad, Nutvadee; Petranovic, Dina

    2015-07-01

    Ageing processes involved in replicative lifespan (RLS) and chronological lifespan (CLS) have been found to be conserved among many organisms, including in unicellular Eukarya such as yeast Saccharomyces cerevisiae. Here we performed an integrated approach of genome wide expression profiles of yeast at different time points, during growth and starvation. The aim of the study was to identify transcriptional changes in those conditions by using several different computational analyses in order to propose transcription factors, biological networks and metabolic pathways that seem to be relevant during the process of chronological ageing in yeast. Specifically, we performed differential gene expression analysis, gene-set enrichment analysis and network-based analysis, and we identified pathways affected in the stationary phase and specific transcription factors driving transcriptional adaptations. The results indicate signal propagation from G protein-coupled receptors through signaling pathway components and other stress and nutrient-induced transcription factors resulting in adaptation of yeast cells to the lack of nutrients by activating metabolism associated with aerobic metabolism of carbon sources such as ethanol, glycerol and fatty acids. In addition, we found STE12, XBP1 and TOS8 as highly connected nodes in the subnetworks of ageing yeast. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease

    PubMed Central

    Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.

    2015-01-01

    The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739

  18. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    PubMed

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  19. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation

    PubMed Central

    Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

    2018-01-01

    Background Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Objective Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Methods Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Results Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. Conclusions To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. PMID:29506966

  20. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay

    PubMed Central

    Sharma, Vasundhara; Jordan, Jennifer J.; Ciribilli, Yari; Resnick, Michael A.; Bisio, Alessandra; Inga, Alberto

    2015-01-01

    The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators. PMID:26147604