Sample records for yeast pheromone signaling

  1. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    PubMed

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae†

    PubMed Central

    Chasse, Scott A.; Flanary, Paul; Parnell, Stephen C.; Hao, Nan; Cha, Jiyoung Y.; Siderovski, David P.; Dohlman, Henrik G.

    2006-01-01

    A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein α subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Gα proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation. PMID:16467474

  3. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    PubMed

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  4. Modeling Yeast Cell Polarization Induced by Pheromone Gradients

    NASA Astrophysics Data System (ADS)

    Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing

    2007-07-01

    Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.

  5. Mutations in a gene encoding the. cap alpha. subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahng, K.Y.; Ferguson, J.; Reed, S.I.

    1988-06-01

    Mutations which allowed conjugation by Saccharomyces cerevisiae cells lacking a mating pheromone receptor gene were selected. One of the genes defined by such mutations was isolated from a yeast genomic library by complementation of a temperature-sensitive mutation and is identically to the gene GPA1 (also known as SCG1), recently shown to be highly homologous to gene encoding the ..cap alpha.. subunits of mammalian G proteins. Physiological analysis of temperature-sensitive gpal mutations suggests that the encoded G protein is involved in signaling in response to mating pheromones. Mutational disruption of G-protein activity causes cell-cycle arrest in G/sub 1/, deposition of mating-specificmore » cell surface aggultinins, and induction of pheromone-specific mRNa, all of which are responses to pheromone in wild-type cells. In addition, mutants can conjugate without the benefit of mating pheromone or pheromone receptor. A model is presented where the activated G protein has a negative impact on a constitutive signal which normally keeps the pheromone response repressed.« less

  6. Pheromone Signalling

    ERIC Educational Resources Information Center

    Hart, Adam G.

    2011-01-01

    Pheromones are chemicals used to communicate with members of the same species. First described in insects, pheromones are often used to attract mates but in social insects, such as ants and bees, pheromone use is much more sophisticated. For example, ants use pheromones to make foraging trails and the chemical and physical properties of the…

  7. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sitesmore » whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.« less

  8. Fitness cost of pheromone production in signaling female moths.

    PubMed

    Harari, Ally R; Zahavi, Tirtza; Thiéry, Denis

    2011-06-01

    A secondary sexual character may act as an honest signal of the quality of the individual if the trait bears a cost and if its expression is phenotypically condition dependent. The cost of increasing the trait should be tolerable for individuals in good condition but not for those in a poor condition. The trait thus provides an honest signal of quality that enables the receiver to choose higher quality mates. Evidence for sex pheromones, which play a major role in shaping sexual evolution, inflicting a signaling cost is scarce. Here, we demonstrate that the amount of the major component of the pheromone in glands of Lobesia botrana (Lepidoptera) females at signaling time was significantly greater in large than in small females, that male moths preferred larger females as mates when responding to volatile signals, and small virgin females, but not large ones, exposed to conspecific pheromone, produced, when mated, significantly fewer eggs than nonexposed females. The latter indicates a condition-dependent cost of signaling. These results are in accordance with the predictions of condition-dependent honest signals. We therefore suggest that female signaling for males using sex pheromones bears a cost and thus calling may serve as honest advertisement for female quality. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  9. Is dauer pheromone of Caenorhabditis elegans really a pheromone?

    NASA Astrophysics Data System (ADS)

    Viney, M. E.; Franks, N. R.

    Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called `dauer pheromone', produced by all worms. We suggest that the production of `dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that `dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.

  10. Experimental evolution of a sexually selected display in yeast

    PubMed Central

    Rogers, David W.; Greig, Duncan

    2008-01-01

    The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection. PMID:18842545

  11. Aggressive reproductive competition among hopelessly queenless honeybee workers triggered by pheromone signaling

    NASA Astrophysics Data System (ADS)

    Malka, O.; Shnieor, S.; Katzav-Gozansky, T.; Hefetz, A.

    2008-06-01

    In the honeybee, Apis mellifera, the queen monopolizes reproduction, while the sterile workers cooperate harmoniously in nest maintenance. However, under queenless (QL) conditions, cooperation collapses and reproductive competition among workers ensues. This is mediated through aggression and worker oviposition, as well as shifts in pheromones, from worker to queen-like composition. Many studies suggest a dichotomy between conflict resolution through aggression or through pheromonal signaling. In this paper, we demonstrate that both phenomena comprise essential components of reproductive competition and that pheromone signaling actually triggers the onset of aggression. We kept workers as QL groups until first aggression was observed and subsequently determined the contestants’ reproductive status and content of the mandibular (MG) and Dufour’s glands (DG). In groups in which aggression occurred early, the attacked bee had consistently more queen-like pheromone in both the MG and DG, although both contestants had undeveloped ovaries. In groups with late aggression, the attacked bee had consistently larger oocytes and more queen-like pheromone in the DG, but not the MG. We suggest that at early stages of competition, the MG secretion is utilized to establish dominance and that the DG provides an honest fertility signal. We further argue that it is the higher amount of DG pheromone that triggers aggression.

  12. Spatial focalization of pheromone/MAPK signaling triggers commitment to cell–cell fusion

    PubMed Central

    Merlini, Laura

    2016-01-01

    Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone–GPCR (G-protein-coupled receptor)–MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell–cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception. PMID:27798845

  13. Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship

    USGS Publications Warehouse

    Buchinger, Tyler J.; Bussy, Ugo; Buchinger, Ethan G.; Fissette, Skye D.; Li, Weiming; Johnson, Nicholas

    2017-01-01

    Male body size affects access to mates in many animals. Attributes of sexual signals often correlate with body size due to physiological constraints on signal production. Larger males generally produce larger signals, but costs of being large or compensation by small males can result in smaller males producing signals of equal or greater magnitude. Female choice following multiple male traits with different relationships to size might further complicate the effect of male body size on access to mates. We report the relationship between male body size and pheromone signaling, and the effects on female mate search and courtship in the sea lamprey (Petromyzon marinus). We predicted that pheromone production in the liver and the liver mass to body mass ratio would remain constant across sizes, resulting in similar mass-adjusted pheromone release rates across sizes but a positive relationship between absolute pheromone release and body mass. Our results confirmed positive relationships between body mass and liver mass, and liver mass and the magnitude of the pheromone signal. Surprisingly, decreasing body mass was correlated with higher pheromone concentrations in the liver, liver mass to body mass ratios, and mass-adjusted pheromone release rates. In a natural stream, females more often entered nests treated with small versus large male odors. However, close-proximity courtship behaviors were similar in nests treated with small or large male odors. We conclude that small males exhibit increased release of the main pheromone component, but female discrimination of male pheromones follows several axes of variation with different relationships to size.

  14. Costs and constraints conspire to produce honest signaling: insights from an ant queen pheromone.

    PubMed

    Holman, Luke

    2012-07-01

    Signal costs and evolutionary constraints have both been proposed as ultimate explanations for the ubiquity of honest signaling, but the interface between these two factors is unclear. Here, I propose a pluralistic interpretation, and use game theory to demonstrate that evolutionary constraints determine whether signals evolve to be costly or cheap. Specifically, when the costs or benefits of signaling are strongly influenced by the sender's quality, low-cost signals evolve. The model reaffirms that cheap and costly signals can both be honest, and predicts that expensive signals should have more positive allometric slopes than cheap ones. The new framework is applied to an experimental study of an ant queen pheromone that honestly signals fecundity. Juvenile hormone was found to have opposing, dose-dependent effects on pheromone production and fecundity and was fatal at high doses, indicating that endocrine-mediated trade-offs preclude dishonesty. Several lines of evidence suggest that the realized cost of pheromone production may be nontrivial, and the antagonistic effects of juvenile hormone indicate the presence of significant evolutionary constraints. I conclude that the honesty of queen pheromones and other signals is likely enforced by both the cost of dishonesty and a suite of evolutionary constraints. © 2012 The Author(s).

  15. SNMP is a signaling component required for pheromone sensitivity in Drosophila.

    PubMed

    Jin, Xin; Ha, Tal Soo; Smith, Dean P

    2008-08-05

    The only known volatile pheromone in Drosophila, 11-cis-vaccenyl acetate (cVA), mediates a variety of behaviors including aggregation, mate recognition, and sexual behavior. cVA is detected by a small set of olfactory neurons located in T1 trichoid sensilla on the antennae of males and females. Two components known to be required for cVA reception are the odorant receptor Or67d and the extracellular pheromone-binding protein LUSH. Using a genetic screen for cVA-insensitive mutants, we have identified a third component required for cVA reception: sensory neuron membrane protein (SNMP). SNMP is a homolog of CD36, a scavenger receptor important for lipoprotein binding and uptake of cholesterol and lipids in vertebrates. In humans, loss of CD36 is linked to a wide range of disorders including insulin resistance, dyslipidemia, and atherosclerosis, but how CD36 functions in lipid transport and signal transduction is poorly understood. We show that SNMP is required in pheromone-sensitive neurons for cVA sensitivity but is not required for sensitivity to general odorants. Using antiserum to SNMP infused directly into the sensillum lymph, we show that SNMP function is required on the dendrites of cVA-sensitive neurons; this finding is consistent with a direct role in cVA signal transduction. Therefore, pheromone perception in Drosophila should serve as an excellent model to elucidate the role of CD36 members in transmembrane signaling.

  16. Integrated action of pheromone signals in promoting courtship behavior in male mice

    PubMed Central

    Haga-Yamanaka, Sachiko; Ma, Limei; He, Jie; Qiu, Qiang; Lavis, Luke D; Looger, Loren L; Yu, C Ron

    2014-01-01

    The mammalian vomeronasal organ encodes pheromone information about gender, reproductive status, genetic background and individual differences. It remains unknown how pheromone information interacts to trigger innate behaviors. In this study, we identify vomeronasal receptors responsible for detecting female pheromones. A sub-group of V1re clade members recognizes gender-identifying cues in female urine. Multiple members of the V1rj clade are cognate receptors for urinary estrus signals, as well as for sulfated estrogen (SE) compounds. In both cases, the same cue activates multiple homologous receptors, suggesting redundancy in encoding female pheromone cues. Neither gender-specific cues nor SEs alone are sufficient to promote courtship behavior in male mice, whereas robust courtship behavior can be induced when the two cues are applied together. Thus, integrated action of different female cues is required in pheromone-triggered mating behavior. These results suggest a gating mechanism in the vomeronasal circuit in promoting specific innate behavior. DOI: http://dx.doi.org/10.7554/eLife.03025.001 PMID:25073926

  17. Cyclin B Proteolysis and the Cyclin-dependent Kinase Inhibitor rum1p Are Required for Pheromone-induced G1 Arrest in Fission Yeast

    PubMed Central

    Stern, Bodo; Nurse, Paul

    1998-01-01

    The blocking of G1 progression by fission yeast pheromones requires inhibition of the cyclin-dependent kinase cdc2p associated with the B-cyclins cdc13p and cig2p. We show that cyclosome-mediated degradation of cdc13p and cig2p is necessary for down-regulation of B-cyclin–associated cdc2p kinase activity and for phermone-induced G1 arrest. The cyclin-dependent kinase inhibitor rum1p is also required to maintain this G1 arrest; it binds both cdc13p and cig2p and is specifically required for cdc13p proteolysis. We propose that rum1p acts as an adaptor targeting cdc13p for degradation by the cyclosome. In contrast, the cig2p–cdc2p kinase can be down-regulated, and the cyclin cig2p can be proteolyzed independently of rum1p. We suggest that pheromone signaling inhibits the cig2p–cdc2p kinase, bringing about a transient G1 arrest. As a consequence, rum1p levels increase, thus inhibiting and inducing proteolysis of the cdc13p–cdc2p kinase; this is necessary to maintain G1 arrest. We have also shown that pheromone-induced transcription occurs only in G1 and is independent of rum1p. PMID:9614176

  18. Pheromone-Induced Morphogenesis Improves Osmoadaptation Capacity by Activating the HOG MAPK Pathway**

    PubMed Central

    Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro

    2013-01-01

    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707

  19. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes

    PubMed Central

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954

  20. Sex pheromone and trail pheromone of the sand termite Psammotermes hybostoma.

    PubMed

    Sillam-Dussès, David; Hanus, Robert; Abd El-Latif, Ashraf Oukasha; Jiroš, Pavel; Krasulová, Jana; Kalinová, Blanka; Valterová, Irena; Sobotník, Jan

    2011-02-01

    Within the complex network of chemical signals used by termites, trail pheromones and sex pheromones are among the best known. Numerous recent papers map the chemical identity and glandular origin of these pheromones in nearly all major isopteran taxa. In this study, we aimed to describe the sex pheromone and the trail pheromone of a poorly known sand termite, Psammotermes hybostoma. We identified (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (dodecatrienol) as the sex pheromone released by tergal and sternal glands of female imagos and, at the same time, as the trail pheromone secreted from the sternal gland of workers. We conclude that chemical communication in Psammotermes does not differ from that of most other Rhinotermitidae, such as Reticulitermes, despite the presence of a diterpene as a major component of the trail pheromone of Prorhinotermes to which Psammotermes is presumed to be phylogenetically close. Our findings underline once again the conservative nature of chemical communication in termites, with dodecatrienol being a frequent component of pheromonal signals in trail following and sex attraction and, at the same time, a tight evolutionary relationship between the trail following of working castes and the sex attraction of imagos.

  1. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene

    PubMed Central

    Liénard, Marjorie A.; Hagström, Åsa K.; Lassance, Jean-Marc; Löfstedt, Christer

    2010-01-01

    Fatty-acyl CoA reductases (FAR) convert fatty acids into fatty alcohols in pro- and eukaryotic organisms. In the Lepidoptera, members of the FAR gene family serve in the biosynthesis of sex pheromones involved in mate communication. We used a group of closely related species, the small ermine moths (Lepidoptera: Yponomeutidae) as a model to investigate the role of FARs in the biosynthesis of complex pheromone blends. Homology-based molecular cloning in three Yponomeuta species led to the identification of multiple putative FAR transcripts homologous to FAR genes from the Bombyx mori genome. The expression of one transcript was restricted to the female pheromone-gland tissue, suggesting a role in pheromone biosynthesis, and the encoded protein belonged to a recently identified Lepidoptera-specific pgFAR gene subfamily. The Yponomeuta evonymellus pgFAR mRNA was up-regulated in sexually mature females and exhibited a 24-h cyclic fluctuation pattern peaking in the pheromone production period. Heterologous expression confirmed that the Yponomeuta pgFAR orthologs in all three species investigated [Y. evonymellus (L.), Yponomeuta padellus (L.), and Yponomeuta rorellus (Hübner)] encode a functional FAR with a broad substrate range that efficiently promoted accumulation of primary alcohols in recombinant yeast supplied with a series of biologically relevant C14- or C16-acyl precursors. Taken together, our data evidence that a single alcohol-producing pgFAR played a critical function in the production of the multicomponent pheromones of yponomeutids and support the hypothesis of moth pheromone-biosynthetic FARs belonging to a FAR gene subfamily unique to Lepidoptera. PMID:20534481

  2. The Iron-Dependent Regulator Fur Controls Pheromone Signaling Systems and Luminescence in the Squid Symbiont Vibrio fischeri ES114

    PubMed Central

    Septer, Alecia N.; Lyell, Noreen L.

    2013-01-01

    Bacteria often use pheromones to coordinate group behaviors in specific environments. While high cell density is required for pheromones to achieve stimulatory levels, environmental cues can also influence pheromone accumulation and signaling. For the squid symbiont Vibrio fischeri ES114, bioluminescence requires pheromone-mediated regulation, and this signaling is induced in the host to a greater extent than in culture, even at an equivalent cell density. Our goal is to better understand this environment-specific control over pheromone signaling and bioluminescence. Previous work with V. fischeri MJ1 showed that iron limitation induces luminescence, and we recently found that ES114 encounters a low-iron environment in its host. Here we show that ES114 induces luminescence at lower cell density and achieves brighter luminescence in low-iron media. This iron-dependent effect on luminescence required ferric uptake regulator (Fur), which we propose influences two pheromone signaling master regulators, LitR and LuxR. Genetic and bioinformatic analyses suggested that under low-iron conditions, Fur-mediated repression of litR is relieved, enabling more LitR to perform its established role as an activator of luxR. Interestingly, Fur may similarly control the LitR homolog SmcR of Vibrio vulnificus. These results reveal an intriguing regulatory link between low-iron conditions, which are often encountered in host tissues, and pheromone-dependent master regulators. PMID:23315731

  3. A novel mechanism regulating a sexual signal: the testosterone-based inhibition of female sex pheromone expression in garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2014-08-01

    Vertebrates communicate their sex to conspecifics through the use of sexually dimorphic signals, such as ornaments, behaviors and scents. Furthermore, the physiological connection between hormones and secondary sexual signal expression is key to understanding their dimorphism, seasonality and evolution. The red-sided garter snake (Thamnophis sirtalis parietalis) is the only reptile for which a described pheromone currently exists, and because garter snakes rely completely on the sexual attractiveness pheromone for species identification and mate choice, they constitute a unique model species for exploring the relationship between pheromones and the endocrine system. We recently demonstrated that estrogen can activate female pheromone production in male garter snakes. The purpose of this study was to determine the mechanism(s) acting to prevent female pheromone production in males. We found that castrated males (GX) are courted by wild males in the field and produce appreciable amounts of female sex pheromone. Furthermore, pheromone production is inhibited in castrates given testosterone implants (GX+T), suggesting that pheromone production is actively inhibited by the presence of testosterone. Lastly, testosterone supplementation alone (T) increased the production of several saturated methyl ketones in the pheromone but not the unsaturated ketones; this may indicate that saturated ketones are testosterone-activated components of the garter snake's skin lipid milieu. Collectively, our research has shown that pheromone expression in snakes results from two processes: activation by the feminizing steroid estradiol and inhibition by testosterone. We suggest that basal birds and garter snakes share common pathways of activation that modulate crucial intraspecific signals that originate from skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Human Cpr (Cell Cycle Progression Restoration) Genes Impart a Far(-) Phenotype on Yeast Cells

    PubMed Central

    Edwards, M. C.; Liegeois, N.; Horecka, J.; DePinho, R. A.; Sprague-Jr., G. F.; Tyers, M.; Elledge, S. J.

    1997-01-01

    Regulated cell cycle progression depends on the proper integration of growth control pathways with the basic cell cycle machinery. While many of the central molecules such as cyclins, CDKs, and CKIs are known, and many of the kinases and phosphatases that modify the CDKs have been identified, little is known about the additional layers of regulation that impinge upon these molecules. To identify new regulators of cell proliferation, we have selected for human and yeast cDNAs that when overexpressed were capable of specifically overcoming G(1) arrest signals from the cell cycle branch of the mating pheromone pathway, while still maintaining the integrity of the transcriptional induction branch. We have identified 13 human CPR (cell cycle progression restoration) genes and 11 yeast OPY (overproduction-induced pheromone-resistant yeast) genes that specifically block the G(1) arrest by mating pheromone. The CPR genes represent a variety of biochemical functions including a new cyclin, a tumor suppressor binding protein, chaperones, transcription factors, translation factors, RNA-binding proteins, as well as novel proteins. Several CPR genes require individual CLNs to promote pheromone resistance and those that require CLN3 increase the basal levels of Cln3 protein. Moreover, several of the yeast OPY genes have overlapping functions with the human CPR genes, indicating a possible conservation of roles. PMID:9383053

  5. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  6. Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction

    PubMed Central

    Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu

    2013-01-01

    Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998

  7. Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Mayrhofer, Severine; Weber, Jan M; Pöggeler, Stefanie

    2006-03-01

    The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to alpha-factor-like and a-factor-like pheromones and to G-protein-coupled pheromone receptors of the yeast Saccharomyces cerevisiae. It has been suggested that in S. macrospora, PPG1/PRE2 and PPG2/PRE1 form two cognate pheromone-receptor pairs. To investigate their function, we deleted (delta) pheromone-precursor genes (delta ppg1, delta ppg2) and receptor genes (delta pre1, delta pre2) and generated single- as well as double-knockout strains. No effect on vegetative growth, fruiting-body, and ascospore development was seen in the single pheromone-mutant and receptor-mutant strains, respectively. However, double-knockout strains lacking any compatible pheromone-receptor pair (delta pre2/delta ppg2, delta pre1/delta ppg1) and the double-pheromone mutant (delta ppg1/delta ppg2) displayed a drastically reduced number of perithecia and sexual spores, whereas deletion of both receptor genes (delta pre1/delta pre2) completely eliminated fruiting-body and ascospore formation. The results suggest that pheromones and pheromone receptors are required for optimal sexual reproduction of the homothallic S. macrospora.

  8. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens

    PubMed Central

    Pregitzer, Pablo; Schubert, Marco; Breer, Heinz; Hansson, Bill S.; Sachse, Silke; Krieger, Jürgen

    2012-01-01

    In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization. PMID:23060749

  9. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    PubMed Central

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  10. Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae.

    PubMed

    Mayrhofer, Severine; Pöggeler, Stefanie

    2005-04-01

    The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.

  11. Pheromones and Pheromone Receptors Are Required for Proper Sexual Development in the Homothallic Ascomycete Sordaria macrospora

    PubMed Central

    Mayrhofer, Severine; Weber, Jan M.; Pöggeler, Stefanie

    2006-01-01

    The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to α-factor-like and a-factor-like pheromones and to G-protein-coupled pheromone receptors of the yeast Saccharomyces cerevisiae. It has been suggested that in S. macrospora, PPG1/PRE2 and PPG2/PRE1 form two cognate pheromone–receptor pairs. To investigate their function, we deleted (Δ) pheromone-precursor genes (Δppg1, Δppg2) and receptor genes (Δpre1, Δpre2) and generated single- as well as double-knockout strains. No effect on vegetative growth, fruiting-body, and ascospore development was seen in the single pheromone-mutant and receptor-mutant strains, respectively. However, double-knockout strains lacking any compatible pheromone-receptor pair (Δpre2/Δppg2, Δpre1/Δppg1) and the double-pheromone mutant (Δppg1/Δppg2) displayed a drastically reduced number of perithecia and sexual spores, whereas deletion of both receptor genes (Δpre1/Δpre2) completely eliminated fruiting-body and ascospore formation. The results suggest that pheromones and pheromone receptors are required for optimal sexual reproduction of the homothallic S. macrospora. PMID:16387884

  12. Effects of a Caenorhabditis elegans dauer pheromone ascaroside on physiology and signal transduction pathways.

    PubMed

    Gallo, Marco; Riddle, Donald L

    2009-02-01

    Daumone is one of the three purified and artificially synthesized components of the Caenorhabditis elegans dauer pheromone. It affects the major signal transduction pathways known to discriminate between developmental arrest at the dauer stage and growth to the adult [the transforming growth factor beta (TGF-beta) and daf-2/IGF1R pathways], just as natural pheromone extracts do. Transcription of daf-7/TGF-beta is reduced in pre-dauer larvae, and nuclear localization of the DAF-16/FOXO transcription factor is increased in embryos and L1 larvae exposed to synthetic daumone. However, daumone does not require the cilia in the amphidial neurons to produce these effects nor does it require the Galpha protein GPA-3 to induce dauer entry, although GPA-3 is required for dauer induction by natural dauer pheromone extracts. Synthetic daumone has physiological effects that have not been observed with natural pheromone. It is toxic at the concentrations required for bioassay and is lethal to mutants with defective cuticles. The molecular and physiological effects of daumone and natural dauer pheromone are only partially overlapping.

  13. Multiphasic On/Off Pheromone Signalling in Moths as Neural Correlates of a Search Strategy

    PubMed Central

    Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe

    2013-01-01

    Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses. PMID:23613816

  14. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    PubMed

    Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe

    2013-01-01

    Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  15. Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    PubMed Central

    Albre, Jérôme; Liénard, Marjorie A.; Sirey, Tamara M.; Schmidt, Silvia; Tooman, Leah K.; Carraher, Colm; Greenwood, David R.; Löfstedt, Christer; Newcomb, Richard D.

    2012-01-01

    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in

  16. A conserved neuronal DAF-16/FoxO plays an important role in conveying pheromone signals to elicit repulsion behavior in Caenorhabditis elegans.

    PubMed

    Park, Donha; Hahm, Jeong-Hoon; Park, Saeram; Ha, Go; Chang, Gyeong-Eon; Jeong, Haelim; Kim, Heekyeong; Kim, Sunhee; Cheong, Eunji; Paik, Young-Ki

    2017-08-03

    Animals use pheromones as a conspecific chemical language to respond appropriately to environmental changes. The soil nematode Caenorhabditis elegans secretes ascaroside pheromones throughout the lifecycle, which influences entry into dauer phase in early larvae, in addition to sexual attraction and aggregation. In adult hermaphrodites, pheromone sensory signals perceived by worms usually elicit repulsion as an initial behavioral signature. However, the molecular mechanisms underlying neuronal pheromone sensory process from perception to repulsion in adult hermaphrodites remain poorly understood. Here, we show that pheromone signals perceived by GPA-3 is conveyed through glutamatergic neurotransmission in which neuronal DAF-16/FoxO plays an important modulatory role by controlling glutaminase gene expression. We further provide evidence that this modulatory role for DAF-16/FoxO seems to be conserved evolutionarily by electro-physiological study in mouse primary hippocampal neurons that are responsible for glutamatergic neurotransmission. These findings provide the basis for understanding the nematode pheromone signaling, which seems crucial for adaptation of adult hermaphrodites to changes in environmental condition for survival.

  17. Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, Plutella xyllostella

    PubMed Central

    Sun, Mengjing; Liu, Yang; Walker, William B.; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; Zhang, Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic of pheromone receptors. In the Xenopus-based functional study and in situ hybridization, PxylOR4 is defined as another pheromone receptor in addition to the previously characterized PxylOR1. In the study of interaction between PRs and PBPs, PxylPBPs could increase the sensitivity of the complex expressing oocyte cells to the ligand pheromone component while decreasing the sensitivity to pheromone analogs. We deduce that activating pheromone receptors in olfactory receptor neurons requires some role of PBPs to pheromone/PBP complex. If the chemical signal is not the pheromone component, but instead, a pheromone analog with a similar structure, the complex would have a decreased ability to activate downstream pheromone receptors. PMID:23626773

  18. Yeast pheromone pathway modeling using Petri nets

    PubMed Central

    2014-01-01

    Background Our environment is composed of biological components of varying magnitude. The relationships between the different biological elements can be represented as a biological network. The process of mating in S. cerevisiae is initiated by secretion of pheromone by one of the cells. Our interest lies in one particular question: how does a cell dynamically adapt the pathway to continue mating under severe environmental changes or under mutation (which might result in the loss of functionality of some proteins known to participate in the pheromone pathway). Our work attempts to answer this question. To achieve this, we first propose a model to simulate the pheromone pathway using Petri nets. Petri nets are directed graphs that can be used for describing and modeling systems characterized as concurrent, asynchronous, distributed, parallel, non-deterministic, and/or stochastic. We then analyze our Petri net-based model of the pathway to investigate the following: 1) Given the model of the pheromone response pathway, under what conditions does the cell respond positively, i.e., mate? 2) What kinds of perturbations in the cell would result in changing a negative response to a positive one? Method In our model, we classify proteins into two categories: core component proteins (set ψ) and additional proteins (set λ). We randomly generate our model's parameters in repeated simulations. To simulate the pathway, we carry out three different experiments. In the experiments, we simply change the concentration of the additional proteins (λ) available to the cell. The concentration of proteins in ψ is varied consistently from 300 to 400. In Experiment 1, the range of values for λ is set to be 100 to 150. In Experiment 2, it is set to be 151 to 200. In Experiment 3, the set λ is further split into σ and ς, with the idea that proteins in σ are more important than those in ς. The range of values for σ is set to be between 151 to 200 while that of ς is 100 to 150

  19. Yeast pheromone pathway modeling using Petri nets.

    PubMed

    Majumdar, Abhishek; Scott, Stephen D; Deogun, Jitender S; Harris, Steven

    2014-01-01

    Our environment is composed of biological components of varying magnitude. The relationships between the different biological elements can be represented as a biological network. The process of mating in S. cerevisiae is initiated by secretion of pheromone by one of the cells. Our interest lies in one particular question: how does a cell dynamically adapt the pathway to continue mating under severe environmental changes or under mutation (which might result in the loss of functionality of some proteins known to participate in the pheromone pathway). Our work attempts to answer this question. To achieve this, we first propose a model to simulate the pheromone pathway using Petri nets. Petri nets are directed graphs that can be used for describing and modeling systems characterized as concurrent, asynchronous, distributed, parallel, non-deterministic, and/or stochastic. We then analyze our Petri net-based model of the pathway to investigate the following: 1) Given the model of the pheromone response pathway, under what conditions does the cell respond positively, i.e., mate? 2) What kinds of perturbations in the cell would result in changing a negative response to a positive one? In our model, we classify proteins into two categories: core component proteins (set ψ) and additional proteins (set λ). We randomly generate our model's parameters in repeated simulations. To simulate the pathway, we carry out three different experiments. In the experiments, we simply change the concentration of the additional proteins (λ) available to the cell. The concentration of proteins in ψ is varied consistently from 300 to 400. In Experiment 1, the range of values for λ is set to be 100 to 150. In Experiment 2, it is set to be 151 to 200. In Experiment 3, the set λ is further split into σ and ς, with the idea that proteins in σ are more important than those in ς. The range of values for σ is set to be between 151 to 200 while that of ς is 100 to 150. Decision trees were

  20. Queen pheromones

    PubMed Central

    2010-01-01

    Group-living species produce signals that alter the behavior and even the physiology of their social partners. Social insects possess especially sophisticated chemical communication systems that govern every aspect of colony life, including the defining feature of eusociality: reproductive division of labor. Current evidence hints at the central importance of queen pheromones, but progress has been hindered by the fact that such pheromones have only been isolated in honeybees. In a pair of papers on the ant Lasius niger, we identified and investigated a queen pheromone regulating worker sterility. The cuticular hydrocarbon 3-methylhentriacontane (3-MeC31) is correlated with queen maturity and fecundity and workers are also more likely to execute surplus queens that have low amounts of this chemical. Experiments with synthetic 3-MeC31 found that it inhibits ovarian development in queenless workers and lowers worker aggression towards objects coated with it. Production of 3-MeC31 by queens was depressed by an experimental immune challenge, and the same chemical was abundant on queenlaid eggs, suggesting that the workers' responses to the queen are conditional on her health and fecundity. Together with other studies, these results indicate that queen pheromones are honest signals of quality that simultaneously regulate multiple social behaviors. PMID:21331238

  1. The joy of sex pheromones

    PubMed Central

    Gomez-Diaz, Carolina; Benton, Richard

    2013-01-01

    Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems. EMBO reports advance online publication 13 September 2013; doi:10.1038/embor.2013.140 PMID:24030282

  2. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  3. Evolutionary ecology of pheromone signaling in Dendroctonus frontalis

    Treesearch

    Deepa S. Pureswaran; Brian T. Sullivan; Matthew P. Ayres

    2007-01-01

    Although studies of pheromone production in the southern pine beetle (Dendroctonus frontalis) extend back to the dawn of chemical ecology, it is only recently that instrumentation has become sufficiently sensitive to measure pheromone production of individual beetles. Now, recent studies have revealed surprisingly high variation among individuals in...

  4. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone

    PubMed Central

    Serra, Montserrat; Piña, Benjamin; Abad, José Luis; Camps, Francisco; Fabriàs, Gemma

    2007-01-01

    The sex pheromone of the female processionary moth, Thaumetopoea pityocampa, is a unique C16 enyne acetate that is biosynthesized from palmitic acid. Three consecutive desaturation reactions transform this saturated precursor into the triunsaturated fatty acyl intermediate: formation of (Z)-11-hexadecenoic acid, acetylenation to 11-hexadecynoic acid, and final Δ13 desaturation to (Z)-13-hexadecen-11-ynoic acid. By using degenerate primers common to all reported insect desaturases, a single cDNA sequence was isolated from total RNA of T. pityocampa female pheromone glands. The full-length transcript of this putative desaturase was expressed in elo1Δ/ole1Δ yeast mutants (both elongase 1 and Δ9 desaturase-deficient) for functional assays. The construct fully rescued the Δole1 yeast phenotype, confirming its desaturase activity. Analysis of the unsaturated products from transformed yeast extracts demonstrated that the cloned enzyme showed Δ11 desaturase, Δ11 acetylenase, and Δ13 desaturase activities. Therefore, this single desaturase may account for the three desaturation steps involved in the sex pheromone biosynthetic pathway of the processionary moth. PMID:17921252

  5. Pheromone Autodetection: Evidence and Implications

    PubMed Central

    Holdcraft, Robert; Rodriguez-Saona, Cesar; Stelinski, Lukasz L.

    2016-01-01

    Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture. PMID:27120623

  6. Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum.

    PubMed

    Vitale, Stefania; Partida-Hanon, Angélica; Serrano, Soraya; Martínez-Del-Pozo, Álvaro; Di Pietro, Antonio; Turrà, David; Bruix, Marta

    2017-03-03

    During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae , a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly 6 -Gln 7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp 1 -Cys 2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Evolved differences in larval social behavior mediated by novel pheromones

    PubMed Central

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-01-01

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433

  8. Variable Dependence of Signaling Output on Agonist Occupancy of Ste2p, a G Protein-coupled Receptor in Yeast.

    PubMed

    Sridharan, Rajashri; Connelly, Sara M; Naider, Fred; Dumont, Mark E

    2016-11-11

    We report here on the relationship between ligand binding and signaling responses in the yeast pheromone response pathway, a well characterized G protein-coupled receptor system. Responses to agonist (α-factor) by cells expressing widely varying numbers of receptors depend primarily on fractional occupancy, not the absolute number of agonist-bound receptors. Furthermore, the concentration of competitive antagonist required to inhibit α-factor-dependent signaling is more than 10-fold higher than predicted based on the known ligand affinities. Thus, responses to a particular number of agonist-bound receptors can vary greatly, depending on whether there are unoccupied or antagonist-bound receptors present on the same cell surface. This behavior does not appear to be due to pre-coupling of receptors to G protein or to the Sst2p regulator of G protein signaling. The results are consistent with a signaling response that is determined by the integration of positive signals from agonist-occupied receptors and inhibitory signals from unoccupied receptors, where the inhibitory signals can be diminished by antagonist binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Chemical signaling and insect attraction is a conserved trait in yeasts.

    PubMed

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  10. Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Pöggeler, S

    2000-06-01

    In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.

  11. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans.

    PubMed

    Kim, Kyuhyung; Sato, Koji; Shibuya, Mayumi; Zeiger, Danna M; Butcher, Rebecca A; Ragains, Justin R; Clardy, Jon; Touhara, Kazushige; Sengupta, Piali

    2009-11-13

    Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.

  12. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone.

    PubMed

    Plaga, W; Stamm, I; Schairer, H U

    1998-09-15

    The myxobacterium Stigmatella aurantiaca passes through a life cycle that involves formation of a multicellular fruiting body as the most complex stage. An early step in this differentiation process depends on a signal factor secreted by the cells when nutrients become limited. The formation of a fruiting body from a small cell population can be accelerated by addition of this secreted material. The bioactive compound was found to be steam volatile. It was purified to homogeneity by steam distillation followed by reversed-phase and normal-phase HPLC. The pheromone was named stigmolone, in accordance with the structure 2,5, 8-trimethyl-8-hydroxy-nonan-4-one, as determined by NMR and mass spectrometry. Stigmolone represents a structurally unique and highly bioactive prokaryotic pheromone that is effective in the bioassay at 1 nM concentration.

  13. RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.).

    PubMed

    Lee, Dae-Weon; Shrestha, Sony; Kim, A Young; Park, Seok Joo; Yang, Chang Yeol; Kim, Yonggyun; Koh, Young Ho

    2011-04-01

    Sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN) in many lepidopteran species. We cloned a PBAN receptor (Plx-PBANr) gene from the female pheromone gland of the diamondback moth, Plutella xylostella (L.). Plx-PBANr encodes 338 amino acids and has conserved structural motifs implicating in promoting G protein coupling and tyrosine-based sorting signaling along with seven transmembrane domains, indicating a typical G protein-coupled receptor. The expression of Plx-PBANr was found only in the pheromone gland of female adults among examined tissues and developmental stages. Heterologous expression in human uterus cervical cancer cells revealed that Plx-PBANr induced significant calcium elevation when challenged with Plx-PBAN. Female P. xylostella injected with double-stranded RNA specific to Plx-PBANr showed suppression of the receptor gene expression and exhibited significant reduction in pheromone biosynthesis, which resulted in loss of male attractiveness. Taken together, the identified PBAN receptor is functional in PBAN signaling via calcium secondary messenger, which leads to activation of pheromone biosynthesis and male attraction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Structure of Peptide Sex Pheromone Receptor PrgX and PrgX/Pheromone Complexes and Regulation of Conjugation in Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi,K.; Brown, C.; Gu, Z.

    2005-01-01

    Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone bindingmore » destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.« less

  15. Intercellular signaling in Stigmatella aurantiaca: Purification and characterization of stigmolone, a myxobacterial pheromone

    PubMed Central

    Plaga, Wulf; Stamm, Irmela; Schairer, Hans Ulrich

    1998-01-01

    The myxobacterium Stigmatella aurantiaca passes through a life cycle that involves formation of a multicellular fruiting body as the most complex stage. An early step in this differentiation process depends on a signal factor secreted by the cells when nutrients become limited. The formation of a fruiting body from a small cell population can be accelerated by addition of this secreted material. The bioactive compound was found to be steam volatile. It was purified to homogeneity by steam distillation followed by reversed-phase and normal-phase HPLC. The pheromone was named stigmolone, in accordance with the structure 2,5,8-trimethyl-8-hydroxy-nonan-4-one, as determined by NMR and mass spectrometry. Stigmolone represents a structurally unique and highly bioactive prokaryotic pheromone that is effective in the bioassay at 1 nM concentration. PMID:9736724

  16. Small-molecule pheromones that control dauer development in Caenorhabditis elegans.

    PubMed

    Butcher, Rebecca A; Fujita, Masaki; Schroeder, Frank C; Clardy, Jon

    2007-07-01

    In response to high population density or low food supply, the nematode Caenorhabditis elegans enters an alternative larval stage, known as the dauer, that can withstand adverse conditions for prolonged periods. C. elegans senses its population density through a small-molecule signal, traditionally called the dauer pheromone, that it secretes into its surroundings. Here we show that the dauer pheromone consists of several structurally related ascarosides-derivatives of the dideoxysugar ascarylose-and that two of these ascarosides (1 and 2) are roughly two orders of magnitude more potent at inducing dauer formation than a previously reported dauer pheromone component (3) and constitute a physiologically relevant signal. The identification of dauer pheromone components 1 and 2 will facilitate the identification of target receptors and downstream signaling proteins.

  17. Cooperation, conflict, and the evolution of queen pheromones.

    PubMed

    Kocher, Sarah D; Grozinger, Christina M

    2011-11-01

    While chemical communication regulates individual behavior in a wide variety of species, these communication systems are most elaborated in insect societies. In these complex systems, pheromones produced by the reproductive individuals (queens) are critical in establishing and maintaining dominant reproductive status over hundreds to thousands of workers. The proximate and ultimate mechanisms by which these intricate pheromone communication systems evolved are largely unknown, though there has been much debate over whether queen pheromones function as a control mechanism or as an honest signal facilitating cooperation. Here, we summarize results from recent studies in honey bees, bumble bees, wasps, ants and termites. We further discuss evolutionary mechanisms by which queen pheromone communication systems may have evolved. Overall, these studies suggest that queen-worker pheromone communication is a multi-component, labile dialog between the castes, rather than a simple, fixed signal-response system. We also discuss future approaches that can shed light on the proximate and ultimate mechanisms that underlie these complex systems by focusing on the development of increasingly sophisticated genomic tools and their potential applications to examine the molecular mechanisms that regulate pheromone production and perception.

  18. Foragers of sympatric Asian honey bee species intercept competitor signals by avoiding benzyl acetate from Apis cerana alarm pheromone.

    PubMed

    Wen, Ping; Cheng, Yanan; Qu, Yufeng; Zhang, Hongxia; Li, Jianjun; Bell, Heather; Tan, Ken; Nieh, James

    2017-07-27

    While foraging, animals can form inter- and intraspecific social signalling networks to avoid similar predators. We report here that foragers of different native Asian honey bee species can detect and use a specialized alarm pheromone component, benzyl acetate (BA), to avoid danger. We analysed the volatile alarm pheromone produced by attacked workers of the most abundant native Asian honey bee, Apis cerana and tested the responses of other bee species to these alarm signals. As compared to nest guards, A. cerana foragers produced 3.38 fold higher levels of BA. In foragers, BA and (E)-dec-2-en-1-yl acetate (DA) generated the strongest antennal electrophysiological responses. BA was also the only compound that alerted flying foragers and inhibited A. cerana foraging. BA thereby decreased A. cerana foraging for risky sites. Interestingly, although BA occurs only in trace amounts and is nearly absent in sympatric honeybee species (respectively only 0.07% and 0.44% as much in A. dorsata and A. florea), these floral generalists detected and avoided BA as strongly as they did to their own alarm pheromone on natural inflorescences. These results demonstrate that competing pollinators can take advantage of alarm signal information provided by other species.

  19. Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies.

    PubMed

    Matsuura, Kenji

    2012-06-01

    Pheromones are likely involved in all social activities of social insects including foraging, sexual behavior, defense, nestmate recognition, and caste regulation. Regulation of the number of fertile queens requires communication between reproductive and non-reproductive individuals. Queen-produced pheromones have long been believed to be the main factor inhibiting the differentiation of new reproductive individuals. However, since the discovery more than 50 years ago of the queen honeybee substance that inhibits the queen-rearing behavior of workers, little progress has been made in the chemical identification of inhibitory queen pheromones in other social insects. The recent identification of a termite queen pheromone and subsequent studies have elucidated the multifaceted roles of volatile pheromones, including functions such as a fertility signal, worker attractant, queen-queen communication signal, and antimicrobial agent. The proximate origin and evolutionary parsimony of the termite queen pheromone also are discussed.

  20. Pheromone detection by mammalian vomeronasal neurons.

    PubMed

    Zufall, Frank; Kelliher, Kevin R; Leinders-Zufall, Trese

    2002-08-01

    The vomeronasal organ (VNO) of mammals plays an essential role in the perception of chemical stimuli of social nature including pheromone-like signals but direct evidence for the transduction of pheromones by vomeronasal sensory neurons has been lacking. The recent development of electrophysiological and optical imaging methods using confocal microscopy has enabled researchers to systematically analyze sensory responses in large populations of mouse vomeronasal neurons. These experiments revealed that vomeronasal neurons are surprisingly sensitive and highly discriminative detectors of volatile, urinary metabolites that have pheromonal activity in recipient mice. Functional mapping studies of pheromone receptor activation have uncovered the basic principles of sensory processing by vomeronasal neurons and revealed striking differences in the neural mechanisms by which chemosensory information is detected by receptor neurons in the VNO and the main olfactory epithelium. These advances offer the opportunity to decipher the logic of mammalian pheromonal communication. Copyright 2002 Wiley-Liss, Inc.

  1. Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Matsumoto, Sanae; Bandyopadhyay, Amitabha; Kwiatkowski, David J; Maitra, Umadas; Matsumoto, Tomohiro

    2002-01-01

    Heterozygous inactivation of either human TSC1 or TSC2 causes tuberous sclerosis (TSC), in which development of benign tumors, hamartomas, occurs via a two-hit mechanism. In this study, fission yeast genes homologous to TSC1 and TSC2 were identified, and their protein products were shown to physically interact like the human gene products. Strains lacking tsc1(+) or tsc2(+) were defective in uptake of nutrients from the environment. An amino acid permease, which is normally positioned on the plasma membrane, aggregated in the cytoplasm or was confined in vacuole-like structures in Deltatsc1 and Deltatsc2 strains. Deletion of tsc1(+) or tsc2(+) also caused a defect in conjugation. When a limited number of the cells were mixed, they conjugated poorly. The conjugation efficiency was improved by increased cell density. Deltatsc1 cells were not responsive to a mating pheromone, P-factor, suggesting that Tsc1 has an important role in the signal cascade for conjugation. These results indicate that the fission yeast Tsc1-Tsc2 complex plays a role in the regulation of protein trafficking and suggest a similar function for the human proteins. We also show that fission yeast Int6 is involved in a similar process, but functions in an independent genetic pathway. PMID:12136010

  2. Condition-dependent pheromone signaling by male rock lizards: more oily scents are more attractive.

    PubMed

    Martín, José; López, Pilar

    2010-05-01

    Pheromones of vertebrates are often a mixture of several chemicals with different properties and messages, and their production seems condition dependent. Thus, pheromones are a good, but little studied, example of multiple sexual signals. Femoral gland secretions of male rock lizards Iberolacerta cyreni contain steroids that may act as pheromones, but there are also many other lipids, such as oleic acid, whose allocation to secretions may be costly because it has to be diverted from body fat reserves. This suggests that oleic acid could also have some function in secretions. Chemical analyses showed that proportions of oleic acid in femoral secretions of males were positively related to body condition of males, suggesting that the oleic acid secreted may reflect the amount of body fat reserves of a male. Tongue-flick bioassays showed that females were able to detect by chemosensory cues alone differences in proportions of oleic acid in secretions of males. Scents of males with more oleic acid elicited stronger chemosensory responses by females. Further tests with chemical standards confirmed that females distinguished oleic acid, and changes in its concentration, from other chemicals that are naturally found in secretions of males. Moreover, choice trials of scent-marked substrates showed that females were more attracted to areas that were experimentally manipulated to increase the proportion of oleic acid in natural scent marks of males. We suggest that oleic acid in femoral secretions might be a reliable advertisement of a male's body condition, which females could use to select high-quality mates in conjunction with information provided by other chemicals. Alternatively, scent marks with more oleic acid might be simply more attractive to females if chemosensory responses of females to scent of males were originated by a preexisting sensory bias for food chemicals such as the oleic acid. Nevertheless, this sensory trap might have evolved into an honest signal

  3. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis

    PubMed Central

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-01-01

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach. PMID:26310773

  4. Will climate change affect insect pheromonal communication?

    PubMed

    Boullis, Antoine; Detrain, Claire; Francis, Frédéric; Verheggen, François J

    2016-10-01

    Understanding how climate change will affect species interactions is a challenge for all branches of ecology. We have only limited understanding of how increasing temperature and atmospheric CO 2 and O 3 levels will affect pheromone-mediated communication among insects. Based on the existing literature, we suggest that the entire process of pheromonal communication, from production to behavioural response, is likely to be impacted by increases in temperature and modifications to atmospheric CO 2 and O 3 levels. We argue that insect species relying on long-range chemical signals will be most impacted, because these signals will likely suffer from longer exposure to oxidative gases during dispersal. We provide future directions for research programmes investigating the consequences of climate change on insect pheromonal communication. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Concordant preferences for opposite-sex signals? Human pheromones and facial characteristics.

    PubMed Central

    Cornwell, R. Elisabeth; Boothroyd, Lynda; Burt, D. Michael; Feinberg, David R.; Jones, Ben C.; Little, Anthony C.; Pitman, Robert; Whiten, Susie; Perrett, David I.

    2004-01-01

    We have investigated whether preferences for masculine and feminine characteristics are correlated across two modalities, olfaction and vision. In study 1, subjects rated the pleasantness of putative male (4,16-androstadien-3-one; 5alpha-androst-16-en-3-one) and female (1,3,5 (10),16-estratetraen-3-ol) pheromones, and chose the most attractive face shape from a masculine-feminine continuum for a long- and a short-term relationship. Study 2 replicated study 1 and further explored the effects of relationship context on pheromone ratings. For long-term relationships, women's preferences for masculine face shapes correlated with ratings of 4,16-androstadien-3-one and men's preferences for feminine face shapes correlated with ratings of 1,3,5(10),16-estratetraen-3-ol. These studies link sex-specific preferences for putative human sex pheromones and sexually dimorphic facial characteristics. Our findings suggest that putative sex pheromones and sexually dimorphic facial characteristics convey common information about the quality of potential mates. PMID:15156922

  6. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme.

    PubMed

    Ishida, Yuko; Leal, Walter S

    2008-07-01

    The sophistication of the insect olfactory system is elegantly demonstrated by the reception of sex pheromone by the Japanese beetle. In this insect, two olfactory receptor neurons housed in antennal sensilla placodea are highly sensitive. One neuron specifically detects the sex pheromone produced by conspecific females (R,Z)-5-(-)-(1-decenyl)oxacyclopentan-2-one [(R)-japonilure]. The other neuron is tuned to (S)-japonilure, a sex pheromone from a closely related species and a behavioral antagonist for the Japanese beetle. These chemical signals are enzymatically terminated by antennal esterases that open the lactone rings to form physiologically inactive hydroxyacids. We have isolated a pheromone-degrading enzyme, PjapPDE, from >100,000 antennae of the Japanese beetle. PjapPDE was demonstrated to be expressed only in the antennal tissues housing the pheromone-detecting sensilla placodea. Baculovirus expression generated recombinant PjapPDE with likely the same posttranslational modifications as the native enzyme. Kinetic studies with pure native and recombinant PjapPDE showed a clear substrate preference, with an estimated half-life in vivo for the sex pheromone and a behavioral antagonist of approximately 30 and approximately 90 ms, respectively.

  7. Yeast as a model for Ras signalling.

    PubMed

    Tisi, Renata; Belotti, Fiorella; Martegani, Enzo

    2014-01-01

    For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.

  8. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  9. Hydroquinone: a general phagostimulating pheromone in termites.

    PubMed

    Reinhard, Judith; Lacey, Michael J; Ibarra, Fernando; Schroeder, Frank C; Kaib, Manfred; Lenz, Michael

    2002-01-01

    The organization of termite societies depends predominantly on intraspecific chemical signals (pheromones) produced by exocrine glands, which induce and modulate individual behavioral responses. Here, the saliva-producing labial glands of termites were investigated with respect to their pheromonal role in communal food exploitation of termite colonies. From these glands, we identified for the first time hydroquinone (1,4-dihydroxybenzene) as a phagostimulating pheromone in the Australian termite species Mastotermes darwiniensis. Hydroquinone is released from the labial glands of termite workers and applied onto the food. It stimulates nestmates to feed at the spot of application and is, thus, employed to mark feeding sites. No synergistic effect with other identified labial gland compounds, such as glucose, inositol, and arbutin, was evident. Significantly, we show that termite species from all over the world, irrespective of taxonomic position and biological traits, produce and employ hydroquinone as phagostimulating signal. The use of the same chemical signal throughout an order is a unique phenomenon, not reported before in animals. Its possible biosynthetic pathway, ecological significance, and evolution are discussed.

  10. Phylogenetic distribution of a male pheromone that may exploit a nonsexual preference in lampreys

    USGS Publications Warehouse

    Buchinger, Tyler J.; Bussy, Ugo; Li, Ke; Wang, Huiyong; Huertas, Mar; Baker, Cindy F.; Jia, Liang; Hayes, Michael C.; Li, Weiming; Johnson, Nicholas

    2017-01-01

    Pheromones are among the most important sexual signals used by organisms throughout the animal kingdom. However, few are identified in vertebrates, leaving the evolutionary mechanisms underlying vertebrate pheromones poorly understood. Pre-existing biases in receivers’ perceptual systems shape visual and auditory signaling systems, but studies on how receiver biases influence the evolution of pheromone communication remain sparse. The lamprey Petromyzon marinus uses a relatively well-understood suite of pheromones and offers a unique opportunity to study the evolution of vertebrate pheromone communication. Previous studies indicate that male signaling with the mating pheromone 3-keto petromyzonol sulfate (3kPZS) may exploit a nonsexual attraction to juvenile-released 3kPZS that guides migration into productive rearing habitat. Here, we infer the distribution of male signaling with 3kPZS using a phylogenetic comparison comprising six of ten genera and two of three families. Our results indicate that only P. marinus and Ichthyomyzon castaneus release 3kPZS at high rates. Olfactory and behavioral assays with P. marinus, I. castaneus and a subset of three other species that do not use 3kPZS as a sexual signal indicate that male signaling might drive the evolution of female adaptations to detect 3kPZS with specific olfactory mechanisms and respond to 3kPZS with targeted attraction relevant during mate search. We postulate that 3kPZS communication evolved independently in I. castaneus and P. marinus, but cannot eliminate the alternative that other species lost 3kPZS communication. Regardless, our results represent a rare macroevolutionary investigation of a vertebrate pheromone and insight into the evolutionary mechanisms underlying pheromone communication.

  11. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  12. Isolation of pheromone precursor genes of Magnaporthe grisea.

    PubMed

    Shen, W C; Bobrowicz, P; Ebbole, D J

    1999-01-01

    In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia. Copyright 1999 Academic Press.

  13. Evolved differences in larval social behavior mediated by novel pheromones

    USDA-ARS?s Scientific Manuscript database

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors in both adult and immature stages. Multiple pheromones and neural pathways that underlie adult social behavior have been described in the genetic model organism, Drosophila melanogaster, but there is no...

  14. Pheromone induction of agglutination in Saccharomyces cerevisiae a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrance, K.; Lipke, P.N.

    1987-10-01

    a-Agglutinin, the cell surface sexual agglutinin of yeast a cells, was assayed by its ability to bind its complementary agglutinin, ..cap alpha..-agglutinin. The specific binding of /sup 125/I-..cap alpha..-agglutinin to a cells treated with the sex pheromone ..cap alpha..-factor was 2 to 2.5 times that of binding to a cells not treated with ..cap alpha..-factor. Competition with unlabeled ..cap alpha..-agglutinin revealed that the increased binding was due to increased cell surface expression of a-agglutinin, with no apparent change in the binding constant. The increase in site number was similar to the increase in cellular agglutinability. Increased expression of a-agglutinin followedmore » the same kinetics as the increase in cellular agglutinability, with a 10-min lag followed by a 15- to 20-min response time. Induction kinetics were similar in cells in phases G1 and G2 of the cell cycle. Maximal expression levels were similar in cells treated with excess pheromone and in cells exposed to pheromone after destruction of constitutively expressed a-agglutinin.« less

  15. Bumblebee size polymorphism and worker response to queen pheromone.

    PubMed

    Holman, Luke

    2014-01-01

    Queen pheromones are chemical signals produced by reproductive individuals in social insect colonies. In many species they are key to the maintenance of reproductive division of labor, with workers beginning to reproduce individually once the queen pheromone disappears. Recently, a queen pheromone that negatively affects worker fecundity was discovered in the bumblebee Bombus terrestris, presenting an exciting opportunity for comparisons with analogous queen pheromones in independently-evolved eusocial lineages such as honey bees, ants, wasps and termites. I set out to replicate this discovery and verify its reproducibility. Using blind, controlled experiments, I found that n-pentacosane (C25) does indeed negatively affect worker ovary development. Moreover, the pheromone affects both large and small workers, and applies to workers from large, mature colonies as well as young colonies. Given that C25 is readily available and that bumblebees are popular study organisms, I hope that this replication will encourage other researchers to tackle the many research questions enabled by the discovery of a queen pheromone.

  16. A quantitative characterization of the yeast heterotrimeric G protein cycle

    PubMed Central

    Yi, Tau-Mu; Kitano, Hiroaki; Simon, Melvin I.

    2003-01-01

    The yeast mating response is one of the best understood heterotrimeric G protein signaling pathways. Yet, most descriptions of this system have been qualitative. We have quantitatively characterized the heterotrimeric G protein cycle in yeast based on direct in vivo measurements. We used fluorescence resonance energy transfer to monitor the association state of cyan fluorescent protein (CFP)-Gα and Gβγ-yellow fluorescent protein (YFP), and we found that receptor-mediated G protein activation produced a loss of fluorescence resonance energy transfer. Quantitative time course and dose–response data were obtained for both wild-type and mutant cells possessing an altered pheromone response. These results paint a quantitative portrait of how regulators such as Sst2p and the C-terminal tail of α-factor receptor modulate the kinetics and sensitivity of G protein signaling. We have explored critical features of the dynamics including the rapid rise and subsequent decline of active G proteins during the early response, and the relationship between the G protein activation dose–response curve and the downstream dose–response curves for cell-cycle arrest and transcriptional induction. Fitting the data to a mathematical model produced estimates of the in vivo rates of heterotrimeric G protein activation and deactivation in yeast. PMID:12960402

  17. Size and competitive mating success in the yeast Saccharomyces cerevisiae.

    PubMed

    Smith, Carl; Pomiankowski, Andrew; Greig, Duncan

    2014-03-01

    In unicellular organisms like yeast, mating with the right partner is critical to future fitness because each individual can only mate once. Because cell size is important for viability, mating with a partner of the right size could be a significant advantage. To investigate this idea, we manipulated the size of unmated yeast cells and showed that their viability depended on environmental conditions; large cells do better on rich medium and small cells do better on poor medium. We also found that the fitness of offspring is determined by the size of their parents. Finally, we demonstrated that when a focal cell of one mating type was placed with a large and a small cell of the opposite mating type, it was more likely to mate with the cell that was closer to the optimum size for growth in a given environment. This pattern was not generated by differences in passive mating efficiency of large and small cells across environments but by competitive mating behavior, mate preference, or both. We conclude that the most likely mechanism underlying this interesting behavior is that yeast cells compete for mates by producing pheromone signals advertising their viability, and cells with the opportunity to choose prefer to mate with stronger signalers because such matings produce more viable offspring.

  18. Do aphid colonies amplify their emission of alarm pheromone?

    PubMed

    Hatano, Eduardo; Kunert, Grit; Bartram, Stefan; Boland, Wilhelm; Gershenzon, Jonathan; Weisser, Wolfgang W

    2008-09-01

    When aphids are attacked by natural enemies, they emit alarm pheromone to alert conspecifics. For most aphids tested, (E)-beta-farnesene (EBF) is the main, or only, constituent of the alarm pheromone. In response to alarm pheromone, alerted aphids drop off the plant, walk away, or attempt to elude predators. However, under natural conditions, EBF concentration might be low due to the low amounts emitted, to rapid air movement, or to oxidative degradation. To ensure that conspecifics are warned, aphids might conceivably amplify the alarm signal by emitting EBF in response to EBF emitted by other aphids. To examine whether such amplification occurs, we synthesized deuterated EBF (DEBF), which allowed us to differentiate between applied and aphid-derived chemical. Colonies of Acyrthosiphon pisum were treated with DEBF, and headspace volatiles were collected and analyzed for evidence of aphid-derived EBF. No aphid-derived EBF was detected, suggesting that amplification of the alarm signal does not occur. We discuss the disadvantages of alarm signal reinforcement.

  19. Model of Exploratory Search for Mating Partners by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Hurwitz, Daniel; Bendezu, Felipe; Martin, Sophie; Vavylonis, Dimitrios

    2014-03-01

    During conditions of nitrogen starvation, the model eukaryote S. pombe (fission yeast) undergoes sexual sporulation. Because fission yeast are non-motile, contact between opposite mating types during spore formation is accomplished by polarizing growth, via the Rho GTP-ase Cdc42, in each mating type towards the selected mate, a process known as shmooing. Recent findings showed that cells pick one of their neighboring compatible mates by randomizing the position of the Cdc42 complex about the cell membrane, such that the complex is stabilized near areas of high concentration of the opposite mating type pheromone. We developed Monte Carlo simulations to model partner finding in populations of mating cells and in small cell clusters. We assume that pheromones are secreted at the site of Cdc42 accumulation and that the Cdc42 dwell time increases in response to increasing pheromone concentration. We measured the number of cells that succeed in successful reciprocal pairing, the number of cells that were unable to find a partner, and the number of cells that picked a partner already engaged with another cell. For optimal cell pairing, we find the pheromone concentration decay length is around 1 micron, of order the cell size. We show that non-linear response of Cdc42 dwell time to pheromone concentration improves the number of successful pairs for a given spatial cell distribution. We discuss how these results compare to non-exploratory pairing mechanisms.

  20. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey

    PubMed Central

    Wen, Xiao-Lan

    2017-01-01

    Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversa. O. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis, Macrotermes yunnanensis, Ancistrotermes dimorphus). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3Z)-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3Z,6Z)-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species. PMID:28446695

  1. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey.

    PubMed

    Wen, Xiao-Lan; Wen, Ping; Dahlsjö, Cecilia A L; Sillam-Dussès, David; Šobotník, Jan

    2017-04-26

    Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversa O. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis , Macrotermes yunnanensis , Ancistrotermes dimorphus ). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3 Z )-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3 Z,6Z )-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species. © 2017 The Author(s).

  2. Vertebrate pheromones and other semiochemicals: the potential for accommodating complexity in signalling by volatile compounds for vertebrate management

    PubMed Central

    Pickett, John A.; Barasa, Stephen; Birkett, Michael A.

    2014-01-01

    The interaction between volatile and non-volatile, e.g. proteinaceous, components of pheromone and other semiochemical-based signalling systems presents a daunting set of problems for exploitation in the management of vertebrates, good or bad. Aggravating this is the complexity of the mixtures involved with pheromones, not only by definition associated with each species, but also with individual members of that species and their positions within their immediate communities. Nonetheless, already in some contexts, particularly where signals are perceived at other trophic levels from those of the vertebrates, e.g. by arthropods, reductionist approaches can be applied whereby the integrity of complex volatile mixtures is maintained, but perturbed by augmentation with individual components. In the present article, this is illustrated for cattle husbandry, fish farming and human health. So far, crude formulations have been used to imitate volatile semiochemical interactions with non-volatile components, but new approaches must be developed to accommodate more sophisticated interactions and not least the activities of the non-volatile, particularly proteinaceous components, currently being deduced. PMID:25109967

  3. Queen pheromone regulates egg production in a termite.

    PubMed

    Yamamoto, Yuuka; Matsuura, Kenji

    2011-10-23

    In social insects, resource allocation is a key factor that influences colony survival and growth. Optimal allocation to queens and brood is essential for maximum colony productivity, requiring colony members to have information on the total reproductive power in colonies. However, the mechanisms regulating egg production relative to the current labour force for brood care remain poorly known. Recently, a volatile chemical was identified as a termite queen pheromone that inhibits the differentiation of new neotenic reproductives (secondary reproductives developed from nymphs or workers) in Reticulitermes speratus. The same volatile chemical is also emitted by eggs. This queen pheromone would therefore be expected to act as an honest message of the reproductive power about queens. In this study, we examined how the queen pheromone influences the reproductive rate of queens in R. speratus. We compared the number of eggs produced by each queen between groups with and without exposure to artificial queen pheromone. Exposure to the pheromone resulted in a significant decrease in egg production in both single-queen and multiple-queen groups. This is the first report supporting the role of queen pheromones as a signal regulating colony-level egg production, using synthetically derived compounds in a termite.

  4. Identification of an ant queen pheromone regulating worker sterility.

    PubMed

    Holman, Luke; Jørgensen, Charlotte G; Nielsen, John; d'Ettorre, Patrizia

    2010-12-22

    The selective forces that shape and maintain eusocial societies are an enduring puzzle in evolutionary biology. Ordinarily sterile workers can usually reproduce given the right conditions, so the factors regulating reproductive division of labour may provide insight into why eusociality has persisted over evolutionary time. Queen-produced pheromones that affect worker reproduction have been implicated in diverse taxa, including ants, termites, wasps and possibly mole rats, but to date have only been definitively identified in the honeybee. Using the black garden ant Lasius niger, we isolate the first sterility-regulating ant queen pheromone. The pheromone is a cuticular hydrocarbon that comprises the majority of the chemical profile of queens and their eggs, and also affects worker behaviour, by reducing aggression towards objects bearing the pheromone. We further show that the pheromone elicits a strong response in worker antennae and that its production by queens is selectively reduced following an immune challenge. These results suggest that the pheromone has a central role in colony organization and support the hypothesis that worker sterility represents altruistic self-restraint in response to an honest quality signal.

  5. Pheromone modulates two phenotypically plastic traits - adult reproduction and larval diapause - in the nematode Caenorhabditis elegans.

    PubMed

    Wharam, Barney; Weldon, Laura; Viney, Mark

    2017-08-22

    Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae. Recent studies have suggested that this pheromone can have other roles in the C. elegans life cycle. Here we demonstrate a new role for the C. elegans pheromone, showing that it accelerates hermaphrodites' reproductive rate, a phenomenon which we call pheromone-dependent reproductive plasticity (PDRP). We also find that pheromone accelerates larval growth rates, but this depends on a live bacterial food source, while PDRP does not. Different C. elegans strains all show PDRP, though the magnitude of these effects differ among the strains, which is analogous to the diversity of arrested larval phenotypes that this pheromone also induces. Using a selection experiment we also show that selection for PDRP or for larval arrest affects both the target and the non-target trait, suggesting that there is cross-talk between these two pheromone-dependent traits. Together, these results show that C. elegans' pheromone is a signal that acts at two key life cycle points, controlling alternative larval fates and affecting adult hermaphrodites' reproduction. More broadly, these results suggest that to properly understand and interpret the biology of pheromone signalling in C. elegans and other nematodes, the life-history biology of these organisms in their natural environment needs to be considered.

  6. Identification of a pheromone regulating caste differentiation in termites.

    PubMed

    Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L; Keller, Laurent

    2010-07-20

    The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reigning queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.

  7. Identification of a pheromone regulating caste differentiation in termites

    PubMed Central

    Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L.; Keller, Laurent

    2010-01-01

    The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes. PMID:20615972

  8. Queen pheromones affecting the production of queen-like secretion in workers.

    PubMed

    Tamar, Katzav-Gozansky; Raphaël, Boulay; Victoria, Soroker; Abraham, Hefetz

    2006-07-01

    The honeybee queen pheromones promote both worker sterility and worker-like pheromone composition; in their absence workers become fertile and express the queen pheromones. Which of the queen pheromones regulate worker pheromone expression and how, is still elusive. Here we investigated how two queen pheromones, the mandibular and Dufour's, singly or combined, affect worker ovarian activation and occurrence of queen-like Dufour's esters. Although queen mandibular pheromone (QMP) alone, or combined with Dufour's secretion, inhibited to some extent worker reproduction, neither was as effective as the queen. The effect of the queen pheromones on worker pheromone expression was limited to workers with developed ovaries. Here too, QMP and Dufour's combined had the greatest inhibitory effect. In contrast, treatment with Dufour's alone resulted in augmentation of esters in the workers. This is another demonstration that a pheromone emitted by one individual affects the rates of its production in another individual. Ester production was tightly coupled to ovarian development. However fertile workers from queenright or QMP-treated colonies had significantly higher amounts of esters in their Dufour's gland than untreated queenless colonies. The fact that the queen or QMP exert greater suppression on signal production than on ovary activation, suggests disparate regulatory pathways, and presents a challenging ultimate as well as proximate questions.

  9. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans.

    PubMed

    Neal, Scott J; Park, JiSoo; DiTirro, Danielle; Yoon, Jason; Shibuya, Mayumi; Choi, Woochan; Schroeder, Frank C; Butcher, Rebecca A; Kim, Kyuhyung; Sengupta, Piali

    2016-05-03

    Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation. Copyright © 2016 Neal et al.

  10. High individual variation in pheromone production by tree-killing bark beetles (Coleoptera: Curculionidae: Scolytinae)

    Treesearch

    Deepa S. Pureswaran; Brian T. Sullivan; Matthew P. Ayres

    2008-01-01

    Aggregation via pheromone signaling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxica1. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An...

  11. Queen pheromone regulates egg production in a termite

    PubMed Central

    Yamamoto, Yuuka; Matsuura, Kenji

    2011-01-01

    In social insects, resource allocation is a key factor that influences colony survival and growth. Optimal allocation to queens and brood is essential for maximum colony productivity, requiring colony members to have information on the total reproductive power in colonies. However, the mechanisms regulating egg production relative to the current labour force for brood care remain poorly known. Recently, a volatile chemical was identified as a termite queen pheromone that inhibits the differentiation of new neotenic reproductives (secondary reproductives developed from nymphs or workers) in Reticulitermes speratus. The same volatile chemical is also emitted by eggs. This queen pheromone would therefore be expected to act as an honest message of the reproductive power about queens. In this study, we examined how the queen pheromone influences the reproductive rate of queens in R. speratus. We compared the number of eggs produced by each queen between groups with and without exposure to artificial queen pheromone. Exposure to the pheromone resulted in a significant decrease in egg production in both single-queen and multiple-queen groups. This is the first report supporting the role of queen pheromones as a signal regulating colony-level egg production, using synthetically derived compounds in a termite. PMID:21543395

  12. Queen pheromones in Temnothorax ants: control or honest signal?

    PubMed Central

    2011-01-01

    Background The division of reproductive labor among group members in insect societies is regulated by "queen pheromones". However, it remains controversial whether these are manipulative, i.e., actively suppress worker reproduction, or honestly signal the fertility status of the queen to which workers react in their own interest by refraining from laying eggs. Manipulative queen control is thought to lead to an evolutionary arms race between queens and workers, resulting in complex queen bouquets that diverge strongly among different populations and species. In contrast, honest signals would evolve more slowly and might therefore differ less strongly within and among species. Results We aimed at determining the tempo of the evolution of queen signals in two ways. First, we investigated whether queens of Temnothorax ants are capable of controlling egg laying by workers of their own, closely, and distantly related species. Second, we compared the species- and caste-specific patterns of cuticular hydrocarbons, which are assumed to convey information on reproductive status. In mixed-species colonies, queens were not able to fully suppress egg-laying and male production by workers of unrelated species, while workers did not reproduce under the influence of a queen from their own species. Furthermore, the chemical profiles differed more strongly among queens of different species than among the respective workers. Conclusions Our results suggest that cuticular hydrocarbons associated with fecundity are not fully conserved in evolution and evolve slightly faster than worker-specific components in the blend of cuticular hydrocarbons. While this higher rate of evolution might reflect an arms race between queens and workers, the observation that workers still respond to the presence of a queen from another species support the honest signal hypothesis. Future studies need to examine alternative explanations for a higher rate of evolution of queen-specific substances, such as

  13. Yeast as a model system for mammalian seven-transmembrane segment receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeansonne, N.E.

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomalmore » location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.« less

  14. Queen pheromones: The chemical crown governing insect social life.

    PubMed

    Holman, Luke

    2010-11-01

    Group-living species produce signals that alter the behavior and even the physiology of their social partners. Social insects possess especially sophisticated chemical communication systems that govern every aspect of colony life, including the defining feature of eusociality: reproductive division of labor. Current evidence hints at the central importance of queen pheromones, but progress has been hindered by the fact that such pheromones have only been isolated in honeybees. In a pair of papers on the ant Lasius niger, we identified and investigated a queen pheromone regulating worker sterility. The cuticular hydrocarbon 3-methylhentriacontane (3-MeC(31)) is correlated with queen maturity and fecundity and workers are also more likely to execute surplus queens that have low amounts of this chemical. Experiments with synthetic 3-MeC(31) found that it inhibits ovarian development in queenless workers and lowers worker aggression towards objects coated with it. Production of 3-MeC(31) by queens was depressed by an experimental immune challenge, and the same chemical was abundant on queenlaid eggs, suggesting that the workers' responses to the queen are conditional on her health and fecundity. Together with other studies, these results indicate that queen pheromones are honest signals of quality that simultaneously regulate multiple social behaviors.

  15. Retrograde Signaling as a Mechanism of Yeast Adaptation to Unfavorable Factors.

    PubMed

    Trendeleva, T A; Zvyagilskaya, R A

    2018-02-01

    Mitochondria perform many essential functions in eukaryotic cells. Being the main producers of ATP and the site of many catabolic and anabolic reactions, they participate in intracellular signaling, proliferation, aging, and formation of reactive oxygen species. Mitochondrial dysfunction is the cause of many diseases and even cell death. The functioning of mitochondria in vivo is impossible without interaction with other cellular compartments. Mitochondrial retrograde signaling is a signaling pathway connecting mitochondria and the nucleus. The major signal transducers in the yeast retrograde response are Rtg1p, Rtg2p, and Rtg3p proteins, as well as four additional negative regulatory factors - Mks1p, Lst8p, and two 14-3-3 proteins (Bmh1/2p). In this review, we analyze current information on the retrograde signaling in yeast that is regarded as a stress or homeostatic response mechanism to changes in various metabolic and biosynthetic activities that occur upon mitochondrial dysfunction. We also discuss relations between retrograde signaling and other signaling pathways in the cell.

  16. Control of yeast mating signal transduction by a mammalian. beta. sub 2 -adrenergic receptor and G sub s. alpha. subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, K.; Caron, M.G.; Lefkowitz, R.J.

    1990-10-05

    To facilitate functional and mechanistic studies of receptor-G protein interactions by expression of the human {beta}{sub 2}-adrenergic receptor (h{beta}-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h{beta}-AR gene under control of the galactose-inducible GAL1 promoter. After induction by galactose, functional h{beta}-AR was expressed at a concentration several hundred times as great as that found in any human tissue. As determined from competitive ligand binding experiments, h{beta}-AR expressed in yeast displayed characteristic affinities, specificity, and stereoselectivity. Partial activation of the yeast pheromone response pathway by {beta}-adrenergic receptor agonists was achieved in cells coexpressing h{beta}-AR andmore » a mammalian G protein (G{sub s}) {alpha} subunit - demonstrating that these components can couple to each other and to downstream effectors when expressed in yeast. This in vivo reconstitution system provides a new approach for examining ligand binding and G protein coupling to cell surface receptors.« less

  17. Antennally mediated negative feedback regulation of pheromone production in the pine engraver beetle, Ips pini

    NASA Astrophysics Data System (ADS)

    Ginzel, Matthew D.; Bearfield, Jeremy C.; Keeling, Christopher I.; McCormack, Colin C.; Blomquist, Gary J.; Tittiger, Claus

    2007-01-01

    Bark beetles use monoterpenoid aggregation pheromones to coordinate host colonization and mating. These chemical signals are produced de novo in midgut cells via the mevalonate pathway, and pheromone production may be regulated by a negative feedback system mediated through the antennae. In this study, we explored the effect of antennectomy on pheromone production and transcript levels of key mevalonate pathway genes in juvenile hormone III-treated male pine engraver beetles, Ips pini (Say). Antennectomized males produced significantly greater amounts of pheromone than podectomized males and those with intact antennae. Likewise, mRNA levels of three mevalonate pathway genes important in pheromone biosynthesis were measured by quantitative real-time PCR and found to be induced to a greater extent with antennectomy, suggesting a transcriptional regulation of pheromone production.

  18. Quantitative assessment of pheromone-induced Dauer formation in Caenorhabditis elegans.

    PubMed

    Neal, Scott J; Kim, Kyuhyung; Sengupta, Piali

    2013-01-01

    Environmental conditions experienced during early larval stages dictate the developmental trajectory of the nematode C. elegans. Favorable conditions such as low population density, abundant food, and lower temperatures allow reproductive growth, while stressful conditions promote entry of second-stage (L2) larvae into the alternate dauer developmental stage. Population density is signaled by the concentration and composition of a complex mixture of small molecules that is produced by all stages of animals, and is collectively referred to as dauer pheromone; pheromone concentration is a major trigger for dauer formation. Here, we describe a quantitative dauer formation assay that provides a measure of the potency of single or mixtures of pheromone components in regulating this critical developmental decision.

  19. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus.

    PubMed

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-10-15

    Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny.

  20. Pheromone gland development and pheromone production in lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae).

    PubMed

    Spiegel, Carolina N; Batista-Pereira, Luciane G; Bretas, Jorge A C; Eiras, Alvaro E; Hooper, Antony M; Peixoto, Alexandre A; Soares, Maurilio J

    2011-05-01

    The sand fly Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae: Phlebotominae) is the main vector of American visceral leishmaniasis. Adult males produce a terpenoid sex pheromone that in some cases also acts as male aggregation pheromone. We have analyzed the correlation between male pheromone production levels and pheromone gland cell morphogenesis after adult emergence from pupae. The abdominal tergites of L. longipalpis males were dissected and fixed in glutaraldehyde for transmission electron microscopy, or the pheromone was extracted in analytical grade hexane. Pheromone chemical analysis was carried out at 3- to 6-h intervals during the first 24 h after emergence and continued daily until the seventh day. All extracts were analyzed by gas chromatography. For the morphological analysis, we used insects collected at 0-6, 9-12, 12-14, and 96 h after emergence. Ultrastructural data from 0- to 6-h-old adult males revealed smaller pheromone gland cells with small microvilli at the end apparatus. Lipid droplets and peroxisomes were absent or very rare, but a large number of mitochondria could be seen. Lipid droplets started to appear in the gland cells cytoplasm approximately 9 h after adult emergence, and their number and size increased with age, together with the presence of several peroxisomes, suggesting a role for these organelles in pheromone biosynthesis. At 12-15 h after emergence, the lipid droplets were mainly distributed near the microvilli but were smaller than those in mature older males (4 d old). Pheromone biosynthesis started around 12 h after emergence and increased continuously during the first 3 d, stabilizing thereafter, coinciding with the period when males are more able to attract females.

  1. Unsolved mysteries of Rag GTPase signaling in yeast.

    PubMed

    Hatakeyama, Riko; De Virgilio, Claudio

    2016-10-01

    The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.

  2. Unsolved mysteries of Rag GTPase signaling in yeast

    PubMed Central

    Hatakeyama, Riko; De Virgilio, Claudio

    2016-01-01

    ABSTRACT The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes. PMID:27400376

  3. From data towards knowledge: revealing the architecture of signaling systems by unifying knowledge mining and data mining of systematic perturbation data.

    PubMed

    Lu, Songjian; Jin, Bo; Cowart, L Ashley; Lu, Xinghua

    2013-01-01

    Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal; and 3) revealing the architecture of a signaling system by organizing signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis has led to many new hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architecture of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which can be readily translated into computable knowledge in the form of rules regarding the yeast signaling system, such as "if genes involved in the MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed."

  4. How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2012-03-01

    Vertebrates indicate their genetic sex to conspecifics using secondary sexual signals, and signal expression is often activated by sex hormones. Among vertebrate signaling modalities, the least is known about how hormones influence chemical signaling. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), is a model vertebrate for studying hormonal control of chemical signals because males completely rely on the female sex pheromone to identify potential mates among thousands of individuals. How sex hormones can influence the expression of this crucial sexual signal is largely unknown. We created two groups of experimental males for the first experiment: Sham (blank implants) and E2 (17β-estradiol implants). E2 males were vigorously courted by wild males in outdoor bioassays, and in a Y-maze E2 pheromone trails were chosen by wild males over those of small females and were indistinguishable from large female trails. Biochemically, the E2 pheromone blend was similar to that of large females, and it differed significantly from Shams. For the second experiment, we implanted males with 17β-estradiol in 2007 but removed the implants the following year (2008; Removal). That same year, we implanted a new group of males with estrogen implants (Implant). Removal males were courted by wild males in 2008 (implant intact) but not in 2009 (removed). Total pheromone quantity and quality increased following estrogen treatment, and estrogen removal re-established male-typical pheromone blends. Thus, we have shown that estrogen activates the production of female pheromone in adult red-sided garter snakes. This is the first known study to quantify both behavioral and biochemical responses in chemical signaling following sex steroid treatment of reptiles in the activation/organization context. We propose that the homogametic sex (ZZ, male) may possess the same targets for activation of sexual signal production, and the absence of the activator (17

  5. Inhibition of the Responses to Sex Pheromone of the Fall Armyworm, Spodoptera frugiperda

    PubMed Central

    Malo, Edi A.; Rojas, Julio C.; Gago, Rafael; Guerrero, Ángel

    2013-01-01

    Trifluoromethyl ketones reversibly inhibit pheromone-degrading esterases in insect olfactory tissues, affecting pheromone detection and behavior of moth males. In this work, (Z)-9-tetradecenyl trifluoromethyl ketone (Z9-14:TFMK), a closely-related analogue of the pheromone of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), was prepared and tested in electroantennogram and field tests as possible inhibitors of the pheromone action. The electroantennogram parameters, amplitude, and the repolarization time of the antennal responses of S. frugiperda males were affected by Z9-14:TFMK vapors. Exposure of male antennae to a stream of air passing through 100 ìg of the ketone produced a significant reduction of the amplitude and an increase of 2/3 repolarization time signals to the pheromone. The effect was reversible and dose-dependent. In the field, the analogue significantly decreased the number of males caught when mixed with the pheromone in 10:1 ratio. The results suggest that Z9-14:TFMK is a mating disruptant of S. frugiperda and may be a good candidate to consider in future strategies to control this pest. PMID:24766416

  6. Activation of the Cph1-Dependent MAP Kinase Signaling Pathway Induces White-Opaque Switching in Candida albicans

    PubMed Central

    Ramírez-Zavala, Bernardo; Weyler, Michael; Gildor, Tsvia; Schmauch, Christian; Kornitzer, Daniel; Arkowitz, Robert; Morschhäuser, Joachim

    2013-01-01

    Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11ΔN467) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase. PMID:24130492

  7. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjaerulff, Soren; Jensen, Martin Roland

    2005-10-28

    In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae {alpha}-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The {alpha}-factor signal didmore » not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.« less

  8. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  9. Analysis of yeast prp20 mutations and functional complementation by the human homologue RCC1, a protein involved in the control of chromosome condensation.

    PubMed

    Fleischmann, M; Clark, M W; Forrester, W; Wickens, M; Nishimoto, T; Aebi, M

    1991-07-01

    Mutations in the PRP20 gene of yeast show a pleiotropic phenotype, in which both mRNA metabolism and nuclear structure are affected. srm1 mutants, defective in the same gene, influence the signal transduction pathway for the pheromone response. The yeast PRP20/SRM1 protein is highly homologous to the RCC1 protein of man, hamster and frog. In mammalian cells, this protein is a negative regulator for initiation of chromosome condensation. We report the analysis of two, independently isolated, recessive temperature-sensitive prp20 mutants. They have identical G to A transitions, leading to the alteration of a highly conserved glycine residue to glutamic acid. By immunofluorescence microscopy the PRP20 protein was localized in the nucleus. Expression of the RCC1 protein can complement the temperature-sensitive phenotype of prp20 mutants, demonstrating the functional similarity of the yeast and mammalian proteins.

  10. Sound-Triggered Production of Antiaggregation Pheromone Limits Overcrowding of Dendroctonus valens Attacking Pine Trees.

    PubMed

    Liu, Zhudong; Xin, Yucui; Xu, Bingbing; Raffa, Kenneth F; Sun, Jianghua

    2017-01-01

    For insects that aggregate on host plants, both attraction and antiaggregation among conspecifics can be important mechanisms for overcoming host resistance and avoiding overcrowding, respectively. These mechanisms can involve multiple sensory modalities, such as sound and pheromones. We explored how acoustic and chemical signals are integrated by the bark beetle Dendroctonus valens to limit aggregation in China. In its native North American range, this insect conducts nonlethal attacks on weakened trees at very low densities, but in its introduced zone in China, it uses mixtures of host tree compounds and the pheromone component frontalin to mass attack healthy trees. We found that exo-brevicomin was produced by both female and male D. valens, and that this pheromone functioned as an antiaggregating signal. Moreover, beetles feeding in pairs or in masses were more likely than were beetles feeding alone to produce exo-brevicomin, suggesting a potential role of sound by neighboring beetles in stimulating exo-brevicomin production. Sound playback showed that an agreement sound was produced by both sexes when exposed to the aggregation pheromone frontalin and attracts males, and an aggressive sound was produced only by males behaving territorially. These signals triggered the release of exo-brevicomin by both females and males, indicating an interplay of chemical and sonic communication. This study demonstrates that the bark beetle D. valens uses sounds to regulate the production of an antiaggregation pheromone, which may provide new approaches to pest management of this invasive species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Lifespan extending activity of substances secreted by the nematode Caenorhabditis elegans that include the dauer-inducing pheromone.

    PubMed

    Kawano, Tsuyoshi; Kataoka, Naoya; Abe, Sunao; Ohtani, Mari; Honda, Yoko; Honda, Shuji; Kimura, Yasuo

    2005-12-01

    The nematode Caenorhabditis elegans yields a substance(s) inducing the larval diapause, called dauer-inducing pheromone. We discovered that the crude pheromone extract extends the adult lifespan in the animal. This extension does not occur in the mutant animal, in which expansion of the lifespan caused by other mutations reducing insulin signaling is suppressed. This is the first description concerning the relevancy of the pheromone to the longevity in the animal.

  12. Pheromones enhance somatosensory processing in newt brains through a vasotocin-dependent mechanism.

    PubMed

    Thompson, R R; Dickinson, P S; Rose, J D; Dakin, K A; Civiello, G M; Segerdahl, A; Bartlett, R

    2008-07-22

    We tested whether the sex pheromones that stimulate courtship clasping in male roughskin newts do so, at least in part, by amplifying the somatosensory signals that directly trigger the motor pattern associated with clasping and, if so, whether that amplification is dependent on endogenous vasotocin (VT). Female olfactory stimuli increased the number of action potentials recorded in the medulla of males in response to tactile stimulation of the cloaca, which triggers the clasp motor reflex, as well as to tactile stimulation of the snout and hindlimb. That enhancement was blocked by exposing the medulla to a V1a receptor antagonist before pheromone exposure. However, the antagonist did not affect medullary responses to tactile stimuli in the absence of pheromone exposure, suggesting that pheromones amplify somatosensory signals by inducing endogenous VT release. The ability of VT to couple sensory systems together in response to social stimulation could allow this peptide to induce variable behavioural outcomes, depending on the immediate context of the social interaction and thus on the nature of the associated stimuli that are amplified. If widespread in vertebrates, this mechanism could account for some of the behavioural variability associated with this and related peptides both within and across species.

  13. Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones.

    PubMed

    Zhang, Dong; Terschak, John A; Harley, Maggy A; Lin, Junda; Hardege, Jörg D

    2011-04-20

    Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.

  14. Identification of the pheromone biosynthesis genes from the sex pheromone gland transcriptome of the diamondback moth, Plutella xylostella.

    PubMed

    Chen, Da-Song; Dai, Jian-Qing; Han, Shi-Chou

    2017-11-24

    The diamondback moth was estimated to increase costs to the global agricultural economy as the global area increase of Brassica vegetable crops and oilseed rape. Sex pheromones traps are outstanding tools available in Integrated Pest Management for many years and provides an effective approach for DBM population monitoring and control. The ratio of two major sex pheromone compounds shows geographical variations. However, the limitation of our information in the DBM pheromone biosynthesis dampens our understanding of the ratio diversity of pheromone compounds. Here, we constructed a transcriptomic library from the DBM pheromone gland and identified genes putatively involved in the fatty acid biosynthesis, pheromones functional group transfer, and β-oxidation enzymes. In addition, odorant binding protein, chemosensory protein and pheromone binding protein genes encoded in the pheromone gland transcriptome, suggest that female DBM moths may receive odors or pheromone compounds via their pheromone gland and ovipositor system. Tissue expression profiles further revealed that two ALR, three DES and one FAR5 genes were pheromone gland tissue biased, while some chemoreception genes expressed extensively in PG, pupa, antenna and legs tissues. Finally, the candidate genes from large-scale transcriptome information may be useful for characterizing a presumed biosynthetic pathway of the DBM sex pheromone.

  15. Functional Coupling of a Nematode Chemoreceptor to the Yeast Pheromone Response Pathway

    PubMed Central

    Tehseen, Muhammad; Dumancic, Mira; Briggs, Lyndall; Wang, Jian; Berna, Amalia; Anderson, Alisha; Trowell, Stephen

    2014-01-01

    Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors. PMID:25415379

  16. Glycolysis Controls Plasma Membrane Glucose Sensors To Promote Glucose Signaling in Yeasts

    PubMed Central

    Cairey-Remonnay, Amélie; Deffaud, Julien; Wésolowski-Louvel, Micheline; Lemaire, Marc

    2014-01-01

    Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation. PMID:25512610

  17. Pheromones and exocrine glands in Isoptera.

    PubMed

    Costa-Leonardo, Ana Maria; Haifig, Ives

    2010-01-01

    Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Nonadecadienone, a new termite trail-following pheromone identified in Glossotermes oculatus (Serritermitidae).

    PubMed

    Hanus, Robert; Šobotník, Jan; Krasulová, Jana; Jiroš, Pavel; Žáček, Petr; Kalinová, Blanka; Dolejšová, Klára; Cvačka, Josef; Bourguignon, Thomas; Roisin, Yves; Lacey, Michael J; Sillam-Dussès, David

    2012-01-01

    Within the multitude of chemical signals used by termites, the trail marking by means of pheromones is ubiquitous. Chemistry and biology of the trail-following communication have been described in more than 60 species from all families except for the Neotropical Serritermitidae. The chemical ecology of Serritermitidae is of special interest not only as a missing piece of knowledge on the diversity and evolution of isopteran pheromones but also because it may contribute to the debate on the phylogenetic position of this family, which is still unresolved. Therefore, we aimed in this study to identify the trail-following pheromone of the serritermitid Glossotermes oculatus. Based on a combined approach of analytical chemistry, electrophysiology, and behavioral bioassays, we propose (10Z,13Z)-nonadeca-10,13-dien-2-one to be the trail-following pheromone of G. oculatus, secreted by the sternal gland of pseudergates. Thus, we report on a new termite trail-following pheromone of an unexpected chemical structure, a ketone with 19 carbons, contrasting with unsaturated alcohols containing 12 carbons as trail-following pheromones in other advanced termite families. In addition to this unique trail-following pheromone, we also describe the sternal gland in pseudergates as an organ of unusual shape, size, and structure when compared with other isopteran species. These results underline the peculiarity of the family Serritermitidae and prompt our interest in the chemistry of pheromones in the other genus of the family, Serritermes. © The Author 2011. Published by Oxford University Press. All rights reserved.

  19. A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth.

    PubMed

    Dupuy, Fabienne; Rouyar, Angéla; Deisig, Nina; Bourgeois, Thomas; Limousin, Denis; Wycke, Marie-Anne; Anton, Sylvia; Renou, Michel

    2017-01-01

    Recognition of intra-specific olfactory signals within a complex environment of plant-related volatiles is crucial for reproduction in male moths. Sex pheromone information is detected by specific olfactory receptor neurons (Phe-ORNs), highly abundant on the male antenna. The information is then transmitted to the pheromone processing macroglomerular complex (MGC) within the primary olfactory center, the antennal lobe, where it is processed by local interneurons and projection neurons. Ultimately a behavioral response, orientation toward the pheromone source, is elicited. Volatile plant compounds (VPCs) are detected by other functional types of olfactory receptor neurons (ORNs) projecting in another area of the antennal lobe. However, Phe-ORNs also respond to some VPCs. Female-produced sex pheromones are emitted within a rich environment of VPCs, some of which have been shown to interfere with the detection and processing of sex pheromone information. As interference between the different odor sources might depend on the spatial and temporal features of the two types of stimuli, we investigated here behavioral and neuronal responses to a brief sex pheromone blend pulse in a VPC background as compared to a control background in the male noctuid moth Agrotis ipsilon . We observed male orientation behavior in a wind tunnel and recorded responses of Phe-ORNs and MGC neurons to a brief sex pheromone pulse within a background of individual VPCs. We also recorded the global input signal to the MGC using in vivo calcium imaging with the same stimulation protocol. We found that VPCs eliciting a response in Phe-ORNs and MGC neurons masked responses to the pheromone and decreased the contrast between background odor and the sex pheromone at both levels, whereas α-pinene did not interfere with first order processing. The calcium signal produced in response to a VPC background was tonic, lasting longer than the VPC stimulus duration, and masked entirely the pheromone response

  20. A plant factory for moth pheromone production

    PubMed Central

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P.; Stymne, Sten; Löfstedt, Christer

    2014-01-01

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486

  1. Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?

    PubMed Central

    Arguello, J. Roman; Sellanes, Carolina; Lou, Yann Ru; Raguso, Robert A.

    2013-01-01

    Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical communication systems progress through natural variation within the organism generating the signal as well as the responding individuals. A promising yet poorly understood system with which to probe the importance of this variation exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our data point clear ways forward for behavioral assays aimed at understanding the implications of this variation. PMID:23990899

  2. Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps

    NASA Astrophysics Data System (ADS)

    Aisenberg, Anita; Baruffaldi, Luciana; González, Macarena

    2010-01-01

    The use of chemical signals in a sexual context is widespread in the animal kingdom. Most studies in spiders report the use of female pheromones that attract potential sexual partners. Allocosa brasiliensis and Allocosa alticeps are two burrowing wolf spiders that show sex-role reversal. Females locate male burrows and initiate courtship before males perform any detectable visual or vibratory signal. So, females of these species would be detecting chemical or mechanical cues left by males. Our objective was to explore the potential for male pheromones to play a role in mate detection in A. brasiliensis and A. alticeps. We designed two experiments. In Experiment 1, we tested the occurrence of male contact pheromones by evaluating female courtship when exposed to empty burrows constructed by males or females (control). In Experiment 2, we tested the existence of male volatile pheromones by evaluating female behaviour when exposed to artificial burrows connected to tubes containing males, females or empty tubes (control). Our results suggest the occurrence of male volatile pheromones that trigger female courtship in both Allocosa species. The sex-role reversal postulated for these wolf spiders could be driving the consequent reversal in typical pheromone-emitter and detector roles expected for spiders.

  3. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  4. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  5. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus.

    PubMed

    Yarimizu, Tohru; Nakamura, Mikiko; Hoshida, Hisashi; Akada, Rinji

    2015-02-14

    Targeting of cellular proteins to the extracellular environment is directed by a secretory signal sequence located at the N-terminus of a secretory protein. These signal sequences usually contain an N-terminal basic amino acid followed by a stretch containing hydrophobic residues, although no consensus signal sequence has been identified. In this study, simple modeling of signal sequences was attempted using Gaussia princeps secretory luciferase (GLuc) in the yeast Kluyveromyces marxianus, which allowed comprehensive recombinant gene construction to substitute synthetic signal sequences. Mutational analysis of the GLuc signal sequence revealed that the GLuc hydrophobic peptide length was lower limit for effective secretion and that the N-terminal basic residue was indispensable. Deletion of the 16th Glu caused enhanced levels of secreted protein, suggesting that this hydrophilic residue defined the boundary of a hydrophobic peptide stretch. Consequently, we redesigned this domain as a repeat of a single hydrophobic amino acid between the N-terminal Lys and C-terminal Glu. Stretches consisting of Phe, Leu, Ile, or Met were effective for secretion but the number of residues affected secretory activity. A stretch containing sixteen consecutive methionine residues (M16) showed the highest activity; the M16 sequence was therefore utilized for the secretory production of human leukemia inhibitory factor protein in yeast, resulting in enhanced secreted protein yield. We present a new concept for the provision of secretory signal sequence ability in the yeast K. marxianus, determined by the number of residues of a single hydrophobic residue located between N-terminal basic and C-terminal acidic amino acid boundaries.

  6. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast

    PubMed Central

    Henry, Susan A.; Gaspar, Maria L.; Jesch, Stephen A.

    2014-01-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed. PMID:24418527

  7. Characteristic odor of Osmoderma eremita identified as a male-released pheromone.

    PubMed

    Larsson, Mattias C; Hedin, Jonas; Svensson, Glenn P; Tolasch, Till; Francke, Wittko

    2003-03-01

    Osmoderma eremita (Scopoli) is an endangered scarab beetle living in hollow trees. It has mainly been known for its characteristic odor, typically described as a fruity, peachlike or plumlike aroma. The odor emanating from a single beetle can sometimes be perceived from a distance of several meters. In this paper, we show that the characteristic odor from O. eremita is caused by the compound (R)-(+)-gamma-decalactone, released in large quantities mainly or exclusively by male beetles. Antennae from male and female beetles responded in a similar way to (R)-(+)-gamma-decalactone in electroantennographic recordings. Field trapping experiments showed that (R)-(+)-gamma-decalactone is a pheromone attracting female beetles. Lactones similar to (R)-(+)-gamma-decalactone are frequently used as female-released sex pheromones by phytophagous scarabs. This is, however, the first evidence of a lactone used as a male-produced pheromone in scarab beetles. We propose that the strong signal from males is a sexually selected trait used to compete for females and matings. The signal could work within trees but also act as a guide to tree hollows, which are an essential resource for O. eremita. Males may, thus, attract females dispersing from their natal tree by advertising a suitable habitat. This signal could also be exploited by other males searching for tree hollows or for females, which would explain the catch of several males in our traps.

  8. High individual variation in pheromone production by tree-killing bark beetles (Coleoptera: Curculionidae: Scolytinae)

    NASA Astrophysics Data System (ADS)

    Pureswaran, Deepa S.; Sullivan, Brian T.; Ayres, Matthew P.

    2008-01-01

    Aggregation via pheromone signalling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxical. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An alternative hypothesis is that aggregation behaviour dilutes the contribution of individuals to the trait under selection and reduces the efficacy of natural selection on pheromone production by individuals. We compared pheromone measurements from traditional hindgut extractions of female southern pine beetles with those obtained by aerating individuals till they died. Aerations showed greater total pheromone production than hindgut extractions, but coefficients of variation (CV) remained high (60-182%) regardless of collection technique. This leaves the puzzle of high variation unresolved. A novel but simple explanation emerges from considering bark beetle aggregation behaviour. The phenotype visible to natural selection is the collective pheromone plume from hundreds of colonisers. The influence of a single beetle on this plume is enhanced by high variation among individuals but constrained by large group sizes. We estimated the average contribution of an individual to the pheromone plume across a range of aggregation sizes and showed that large aggregation sizes typical in mass attacks limit the potential of natural selection because each individual has so little effect on the overall plume. Genetic variation in pheromone production could accumulate via mutation and recombination, despite strong effects of the pheromone plume on the fitness of individuals within the aggregation. Thus, aggregation behaviour, by limiting the efficacy of natural selection, can allow the persistence of extreme phenotypes in nature.

  9. Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice

    PubMed Central

    Morrison, Colin R.; Salazar, Camilo; Pardo-Diaz, Carolina; Merrill, Richard M.; McMillan, W. Owen; Schulz, Stefan

    2017-01-01

    Sex-specific pheromones are known to play an important role in butterfly courtship, and may influence both individual reproductive success and reproductive isolation between species. Extensive ecological, behavioural and genetic studies of Heliconius butterflies have made a substantial contribution to our understanding of speciation. Male pheromones, although long suspected to play an important role, have received relatively little attention in this genus. Here, we combine morphological, chemical and behavioural analyses of male pheromones in the Neotropical butterfly Heliconius melpomene. First, we identify putative androconia that are specialized brush-like scales that lie within the shiny grey region of the male hindwing. We then describe putative male sex pheromone compounds, which are largely confined to the androconial region of the hindwing of mature males, but are absent in immature males and females. Finally, behavioural choice experiments reveal that females of H. melpomene, H. erato and H. timareta strongly discriminate against conspecific males which have their androconial region experimentally blocked. As well as demonstrating the importance of chemical signalling for female mate choice in Heliconius butterflies, the results describe structures involved in release of the pheromone and a list of potential male sex pheromone compounds. PMID:29134139

  10. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  11. Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice.

    PubMed

    Matsuo, Tomohiko; Hattori, Tatsuya; Asaba, Akari; Inoue, Naokazu; Kanomata, Nobuhiro; Kikusui, Takefumi; Kobayakawa, Reiko; Kobayakawa, Ko

    2015-01-20

    Most mammals have two major olfactory subsystems: the main olfactory system (MOS) and vomeronasal system (VNS). It is now widely accepted that the range of pheromones that control social behaviors are processed by both the VNS and the MOS. However, the functional contributions of each subsystem in social behavior remain unclear. To genetically dissociate the MOS and VNS functions, we established two conditional knockout mouse lines that led to either loss-of-function in the entire MOS or in the dorsal MOS. Mice with whole-MOS loss-of-function displayed severe defects in active sniffing and poor survival through the neonatal period. In contrast, when loss-of-function was confined to the dorsal MOB, sniffing behavior, pheromone recognition, and VNS activity were maintained. However, defects in a wide spectrum of social behaviors were observed: attraction to female urine and the accompanying ultrasonic vocalizations, chemoinvestigatory preference, aggression, maternal behaviors, and risk-assessment behaviors in response to an alarm pheromone. Functional dissociation of pheromone detection and pheromonal induction of behaviors showed the anterior olfactory nucleus (AON)-regulated social behaviors downstream from the MOS. Lesion analysis and neural activation mapping showed pheromonal activation in multiple amygdaloid and hypothalamic nuclei, important regions for the expression of social behavior, was dependent on MOS and AON functions. Identification of the MOS-AON-mediated pheromone pathway may provide insights into pheromone signaling in animals that do not possess a functional VNS, including humans.

  12. Gqalpha-linked PLCbeta and PLCgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade

    USDA-ARS?s Scientific Manuscript database

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca2+ channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that P...

  13. Role of nitric oxide in pheromone-mediated intraspecific communication in mice.

    PubMed

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2009-12-07

    Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.

  14. Mixtures of Two Bile Alcohol Sulfates Function as a Proximity Pheromone in Sea Lamprey.

    PubMed

    Brant, Cory O; Huertas, Mar; Li, Ke; Li, Weiming

    2016-01-01

    Unique mixtures of pheromone components are commonly identified in insects, and have been shown to increase attractiveness towards conspecifics when reconstructed at the natural ratio released by the signaler. In previous field studies of pheromones that attract female sea lamprey (Petromyzon marinus, L.), putative components of the male-released mating pheromone included the newly described bile alcohol 3,12-diketo-4,6-petromyzonene-24-sulfate (DkPES) and the well characterized 3-keto petromyzonol sulfate (3kPZS). Here, we show chemical evidence that unequivocally confirms the elucidated structure of DkPES, electrophysiological evidence that each component is independently detected by the olfactory epithelium, and behavioral evidence that mature female sea lamprey prefer artificial nests activated with a mixture that reconstructs the male-released component ratio of 30:1 (3kPZS:DkPES, molar:molar). In addition, we characterize search behavior (sinuosity of swim paths) of females approaching ratio treatment sources. These results suggest unique pheromone ratios may underlie reproductive isolating mechanisms in vertebrates, as well as provide utility in pheromone-integrated control of invasive sea lamprey in the Great Lakes.

  15. Sexual response of male Drosophila to honey bee queen mandibular pheromone: implications for genetic studies of social insects.

    PubMed

    Croft, Justin R; Liu, Tom; Camiletti, Alison L; Simon, Anne F; Thompson, Graham J

    2017-02-01

    Honey bees secrete a queen mandibular pheromone that renders workers reproductively altruistic and drones sexually attentive. This sex-specific function of QMP may have evolved from a sexually dimorphic signaling mechanism derived from pre-social ancestors. If so, there is potential for pre-social insects to respond to QMP, and in a manner that is comparable to its normal effect on workers and drones. Remarkably, QMP applied to female Drosophila does induce worker-like qualities [Camiletti et al. (Entomol Exp Appl 147:262, 2013)], and we here extend this comparison to examine the effects of bee pheromone on male fruit flies. We find that male Drosophila melanogaster consistently orient towards a source of queen pheromone in a T-maze, suggesting a recruitment response comparable to the pheromone's normal effect on drones. Moreover, exposure to QMP renders male flies more sexually attentive; they display intensified pre-copulatory behavior towards conspecific females. We can inhibit this sexual effect through a loss-of-olfactory-function mutation, which suggests that the pheromone-responsive behavioral mechanism is olfactory-driven. These pheromone-induced changes to male Drosophila behavior suggest that aspects of sexual signaling are conserved between these two distantly related taxa. Our results highlight a role for Drosophila as a genetically tractable pre-social model for studies of social insect biology.

  16. Do pheromones reveal male immunocompetence?

    PubMed Central

    Rantala, Markus J; Jokinen, Ilmari; Kortet, Raine; Vainikka, Anssi; Suhonen, Jukka

    2002-01-01

    Pheromones function not only as mate attractors, but they may also relay important information to prospective mates. It has been shown that vertebrates can distinguish, via olfactory mechanisms, major histocompatibility complex types in their prospective mates. However, whether pheromones can transmit information about immunocompetence is unknown. Here, we show that female mealworm beetles (Tenebrio molitor) prefer pheromones from males with better immunocompetence, indicated by a faster encapsulation rate against a novel antigen, and higher levels of phenoloxidase in haemolymph. Thus, the present study indicates that pheromones could transmit information about males' parasite resistance ability and may work as a reliable sexual ornament for female choice. PMID:12204128

  17. Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo.

    PubMed

    Hirt, Helmut; Greenwood-Quaintance, Kerryl E; Karau, Melissa J; Till, Lisa M; Kashyap, Purna C; Patel, Robin; Dunny, Gary M

    2018-02-13

    Cell-cell communication mediated by peptide pheromones (cCF10 [CF]) is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis To examine the role of pheromone signaling in vivo , we established either a CF-producing (CF+) recipient or a recipient producing a biologically inactive variant of CF (CF- recipient) in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF- recipient. While rescue of the CF- mating defect by coculture with CF+ recipients is easily accomplished in vitro , no extracellular complementation occurred in vivo This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants) steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo In the absence of CF+ recipients, a low level of transfer to CF- recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI) tract, similar to that previously observed in serum. IMPORTANCE Horizontal gene transfer is a major factor in the biology of Enterococcus faecalis , an important nosocomial pathogen. Previous studies showing efficient conjugative plasmid transfer in the gastrointestinal (GI) tracts of experimental animals did

  18. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Abrieux, Antoine; Mhamdi, Amel; Rabhi, Kaouther K.; Egon, Julie; Debernard, Stéphane; Duportets, Line; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2016-01-01

    Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides

  19. Pheromone communication and the mushroom body of the ant, Camponotus obscuripes (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Yamagata, Nobuhiro; Fujiwara-Tsujii, Nao; Yamaoka, Ryohei; Mizunami, Makoto

    2005-11-01

    Communication by means of pheromones plays predominant roles in colony integration by social insects. However, almost nothing is known about pheromone processing in the brains of social insects. In this study, we successfully applied intracellular recording and staining techniques to anatomically and physiologically characterize brain neurons of the ant Camponotus obscuripes. We identified 42 protocerebral neurons that responded to undecane and/or formic acid, components of alarm pheromones that evoke attraction or evasive behavior, respectively. Notably, 30 (71%) of these neurons were efferent (output) or feedback neurons of the mushroom body, and many of these exhibited different responses to formic acid and undecane. Eight of the remaining 12 neurons had arborizations in the lateral and/or medial protocerebrum, which receive terminations of efferent neurons of the mushroom body and from which premotor descending neurons originate. The remaining four neurons were bilateral neurons that connect lateral accessory lobes or dorsal protocerebrums of both hemispheres. We suggest that the mushroom body of the ant participates in the processing of alarm pheromones. Seventeen (40%) of 42 neurons exhibited responses to nonpheromonal odors, indicating that the pheromonal and nonpheromonal signals are not fully segregated when they are processed in the protocerebrum. This may be related to modulatory functions of alarm pheromones, i.e., they change alertness of the ant and change responses to a variety of sensory stimuli.

  20. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system.

    PubMed

    Ferrero, David M; Moeller, Lisa M; Osakada, Takuya; Horio, Nao; Li, Qian; Roy, Dheeraj S; Cichy, Annika; Spehr, Marc; Touhara, Kazushige; Liberles, Stephen D

    2013-10-17

    Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour.

  1. Single-Cell Analysis Reveals that Insulation Maintains Signaling Specificity between Two Yeast MAPK Pathways with Common Components

    PubMed Central

    Patterson, Jesse C.; Klimenko, Evguenia S.; Thorner, Jeremy

    2014-01-01

    Eukaryotic cells use multiple mitogen-activated protein kinase (MAPK) cascades to evoke appropriate responses to external stimuli. In Saccharomyces cerevisiae, the MAPK Fus3 is activated by pheromone-binding G protein-coupled receptors to promote mating, whereas the MAPK Hog1 is activated by hyperosmotic stress to elicit the high osmolarity glycerol (HOG) response. Although these MAPK pathways share several upstream components, exposure to either pheromone or osmolyte alone triggers only the appropriate response. We used fluorescent localization- and transcription-specific reporters to assess activation of these pathways in individual cells on the minute and hour timescale, respectively. Dual activation of these two MAPK pathways occurred over a broad range of stimulant concentrations and temporal regimes in wild-type cells subjected to co-stimulation. Thus, signaling specificity is achieved through an “insulation” mechanism, not a “cross-inhibition” mechanism. Furthermore, we showed that there was a critical period during which Hog1 activity had to occur for proper insulation of the HOG pathway. PMID:20959523

  2. The scent of inbreeding: a male sex pheromone betrays inbred males

    PubMed Central

    van Bergen, Erik; Brakefield, Paul M.; Heuskin, Stéphanie; Zwaan, Bas J.; Nieberding, Caroline M.

    2013-01-01

    Inbreeding depression results from mating among genetically related individuals and impairs reproductive success. The decrease in male mating success is usually attributed to an impact on multiple fitness-related traits that reduce the general condition of inbred males. Here, we find that the production of the male sex pheromone is reduced significantly by inbreeding in the butterfly Bicyclus anynana. Other traits indicative of the general condition, including flight performance, are also negatively affected in male butterflies by inbreeding. Yet, we unambiguously show that only the production of male pheromones affects mating success. Thus, this pheromone signal informs females about the inbreeding status of their mating partners. We also identify the specific chemical component (hexadecanal) probably responsible for the decrease in male mating success. Our results advocate giving increased attention to olfactory communication as a major causal factor of mate-choice decisions and sexual selection. PMID:23466986

  3. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta

    PubMed Central

    Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim

    2016-01-01

    Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712

  4. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    PubMed

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  5. Evolution of synthetic signaling scaffolds by recombination of modular protein domains.

    PubMed

    Lai, Andicus; Sato, Paloma M; Peisajovich, Sergio G

    2015-06-19

    Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.

  6. A new class of mealybug pheromones: a hemiterpene ester in the sex pheromone of Crisicoccus matsumotoi

    NASA Astrophysics Data System (ADS)

    Tabata, Jun; Narai, Yutaka; Sawamura, Nobuo; Hiradate, Syuntaro; Sugie, Hajime

    2012-07-01

    Mealybugs, which include several agricultural pests, are small sap feeders covered with a powdery wax. They exhibit clear sexual dimorphism; males are winged but fragile and short lived, whereas females are windless and less mobile. Thus, sex pheromones emitted by females facilitate copulation and reproduction by serving as a key navigation tool for males. Although the structures of the hitherto known mealybug pheromones vary among species, they have a common structural motif; they are carboxylic esters of monoterpene alcohols with irregular non-head-to-tail linkages. However, in the present study, we isolated from the Matsumoto mealybug, Crisicoccus matsumotoi (Siraiwa), a pheromone with a completely different structure. Using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we identified the pheromone as 3-methyl-3-butenyl 5-methylhexanoate. Its attractiveness to males was confirmed in a series of field trapping experiments involving comparison between the isolated natural product and a synthetic sample. This is the first report of a hemiterpene mealybug pheromone. In addition, the acid moiety (5-methylhexanoate) appears to be rare in insect pheromones.

  7. The Effect of Trail Pheromone and Path Confinement on Learning of Complex Routes in the Ant Lasius niger

    PubMed Central

    Czaczkes, Tomer J.; Weichselgartner, Tobias; Bernadou, Abel; Heinze, Jürgen

    2016-01-01

    Route learning is key to the survival of many central place foragers, such as bees and many ants. For ants which lay pheromone trails, the presence of a trail may act as an important source of information about whether an error has been made. The presence of trail pheromone has been demonstrated to support route learning, and the effect of pheromones on route choice have been reported to persist even after the pheromones have been removed. This could be explained in two ways: the pheromone may constrain the ants onto the correct route, thus preventing errors and aiding learning. Alternatively, the pheromones may act as a ‘reassurance’, signalling that the learner is on the right path and that learning the path is worthwhile. Here, we disentangle pheromone presence from route confinement in order to test these hypotheses, using the ant Lasius niger as a model. Unexpectedly, we did not find any evidence that pheromones support route learning. Indeed, there was no evidence that ants confined to the correct route learned at all. Thus, while we cannot support the ‘reassurance’ hypothesis, we can rule out the ‘confinement’ hypothesis. Other findings, such as a reduction in pheromone deposition in the presence of trail pheromones, are remarkably consistent with previous experiments. As previously reported, ants which make errors on their outward journey upregulate pheromone deposition on their return. Surprisingly, ants which would go on to make an error down-regulate pheromone deposition on their outward journey, hinting at a capacity for ants to gauge the quality of their own memories. PMID:26959996

  8. Pheromone disruption of Argentine ant trail integrity.

    PubMed

    Suckling, D M; Peck, R W; Manning, L M; Stringer, L D; Cappadonna, J; El-Sayed, A M

    2008-12-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m(2)) to 1- and 4-m(2) plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected.

  9. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    PubMed Central

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  10. Pheromone disruption of Argentine ant trail integrity

    USGS Publications Warehouse

    Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.

    2008-01-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.

  11. Negative feedback in ants: crowding results in less trail pheromone deposition

    PubMed Central

    Czaczkes, Tomer J.; Grüter, Christoph; Ratnieks, Francis L. W.

    2013-01-01

    Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal. PMID:23365196

  12. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor.

    PubMed

    Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2018-04-01

    Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A study of the female produced sex pheromone of Tenebrio molitor (Coleoptera: Tenebrionidae)

    NASA Astrophysics Data System (ADS)

    Mangat, Jaswinder

    Mating behaviour in the yellow mealworm beetle, Tenebrio molitor , is mediated by several pheromones, including the female-produced 4-methylnonanol (4-MNol). Mating causes a decline in the titre of 4-MNol. The overall goal of this study was to determine the biochemical mechanism(s) responsible for this decline: i.e., whether the decline was due to an inhibition of pheromone biosynthesis and/or a stimulation of pheromone degradation; whether the decline was caused by the physical effect of mating or was due to the transfer of a factor from the male; and to conduct a preliminary investigation of the regulatory and signal transduction mechanisms involved in the regulation of 4-MNol production. In vitro radioassays for 4-MNol biosynthesis and degradation were developed and used to compare the levels of 4-MNol biosynthesis and degradation in virgin and mated females. Mating caused an inhibition of 4-MNol biosynthesis within 2 hours, but did not affect the rate of pheromone degradation. Decapitation of virgin females caused an inhibition of pheromone biosynthesis and did not prevent the inhibitory effect of mating. The inhibitory effect of mating was mimicked in females that were artificially inseminated with male reproductive tract homogenates (MRTH), but not in females similarly "inseminated" with water, saline, or air. Furthermore, 4-MNol biosynthesis could be inhibited in vitro by the addition of MRTH. These findings indicate that the male transferred one or more pheromonostatic factor(s) to the female during copulation that acted directly on the pheromone-producing tissue (the ovaries). In order to investigate the biochemical basis for the inhibition of pheromone biosynthesis after mating, the role of calcium was determined by modulating the level of calcium (using a calcium chelator, an ionophore, and calcium). However, due to the precipitation of calcium with the phosphate present in the buffer solution, we were unable to determine the role of calcium in the

  14. Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System

    PubMed Central

    Kellner, Ronny; Vollmeister, Evelyn; Feldbrügge, Michael; Begerow, Dominik

    2011-01-01

    The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities. PMID:22242007

  15. Characterization of comQ and comX, Two Genes Required for Production of ComX Pheromone in Bacillus subtilis

    PubMed Central

    Schneider, Katherine Bacon; Palmer, Tanya M.; Grossman, Alan D.

    2002-01-01

    Many microbes use secreted peptide-signaling molecules to stimulate changes in gene expression in response to high population density, a process called quorum sensing. ComX pheromone is a modified 10-amino-acid peptide used by Bacillus subtilis to modulate changes in gene expression in response to crowding. comQ and comX are required for production of ComX pheromone. We found that accumulation of ComX pheromone in culture supernatant paralleled cell growth, indicating that there was no autoinduction of production of ComX pheromone. We overexpressed comQ and comX separately and together and found that overexpression of comX alone was sufficient to cause an increase in production of ComX pheromone and early induction of a quorum-responsive promoter. These results indicate that the extracellular concentration of ComX pheromone plays a major role in determining the timing of the quorum response and that expression of comX is limiting for production of ComX pheromone. We made alanine substitutions in the residues that comprise the peptide backbone of ComX pheromone. Analysis of these mutants highlighted the importance of the modification for ComX pheromone function and identified three residues (T50, G54, and D55) that are unlikely to interact with proteins involved in production of or response to ComX pheromone. We have also identified and mutated a putative isoprenoid binding domain of ComQ. Mutations in this domain eliminated production of ComX pheromone, consistent with the hypothesis that ComQ is involved in modifying ComX pheromone and that the modification is likely to be an isoprenoid. PMID:11751817

  16. Inactivation of bacterial quorum sensing signals N-acyl homoserine lactones is widespread in yeasts.

    PubMed

    Leguina, Ana Carolina Del V; Nieto, Carolina; Pajot, Hipólito M; Bertini, Elisa V; Mac Cormack, Walter; Castellanos de Figueroa, Lucía I; Nieto-Peñalver, Carlos G

    2018-01-01

    The inactivation of quorum sensing signals, a phenomenon known as quorum quenching, has been described in diverse microorganisms, though it remains almost unexplored in yeasts. Beyond the well-known properties of these microorganisms for the industry or as eukaryotic models, the role of yeasts in soil or in the inner tissues of a plant is largely unknown. In this report, the wider survey of quorum quenching activities in yeasts isolated from Antarctic soil and the inner tissues of sugarcane, a tropical crop, is presented. Results show that, independently of their niche, quorum quenching activities are broadly present in unicellular fungi. Although yeasts showing a broad range of quorum quenching activity are present in the two niches, at the same time specific AHL inactivation profiles can also be found. Furthermore, yeasts from both sampling sites show quorum quenching activities compatible with lactonase-like and acylase-like inactivations of AHLs. Interestingly, the characterization of Rhodotorula mucilaginosa 7Apo1 showed that the presence of a particular AHL does not interfere with the quenching of a second molecule. Evidence suggests that yeasts could play a role in the modulation of the quorum sensing activity of bacteria. The relationship among phylogeny, sampling sites and yeast quorum quenching activities of the isolates is analyzed. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components.

    PubMed

    Mitchell, Robert F; Reagel, Peter F; Wong, Joseph C H; Meier, Linnea R; Silva, Weliton Dias; Mongold-Diers, Judith; Millar, Jocelyn G; Hanks, Lawrence M

    2015-05-01

    Recent research has shown that volatile sex and aggregation-sex pheromones of many species of cerambycid beetles are highly conserved, with sympatric and synchronic species that are closely related (i.e., congeners), and even more distantly related (different subfamilies), using the same or similar pheromones. Here, we investigated mechanisms by which cross attraction is averted among seven cerambycid species that are native to eastern North America and active as adults in spring: Anelaphus pumilus (Newman), Cyrtophorus verrucosus (Olivier), Euderces pini (Olivier), Neoclytus caprea (Say), and the congeners Phymatodes aereus (Newman), P. amoenus (Say), and P. varius (F.). Males of these species produce (R)-3-hydroxyhexan-2-one as their dominant or sole pheromone component. Our field bioassays support the hypothesis that cross attraction between species is averted or at least minimized by differences among species in seasonal phenology and circadian flight periods of adults, and/or by minor pheromone components that act as synergists for conspecifics and antagonists for heterospecifics.

  18. Identification and Differential Expression of a Candidate Sex Pheromone Receptor in Natural Populations of Spodoptera litura

    PubMed Central

    Lin, Xinda; Zhang, Qinhui; Wu, Zhongnan; Du, Yongjun

    2015-01-01

    Olfaction is primarily mediated by highly specific olfactory receptors (ORs), a subfamily of which are the pheromone receptors that play a key role in sexual communication and can contribute to reproductive isolation. Here we cloned and identified an olfactory receptor, SlituOR3 (Genbank NO. JN835270), from Spodoptera litura, to be the candidate pheromone receptor. It exhibited male-biased expression in the antennae, where they were localized at the base of sensilla trichoidea. Conserved orthologues of these receptors were found amongst known pheromone receptors within the Lepidoptera, and SlituOR3 were placed amongst a clade of candidate pheromone receptors in a phylogeny tree of insect ORs. SlituOR3 is required for the EAG responses to both Z9E11-14:OAc and Z9E12-14:OAc SlituOR3 showed differential expression in S. litura populations attracted to traps baited with a series of sex pheromone blends composed of different ratios of (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). The changes in the expression level of SlitOR3 and antennal responses after SlitOR3 silencing suggested that SlitOR3 is required for the sex pheromone signaling. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could affect both of pest control and monitoring efficiency by pheromone application after long time mass trapping with one particular ratio of blend in the field. PMID:26126192

  19. Sexy Mouth Odour? Male Oral Gland Pheromone in the Grain Beetle Parasitoid Lariophagus distinguendus (Förster) (Hymenoptera: Pteromalidae).

    PubMed

    König, Kerstin; Seeger, Lucy; Steidle, Johannes L M

    2015-01-01

    Throughout the animal kingdom, sexual pheromones are used for the attraction of mates and as courtship signals but also enable sexual isolation between species. In the parasitic wasp Lariophagus distinguendus, male courtship behaviour consisting of wing fanning, antennal stroking of the female antenna, and head nodding stimulates female receptivity leading to copulation. Recently L. distinguendus was reported to consist of two different lineages, which are sexually isolated because males fail to elicit receptivity in foreign females. It is unclear, however, which part of the courtship behaviour triggers female receptivity and therefore could be a mechanism causing sexual isolation. Here we show that in L. distinguendus a nonvolatile male oral pheromone is essential to release the female receptivity signal. In contrast, male wing fanning and antennal contact play a minor role. Additionally, the composition of the oral pheromone depends on the developmental host and females learn the composition upon emergence from the host substrate. These results will enable more detailed work on oral sexual pheromones to answer the question of how they are involved in the speciation process of L. distinguendus and other parasitoid species, for a better understanding of the huge biodiversity in this group.

  20. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae.

    PubMed

    Zyrina, Anna N; Smirnova, Ekaterina A; Markova, Olga V; Severin, Fedor F; Knorre, Dmitry A

    2017-02-01

    There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria. Copyright © 2017 American Society for Microbiology.

  1. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Zyrina, Anna N.; Smirnova, Ekaterina A.; Markova, Olga V.; Severin, Fedor F.

    2016-01-01

    ABSTRACT There are two superoxide dismutases in the yeast Saccharomyces cerevisiae—cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2. Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria. PMID:27864171

  2. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway

    PubMed Central

    Kaserer, Alla O.; Andi, Babak; Cook, Paul F.; West, Ann H.

    2010-01-01

    For both prokaryotic and eukaryotic His-Asp phosphorelay signaling pathways, the rates of protein phosphorylation and dephosphorylation determine the stimulus-to-response time frame. Thus, kinetic studies of phosphoryl group transfer between signaling partners are important for gaining a full understanding of how the system is regulated. In many cases, the phosphotransfer reactions are too fast for rates to be determined by manual experimentation. Rapid quench flow techniques thus provide a powerful method for studying rapid reactions that occur in the millisecond time frame. In this chapter, we describe experimental design and procedures for kinetic characterization of the yeast SLN1-YPD1-SSK1 osmoregulatory phosphorelay system using a rapid quench flow kinetic instrument. PMID:20946842

  3. A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-01-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence

  4. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.

    PubMed

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-06-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence.

  5. Nectar Attracts Foraging Honey Bees with Components of Their Queen Pheromones.

    PubMed

    Liu, Fanglin; Gao, Jie; Di, Nayan; Adler, Lynn S

    2015-11-01

    Floral nectar often contains chemicals that are deterrent to pollinators, presenting potential challenges to outcrossing plant species. Plants may be able to co-opt pollinator chemical signals to mitigate the negative effects of nectar deterrent compounds on pollination services. We found that buckwheat (Fagopyrum esculentum) and Mexican sunflower (Tithonia diversifolia) produce nectar with abundant phenolics, including three components of the Apis honeybee queen mandibular pheromone (QMP). In addition, these nectars contain a non-pheromonal phenolic, chlorogenic acid (CA), which was toxic to honeybees, and T. diversifolia nectar also contained isochlorogenic acid (IA). Fresh nectar or solutions containing nectar phenolics reduced Apis individual feeding compared to sucrose solutions. However, freely foraging bees preferred solutions with QMP components to control solutions, and QMP components over-rode or reversed avoidance of CA and IA. Furthermore, prior exposure to the presence or just the odor of QMP components removed the deterrent effects of CA and IA. By mimicking the honey bee pheromone blend, nectar may maintain pollinator attraction in spite of deterrent nectar compounds.

  6. Conserved queen pheromones in bumblebees: a reply to Amsalem et al.

    PubMed

    Holman, Luke; van Zweden, Jelle S; Oliveira, Ricardo C; van Oystaeyen, Annette; Wenseleers, Tom

    2017-01-01

    In a recent study, Amsalem, Orlova & Grozinger (2015) performed experiments with Bombus impatiens bumblebees to test the hypothesis that saturated cuticular hydrocarbons are evolutionarily conserved signals used to regulate reproductive division of labor in many Hymenopteran social insects. They concluded that the cuticular hydrocarbon pentacosane (C 25 ), previously identified as a queen pheromone in a congeneric bumblebee, does not affect worker reproduction in B. impatiens . Here we discuss some shortcomings of Amsalem et al.'s study that make its conclusions unreliable. In particular, several confounding effects may have affected the results of both experimental manipulations in the study. Additionally, the study's low sample sizes (mean n per treatment = 13.6, range: 4-23) give it low power, not 96-99% power as claimed, such that its conclusions may be false negatives. Inappropriate statistical tests were also used, and our reanalysis found that C 25 substantially reduced and delayed worker egg laying in B. impatiens . We review the evidence that cuticular hydrocarbons act as queen pheromones, and offer some recommendations for future queen pheromone experiments.

  7. Structural characterization of sulfated steroids that activate mouse pheromone-sensing neurons.

    PubMed

    Hsu, Fong-Fu; Nodari, Francesco; Kao, Lung-Fa; Fu, Xiaoyan; Holekamp, Terrence F; Turk, John; Holy, Timothy E

    2008-12-30

    In many species, social behavior is organized via chemical signaling. While many of these signals have been identified for insects, the chemical identity of these social cues (often called pheromones) for mammals is largely unknown. We recently isolated these chemical cues that caused firing in the pheromone-sensing neurons of the vomeronasal organ from female mouse urine [Nodari, F., et al. (2008) J. Neurosci. 28, 6407-6418]. Here, we report their structural characterization. Mass spectrometric approaches, including tandem quadrupole, multiple-stage linear ion trap, high-resolution mass spectrometry, and H-D exchange followed by ESI mass spectrometry, along with (1)H and (13)C nuclear magnetic resonance spectroscopy, including two-dimensional correlation spectroscopy, total correlation spectroscopy, heteronuclear multiple-quantum coherence, and NOE, were used to identify two sulfated steroids, 4-pregnene-11beta,20,21-triol-3-one 21-sulfate (I) (the configuration at C20 was not deduced) and 4-pregnene-11beta,21-diol-3,20-dione 21-sulfate (II), whose presence is sex-specific. The identification of this novel class of mammalian social signaling compounds suggests that steroid hormones, upon conjugation, assume a new biological role, conveying information about the organism's identity and physiological state.

  8. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    PubMed Central

    Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.

    2014-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935

  9. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella.

    PubMed

    Duménil, Claire; Judd, Gary J R; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T

    2014-09-26

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.

  10. Biosynthesis of the Caenorhabditis elegans dauer pheromone.

    PubMed

    Butcher, Rebecca A; Ragains, Justin R; Li, Weiqing; Ruvkun, Gary; Clardy, Jon; Mak, Ho Yi

    2009-02-10

    To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.

  11. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans

    PubMed Central

    Stieglitz, Jon; Locke, Tiffany T.; Zhang, Ying K.; Schroeder, Frank C.; Srinivasan, Supriya

    2017-01-01

    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels. PMID:28545126

  12. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans.

    PubMed

    Hussey, Rosalind; Stieglitz, Jon; Mesgarzadeh, Jaleh; Locke, Tiffany T; Zhang, Ying K; Schroeder, Frank C; Srinivasan, Supriya

    2017-05-01

    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels.

  13. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol

    PubMed Central

    Antony, Binu; Johny, Jibin; Aldosari, Saleh A.

    2018-01-01

    In insects, perception of the environment—food, mates, and prey—is mainly guided by chemical signals. The dynamic process of signal perception involves transport to odorant receptors (ORs) by soluble secretory proteins, odorant binding proteins (OBPs), which form the first stage in the process of olfactory recognition and are analogous to lipocalin family proteins in vertebrates. Although OBPs involved in the transport of pheromones to ORs have been functionally identified in insects, there is to date no report for Coleoptera. Furthermore, there is a lack of information on olfactory perception and the molecular mechanism by which OBPs participate in the transport of aggregation pheromones. We focus on the red palm weevil (RPW) Rhynchophorus ferrugineus, the most devastating quarantine pest of palm trees worldwide. In this work, we constructed libraries of all OBPs and selected antenna-specific and highly expressed OBPs for silencing through RNA interference. Aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferruginone), and a kairomone, ethyl acetate, were then sequentially presented to individual RPWs. The results showed that antenna-specific RferOBP1768 aids in the capture and transport of ferrugineol to ORs. Silencing of RferOBP1768, which is responsible for pheromone binding, significantly disrupted pheromone communication. Study of odorant perception in palm weevil is important because the availability of literature regarding the nature and role of olfactory signaling in this insect may reveal likely candidates representative of animal olfaction and, more generally, of molecular recognition. Knowledge of OBPs recognizing the specific pheromone ferrugineol will allow for designing biosensors for the detection of this key compound in weevil monitoring in date palm fields. PMID:29618982

  14. Sex pheromone recognition and characterization of three pheromone-binding proteins in the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae)

    PubMed Central

    Mao, Aping; Zhou, Jing; Bin Mao; Zheng, Ya; Wang, Yufeng; Li, Daiqin; Wang, Pan; Liu, Kaiyu; Wang, Xiaoping; Ai, Hui

    2016-01-01

    Pheromone-binding proteins (PBPs) are essential for the filtering, binding and transporting of sex pheromones across sensillum lymph to membrane-associated pheromone receptors of moths. In this study, three novel PBP genes were expressed in Escherichia coli to examine their involvement in the sex pheromone perception of Maruca vitrata. Fluorescence binding experiments indicated that MvitPBP1-3 had strong binding affinities with four sex pheromones. Moreover, molecular docking results demonstrated that six amino acid residues of three MvitPBPs were involved in the binding of the sex pheromones. These results suggested that MvitPBP1-3 might play critical roles in the perception of female sex pheromones. Additionally, the binding capacity of MvitPBP3 with the host-plant floral volatiles was high and was similar to that of MvitGOBP2. Furthermore, sequence alignment and docking analysis showed that both MvitGOBP2 and MvitPBP3 possessed an identical key binding site (arginine, R130/R140) and a similar protein pocket structure around the binding cavity. Therefore, we hypothesized that MvitPBP3 and MvitGOBP2 might have synergistic roles in binding different volatile ligands. In combination, the use of synthetic sex pheromones and floral volatiles from host-plant may be used in the exploration for more efficient monitoring and integrated management strategies for the legume pod borer in the field. PMID:27698435

  15. Protein pheromone expression levels predict and respond to the formation of social dominance networks

    PubMed Central

    Nelson, Adam C.; Cunningham, Christopher B.; Ruff, James S.; Potts, Wayne K.

    2015-01-01

    Communication signals are key regulators of social networks, and are thought to be under selective pressure to honestly reflect social status, including dominance status. The odors of dominants and nondominants differentially influence behavior, and identification of the specific pheromones associated with, and predictive of, dominance status is essential for understanding the mechanisms of network formation and maintenance. In mice, major urinary proteins (MUPs) are excreted in extraordinary large quantities and expression level has been hypothesized to provide an honest signal of dominance status. Here, we evaluate whether MUPs are associated with dominance in wild-derived mice by analyzing expression levels before, during, and after competition for reproductive resources over three days. During competition, dominant males have 24% greater urinary MUP expression than nondominants. The MUP darcin, a pheromone that stimulates female attraction, is predictive of dominance status: dominant males have higher darcin expression before competition. Dominants also have a higher ratio of darcin to other MUPs before and during competition. These differences appear transient, because there are no differences in MUPs or darcin after competition. We also find MUP expression is affected by sire dominance status: socially naive sons of dominant males have lower MUP expression, but this apparent repression is released during competition. A requisite condition for the evolution of communication signals is honesty, and we provide novel insight into pheromones and social networks by showing that MUP and darcin expression is a reliable signal of dominance status, a primary determinant of male fitness in many species. PMID:25867293

  16. Exposure to female fertility pheromones influences men's drinking.

    PubMed

    Tan, Robin; Goldman, Mark S

    2015-06-01

    Research has shown that humans consciously use alcohol to encourage sexual activity. In the current study, we investigated whether decision making about alcohol use and sex can be cued outside of awareness by recently revealed sexual signaling mechanisms. Specifically, we examined if males exposed without their knowledge to pheromones emitted by fertile females would increase their alcohol consumption, presumably via neurobehavioral information pathways that link alcohol to sex and mating. We found that men who smelled a T-shirt worn by a fertile female drank significantly more (nonalcoholic) beer, and exhibited significantly greater approach behavior toward female cues, than those who smelled a T-shirt worn by a nonfertile female. These findings reveal previously unknown influences on human alcohol consumption, augment the research base for pheromone cuing of sexual behavior in humans, and raise the possibility that other, as yet unknown, pathways of behavioral influence may be operating hidden from view. (c) 2015 APA, all rights reserved).

  17. Cascading trait-mediated interactions induced by ant pheromones

    PubMed Central

    Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette

    2012-01-01

    Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles – the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% – the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. PMID:23139877

  18. Gene Identification of Pheromone Gland Genes Involved in Type II Sex Pheromone Biosynthesis and Transportation in Female Tea Pest Ectropis grisescens

    PubMed Central

    Li, Zhao-Qun; Ma, Long; Yin, Qian; Cai, Xiao-Ming; Luo, Zong-Xiu; Bian, Lei; Xin, Zhao-Jun; He, Peng; Chen, Zong-Mao

    2018-01-01

    Moths can biosynthesize sex pheromones in the female sex pheromone glands (PGs) and can distinguish species-specific sex pheromones using their antennae. However, the biosynthesis and transportation mechanism for Type II sex pheromone components has rarely been documented in moths. In this study, we constructed a massive PG transcriptome database (14.72 Gb) from a moth species, Ectropis grisescens, which uses type II sex pheromones and is a major tea pest in China. We further identified putative sex pheromone biosynthesis and transportation-related unigenes: 111 cytochrome P450 monooxygenases (CYPs), 25 odorant-binding proteins (OBPs), and 20 chemosensory proteins (CSPs). Tissue expression and phylogenetic tree analyses showed that one CYP (EgriCYP341-fragment3), one OBP (EgriOBP4), and one CSP (EgriCSP10) gene displayed an enriched expression in the PGs, and that EgriOBP2, 3, and 25 are clustered in the moth pheromone-binding protein clade. We considered these our candidate genes. Our results yielded large-scale PG sequence information for further functional studies. PMID:29317471

  19. Protein–protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling.

    PubMed

    Ishii, Jun; Fukuda, Nobuo; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2010-05-01

    For elucidating protein–protein interactions, many methodologies have been developed during the past two decades. For investigation of interactions inside cells under physiological conditions, yeast is an attractive organism with which to quickly screen for hopeful candidates using versatile genetic technologies, and various types of approaches are now available.Among them, a variety of unique systems using the guanine nucleotide-binding protein (G-protein) signaling pathway in yeast have been established to investigate the interactions of proteins for biological study and pharmaceutical research. G-proteins involved in various cellular processes are mainly divided into two groups: small monomeric G-proteins,and heterotrimeric G-proteins. In this minireview, we summarize the basic principles and applications of yeast-based screening systems, using these two types of G-protein, which are typically used for elucidating biological protein interactions but are differentiated from traditional yeast two-hybrid systems.

  20. Small-molecule pheromones and hormones controlling nematode development.

    PubMed

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  1. Sex Hormones Function as Sex Attractant Pheromones in House Mice and Brown Rats.

    PubMed

    Takács, Stephen; Gries, Regine; Gries, Gerhard

    2017-07-18

    Sex hormones of mammals control the expression of sexual characteristics and bodily functions. The male hormone testosterone and the female hormones progesterone and estradiol are known to occur in urine markings of mice. Here, we show that all three hormones are also present in urine of brown rats, and that they are effective sexual communication signals (pheromones) that elicit attraction behavior of prospective mates in both brown rats and house mice. When added as lures to trap boxes in field experiments, synthetic testosterone, for example, increased captures of adult female mice 15-fold, and a blend of progesterone and estradiol increased captures of male mice eightfold and male rats 13-fold. Remarkably, these hormones increased captures even though the food- and pheromone-based baits to which they were added had previously been shown to be superior to current commercial rodent attractants. We predict that these sex hormones will function as sex attractant pheromones in diverse taxa. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori

    PubMed Central

    Sakurai, Takeshi; Nakagawa, Takao; Mitsuno, Hidefumi; Mori, Hajime; Endo, Yasuhisa; Tanoue, Shintarou; Yasukochi, Yuji; Touhara, Kazushige; Nishioka, Takaaki

    2004-01-01

    Sex pheromones released by female moths are detected with high specificity and sensitivity in the olfactory sensilla of antennae of conspecific males. Bombykol in the silkmoth Bombyx mori was the first sex pheromone to be identified. Here we identify a male-specific G protein-coupled olfactory receptor gene, B. mori olfactory receptor 1 (BmOR-1), that appears to encode a bombykol receptor. The BmOR-1 gene is located on the Z sex chromosome, has an eight-exon/seven-intron structure, and exhibits male-specific expression in the pheromone receptor neurons of male moth antenna during late pupal and adult stages. Bombykol stimulation of Xenopus laevis oocytes expressing BmOR-1 and BmGαq elicited robust dose-dependent inward currents on two-electrode voltage clamp recordings, demonstrating that the binding of bombykol to BmOR-1 leads to the activation of a BmGαq-mediated signaling cascade. Antennae of female moths infected with BmOR-1-recombinant baculovirus showed electrophysiological responses to bombykol but not to bombykal. These results provide evidence that BmOR-1 is a G protein-coupled sex pheromone receptor that recognizes bombykol. PMID:15545611

  3. Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling

    NASA Astrophysics Data System (ADS)

    Hamngren, Charlotte; Dinér, Peter; Grøtli, Morten; Goksör, Mattias; Adiels, Caroline B.

    2012-10-01

    In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways.

  4. Cyclic AMP Receptor Protein Regulates Pheromone-Mediated Bioluminescence at Multiple Levels in Vibrio fischeri ES114

    PubMed Central

    Lyell, Noreen L.; Colton, Deanna M.; Bose, Jeffrey L.; Tumen-Velasquez, Melissa P.; Kimbrough, John H.

    2013-01-01

    Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45–50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040–4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199–1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87–91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that

  5. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera

    PubMed Central

    2008-01-01

    Background Moths have evolved highly successful mating systems, relying on species-specific mixtures of sex pheromone components for long-distance mate communication. Acyl-CoA desaturases are key enzymes in the biosynthesis of these compounds and to a large extent they account for the great diversity of pheromone structures in Lepidoptera. A novel desaturase gene subfamily that displays Δ11 catalytic activities has been highlighted to account for most of the unique pheromone signatures of the taxonomically advanced ditrysian species. To assess the mechanisms driving pheromone evolution, information is needed about the signalling machinery of primitive moths. The currant shoot borer, Lampronia capitella, is the sole reported primitive non-ditrysian moth known to use unsaturated fatty-acid derivatives as sex-pheromone. By combining biochemical and molecular approaches we elucidated the biosynthesis paths of its main pheromone component, the (Z,Z)-9,11-tetradecadien-1-ol and bring new insights into the time point of the recruitment of the key Δ11-desaturase gene subfamily in moth pheromone biosynthesis. Results The reconstructed evolutionary tree of desaturases evidenced two ditrysian-specific lineages (the Δ11 and Δ9 (18C>16C)) to have orthologs in the primitive moth L. capitella despite being absent in Diptera and other insect genomes. Four acyl-CoA desaturase cDNAs were isolated from the pheromone gland, three of which are related to Δ9-desaturases whereas the fourth cDNA clusters with Δ11-desaturases. We demonstrated that this transcript (Lca-KPVQ) exclusively accounts for both steps of desaturation involved in pheromone biosynthesis. This enzyme possesses a Z11-desaturase activity that allows transforming the palmitate precursor (C16:0) into (Z)-11-hexadecenoic acid and the (Z)-9-tetradecenoic acid into the conjugated intermediate (Z,Z)-9,11-tetradecadienoic acid. Conclusion The involvement of a single Z11-desaturase in pheromone biosynthesis of a non

  6. Utilization of pheromones in the population management of moth pests.

    PubMed Central

    Cardé, R T

    1976-01-01

    Pheromones are substances emitted by one individual of a species and eliciting a specific response in a second individual of the same species. In moths (Lepidoptera) generally females lure males for mating by emission of a sex attractant pheromone comprised of either one or more components. Since 1966 the identification of the pheromone blends of many moth pests has allowed investigations into the use of these messengers for population manipulation. Pheromone-baited traps may be used both to detect pest presence and to estimate population density, so that conventional control tactics can be employed only as required and timed precisely for maximum effectiveness. Attractant traps also can be utilized for direct population suppression when the traps are deployed at a density effective in reducing mating success sufficiently to achieve control. A third use pattern of pheromones and related compounds is disruption of pheromone communication via atmospheric permeation with synthetic disruptants. The behavioral modifications involved in disruption of communication may include habituation of the normal response sequence (alteration of the pheromone response threshold) and "confusion" (inability of the organism to perceive and orient to the naturally emitted lure). Disruption of communication employing the natural pheromone components as the disruptant has been most successful, although nonattractant behavioral modifiers structurally similar to the pheromone components also may prove useful. Possible future resistance to direct pheromone manipulation may be expected to involve the evolution of behavioral and sensory changes that minimize the informational overlap between the natural pheromone system and the pheromone control technique. PMID:789060

  7. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    PubMed Central

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  8. Moth Sex Pheromone Receptors and Deceitful Parapheromones

    PubMed Central

    Xu, Pingxi; Garczynski, Stephen F.; Atungulu, Elizabeth; Syed, Zainulabeuddin; Choo, Young-Moo; Vidal, Diogo M.; Zitelli, Caio H. L.; Leal, Walter S.

    2012-01-01

    The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors. PMID:22911835

  9. Pheromone-based disruption of Eucosma sonomana and Rhyacionia zozana (Lepidoptera: Tortricidae) using aerially applied microencapsulated pheromone

    Treesearch

    Nancy E. Gillette; John D. Stein; Donald R. Owen; Jeffrey N. Webster; Sylvia R. Mori

    2006-01-01

    Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zowna (Kearfott): Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004...

  10. Pheromone Static Routing Strategy for Complex Networks

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui

    2012-12-01

    We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.

  11. Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.

    PubMed

    Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger

    2016-11-23

    Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. HPLC-MS analysis of pheromone glucoconjugates in oral secretions of male Anastrepha Fruit Flies

    USDA-ARS?s Scientific Manuscript database

    Using high performance liquid chromatography combined with ESi, APCI, and PBEI mass spectroscopy, novel terpenoid glycoconjugates were identified in oral secretions of several Anastrepha fly species; these findings suggest that non-volatile pheromone signals are used in their lek mating strategies. ...

  13. Aggregation Pheromone System: A Real-parameter Optimization Algorithm using Aggregation Pheromones as the Base Metaphor

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shigeyosi

    This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.

  14. Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpunctella.

    PubMed

    Svensson, Glenn P; Ryne, Camilla; Löfstedt, Christer

    2002-07-01

    The short-term evolutionary effect of pheromone-based mating disruption on the mating ability of the Indian meal moth, Plodia interpunctella, was investigated. Three independent selection lines were established, and the mating ability of moths in plastic tents treated with high doses of pheromone and in control tents was compared for two consecutive generations. In addition, the heritability of the sex pheromone blend, measured as the ratio of two major pheromone components (Z,E)-9,12-tetradecadienyl acetate and (Z,E)-9,12-tetradecadienol, was estimated. Based on a mother-daughter regression analysis including 21 families, the heritability of the pheromone blend was 0.65 +/- 0.14, indicating a potential for evolutionary change of the character. However, no increase in mating ability of females in pheromone-treated tents or alteration of the pheromone blend was observed in any selection line when compared with control lines, indicating no or weak selection on the pheromone blend as well as other traits influencing mating ability of this species under the created mating disruption conditions. Factors contributing to the lack of selection effects are discussed.

  15. Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System.

    PubMed

    Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán; Gardner, Julian W

    2017-10-30

    Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules.

  16. Effects of natural and synthetic alarm pheromone and individual pheromone components on foraging behavior of the giant Asian honey bee, Apis dorsata.

    PubMed

    Li, Jianjun; Wang, Zhengwei; Tan, Ken; Qu, Yufeng; Nieh, James C

    2014-10-01

    Social pollinators such as honey bees face attacks from predators not only at the nest, but also during foraging. Pollinating honey bees can therefore release alarm pheromones that deter conspecifics from visiting dangerous inflorescences. However, the effect of alarm pheromone and its chemical components upon bee avoidance of dangerous food sources remains unclear. We tested the responses of giant honey bee foragers, Apis dorsata, presented with alarm pheromone at a floral array. Foragers investigated the inflorescence with natural alarm pheromone, but 3.3-fold more foragers preferred to land on the 'safe' inflorescence without alarm pheromone. Using gas chromatography-mass spectrometry analysis, we identified eight chemical components in the alarm pheromone, of which three components (1-octanol, decanal and gamma-octanoic lactone) have not previously been reported in this species. We bioassayed six major compounds and found that a synthetic mixture of these compounds elicited behaviors statistically indistinguishable from responses to natural alarm pheromone. By testing each compound separately, we show that gamma-octanoic lactone, isopentyl acetate and (E)-2-decen-1-yl acetate are active compounds that elicit significant alarm responses. Gamma-octanoic lactone elicited the strongest response to a single compound and has not been previously reported in honey bee alarm pheromone. Isopentyl acetate is widely found in the alarm pheromones of sympatric Asian honey bee species, and thus alarmed A. dorsata foragers may produce information useful for conspecifics and heterospecifics, thereby broadening the effects of alarm information on plant pollination. © 2014. Published by The Company of Biologists Ltd.

  17. Pheromone interruption of pine engraver, Ips pini, by pheromones of mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae)

    Treesearch

    Daniel R. Miller; John H. Borden

    2000-01-01

    The effect of pheromones of Dendroctonus ponderosae Hopkins on the attraction of Ips pini (Say) to its pheromone, ipsdienol, was investigated in stands of lodgepole pine. The mixture of cis- and trans-verbenol significantly reduced catches of I. pini in traps baited with...

  18. Effects of the type III secreted pseudomonal toxin ExoS in the yeast Saccharomyces cerevisiae.

    PubMed

    Stirling, Fiona R; Evans, Tom J

    2006-08-01

    Pseudomonas aeruginosa secretes a number of toxins by a type III system, and these are important in virulence. One of them, ExoS, is a bifunctional toxin, with a GTPase-activating protein domain, as well as ADP ribosyltransferase (ADPRT) activity. These two domains have numerous potential cellular targets, but the overall mechanism of ExoS action remains unclear. The effects of ExoS in a simple eukaryotic system, the yeast Saccharomyces cerevisiae, using a tetracycline-regulated expression system were studied. This system allowed controlled expression of ExoS in yeast, which was not possible using a galactose-induced system. ExoS was found to be an extremely potent inhibitor of yeast growth, and to be largely dependent on the activity of its ADPRT domain. ExoS produced a dramatic alteration in actin distribution, with the appearance of large aggregates of cortical actin, and thickened disorganized cables, entirely dependent on the ADPRT domain. This phenotype is suggestive of actin stabilization, which was verified by showing that the cortical aggregates of actin induced by ExoS were resistant to treatment with latrunculin A, an agent that prevents actin polymerization. ExoS increased the numbers of mating projections produced following growth arrest with mating pheromone, and prevented subsequent DNA replication, an effect that is again dependent on the ADPRT domain. Following pheromone removal, ExoS produced altered development of the mating projections, which became elongated with a swollen bud-like tip. These results suggest alternative pathways for ExoS action in eukaryotic cells that may result from activation of small GTPases, and this yeast expression system is well suited to explore these pathways.

  19. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    PubMed Central

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  20. Identifying Possible Pheromones of Cerambycid Beetles by Field Testing Known Pheromone Components in Four Widely Separated Regions of the United States

    Treesearch

    Jocelyn G Millar; Robert F Mitchell; Judith A Mongold-Diers; Yunfan Zou; Carlos E Bográn; Melissa K Fierke; Matthew D Ginzel; Crawford W Johnson; James R Meeker; Therese M Poland; Iral Ragenovich; Lawrence M Hanks

    2017-01-01

    The pheromone components of many cerambycid beetles appear to be broadly shared among related species, including species native to different regions of the world. This apparent conservation of pheromone structures within the family suggests that field trials of common pheromone components could be used as a means of attracting multiple species, which then could be...

  1. Exposure to Female Fertility Pheromones Influences Men’s Drinking

    PubMed Central

    Tan, Robin; Goldman, Mark S.

    2015-01-01

    Research shows that humans consciously use alcohol to encourage sexual activity. The current study investigated whether decision-making about alcohol use and sex can be cued outside of awareness by recently revealed sexual signaling mechanisms. Specifically, we examined if males exposed without their knowledge to pheromones emitted by fertile females would increase their alcohol consumption, presumably via neurobehavioral information pathways that link alcohol to sex and mating. We found that men who smelled a T-shirt worn by a fertile female drank significantly more (non-alcoholic) beer, and exhibited significantly greater approach behavior toward female cues, than those who smelled a T-shirt worn by a non-fertile female. These findings reveal previously unknown influences on human alcohol consumption, augment the research base for pheromone cuing of sexual behavior in humans, and raise the possibility that other, as yet unknown, pathways of behavioral influence may be operating hidden from view. PMID:26053321

  2. Evaporation rate of emulsion and oil-base emulsion pheromones

    USDA-ARS?s Scientific Manuscript database

    Knowledge of pheromone evaporation rate is critical to distribute pheromone containers effectively in the forest, orchard and field. There are several factors influencing the pheromone evaporation rate that include wind speed, container size and porosity, release area, temperature, humidity, pherom...

  3. Bed bug aggregation pheromone finally identified.

    PubMed

    Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard

    2015-01-19

    Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    PubMed

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  6. Collection of pheromone from atmosphere surrounding boll weevils,Anthonomus grandis.

    PubMed

    Chang, J F; Benedict, J H; Payne, T L; Camp, B J; Vinson, S B

    1989-02-01

    An effluvial method was developed to collect the pheromone, grandlure from actively calling male boll weevils,Anthonomus grandis Boheman. The adsorbant, Porapak Q (ethylvinylbenzene-divinylbenzene), was utilized to trap and concentrate the pheromone. Captured pheromone was desorbed from columns packed with Porapak Q by elution withn-pentane and quantified by capillary column gas-liquid chromatography. In recovery studies with known amounts of synthetic grandlure, we found that the amount of each pheromone component collected was a function of collection duration, elution volume, and initial concentration. This effluvial method was capable of recovering as much as 94.9% of a known quantity (80 μg) of grandlure. The chromatograms were free of extraneous peaks. In studies of insect-produced pheromone, the effluvial method was used to collect pheromone from the air space surrounding male boll weevils as they fed on flower buds from CAMD-E cotton. The quantity and quality of boll-weevil-produced pheromone was determined for days 6, 8, 10, 11, 12, 13, and 14 of boll weevil adulthood. The maximum quantity of natural pheromone was produced on day 13 (4.2 μg/weevil) with a pheromone component ratio of 2.41∶2.29∶0.95∶1 for components I, II, III, and IV, respectively. The effluvial method described in this report is an efficient method to collect and quantify boll weevil pheromone from the atmosphere surrounding actively calling insects. Other applications of this method are suggested.

  7. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    PubMed

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  8. Discovery and characterization of natural products that act as pheromones in fish.

    PubMed

    Li, Ke; Buchinger, Tyler J; Li, Weiming

    2018-06-20

    Covering: up to 2018 Fish use a diverse collection of molecules to communicate with conspecifics. Since Karlson and Lüscher termed these molecules 'pheromones', chemists and biologists have joined efforts to characterize their structures and functions. In particular, the understanding of insect pheromones developed at a rapid pace, set, in part, by the use of bioassay-guided fractionation and natural product chemistry. Research on vertebrate pheromones, however, has progressed more slowly. Initially, biologists characterized fish pheromones by screening commercially available compounds suspected to act as pheromones based upon their physiological function. Such biology-driven screening has proven a productive approach to studying pheromones in fish. However, the many functions of fish pheromones and diverse metabolites that fish release make predicting pheromone identity difficult and necessitate approaches led by chemistry. Indeed, the few cases in which pheromone identification was led by natural product chemistry indicated novel or otherwise unpredicted compounds act as pheromones. Here, we provide a brief review of the approaches to identifying pheromones, placing particular emphasis on the promise of using natural product chemistry together with assays of biological activity. Several case studies illustrate bioassay-guided fractionation as an approach to pheromone identification in fish and the unexpected diversity of pheromone structures discovered by natural product chemistry. With recent advances in natural product chemistry, bioassay-guided fractionation is likely to unveil an even broader collection of pheromone structures and enable research that spans across disciplines.

  9. Pheromone communication in amphibians and reptiles.

    PubMed

    Houck, Lynne D

    2009-01-01

    This selective review considers herpetological papers that feature the use of chemical cues, particularly pheromones involved in reproductive interactions between potential mates. Primary examples include garter snake females that attract males, lacertid lizards and the effects of their femoral gland secretions, aquatic male newts that chemically attract females, and terrestrial salamander males that chemically persuade a female to mate. Each case study spans a number of research approaches (molecular, biochemical, behavioral) and is related to sensory processing and the physiological effects of pheromone delivery. These and related studies show that natural pheromones can be identified, validated with behavioral tests, and incorporated in research on vomeronasal functional response.

  10. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone.

    PubMed

    Schmidt-Büsser, Daniela; von Arx, Martin; Guerin, Patrick M

    2009-09-01

    The European grape berry moth is an important pest in vineyards. Males respond to the female-produced sex pheromone released from a piezo nebulizer in a dose-dependent manner in a wind tunnel: <50% arrive at the source at 5-50 pg/min (underdosed), 80% arrive at 100 pg/min to 10 ng/min (optimal) and <20% arrive at 100 ng/min (overdosed). Males responding to overdosed pheromone show in flight arrestment at 80 cm from the source. Host plant chemostimuli for Eupoecilia ambiguella increase the responses of males to underdosed and overdosed pheromone. (Z)-3-hexen-1-ol, (+)-terpinen-4-ol, (E)-beta-caryophyllene and methyl salicylate released with the underdosed pheromone cause a significant increase in male E. ambiguella flying to the source. Time-event analysis indicates a positive correlation between faster activation and probability of source contact by the responding males. The four host plant compounds added to the overdosed pheromone permitted males to take off faster and with a higher probability of flying to the source. This suggests that perception of host plant products with the sex pheromone facilitates male E. ambiguella to locate females on host plants, lending credence to the hypothesis that plant products can signal rendezvous sites suitable for mating.

  11. Efficient Management of Fruit Pests by Pheromone Nanogels

    PubMed Central

    Bhagat, Deepa; Samanta, Suman K.; Bhattacharya, Santanu

    2013-01-01

    Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops. PMID:23416455

  12. Human pheromones and sexual attraction.

    PubMed

    Grammer, Karl; Fink, Bernhard; Neave, Nick

    2005-02-01

    Olfactory communication is very common amongst animals, and since the discovery of an accessory olfactory system in humans, possible human olfactory communication has gained considerable scientific interest. The importance of the human sense of smell has by far been underestimated in the past. Humans and other primates have been regarded as primarily 'optical animals' with highly developed powers of vision but a relatively undeveloped sense of smell. In recent years this assumption has undergone major revision. Several studies indicate that humans indeed seem to use olfactory communication and are even able to produce and perceive certain pheromones; recent studies have found that pheromones may play an important role in the behavioural and reproduction biology of humans. In this article we review the present evidence of the effect of human pheromones and discuss the role of olfactory cues in human sexual behaviour.

  13. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  14. Regulatory Role of PBAN in Sex Pheromone Biosynthesis of Heliothine Moths

    PubMed Central

    Jurenka, Russell; Rafaeli, Ada

    2011-01-01

    Both males and females of heliothine moths utilize sex-pheromones during the mating process. Females produce and release a sex pheromone for the long–range attraction of males for mating. Production of sex pheromone in females is controlled by the peptide hormone (pheromone biosynthesis activating neuropeptide, PBAN). This review will highlight what is known about the role PBAN plays in controlling pheromone production in female moths. Male moths produce compounds associated with a hairpencil structure associated with the aedaegus that are used as short-range aphrodisiacs during the mating process. We will discuss the role that PBAN plays in regulating male production of hairpencil pheromones. PMID:22654810

  15. Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System

    PubMed Central

    Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán

    2017-01-01

    Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules. PMID:29084158

  16. With or without pheromone habituation: possible differences between insect orders?

    PubMed

    Suckling, David Maxwell; Stringer, Lloyd D; Jiménez-Pérez, Alfredo; Walter, Gimme H; Sullivan, Nicola; El-Sayed, Ashraf M

    2018-06-01

    Habituation to sex pheromones is one of the key mechanisms in mating disruption, an insect control tactic. Male moths often show reduced sexual response after pre-exposure to female sex pheromone. Mating disruption is relatively rare in insect orders other than Lepidoptera. As a positive control we confirmed habituation in a moth (Epiphyas postvittana) using 24 h pre-exposure to sex pheromone to reduce subsequent activation behaviour. We then tested the impact of pre-exposure to sex or trail pheromone on subsequent behavioural response with insects from three other orders. Similar pre-exposure for 24 h to either sex pheromone [Pseudococcus calceolariae (Homoptera) and apple leaf curling midge Dasineura mali (Diptera), or trail pheromone of Argentine ants (Linepithema humile (Hymenoptera)], followed by behavioural assay in clean air provided no evidence of habituation after pre-exposure in these latter cases. The moths alone were affected by pre-exposure to pheromone. For pests without habituation, sustained attraction to a point source may make lure and kill more economical. Improved knowledge of behavioural processes should lead to better success in pest management and mechanisms should be investigated further to inform studies and practical efforts generally enhancing effectiveness of pheromone-based management. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Propheromones that release pheromonal carbonyl compounds in light.

    PubMed

    Liu, X; Macaulay, E D; Pickett, J A

    1984-05-01

    Pheromonal carbonyl compounds; (Z)-11-hexadecanal, (E)-citral, and 2-heptanone were treated with six alcohols to give acetals or ketals, some of which acted as propheromones by releasing the pheromonal carbonyl compounds in ultraviolet or simulated sunlight. Highest yields of pheromone were obtained from adducts prepared witho-nitrobenzyl alcohol ando-nitrophenylethane-1,2-diol. Adducts from (Z)-11-hexadecenal and these two alcohols were employed in lures to catch diamondback moths,Plutella xylostella (L.).

  18. Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications.

    PubMed

    Hanks, Lawrence M; Millar, Jocelyn G

    2016-07-01

    Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids.

  19. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress

    PubMed Central

    Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. PMID:26645097

  20. European corn borer sex pheromone : Inhibition and elicitation of behavioral response by analogs.

    PubMed

    Schwarz, M; Klun, J A; Uebel, E C

    1990-05-01

    The male sexual behavior-stimulating and inhibiting properties of a series of analogs of the European corn borer sex pheromone were determined in a flight tunnel. The structural requirements for inhibition of pheromonal response were far less restrictive than those for elicitation of that response. Analogs that by themselves elicited upwind flight response from males at a low dose were generally less inhibitory to male response than many of the analogs that had no pheromonal activity. These findings suggest that many pheromone analogs bind to pheromone receptors without provoking behavioral response and possibly undergo slower degradation on the antenna than pheromonally active compounds. The disparity of response to analogs by two pheromonal types of the European corn borer indicates that the pheromone receptor and pheromone catabolic systems are biochemically very different in the two types.

  1. A Drosophila protein family implicated in pheromone perception is related to Tay-Sachs GM2-activator protein.

    PubMed

    Starostina, Elena; Xu, Aiguo; Lin, Heping; Pikielny, Claudio W

    2009-01-02

    Low volatility, lipid-like cuticular hydrocarbon pheromones produced by Drosophila melanogaster females play an essential role in triggering and modulating mating behavior, but the chemosensory mechanisms involved remain poorly understood. Recently, we showed that the CheB42a protein, which is expressed in only 10 pheromone-sensing taste hairs on the front legs of males, modulates progression to late stages of male courtship behavior in response to female-specific cuticular hydrocarbons. Here we report that expression of all 12 genes in the CheB gene family is predominantly or exclusively gustatory-specific, and occurs in many different, often non-overlapping patterns. Only the Gr family of gustatory receptor genes displays a comparable variety of gustatory-specific expression patterns. Unlike Grs, however, expression of all but one CheB gene is sexually dimorphic. Like CheB42a, other CheBs may therefore function specifically in gustatory perception of pheromones. We also show that CheBs belong to the ML superfamily of lipid-binding proteins, and are most similar to human GM2-activator protein (GM2-AP). In particular, GM2-AP residues involved in ligand binding are conserved in CheBs but not in other ML proteins. Finally, CheB42a is specifically secreted into the inner lumen of pheromone-sensing taste hairs, where pheromones interact with membrane-bound receptors. We propose that CheB proteins interact directly with lipid-like Drosophila pheromones and modulate their detection by the gustatory signal transduction machinery. Furthermore, as loss of GM2-AP in Tay-Sachs disease prevents degradation of GM2 gangliosides and results in neurodegeneration, the function of CheBs in pheromone response may involve biochemical mechanisms critical for lipid metabolism in human neurons.

  2. Identification of Sex Pheromones and Sex Pheromone Mimics for Two North American Click Beetle Species (Coleoptera: Elateridae) in the Genus Cardiophorus Esch.

    PubMed

    Serrano, Jacqueline M; Collignon, R Maxwell; Zou, Yunfan; Millar, Jocelyn G

    2018-04-01

    To date, all known or suspected pheromones of click beetles (Coleoptera: Elateridae) have been identified solely from species native to Europe and Asia; reports of identifications from North American species dating from the 1970s have since proven to be incorrect. While conducting bioassays of pheromones of a longhorned beetle (Coleoptera: Cerambycidae), we serendipitously discovered that males of Cardiophorus tenebrosus L. and Cardiophorus edwardsi Horn were specifically attracted to the cerambycid pheromone fuscumol acetate, (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate, suggesting that this compound might also be a sex pheromone for the two Cardiophorus species. Further field bioassays and electrophysiological assays with the enantiomers of fuscumol acetate determined that males were specifically attracted by the (R)-enantiomer. However, subsequent analyses of extracts of volatiles from female C. tenebrosus and C. edwardsi showed that the females actually produced a different compound, which was identified as (3R,6E)-3,7,11-trimethyl-6,10-dodecadienoic acid methyl ester (methyl (3R,6E)-2,3-dihydrofarnesoate). In field trials, both the racemate and the (R)-enantiomer of the pheromone attracted similar numbers of male beetles, suggesting that the (S)-enantiomer was not interfering with responses to the insect-produced (R)-enantiomer. This report constitutes the first conclusive identification of sex pheromones for any North American click beetle species. Possible reasons for the strong and specific attraction of males to fuscumol acetate, which is markedly different in structure to the actual pheromone, are discussed.

  3. The Dynamics of Pheromone Gland Synthesis and Release: a Paradigm Shift for Understanding Sex Pheromone Quantity in Female Moths.

    PubMed

    Foster, Stephen P; Anderson, Karin G; Casas, Jérôme

    2018-05-10

    Moths are exemplars of chemical communication, especially with regard to specificity and the minute amounts they use. Yet, little is known about how females manage synthesis and storage of pheromone to maintain release rates attractive to conspecific males and why such small amounts are used. We developed, for the first time, a quantitative model, based on an extensive empirical data set, describing the dynamical relationship among synthesis, storage (titer) and release of pheromone over time in a moth (Heliothis virescens). The model is compartmental, with one major state variable (titer), one time-varying (synthesis), and two constant (catabolism and release) rates. The model was a good fit, suggesting it accounted for the major processes. Overall, we found the relatively small amounts of pheromone stored and released were largely a function of high catabolism rather than a low rate of synthesis. A paradigm shift may be necessary to understand the low amounts released by female moths, away from the small quantities synthesized to the (relatively) large amounts catabolized. Future research on pheromone quantity should focus on structural and physicochemical processes that limit storage and release rate quantities. To our knowledge, this is the first time that pheromone gland function has been modeled for any animal.

  4. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde

    USDA-ARS?s Scientific Manuscript database

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We dissected gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challeng...

  5. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta.

    PubMed

    Vander Meer, Robert K; Preston, Catherine A; Choi, Man-Yeon

    2010-02-01

    Alarm pheromones in social insects are an essential part of a complex of pheromone interactions that contribute to the maintenance of colony integrity and sociality. The alarm pheromones of ants were among the first examples of animal pheromones identified, primarily because of the large amount of chemical produced and the distinctive responses of ants to the pheromone. However, the alarm pheromone of the fire ant, Solenopsis invicta, eluded identification for over four decades. We identified 2-ethyl-3,6-dimethylpyrazine as an alarm pheromone component of S. invicta. Worker fire ants detect the pyrazine alarm pheromone at 30 pg/ml, which is comparable to alarm pheromone sensitivities reported for other ant species. The source of this alarm pheromone are the mandibular glands, which, in fire ants, are not well developed and contain only about 300 pg of the compound, much less than the microgram quantities of alarm pheromones reported for several other ant species. Female and male sexuals and workers produce the pyrazine, which suggests that it may be involved in fire ant mating flight initiation, as well as the typical worker alarm response. This is the first report of 2-ethyl-3,6-dimethylpyrazine from a Solenopsis species and the first example of this alkaloid functioning as an alarm pheromone.

  6. Cloning and functional characterization of a fatty acid transport protein (FATP) from the pheromone gland of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone.

    PubMed

    Qian, Shuguang; Fujii, Takeshi; Ito, Katsuhiko; Nakano, Ryo; Ishikawa, Yukio

    2011-01-01

    Sex pheromones of moths are largely classified into two types based on the presence (Type I) or absence (Type II) of a terminal functional group. While Type-I sex pheromones are synthesized from common fatty acids in the pheromone gland (PG), Type-II sex pheromones are derived from hydrocarbons produced presumably in the oenocytes and transported to the PG via the hemolymph. Recently, a fatty acid transport protein (BmFATP) was identified from the PG of the silkworm Bombyx mori, which produces a Type-I sex pheromone (bombykol). BmFATP was shown to facilitate the uptake of extracellular fatty acids into PG cells for the synthesis of bombykol. To elucidate the presence and function of FATP in the PG of moths that produce Type-II sex pheromones, we explored fatp homologues expressed in the PG of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone (Type II). A fatp homologue cloned from E. japonica (Ejfatp) was predominantly expressed in the PG, and its expression is upregulated shortly after eclosion. Functional expression of EjFATP in Escherichia coli enhanced the uptake of long chain fatty acids (C₁₈ and C₂₀), but not pheromone precursor hydrocarbons. To the best of our knowledge, this is the first report of the cloning and functional characterization of a FATP in the PG of a moth producing a Type-II sex pheromone. Although EjFATP is not likely to be involved in the uptake of pheromone precursors in E. japonica, the expression pattern of Ejfatp suggests a role for EjFATP in the PG not directly linked to pheromone biosynthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    PubMed

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our

  8. Evidence that insect herbivores are deterred by ant pheromones.

    PubMed Central

    Offenberg, Joachim; Nielsen, Mogens Gissel; MacIntosh, Donald J; Havanon, Sopon; Aksornkoae, Sanit

    2004-01-01

    It is well documented that ants can protect plants against insect herbivores, but the underlying mechanisms remain almost undocumented. We propose and test the pheromone avoidance hypothesis--an indirect mechanism where insect herbivores are repelled not only by ants but also by ant pheromones. Herbivores subjected to ant predation will experience a selective advantage if they evolve mechanisms enabling them to avoid feeding within ant territories. Such a mechanism could be based on the ability to detect and evade ant pheromones. Field observations and data from the literature showed that the ant Oecophylla smaragdina distributes persistent pheromones throughout its territory. In addition, a laboratory test showed that the beetle Rhyparida wallacei, which this ant preys on, was reluctant to feed on leaves sampled within ant territories compared with leaves sampled outside territories. Thus, this study provides an example of an ant-herbivore system conforming to the pheromone avoidance hypothesis. PMID:15801596

  9. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    PubMed

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.

  10. The Pheromone of the Cave Cricket, Hadenoecus cumberlandicus, Causes Cricket Aggregation but Does Not Attract the Co-Distributed Predatory Spider, Meta ovalis

    PubMed Central

    Yoder, Jay A.; Christensen, Brady S.; Croxall, Travis J.; Tank, Justin L.; Hobbs, Horton H.

    2010-01-01

    Food input by the cave cricket, Hadenoecus cumberlandicus Hubble & Norton (Orthoptera: Rhaphidophoridae), is vital to the cave community, making this cricket a true keystone species. Bioassays conducted on cave walls and in the laboratory show that clustering in H. cumberlandicus is guided by a pheromone, presumably excreta. This aggregation pheromone was demonstrated by using filter paper discs that had previous adult H. cumberlandicus exposure, resulting in > 70% response by either nymphs or adults, prompting attraction (thus, active component is a volatile), followed by reduced mobility (arrestment) on treated surfaces. Adults were similarly responsive to pheromone from nymphs, agreeing with mixed stage composition of clusters in the cave. Effects of [0.001M – 0.1M] uric acid (insect excreta's principle component) on H. cumberlandicus behavior were inconsistent. This pheromone is not a host cue (kairomone) and is not used as a repellent (allomone) as noted through lack of responses to natural H. cumberlandicus pheromone and uric acid concentrations by a co-occurring predatory cave orb weaver spider, Meta ovalis Gertsch (Araneae: Tetragnathidae). This pheromone is not serving as a sex pheromone because nymphs were affected by it and because this population of H. cumberlandicus is parthenogenic. The conclusion of this study is that the biological value of the aggregation pheromone is to concentrate H. cumberlandicus in sheltered sites in the cave conducive for minimizing water stress. Rather than signaling H. cumberlandicus presence and quality, the reduced mobility expressed as a result of contacting this pheromone conceivably may act as a defense tactic (antipredator behavior) against M. ovalis, which shares this favored habitat site. PMID:20572786

  11. [Effect of the estrous cycle stage on sensitivity to pheromone 2,5-dimethylpyrazine in the house mouse Mus musculus].

    PubMed

    Daev, E V; Dukel'skaia, A V; Kazarova, V E; Fil'kina, Ia A

    2007-01-01

    Frequency of cytogenetic disturbances was estimated in mitotically dividing bone marrow cells of CBA strain female mice after the 24-h long action of pheromone 2,5-dimethylpyrazine (2,5-DMP). The stage of the estrous cycle of each animal was taken into account at the moment of the end of the pheromone action. The analysis was performed using the anatelophase method that allows evaluating frequencies of various types of disturbances--bridges, fragments, delayed chromosomes. The spontaneous level of the mitotic disturbances revealed by the anatelophase method in animals of the control group amounts to 5.4 %. Action of pheromone 2,5-dimethylpyrasine induced the mitosis disturbances detected in the dividing bone marrow cells at the anaphase-telophase stage in the females at the di- + postestrus stage. The corresponding frequency of disturbances after the pheromone action was equal to 9.2%. In the female in estrus, the mitotic disturbance level amounted 6.7%, which did not differ statistically significantly from control. It is suggested that differences in the female mouse hormonal state at different estrous cycle stages affect sensitivity to olfactory signals. Mechanisms of the revealed effect and significance of the differences in sensitivity to pheromone for reproductive processes are discussed.

  12. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  13. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles-a combination of laboratory and field experiments.

    PubMed

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  14. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesizemore » that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.« less

  15. Insectivorous birds eavesdrop on the pheromones of their prey.

    PubMed

    Saavedra, Irene; Amo, Luisa

    2018-01-01

    Chemical cues play a fundamental role in mate attraction and mate choice. Lepidopteran females, such as the winter moth (Operophtera brumata), emit pheromones to attract males in the reproductive period. However, these chemical cues could also be eavesdropped by predators. To our knowledge, no studies have examined whether birds can detect pheromones of their prey. O. brumata adults are part of the winter diet of some insectivorous tit species, such as the great tit (Parus major) and blue tit (Cyanistes caeruleus). We performed a field experiment aimed to disentangle whether insectivorous birds can exploit the pheromones emitted by their prey for prey location. We placed artificial larvae and a dispenser on branches of Pyrenean oak trees (Quercus pyrenaica). In half of the trees we placed an O. brumata pheromone dispenser and in the other half we placed a control dispenser. We measured the predation rate of birds on artificial larvae. Our results show that more trees had larvae with signs of avian predation when they contained an O. brumata pheromone than when they contained a control dispenser. Furthermore, the proportion of artificial larvae with signs of avian predation was greater in trees that contained the pheromone than in control trees. Our results indicate that insectivorous birds can exploit the pheromones emitted by moth females to attract males, as a method of prey detection. These results highlight the potential use of insectivorous birds in the biological control of insect pests.

  16. Old maids have more appeal: effects of age and pheromone source on mate attraction in an orb-web spider.

    PubMed

    Cory, Anna-Lena; Schneider, Jutta M

    2016-01-01

    Background. In many insects and spider species, females attract males with volatile sex pheromones, but we know surprisingly little about the costs and benefits of female pheromone emission. Here, we test the hypothesis that mate attraction by females is dynamic and strategic in the sense that investment in mate attraction is matched to the needs of the female. We use the orb-web spider Argiope bruennichi in which females risk the production of unfertilised egg clutches if they do not receive a copulation within a certain time-frame. Methods. We designed field experiments to compare mate attraction by recently matured (young) females with females close to oviposition (old). In addition, we experimentally separated the potential sources of pheromone transmission, namely the female body and the web silk. Results. In accordance with the hypothesis of strategic pheromone production, the probability of mate attraction and the number of males attracted differed between age classes. While the bodies and webs of young females were hardly found by males, the majority of old females attracted up to two males within two hours. Old females not only increased pheromone emission from their bodies but also from their webs. Capture webs alone spun by old females were significantly more efficient in attracting males than webs of younger females. Discussion. Our results suggest that females modulate their investment in signalling according to the risk of remaining unmated and that they thereby economize on the costs associated with pheromone production and emission.

  17. Pheromone-sensitive glomeruli in the primary olfactory centre of ants.

    PubMed

    Yamagata, Nobuhiro; Nishino, Hiroshi; Mizunami, Makoto

    2006-09-07

    Tremendous evolutional success and the ecological dominance of social insects, including ants, termites and social bees, are due to their efficient social organizations and their underlying communication systems. Functional division into reproductive and sterile castes, cooperation in defending the nest, rearing the young and gathering food are all regulated by communication by means of various kinds of pheromones. No brain structures specifically involved in the processing of non-sexual pheromone have been physiologically identified in any social insects. By use of intracellular recording and staining techniques, we studied responses of projection neurons of the antennal lobe (primary olfactory centre) of ants to alarm pheromone, which plays predominant roles in colony defence. Among 23 alarm pheromone-sensitive projection neurons recorded and stained in this study, eight were uniglomerular projection neurons with dendrites in one glomerulus, a structural unit of the antennal lobe, and the remaining 15 were multiglomerular projection neurons with dendrites in multiple glomeruli. Notably, all alarm pheromone-sensitive uniglomerular projection neurons had dendrites in one of five 'alarm pheromone-sensitive (AS)' glomeruli that form a cluster in the dorsalmost part of the antennal lobe. All alarm pheromone-sensitive multiglomerular projection neurons had dendrites in some of the AS glomeruli as well as in glomeruli in the anterodorsal area of the antennal lobe. The results suggest that components of alarm pheromone are processed in a specific cluster of glomeruli in the antennal lobe of ants.

  18. Activity of male pheromone of Melanesian rhinoceros beetle Scapanes australis.

    PubMed

    Rochat, Didier; Morin, Jean-Paul; Kakul, Titus; Beaudoin-Ollivier, Laurence; Prior, Robert; Renou, Michel; Malosse, Isabelle; Stathers, Tanya; Embupa, Sebastian; Laup, Samson

    2002-03-01

    Laboratory and field investigations were carried out to investigate the nature and role of the male pheromone emitted by the Dynast beetle Scapanes australis and to develop a mass trapping technique against this major coconut pest in Papua New Guinea. We report the biological data obtained from natural and synthetic pheromone, previously described as an 84:12:4 (w/w) mixture of 2-butanol (1), 3-hydoxy-2-butanone (2), and 2,3-butanediol (3). EAG recordings from natural and synthetic pheromone and a pitfall olfactometer were poorly informative. In contrast, extensive field trapping trials with various synthetic pheromone mixtures and doses showed that 1 and 2 (formulated in polyethylene sachets in 90:5 v/v ratio) were necessary and sufficient for optimum long-range attraction. Beetles were captured in traps baited with racemic 1 plus 2, with or without a stereoisomer mixture of 3 (2.5- to 2500-mg/day doses). Plant pieces, either sugarcane or coconut, enhanced captures by the synthetic pheromone, which was active alone. Traps with the pheromone caught both sexes in a 3:2 female-male ratio. A pheromone-based mass trapping led to the capture of 2173 beetles in 14 traps surrounding 40 ha of a cocoa-coconut plantation. The captures followed a log-linear decrease during the 125-week trapping program. The role of the male pheromone and its potential for crop protection are discussed.

  19. Nutrient supplements boost yeast transformation efficiency

    PubMed Central

    Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.

    2016-01-01

    Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994

  20. Pheromonal regulation of starvation resistance in honey bee workers ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick; Grozinger, Christina M.

    2008-08-01

    Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.

  1. Field Comparison of Spruce Budworm Pheromone Lures

    Treesearch

    David G. Grimble

    1987-01-01

    Four types of spruce budworm pheromone lures were tested to compare field longevity and efficiency. Biolures with three different pheromone release rates and Silk-PVC lures all caught male budworm moths throughout the moth flight period in proportion to the different release rates. Fumigant strips in traps to kill trapped moths were necessary.

  2. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae.

    PubMed

    Schoeman, H; Vivier, M A; Du Toit, M; Dicks, L M; Pretorius, I S

    1999-06-15

    The excessive use of sulphur dioxide and other chemical preservatives in wine, beer and other fermented food and beverage products to prevent the growth of unwanted microbes holds various disadvantages for the quality of the end-products and is confronted by mounting consumer resistance. The objective of this study was to investigate the feasibility of controlling spoilage bacteria during yeast-based fermentations by engineering bactericidal strains of Saccharomyces cerevisiae. To test this novel concept, we have successfully expressed a bacteriocin gene in yeast. The pediocin operon of Pediococcus acidilactici PAC1.0 consists of four clustered genes, namely pedA (encoding a 62 amino acid precursor of the PA-1 pediocin), pedB (encoding an immunity factor), pedC (encoding a PA-1 transport protein) and pedD (encoding a protein involved in the transport and processing of PA-1). The pedA gene was inserted into a yeast expression/secretion cassette and introduced as a multicopy episomal plasmid into a laboratory strain (Y294) of S. cerevisiae. Northern blot analysis confirmed that the pedA structural gene in this construct (ADH1P-MFa1S-pedA-ADH1T, designated PED1), was efficiently expressed under the control of the yeast alcohol dehydrogenase I gene promoter (ADH1P) and terminator (ADH1T). Secretion of the PED1-encoded pediocin PA-1 was directed by the yeast mating pheromone alpha-factor's secretion signal (MFa1S). The presence of biologically active antimicrobial peptides produced by the yeast transformants was indicated by agar diffusion assays against sensitive indicator bacteria (e.g. Listeria monocytogenes B73). Protein analysis indicated the secreted heterologous peptide to be approximately 4.6 kDa, which conforms to the expected size. The heterologous peptide was present at relatively low levels in the yeast supernatant but pediocin activity was readily detected when intact yeast colonies were used in sensitive strain overlays. This study could lead to the

  3. Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50▿

    PubMed Central

    Basanta, Antonio; Gómez-Sala, Beatriz; Sánchez, Jorge; Diep, Dzung B.; Herranz, Carmen; Hernández, Pablo E.; Cintas, Luis M.

    2010-01-01

    In this work, we report the expression and secretion of the leaderless two-peptide (EntL50A and EntL50B) bacteriocin enterocin L50 from Enterococcus faecium L50 by the methylotrophic yeast Pichia pastoris X-33. The bacteriocin structural genes entL50A and entL50B were fused to the Saccharomyces cerevisiae gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) and cloned, separately and together (entL50AB), into the P. pastoris expression and secretion vector pPICZαA, which contains the methanol-inducible alcohol oxidase promoter (PAOX1) to express the fusion genes. After transfer into the yeast, the recombinant plasmids were integrated into the genome, resulting in three bacteriocinogenic yeast strains able to produce and secrete the individual bacteriocin peptides EntL50A and EntL50B separately and together. The secretion was efficiently directed by MFα1s through the Sec system, and the precursor peptides were found to be correctly processed to form mature and active bacteriocin peptides. The present work describes for the first time the heterologous expression and secretion of a two-peptide non-pediocin-like bacteriocin by a yeast. PMID:20348300

  4. Trail pheromone disruption of Argentine ant trail formation and foraging.

    PubMed

    Suckling, David Maxwell; Peck, Robert W; Stringer, Lloyd D; Snook, Kirsten; Banko, Paul C

    2010-01-01

    Trail pheromone disruption of invasive ants is a novel tactic that builds on the development of pheromone-based pest management in other insects. Argentine ant trail pheromone, (Z)-9-hexadecenal, was formulated as a micro-encapsulated sprayable particle and applied against Argentine ant populations in 400 m2 field plots in Hawai'i Volcanoes National Park. A widely dispersed point source strategy for trail pheromone disruption was used. Traffic rates of ants in bioassays of treated filter paper, protected from rainfall and sunlight, indicated the presence of behaviorally significant quantities of pheromone being released from the formulation for up to 59 days. The proportion of plots, under trade wind conditions (2–3 m s−1), with visible trails was reduced for up to 14 days following treatment, and the number of foraging ants at randomly placed tuna-bait cards was similarly reduced. The success of these trail pheromone disruption trials in a natural ecosystem highlights the potential of this method for control of invasive ant species in this and other environments.

  5. Trail Pheromone Disruption of Argentine Ant Trail Formation and Foraging

    USGS Publications Warehouse

    Suckling, D.M.; Peck, R.W.; Stringer, L.D.; Snook, K.; Banko, P.C.

    2010-01-01

    Trail pheromone disruption of invasive ants is a novel tactic that builds on the development of pheromone-based pest management in other insects. Argentine ant trail pheromone, (Z)-9-hexadecenal, was formulated as a micro-encapsulated sprayable particle and applied against Argentine ant populations in 400 m2 field plots in Hawai'i Volcanoes National Park. A widely dispersed point source strategy for trail pheromone disruption was used. Traffic rates of ants in bioassays of treated filter paper, protected from rainfall and sunlight, indicated the presence of behaviorally significant quantities of pheromone being released from the formulation for up to 59 days. The proportion of plots, under trade wind conditions (2-3 m s-1), with visible trails was reduced for up to 14 days following treatment, and the number of foraging ants at randomly placed tuna-bait cards was similarly reduced. The success of these trail pheromone disruption trials in a natural ecosystem highlights the potential of this method for control of invasive ant species in this and other environments. ?? Springer Science+Business Media, LLC 2010.

  6. Recognition of foreign oviposition-marking pheromone in a multi-trophic context

    NASA Astrophysics Data System (ADS)

    Stelinski, L. L.; Rodriguez-Saona, C.; Meyer, W. L.

    2009-05-01

    Both phytophagous and parasitic insects deposit oviposition-marking pheromones (OMPs) following oviposition that function to inform conspecifics of a previously utilized host of reduced suitability. The blueberry maggot fly, Rhagoletis mendax Curran (Diptera: Tephritidae), deposits eggs individually into blueberries and then marks the fruit surface with an OMP which reduces acceptance of fruit for oviposition by conspecifics. Diachasma alloeum (Muesebeck) (Hymenoptera: Braconidae) is a parasitic wasp attacking larval R. mendax which also deposits an OMP, signaling conspecifics of a wasp-occupied host. Behavioral studies were conducted testing the hypothesis that the OMP of the parasitic wasp modifies the oviposition behavior of its host fly. In this study, we show that the OMP of D. alloeum is recognized by R. mendax, and female flies will reject wasp-marked fruit for oviposition. Thus, we present a rare demonstration of pheromonal recognition between animals occupying different taxonomic orders and trophic levels. This chemical eavesdropping may enhance the ability of the fly to avoid fruit unsuitable for larval development.

  7. Suppression pheromone and cockroach rank formation

    NASA Astrophysics Data System (ADS)

    Kou, Rong; Chang, Huan-Wen; Chen, Shu-Chun; Ho, Hsiao-Yung

    2009-06-01

    Although agonistic behaviors in the male lobster cockroach ( Nauphoeta cinerea) are well known, the formation of an unstable hierarchy has long been a puzzle. In this study, we investigate how the unstable dominance hierarchy in N. cinerea is maintained via a pheromone signaling system. In agonistic interactions, aggressive posture (AP) is an important behavioral index of aggression. This study showed that, during the formation of a governing hierarchy, thousands of nanograms of 3-hydroxy-2-butanone (3H-2B) were released by the AP-adopting dominant in the first encounter fight, then during the early domination period and that this release of 3H-2B was related to rank maintenance, but not to rank establishment. For rank maintenance, 3H-2B functioned as a suppression pheromone, which suppressed the fighting capability of rivals and kept them in a submissive state. During the period of rank maintenance, as the dominant male gradually decreased his 3H-2B release, the fighting ability of the subordinate gradually developed, as shown by the increasing odds of a subordinate adopting an AP (OSAP). The OSAP was negatively correlated with the amount of 3H-2B released by the dominant and positively correlated with the number of domination days. The same OSAP could be achieved earlier by reducing the amount of 3H-2B released by the dominant indicates that whether the subordinate adopts an offensive strategy depends on what the dominant is doing.

  8. Evidence for a pheromone in the locust borer

    Treesearch

    Jimmy R. Galford

    1977-01-01

    Laboratory studies have suggested the existence of a pheromone in the locust borer. Male beetles spent more time on bolts of wood exposed to virgin females than on control bolts. The females apparently deposited the pheromone on the bolts of wood and filter paper.

  9. Alarm pheromone is detected by the vomeronasal organ in male rats.

    PubMed

    Kiyokawa, Yasushi; Kodama, Yuka; Kubota, Takahiro; Takeuchi, Yukari; Mori, Yuji

    2013-10-01

    It is widely known that a stressed animal releases specific pheromones, possibly for alarming nearby conspecifics. We previously investigated an alarm pheromone in male rats and found that this alarm pheromone evokes several responses, including increases in the defensive and risk assessment behaviors in a modified open-field test, and enhancement of the acoustic startle reflex. However, the role of the vomeronasal organ in these pheromone effects remains unclear. To clarify this point, vomeronasal organ-excising or sham surgeries were performed in male rats for use in 2 experimental models, after which they were exposed to alarm pheromone. We found that the vomeronasal organ-excising surgery blocked the effects of this alarm pheromone in both the modified open-field test and acoustic startle reflex test. In addition, the results of habituation/dishabituation test and soybean agglutinin binding to the accessory olfactory bulb suggested that the vomeronasal organ-excising surgery completely ablated the vomeronasal organ while preserving the functioning of the main olfactory system. From the above results, we showed that the vomeronasal organ plays an important role in alarm pheromone effects in the modified open-field test and acoustic startle reflex test.

  10. Worker honey bee pheromone regulation of foraging ontogeny

    NASA Astrophysics Data System (ADS)

    Pankiw, Tanya

    The evolution of sociality has configured communication chemicals, called primer pheromones, which play key roles in regulating the organization of social life. Primer pheromones exert relatively slow effects that fundamentally alter developmental, physiological, and neural systems. Here, I demonstrate how substances extracted from the surface of foraging and young pre-foraging worker bees regulated age at onset of foraging, a developmental process. Hexane-extractable compounds washed from foraging workers increased foraging age compared with controls, whereas extracts of young pre-foraging workers decreased foraging age. This represents the first known direct demonstration of primer pheromone activity derived from adult worker bees.

  11. A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast

    PubMed Central

    Clarke, Jesse; Dephoure, Noah; Horecka, Ira; Gygi, Steven; Kellogg, Douglas

    2017-01-01

    In budding yeast, cell cycle progression and ribosome biogenesis are dependent on plasma membrane growth, which ensures that events of cell growth are coordinated with each other and with the cell cycle. However, the signals that link the cell cycle and ribosome biogenesis to membrane growth are poorly understood. Here we used proteome-wide mass spectrometry to systematically discover signals associated with membrane growth. The results suggest that membrane trafficking events required for membrane growth generate sphingolipid-dependent signals. A conserved signaling network appears to play an essential role in signaling by responding to delivery of sphingolipids to the plasma membrane. In addition, sphingolipid-dependent signals control phosphorylation of protein kinase C (Pkc1), which plays an essential role in the pathways that link the cell cycle and ribosome biogenesis to membrane growth. Together these discoveries provide new clues as to how growth-­dependent signals control cell growth and the cell cycle. PMID:28794263

  12. Sexual selection, sexual isolation and pheromones in Drosophila melanogaster strains after long-term maintaining on different diets.

    PubMed

    Trajković, Jelena; Miličić, Dragana; Savić, Tatjana; Pavković-Lučić, Sofija

    2017-07-01

    Evolution of reproductive isolation may be a consequence of a variety of signals used in courtship and mate preferences. Pheromones play an important role in both sexual selection and sexual isolation. The abundance of pheromones in Drosophila melanogaster may depend on different environmental factors, including diet. The aim of this study was to ascertain to which degree principal pheromones affect sexual selection in D. melanogaster. We used D. melanogaster strains reared for 14 years on four substrates: standard cornmeal substrate and those containing tomato, banana and carrot. We have previously determined that long-term maintaining of these dietary strains resulted in differences in their cuticular hydrocarbons profile (CHs). In this work, we have tested the level of sexual selection and sexual isolation between aforementioned strains. We found that the high levels of cis-vaccenyl acetate, 7-pentacosene and 7,11-nonacosadiene in the strain reared on a substrate containing carrot affected the individual attractiveness and influenced sexual isolation between flies of this strain and flies reared on a substrate containing banana. Based on these results, long-term different diets, may contribute, to sexual behaviour of D. melanogaster via the effects of principal pheromones. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Western pine beetle populations in Arizona and California differ in the composition of their aggregation pheromones

    Treesearch

    Deepa S. Pureswaran; Richard W. Hofstetter; Brian T. Sullivan; Amanda M. Grady; Cavell Brownie

    2016-01-01

    When related species coexist, selection pressure should favor evolution of species recognition mechanisms to prevent interspecific pairing and wasteful reproductive encounters. We investigated the potential role of pheromone and acoustic signals in species recognition between two species of tree-killing bark beetles, the southern pine beetle, Dendroctonus frontalis...

  14. A novel screen for genes associated with pheromone-induced sterility

    PubMed Central

    Camiletti, Alison L.; Percival-Smith, Anthony; Croft, Justin R.; Thompson, Graham J.

    2016-01-01

    For honey bee and other social insect colonies the ‘queen substance’ regulates colony reproduction rendering workers functionally sterile. The evolution of worker reproductive altruism is explained by inclusive fitness theory, but little is known of the genes involved or how they regulate the phenotypic expression of altruism. We previously showed that application of honeybee queen pheromone to virgin fruit flies suppresses fecundity. Here we exploit this finding to identify genes associated with the perception of an ovary-inhibiting social pheromone. Mutational and RNAi approaches in Drosophila reveal that the olfactory co-factor Orco together with receptors Or49b, Or56a and Or98a are potentially involved in the perception of queen pheromone and the suppression of fecundity. One of these, Or98a, is known to mediate female fly mating behaviour, and its predicted ligand is structurally similar to a methyl component of the queen pheromone. Our novel approach to finding genes associated with pheromone-induced sterility implies conserved reproductive regulation between social and pre-social orders, and further helps to identify candidate orthologues from the pheromone-responsive pathway that may regulate honeybee worker sterility. PMID:27786267

  15. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies.

    PubMed

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y

    2016-12-14

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season.

  16. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies

    PubMed Central

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y.

    2016-01-01

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season. PMID:27966579

  17. Synthesis of syn-4,6-dimethyldodecanal, the male sex pheromone and trail-following pheromone of two species of the termite Zootermopsis.

    PubMed

    Ghostin, J; Bordereau, C; Braekman, J C

    2011-03-01

    Recently, we reported that syn-4,6-dimethyldodecanal is the male sex pheromone and the trail-following pheromone of the Termopsidae Zootermopsis nevadensis and Zootermopsis angusticollis. In this article, we describe the syntheses of the mixture of the four stereoisomers of 4,6-dimethyldodecanal using a synthetic pathway where the key step is a Wittig reaction between methyl 4-methyl-5-oxo-pentanoate and 1-methylheptyl-triphenylphosphonium iodide, and of (±)-syn-4,6-dimethyldodecanal starting from 3,5-dimethyl-2-cyclohexen-1-one. Direct GC-MS comparison of these synthetic samples with the natural pheromone allowed its unambiguous identification.

  18. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    PubMed Central

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  19. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components

    PubMed Central

    Hu, Ping; Gao, Chenglong; Zong, Shixiang; Luo, Youqing; Tao, Jing

    2018-01-01

    The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs). We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication. PMID:29755369

  20. Sexy DEG/ENaC channels involved in gustatory detection of fruit fly pheromones.

    PubMed

    Pikielny, Claudio W

    2012-11-06

    Hydrocarbon pheromones on the cuticle of Drosophila melanogaster modulate the complex courtship behavior of males. Recently, three members of the degenerin/epithelial Na+ channel (DEG/ENaC) family of sodium channel subunits, Ppk25, Ppk23, and Ppk29 (also known as Nope), have been shown to function in gustatory perception of courtship-modulating contact pheromones. All three proteins are required for the activation of male courtship by female pheromones. Specific interactions between two of them have been demonstrated in cultured cells, suggesting that, in a subset of cells where they are coexpressed, these three subunits function within a common heterotrimeric DEG/ENaC channel. Such a DEG/ENaC channel may be gated by pheromones, either directly or indirectly, or alternatively may control the excitability of pheromone-sensing cells. In addition, these studies identify taste neurons that respond specifically to courtship-modulating pheromones and mediate their effects on male behavior. Two types of pheromone-sensing taste neurons, F and M cells, have been defined on the basis of their specific response to either female or male pheromones. These reports set the stage for the dissection of the molecular and cellular mechanisms that mediate gustatory detection of contact pheromones.

  1. Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila

    PubMed Central

    Bousquet, François; Nojima, Tetsuya; Houot, Benjamin; Chauvel, Isabelle; Chaudy, Sylvie; Dupas, Stéphane; Yamamoto, Daisuke; Ferveur, Jean-François

    2012-01-01

    Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts—all of which yielded the same desaturase protein—and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species. PMID:22114190

  2. Molecular elements of pheromone detection in the female moth, Heliothis virescens.

    PubMed

    Zielonka, Monika; Breer, Heinz; Krieger, Jürgen

    2018-06-01

    Pheromones play pivotal roles in the reproductive behavior of moths, most prominently for the mate finding of male moths. Accordingly, the molecular basis for the detection of female-released pheromones by male moths has been studied in great detail. In contrast, little is known about how females can detect pheromone components released by themselves or by conspecifics. In this study, we assessed the antenna of female Heliothis virescens for elements of pheromone detection. In accordance with previous findings that female antennae respond to the sex pheromone component (Z)-9-tetradecenal, we identified olfactory sensory neurons that express its cognate receptor, the receptor type HR6. All HR6 cells coexpressed the "sensory neuron membrane protein 1" (SNMP1) and were associated with supporting cells expressing the pheromone-binding proteins PBP1 and PBP2. These features are reminiscent to male antennae and point to congruent mechanisms for pheromone detection in the two sexes. Further analysis of the SNMP1-expressing cells revealed a higher number in females compared to males. Moreover, in females, the SNMP1 neurons were arranged in clusters, which project their dendrites into a common sensillum, whereas in males there were only solitary SNMP1-neurons and only 1 per sensillum. Not all SNMP1 positive cells in female antennae expressed HR6 but instead the putative pheromone receptors HR11 and HR18, respectively. Neurons expressing 1 of the 3 receptor types were assigned to different sensilla. Together the data indicate that on the antenna of females, sensory neurons in a subset of sensilla trichodea are equipped with molecular elements, which render them responsive to pheromones. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  3. An End-to-End Model of Plant Pheromone Channel for Long Range Molecular Communication.

    PubMed

    Unluturk, Bige D; Akyildiz, Ian F

    2017-01-01

    A new track in molecular communication is using pheromones which can scale up the range of diffusion-based communication from μm meters to meters and enable new applications requiring long range. Pheromone communication is the emission of molecules in the air which trigger behavioral or physiological responses in receiving organisms. The objective of this paper is to introduce a new end-to-end model which incorporates pheromone behavior with communication theory for plants. The proposed model includes both the transmission and reception processes as well as the propagation channel. The transmission process is the emission of pheromones from the leaves of plants. The dispersion of pheromones by the flow of wind constitutes the propagation process. The reception process is the sensing of pheromones by the pheromone receptors of plants. The major difference of pheromone communication from other molecular communication techniques is the dispersion channel acting under the laws of turbulent diffusion. In this paper, the pheromone channel is modeled as a Gaussian puff, i.e., a cloud of pheromone released instantaneously from the source whose dispersion follows a Gaussian distribution. Numerical results on the performance of the overall end-to-end pheromone channel in terms of normalized gain and delay are provided.

  4. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, W.R.; Sterne, R.; Thorner, J.

    1989-07-28

    The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast-a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay.more » The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations. 50 refs., 3 figs., 3 tabs.« less

  5. Chemoreception to aggregation pheromones in the common bed bug, Cimex lectularius.

    PubMed

    Liu, Feng; Xiong, Caixing; Liu, Nannan

    2017-03-01

    The common bed bug, Cimex lectularius, is an obligate blood-feeding insect that is resurgent worldwide, posing a threat to human beings through its biting nuisance and disease transmission. Bed bug aggregation pheromone is considered a very promising attractant for use in the monitoring and management of bed bugs, but as yet little is known regarding the sensory physiology of bed bugs related to this pheromone. This study examined how the individual components of aggregation pheromone are perceived by the olfactory receptor neurons (ORNs) housed in different types of olfactory sensilla in bed bugs and the molecular basis for the ORNs' responses to the aggregation pheromone. We found that the ORNs in the D olfactory sensilla played a predominant role in detecting all the components of aggregation pheromone except for histamine, which was only recognized by the C sensilla. Bed bugs' E sensilla, which include four functionally distinct groups, showed only a very weak but variant sensitivity (both excitatory and inhibitory) to the components of aggregation pheromone. Functional tests of 15 odorant receptors (ORs) in response to the components of aggregation pheromone revealed that most of these components were encoded by multiple ORs with various tuning properties. This study provides a comprehensive understanding of how bed bug aggregation pheromone is perceived and recognized in the peripheral olfactory system and will contribute useful information to support the development of synthetic attractants for bed bug monitoring and control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Zhou, Qian; Liu, Z. Lewis; Ning, Kang; Wang, Anhui; Zeng, Xiaowei; Xu, Jian

    2014-01-01

    The industrial yeast Saccharomyces cerevisiae is a traditional ethanologenic agent and a promising biocatalyst for advanced biofuels production using lignocellulose mateials. Here we present the genomic background of type strain NRRL Y-12632 and its transcriptomic response to 5-hydroxymethyl-2-furaldehyde (HMF), a commonly encountered toxic compound liberated from lignocellulosic-biomass pretreatment, in dissecting the genomic mechanisms of yeast tolerance. Compared with the genome of laboratory model strain S288C, we identified more than 32,000 SNPs in Y-12632 with 23,000 missense and nonsense SNPs. Enriched sequence mutations occurred for genes involved in MAPK- and phosphatidylinositol (PI)- signaling pathways in strain Y-12632, with 41 and 13 genes containing non-synonymous SNPs, respectively. Many of these mutated genes displayed consistent up-regulated signature expressions in response to challenges of 30 mM HMF. Analogous single-gene deletion mutations of these genes showed significantly sensitive growth response on a synthetic medium containing 20 mM HMF. Our results suggest at least three MAPK-signaling pathways, especially for the cell-wall integrity pathway, and PI-signaling pathways to be involved in mediation of yeast tolerance against HMF in industrial yeast Saccharomyces cerevisiae. Higher levels of sequence variations were also observed for genes involved in purine and pyrimidine metabolism pathways. PMID:25296911

  7. Identification of receptors of main sex-pheromone components of three Lepidopteran species.

    PubMed

    Mitsuno, Hidefumi; Sakurai, Takeshi; Murai, Masatoshi; Yasuda, Tetsuya; Kugimiya, Soichi; Ozawa, Rika; Toyohara, Haruhiko; Takabayashi, Junji; Miyoshi, Hideto; Nishioka, Takaaki

    2008-09-01

    Male moths discriminate conspecific female-emitted sex pheromones. Although the chemical components of sex pheromones have been identified in more than 500 moth species, only three components in Bombyx mori and Heliothis virescens have had their receptors identified. Here we report the identification of receptors for the main sex-pheromone components in three moth species, Plutella xylostella, Mythimna separata and Diaphania indica. We cloned putative sex-pheromone receptor genes PxOR1, MsOR1 and DiOR1 from P. xylostella, M. separata and D. indica, respectively. Each of the three genes was exclusively expressed with an Or83b orthologous gene in male olfactory receptor neurons (ORNs) that are surrounded by supporting cells expressing pheromone-binding-protein (PBP) genes. By two-electrode voltage-clamp recording, we tested the ligand specificity of Xenopus oocytes co-expressing PxOR1, MsOR1 or DiOR1 with an OR83b family protein. Among the seven sex-pheromone components of the three moth species, the oocytes dose-dependently responded only to the main sex-pheromone component of the corresponding moth species. In our study, PBPs were not essential for ligand specificity of the receptors. On the phylogenetic tree of insect olfactory receptors, the six sex-pheromone receptors identified in the present and previous studies are grouped in the same subfamily but have no relation with the taxonomy of moths. It is most likely that sex-pheromone receptors have randomly evolved from ancestral sex-pheromone receptors before the speciation of moths and that their ligand specificity was modified by mutations of local amino acid sequences after speciation.

  8. Uncoupling primer and releaser responses to pheromone in honey bees

    NASA Astrophysics Data System (ADS)

    Grozinger, Christina M.; Fischer, Patrick; Hampton, Jacob E.

    2007-05-01

    Pheromones produce dramatic behavioral and physiological responses in a wide variety of species. Releaser pheromones elicit rapid responses within seconds or minutes, while primer pheromones produce long-term changes which may take days to manifest. Honeybee queen mandibular pheromone (QMP) elicits multiple distinct behavioral and physiological responses in worker bees, as both a releaser and primer, and thus produces responses on vastly different time scales. In this study, we demonstrate that releaser and primer responses to QMP can be uncoupled. First, treatment with the juvenile hormone analog methoprene leaves a releaser response (attraction to QMP) intact, but modulates QMP’s primer effects on sucrose responsiveness. Secondly, two components of QMP (9-ODA and 9-HDA) do not elicit a releaser response (attraction) but are as effective as QMP at modulating a primer response, downregulation of foraging-related brain gene expression. These results suggest that different responses to a single pheromone may be produced via distinct pathways.

  9. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms.

    PubMed

    Shi, Cheng; Runnels, Alexi M; Murphy, Coleen T

    2017-03-14

    Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis , and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation.

  10. Multiple Length Peptide-Pheromone Variants Produced by Streptococcus pyogenes Directly Bind Rgg Proteins to Confer Transcriptional Regulation*

    PubMed Central

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J.

    2014-01-01

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication. PMID:24958729

  11. Trail pheromones: an integrative view of their role in social insect colony organization.

    PubMed

    Czaczkes, Tomer J; Grüter, Christoph; Ratnieks, Francis L W

    2015-01-07

    Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.

  12. Periodicity of sex pheromone biosynthesis, release and degradation in the lightbrown apple moth, Epiphyas postvittana (Walker).

    PubMed

    Foster, S P

    2000-03-01

    Pheromone titer in moths is a product of three processes occurring in or at the surface of the pheromone gland: biosynthesis, release, and intraglandular degradation, of pheromone. Changes in titers of sex pheromone, the fatty acyl pheromone analog (FAPA), and tetradecanoate, a pheromone biosynthetic intermediate, were studied in detail in the lightbrown apple moth, Epiphyas postvittana (Walker). Although changes in the pheromone titers in a day were relatively small, with the peak titer being 2-3 times greater than that at the trough, pheromone titer did show a distinct diel periodicity. Titer of the FAPA showed a similar, but less variable, diel pattern, but tetradecanoate titer showed little or no diel pattern. The pattern of pheromone titer suggested that females biosynthesize pheromone at two different rates during the photoperiod: a high rate during the latter half of the photophase and most of the scotophase, which is associated with a high pheromone titer, and a low rate throughout the first half of the photophase, which is associated with a low titer. Consistent with data on commencement of copulation, pheromone was released from the second hour of the scotophase through to the eighth hour. Pheromone release rate during this period appeared to be similar to the rate of pheromone biosynthesis. In contrast to the other two processes, pheromone degradation did not appear to have a diel pattern. Females decapitated at different times of the photoperiod showed a similar decline in pheromone titer, consistent with the reaction kinetics being first order in pheromone titer.

  13. Fatty acyl pheromone analogue-containing lipids and their roles in sex pheromone biosynthesis in the lightbrown apple moth, Epipyhas postvittana (Walker).

    PubMed

    Foster, S P

    2001-04-01

    The pheromone gland of the moth Epiphyas postvittana was analysed for lipids containing the fatty acyl pheromone analogue (FAPA) of the component, (E)-11-tetradecenyl acetate. The FAPA was found predominantly in the triglycerides (TGs), and to a lesser extent in the choline phosphatides. The FAPA was found to be exclusively on the sn-1 or sn-3 position (probably the latter) of the TGs. When pheromone gland lipid extracts were eluted through silica solid phase extraction, a significant proportion of the FAPA was not recovered. Changes in titre of this non-recoverable FAPA paralleled changes in pheromone titre in females. In contrast, changes in recoverable FAPA (mostly in the TGs) titre showed a gradual increase with time after eclosion. The properties of this non-recoverable FAPA were consistent with it being the CoA ester of the FAPA. Thus, it appears that the FAPA-CoA ester is the immediate lipid precursor of the pheromone, and that the FAPA-containing TGs are formed by reaction of the FAPA-CoA with 1,2-DGs, as a consequence of the rate-limiting reduction of the FAPA-CoA. Finally, injection of PBAN into females decapitated for 3 days resulted in a decrease in recoverable FAPA and an increase in non-recoverable FAPA, suggesting that PBAN influences the lipolysis of TGs. Overall these data suggest that there are two routes for biosynthesis of the pheromone component E11-14:OAc in E. postvittana: a de novo route, directly via the CoA esters of the various fatty acid intermediates, and a less direct route via the lipolysis of FAPA-containing TGs.

  14. Determinants of cell-to-cell variability in protein kinase signaling.

    PubMed

    Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  15. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans.

    PubMed

    Joo, Hyoe-Jin; Park, Saeram; Kim, Kwang-Youl; Kim, Mun-Young; Kim, Heekyeong; Park, Donha; Paik, Young-Ki

    2016-03-15

    The nematode worm Caenorhabditis elegans survives by adapting to environmental stresses such as temperature extremes by increasing the concentrations of ascaroside pheromones, termed ascarosides or daumones, which signal early C. elegans larvae to enter a non-aging dauer state for long-term survival. It is well known that production of ascarosides is stimulated by heat stress, resulting in enhanced dauer formation by which worms can adapt to environmental insults. However, the molecular mechanism by which ascaroside pheromone biosynthesis is stimulated by heat stress remains largely unknown. In the present study, we show that the heat-shock transcription factor HSF-1 can mediate enhanced ascaroside pheromone biosynthesis in response to heat stress by activating the peroxisomal fatty acid β-oxidation genes in C. elegans. To explore the potential molecular mechanisms, we examined the four major genes involved in the ascaroside biosynthesis pathway and then quantified the changes in both the expression of these genes and ascaroside production under heat-stress conditions. The transcriptional activation of ascaroside pheromone biosynthesis genes by HSF-1 was quite notable, which is not only supported by chromatin immunoprecipitation assays, but also accompanied by the enhanced production of chemically detectable major ascarosides (e.g. daumones 1 and 3). Consequently, the dauer formation rate was significantly increased by the ascaroside pheromone extracts from N2 wild-type but not from hsf-1(sy441) mutant animals grown under heat-stress conditions. Hence heat-stress-enhanced ascaroside production appears to be mediated at least in part by HSF-1, which seems to be important in adaptation strategies for coping with heat stress in this nematode. © 2016 Authors; published by Portland Press Limited.

  16. Finite grade pheromone ant colony optimization for image segmentation

    NASA Astrophysics Data System (ADS)

    Yuanjing, F.; Li, Y.; Liangjun, K.

    2008-06-01

    By combining the decision process of ant colony optimization (ACO) with the multistage decision process of image segmentation based on active contour model (ACM), an algorithm called finite grade ACO (FACO) for image segmentation is proposed. This algorithm classifies pheromone into finite grades and updating of the pheromone is achieved by changing the grades and the updated quantity of pheromone is independent from the objective function. The algorithm that provides a new approach to obtain precise contour is proved to converge to the global optimal solutions linearly by means of finite Markov chains. The segmentation experiments with ultrasound heart image show the effectiveness of the algorithm. Comparing the results for segmentation of left ventricle images shows that the ACO for image segmentation is more effective than the GA approach and the new pheromone updating strategy appears good time performance in optimization process.

  17. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells.

    PubMed

    Moyes, David L; Murciano, Celia; Runglall, Manohursingh; Islam, Ayesha; Thavaraj, Selvam; Naglik, Julian R

    2011-01-01

    We previously reported that a bi-phasic innate immune MAPK response, constituting activation of the mitogen-activated protein kinase (MAPK) phosphatase MKP1 and c-Fos transcription factor, discriminates between the yeast and hyphal forms of Candida albicans in oral epithelial cells (ECs). Since the vast majority of mucosal Candida infections are vaginal, we sought to determine whether a similar bi-phasic MAPK-based immune response was activated by C. albicans in vaginal ECs. Here, we demonstrate that vaginal ECs orchestrate an innate response to C. albicans via NF-κB and MAPK signaling pathways. However, unlike in oral ECs, the first MAPK response, defined by c-Jun transcription factor activation, is delayed until 2 h in vaginal ECs but is still independent of hypha formation. The 'second' or 'late' MAPK response, constituting MKP1 and c-Fos transcription factor activation, is identical to oral ECs and is dependent upon both hypha formation and fungal burdens. NF-κB activation is immediate but independent of morphology. Furthermore, the proinflammatory response in vaginal ECs is different to oral ECs, with an absence of G-CSF and CCL20 and low level IL-6 production. Therefore, differences exist in how C. albicans activates signaling mechanisms in oral and vaginal ECs; however, the activation of MAPK-based pathways that discriminate between yeast and hyphal forms is retained between these mucosal sites. We conclude that this MAPK-based signaling pathway is a common mechanism enabling different human epithelial tissues to orchestrate innate immune responses specifically against C. albicans hyphae.

  18. Temperature limits trail following behaviour through pheromone decay in ants

    NASA Astrophysics Data System (ADS)

    van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim

    2011-12-01

    In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.

  19. Distributed Pheromone-Based Swarming Control of Unmanned Air and Ground Vehicles for RSTA

    DTIC Science & Technology

    2008-03-20

    Forthcoming in Proceedings of SPIE Defense & Security Conference, March 2008, Orlando, FL Distributed Pheromone -Based Swarming Control of Unmanned...describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of...onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm

  20. Pheromone lures to monitor sparse populations of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae)

    Treesearch

    David G. Grimble

    1988-01-01

    Four types of spruce budworm pheromone lures were field-tested in sparse spruce budworm populations in Maine. BioLures® with constant pheromone emission rates less than 1.0, ca. 1.0-1.5, and ca. 15.0 micrograms of pheromone per day were compared to polyvinyl chloride (PVC) lures with rapidly decreasing pheromone emission rates. Mean trap catch was roughly proportional...

  1. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells

    PubMed Central

    Hansen, Anders S.; Hao, Nan; O'Shea, Erin K.

    2015-01-01

    Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure, and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy, and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. Using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, whilst collecting data for thousands of single cells. Compared to other protocols, the present protocol is relatively easy to adopt and higher-throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms. PMID:26158443

  2. Sensory reception of the primer pheromone ethyl oleate

    NASA Astrophysics Data System (ADS)

    Muenz, Thomas S.; Maisonnasse, Alban; Plettner, Erika; Le Conte, Yves; Rössler, Wolfgang

    2012-05-01

    Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker-worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.

  3. Pheromones: a new ergogenic aid in sport?

    PubMed

    Papaloucas, Marios; Kyriazi, Kyriaki; Kouloulias, Vassilis

    2015-10-01

    Nowadays, antidoping laboratories are improving detection methods to confirm the use of forbidden substances. These tests are based both on direct identification of new substances or their metabolites and on indirect evaluation of changes in gene, protein, or metabolite patterns (genomics, proteomics, or metabolomics). The World Anti-Doping Agency (WADA) officially monitors anabolic steroids, hormones, growth factors, β-agonists, hormone and metabolic modulators, masking agents, street drugs, manipulation of blood and blood components, chemical and physical manipulation, gene doping, stimulants, narcotics, glucocorticosteroids, and β-blockers. However, several other substances are under review by WADA. Pheromones accomplish the structure and function of life from its first step, while they have an impact on the body's performance. Both testosterone and pheromones have an ergogenic effect that could potentially affect an athlete's performance. The authors share their questions concerning the potential impact of pheromones in sports.

  4. Modeling the suppression of sea lamprey populations by use of the male sex pheromone

    USGS Publications Warehouse

    Klassen, Waldemar; Adams, Jean V.; Twohey, Michael B.

    2005-01-01

    The suppression of sea lamprey populations, Petromyzon marinus (Linnaeus), was modeled using four different applications of the male sex pheromone: (1) pheromone-baited traps that remove females from the spawning population, (2) pheromone-baited decoys that exhaust females before they are able to spawn, (3) pheromone-enhanced sterile males that increase the proportion of non-fertile matings, and (4) camouflaging of the pheromone emitted by calling males to make it difficult for females to find a mate. The models indicated that thousands of traps or hundreds of thousands of decoys would be required to suppress a population of 100,000 animals. The potential efficacy of pheromone camouflages is largely unknown, and additional research is required to estimate how much pheromone is needed to camouflage the pheromone plumes of calling males. Pheromone-enhanced sterile males appear to be a promising application in the Great Lakes. Using this technique for three generations each of ca. 7 years duration could reduce sea lamprey populations by 90% for Lakes Huron and Ontario and by 98% for Lake Michigan, based on current trapping operations that capture 20 to 30% of the population each year.

  5. Variation in and responses to brood pheromone of the honey bee (Apis mellifera L.).

    PubMed

    Metz, Bradley N; Pankiw, Tanya; Tichy, Shane E; Aronstein, Katherine A; Crewe, Robin M

    2010-04-01

    The 10 fatty acid ester components of brood pheromone were extracted from larvae of different populations of USA and South African honey bees and subjected to gas chromatography-mass spectrometry quantitative analysis. Extractable amounts of brood pheromone were not significantly different by larval population; however, differences in the proportions of components enabled us to classify larval population of 77% of samples correctly by discriminant analysis. Honeybee releaser and primer pheromone responses to USA, Africanized and-European pheromone blends were tested. Texas-Africanized and Georgia-European colonies responded with a significantly greater ratio of returning pollen foragers when treated with a blend from the same population than from a different population. There was a significant interaction of pheromone blend by adult population source among Georgia-European bees for modulation of sucrose response threshold, a primer response. Brood pheromone blend variation interacted with population for pollen foraging response of colonies, suggesting a self recognition cue for this pheromone releaser behavior. An interaction of pheromone blend and population for priming sucrose response thresholds among workers within the first week of adult life suggested a more complex interplay of genotype, ontogeny, and pheromone blend.

  6. Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells

    NASA Astrophysics Data System (ADS)

    Pophof, Blanka

    2002-10-01

    Pheromone binding proteins (PBPs) occur in high concentrations in the sensillum lymph surrounding the sensory dendrites of moth pheromone-sensitive sensilla. They were shown to transport the lipophilic odorants through the aqueous sensillum lymph to the receptor cells. The sensilla trichodea of the silkmoth Antheraea polyphemus are supplied with three types of receptor cells responding specifically to three pheromone components. The sensillum lymph of these sensilla contains three different types of PBPs. In this study, recombinant PBPs in various combinations with pheromone components were applied to the receptor cells via tip-opened sensilla during electrophysiological recordings. The responses of receptor cells were shown to depend on both the pheromone component and the PBP. Pheromone components artificially bound to particular PBPs elicited nerve impulses in receptor cell types which they do not activate under natural conditions. This is the first electrophysiological study to suggest that the PBPs contribute to the activation of receptor molecules.

  7. Dynamics of putative sex pheromone components during heat periods in estrus-induced cows.

    PubMed

    Mozūraitis, R; Kutra, J; Borg-Karlson, A-K; Būda, V

    2017-09-01

    Determination of the optimal insemination time in dairy cows is vital for fertilization success and is a challenging task due to silent or weak signs of estrus shown by some cows. This can be overcome by combining several estrus detection methods, leading to higher detection rates. However, an efficient, noninvasive method for detecting estrus in cows is still needed. Chemical cues released by the cow during estrus have been proposed to have pheromonal properties and signal readiness to mate to the bull. Such cues could be used in an industrial setting to detect cows in estrus. However, no conclusive published data show temporal changes in putative sex pheromone levels during estrus. The goal of this study was to determine the temporal pattern of putative sex pheromone components during estrus and to assess the reproducibility of changes in pheromone concentration with respect to ovulation time. Two injections of the hormone PGF 2α were administered over a 2-wk interval to induce and synchronize the estrous cycles of 6 Holstein cows. The precise time of ovulation was determined by means of an ultrasound technique, and estrus was determined by visual observation. Using solid-phase microextraction gas chromatography-mass spectrometry techniques, we showed that acetic and propionic acids, which have been proposed to be putative sex pheromone components in cows, were present in the headspaces of all estrous and diestrous fecal samples, whereas 1-iodoundecane was not detected by solid-phase microextraction or by solvent extraction with diethyl ether. Low levels of acids were observed until 1 d before ovulation, at which point their concentrations increased, peaking around 0.5 d before ovulation. The application of labeled synthetic standards revealed that during the peak of release, 36 ± 8 ng (average ± SD) of acetic acid and 10 ± 3 ng of propionic acid were present in 0.5-g samples of estrous-phase fecal matter compared with 19 ± 5 and 2.3 ± 1 ng of acetic and

  8. Pheromonal Communication in the European House Dust Mite, Dermatophagoides pteronyssinus

    PubMed Central

    Steidle, Johannes L.M.; Barcari, Elena; Hradecky, Marc; Trefz, Simone; Tolasch, Till; Gantert, Cornelia; Schulz, Stefan

    2014-01-01

    Despite the sanitary importance of the European house dust mite Dermatophagoides pteronyssinus (Trouessart, 1897), the pheromonal communication in this species has not been sufficiently studied. Headspace analysis using solid phase micro extraction (SPME) revealed that nerol, neryl formate, pentadecane, (6Z,9Z)-6,9-heptadecadiene, and (Z)-8-heptadecene are released by both sexes whereas neryl propionate was released by males only. Tritonymphs did not produce any detectable volatiles. In olfactometer experiments, pentadecane and neryl propionate were attractive to both sexes as well as to tritonymphs. (Z)-8-heptadecene was only attractive to male mites. Therefore it is discussed that pentadecane and neryl propionate are aggregation pheromones and (Z)-8-heptadecene is a sexual pheromone of the European house dust mite D. pteronyssinus. To study the potential use of pheromones in dust mite control, long-range olfactometer experiments were conducted showing that mites can be attracted to neryl propionate over distances of at least 50 cm. This indicates that mite pheromones might be useable to monitor the presence or absence of mites in the context of control strategies. PMID:26462831

  9. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms

    PubMed Central

    Shi, Cheng; Runnels, Alexi M; Murphy, Coleen T

    2017-01-01

    Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation. DOI: http://dx.doi.org/10.7554/eLife.23493.001 PMID:28290982

  10. How flies respond to honey bee pheromone: the role of the foraging gene on reproductive response to queen mandibular pheromone

    NASA Astrophysics Data System (ADS)

    Camiletti, Alison L.; Awde, David N.; Thompson, Graham J.

    2014-01-01

    In this study we test one central prediction from sociogenomic theory—that social and non-social taxa share common genetic toolkits that regulate reproduction in response to environmental cues. We exposed Drosophila females of rover ( for R) and sitter ( for s) genotypes to an ovary-suppressing pheromone derived from the honeybee Apis mellifera. Surprisingly, queen mandibular pheromone (QMP) affected several measures of fitness in flies, and in a manner comparable to the pheromone's normal effect on bee workers. QMP-treated sitter flies had smaller ovaries that contained fewer eggs than did untreated controls. QMP-treated rover flies, by contrast, showed a more variable pattern that only sometimes resulted in ovary inhibition, while a third strain of fly that contains a sitter mutant allele in a rover background ( for s2) showed no ovarian response to QMP. Taken together, our results suggest that distinctly non-social insects have some capacity to respond to social cues, but that this response varies with fly genotype. In general, the interspecific response is consistent with a conserved gene set affecting reproductive physiology. The differential response among strains in particular suggests that for is itself important for modulating the fly's pheromonal response.

  11. A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship.

    PubMed

    Caudron, Fabrice; Barral, Yves

    2013-12-05

    Cellular behavior is frequently influenced by the cell's history, indicating that single cells may memorize past events. We report that budding yeast permanently escape pheromone-induced cell-cycle arrest when experiencing a deceptive mating attempt, i.e., not reaching their putative partner within reasonable time. This acquired behavior depends on super-assembly and inactivation of the G1/S inhibitor Whi3, which liberates the G1 cyclin Cln3 from translational inhibition. Super-assembly of Whi3 is a slow response to pheromone, driven by polyQ and polyN domains, counteracted by Hsp70, and stable over generations. Unlike prion aggregates, Whi3 super-assemblies are not inherited mitotically but segregate to the mother cell. We propose that such polyQ- and polyN-based elements, termed here mnemons, act as cellular memory devices to encode previous environmental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Argentine ant trail pheromone disruption is mediated by trail concentration.

    PubMed

    Suckling, David Maxwell; Stringer, Lloyd D; Corn, Joshua E

    2011-10-01

    Argentine ant trail pheromone disruption, using continuous release of the trail pheromone compound (Z)-9-hexadecanal, reduces the incidence of trails and foraging rates of field populations. However, little is known about the concentrations of pheromone required for successful disruption. We hypothesized that higher pheromone quantities would be necessary to disrupt larger ant populations. To test this, we laid a 30-cm long base trail of (Z)-9-hexadecanal on a glass surface at low and high rates (1 and 100 pg/cm) (Trail 1), and laid a second, shorter trail (Trail 2, 10 cm long, located 1.5 cm upwind) near the middle of Trail 1 at six rates (1, 10, 100, 1,000, 10,000, and 100,000 pg/cm). We then recorded and digitized movements of individual ants following Trail 1, and derived a regression statistic, r (2), as an index of trail integrity, and also recorded arrival success at the other end of the trail (30 cm) near a food supply. Disruption of trails required 100 fold more pheromone upwind, independent of base-trail concentration. This implies that in the field, trail disruption is likely to be less successful against high ant-trail densities (greater concentration of trail pheromone), and more successful against newly formed or weak trails, as could be expected along invasion fronts.

  13. Predicted taxonomic patterns in pheromone production by longhorned beetles

    NASA Astrophysics Data System (ADS)

    Ray, Ann M.; Lacey, Emerson S.; Hanks, Lawrence M.

    2006-11-01

    Males of five species of three tribes in the longhorned beetle subfamily Cerambycinae produce volatile pheromones that share a structural motif (hydroxyl or carbonyl groups at carbons two and three in straight-chains of six, eight, or ten carbons). Pheromone gland pores are present on the prothoraces of males, but are absent in females, suggesting that male-specific gland pores could provide a convenient morphological indication that a species uses volatile pheromones. In this article, we assess the taxonomic distribution of gland pores within the Cerambycinae by examining males and females of 65 species in 24 tribes using scanning electron microscopy. Gland pores were present in males and absent in females of 49 species, but absent in both sexes of the remaining 16 species. Pores were confined to indentations in the cuticle. Among the species that had male-specific gland pores were four species already known to produce volatile compounds consistent with the structural motif. These findings support the initial assumption that gland pores are associated with the production of pheromones by males. There were apparently no taxonomic patterns in the presence of gland pores. These findings suggest that volatile pheromones play an important role in reproduction for many species of the Cerambycinae, and that the trait is evolutionarily labile.

  14. Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii

    PubMed Central

    Dekker, Teun; Revadi, Santosh; Mansourian, Suzan; Ramasamy, Sukanya; Lebreton, Sebastien; Becher, Paul G.; Angeli, Sergio; Rota-Stabelli, Omar; Anfora, Gianfranco

    2015-01-01

    The Drosophila pheromone cis-11-octadecenyl acetate (cVA) is used as pheromone throughout the melanogaster group and fulfils a primary role in sexual and social behaviours. Here, we found that Drosophila suzukii, an invasive pest that oviposits in undamaged ripe fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb, is atrophied. Despite loss of cVA production, its receptor, Or67d, and cognate sensillum, T1, which are essential in cVA-mediated behaviours, were fully functional. However, T1 expression was dramatically reduced in D. suzukii, and the corresponding antennal lobe glomerulus, DA1, minute. Behavioural responses to cVA depend on the input balance of Or67d neurons (driving cVA-mediated behaviours) and Or65a neurons (inhibiting cVA-mediated behaviours). Accordingly, the shifted input balance in D. suzukii has reversed cVA's role in sexual behaviour: perfuming D. suzukii males with Drosophila melanogaster equivalents of cVA strongly reduced mating rates. cVA has thus evolved from a generic sex pheromone to a heterospecific signal that disrupts mating in D. suzukii, a saltational shift, mediated through offsetting the input balance that is highly conserved in congeneric species. This study underlines that dramatic changes in a species' sensory preference can result from rather ‘simple’ numerical shifts in underlying neural circuits. PMID:25716789

  15. Pheromone modulates plant odor responses in the antennal lobe of a moth.

    PubMed

    Chaffiol, Antoine; Dupuy, Fabienne; Barrozo, Romina B; Kropf, Jan; Renou, Michel; Rospars, Jean-Pierre; Anton, Sylvia

    2014-06-01

    In nature, male moths are exposed to a complex plant odorant environment when they fly upwind to a sex pheromone source in their search for mates. Plant odors have been shown to affect responses to pheromone at various levels but how does pheromone affects plant odor perception? We recorded responses from neurons within the non-pheromonal "ordinary glome ruli" of the primary olfactory center, the antennal lobe (AL), to single and pulsed stimulations with the plant odorant heptanal, the pheromone, and their mixture in the male moth Agrotis ipsilon. We identified 3 physiological types of neurons according to their activity patterns combining excitatory and inhibitory phases. Both local and projection neurons were identified in each physiological type. Neurons with excitatory responses to heptanal responded also frequently to the pheromone and showed additive responses to the mixture. Moreover, the neuron's ability of resolving successive pulses generally improved with the mixture. Only some neurons with combined excitatory/inhibitory, or purely inhibitory responses to heptanal, also responded to the pheromone. Although individual mixture responses were not significantly different from heptanal responses in these neurons, pulse resolution was improved with the mixture as compared with heptanal alone. These results demonstrate that the pheromone and the general odorant subsystems interact more intensely in the moth AL than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Alarm Pheromones and Chemical Communication in Nymphs of the Tropical Bed Bug Cimex hemipterus (Hemiptera: Cimicidae)

    PubMed Central

    Liedtke, H. Christoph; Åbjörnsson, Kajsa; Harraca, Vincent; Knudsen, Jette T.; Wallin, Erika A.; Hedenström, Erik; Ryne, Camilla

    2011-01-01

    The recent resurge of bed bug infestations (Cimex spp.; Cimicidae) and their resistance to commonly used pesticides calls for alternative methods of control. Pheromones play an important role in environmentally sustainable methods for the management of many pest insects and may therefore be applicable for the control of bed bugs. The tropical bed bug, Cimex hemipterus, is a temporary ectoparasite on humans and causes severe discomfort. Compared to the common bed bug, Cimex lectularius, little is known about the chemical signalling and pheromone-based behaviour of the tropical species. Here, we show that the antennal morphology and volatile emission of C. hemipterus closely resembles those of C. lectularius and we test their behavioural responses to conspecific odour emissions. Two major volatiles are emitted by male, female and nymph C. hemipterus under stress, (E)-2-hexenal and (E)-2-octenal. Notably, nymph emissions show contrasting ratios of these compounds to adults and are further characterized by the addition of 4-oxo-(E)-2-hexenal and 4-oxo-(E)-2-octenal. The discovery of this nymph pheromone in C. hemipterus is potentially the cause of a repellent effect observed in the bio-tests, where nymph odours induce a significantly stronger repellent reaction in conspecifics than adult odours. Our results suggest that pheromone-based pest control methods developed for C. lectularius could be applicable to C. hemipterus, with the unique nymph blend showing promising practical properties. PMID:21479180

  17. Multiple length peptide-pheromone variants produced by Streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation.

    PubMed

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J

    2014-08-08

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Pheromone trailing behavior of the brown tree snake, Boiga irregularis.

    PubMed

    Greene, M J; Stark, S L; Mason, R T

    2001-11-01

    The ability of snakes to follow pheromone trails has significant consequences for survival and reproduction. Of particular importance is the ability of snakes to locate conspecifics during the breeding season via the detection of pheromone trails. In this study, the ability of male brown tree snakes (Boiga irregularis), a tropical, rear-fanged colubrid, to follow pheromone trails produced by reproductively active conspecifics was tested in the laboratory by using a Y maze. Males displayed a trailing response to both female and male pheromone trails over blank controls. As males of this species display ritualized combat behavior, these responses likely represent both direct and indirect mechanisms, respectively, for the location of potential mates in the wild. Males did not, however, discriminate between male and female trails when given a choice on the Y maze.

  19. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R.; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  20. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera).

    PubMed

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  1. Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food.

    PubMed

    Reichle, Christian; Aguilar, Ingrid; Ayasse, Manfred; Jarau, Stefan

    2011-03-01

    Foragers of several species of stingless bees (Hymenoptera, Apidae and Meliponini) deposit pheromone marks in the vegetation to guide nestmates to new food sources. These pheromones are produced in the labial glands and are nest and species specific. Thus, an important question is how recruited foragers recognize their nestmates' pheromone in the field. We tested whether naïve workers learn a specific trail pheromone composition while being recruited by nestmates inside the hive in the species Scaptotrigona pectoralis. We installed artificial scent trails branching off from trails deposited by recruiting foragers and registered whether newly recruited bees follow these trails. The artificial trails were baited with trail pheromones of workers collected from foreign S. pectoralis colonies. When the same foreign trail pheromone was presented inside the experimental hives while recruitment took place a significant higher number of bees followed the artificial trails than in experiments without intranidal presentation. Our results demonstrate that recruits of S. pectoralis can learn the composition of specific trail pheromone bouquets inside the nest and subsequently follow this pheromone in the field. We, therefore, suggest that trail pheromone recognition in S. pectoralis is based on a flexible learning process rather than being a genetically fixed behaviour.

  2. A putative human pheromone, androstadienone, increases cooperation between men.

    PubMed

    Huoviala, Paavo; Rantala, Markus J

    2013-01-01

    Androstadienone, a component of male sweat, has been suggested to function as a human pheromone, an airborne chemical signal causing specific responses in conspecifics. In earlier studies androstadienone has been reported to increase attraction, affect subjects' mood, cortisol levels and activate brain areas linked to social cognition, among other effects. However, the existing psychological evidence is still relatively scarce, especially regarding androstadienone's effects on male behaviour. The purpose of this study was to look for possible behavioural effects in male subjects by combining two previously distinct branches of research: human pheromone research and behavioural game theory of experimental economics. Forty male subjects participated in a mixed-model, double-blind, placebo-controlled experiment. The participants were exposed to either androstadienone or a control stimulus, and participated in ultimatum and dictator games, decision making tasks commonly used to measure cooperation and generosity quantitatively. Furthermore, we measured participants' salivary cortisol and testosterone levels during the experiment. Salivary testosterone levels were found to positively correlate with cooperative behaviour. After controlling for the effects of participants' baseline testosterone levels, androstadienone was found to increase cooperative behaviour in the decision making tasks. To our knowledge, this is the first study to show that androstadienone directly affects behaviour in human males.

  3. Identification of the sex pheromone of the tree infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae).

    PubMed

    Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard

    2015-01-01

    The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful

  4. Identification of the Sex Pheromone of the Tree Infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae)

    PubMed Central

    Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard

    2015-01-01

    The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful

  5. Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones

    PubMed Central

    Cattaneo, Alberto Maria; Gonzalez, Francisco; Bengtsson, Jonas M.; Corey, Elizabeth A.; Jacquin-Joly, Emmanuelle; Montagné, Nicolas; Salvagnin, Umberto; Walker, William B.; Witzgall, Peter; Anfora, Gianfranco; Bobkov, Yuriy V.

    2017-01-01

    Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication. PMID:28117454

  6. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection.

    PubMed

    Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S; Ames, James B

    2010-02-23

    The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A. transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multiangle light scattering, and (15)N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven alpha-helices (alpha1, L8-L23; alpha2, D27-F36; alpha3, R46-V62; alpha4, A73-M78; alpha5, D84-S100; alpha6, R107-L125; alpha7, M131-E141) that adopt an overall main-chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108, and C97/C117 and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141, and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (alpha7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139, and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, and V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.

  7. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    PubMed

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  8. Yeast Genes Controlling Responses to Topogenic Signals in a Model Transmembrane Protein

    PubMed Central

    Tipper, Donald J.; Harley, Carol A

    2002-01-01

    Yeast protein insertion orientation (PIO) mutants were isolated by selecting for growth on sucrose in cells in which the only source of invertase is a C-terminal fusion to a transmembrane protein. Only the fraction with an exocellular C terminus can be processed to secreted invertase and this fraction is constrained to 2–3% by a strong charge difference signal. Identified pio mutants increased this to 9–12%. PIO1 is SPF1, encoding a P-type ATPase located in the endoplasmic reticulum (ER) or Golgi. spf1-null mutants are modestly sensitive to EGTA. Sensitivity is considerably greater in an spf1 pmr1 double mutant, although PIO is not further disturbed. Pmr1p is the Golgi Ca2+ ATPase and Spf1p may be the equivalent ER pump. PIO2 is STE24, a metalloprotease anchored in the ER membrane. Like Spf1p, Ste24p is expressed in all yeast cell types and belongs to a highly conserved protein family. The effects of ste24- and spf1-null mutations on invertase secretion are additive, cell generation time is increased 60%, and cells become sensitive to cold and to heat shock. Ste24p and Rce1p cleave the C-AAX bond of farnesylated CAAX box proteins. The closest paralog of SPF1 is YOR291w. Neither rce1-null nor yor291w-null mutations affected PIO or the phenotype of spf1- or ste24-null mutants. Mutations in PIO3 (unidentified) cause a weaker Pio phenotype, enhanced by a null mutation in BMH1, one of two yeast 14-3-3 proteins. PMID:11950929

  9. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    PubMed

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  10. Transcriptome exploration of the sex pheromone gland of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae).

    PubMed

    González-Caballero, Natalia; Valenzuela, Jesus G; Ribeiro, José M C; Cuervo, Patricia; Brazil, Reginaldo P

    2013-03-07

    Molecules involved in pheromone biosynthesis may represent alternative targets for insect population control. This may be particularly useful in managing the reproduction of Lutzomyia longipalpis, the main vector of the protozoan parasite Leishmania infantum in Latin America. Besides the chemical identity of the major components of the L. longipalpis sex pheromone, there is no information regarding the molecular biology behind its production. To understand this process, obtaining information on which genes are expressed in the pheromone gland is essential. In this study we used a transcriptomic approach to explore the pheromone gland and adjacent abdominal tergites in order to obtain substantial general sequence information. We used a laboratory-reared L. longipalpis (one spot, 9-Methyl GermacreneB) population, captured in Lapinha Cave, state of Minas Gerais, Brazil for this analysis. From a total of 3,547 cDNA clones, 2,502 high quality sequences from the pheromone gland and adjacent tissues were obtained and assembled into 1,387 contigs. Through blast searches of public databases, a group of transcripts encoding proteins potentially involved in the production of terpenoid precursors were identified in the 4th abdominal tergite, the segment containing the pheromone gland. Among them, protein-coding transcripts for four enzymes of the mevalonate pathway such as 3-hydroxyl-3-methyl glutaryl CoA reductase, phosphomevalonate kinase, diphosphomevalonate descarboxylase, and isopentenyl pyrophosphate isomerase were identified. Moreover, transcripts coding for farnesyl diphosphate synthase and NADP+ dependent farnesol dehydrogenase were also found in the same tergite. Additionally, genes potentially involved in pheromone transportation were identified from the three abdominal tergites analyzed. This study constitutes the first transcriptomic analysis exploring the repertoire of genes expressed in the tissue containing the L. longipalpis pheromone gland as well as the

  11. Transcriptome exploration of the sex pheromone gland of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae)

    PubMed Central

    2013-01-01

    Background Molecules involved in pheromone biosynthesis may represent alternative targets for insect population control. This may be particularly useful in managing the reproduction of Lutzomyia longipalpis, the main vector of the protozoan parasite Leishmania infantum in Latin America. Besides the chemical identity of the major components of the L. longipalpis sex pheromone, there is no information regarding the molecular biology behind its production. To understand this process, obtaining information on which genes are expressed in the pheromone gland is essential. Methods In this study we used a transcriptomic approach to explore the pheromone gland and adjacent abdominal tergites in order to obtain substantial general sequence information. We used a laboratory-reared L. longipalpis (one spot, 9-Methyl GermacreneB) population, captured in Lapinha Cave, state of Minas Gerais, Brazil for this analysis. Results From a total of 3,547 cDNA clones, 2,502 high quality sequences from the pheromone gland and adjacent tissues were obtained and assembled into 1,387 contigs. Through blast searches of public databases, a group of transcripts encoding proteins potentially involved in the production of terpenoid precursors were identified in the 4th abdominal tergite, the segment containing the pheromone gland. Among them, protein-coding transcripts for four enzymes of the mevalonate pathway such as 3-hydroxyl-3-methyl glutaryl CoA reductase, phosphomevalonate kinase, diphosphomevalonate descarboxylase, and isopentenyl pyrophosphate isomerase were identified. Moreover, transcripts coding for farnesyl diphosphate synthase and NADP+ dependent farnesol dehydrogenase were also found in the same tergite. Additionally, genes potentially involved in pheromone transportation were identified from the three abdominal tergites analyzed. Conclusion This study constitutes the first transcriptomic analysis exploring the repertoire of genes expressed in the tissue containing the L

  12. Using pheromones in the management of bark beetle outbreaks

    Treesearch

    Alf Bakke

    1991-01-01

    Identification of aggregation pheromones and field experiments using synthetic components have given scientists a better understanding of the behavior of many bark beetles. They have also yielded more effective weapons with which to control outbreaks of aggressive pest species. Synthetic pheromone components are commercially available for control of many species (...

  13. Directional Bias and Pheromone for Discovery and Coverage on Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.; Berenhaut, Kenneth S.; Oehmen, Christopher S.

    2012-09-11

    Natural multi-agent systems often rely on “correlated random walks” (random walks that are biased toward a current heading) to distribute their agents over a space (e.g., for foraging, search, etc.). Our contribution involves creation of a new movement and pheromone model that applies the concept of heading bias in random walks to a multi-agent, digital-ants system designed for cyber-security monitoring. We examine the relative performance effects of both pheromone and heading bias on speed of discovery of a target and search-area coverage in a two-dimensional network layout. We found that heading bias was unexpectedly helpful in reducing search time andmore » that it was more influential than pheromone for improving coverage. We conclude that while pheromone is very important for rapid discovery, heading bias can also greatly improve both performance metrics.« less

  14. Integration of Proteomic, Transcriptional, and Interactome Data Reveals Hidden Signaling Components

    PubMed Central

    Huang, Shao-shan Carol; Fraenkel, Ernest

    2009-01-01

    Cellular signaling and regulatory networks underlie fundamental biological processes such as growth, differentiation, and response to the environment. Although there are now various high-throughput methods for studying these processes, knowledge of them remains fragmentary. Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie outside of the expected pathways. These unexpected components of the cellular response are often the most interesting, because they can provide new insights into biological processes and potentially reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present a technique, based on the Steiner tree problem, that uses previously reported protein-protein and protein-DNA interactions to determine how these hits are organized into functionally coherent pathways, revealing many components of the cellular response that are not readily apparent in the original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast pheromone response, it identifies changes in diverse cellular processes that extend far beyond the expected pathways. PMID:19638617

  15. Glycerol-3-phosphate O-acyltransferase is required for PBAN-induced sex pheromone biosynthesis in Bombyx mori

    PubMed Central

    Du, Mengfang; Liu, Xiaoguang; Liu, Xiaoming; Yin, Xinming; Han, Shuangyin; Song, Qisheng; An, Shiheng

    2015-01-01

    Female moths employ their own pheromone blends as a communicational medium in mating behavior. The biosynthesis and release of sex pheromone in female moths are regulated by pheromone biosynthesis activating neuropeptide (PBAN) and the corresponding action of PBAN has been well elucidated in Bombyx mori. However, very little is known about the molecular mechanism regarding the biosynthesis of sex pheromone precursor. In this study, quantitative proteomics was utilized to comprehensively elucidate the expression dynamics of pheromone glands (PGs) during development. Proteomic analysis revealed a serial of differentially expressed sex pheromone biosynthesis-associated proteins at the different time points of B. mori development. Most interestingly B. mori glycerol-3-phosphate O-acyltransferase (BmGPAT) was found to be expressed during the key periods of sex pheromone biosynthesis. RNAi knockdown of BmGPAT confirmed the important function of this protein in the biosynthesis of sex pheromone precursor, triacylglcerol (TAG), and subsequently PBAN-induced production of sex pheromone, bombykol. Behavioral analysis showed that RNAi knockdown of GPAT significantly impaired the ability of females to attract males. Our findings indicate that GPAT acts to regulate the biosynthesis of sex pheromone precursor, TAG, thus influencing PBAN-induced sex pheromone production and subsequent mating behavior. PMID:25630665

  16. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds.

    PubMed

    Nunes, Túlio M; Mateus, Sidnei; Favaris, Arodi P; Amaral, Mônica F Z J; von Zuben, Lucas G; Clososki, Giuliano C; Bento, José M S; Oldroyd, Benjamin P; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B; Lopes, Norberto P

    2014-12-12

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones.

  17. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds

    PubMed Central

    Nunes, Túlio M.; Mateus, Sidnei; Favaris, Arodi P.; Amaral, Mônica F. Z. J.; von Zuben, Lucas G.; Clososki, Giuliano C.; Bento, José M. S.; Oldroyd, Benjamin P.; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B.; Lopes, Norberto P.

    2014-01-01

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones. PMID:25502598

  18. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths

    PubMed Central

    Symonds, Matthew RE; Johnson, Tamara L; Elgar, Mark A

    2012-01-01

    The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae. PMID:22408739

  19. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals

    PubMed Central

    Cristaldo, Paulo F.; Jandák, Vojtĕch; Kutalová, Kateřina; Rodrigues, Vinícius B.; Brothánek, Marek; Jiříček, Ondřej; DeSouza, Og; Šobotník, Jan

    2015-01-01

    ABSTRACT Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory

  20. Peripheral Coding of Sex Pheromone Blends with Reverse Ratios in Two Helicoverpa Species

    PubMed Central

    Huang, Ling-Qiao; Yan, Fu-Shun; Wang, Chen-Zhu

    2013-01-01

    The relative proportions of components in a pheromone blend play a major role in sexual recognition in moths. Two sympatric species, Helicoverpa armigera and Helicoverpa assulta, use (Z)-11-hexadecenal (Z11–16: Ald) and (Z)-9-hexadecenal (Z9–16: Ald) as essential sex pheromone components but in very different ratios, 97∶3 and 7∶93 respectively. Using wind tunnel tests, single sensillum recording and in vivo calcium imaging, we comparatively studied behavioral responses and physiological activities at the level of antennal sensilla and antennal lobe (AL) in males of the two species to blends of the two pheromone components in different ratios (100∶0, 97∶3, 50∶50, 7∶93, 0∶100). Z11–16: Ald and Z9–16: Ald were recognized by two populations of olfactory sensory neurons (OSNs) in different trichoid sensilla on antennae of both species. The ratios of OSNs responding to Z11–16:Ald and Z9–16:Ald OSNs were 100∶28.9 and 21.9∶100 in H. armigera and H. assulta, respectively. The Z11–16:Ald OSNs in H. armigera exhibited higher sensitivity and efficacy than those in H. assulta, while the Z9–16:Ald OSNs in H. armigera had the same sensitivity but lower efficacy than those in H. assulta. At the dosage of 10 µg, Z11–16: Ald and Z9–16: Ald evoked calcium activity in 8.5% and 3.0% of the AL surface in H. armigera, while 5.4% and 8.6% of AL in H. assulta, respectively. The calcium activities in the AL reflected the peripheral input signals of the binary pheromone mixtures and correlated with the behavioral output. These results demonstrate that the binary pheromone blends were precisely coded by the firing frequency of individual OSNs tuned to Z11–16: Ald or Z9–16: Ald, as well as their population sizes. Such information was then accurately reported to ALs of H. armigera and H. assulta, eventually producing different behaviors. PMID:23894593

  1. A Prize-Collecting Steiner Tree Approach for Transduction Network Inference

    NASA Astrophysics Data System (ADS)

    Bailly-Bechet, Marc; Braunstein, Alfredo; Zecchina, Riccardo

    Into the cell, information from the environment is mainly propagated via signaling pathways which form a transduction network. Here we propose a new algorithm to infer transduction networks from heterogeneous data, using both the protein interaction network and expression datasets. We formulate the inference problem as an optimization task, and develop a message-passing, probabilistic and distributed formalism to solve it. We apply our algorithm to the pheromone response in the baker’s yeast S. cerevisiae. We are able to find the backbone of the known structure of the MAPK cascade of pheromone response, validating our algorithm. More importantly, we make biological predictions about some proteins whose role could be at the interface between pheromone response and other cellular functions.

  2. Rapid modulation of gene expression profiles in the telencephalon of male goldfish following exposure to waterborne sex pheromones.

    PubMed

    Lado, Wudu E; Zhang, Dapeng; Mennigen, Jan A; Zamora, Jacob M; Popesku, Jason T; Trudeau, Vance L

    2013-10-01

    Sex pheromones rapidly affect endocrine physiology and behaviour, but little is known about their effects on gene expression in the neural tissues that mediate olfactory processing. In this study, we exposed male goldfish for 6h to waterborne 17,20βP (4.3 nM) and PGF2α (3 nM), the main pre-ovulatory and post-ovulatory pheromones, respectively. Both treatments elevated milt volume (P=0.001). Microarray analysis of male telencephalon following PGF2α treatment identified 71 unique transcripts that were differentially expressed (q<5%; 67 up, 4 down). Functional annotation of these regulated genes indicates that PGF2α pheromone exposure affects diverse biological processes including nervous system functions, energy metabolism, cholesterol/lipoprotein transport, translational regulation, transcription and chromatin remodelling, protein processing, cytoskeletal organization, and signalling. By using real-time RT-PCR, we further validated three candidate genes, ependymin-II, calmodulin-A and aldolase C, which exhibited 3-5-fold increase in expression following PGF2α exposure. Expression levels of some other genes that are thought to be important for reproduction were also determined using real-time RT-PCR. Expression of sGnRH was increased by PGF2α, but not 17,20βP, whereas cGnRH expression was increased by 17,20βP but not PGF2α. In contrast, both pheromones increase the expression of glutamate (GluR2a, NR2A) and γ-aminobutyric acid (GABAA γ2) receptor subunit mRNAs. Milt release and rapid modulation of neuronal transcription are part of the response of males to female sex pheromones. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study

    PubMed Central

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-01-01

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management. PMID:27782155

  4. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study.

    PubMed

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-10-26

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management.

  5. Irradiated boll weevils: pheromone production determined by GLC analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGovern, W.L.; McKibben, G.H.; Gueldner, R.C.

    1975-08-15

    The production of pheromone by Anthonomus grandis Boheman when treated with 10,000 rad of $sup 60$Co gamma irradiation compared favorably with that of control weevils for 5 days; however, feeding (determined by frass collection) was reduced from day one. No direct correlation was found between production of pheromone and elimination of frass. (auth)

  6. Interspecific Responses of Termites to Synthetic Trail-Following Pheromones.

    DTIC Science & Technology

    Various synthetic analogs of the trail-following pheromone were tested against several subterranean and dry- and damp-wood termites . The synthetic... pheromones were found to be generally active against subterranean termites , both under laboratory and semi-field conditions. One of the most active compounds, 4-phenyl-cis-3-butanol, can be synthesized easily. (Author)

  7. Synthetic pheromones disrupt male Dioryctria spp. moths in a loblolly pine seed orchard

    Treesearch

    Gary L. DeBarr; James L. Hanula; Christine G. Niwa; John C Nord

    2000-01-01

    Synthetic sex pheromones released in a loblolly pine, Pinus taeda L. (Pinaceae), seed orchard interfered with the ability of male coneworm moths, Dioryctria Zeller spp. (Lepidoptera: Pyralidae), to locate traps baited with sex pheromones or live females. Pherocon 1 C® traps baited with synthetic pheromones or live conspecific...

  8. Contact sex pheromone components of the cowpea weevil, Callosobruchus maculatus.

    PubMed

    Nojima, Satoshi; Shimomura, Kenji; Honda, Hiroshi; Yamamoto, Izuru; Ohsawa, Kanju

    2007-05-01

    The cowpea weevil, Callosobruchus maculatus, is a major pest of stored pulses. Females of this species produce a contact sex pheromone that elicits copulation behavior in males. Pheromone was extracted from filter-paper shelters taken from cages that housed females. Crude ether extract stimulated copulation in male C. maculatus. Initial fractionation showed behavioral activity in acidic and neutral fractions. Furthermore, bioassay-guided fractionation and gas chromatography-mass spectroscopy (GC-MS) analysis of active fractions revealed that the active components of the acidic fraction were 2,6-dimethyloctane-1,8-dioic acid and nonanedioic acid. These components along with the hydrocarbon fraction, a mixture of C(27)-C(35) straight chain and methyl branched hydrocarbons, had a synergistic effect on the behavior of males. Glass dummies treated with an authentic pheromone blend induced copulation behavior in males. The potential roles of the contact sex pheromone of C. maculatus are discussed.

  9. Trail-following pheromones in basal termites, with special reference to Mastotermes darwiniensis.

    PubMed

    Sillam-Dussès, David; Sémon, Etienne; Lacey, Michael J; Robert, Alain; Lenz, Michael; Bordereau, Christian

    2007-10-01

    In the framework of an evolutionary study, trail pheromones have been studied in the most basal extant termite, Mastotermes darwiniensis (Mastotermitidae), and two other basal termites, the Termopsidae Porotermes adamsoni (Porotermitinae) and Stolotermes victoriensis (Stolotermitinae). Although workers of M. darwiniensis do not walk in single file while exploring a new environment under experimental conditions and are unable to follow artificial trails in 'open field' experiments, they do secrete a trail-following pheromone from their sternal glands. This unique behavior might reflect a primitive function of communication of the sternal gland. The major component of the pheromone appears to be the same in the three basal species: the norsesquiterpene alcohol (E)-2,6,10-trimethyl-5,9-undecadien-1-ol. This represents a new chemical category of trail-following pheromones for termites. The quantity of pheromone was estimated as 20 pg/individual in M. darwiniensis, 700 pg/individual in P. adamsoni, and 4 pg/individual in S. victoriensis. The activity threshold was 1 ng/cm in M. darwiniensis and 10 pg/cm in P. adamsoni. In M. darwiniensis, the trail pheromone was secreted by sternal gland 4 and to a lesser degree by sternal gland 3, sternal gland 5 being almost inactive. This study highlighted phylogenetic relationships between the Mastotermitidae and two subfamilies of the Termopsidae, the Porotermitinae and the Stolotermitinae. Furthermore, it indicated a heterogeneity within the Termopsidae, with Porotermitinae and Stolotermitinae on one hand, and Termopsinae on the other. Finally, Mastotermitidae and Termopsidae, with C14 trail pheromones, are clearly separated from the Kalotermitidae, Rhinotermitidae, and Termitidae that secrete C12 or C20 trail pheromones.

  10. Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis.

    PubMed

    Hoover, Kelli; Keena, Melody; Nehme, Maya; Wang, Shifa; Meng, Peter; Zhang, Aijun

    2014-02-01

    Anoplophora glabripennis (Motsch.) is a polyphagous member of the Cerambycidae, and is considered, worldwide, to be one of the most serious quarantine pests of deciduous trees. We isolated four chemicals from the trail of A. glabripennis virgin and mated females that were not present in trails of mature males. These compounds were identified as 2-methyldocosane and (Z)-9-tricosene (major components), as well as (Z)-9-pentacosene and (Z)-7-pentacosene (minor components); every trail wash sample contained all four chemical components, although the amounts and ratios changed with age of the female. Males responded to the full pheromone blend, regardless of mating status, but virgin females chose the control over the pheromone, suggesting that they may use it as a spacing pheromone to avoid intraspecific competition and maximize resources. Virgin, but not mated, males also chose the major pheromone components in the absence of the minor components, over the control. Taken together, these results indicate that all four chemicals are components of the trail pheromone. The timing of production of the ratios of the pheromone blend components that produced positive responses from males coincided with the timing of sexual maturation of the female.

  11. How much is a pheromone worth?

    PubMed Central

    Bento, Jose Mauricio S.; Parra, Jose Roberto P.; de Miranda, Silvia H. G.; Adami, Andrea C. O.; Vilela, Evaldo F.; Leal, Walter S.

    2016-01-01

    Pheromone-baited traps have been widely used in integrated pest management programs, but their economic value for growers has never been reported.  We analyzed the economic benefits of long-term use of traps baited with the citrus fruit borer Gymnandrosoma aurantianum sex pheromone in Central-Southern Brazil. Our analysis show that from 2001 to 2013 citrus growers avoided accumulated pest losses of 132.7 million to 1.32 billion USD in gross revenues, considering potential crop losses in the range of 5 to 50%. The area analyzed, 56,600 to 79,100 hectares of citrus (20.4 to 29.4 million trees), corresponds to 9.7 to 13.5% of the total area planted with citrus in the state of São Paulo. The data show a benefit-to-cost ratio of US$ 2,655 to US$ 26,548 per dollar spent on research with estimated yield loss prevented in the range of 5-50%, respectively. This study demonstrates that, in addition to the priceless benefits for the environment, sex pheromones are invaluable tools for growers as their use for monitoring populations allows rational and reduced use of insecticides, a win-win situation. PMID:27583133

  12. Pheromone biosynthetic pathways in the moths Heliothis subflexa and Heliothis virescens.

    PubMed

    Choi, Man-Yeon; Groot, Astrid; Jurenka, Russell A

    2005-06-01

    Sex pheromones of many moth species have relatively simple structures consisting of a hydrocarbon chain with a functional group and one to several double bonds. These sex pheromones are derived from fatty acids through specific biosynthetic pathways. We investigated the incorporation of deuterium-labeled tetradecanoic, hexadecanoic, and octadecanoic acid precursors into pheromone components of Heliothis subflexa and Heliothis virescens. The two species utilize (Z)11-hexadecenal as the major pheromone component, which is produced by Delta11 desaturation of hexadecanoic acid. H. subflexa also produced (Z)11-hexadecanol and (Z)-11-hexadecenyl acetate via Delta11 desaturation. In H. subflexa, octadecanoic acid was used to biosynthesize the minor pheromone components (Z)9-hexadecenal, (Z)9-hexadecenol, and (Z)9-hexadecenyl acetate. These minor components are produced by Delta11 desaturation of octadecanoic acid followed by one round of chain-shortening. In contrast, H. virescens used hexadecanoic acid as a substrate to form (Z)11-hexadecenal and (Z)11-hexadecenol and hexadecenal. H. virescens also produced (Z)9-tetradecenal by Delta11 desaturation of the hexadecanoic acid followed by one round of chain-shortening and reduction. Tetradecanoic acid was not utilized as a precursor to form Z9-14:Ald in H. virescens. This labeling pattern indicates that the Delta11 desaturase is the only active desaturase present in the pheromone gland cells of both species.

  13. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies.

    PubMed

    Podholová, Kristýna; Plocek, Vítězslav; Rešetárová, Stanislava; Kučerová, Helena; Hlaváček, Otakar; Váchová, Libuše; Palková, Zdena

    2016-03-29

    Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation.

  14. A new C12 alcohol identified as a sex pheromone and a trail-following pheromone in termites: the diene (Z,Z)-dodeca-3,6-dien-1-ol.

    PubMed

    Robert, Alain; Peppuy, Alexis; Sémon, Etienne; Boyer, François D; Lacey, Michael J; Bordereau, Christian

    2004-01-01

    The diunsaturated C12 alcohol (Z,Z)-dodeca-3,6-dien-1-ol (dodecadienol) has been characterized by GC-MS and FTIR as a novel releaser pheromone in termites. This alcohol identified in Ancistrotermes pakistanicus (Termitidae, Macrotermitinae) possesses a double pheromonal function which again illustrates the chemical parsimony of termites compared with other social insects. In workers, dodecadienol elicits trail-following at a very low concentration (activity threshold at 0.1 pg/cm of trail); in male alates it induces trail-following at a low concentration (1-10 pg/cm) and sexual attraction at a higher concentration (about 1 ng). Traces of the monounsaturated C12 alcohol (Z)-dodec-3-en-1-ol (dodecenol), known as a trail pheromone of several Macrotermitinae, were also found in the sternal gland extracts of A. pakistanicus, although only dodecadienol was present at the surface of the sternal gland. Workers of A. pakistanicus are not sensitive to dodecenol, but they are as sensitive to dodecatrienol as to dodecadienol. However, in the study area (Vietnam), A. pakistanicus is living in sympatry only with those Macrotermitinae using dodecenol as a trail pheromone, the foraging populations therefore being well isolated through their respective trail pheromones. The presence of three types of unsaturated C12 alcohols as releaser pheromones in the only Macrotermitinae subfamily is discussed, and a possible biosynthetic pathway from linoleic acid is proposed for dodecadienol.

  15. Sex-pairing pheromone in the Asian termite pest species Odontotermes formosanus.

    PubMed

    Wen, Ping; Ji, Bao-Zhong; Liu, Shu-Wen; Liu, Cong; Sillam-Dussès, David

    2012-05-01

    The sex-pairing pheromone of the black winged subterranean termite, Odontotermes formosanus (Shiraki) (Isoptera, Termitidae), was investigated using headspace-SPME, GC-MS, GC-EAD, and attraction bioassays. Females secrete the pheromone from their sternal gland to attract males. The sex-pairing pheromone is composed of (Z,Z)-dodeca-3,6-dien-1-ol and (Z)-dodec-3-en-1-ol, estimated at 9 to 16.64 ng and 0.2 to 0.54 ng, respectively. Both short- and long-distance sex attraction bioassays were employed to show that these compounds act in synergy at long distance, but only (Z,Z)-dodeca-3,6-dien-1-ol is active at short distance. The pheromone may be useful in efforts to control this pest, which is considered one of the most harmful termite species in Southeast Asia.

  16. Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yang; Xu, Xianzhong; Xu, Wei

    2010-11-15

    Culex mosquitoes introduce the pathogens responsible for filariasis, West Nile virus, St. Louis encephalitis, and other diseases into humans. Currently, traps baited with oviposition semiochemicals play an important role in detection efforts and could provide an environmentally friendly approach to controlling their populations. The odorant binding proteins (OBPs) in the female's antenna play a crucial, if yet imperfectly understood, role in sensing oviposition cues. Here, we report the X-ray crystallography and NMR 3D structures of OBP1 for Culex quinquefasciatus (CquiOBP1) bound to an oviposition pheromone (5R,6S)-6-acetoxy-5-hexadecanolide (MOP). In both studies, CquiOBP1 had the same overall six-helix structure seen in othermore » insect OBPs, but a detailed analysis revealed an important previously undescribed feature. There are two models for OBP-mediated signal transduction: (i) direct release of the pheromone from an internal binding pocket in a pH-dependent fashion and (ii) detection of a pheromone-induced conformational change in the OBP {center_dot} pheromone complex. Although CquiOBP1 binds MOP in a pH-dependent fashion, it lacks the C terminus required for the pH-dependent release model. This study shows that CquiOBP binds MOP in an unprecedented fashion using both a small central cavity for the lactone head group and a long hydrophobic channel for its tail.« less

  17. The chemistry of gamete attraction: chemical structures, biosynthesis, and (a)biotic degradation of algal pheromones.

    PubMed Central

    Boland, W

    1995-01-01

    Female gametes of marine brown algae release and/or attract their conspecific males by chemical signals. The majority of these compounds are unsaturated, nonfunctionalized acyclic, and/or alicyclic C11 hydrocarbons. Threshold concentrations for release and attraction are generally observed in the range of 1-1000 pmol. The blends may contain various configurational isomers of the genuine pheromones as well as mixtures of enantiomers. Higher plants produce the C11 hydrocarbons from dodeca-3,6,9-trienoic acid; brown algae exploit the family of icosanoids for biosynthesis of the same compounds. The biosynthetic routes comprise several spontaneously occurring pericyclic reactions such as [3.3]-sigmatropic rearrangements, [1.7]-hydrogen shifts, and electrocyclic ring closures. All pheromones are (a)biotically degraded by ubiquitous oxidative pathways involving singlet oxygen or hydroxyl radicals, which may be produced through the agency of heavy metals, huminic acids, or light. PMID:7816845

  18. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    PubMed

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  19. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    PubMed Central

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  20. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming

    2013-01-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  1. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit

    PubMed Central

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith EK; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-01-01

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state. DOI: http://dx.doi.org/10.7554/eLife.06914.001 PMID:26083710

  2. Sex pheromone of orange wheat blossom midge, Sitodiplosis mosellana

    NASA Astrophysics Data System (ADS)

    Gries, Regine; Gries, G.; Khaskin, Grigori; King, Skip; Olfert, Owen; Kaminski, Lori-Ann; Lamb, Robert; Bennett, Robb

    Pheromone extract of the female orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (SM) (Diptera: Cecidomyiidae), was analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry (MS), employing fused silica columns coated with DB-5, DB-210, DB-23 or SP-1000. These analyses revealed a single, EAD-active candidate pheromone which was identified as 2,7-nonanediyl dibutyrate. In experiments in wheat fields in Saskatchewan, traps baited with (2S,7S)-2,7-nonanediyl dibutyrate attracted significant numbers of male SM. The presence of other stereoisomers did not adversely affect trap captures. Facile synthesis of stereoisomeric 2,7-nonanediyl dibutyrate will facilitate the development of pheromone-based monitoring or even control of SM populations.

  3. Application of a Sex Pheromone, Pheromone Analogs, and Verticillium lecanii for Management of Heterodera glycines

    PubMed Central

    Meyer, S. L. F.; Huettel, R. N.

    1996-01-01

    A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests. PMID:19277343

  4. Soldier caste influences on candidate primer pheromone levels and juvenile hormone-dependent caste differentiation in workers of the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Schmelz, Eric A; Scharf, Michael E

    2011-06-01

    Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste composition in social insect colonies. Primer pheromones are one type of extrinsic caste-regulatory factor; they are chemical signaling molecules produced by certain colony members to impact developmental physiology of recipient nestmates. However, only limited evidence exists regarding primer pheromones and their actions in eusocial termites. In previous research we identified two soldier-produced terpenes, γ-cadinene (CAD) and γ-cadinenal (ALD), as candidate primer pheromones of the lower termite Reticulitermes flavipes. In the present study we tested hypotheses related to CAD and ALD action in recipient individuals. We examined the influences of terminally developed soldier termites on (1) CAD and ALD levels and (2) caste differentiation in developmentally totipotent workers. Our findings show CAD and ALD (respectively) are caste stimulatory and inhibitory components of chemical blends present in soldier heads, ALD levels increase significantly (10.9×) in workers only in the presence of soldiers, and soldiers can reduce developmental-hormone response thresholds of workers, presumably via ALD action. These findings provide novel evidence supporting that CAD and ALD are authentic caste-regulatory primer pheromones in Reticulitermes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The antibacterial protein lysozyme identified as the termite egg recognition pheromone.

    PubMed

    Matsuura, Kenji; Tamura, Takashi; Kobayashi, Norimasa; Yashiro, Toshihisa; Tatsumi, Shingo

    2007-08-29

    Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus 'termite-ball' and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP), which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence of pathogenic

  7. The Antibacterial Protein Lysozyme Identified as the Termite Egg Recognition Pheromone

    PubMed Central

    Matsuura, Kenji; Tamura, Takashi; Kobayashi, Norimasa; Yashiro, Toshihisa; Tatsumi, Shingo

    2007-01-01

    Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus ‘termite-ball’ and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP), which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence of pathogenic

  8. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  9. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components.

    PubMed

    Butcher, Rebecca A; Ragains, Justin R; Kim, Edward; Clardy, Jon

    2008-09-23

    In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered "nonaging" because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.

  10. Turning workers into false queens- the role of exogenous pheromones in regulating reproduction in worker honey bees.

    PubMed

    Yusuf, Abdullahi A; Crewe, Robin M; Pirk, Christian W W

    2018-05-18

    One of the responses that honey bee workers can make in the event of queen loss is to develop into false queens. False queens are workers that exhibit both behavioural and physiological traits similar to those of a true queen. However, the presence of more than one false queen in a colony distorts the established hierarchies. As transformation into a false queen occurs after emergence as an adult, we tested the effect of worker mobile pheromone carriers (PCs) treated with exogenously supplied pheromones on their nestmates. The PCs carried either synthetic mandibular gland pheromones or pheromones extracted from capensis parasitic workers . Only PCs attracted retinues of workers, increased pheromone production, and activated their ovaries becoming false queens. Pheromones from capensis workers were more effective than extracts of commercially available synthetic queen pheromones in eliciting these effects. Using this simple mobile pheromone delivery system, we have shown that, carrying amounts of exogenous pheromone can induce pheromone production in the carrier resulting in the production of false queens within experimental groups. Possible implications of using this technique to modify and regulate worker reproduction in colonies are discussed. © 2018. Published by The Company of Biologists Ltd.

  11. A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast.

    PubMed

    Clarke, Jesse; Dephoure, Noah; Horecka, Ira; Gygi, Steven; Kellogg, Douglas

    2017-10-01

    In budding yeast, cell cycle progression and ribosome biogenesis are dependent on plasma membrane growth, which ensures that events of cell growth are coordinated with each other and with the cell cycle. However, the signals that link the cell cycle and ribosome biogenesis to membrane growth are poorly understood. Here we used proteome-wide mass spectrometry to systematically discover signals associated with membrane growth. The results suggest that membrane trafficking events required for membrane growth generate sphingolipid-dependent signals. A conserved signaling network appears to play an essential role in signaling by responding to delivery of sphingolipids to the plasma membrane. In addition, sphingolipid-dependent signals control phosphorylation of protein kinase C (Pkc1), which plays an essential role in the pathways that link the cell cycle and ribosome biogenesis to membrane growth. Together these discoveries provide new clues as to how growth--dependent signals control cell growth and the cell cycle. © 2017 Clarke et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes.

    PubMed

    Bose, Neelanjan; Meyer, Jan M; Yim, Joshua J; Mayer, Melanie G; Markov, Gabriel V; Ogawa, Akira; Schroeder, Frank C; Sommer, Ralf J

    2014-07-07

    Dauer formation, a major nematode survival strategy, represents a model for small-molecule regulation of metazoan development [1-10]. Free-living nematodes excrete dauer-inducing pheromones that have been assumed to target conspecifics of the same genotype [9, 11]. However, recent studies in Pristionchus pacificus revealed that the dauer pheromone of some strains affects conspecifics of other genotypes more strongly than individuals of the same genotype [12]. To elucidate the mechanistic basis for this intriguing cross-preference, we compared six P. pacificus wild isolates to determine the chemical composition of their dauer-inducing metabolomes and responses to individual pheromone components. We found that these isolates produce dauer pheromone blends of different composition and respond differently to individual pheromone components. Strikingly, there is no correlation between production of and dauer response to a specific compound in individual strains. Specifically, pheromone components that are abundantly produced by one genotype induce dauer formation in other genotypes, but not necessarily in the abundant producer. Furthermore, some genotypes respond to pheromone components they do not produce themselves. These results support a model of intraspecific competition in nematode dauer formation. Indeed, we observed intraspecific competition among sympatric strains in a novel experimental assay, suggesting a new role of small molecules in nematode ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A volatile trail Pheromone of the Leaf-Cutting Ant, Atta Texana

    Treesearch

    J. H. Tumlinson; John C. Moser; R. M. Silverstein; R. G. Brownlee; J. M. Ruth

    1972-01-01

    The major volatile trail-marking pheromone of the Texas leaf-cutting Ant, Atta texana, was isolated, identified as methyl 4-methylpyrrole-2-carboxylate, and synthesized. The synthesized pheromone elicited strong trail-following response from workers in the laboratory and field.

  14. Sex Pheromone Receptor Specificity in the European Corn Borer Moth, Ostrinia nubilalis

    PubMed Central

    Wanner, Kevin W.; Nichols, Andrew S.; Allen, Jean E.; Bunger, Peggy L.; Garczynski, Stephen F.; Linn, Charles E.; Robertson, Hugh M.; Luetje, Charles W.

    2010-01-01

    Background The European corn borer (ECB), Ostrinia nubilalis (Hubner), exists as two separate sex pheromone races. ECB(Z) females produce a 97∶3 blend of Z11- and E11-tetradecenyl acetate whereas ECB(E) females produce an opposite 1∶99 ratio of the Z and E isomers. Males of each race respond specifically to their conspecific female's blend. A closely related species, the Asian corn borer (ACB), O. furnacalis, uses a 3∶2 blend of Z12- and E12-tetradecenyl acetate, and is believed to have evolved from an ECB-like ancestor. To further knowledge of the molecular mechanisms of pheromone detection and its evolution among closely related species we identified and characterized sex pheromone receptors from ECB(Z). Methodology Homology-dependent (degenerate PCR primers designed to conserved amino acid motifs) and homology-independent (pyrophosphate sequencing of antennal cDNA) approaches were used to identify candidate sex pheromone transcripts. Expression in male and female antennae was assayed by quantitative real-time PCR. Two-electrode voltage clamp electrophysiology was used to functionally characterize candidate receptors expressed in Xenopus oocytes. Conclusion We characterized five sex pheromone receptors, OnOrs1 and 3–6. Their transcripts were 14–100 times more abundant in male compared to female antennae. OnOr6 was highly selective for Z11-tetradecenyl acetate (EC50 = 0.86±0.27 µM) and was at least three orders of magnitude less responsive to E11-tetradecenyl acetate. Surprisingly, OnOr1, 3 and 5 responded to all four pheromones tested (Z11- and E11-tetradecenyl acetate, and Z12- and E12-tetradecenyl acetate) and to Z9-tetradecenyl acetate, a behavioral antagonist. OnOr1 was selective for E12-tetradecenyl acetate based on an efficacy that was at least 5-fold greater compared to the other four components. This combination of specifically- and broadly-responsive pheromone receptors corresponds to published results of sensory neuron activity in vivo

  15. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species

    PubMed Central

    Leary, Greg P.; Allen, Jean E.; Bunger, Peggy L.; Luginbill, Jena B.; Linn, Charles E.; Macallister, Irene E.; Kavanaugh, Michael P.; Wanner, Kevin W.

    2012-01-01

    Sex pheromone communication, acting as a prezygotic barrier to mating, is believed to have contributed to the speciation of moths and butterflies in the order Lepidoptera. Five decades after the discovery of the first moth sex pheromone, little is known about the molecular mechanisms that underlie the evolution of pheromone communication between closely related species. Although Asian and European corn borers (ACB and ECB) can be interbred in the laboratory, they are behaviorally isolated from mating naturally by their responses to subtly different sex pheromone isomers, (E)-12- and (Z)-12-tetradecenyl acetate and (E)-11- and (Z)-11-tetradecenyl acetate (ACB: E12, Z12; ECB; E11, Z11). Male moth olfactory systems respond specifically to the pheromone blend produced by their conspecific females. In vitro, ECB(Z) odorant receptor 3 (OR3), a sex pheromone receptor expressed in male antennae, responds strongly to E11 but also generally to the Z11, E12, and Z12 pheromones. In contrast, we show that ACB OR3, a gene that has been subjected to positive selection (ω = 2.9), responds preferentially to the ACB E12 and Z12 pheromones. In Ostrinia species the amino acid residue corresponding to position 148 in transmembrane domain 3 of OR3 is alanine (A), except for ACB OR3 that has a threonine (T) in this position. Mutation of this residue from A to T alters the pheromone recognition pattern by selectively reducing the E11 response ∼14-fold. These results suggest that discrete mutations that narrow the specificity of more broadly responsive sex pheromone receptors may provide a mechanism that contributes to speciation. PMID:22891317

  16. Chemosensory Gene Families in Ectropis grisescens and Candidates for Detection of Type-II Sex Pheromones.

    PubMed

    Li, Zhao-Qun; Luo, Zong-Xiu; Cai, Xiao-Ming; Bian, Lei; Xin, Zhao-Jun; Liu, Yan; Chu, Bo; Chen, Zong-Mao

    2017-01-01

    Tea grey geometrid ( Ectropis grisescens ), a devastating chewing pest in tea plantations throughout China, produces Type-II pheromone components. Little is known about the genes encoding proteins involved in the perception of Type-II sex pheromone components. To investigate the olfaction genes involved in E . grisescens sex pheromones and plant volatiles perception, we sequenced female and male antennae transcriptomes of E . grisescens . After assembly and annotation, we identified 153 candidate chemoreception genes in E. grisescens , including 40 odorant-binding proteins (OBPs), 30 chemosensory proteins (CSPs), 59 odorant receptors (ORs), and 24 ionotropic receptors (IRs). The results of phylogenetic, qPCR, and mRNA abundance analyses suggested that three candidate pheromone-binding proteins (EgriOBP2, 3, and 25), two candidate general odorant-binding proteins (EgriOBP1 and 29), six pheromone receptors (EgriOR24, 25, 28, 31, 37, and 44), and EgriCSP8 may be involved in the detection of Type-II sex pheromone components. Functional investigation by heterologous expression in Xenopus oocytes revealed that EgriOR31 was robustly tuned to the E . grisescens sex pheromone component (Z,Z,Z)-3,6,9-octadecatriene and weakly to the other sex pheromone component (Z,Z)-3,9-6,7-epoxyoctadecadiene. Our results represent a systematic functional analysis of the molecular mechanism of olfaction perception in E . grisescens with an emphasis on gene encoding proteins involved in perception of Type-II sex pheromones, and provide information that will be relevant to other Lepidoptera species.

  17. Chemosensory Gene Families in Ectropis grisescens and Candidates for Detection of Type-II Sex Pheromones

    PubMed Central

    Li, Zhao-Qun; Luo, Zong-Xiu; Cai, Xiao-Ming; Bian, Lei; Xin, Zhao-Jun; Liu, Yan; Chu, Bo; Chen, Zong-Mao

    2017-01-01

    Tea grey geometrid (Ectropis grisescens), a devastating chewing pest in tea plantations throughout China, produces Type-II pheromone components. Little is known about the genes encoding proteins involved in the perception of Type-II sex pheromone components. To investigate the olfaction genes involved in E. grisescens sex pheromones and plant volatiles perception, we sequenced female and male antennae transcriptomes of E. grisescens. After assembly and annotation, we identified 153 candidate chemoreception genes in E. grisescens, including 40 odorant-binding proteins (OBPs), 30 chemosensory proteins (CSPs), 59 odorant receptors (ORs), and 24 ionotropic receptors (IRs). The results of phylogenetic, qPCR, and mRNA abundance analyses suggested that three candidate pheromone-binding proteins (EgriOBP2, 3, and 25), two candidate general odorant-binding proteins (EgriOBP1 and 29), six pheromone receptors (EgriOR24, 25, 28, 31, 37, and 44), and EgriCSP8 may be involved in the detection of Type-II sex pheromone components. Functional investigation by heterologous expression in Xenopus oocytes revealed that EgriOR31 was robustly tuned to the E. grisescens sex pheromone component (Z,Z,Z)-3,6,9-octadecatriene and weakly to the other sex pheromone component (Z,Z)-3,9-6,7-epoxyoctadecadiene. Our results represent a systematic functional analysis of the molecular mechanism of olfaction perception in E. grisescens with an emphasis on gene encoding proteins involved in perception of Type-II sex pheromones, and provide information that will be relevant to other Lepidoptera species. PMID:29209233

  18. Osmotic Stress Signaling and Osmoadaptation in Yeasts

    PubMed Central

    Hohmann, Stefan

    2002-01-01

    The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects. PMID:12040128

  19. Ca2+-Signal Transduction Inhibitors, Kujiol A and Kujigamberol B, Isolated from Kuji Amber Using a Mutant Yeast.

    PubMed

    Uchida, Takeshi; Koshino, Hiroyuki; Takahashi, Shunya; Shimizu, Eisaku; Takahashi, Honoka; Yoshida, Jun; Shinden, Hisao; Tsujimura, Maiko; Kofujita, Hisayoshi; Uesugi, Shota; Kimura, Ken-Ichi

    2018-04-27

    A podocarpatriene and a labdatriene derivative, named kujiol A [13-methyl-8,11,13-podocarpatrien-19-ol (1)] and kujigamberol B [15,20-dinor-5,7,9-labdatrien-13-ol (2)], respectively, were isolated from Kuji amber through detection with the aid of their growth-restoring activity against a mutant yeast strain ( zds1Δ erg3Δ pdr1Δ pdr3Δ), which is known to be hypersensitive with respect to Ca 2+ -signal transduction. The structures were elucidated by spectroscopic data analysis. Compounds 1 and 2 are rare organic compounds from Late Cretaceous amber, and the mutant yeast used seems useful for elucidating a variety of new compounds from Kuji amber specimens, produced before the K-Pg boundary.

  20. A pheromone analogue affects the evaporation rate of (+)-disparlure in Lymantria dispar.

    PubMed

    Sollai, Giorgia; Murgia, Sergio; Secci, Francesco; Frongia, Angelo; Cerboneschi, Anna; Masala, Carla; Liscia, Anna; Crnjar, Roberto; Solari, Paolo

    2014-04-01

    The gypsy moth Lymantria dispar L. is a widespread pest that causes economic damage to cork oak forests. Females produce the sex pheromone (+)-(7R,8S)-epoxy-2-methyloctadecane, known as (+)-disparlure [(+)D], for long-distance attraction of conspecific males. A (+)D analogue, 2-decyl-1-oxaspiro[2.2]pentane (OXP-01), neither stimulating nor attractive by itself, causes short-time inhibition of male response in a 1:1 blend with (+)D. The authors investigated whether and how the biological activity of the natural pheromone is affected by OXP-01 on a long-time basis (up to 16 days), also by looking at possible physicochemical reciprocal interactions. Blending of (+)D with OXP-01 decreased, under low evaporation rate, the pheromone effectiveness, as assessed by electroantennogram recordings. In male trappings, within the first 24 h, OXP-01 decreased and later enhanced the blend attractiveness, but only under high evaporation rate. Gas chromatography-mass spectroscopy indicates that quantitative retrieval of (+)D from blend cartridges is higher than for pure pheromone, and nuclear magnetic resonance measurements show that OXP-01 produces, possibly by Van der Waals interactions, a bimolecular entity with pheromone causing retention and lengthening of its attractiveness over time. The biological and physicochemical interactions between (+)D and OXP-01 may provide valuable information for the optimisation of pheromone-based control strategies for gypsy moths. © 2013 Society of Chemical Industry.

  1. (R)-Desmolactone Is a Sex Pheromone or Sex Attractant for the Endangered Valley Elderberry Longhorn Beetle Desmocerus californicus dimorphus and Several Congeners (Cerambycidae: Lepturinae)

    PubMed Central

    Ray, Ann M.; Arnold, Richard A.; Swift, Ian; Schapker, Philip A.; McCann, Sean; Marshall, Christopher J.; McElfresh, J. Steven; Millar, Jocelyn G.

    2014-01-01

    We report here that (4R,9Z)-hexadec-9-en-4-olide [(R)-desmolactone] is a sex attractant or sex pheromone for multiple species and subspecies in the cerambycid genus Desmocerus. This compound was previously identified as a female-produced sex attractant pheromone of Desmocerus californicus californicus. Headspace volatiles from female Desmocerus aureipennis aureipennis contained (R)-desmolactone, and the antennae of adult males of two species responded strongly to synthetic (R)-desmolactone in coupled gas chromatography-electroantennogram analyses. In field bioassays in California, Oregon, and British Columbia, traps baited with synthetic (R)-desmolactone captured males of several Desmocerus species and subspecies. Only male beetles were captured, indicating that this compound acts as a sex-specific attractant, rather than as a signal for aggregation. In targeted field bioassays, males of the US federally threatened subspecies Desmocerus californicus dimorphus responded to the synthetic attractant in a dose dependent manner. Our results represent the first example of a “generic” sex pheromone used by multiple species in the subfamily Lepturinae, and demonstrate that pheromone-baited traps may be a sensitive and efficient method of monitoring the threatened species Desmocerus californicus dimorphus, commonly known as the valley elderberry longhorn beetle. PMID:25521293

  2. Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone-mediated cell-cell signaling and cross-mating

    PubMed Central

    Di Giuseppe, Graziano; Erra, Fabrizio; Dini, Fernando; Alimenti, Claudio; Vallesi, Adriana; Pedrini, Bill; Wüthrich, Kurt; Luporini, Pierangelo

    2011-01-01

    Wild-type strains of the protozoan ciliate Euplotes collected from different locations on the coasts of Antarctica, Tierra del Fuego and the Arctic were taxonomically identified as the morpho-species Euplotes nobilii, based on morphometric and phylogenetic analyses. Subsequent studies of their sexual interactions revealed that mating combinations of Antarctic and Arctic strains form stable pairs of conjugant cells. These conjugant pairs were isolated and shown to complete mutual gene exchange and cross-fertilization. The biological significance of this finding was further substantiated by demonstrating that close homology exists among the three-dimensional structures determined by NMR of the water-borne signaling pheromones that are constitutively secreted into the extracellular space by these interbreeding strains, in which these molecules trigger the switch between the growth stage and the sexual stage of the life cycle. The fact that Antarctic and Arctic E. nobilii populations share the same gene pool and belong to the same biological species provides new support to the biogeographic model of global distribution of eukaryotic microorganisms, which had so far been based exclusively on studies of morphological and phylogenetic taxonomy. PMID:21300903

  3. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons

    PubMed Central

    Tabuchi, Masashi; Sakurai, Takeshi; Mitsuno, Hidefumi; Namiki, Shigehiro; Minegishi, Ryo; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Haupt, Stephan Shuichi; Nakatani, Kei; Kanzaki, Ryohei

    2013-01-01

    The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs’ responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness. PMID:24006366

  4. Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae).

    PubMed

    Ammagarahalli, Byrappa; Gemeno, César

    2015-10-01

    In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Male Sexual Behavior and Pheromone Emission Is Enhanced by Exposure to Guava Fruit Volatiles in Anastrepha fraterculus

    PubMed Central

    Bachmann, Guillermo E.; Segura, Diego F.; Devescovi, Francisco; Juárez, M. Laura; Ruiz, M. Josefina; Vera, M. Teresa; Cladera, Jorge L.; Fernández, Patricia C.

    2015-01-01

    Background Plant chemicals can affect reproductive strategies of tephritid fruit flies by influencing sex pheromone communication and increasing male mating competitiveness. Objective and Methodology We explored whether exposure of Anastrepha fraterculus males to guava fruit volatiles and to a synthetic blend of volatile compounds released by this fruit affects the sexual performance of wild and laboratory flies. By means of bioassays and pheromone collection we investigated the mechanism underlying this phenomenon. Results Guava volatile exposure enhanced male mating success and positively affected male calling behavior and pheromone release in laboratory and wild males. Changes in male behavior appear to be particularly important during the initial phase of the sexual activity period, when most of the mating pairs are formed. Exposure of laboratory males to a subset of guava fruit volatiles enhanced mating success, showing that the response to the fruit might be mimicked artificially. Conclusions Volatiles of guava seem to influence male mating success through an enhancement of chemical and physical signals related to the communication between sexes. This finding has important implications for the management of this pest species through the Sterile Insect Technique. We discuss the possibility of using artificial blends to improve the sexual competitiveness of sterile males. PMID:25923584

  6. Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans.

    PubMed

    Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M

    2010-02-26

    Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.

  7. Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila

    PubMed Central

    Williams, Thomas M.; Carroll, Sean B.

    2009-01-01

    A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We show that across the genus Drosophila, the expression of this enzyme is correlated with long-chain diene production and has undergone an extraordinary number of evolutionary transitions, including six independent gene inactivations, three losses of expression without gene loss, and two transitions in sex-specificity. Furthermore, we show that evolutionary transitions from monomorphism to dimorphism (and its reversion) in desatF expression involved the gain (and the inactivation) of a binding-site for the sex-determination transcription factor, DOUBLESEX. In addition, we documented a surprising example of the gain of particular cis-regulatory motifs of the desatF locus via a set of small deletions. Together, our results suggest that frequent changes in the expression of pheromone-producing enzymes underlie evolutionary transitions in chemical communication, and reflect changing regimes of sexual selection, which may have contributed to speciation among Drosophila. PMID:19652700

  8. Refining the dual olfactory hypothesis: pheromone reward and odour experience.

    PubMed

    Martínez-García, Fernando; Martínez-Ricós, Joana; Agustín-Pavón, Carmen; Martínez-Hernández, Jose; Novejarque, Amparo; Lanuza, Enrique

    2009-06-25

    In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are 'innately' attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation. We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose. In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.

  9. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde.

    PubMed

    Liu, Z Lewis; Wang, Xu; Weber, Scott A

    2018-06-20

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We examined gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challenges of furfural and HMF through comparative quantitative gene expression analysis using pathway-based qRT-PCR array assays. All tested genes from Y-50049, except for MLP2, demonstrated more resistant and significantly increased gene expression than that from a laboratory strain BY4741. While all five sensor encoding genes WSC1, WSC2, WSC3, MID2 and MTL1 from both strains were activated in response to the furfural-HMF treatment, WSC3 from Y-50049 demonstrated the most increased expression over time compared with any other sensor genes. These results suggested the industrial yeast poses more robust cell wall integrity pathway, and gene WSC3 could have the special capability for signal transmission against furfural and HMF. Among five single nucleotide variations discovered in WSC3 from Y-50049, three were found to be non-synonymous mutations resulting in amino acid alterations of Ser 158  → Tyr 158 , Val 186  → Ile 186 , and Glu 430  → Asp 430 . Our results suggest the industrial yeast as a more desirable delivery vehicle for the next-generation biocatalyst development. Published by Elsevier B.V.

  10. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura

    PubMed Central

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy. PMID:26445454

  11. Pheromone-Based Pest Management in China: Past, Present, and Future Prospects.

    PubMed

    Cui, Gen Zhong; Zhu, Junwei Jerry

    2016-07-01

    Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologies for the integrated pest management. However, in China, similar research lagged 15 to 20 years and was not initiated until the late 1980s. In this review, we present the early history of pheromone research that has led to the current practical applications in China, particularly in the development of pheromone-based pest management products. We also provide information regarding the current status of pheromone-based product manufacturing, marketing, and regulatory issues related to local semiochemical industries, which may be useful to other international companies interested in pursuing business in China. In addition, we share some research topics that represent new directions of the present pheromone research to explore novel tools for advancing semiochemical-based pest management in China.

  12. Counter-perfume: using pheromones to prevent female remating.

    PubMed

    Malouines, Clara

    2017-08-01

    Strong selection to secure paternity in polyandrous species leads to the evolution of numerous chemicals in the male's seminal content. These include antiaphrodisiac pheromones, which are transmitted from the male to the female during mating to render her unattractive to subsequent males. An increasing number of species have been shown to use these chemicals. Herein, I examine the taxonomic distribution of species using antiaphrodisiac pheromones, the selection pressures driving their evolution in both males and females, and the ecological interactions in which these pheromones are involved. The literature review shows a highly skewed distribution of antiaphrodisiac use; all species currently known to use them are insects with the exception of the garter snakes Thamnophis sirtalis parietalis and T. radix. Nonetheless, many taxa have not yet been tested for the presence of antiaphrodisiacs, in groups both closely and distantly related to species known to express them. Within the Insecta, there have been multiple cases of convergent evolution of antiaphrodisiac pheromones using different chemical compounds and methods of transmission. Antiaphrodisiacs usually benefit males, but their effect on females is variable as they can either prevent them from mating multiple times or help them reduce male harassment when they are unreceptive. Some indirect costs of antiaphrodisiacs also impact both males and females, but more research is needed to determine how general this pattern is. Additional research is also important to understand how antiaphrodisiacs interact with the reproductive biology and sexual communication in different species. © 2016 Cambridge Philosophical Society.

  13. Attraction Pheromone of The Benthic Diatom Seminavis robusta: Studies on Structure-Activity Relationships.

    PubMed

    Lembke, Christine; Stettin, Daniel; Speck, Franziska; Ueberschaar, Nico; De Decker, Sam; Vyverman, Wim; Pohnert, Georg

    2018-04-01

    Recently the first pheromone of a marine diatom was identified to be the diketopiperazine (S,S)-diproline. This compound facilitates attraction between mating partners in the benthic diatom Seminavis robusta. Interestingly, sexualized S. robusta cells are attracted to both the natural pheromone (S,S)-diproline as well as to its enantiomer (R,R)-diproline. Usually stereospecificity is a prerequisite for successful substrate-receptor interactions, and especially pheromone perception is often highly enantioselective. Here we introduce a structure-activity relationship study, to learn more about the principles of pheromone reception in diatoms. We analyzed the activity of nine different diketopiperazines in attraction and interference assays. The pheromone diproline itself, as well as a pipecolic acid derived diketopiperazine with two expanded aliphatic ring systems, showed the highest attractivity. Hydroxylatoin of the aliphatic rings abolished any bioactivity. Diketopiperazines derived from acyclic amino acids were not attrative as well. All stereoisomers of both the diproline and the pipecolic acid derived diketopiperazine were purified by enantioselective high-performance liquid chromatography, and application in bioactivity tests confirmed that attraction pheromone perception in this diatom is indeed not stereospecific. However, the lack of activity of diketopiperazines derived from acyclic amino acids suggests a specificity that prevents misguidance to sources of other naturally occurring diketopiperazines.

  14. Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.

    PubMed

    Ibstedt, Sebastian; Stenberg, Simon; Bagés, Sara; Gjuvsland, Arne B; Salinas, Francisco; Kourtchenko, Olga; Samy, Jeevan K A; Blomberg, Anders; Omholt, Stig W; Liti, Gianni; Beltran, Gemma; Warringer, Jonas

    2015-01-01

    Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  15. Sex pheromones of the southern armyworm moth: isolation, identification, and synthesis.

    PubMed

    Jacobson, M; Redfern, R E; Jones, W A; Aldridge, M H

    1970-10-30

    Two sex pheromones have been isolated from the female southern armyworm moth, Prodenia eridania (Cramer), and identified as cis-9-tetradecen-1-ol acetate, identical with the sex pheromone of the fall armyworm moth, Spodoptera frugiperda (J. E. Smith), and cis-9,trans-12-tetradecadien-1-ol acetate.

  16. Apoptotic signals induce specific degradation of ribosomal RNA in yeast

    PubMed Central

    Mroczek, Seweryn; Kufel, Joanna

    2008-01-01

    Organisms exposed to reactive oxygen species, generated endogenously during respiration or by environmental conditions, undergo oxidative stress. Stress response can either repair the damage or activate one of the programmed cell death (PCD) mechanisms, for example apoptosis, and finally end in cell death. One striking characteristic, which accompanies apoptosis in both vertebrates and yeast, is a fragmentation of cellular DNA and mammalian apoptosis is often associated with degradation of different RNAs. We show that in yeast exposed to stimuli known to induce apoptosis, such as hydrogen peroxide, acetic acid, hyperosmotic stress and ageing, two large subunit ribosomal RNAs, 25S and 5.8S, became extensively degraded with accumulation of specific intermediates that differ slightly depending on cell death conditions. This process is most likely endonucleolytic, is correlated with stress response, and depends on the mitochondrial respiratory status: rRNA is less susceptible to degradation in respiring cells with functional defence against oxidative stress. In addition, RNA fragmentation is independent of two yeast apoptotic factors, metacaspase Yca1 and apoptosis-inducing factor Aif1, but it relies on the apoptotic chromatin condensation induced by histone H2B modifications. These data describe a novel phenotype for certain stress- and ageing-related PCD pathways in yeast. PMID:18385160

  17. Sex pheromone receptor proteins. Visualization using a radiolabeled photoaffinity analog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, R.G.; Prestwich, G.D.; Riddiford, L.M.

    1988-03-15

    A tritium-labeled photoaffinity analog of a moth pheromone was used to covalently modify pheromone-selective binding proteins in the antennal sensillum lymph and sensory dendritic membranes of the male silk moth, Antheraea polyphemus. This analog, (E,Z)-6,11-(/sup 3/H)hexadecadienyl diazoacetate, allowed visualization of a 15-kilodalton soluble protein and a 69-kilodalton membrane protein in fluorescence autoradiograms of electrophoretically separated antennal proteins. Covalent modification of these proteins was specifically reduced when incubation and UV irradiation were conducted in the presence of excess unlabeled pheromone, (E,Z)-6,11-hexadecadienyl acetate. These experiments constitute the first direct evidence for a membrane protein of a chemosensory neuron interacting in a specificmore » fashion with a biologically relevant odorant.« less

  18. A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals

    PubMed Central

    Martel, Kristine L.; Baum, Michael J.

    2009-01-01

    We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer, cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours one week later. We found CTB- labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA), and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory - MeA -AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. PMID:19077123

  19. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum)

    PubMed Central

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386

  20. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-02-04

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.

  1. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila.

    PubMed

    Wang, Liming; Anderson, David J

    2010-01-14

    Aggression is regulated by pheromones in many animal species. However, in no system have aggression pheromones, their cognate receptors and corresponding sensory neurons been identified. Here we show that 11-cis-vaccenyl acetate (cVA), a male-specific volatile pheromone, robustly promotes male-male aggression in the vinegar fly Drosophila melanogaster. The aggression-promoting effect of synthetic cVA requires olfactory sensory neurons (OSNs) expressing the receptor Or67d, as well as the receptor itself. Activation of Or67d-expressing OSNs, either by genetic manipulation of their excitability or by exposure to male pheromones in the absence of other classes of OSNs, is sufficient to promote aggression. High densities of male flies can promote aggression by the release of volatile cVA. In turn, cVA-promoted aggression can promote male fly dispersal from a food resource, in a manner dependent on Or67d-expressing OSNs. These data indicate that cVA may mediate negative-feedback control of male population density, through its effect on aggression. Identification of a pheromone-OSN pair controlling aggression in a genetic organism opens the way to unravelling the neurobiology of this evolutionarily conserved behaviour.

  2. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths.

    PubMed

    Lievers, Rik; Groot, Astrid T

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses.

  3. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths

    PubMed Central

    Lievers, Rik; Groot, Astrid T.

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  4. Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae).

    PubMed

    Jin, Jun-Yan; Li, Zhao-Qun; Zhang, Ya-Nan; Liu, Nai-Yong; Dong, Shuang-Lin

    2014-07-01

    Pheromone binding proteins (PBPs) are thought to bind and transport hydrophobic sex pheromone molecules across the aqueous sensillar lymph to specific pheromone receptors on the dendritic membrane of olfactory neurons. A maximum of 3 PBP genes have been consistently identified in noctuid species, and each of them shares high identity with its counterparts in other species within the family. The functionality differences of the 3 proteins are poorly understood. In the present study, 3 PBP cDNAs (SinfPBP1, 2, 3) were identified from the pink rice borer, Sesamia inferens, for the first time. The quantitative real-time PCR indicated that the 3 PBPs displayed similar temporal but very different sex related expression profiles. Expression of SinfPBP1 and SinfPBP2 were highly and moderately male biased, respectively, while SinfPBP3 was slightly female biased, as SinfPBPs were expressed at very different levels (PBP1>PBP2≫PBP3) in male antennae, but at similar levels in female antennae. Furthermore, the 3 SinfPBPs displayed different ligand binding profiles in fluorescence competitive binding assays. SinfPBP1 exhibited high and similar binding affinities to all 3 sex pheromone components (Ki=0.72-1.60 μM), while SinfPBP2 showed selective binding to the alcohol and aldehyde components (Ki=0.78-1.71 μM), and SinfPBP3 showed no obvious binding to the 3 sex pheromone components. The results suggest that SinfPBP1 plays a major role in the reception of female sex pheromones in S. inferens, while SinfPBP3 plays a least role (if any) and SinfPBP2 functions as a recognizer of alcohol and aldehyde components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Monitoring of European corn borer with pheromone-baited traps: review of trapping system basics and remaining problems.

    PubMed

    Laurent, Pélozuelo; Frérot, Brigitte

    2007-12-01

    Since the identification of female European corn borer, Ostrinia nubilalis (Hübner) pheromone, pheromone-baited traps have been regarded as a promising tool to monitor populations of this pest. This article reviews the literature produced on this topic since the 1970s. Its aim is to provide extension entomologists and other researchers with all the necessary information to establish an efficient trapping procedure for this moth. The different pheromone races of the European corn borer are described, and research results relating to the optimization of pheromone blend, pheromone bait, trap design, and trap placement are summarized followed by a state-of-the-art summary of data comparing blacklight trap and pheromone-baited trap techniques to monitor European corn borer flight. Finally, we identify the information required to definitively validate/invalidate the pheromone-baited traps as an efficient decision support tool in European corn borer control.

  6. Pheromone-Regulated Expression of Sex Pheromone Plasmid pAD1-Encoded Aggregation Substance Depends on at Least Six Upstream Genes and a cis-Acting, Orientation-Dependent Factor

    PubMed Central

    Muscholl-Silberhorn, Albrecht B.

    2000-01-01

    Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an α-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated α-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of α-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P0, and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed. PMID:10850999

  7. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and (Z)-4...

  8. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and (Z)-4...

  9. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and (Z)-4...

  10. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and (Z)-4...

  11. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and (Z)-4...

  12. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum.

    PubMed

    Hall, Kevin W; Eisthen, Heather L; Williams, Barry L

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls.

  13. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum

    PubMed Central

    Hall, Kevin W.; Eisthen, Heather L.; Williams, Barry L.

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls. PMID:26885665

  14. Intercellular signalling in Stigmatella aurantiaca.

    PubMed

    Plaga, W; Ulrich, S H

    1999-12-01

    The myxobacterium Stigmatella aurantiaca is a prokaryotic model used to study intercellular signalling and the genetic determination of morphogenesis. Signalling factors and genes required for the generation of the elaborate multicellular fruiting body are to be identified. Recently, the structure of stigmolone, which is the pheromone necessary for fruiting body formation, was elucidated, and genes involved in development were characterised. Progress has also been made in the genetic accessibility of S. aurantiaca.

  15. Unusual pheromone chemistry in the navel orangeworm: novel sex attractants and a behavioral antagonist

    NASA Astrophysics Data System (ADS)

    Leal, W. S.; Parra-Pedrazzoli, A. L.; Kaissling, K.-E.; Morgan, T. I.; Zalom, F. G.; Pesak, D. J.; Dundulis, E. A.; Burks, C. S.; Higbee, B. S.

    2005-03-01

    Using molecular- and sensory physiology-based approaches, three novel natural products, a simple ester, and a behavioral antagonist have been identified from the pheromone gland of the navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae). In addition to the previously identified (Z,Z)-11,13-hexadecadienal, the pheromone blend is composed of (Z,Z,Z,Z,Z)-3,6,9,12,15-tricosapentaene, (Z,Z,Z,Z,Z)-3,6,9,12,15-pentacosapentaene, ethyl palmitate, ethyl-(Z,Z)-11,13-hexadecadienoate, and (Z,Z)-11,13-hexadecadien-1-yl acetate. The C23 and C25 pentaenes are not only novel sex pheromones, but also new natural products. In field tests, catches of A. transitella males in traps baited with the full mixture of pheromones were as high as those in traps with virgin females, whereas control and traps baited only with the previously known constituent did not capture any moths at all. The navel orangeworm sex pheromone is also an attractant for the meal moth, Pyralis farinalis L. (Pyralidae), but (Z,Z)-11,13-hexadecadien-1-yl acetate is a behavioral antagonist. The new pheromone blend may be highly effective in mating disruption and monitoring programs.

  16. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola.

    PubMed

    Evenden, M L; Gries, R

    2010-06-01

    Sex pheromone monitoring lures from five different commercial sources were compared for their attractiveness to male diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) in canola, Brassica napus L., fields in western Canada. Lures that had the highest pheromone release rate, as determined by aeration analyses in the laboratory, were the least attractive in field tests. Lures from all the commercial sources tested released more (Z)-11-hexadecenal than (Z)-11-hexadecenyl acetate and the most attractive lures released a significantly higher aldehyde to acetate ratio than less attractive lures. Traps baited with sex pheromone lures from APTIV Inc. (Portland, OR) and ConTech Enterprises Inc. (Delta, BC, Canada) consistently captured more male diamondback moths than traps baited with lures from the other sources tested. In two different lure longevity field trapping experiments, older lures were more attractive to male diamondback moths than fresh lures. Pheromone release from aged lures was constant at very low release rates. The most attractive commercially available sex pheromone lures tested attracted fewer diamondback moth males than calling virgin female moths suggesting that research on the development of a more attractive synthetic sex pheromone lure is warranted.

  17. The trail pheromone of a stingless bee, Trigona corvina (Hymenoptera, Apidae, Meliponini), varies between populations.

    PubMed

    Jarau, Stefan; Dambacher, Jochen; Twele, Robert; Aguilar, Ingrid; Francke, Wittko; Ayasse, Manfred

    2010-09-01

    Stingless bees, like honeybees, live in highly organized, perennial colonies. Their eusocial way of life, which includes division of labor, implies that only a fraction of the workers leave the nest to forage for food. To ensure a sufficient food supply for all colony members, stingless bees have evolved different mechanisms to recruit workers to foraging or even to communicate the location of particular food sites. In some species, foragers deposit pheromone marks between food sources and their nest, which are used by recruited workers to locate the food. To date, pheromone compounds have only been described for 3 species. We have identified the trail pheromone of a further species by means of chemical and electrophysiological analyses and with bioassays testing natural gland extracts and synthetic compounds. The pheromone is a blend of wax type and terpene esters. The relative proportions of the single components showed significant differences in the pheromones of foragers form 3 different colonies. This is the first report on a trail pheromone comprised of esters of 2 different biogenetic origins proving variability of the system. Pheromone specificity may serve to avoid confusions between the trails deposited by foragers of different nests and, thus, to decrease competition at food sources.

  18. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella.

    PubMed

    Liu, Yipeng; Liu, Yang; Jiang, Xingchuan; Wang, Guirong

    The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Identification of a pheromone that increases anxiety in rats

    PubMed Central

    Inagaki, Hideaki; Kiyokawa, Yasushi; Tamogami, Shigeyuki; Watanabe, Hidenori; Takeuchi, Yukari; Mori, Yuji

    2014-01-01

    Chemical communication plays an important role in the social lives of various mammalian species. Some of these chemicals are called pheromones. Rats release a specific odor into the air when stressed. This stress-related odor increases the anxiety levels of other rats; therefore, it is possible that the anxiety-causing molecules are present in the stress-related odorants. Here, we have tried to identify the responsible molecules by using the acoustic startle reflex as a bioassay system to detect anxiogenic activity. After successive fractionation of the stress-related odor, we detected 4-methylpentanal and hexanal in the final fraction that still possessed anxiogenic properties. Using synthetic molecules, we found that minute amounts of the binary mixture, but not either molecule separately, increased anxiety in rats. Furthermore, we determined that the mixture increased a specific type of anxiety and evoked anxiety-related behavioral responses in an experimental model that was different from the acoustic startle reflex. Analyses of neural mechanisms proposed that the neural circuit related to anxiety was only activated when the two molecules were simultaneously perceived by two olfactory systems. We concluded that the mixture is a pheromone that increases anxiety in rats. To our knowledge, this is the first study identifying a rat pheromone. Our results could aid further research on rat pheromones, which would enhance our understanding of chemical communication in mammals. PMID:25512532

  20. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide

    PubMed Central

    2010-01-01

    Background Current strategies for controlling American visceral leishmaniasis (AVL) have been unable to prevent the spread of the disease across Brazil. With no effective vaccine and culling of infected dogs an unpopular and unsuccessful alternative, new tools are urgently needed to manage populations of the sand fly vector, Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae). Here, we test two potential strategies for improving L. longipalpis control using the synthetic sand fly pheromone (±)-9-methylgermacrene-B: the first in conjunction with spraying of animal houses with insecticide, the second using coloured sticky traps. Results Addition of synthetic pheromone resulted in greater numbers of male and female sand flies being caught and killed at experimental chicken sheds sprayed with insecticide, compared to pheromone-less controls. Furthermore, a ten-fold increase in the amount of sex pheromone released from test sheds increased the number of females attracted and subsequently killed. Treating sheds with insecticide alone resulted in a significant decrease in numbers of males attracted to sheds (compared to pre-spraying levels), and a near significant decrease in numbers of females. However, this effect was reversed through addition of synthetic pheromone at the time of insecticide spraying, leading to an increase in number of flies attracted post-treatment. In field trials of commercially available different coloured sticky traps, yellow traps caught more males than blue traps when placed in chicken sheds. In addition, yellow traps fitted with 10 pheromone lures caught significantly more males than pheromone-less controls. However, while female sand flies showed a preference for both blue and yellow pheromone traps sticky traps over white traps in the laboratory, neither colour caught significant numbers of females in chicken sheds, either with or without pheromone. Conclusions We conclude that synthetic pheromone could currently be most effectively

  1. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli.

    PubMed

    Okagaki, Laura H; Wang, Yina; Ballou, Elizabeth R; O'Meara, Teresa R; Bahn, Yong-Sun; Alspaugh, J Andrew; Xue, Chaoyang; Nielsen, Kirsten

    2011-10-01

    The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G(1) cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens.

  2. Functional characterization of sex pheromone receptors in the purple stem borer, Sesamia inferens (Walker).

    PubMed

    Zhang, Y-N; Zhang, J; Yan, S-W; Chang, H-T; Liu, Y; Wang, G-R; Dong, S-L

    2014-10-01

    The sex pheromone communication system in moths is highly species-specific and extremely sensitive, and pheromone receptors (PRs) are thought to be the most important factors in males. In the present study, three full-length cDNAs encoding PRs were characterized from Sesamia inferens antennae. These three PRs were all male-specific in expression, but their relative expression levels were very different; SinfOR29 was 17- to 23-fold higher than the other two PRs. Phylogenetic and motif pattern analyses showed that these three PRs were allocated to different PR subfamilies with different motif patterns. Functional analysis using the heterologous expression system of Xenopus oocytes demonstrated that SinfOR29 specifically and sensitively responded to the major pheromone component, Z11-16:OAc [concentration for 50% of maximal effect (EC50 ) = 3.431 × 10(-7) M], while SinfOR21 responded robustly to a minor pheromone component Z11-16:OH (EC50  = 1.087 × 10(-6) M). SinfOR27, however, displayed no response to any of the three pheromone components, but, interestingly, it was sensitive to a non-sex pheromone component Z9,E12-14:OAc (EC50  = 1.522 × 10(-6) M). Our results provide insight into the molecular mechanisms of specificity and sensitivity of the sex pheromone communication system in moths. © 2014 The Royal Entomological Society.

  3. Sex pheromones and their impact on pest management.

    PubMed

    Witzgall, Peter; Kirsch, Philipp; Cork, Alan

    2010-01-01

    The idea of using species-specific behavior-modifying chemicals for the management of noxious insects in agriculture, horticulture, forestry, stored products, and for insect vectors of diseases has been a driving ambition through five decades of pheromone research. Hundreds of pheromones and other semiochemicals have been discovered that are used to monitor the presence and abundance of insects and to protect plants and animals against insects. The estimated annual production of lures for monitoring and mass trapping is on the order of tens of millions, covering at least 10 million hectares. Insect populations are controlled by air permeation and attract-and-kill techniques on at least 1 million hectares. Here, we review the most important and widespread practical applications. Pheromones are increasingly efficient at low population densities, they do not adversely affect natural enemies, and they can, therefore, bring about a long-term reduction in insect populations that cannot be accomplished with conventional insecticides. A changing climate with higher growing season temperatures and altered rainfall patterns makes control of native and invasive insects an increasingly urgent challenge. Intensified insecticide use will not provide a solution, but pheromones and other semiochemicals instead can be implemented for sustainable area-wide management and will thus improve food security for a growing population. Given the scale of the challenges we face to mitigate the impacts of climate change, the time is right to intensify goal-oriented interdisciplinary research on semiochemicals, involving chemists, entomologists, and plant protection experts, in order to provide the urgently needed, and cost-effective technical solutions for sustainable insect management worldwide.

  4. Viral repression of fungal pheromone precursor gene expression.

    PubMed

    Zhang, L; Baasiri, R A; Van Alfen, N K

    1998-02-01

    Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a G alpha(i) subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete.

  5. Viral Repression of Fungal Pheromone Precursor Gene Expression

    PubMed Central

    Zhang, Lei; Baasiri, Rudeina A.; Van Alfen, Neal K.

    1998-01-01

    Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a Gαi subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete. PMID:9447992

  6. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    PubMed Central

    Vergnano, Marta; Wan, Chris

    2017-01-01

    ABSTRACT We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. PMID:28743817

  7. Synthetic Co-Attractants of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon.

    PubMed

    Hasni, Narjes; Pinier, Centina; Imed, Cheraief; Ouhichi, Monêem; Couzi, Philippe; Chermiti, Brahim; Frérot, Brigitte; Saïd, Imen; Rochat, Didier

    2017-07-01

    Laboratory and field investigations to identify and evaluate plant co-attractants of the aggregation pheromone of the date palm pest Oryctes agamemnon are reported. Volatiles emitted by freshly cut palm core and palm core with feeding males, were collected, analyzed by gas chromatography coupled to mass spectrometry and evaluated in olfactometers alone or combined with synthetic pheromone. A collection of palm odor without male effluvia was attractive alone and enhanced attraction to synthetic pheromone in an olfactometer similar to that to a collection of palm odor emitted with feeding males and containing natural pheromone. Behavioral responses to collections of palm volatiles were correlated to the amount of volatiles material in them. Enhancement of the attractiveness of the pheromone was not correlated to chemicals specific to beetle feeding. The chemicals common to the active collections extracts were benzoate esters, mostly ethyl benzoate, anisole derivatives and sesquiterpenes. Blends of the most abundant components of the extracts were evaluated for enhancement of the attractiveness of pheromone (1 μg) in olfactometers at 1 or 10 μg doses. The mixtures were further evaluated by field trapping in Tunisia at 3-10 mg/day using reference (6 mg/day) or experimental pheromone formulations. A mixture of ethyl benzoate, 4-methylanisole and farnesol (1:1:1 w/w at 6.5 mg/day) enhanced captures in pheromone baited traps in 2014 and 2015 and this mixture was as active as the natural palm bait. The practical prospect of the result for the management for O. agamemnon, and other palm beetles is discussed.

  8. The essence of yeast quiescence.

    PubMed

    De Virgilio, Claudio

    2012-03-01

    Like all microorganisms, yeast cells spend most of their natural lifetime in a reversible, quiescent state that is primarily induced by limitation for essential nutrients. Substantial progress has been made in defining the features of quiescent cells and the nutrient-signaling pathways that shape these features. A view that emerges from the wealth of new data is that yeast cells dynamically configure the quiescent state in response to nutritional challenges by using a set of key nutrient-signaling pathways, which (1) regulate pathway-specific effectors, (2) converge on a few regulatory nodes that bundle multiple inputs to communicate unified, graded responses, and (3) mutually modulate their competences to transmit signals. Here, I present an overview of our current understanding of the architecture of these pathways, focusing on how the corresponding core signaling protein kinases (i.e. PKA, TORC1, Snf1, and Pho85) are wired to ensure an adequate response to nutrient starvation, which enables cells to tide over decades, if not centuries, of famine. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Hormonal Interference with Pheromone Systems in Parasitic Acarines, Especially Ixodid Ticks.

    DTIC Science & Technology

    1983-05-01

    Genital Pheromone(s); Precocene-2; Hyalomma dromedarii; Dermacentor variabilis; Radioimmunoassay; juvenile hormone; Dermanyssus gallinae 19. KEY...dromedarii; Dermacentor variabilis; Radioimmunoassay; juvenile hormone; Dermanyssus gallinae . 20. A STRACT (Continue on reverse side I nfecessry and...allatotropin Precocene-2 and the juvenile hormone, JH3, on reporduction in the chicken mite, Dermanyssus gallinae is described. These studies are part of

  10. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  11. Social modulation of associative fear learning by pheromone communication

    PubMed Central

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912

  12. Social modulation of associative fear learning by pheromone communication.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.

  13. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes.

    PubMed

    Funaro, Colin F; Böröczky, Katalin; Vargo, Edward L; Schal, Coby

    2018-04-10

    Chemical communication is fundamental to success in social insect colonies. Species-, colony-, and caste-specific blends of cuticular hydrocarbons (CHCs) and other chemicals have been well documented as pheromones, mediating important behavioral and physiological aspects of social insects. More specifically, royal pheromones used by queens (and kings in termites) enable workers to recognize and care for these vital individuals and maintain the reproductive division of labor. In termites, however, no royal-recognition pheromones have been identified to date. In the current study, solvent extracts of the subterranean termite Reticulitermes flavipes were analyzed to assess differences in cuticular compounds among castes. We identified a royal-specific hydrocarbon-heneicosane-and several previously unreported and highly royal enriched long-chain alkanes. When applied to glass dummies, heneicosane elicited worker behavioral responses identical to those elicited by live termite queens, including increased vibratory shaking and antennation. Further, the behavioral effects of heneicosane were amplified when presented with nestmate termite workers' cuticular extracts, underscoring the importance of chemical context in termite royal recognition. Thus, heneicosane is a royal-recognition pheromone that is active in both queens and kings of R. flavipes The use of heneicosane as a queen and king recognition pheromone by termites suggests that CHCs evolved as royal pheromones ∼150 million years ago, ∼50 million years before their first use as queen-recognition pheromones in social Hymenoptera. We therefore infer that termites and social Hymenoptera convergently evolved the use of these ubiquitous compounds in royal recognition. Copyright © 2018 the Author(s). Published by PNAS.

  14. Cryptococcal Titan Cell Formation Is Regulated by G-Protein Signaling in Response to Multiple Stimuli▿†

    PubMed Central

    Okagaki, Laura H.; Wang, Yina; Ballou, Elizabeth R.; O'Meara, Teresa R.; Bahn, Yong-Sun; Alspaugh, J. Andrew; Xue, Chaoyang; Nielsen, Kirsten

    2011-01-01

    The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G1 cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens. PMID:21821718

  15. C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer formation by modulating TGF-beta signaling.

    PubMed

    Reiner, David J; Ailion, Michael; Thomas, James H; Meyer, Barbara J

    2008-08-05

    Different environmental stimuli, including exposure to dauer pheromone, food deprivation, and high temperature, can induce C. elegans larvae to enter the dauer stage, a developmentally arrested diapause state. Although molecular and cellular pathways responsible for detecting dauer pheromone and temperature have been defined in part, other sensory inputs are poorly understood, as are the mechanisms by which these diverse sensory inputs are integrated to achieve a consistent developmental outcome. In this paper, we analyze a wild C. elegans strain isolated from a desert oasis. Unlike wild-type laboratory strains, the desert strain fails to respond to dauer pheromone at 25 degrees C, but it does respond at higher temperatures, suggesting a unique adaptation to the hot desert environment. We map this defect in dauer response to a mutation in the scd-2 gene, which, we show, encodes the nematode anaplastic lymphoma kinase (ALK) homolog, a proto-oncogene receptor tyrosine kinase. scd-2 acts in a genetic pathway shown here to include the HEN-1 ligand, the RTK adaptor SOC-1, and the MAP kinase SMA-5. The SCD-2 pathway modulates TGF-beta signaling, which mediates the response to dauer pheromone, but SCD-2 might mediate a nonpheromone sensory input, such as food. Our studies identify a new sensory pathway controlling dauer formation and shed light on ALK signaling, integration of signaling pathways, and adaptation to extreme environmental conditions.

  16. Molecular markers for identification of Hessian fly males caught on pheromone traps

    USDA-ARS?s Scientific Manuscript database

    Pheromone traps have been widely used to monitor insect populations in nature. However, pheromone traps for the Hessian fly (Mayetiola destructor), one of the most destructive insect pests of wheat, have been used only in recent years. Because Hessian fly male adults are small and fragile, it is d...

  17. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    PubMed

    De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie

    2014-01-01

    The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  18. Central dopamine D2 receptors regulate growth-hormone-dependent body growth and pheromone signaling to conspecific males.

    PubMed

    Noaín, Daniela; Pérez-Millán, M Inés; Bello, Estefanía P; Luque, Guillermina M; Casas Cordero, Rodrigo; Gelman, Diego M; Peper, Marcela; Tornadu, Isabel García; Low, Malcolm J; Becú-Villalobos, Damasia; Rubinstein, Marcelo

    2013-03-27

    Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.

  19. Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis**

    PubMed Central

    Herbert, Myles B.; Marx, Vanessa M.; Pederson, Richard L.; Grubbs, Robert H.

    2013-01-01

    The shortest synthetic routes to nine cis-pheromones containing a variety of functionality, including an unconjugated (E,Z) diene, are reported. These lepidopteran pheromones are used extensively for pest control, and were easily prepared using ruthenium-based Z-selective cross metathesis, highlighting the advantages of this method over less efficient ways to form Z-olefins. Important insight into the mechanism of Z-selective metathesis was uncovered during experimentation and subsequently explored. PMID:23055437

  20. Elucidation of the sex-pheromone biosynthesis producing 5,7-dodecadienes in Dendrolimus punctatus (Lepidoptera: Lasiocampidae) reveals Delta 11- and Delta 9-desaturases with unusual catalytic properties.

    PubMed

    Liénard, Marjorie A; Lassance, Jean-Marc; Wang, Hong-Lei; Zhao, Cheng-Hua; Piskur, Jure; Johansson, Tomas; Löfstedt, Christer

    2010-06-01

    Sex pheromones produced by female moths of the Lasiocampidae family include conjugated 5,7-dodecadiene components with various oxygenated terminal groups. Here we describe the molecular cloning, heterologous expression and functional characterization of desaturases associated with the biosynthesis of these unusual chemicals. By homology-based PCR screening we characterized five cDNAs from the female moth pheromone gland that were related to other moth desaturases, and investigated their role in the production of the (Z)-5-dodecenol and (Z5,E7)-dodecadienol, major pheromone constituents of the pine caterpillar moth, Dendrolimus punctatus. Functional expression of two desaturase cDNAs belonging to the Delta 11-subfamily, Dpu-Delta 11(1)-APSQ and Dpu-Delta 11(2)-LPAE, showed that they catalysed the formation of unsaturated fatty acyls (UFAs) that can be chain-shortened by beta-oxidation and subsequently reduced to the alcohol components. A first (Z)-11-desaturation step is performed by Dpu-Delta 11(2)-LPAE on stearic acid that leads to (Z)-11-octadecenoic acyl, which is subsequently chain shortened to the (Z)-5-dodecenoic acyl precursor. The Dpu-Delta 11(1)-APSQ desaturase had the unusual property of producing Delta 8 mono-UFA of various chain lengths, but not when transformed yeast were grown in presence of (Z)-9-hexadecenoic acyl, in which case the biosynthetic intermediate (Z9,E11)-hexadecadienoic UFA was produced. In addition to a typical Z9 activity, a third transcript, Dpu-Delta 9-KPSE produced E9 mono-UFAs of various chain lengths. When provided with the (Z)-7-tetradecenoic acyl, it formed the (Z7,E9)-tetradecadienoic UFA, another biosynthetic intermediate that can be chain-shortened to (Z5,E7)-dodecadienoic acyl. Both Dpu-Delta 11(1)-APSQ and Dpu-Delta 9-KPSE thus exhibited desaturase activities consistent with the biosynthesis of the dienoic precursor. The combined action of three desaturases in generating a dienoic sex-pheromone component emphasizes the

  1. Demonstration and Characterization of a Persistent Pheromone Lure for the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae).

    PubMed

    Higbee, Bradley S; Burks, Charles S; Larsen, Thomas E

    2014-07-22

    The lack of an effective pheromone lure has made it difficult to monitor and manage the navel orangeworm, Amyelois transitella (Lepidoptera: Pyralidae), in the economically important crops in which it is the primary insect pest. A series of experiments was conducted to demonstrate and characterize a practical synthetic pheromone lure for capturing navel orangeworm males. Traps baited with lures prepared with 1 or 2 mg of a three- or four-component formulation captured similar numbers of males. The fluctuation over time in the number of males captured in traps baited with the pheromone lure correlated significantly with males captured in female-baited traps. Traps baited with the pheromone lure usually did not capture as many males as traps baited with unmated females, and the ratio of males trapped with pheromone to males trapped with females varied between crops and with abundance. The pheromone lure described improves the ability of pest managers to detect and monitor navel orangeworm efficiently and may improve management and decrease insecticide treatments applied as a precaution against damage. Awareness of differences between male interaction with the pheromone lure and calling females, as shown in these data, will be important as further studies and experience determine how best to use this lure for pest management.

  2. Demonstration and Characterization of a Persistent Pheromone Lure for the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae)

    PubMed Central

    Higbee, Bradley S.; Burks, Charles S.; Larsen, Thomas E.

    2014-01-01

    The lack of an effective pheromone lure has made it difficult to monitor and manage the navel orangeworm, Amyelois transitella (Lepidoptera: Pyralidae), in the economically important crops in which it is the primary insect pest. A series of experiments was conducted to demonstrate and characterize a practical synthetic pheromone lure for capturing navel orangeworm males. Traps baited with lures prepared with 1 or 2 mg of a three- or four-component formulation captured similar numbers of males. The fluctuation over time in the number of males captured in traps baited with the pheromone lure correlated significantly with males captured in female-baited traps. Traps baited with the pheromone lure usually did not capture as many males as traps baited with unmated females, and the ratio of males trapped with pheromone to males trapped with females varied between crops and with abundance. The pheromone lure described improves the ability of pest managers to detect and monitor navel orangeworm efficiently and may improve management and decrease insecticide treatments applied as a precaution against damage. Awareness of differences between male interaction with the pheromone lure and calling females, as shown in these data, will be important as further studies and experience determine how best to use this lure for pest management. PMID:26462827

  3. Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki).

    PubMed

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily

  4. Trail Communication Regulated by Two Trail Pheromone Components in the Fungus-Growing Termite Odontotermes formosanus (Shiraki)

    PubMed Central

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily

  5. Differential Effects of Sex Pheromone Compounds on Adult Female Sea Lamprey (Petromyzon marinus) Locomotor Patterns.

    PubMed

    Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming

    2016-06-01

    Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor

  6. Disulfide connectivity and reduction in pheromone-binding proteins of the gypsy moth, Lymantria dispar

    NASA Astrophysics Data System (ADS)

    Honson, Nicolette S.; Plettner, Erika

    2006-06-01

    Males of the gypsy moth, Lymantria dispar, are attracted by a pheromone released by females. Pheromones are detected by olfactory neurons housed in specialized sensory hairs located on the antennae of the male moth. Once pheromone molecules enter the sensilla lymph, a highly abundant pheromone-binding protein (PBP) transports the molecule to the sensory neuron. The PBPs are members of the insect odorant-binding protein family, with six conserved cysteine residues. In this study, the disulfide bond connectivities of the pheromone-binding proteins PBP1 and PBP2 from the gypsy moth were found to be cysteines 19-54, 50-109, and 97-118 for PBP1, and cysteines 19-54, 50-110, and 97-119 for PBP2, as determined by cyanylation reactions and cyanogen bromide chemical cleavage. We have discovered that the second disulfide linkage is the most easily reduced of the three, and this same linkage is missing among four cysteine-containing insect odorant-binding proteins (OBPs). We are the first to identify the unique steric and electronic properties of this second disulfide linkage.

  7. Support of Wheelchairs Using Pheromone Information with Two Types of Communication Methods

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koji; Nitta, Katsumi

    In this paper, we propose a communication framework which combined two types of communication among wheelchairs and mobile devices. Due to restriction of range of activity, there is a problem that wheelchair users tend to shut themselves up in their houses. We developed a navigational wheelchair which loads a system that displays information on a map through WWW. However, this wheelchair is expensive because it needs a solid PC, a precise GPS, a battery, and so on. We introduce mobile devices and use this framework to provide information to wheelchair users and to facilitate them to go out. When a user encounters other users, they exchange messages which they have by short-distance wireless communication. Once a message is delivered to a navigational wheelchair, the wheelchair uploads the message to the system. We use two types of pheromone information which represent trends of user's movement and existences of a crowd of users. First, when users gather, ``crowd of people pheromone'' is emitted virtually. Users do not send these pheromones to the environment but carry them. If the density exceeds the threshold, messages that express ``people gethered'' are generated automatically. The other pheromone is ``movement trend pheromone'', which is used to improve probability of successful transmissions. From results of experiments, we concluded that our method can deliver information that wheelchair users gathered to other wheelchairs.

  8. Understanding behavioral responses of fish to pheromones in natural freshwater environments

    USGS Publications Warehouse

    Johnson, Nicholas S.; Li, Weiming

    2010-01-01

    There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.

  9. 2,3-Hexanediols as Sex Attractants and a Female-produced Sex Pheromone for Cerambycid Beetles in the Prionine Genus Tragosoma

    PubMed Central

    Barbour, James D.; McElfresh, J. Steven; Moreira, Jardel A.; Swift, Ian; Wright, Ian M.; Žunič, Alenka; Mitchell, Robert F.; Graham, Elizabeth E.; Alten, Ronald L.; Millar, Jocelyn G.; Hanks, Lawrence M.

    2013-01-01

    Recent work suggests that closely related cerambycid species often share pheromone components, or even produce pheromone blends of identical composition. However, little is known of the pheromones of species in the subfamily Prioninae. During field bioassays in California, males of three species in the prionine genus Tragosoma were attracted to 2,3-hexanediols, common components of male-produced aggregation pheromones of beetles in the subfamily Cerambycinae. We report here that the female-produced sex pheromone of Tragosoma depsarium “sp. nov. Laplante” is (2R,3R)-2,3-hex-anediol, and provide evidence from field bioassays and electro-antennography that the female-produced pheromone of both Tragosoma pilosicorne Casey and T depsarium “harrisi” LeConte may be (2S,3R)-2,3-hexanediol. Sexual dimorphism in the sculpting of the prothorax suggests that the pheromone glands are located in the prothorax of females. This is the second sex attractant pheromone structure identified from the subfamily Prioninae, and our results provide further evidence of pheromonal parsimony within the Cerambycidae, in this case extending across both subfamily and gender lines. PMID:22923142

  10. A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species

    PubMed Central

    Miura, Nami; Nakagawa, Tatsuro; Tatsuki, Sadahiro; Touhara, Kazushige; Ishikawa, Yukio

    2009-01-01

    In many moths, mate-finding communication is mediated by the female sex pheromones. Since differentiation of sex pheromones is often associated with speciation, it is intriguing to know how the changes in female sex pheromone have been tracked by the pheromone recognition system of the males. A male-specific odorant receptor was found to have been conserved through the evolution of sex pheromone communication systems in the genus Ostrinia (Lepidoptera: Crambidae). In an effort to characterize pheromone receptors of O. scapulalis, which uses a mixture of (E)-11- and (Z)-11-tetradecenyl acetates as a sex pheromone, we cloned a gene (OscaOR1) encoding a male-specific odorant receptor. In addition, we cloned a gene of the Or83b family (OscaOR2). Functional assays using Xenopus oocytes co-expressing OscaOR1 and OscaOR2 have shown that OscaOR1 is, unexpectedly, a receptor of (E)-11-tetradecenol (E11-14:OH), a single pheromone component of a congener O. latipennis. Subsequent studies on O. latipennis showed that this species indeed has a gene orthologous to OscaOR1 (OlatOR1), a functional assay of which confirmed it to be a gene encoding the receptor of E11-14:OH. Furthermore, investigations of six other Ostrinia species have revealed that all of them have a gene orthologous to OscaOR1, although none of these species, except O. ovalipennis, a species most closely related to O. latipennis, uses E11-14:OH as the pheromone component. The present findings suggest that the male-specific receptor of E11-14:OH was acquired before the divergence of the genus Ostrinia, and functionally retained through the evolution of this genus. PMID:19421342

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Hiroaki

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less

  12. Primer and short-range releaser pheromone properties of premolt female urine from the shore crab Carcinus maenas.

    PubMed

    Ekerholm, Mattias; Hallberg, Eric

    2005-08-01

    The European shore crab Carcinus maenas is considered to rely on a female pheromone when mating. Evidence, however, is scarce on how the urine pheromone in itself affects males. We investigated male primer and releaser responses to female pheromones with methods that minimized effects from females, delivering female urine either as a pump-generated plume or deposited on a polyurethane sponge. We delivered the pheromone at different concentrations in far, near, and close/contact range to get a picture of how distance affects behavioral response. Our results show that substances in premolt female urine (PMU) function as primer and potent short-range releaser pheromones. Based on the olfactometer and sponge tests, we conclude that PMU stimulus in itself is sufficient to elicit increased search and mating-specific behaviors such as posing, posing search, cradle carrying, and stroking. Pheromone concentrations do not seem to be important for attenuating search and posing as long as the level is above a certain threshold concentration. Instead, pheromone levels seem to play a role in male acceptance of females, recruiting more males to respond, and generating better responses with increasing concentration.

  13. Anatomical localization and stereoisomeric composition of Tribolium castaneum aggregation pheromones

    NASA Astrophysics Data System (ADS)

    Lu, Yujie; Beeman, Richard W.; Campbell, James F.; Park, Yoonseong; Aikins, Michael J.; Mori, Kenji; Akasaka, Kazuaki; Tamogami, Shigeyuki; Phillips, Thomas W.

    2011-09-01

    We report that the abdominal epidermis and associated tissues are the predominant sources of male-produced pheromones in the red flour beetle, Tribolium castaneum and, for the first time, describe the stereoisomeric composition of the natural blend of isomers of the aggregation pheromone 4,8-dimethyldecanal (DMD) in this important pest species. Quantitative analyses via gas chromatography-mass spectrometry showed that the average amount of DMD released daily by single feeding males of T. castaneum was 878 ± 72 ng (SE). Analysis of different body parts identified the abdominal epidermis as the major source of aggregation pheromone; the thorax was a minor source, while no DMD was detectable in the head. No internal organs or obvious male-specific glands were associated with pheromone deposition. Complete separation of all four stereoisomers of DMD was achieved following oxidation to the corresponding acid, derivatization with (1 R, 2 R)- and (1 S, 2 S)-2-(anthracene-2,3-dicarboximido)cyclohexanol to diastereomeric esters, and their separation on reversed-phase high-performance liquid chromatography at -54°C. Analysis of the hexane eluate from Porapak-Q-collected volatiles from feeding males revealed the presence of all four isomers (4 R,8 R)/(4 R,8 S)/(4 S,8 R)/(4 S,8 S) at a ratio of approximately 4:4:1:1. A walking orientation bioassay in a wind tunnel with various blends of the four synthetic isomers further indicated that the attractive potency of the reconstituted natural blend of 4:4:1:1 was equivalent to that of the natural pheromone and greater than that of the 1:1 blend of (4 R,8 R)/(4 R,8 S) used in commercial lures.

  14. Addition of Alarm Pheromone Components Improves the Effectiveness of Desiccant Dusts Against Cimex lectularius

    PubMed Central

    BENOIT, JOSHUA B.; PHILLIPS, SETH A.; CROXALL, TRAVIS J.; CHRISTENSEN, BRADY S.; YODER, JAY A.; DENLINGER, DAVID L.

    2009-01-01

    We demonstrate that the addition of bed bug, Cimex lectularius, alarm pheromone to desiccant formulations greatly enhances their effectiveness during short-term exposure. Two desiccant formulations, diatomaceous earth (DE) and Dri-die (silica gel), were applied at the label rate with and without bed bug alarm pheromone components, (E)-2-hexenal, (E)-2-octenal, and a (E)-2-hexenal:(E)-2-octenal blend. First-instar nymphs and adult females were subjected to 10-min exposures, and water loss rates were used to evaluate the response. Optimal effectiveness was achieved with a pheromone concentration of 0.01 M. With Dri-die alone, the water loss was 21% higher than in untreated controls, and water loss increased nearly two times with (E)-2-hexenal and (E)-2-octenal and three times with the (E)-2-hexenal: (E)-2-octenal blend. This shortened survival of first-instar nymphs from 4 to 1 d, with a similar reduction noted in adult females. DE was effective only if supplemented with pheromone, resulting in a 50% increase in water loss over controls with the (E)-2-hexenal:(E)-2-octenal blend, and a survival decrease from 4 to 2 d in first-instar nymphs. Consistently, the addition of the pheromone blend to desiccant dust was more effective than adding either component by itself or by using Dri-die or DE alone. Based on observations in a small microhabitat, the addition of alarm pheromone components prompted bed bugs to leave their protective harborages and to move through the desiccant, improving the use of desiccants for control. We concluded that short exposure to Dri-die is a more effective treatment against bed bugs than DE and that the effectiveness of the desiccants can be further enhanced by incorporation of alarm pheromone. Presumably, the addition of alarm pheromone elevates excited crawling activity, thereby promoting cuticular changes that increase water loss. PMID:19496429

  15. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    PubMed

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  16. Range of Attraction of Pheromone Lures and Dispersal Behavior of Cerambycid Beetles

    Treesearch

    E. Dunn; J. Hough-Goldstein; L. M. Hanks; J. G. Millar; V. D' Amico

    2016-01-01

    Cerambycid beetles (Coleoptera: Cerambycidae) can locate suitable hosts and mates by sensing pheromones and plant volatiles. Many cerambycid pheromone components have been identified and are now produced synthetically for trap lures. The range over which these lures attract cerambycids within a forest, and the tendency for cerambycids to move out of a forest in...

  17. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. © 2013 The Authors. Aging Cell published by John Wiley & Sons Ltd and the Anatomical Society.

  18. Streptococcus gordonii pheromone s.g.cAM373 may influence the reservoir of antibiotic resistance determinants of Enterococcus faecalis origin in the oral metagenome.

    PubMed

    Mansfield, Jillian M; Herrmann, Paul; Jesionowski, Amy M; Vickerman, M Margaret

    2017-11-01

    Streptococcus gordonii produces a pheromone heptapeptide, s.g.cAM373, which induces a conjugative mating response in Enterococcus faecalis cells carrying the responsive plasmid, pAM373. We investigated the extent of this intergeneric signaling on DNA acquisition by streptococcal species likely to cohabit oral biofilms. E. faecalis/pAM373/pAMS470 cells were incubated with synthetic s.g.cAM373, reverse peptide s.g.cAM373-R, or peptide-free medium and examined for their abilities to transfer plasmid DNA to streptococcal species in the presence of DNase. Preinduction of E. faecalis donors with s.g.cAM373 resulted in transconjugation frequencies in non-pheromone producing strains of Streptococcus mutans, Streptococcus sanguinis, Streptococcus anginosus, and Streptococcus suis that were significantly higher than frequencies when donors were preincubated with s.g.cAM373-R or medium alone. Peptide-mediated communication between commensal streptococci and E. faecalis carrying pheromone-responsive plasmids may facilitate conjugative DNA transfer to bystander species, and influence the reservoir of antibiotic resistance determinants of enterococcal origin in the oral metagenome.

  19. A pheromone-rate-based analysis on the convergence time of ACO algorithm.

    PubMed

    Huang, Han; Wu, Chun-Guo; Hao, Zhi-Feng

    2009-08-01

    Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.

  20. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    PubMed

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  1. Factors Affecting Pheromone Production by the Pepper Weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae) and Collection Efficiency

    PubMed Central

    Eller, Fred J.; Palmquist, Debra E.

    2014-01-01

    Several factors affecting pheromone production by male pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae) as well as collection efficiency were investigated. Factors studied included: porous polymer adsorbents (Tenax versus Super Q), male age, time of day, male density, and male diet. Super Q was found to be a superior adsorbent for the male-produced alcohols and geranic acid as well as the plant-produced E-β-ocimene. Pheromone production increased with male age up to about age 15 days old and then tapered off. Male pepper weevils produced the highest amount of pheromone between noon and 2 pm (i.e., 4 to 6 h after “lights on”) and were producing ca. 800 ng/h during this period. Thereafter, pheromone production decreased and was extremely low during the scotophase (i.e., ca. 12 ng/h). Male pepper weevil density had a significant effect on both release rate and pheromone composition. Pheromone production on a per male basis was highest for individual males and the percentage of geranic acid in the blend was lowest for individual males. Male pepper weevils produced only extremely low amounts of pheromone when feeding on artificial diet; however, they produced very high amounts when on fresh peppers. Together, this information will be useful in designing better attractant lures for pepper weevils. PMID:26462948

  2. Endogenous fatty acids in olfactory hairs influence pheromone binding protein structure and function in Lymantria dispar.

    PubMed

    Nardella, Jason; Terrado, Mailyn; Honson, Nicolette S; Plettner, Erika

    2015-08-01

    The gypsy moth utilizes a pheromone, (7R,8S)-2-methyl-7,8-epoxyoctadecane, for mate location. The pheromone is detected by sensory hairs (sensilla) on the antennae of adult males. Sensilla contain the dendrites of olfactory neurons bathed in lymph, which contains pheromone binding proteins (PBPs). We have extracted and identified free fatty acids from lymph of sensory hairs, and we demonstrate that these function as endogenous ligands for gypsy moth PBP1 and PBP2. Homology modeling of both PBPs, and docking of fatty acids reveal multiple binding sites: one internal, the others external. Pheromone binding assays suggest that these fatty acids increase PBP-pheromone binding affinity. We show that fatty acid binding causes an increase in α-helix content in the N-terminal domain, but not in the C-terminal peptide of both proteins. The C-terminal peptide was shown to form a α-helix in a hydrophobic, homogeneous environment, but not in the presence of fatty acid micelles. Through partition assays we show that the fatty acids prevent adsorption of the pheromone on hydrophobic surfaces and facilitate pheromone partition into an aqueous phase. We propose that lymph is an emulsion of fatty acids and PBP that influence each other and thereby control the partition equilibria of hydrophobic odorants. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Pheromone-based mating disruption in Wisconsin cranberries

    USDA-ARS?s Scientific Manuscript database

    Pheromone-based mating disruption is a promising method of pest control in cranberries. Three moth species, cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), Sparganothis fruitworm, Sparganothis sulfureana Clemens (Lepidoptera: Tortricidae), and black-headed fireworm, Rhopobota...

  4. Investigating a novel pathway by which pheromone-based mating disruption may protect crops

    USDA-ARS?s Scientific Manuscript database

    Pheromone-based mating disruption has been a successful, relatively new technology that growers use to reduce key insect populations. Mating disruption systems function by sending out false plumes of the insect sex pheromones – this interferes with the insect’s ability to find a mate, preempting egg...

  5. The volatilization of SPLAT® for use in pheromone mating disruption of cranberry pests

    USDA-ARS?s Scientific Manuscript database

    The paraffin-based pheromone carrier, SPLAT, was tested for its volatilization rate. A multi-factorial study was initiated to examine the interactive effects of point-source size, shape, and duration. The study showed that tremendous amounts of the pheromone were released early, followed by a gradua...

  6. Moth pheromone receptors and deceitful parapheromones

    USDA-ARS?s Scientific Manuscript database

    The insect’s olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less ...

  7. The Male Sex Pheromone of the Butterfly Bicyclus anynana: Towards an Evolutionary Analysis

    PubMed Central

    Nieberding, Caroline M.; de Vos, Helene; Schneider, Maria V.; Lassance, Jean-Marc; Estramil, Natalia; Andersson, Jimmy; Bång, Joakim; Hedenström, Erik; Löfstedt, Christer; Brakefield, Paul M.

    2008-01-01

    Background Female sex pheromones attracting mating partners over long distances are a major determinant of reproductive isolation and speciation in Lepidoptera. Males can also produce sex pheromones but their study, particularly in butterflies, has received little attention. A detailed comparison of sex pheromones in male butterflies with those of female moths would reveal patterns of conservation versus novelty in the associated behaviours, biosynthetic pathways, compounds, scent-releasing structures and receiving systems. Here we assess whether the African butterfly Bicyclus anynana, for which genetic, genomic, phylogenetic, ecological and ethological tools are available, represents a relevant model to contribute to such comparative studies. Methodology/Principal Findings Using a multidisciplinary approach, we determined the chemical composition of the male sex pheromone (MSP) in the African butterfly B. anynana, and demonstrated its behavioural activity. First, we identified three compounds forming the presumptive MSP, namely (Z)-9-tetradecenol (Z9-14:OH), hexadecanal (16:Ald ) and 6,10,14-trimethylpentadecan-2-ol (6,10,14-trime-15-2-ol), and produced by the male secondary sexual structures, the androconia. Second, we described the male courtship sequence and found that males with artificially reduced amounts of MSP have a reduced mating success in semi-field conditions. Finally, we could restore the mating success of these males by perfuming them with the synthetic MSP. Conclusions/Significance This study provides one of the first integrative analyses of a MSP in butterflies. The toolkit it has developed will enable the investigation of the type of information about male quality that is conveyed by the MSP in intraspecific communication. Interestingly, the chemical structure of B. anynana MSP is similar to some sex pheromones of female moths making a direct comparison of pheromone biosynthesis between male butterflies and female moths relevant to future

  8. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast

    PubMed Central

    Halim, Adnan; Larsen, Ida Signe Bohse; Neubert, Patrick; Joshi, Hiren Jitendra; Petersen, Bent Larsen; Vakhrushev, Sergey Y.; Strahl, Sabine; Clausen, Henrik

    2015-01-01

    Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing. PMID:26644575

  9. Re-evaluation of the PBAN receptor molecule: characterization of PBANR variants expressed in the pheromone glands of moths

    USDA-ARS?s Scientific Manuscript database

    Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from pheromone glands (PGs) of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that...

  10. Identification of trail pheromone of larva of eastern tent caterpillarMalacosoma americanum (Lepidoptera: Lasiocampidae).

    PubMed

    Crump, D; Silverstein, R M; Williams, H J; Fitzgerald, T D

    1987-03-01

    Previous studies have shown that larvae of the eastern tent caterpillar (Malacosoma americanum F.) mark trails, leading from their tent to feeding sites on host trees, with a pheromone secreted from the posterior tip of the abdominal sternum. 5β-Cholestane-3,24-dione (1) has been identified as an active component of the trail. The larvae have a threshold sensitivity to the pheromone of 10(-11) g/mm of trail. Several related compounds elicit the trail-following response. Two other species of tent caterpillars also responded positively to the pheromone in preliminary laboratory tests.

  11. A cost of alarm pheromone production in cotton aphids, Aphis gossypii

    NASA Astrophysics Data System (ADS)

    Byers, John A.

    2005-02-01

    The sesquiterpene, (E)-β-farnesene, is used by many aphid species as an alarm pheromone to warn related individuals of predation. Disturbed cotton aphids, Aphis gossypii Glover, released (E)-β-farnesene into the air as detected by solid phase microextraction and gas chromatography mass spectrometry (GC MS). Solvent extracts of cotton aphids of various life stages and weights also were analyzed by GC MS for sums of ions 69 and 93, which discriminated (E)-β-farnesene from coeluting compounds. Aphids of all life stages and sizes reared on cotton plants in both an environmental chamber and glasshouse contained (E)-β-farnesene in amounts ranging from 0.1 to 1.5 ng per individual. The quantities of (E)-β-farnesene in aphids increased in relation to increasing body weight, and variation in individual weights explained about 82% of the variation in alarm pheromone. However, the concentrations (ng/mg fresh weight) declined exponentially with increasing body weight. These findings indicate that aphid nymphs try to compensate for their smaller size by producing relatively more pheromone per weight than adults but still cannot approach an evolutionary optimal load, as assumed in adults with the greatest total amounts. This suggests that young aphids need to balance costs of growth and maturation with costs of producing the alarm pheromone.

  12. Aggression and courtship in Drosophila: pheromonal communication and sex recognition.

    PubMed

    Fernández, María Paz; Kravitz, Edward A

    2013-11-01

    Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.

  13. Aggression and Courtship in Drosophila: Pheromonal Communication and Sex Recognition

    PubMed Central

    Fernández, María Paz; Kravitz, Edward A.

    2013-01-01

    Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices. PMID:24043358

  14. Insect Control (1): Use of Pheromones

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses current research relating to the use of pheromones as a means of controlling insect pests. These chemicals, which are secreted by insects to affect the behavior of other individuals of the same species, may be used to eliminate pests without destroying their predators and other beneficial insects. (JR)

  15. Midgut tissue of male pine engraver , Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo

    NASA Astrophysics Data System (ADS)

    Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.

    2002-02-01

    For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.

  16. Mimicking Insect Communication: Release and Detection of Pheromone, Biosynthesized by an Alcohol Acetyl Transferase Immobilized in a Microreactor

    PubMed Central

    Muñoz, Lourdes; Dimov, Nikolay; Carot-Sans, Gerard; Bula, Wojciech P.; Guerrero, Angel; Gardeniers, Han J. G. E.

    2012-01-01

    Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an “artificial gland”, i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E)-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered. PMID:23155372

  17. Sex-Linked Pheromone Receptor Genes of the European Corn Borer, Ostrinia nubilalis, Are in Tandem Arrays

    PubMed Central

    Yasukochi, Yuji; Miura, Nami; Nakano, Ryo; Sahara, Ken; Ishikawa, Yukio

    2011-01-01

    Background Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs) play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths. Methodology/Principal Findings We screened an O. nubilalis bacterial artificial chromosome (BAC) library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH) analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7. Conclusions/Significance This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly, facilitate differentiation

  18. Larval salivary glands are a source of primer and releaser pheromone in honey bee ( Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Conte, Yves Le; Bécard, Jean-Marc; Costagliola, Guy; de Vaublanc, Gérard; Maâtaoui, Mohamed El; Crauser, Didier; Plettner, Erika; Slessor, Keith N.

    2006-05-01

    A brood pheromone identified in honeybee larvae has primer and releaser pheromone effects on adult bees. Using gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid esters—the pheromonal compounds—in different parts of the larvae, we have localized the source of the esters as the larval salivary glands. A histochemical study describes the glands and confirms the presence of lipids in the glands. Epithelial cells of the gland likely secrete the fatty acids into the lumen of the gland. These results demonstrate the salivary glands to be a reservoir of esters, components of brood pheromone, in honeybee larvae.

  19. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons.

    PubMed

    Nodari, Francesco; Hsu, Fong-Fu; Fu, Xiaoyan; Holekamp, Terrence F; Kao, Lung-Fa; Turk, John; Holy, Timothy E

    2008-06-18

    Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is essentially unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost >80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly sized stimulus set containing the majority of all previously reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knock-outs for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice.

  20. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons

    PubMed Central

    Nodari, Francesco; Hsu, Fong-Fu; Fu, Xiaoyan; Holekamp, Terrence F.; Kao, Lung-Fa; Turk, John; Holy, Timothy E.

    2009-01-01

    Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is largely unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost more than 80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly-sized stimulus set containing the majority of all previously-reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knockouts for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many-fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice. PMID:18562612

  1. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years.

    PubMed

    Engelberg, David; Perlman, Riki; Levitzki, Alexander

    2014-12-01

    In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that

  2. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator’s Sex Pheromone

    DOE PAGES

    Sedeek, Khalid E. M.; Whittle, Edward; Guthörl, Daniela; ...

    2016-05-19

    Here, we show that mimicry illustrates the power of selection to produce phenotypic convergence in biology. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species. This involves mimicry of visual, tactile, and chemical signals of females, especially their sex pheromones. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius. A difference in alkene double-bond positions is responsible for reproductivemore » isolation between O. exaltata and closely related species, such as O. sphegodes. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5’s reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. In conclusion, this change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.« less

  3. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator’s Sex Pheromone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedeek, Khalid E. M.; Whittle, Edward; Guthörl, Daniela

    Here, we show that mimicry illustrates the power of selection to produce phenotypic convergence in biology. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species. This involves mimicry of visual, tactile, and chemical signals of females, especially their sex pheromones. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius. A difference in alkene double-bond positions is responsible for reproductivemore » isolation between O. exaltata and closely related species, such as O. sphegodes. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5’s reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. In conclusion, this change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.« less

  4. The pheromone production of female Plodia interpunctella is inhibited by tyraminergic antagonists.

    PubMed

    Hirashima, Akinori; Kimizu, Megumi; Shigeta, Yoko; Matsugu, Sachiko; Eiraku, Tomohiko; Kuwano, Eiichi; Eto, Morifusa

    2004-11-01

    Several compounds were found to suppress the calling behavior and in vitro pheromone biosynthesis of the Indian meal moth, Plodia interpunctella. The compounds were screened by means of a calling-behavior bioassay with female P. interpunctella. Five derivatives with activities in the nanomolar range were identified, in order of decreasing pheromonostatic activity: 4-hydroxybenzaldehyde semicarbazone (42) > 5-(4-methoxyphenyl)-1,3-oxazole (38) > 5-[4-(tert-butyl)phenyl]-1,3-oxazole (40) > 5-(3-methoxyphenyl)-1,3-oxazole (35) > 5-(4-cyanophenyl)-1,3-oxazole (36). These compounds also showed in vitro inhibitory activity in intracellular de novo pheromone biosynthesis, as determined with isolated pheromone-gland preparations that incorporated [1-(14)C]sodium acetate in the presence of the so-called pheromone-biosynthesis-activating neuropeptide (PBAN). The non-additive effect of the inhibitor with antagonist (yohimbine) for the tyramine (TA) receptor suggests that it could be a tyraminergic antagonist. Three-dimensional (3D) computer models were built from a set of compounds. Among the common-featured models generated by the program Catalyst/HipHop, aromatic-ring (AR) and H-bond-acceptor-lipophilic (HBAl) features were considered to be essential for inhibitory activity in the calling behavior and in vitro pheromone biosynthesis. Active compounds, including yohimbine, mapped well onto all the AR and HBAl features of the hypothesis. Less-active compounds were shown to be unable to achieve an energetically favorable conformation, consistent with our 3D common-feature pharmacophore models. The present hypothesis demonstrates that calling behavior and PBAN-stimulated incorporation of radioactivity are inhibited by tyraminergic antagonists.

  5. Pheromone routing protocol on a scale-free network.

    PubMed

    Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song

    2009-12-01

    This paper proposes a routing strategy for network systems based on the local information of "pheromone." The overall traffic capacity of a network system can be evaluated by the critical packet generating rate R(c). Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.

  6. Pheromone routing protocol on a scale-free network

    NASA Astrophysics Data System (ADS)

    Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song

    2009-12-01

    This paper proposes a routing strategy for network systems based on the local information of “pheromone.” The overall traffic capacity of a network system can be evaluated by the critical packet generating rate Rc . Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.

  7. The search for human pheromones: the lost decades and the necessity of returning to first principles

    PubMed Central

    Wyatt, Tristram D.

    2015-01-01

    As humans are mammals, it is possible, perhaps even probable, that we have pheromones. However, there is no robust bioassay-led evidence for the widely published claims that four steroid molecules are human pheromones: androstenone, androstenol, androstadienone and estratetraenol. In the absence of sound reasons to test the molecules, positive results in studies need to be treated with scepticism as these are highly likely to be false positives. Common problems include small sample sizes, an overestimate of effect size (as no effect can be expected), positive publication bias and lack of replication. Instead, if we are to find human pheromones, we need to treat ourselves as if we were a newly discovered mammal, and use the rigorous methods already proven successful in pheromone research on other species. Establishing a pheromone relies on demonstration of an odour-mediated behavioural or physiological response, identification and synthesis of the bioactive molecule(s), followed by bioassay confirmation of activity. Likely sources include our sebaceous glands. Comparison of secretions from adult and pre-pubertal humans may highlight potential molecules involved in sexual behaviour. One of the most promising human pheromone leads is a nipple secretion from the areola glands produced by all lactating mothers, which stimulates suckling by any baby not just their own. PMID:25740891

  8. Disruption of Darna pallivitta (Lepidoptera: Limacodidae) by Conventional and Mobile Pheromone Deployment

    PubMed Central

    Siderhurst, Matthew S.; Jang, Eric B.; Carvalho, Lori A. F. N.; Nagata, Janice T.; Derstine, Nathan T.

    2015-01-01

    Identification of the Darna pallivitta (Moore) pheromone component n-butyl (E)-7,9-decadienoate (E7,9-10:COOn-Bu) has made it possible to investigate communication disruption to control this lepidopteran pest. Conventional communication disruption trials showed marked decreases in the mean number of male moths captured in E7,9-10:COOnBu-treated fields compared with control fields. For traps baited with E7,9-10:COOnBu, percent disruptions were 94.4% and 92.1% for septa (1 g pheromone/ha, 1-wk trial duration) and spirals (6 g pheromone/ha, 8-wk trial duration) respectively. For traps baited with virgin female moths, percent disruption was 73.3% using septa disruptors (1 g pheromone/ha, 1-wk trial duration). Mobile communication disruption using Bactrocera cucurbitae (Coquillett) as carriers for E7,9-10:COOn-Bu was evaluated in the following three areas: fly survivorship, attraction of male moths to treated flies, and moth disruption in a small-scale field trial. Topical application of E7,9-10:COOnBu showed no significant decrease in survivorship at 50 and 80 µg/fly. However, decreased survivorship was observed at 100 µg/fly and linear regression showed E7,9-10:COOnBu dose was significantly correlated with B. cucurbitae survivorship. Traps containing honey–pheromone-fed flies attracted and caught D. pallivitta over a 1-wk period, demonstrating the attractiveness of the carrier. Releasing E7,9-10:COOnBu-fed B. cucurbitae (∼2 g pheromone/ha, 1-wk trial duration) resulted in significantly reduced trap catches in treatment fields compared with control fields on the first 2 d of the field trial. Percent disruptions were 84.7% (day 1) and 56.0% (day 2). These results suggest that both conventional communication disruption and mobile communication disruption have potential to control D. pallivitta. PMID:26078301

  9. Disruption of Darna pallivitta (Lepidoptera: Limacodidae) by Conventional and Mobile Pheromone Deployment.

    PubMed

    Siderhurst, Matthew S; Jang, Eric B; Carvalho, Lori A F N; Nagata, Janice T; Derstine, Nathan T

    2015-01-01

    Identification of the Darna pallivitta (Moore) pheromone component n-butyl (E)-7,9-decadienoate (E7,9-10:COOn-Bu) has made it possible to investigate communication disruption to control this lepidopteran pest. Conventional communication disruption trials showed marked decreases in the mean number of male moths captured in E7,9-10:COOnBu-treated fields compared with control fields. For traps baited with E7,9-10:COOnBu, percent disruptions were 94.4% and 92.1% for septa (1 g pheromone/ha, 1-wk trial duration) and spirals (6 g pheromone/ha, 8-wk trial duration) respectively. For traps baited with virgin female moths, percent disruption was 73.3% using septa disruptors (1 g pheromone/ha, 1-wk trial duration). Mobile communication disruption using Bactrocera cucurbitae (Coquillett) as carriers for E7,9-10:COOn-Bu was evaluated in the following three areas: fly survivorship, attraction of male moths to treated flies, and moth disruption in a small-scale field trial. Topical application of E7,9-10:COOnBu showed no significant decrease in survivorship at 50 and 80 µg/fly. However, decreased survivorship was observed at 100 µg/fly and linear regression showed E7,9-10:COOnBu dose was significantly correlated with B. cucurbitae survivorship. Traps containing honey-pheromone-fed flies attracted and caught D. pallivitta over a 1-wk period, demonstrating the attractiveness of the carrier. Releasing E7,9-10:COOnBu-fed B. cucurbitae (∼2 g pheromone/ha, 1-wk trial duration) resulted in significantly reduced trap catches in treatment fields compared with control fields on the first 2 d of the field trial. Percent disruptions were 84.7% (day 1) and 56.0% (day 2). These results suggest that both conventional communication disruption and mobile communication disruption have potential to control D. pallivitta. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  10. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone.

    PubMed

    Sedeek, Khalid E M; Whittle, Edward; Guthörl, Daniela; Grossniklaus, Ueli; Shanklin, John; Schlüter, Philipp M

    2016-06-06

    Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging

    PubMed Central

    Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya

    2017-01-01

    The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023

  12. Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths.

    PubMed

    Navarro-Roldán, Miguel A; Gemeno, César

    2017-09-01

    In moths, sexual behavior combines female sex pheromone production and calling behavior. The normal functioning of these periodic events requires an intact nervous system. Neurotoxic insecticide residues in the agroecosystem could impact the normal functioning of pheromone communication through alteration of the nervous system. In this study we assess whether sublethal concentrations of the neonicotinoid insecticide thiacloprid, that competitively modulates nicotinic acetylcholine receptors at the dendrite, affect pheromone production and calling behavior in adults of three economically important tortricid moth pests; Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). Thiacloprid significantly reduced the amount of calling in C. pomonella females at LC 0.001 (a lethal concentration that kills only 1 in 10 5 individuals), and altered its calling period at LC 1 , and in both cases the effect was dose-dependent. In the other two species the effect was similar but started at higher LCs, and the effect was relatively small in L. botrana. Pheromone production was altered only in C. pomonella, with a reduction of the major compound, codlemone, and one minor component, starting at LC 10 . Since sex pheromones and neonicotinoids are used together in the management of these three species, our results could have implications regarding the interaction between these two pest control methods.

  13. Pheromonal Cues Deposited by Mated Females Convey Social Information about Egg-Laying Sites in Drosophila Melanogaster.

    PubMed

    Duménil, Claire; Woud, David; Pinto, Francesco; Alkema, Jeroen T; Jansen, Ilse; Van Der Geest, Anne M; Roessingh, Sanne; Billeter, Jean-Christophe

    2016-03-01

    Individuals can make choices based on information learned from others, a phenomenon called social learning. How observers differentiate between which individual they should or should not learn from is, however, poorly understood. Here, we showed that Drosophila melanogaster females can influence the choice of egg-laying site of other females through pheromonal marking. Mated females mark territories of high quality food by ejecting surplus male sperm containing the aggregation pheromone cis-11-vaccenyl acetate (cVA) and, in addition, deposit several sex- and species-specific cuticular hydrocarbon (CHC) pheromones. These pheromonal cues affect the choices of other females, which respond by preferentially laying eggs on the marked food. This system benefits both senders and responders, as communal egg laying increases offspring survival. Virgin females, however, do not elicit a change in the egg-laying decision of mated females, even when food has been supplemented with ejected sperm from mated females, thus indicating the necessity for additional cues. Genetic ablation of either a female's CHC pheromones or those of their mate results in loss of ability of mated females to attract other females. We conclude that mated females use a pheromonal marking system, comprising cVA acquired from male ejaculate with sex- and species-specific CHCs produced by both mates, to indicate egg-laying sites. This system ensures information reliability because mated, but not virgin, females have both the ability to generate the pheromone blend that attracts other flies to those sites and a direct interest in egg-laying site quality.

  14. Understanding the Logics of Pheromone Processing in the Honeybee Brain: From Labeled-Lines to Across-Fiber Patterns

    PubMed Central

    Sandoz, Jean-Christophe; Deisig, Nina; de Brito Sanchez, Maria Gabriela; Giurfa, Martin

    2007-01-01

    Honeybees employ a very rich repertoire of pheromones to ensure intraspecific communication in a wide range of behavioral contexts. This communication can be complex, since the same compounds can have a variety of physiological and behavioral effects depending on the receiver. Honeybees constitute an ideal model to study the neurobiological basis of pheromonal processing, as they are already one of the most influential animal models for the study of general odor processing and learning at behavioral, cellular and molecular levels. Accordingly, the anatomy of the bee brain is well characterized and electro- and opto-physiological recording techniques at different stages of the olfactory circuit are possible in the laboratory. Here we review pheromone communication in honeybees and analyze the different stages of olfactory processing in the honeybee brain, focusing on available data on pheromone detection, processing and representation at these different stages. In particular, we argue that the traditional distinction between labeled-line and across-fiber pattern processing, attributed to pheromone and general odors respectively, may not be so clear in the case of honeybees, especially for social-pheromones. We propose new research avenues for stimulating future work in this area. PMID:18958187

  15. Chemical communication in termites: syn-4,6-dimethylundecan-1-ol as trail-following pheromone, syn-4,6-dimethylundecanal and (5E)-2,6,10-trimethylundeca-5,9-dienal as the respective male and female sex pheromones in Hodotermopsis sjoestedti (Isoptera, Archotermopsidae).

    PubMed

    Lacey, Michael J; Sémon, Etienne; Krasulová, Jana; Sillam-Dussès, David; Robert, Alain; Cornette, Richard; Hoskovec, Michal; Záček, Petr; Valterová, Irena; Bordereau, Christian

    2011-12-01

    The trail-following pheromone and sex pheromones were investigated in the Indomalayan termite Hodotermopsis sjoestedti belonging to the new family Archotermopsidae. Gas chromatography coupled to mass spectrometry (GC-MS) after solid phase microextraction (SPME) of the sternal gland secretion of pseudergates and trail-following bioassays demonstrated that the trail-following pheromone of H. sjoestedti was syn-4,6-dimethylundecan-1-ol, a new chemical structure for termite pheromones. GC-MS after SPME of the sternal gland secretion of alates also allowed the identification of sex-specific compounds. In female alates, the major sex-specific compound was identified as (5E)-2,6,10-trimethylundeca-5,9-dienal, a compound previously identified as the female sex pheromone of the termite Zootermopsis nevadensis. In male alates, the major sex-specific compound was identified as syn-4,6-dimethylundecanal, a homolog of syn-4,6-dimethyldodecanal, which has previously been confirmed as the male sex pheromone of Z. nevadensis. The presence of sex-specific compounds in alates of H. sjoestedti strongly suggests for this termite the presence of sex-specific pairing pheromones which were only known until now in Z. nevadensis. Our results showed therefore a close chemical relationship between the pheromones of the taxa Hodotermopsis and Zootermopsis and, in contrast, a clear difference with the taxa Stolotermes and Porotermes, which is in total agreement with the recent creation of the families Archotermopsidae and Stolotermitidae as a substitute for the former family Termopsidae. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Factors Influencing Male Plutella xylostella (Lepidoptera: Plutellidae) Capture Rates in Sex Pheromone-Baited Traps on Canola in Western Canada.

    PubMed

    Miluch, C E; Dosdall, L M; Evenden, M L

    2014-12-01

    Optimization of male moth trapping rates in sex pheromone-baited traps plays a key role in managing Plutella xylostella (L.). We investigated various ways to increase the attractiveness of pheromone-baited traps to P. xylostella in canola agroecosystems in AB, Canada. Factors tested included pheromone blend and dose, addition of a green leaf volatile to the pheromone at different times during the season, lure type, trap color, and height. The industry standard dose of 100 μg of pheromone (four-component blend) per lure (ConTech Enterprises Inc., Delta, British Columbia [BC], Canada) captured the most moths in the two lure types tested. Traps baited with pheromone released from gray rubber septa captured more males than those baited with red rubber septa. Traps baited with lures in which Z11-16: Ac is the main component attracted significantly more moths than those in which Z11-16: Ald is the main component. The addition of the green leaf volatile, (Z)-3-hexenyl acetate, to pheromone at a range of doses, did not increase moth capture at any point during the canola growing season. Unpainted white traps captured significantly more male moths than pheromone-baited traps that were painted yellow. Trap height had no significant effect on moth capture. Recommendations for monitoring P. xylostella in canola agroecosystems of western Canada include using a pheromone blend with Z11-16: Ac as the main component released from gray rubber septa at a dose of 100 μg. © 2014 Entomological Society of America.

  17. Disruption by conophthorin of the kairomonal response of sawyer beetles to bark beetle pheromones.

    PubMed

    Morewood, W D; Simmonds, K E; Gries, R; Allison, J D; Borden, J H

    2003-09-01

    Antennally active nonhost angiosperm bark volatiles were tested for their ability to reduce the response of three common species of coniferophagous wood-boring Cerambycidae to attractant-baited multiple funnel traps in the southern interior of British Columbia. Of the nonhost volatiles tested, only conophthorin was behaviorally active, disrupting the attraction of sawyer beetles, Monochamus spp., to traps baited with the host volatiles alpha-pinene and ethanol and the bark beetle pheromones ipsenol and ipsdienol. Conophthorin did not affect the attraction of sawyer beetles to the host kairomones alpha-pinene and ethanol in the absence of bark beetle pheromones, nor did it have any behavioral effect on adults of Xylotrechus longitarsis, which were not attracted to bark beetle pheromones. These results indicate that conophthorin does not act as a general repellent for coniferophagous Cerambycidae, as it seems to do for many species of Scolytidae, but has the specific activity of disrupting the kairomonal response of sawyer beetles to bark beetle pheromones.

  18. Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae).

    PubMed

    Sillam-Dussès, David; Kalinová, Blanka; Jiros, Pavel; Brezinová, Anna; Cvacka, Josef; Hanus, Robert; Sobotník, Jan; Bordereau, Christian; Valterová, Irena

    2009-08-01

    GC/MS analysis confirmed that neocembrene is the major component of the trail pheromone in the three species of the termite genus Prorhinotermes (P. simplex, P. canalifrons, P. inopinatus). In addition, EAG and GC-EAD experiments with P. simplex strongly suggest that dodecatrienol is a quantitatively minor component but a qualitatively important component of this trail pheromone. Trail-following bioassays confirmed the two-component nature of the trail pheromone. This is the first report of the use of the GC-EAD for the identification of trail pheromone in termites. These original results underline once again the special phylogenetic status of the Prorhinotermitinae among Rhinotermitidae.

  19. (R)-3-hydroxyhexan-2-one is a major pheromone component of Anelaphus inflaticollis (Coleoptera: Cerambycidae).

    PubMed

    Ray, A M; Swift, I P; Moreira, J A; Millar, J G; Hanks, L M

    2009-10-01

    We report the identification and field bioassays of a major component of the male-produced aggregation pheromone of Anelaphus inflaticollis Chemsak, an uncommon desert cerambycine beetle. Male A. inflaticollis produced a sex-specific blend of components that included (R)-3-hydroxyhexan-2-one, (S)-2-hydroxyhexan-3-one, 2,3-hexanedione, and (2R,3R)- and (2R,3S)-2,3-hexanediols. Field trials with baited bucket traps determined that the reconstructed synthetic pheromone blend and (R)-3-hydroxyhexan-2-one alone attracted adult A. inflaticollis of both sexes, with significantly more beetles being attracted to the blend. We conclude that (R)-3-hydroxyhexan-2-one is a major pheromone component of A. inflaticollis, and our results suggest that one or more of the minor components may further increase attraction of conspecifics. Scanning electron microscopy showed that male A. inflaticollis have pores on the prothorax that are consistent in structure with sex-specific pheromone gland pores in related species. Males also displayed stereotyped calling behavior similar to that observed in other cerambycine species. This study represents the first report of volatile pheromones for a cerambycine species in the tribe Elaphidiini.

  20. Ants adjust their pheromone deposition to a changing environment and their probability of making errors

    PubMed Central

    Czaczkes, Tomer J.; Heinze, Jürgen

    2015-01-01

    Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony's foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately. PMID:26063845

  1. Management strategy evaluation of pheromone-baited trapping techniques to improve management of invasive sea lamprey

    USGS Publications Warehouse

    Dawson, Heather; Jones, Michael L.; Irwin, Brian J.; Johnson, Nicholas; Wagner, Michael C.; Szymanski, Melissa

    2016-01-01

    We applied a management strategy evaluation (MSE) model to examine the potential cost-effectiveness of using pheromone-baited trapping along with conventional lampricide treatment to manage invasive sea lamprey. Four pheromone-baited trapping strategies were modeled: (1) stream activation wherein pheromone was applied to existing traps to achieve 10−12 mol/L in-stream concentration, (2) stream activation plus two additional traps downstream with pheromone applied at 2.5 mg/hr (reverse-intercept approach), (3) trap activation wherein pheromone was applied at 10 mg/hr to existing traps, and (4) trap activation and reverse-intercept approach. Each new strategy was applied, with remaining funds applied to conventional lampricide control. Simulating deployment of these hybrid strategies on fourteen Lake Michigan streams resulted in increases of 17 and 11% (strategies 1 and 2) and decreases of 4 and 7% (strategies 3 and 4) of the lakewide mean abundance of adult sea lamprey relative to status quo. MSE revealed performance targets for trap efficacy to guide additional research because results indicate that combining lampricides and high efficacy trapping technologies can reduce sea lamprey abundance on average without increasing control costs.

  2. Moths behaving like butterflies. Evolutionary loss of long range attractant pheromones in castniid moths: a Paysandisia archon model.

    PubMed

    Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A; Guerrero, Angel

    2012-01-01

    In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the 'female calling plus male seduction' system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.

  3. Split luciferase complementation assay for the analysis of G protein-coupled receptor ligand response in Saccharomyces cerevisiae.

    PubMed

    Fukutani, Yosuke; Ishii, Jun; Kondo, Akihiko; Ozawa, Takeaki; Matsunami, Hiroaki; Yohda, Masafumi

    2017-06-01

    The budding yeast Saccharomyces cerevisiae is equipped with G protein-coupled receptors (GPCR). Because the yeast GPCR signaling mechanism is partly similar to that of the mammalian system, S. cerevisiae can be used for a host of mammalian GPCR expression and ligand-mediated activation assays. However, currently available yeast systems require several hours to observe the responses because they depend on the expression of reporter genes. In this study, we attempted to develop a simple GPCR assay system using split luciferase and β-arrestin, which are independent of the endogenous S. cerevisiae GPCR signaling pathways. We applied the split luciferase complementation assay method to S. cerevisiae and found that it can be used to analyze the ligand response of the human somatostatin receptor in S. cerevisiae. On the contrary, the response of the pheromone receptor Ste2 was not observed by the assay. Thus, the split luciferase complementation should be free from the effect of the endogenous GPCR signaling. Biotechnol. Bioeng. 2017;114: 1354-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Field and Laboratory Responses of Male Leaf Roller Moths, Choristoneura rosaceana and Pandemis pyrusana, to Pheromone Concentrations in an Attracticide Paste Formulation

    PubMed Central

    Curkovic, Tomislav; Brunner, Jay F.; Landolt, Peter J.

    2009-01-01

    Male leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) and Pandemis pyrusana (Kearfott), were evaluated for responses to a paste formulation loaded with a range of concentrations of the two species' pheromone blends and evaluated in a laboratory wind tunnel and in the field. Response criteria were flight, flight towards the pheromone source, and contact with the pheromone source for the wind tunnel assays, and capture of moths in traps for the field tests. In the wind tunnel and field, responses of males of both species to the paste generally increased as the pheromone concentration in the paste was increased. There was little response by either species to paste with less than 0.16% pheromone. The relationship between pheromone concentration and response for P. pyrusana was linear and for C. rosaceana was sinusoidal over the range of pheromone concentrations tested. These patterns were seen both in the wind tunnel and in the field. Initial release rates from the paste of (Z)-11-tetradecenyl acetate, the main component of the pheromone blends of both species was 3.6–3.8 ng/h. Inhibitory thresholds for responses were not reached for either species, using pheromone concentrations as high as 16%, in either the wind tunnel or the field. For both species, response of males to rubber septa with one mg pheromone loads was similar to the response to the paste with pheromone at concentrations greater than 3–4%. For C. rosaceana, rates of contact with the paste in the wind tunnel were statistically similar to rates of contact in response to conspecific females, with paste pheromone concentrations above 1.6%. Response rates for males of P. pyrusana were significantly lower to the paste than to conspecific females at all paste pheromone concentrations tested. Overall, the optimum pheromone concentration in the paste for moth attraction to contact was 3.2 % for C. rosaceana and 8% for P. pyrusana. PMID:19619030

  5. Effects of Two Conventional Insecticides on Male-Specific Sex Pheromone Discrimination and Mate Choice in Trichogramma chilonis (Hymenoptera: Trichogrammatidae).

    PubMed

    Wang, Desen; Lü, Lihua; He, Yurong

    2017-04-01

    Trichogramma chilonis Ishii is an important natural enemy of many lepidopterous pests on vegetables and field crops. The effects of two conventional insecticides on male-specific sex pheromone discrimination and mate choice in T. chilonis was evaluated in the laboratory. Beta-cypermethrin LC20 exposure induced decreases in male conspecific sex pheromone discrimination and mating rate in T. chilonis, and these decreases were not due to the lower locomotor activity of the surviving T. chilonis males. Spinosad LC20 exposure caused a significant decrease in male locomotor activity of T. chilonis, but did not affect male-specific sex pheromone discrimination (conspecific sex pheromone discrimination or virgin sex pheromone discrimination) or mating rate. However, there was no significant difference in specific sex pheromone discrimination, mate choice, and locomotor activity between control males and males exposed to the low concentration (LC1) of insecticide (beta-cypermethrin or spinosad). In conclusion, beta-cypermethrin LC20 exposure was harmful to male-specific sex pheromone discrimination and mate choice in T. chilonis. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Pretreatment with CP-154526 blocks the modifying effects of alarm pheromone on components of sexual behavior in male, but not in female, rats.

    PubMed

    Kobayashi, Tatsuya; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2011-09-01

    We previously demonstrated that an alarm pheromone released from male donor Wistar rats evoked several physiological and behavioral responses in recipient rats. However, the pheromone effects on social behavior were not analyzed. In the present study, we examined whether the alarm pheromone affects sexual behavior in male or female rats. When a pair of male and female subjects was exposed to the alarm pheromone during sexual behavior, the ejaculation latency was elongated, the number of mounts was increased, and the hit rate (number of intromissions/number of mounts and intromissions) was decreased in the male subject. In contrast, female sexual behavior was not affected by the alarm pheromone. When we exposed only the male or female subject of the pair to the pheromone just before sexual behavior, the results were similar: the pheromone effects were evident in male, but not in female, subjects. In addition, when we pretreated with corticotropin-releasing factor (CRF) antagonist (CP-154526) before exposing the male subject to the alarm pheromone, the pheromone effects were attenuated in a dose-dependent manner. These results indicate that the alarm pheromone modifies male, but not female, components of sexual behavior and that CRF participates in the effects.

  7. Synthetic analogs of the trail pheromone of the leaf-cutting ant, Atta texana (Buckley)

    Treesearch

    Philip E. Sonnet; John C. Moser

    1972-01-01

    The preparation and bioassay of a number of analogs of the trail-following pheromone of the town ant, Atta texana (Buckley), are described. Although several compounds were quite active, isomers of the pheromone were not. The results are discussed wit ha vew to the probable conformations of these molecules.

  8. Effect of a synthetic feline facial pheromone product on stress scores and incidence of upper respiratory tract infection in shelter cats.

    PubMed

    Chadwin, Robin M; Bain, Melissa J; Kass, Philip H

    2017-08-15

    OBJECTIVE To determine whether a synthetic feline facial pheromone product would decrease stress scores and upper respiratory tract infection (URI) incidence in shelter-housed cats. DESIGN Randomized controlled clinical trial. ANIMALS 336 stray, feral, owner-relinquished, or legally impounded cats at 2 animal shelters in northern California. PROCEDURES 5 cat holding rooms (3 at shelter A and 2 at shelter B) were used. A diffuser containing either synthetic pheromone or placebo was randomly assigned to each room, and cats were exposed for a 21-day period. Data collected on each cat included signalment, daily stress scores, and daily URI incidence. After 21 days, diffusers were removed for a 7-day washout period. The type of diffuser in each room was switched, and data were collected for another 21 days. Findings were statistically compared between exposure types and other groupings. RESULTS Cox proportional hazard analysis revealed no significant difference between exposure (pheromone or placebo) and URI incidence. Mixed-effects ordinal logistic regression revealed no significant relationship between exposure and daily stress scores. Three covariates had significant ORs: number of days in holding (OR, 0.80; 95% confidence interval [CI], 0.76 to 0.84), owner-relinquished versus stray (OR, 3.25; 95% CI, 1.18 to 8.94), and feral versus adult cat room at shelter A (OR, 11.10; 95% CI, 4.47 to 27.60). CONCLUSIONS AND CLINICAL RELEVANCE No evidence was found that the evaluated synthetic feline facial pheromone product had any effect on stress scores or URI incidence in shelter-housed cats. Therefore, other established methods for stress and URI reduction should be used in shelter settings.

  9. Effect of Male House Mouse Pheromone Components on Behavioral Responses of Mice in Laboratory and Field Experiments.

    PubMed

    Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard

    2017-03-01

    Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.

  10. Pheromone-based mating disruption to control the historical top three insect pests of Wisconsin cranberries

    USDA-ARS?s Scientific Manuscript database

    In 2012, the first 3-species pheromone mating disruption program was tested in Wisconsin cranberries. Preliminary data suggest that there was substantial disruption of blackheaded fireworm and Sparganothis fruitworm mating. The pheromone of cranberry fruitworm only contained a single component, and ...

  11. LUSH-based SPR sensor for the detection of alcohols and pheromone

    NASA Astrophysics Data System (ADS)

    Lau, Hui-Chong; Lee, Yeon-Kyung; Kwon, Jae-Young; Sohn, Young-Soo; Lim, Jeong Ok

    2013-05-01

    Protein is a widely used sensing substrate in the biosensing technology. In the study conducted here, we used odorant binding protein, LUSH from Drosophila as a biosensing substrate in a miniaturized surface plasmon resonance (SPR) sensor. LUSH contains the specific alcohols binding sites, which mediates the detection of alcohols and pheromone. We first modified the surface of the gold sensor chip using the self assembled monolayer in the chloroform solution. The saturated concentration was determined prior to the detection of alcohols and pheromone at various concentrations. The results showed that the LUSH was saturated at 1000 μg/ml on the gold sensor chip. The detection response of LUSH was significant at higher concentration of alcohols. LUSH detected ethanol at concentration >=50% propanol was detected at >=25% whereas pheromone was detected at >=1.25 μg/μl. The results provide some fundamental information on the potential use of LUSH-based SPR as a simple and easy protein-based sensor in the near future.

  12. Guanine nucleotide-binding protein (Gα) endocytosis by a cascade of ubiquitin binding domain proteins is required for sustained morphogenesis and proper mating in yeast.

    PubMed

    Dixit, Gauri; Baker, Rachael; Sacks, Carly M; Torres, Matthew P; Dohlman, Henrik G

    2014-05-23

    Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Aphid Alarm Pheromone as a Cue for Ants to Locate Aphid Partners

    PubMed Central

    Verheggen, François J.; Diez, Lise; Sablon, Ludovic; Fischer, Christophe; Bartram, Stefan; Haubruge, Eric; Detrain, Claire

    2012-01-01

    The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E)-β-farnesene (EβF), by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field. PMID:22870255

  14. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae).

    PubMed

    Ammagarahalli, Byrappa; Gemeno, César

    2014-12-01

    The response profile of olfactory receptor neurons (ORNs) of male Grapholita molesta (Busck) to the three female sex pheromone components [(Z)-8-dodecenyl acetate (Z8-12:Ac), (E)-8-dodecenyl acetate (E8-12:Ac), and (Z)-8-dodecenyl alcohol (Z8-12:OH)] was tested with single sensillum electrophysiology. Sensilla trichodea housed normally one, but sometimes two or three ORNs with distinct action potential amplitudes. One third of the sensilla contacted contained ORNs that were unresponsive to any of the pheromone components tested. The remaining sensilla contained one ORN that responded either to the major pheromone component, Z8-12:Ac ("Z-cells", 63.7% of sensilla), or to its isomer E8-12:Ac ("E-cells", 7.4% of sensilla). 31% of Z- and E-sensilla had 1 or 2 additional cells, but these did not respond to pheromone. None of the 176 sensilla contacted hosted ORNs that responded to Z8-12:OH. The proportion of Z- and E-cells on the antennae (100:11.6, respectively) is similar to the proportion of these compounds in the blend (100:6, respectively). The response of Z-cells was very specific, whereas E-cells also responded to the Z isomer, albeit with lower sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory.

    PubMed

    Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J

    2003-09-01

    The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring.

  16. Factors influencing capture of invasive sea lamprey in traps baited with a synthesized sex pheromone component

    USGS Publications Warehouse

    Johnson, Nicholas; Siefkes, Michael J.; Wagner, C. Michael; Bravener, Gale; Steeves, Todd; Twohey, Michael; Li, Weiming

    2015-01-01

    The sea lamprey, Petromyzon marinus, is emerging as a model organism for understanding how pheromones can be used for manipulating vertebrate behavior in an integrated pest management program. In a previous study, a synthetic sex pheromone component 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) was applied to sea lamprey traps in eight streams at a final in-stream concentration of 10−12 M. Application of 3kPZS increased sea lamprey catch, but where and when 3kPZS had the greatest impact was not determined. Here, by applying 3kPZS to additional streams, we determined that overall increases in yearly exploitation rate (proportion of sea lampreys that were marked, released, and subsequently recaptured) were highest (20–40 %) in wide streams (~40 m) with low adult sea lamprey abundance (<1000). Wide streams with low adult abundance may be representative of low-attraction systems for adult sea lamprey and, in the absence of other attractants (larval odor, sex pheromone), sea lamprey may have been more responsive to a partial sex pheromone blend emitted from traps. Furthermore, we found that the largest and most consistent responses to 3kPZS were during nights early in the trapping season, when water temperatures were increasing. This may have occurred because, during periods of increasing water temperatures, sea lamprey become more active and males at large may not have begun to release sex pheromone. In general, our results are consistent with those for pheromones of invertebrates, which are most effective when pest density is low and when pheromone competition is low.

  17. Listening in Pheromone Plumes: Disruption of Olfactory-Guided Mate Attraction in a Moth by a Bat-Like Ultrasound

    PubMed Central

    Svenssona, Glenn P.; Löfstedt, Christer; Skals, Niels

    2007-01-01

    Nocturnal moths often use sex pheromones to find mates and ultrasonic hearing to evade echolocating bat predators. Male moths, when confronted with both pheromones and sound, thus have to trade off reproduction and predator avoidance depending on the relative strengths of the perceived conflicting stimuli. The ultrasonic hearing of Plodia interpunctella was investigated. A threshold curve for evasive reaction to ultrasound of tethered moths was established, and the frequency of best hearing was found to be between 40 and 70 kHz. Flight tunnel experiments were performed where males orienting in a sex pheromone plume were stimulated with 50 kHz pulses of different intensities. Pheromone-stimulated males showed increased defensive response with increased intensity of the sound stimulus, and the acoustic cue had long-lasting effects on their pheromone-mediated flight, revealing a cost associated with vital evasive behaviours. PMID:20331396

  18. Environmental and Genetic Determinants of Colony Morphology in Yeast

    PubMed Central

    Granek, Joshua A.; Magwene, Paul M.

    2010-01-01

    Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key environmental signals involved in its induction have heretofore remained poorly understood. By surveying multiple strain backgrounds and a large number of growth conditions, we show that limitation for fermentable carbon sources coupled with a rich nitrogen source is the primary trigger for the colony morphology response in budding yeast. Using knockout mutants and transposon-mediated mutagenesis, we demonstrate that two key signaling networks regulating this response are the filamentous growth MAP kinase cascade and the Ras-cAMP-PKA pathway. We further show synergistic epistasis between Rim15, a kinase involved in integration of nutrient signals, and other genes in these pathways. Ploidy, mating-type, and genotype-by-environment interactions also appear to play a role in the controlling colony morphology. Our study highlights the high degree of network reuse in this model eukaryote; yeast use the same core signaling pathways in multiple contexts to integrate information about environmental and physiological states and generate diverse developmental outputs. PMID:20107600

  19. Phorid fly, Pseudacteon tricuspis, response to alkylpyrazine analogs of a fire ant, Solenopsis invicta, alarm pheromone.

    PubMed

    Sharma, Kavita; Vander Meer, Robert K; Fadamiro, Henry Y

    2011-07-01

    The phorid fly, Pseudacteon tricuspis Borgmeier, is a parasitoid of the red imported fire ant, Solenopsis invicta Buren. This fly has been reported to use fire ant chemicals, specifically venom alkaloids and possibly alarm pheromone to locate its host. A recent study identified 2-ethyl-3,6-dimethyl pyrazine as a component of the alarm pheromone of S. invicta. To determine the possible involvement of this fire ant alarm pheromone component in mediating fire ant-phorid fly interactions, we tested electroantennogram (EAG) and behavioral responses of P. tricuspis females to the commercially available mixture of 2-ethyl-3,6-dimethyl pyrazine and its 3,5-dimethyl isomer, as well as six structurally related alkylpyrazine analogs at varying doses. Pseudacteon tricuspis females showed significant EAG response to 2-ethyl-3,6(or 5)-dimethyl pyrazine (herein referred to as pheromone-isomer) at all doses, 0.001-10 μg. Among the tested alkylpyrazine analogs, 2,3-diethyl-5-methyl pyrazine showed significant EAG activity at 0.1 and 1 μg. 2,3-dimethyl pyrazine also showed significant EAG activity at 0.1 μg. Results of four-choice olfactometer bioassays demonstrated significant attraction of P. tricuspis females to the pheromone-isomer (2-ethyl-3,6(or 5)-dimethyl pyrazine) at all tested doses (0.01, 0.1, 1 and 10 μg). The analogs, 2,3-diethyl-5-methyl pyrazine and 2,3-dimethyl pyrazine were significantly better than the control at the higher doses (0.1, 1 and 10 μg). The pheromone-isomer was significantly better than both analogs at two doses, 0.1 and 1 μg. These results confirm that the reported fire ant alarm pheromone component plays a role in mediating attraction of phorid flies to host workers. Venom alkaloids were previously shown to attract P. tricuspis; therefore, we propose that fire ant alarm pheromones may act in tandem or synergistically with venom alkaloids to attract phorid fly parasitoids to fire ant workers. Published by Elsevier Ltd.

  20. Coordination of the Arc Regulatory System and Pheromone-Mediated Positive Feedback in Controlling the Vibrio fischeri lux Operon

    PubMed Central

    Septer, Alecia N.; Stabb, Eric V.

    2012-01-01

    Bacterial pheromone signaling is often governed both by environmentally responsive regulators and by positive feedback. This regulatory combination has the potential to coordinate a group response among distinct subpopulations that perceive key environmental stimuli differently. We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedback in intercellular signaling by Vibrio fischeri ES114, a bioluminescent bacterium that colonizes the squid Euprymna scolopes. Bioluminescence in ES114 is controlled in part by N-(3-oxohexanoyl)-L-homoserine lactone (3OC6), a pheromone produced by LuxI that together with LuxR activates transcription of the luxICDABEG operon, initiating a positive feedback loop and inducing luminescence. The lux operon is also regulated by environmentally responsive regulators, including the redox-responsive ArcA/ArcB system, which directly represses lux in culture. Here we show that inactivating arcA leads to increased 3OC6 accumulation to initiate positive feedback. In the absence of positive feedback, arcA-mediated control of luminescence was only ∼2-fold, but luxI-dependent positive feedback contributed more than 100 fold to the net induction of luminescence in the arcA mutant. Consistent with this overriding importance of positive feedback, 3OC6 produced by the arcA mutant induced luminescence in nearby wild-type cells, overcoming their ArcA repression of lux. Similarly, we found that artificially inducing ArcA could effectively repress luminescence before, but not after, positive feedback was initiated. Finally, we show that 3OC6 produced by a subpopulation of symbiotic cells can induce luminescence in other cells co-colonizing the host. Our results suggest that even transient loss of ArcA-mediated regulation in a sub-population of cells can induce luminescence in a wider community. Moreover, they indicate that 3OC6 can communicate information about both cell density and the state of