Sample records for yeast ssd1-v regulates

  1. Insulin-induced Gene Protein (INSIG)-dependent Sterol Regulation of Hmg2 Endoplasmic Reticulum-associated Degradation (ERAD) in Yeast*

    PubMed Central

    Theesfeld, Chandra L.; Hampton, Randolph Y.

    2013-01-01

    Insulin-induced gene proteins (INSIGs) function in control of cellular cholesterol. Mammalian INSIGs exert control by directly interacting with proteins containing sterol-sensing domains (SSDs) when sterol levels are elevated. Mammalian 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR) undergoes sterol-dependent, endoplasmic-reticulum (ER)-associated degradation (ERAD) that is mediated by INSIG interaction with the HMGR SSD. The yeast HMGR isozyme Hmg2 also undergoes feedback-regulated ERAD in response to the early pathway-derived isoprene gernanylgeranyl pyrophosphate (GGPP). Hmg2 has an SSD, and its degradation is controlled by the INSIG homologue Nsg1. However, yeast Nsg1 promotes Hmg2 stabilization by inhibiting GGPP-stimulated ERAD. We have proposed that the seemingly disparate INSIG functions can be unified by viewing INSIGs as sterol-dependent chaperones of SSD clients. Accordingly, we tested the role of sterols in the Nsg1 regulation of Hmg2. We found that both Nsg1-mediated stabilization of Hmg2 and the Nsg1-Hmg2 interaction required the early sterol lanosterol. Lowering lanosterol in the cell allowed GGPP-stimulated Hmg2 ERAD. Thus, Hmg2-regulated degradation is controlled by a two-signal logic; GGPP promotes degradation, and lanosterol inhibits degradation. These data reveal that the sterol dependence of INSIG-client interaction has been preserved for over 1 billion years. We propose that the INSIGs are a class of sterol-dependent chaperones that bind to SSD clients, thus harnessing ER quality control in the homeostasis of sterols. PMID:23306196

  2. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells*

    PubMed Central

    Chan, Chun-Yuan; Dominguez, Dennis; Parra, Karlett J.

    2016-01-01

    Yeast 6-phosphofructo-1-kinase (PFK-1) has two subunits, Pfk1p and Pfk2p. Deletion of Pfk2p alters glucose-dependent V-ATPase reassembly and vacuolar acidification (Chan, C. Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448–19457). This study capitalized on the mechanisms suppressing vacuolar H+-ATPase (V-ATPase) in pfk2Δ to gain new knowledge of the mechanisms underlying glucose-dependent V-ATPase regulation. Because V-ATPase is fully assembled in pfk2Δ, and glycolysis partially suppressed at steady state, we manipulated glycolysis and assessed its direct involvement on V-ATPase function. At steady state, the ratio of proton transport to ATP hydrolysis increased 24% after increasing the glucose concentration from 2% to 4% to enhance the glycolysis flow in pfk2Δ. Tighter coupling restored vacuolar pH when glucose was abundant and glycolysis operated below capacity. After readdition of glucose to glucose-deprived cells, glucose-dependent V1Vo reassembly was proportional to the glycolysis flow. Readdition of 2% glucose to pfk2Δ cells, which restored 62% of ethanol concentration, led to equivalent 60% V1Vo reassembly levels. Steady-state level of assembly (100% reassembly) was reached at 4% glucose when glycolysis reached a threshold in pfk2Δ (≥40% the wild-type flow). At 4% glucose, the level of Pfk1p co-immunoprecipitated with V-ATPase decreased 58% in pfk2Δ, suggesting that Pfk1p binding to V-ATPase may be inhibitory in the mutant. We concluded that V-ATPase activity at steady state and V-ATPase reassembly after readdition of glucose to glucose-deprived cells are controlled by the glycolysis flow. We propose a new mechanism by which glucose regulates V-ATPase catalytic activity that occurs at steady state without changing V1Vo assembly. PMID:27226568

  3. SSD1, which encodes a plant-specific novel protein, controls plant elongation by regulating cell division in rice.

    PubMed

    Asano, Kenji; Miyao, Akio; Hirochika, Hirohiko; Kitano, Hidemi; Matsuoka, Makoto; Ashikari, Motoyuki

    2010-01-01

    Plant height is one of the most important traits in crop improvement. Therefore revealing the mechanism of plant elongation and controlling plant height in accordance with breeding object is important. In this study we analyzed a novel dwarf mutant, ssd1, of which phenotype is different from typical GA- or BR-related dwarf phenotype. ssd1 exhibits pleiotropic defects in elongation of various organs such as stems, roots, leaves, and flowers. ssd1 also shows abnormal cell files and shapes, which suggests defects of normal cell division in the mutant. Map-based cloning and complementation test demonstrated that the dwarf phenotype in ssd1 mutant was caused by insertion of retrotransposon in a gene, which encodes plant-specific protein with unknown biochemical function. A BLAST search revealed that SSD1-like genes exist in diverse plant species, including monocots and dicots, but not fern and moss. Our results demonstrate that SSD1 controls plant elongation by controlling cell division in higher plants.

  4. Turbidostat Culture of Saccharomyces cerevisiae W303-1A under Selective Pressure Elicited by Ethanol Selects for Mutations in SSD1 and UTH1

    PubMed Central

    Avrahami-Moyal, Liat; Engelberg, David; Wenger, Jared. W.; Sherlock, Gavin; Braun, Sergei

    2012-01-01

    We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 h-1 to 0.32 h-1. Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within six days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within two days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of 6 clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 out of 19 tolerant clones the stop-codon in ssd1-d was replaced with an aminoacid-encoding codon. Three other clones contained one of two mutations in UTH1, and one clone did not contain mutations in either SSD1 or UTH1. We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol. PMID:22443114

  5. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast

    PubMed Central

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  6. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    PubMed

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  7. Down-regulation of PRKCB1 expression in Han Chinese patients with subsyndromal symptomatic depression.

    PubMed

    Guo, Xiaoyun; Li, Zezhi; Zhang, Chen; Yi, Zhenghui; Li, Haozhe; Cao, Lan; Yuan, Chengmei; Hong, Wu; Wu, Zhiguo; Peng, Daihui; Chen, Jun; Xia, Weiping; Zhao, Guoqing; Wang, Fan; Yu, Shunying; Cui, Donghong; Xu, Yifeng; Golam, Chowdhury M I; Smith, Alicia K; Wang, Tong; Fang, Yiru

    2015-10-01

    Subsyndromal symptomatic depression (SSD) is a common disease with significant social dysfunction. However, SSD is still not well understood and the pathophysiology of it remains unclear. We classified 48 candidate genes for SSD according to our previous study into clusters and pathways using DAVID Bioinformatics Functional Annotation Tool. We further replicated the result by using real-time Quantitative PCR (qPCR) studies to examine the expression of identified genes (i.e., STAT5b, PKCB1, ABL1 and NRAS) in another group of Han Chinese patients with SSD (n = 50). We further validated the result by examining PRKCB1 expression collected from MDD patients (n = 20). To test whether a deficit in PRKCB1 expression leads to dysregulation in PRKCB1 dependent transcript networks, we tested mRNA expression levels for the remaining 44 genes out of 48 genes in SSD patients. Finally, the power of discovery was improved by incorporating information from Quantitative Trait (eQTL) analysis. The results showed that the PRCKB1 gene expression in peripheral blood mononuclear cells (PBMC) was 33.3% down-regulated in SSD patients (n = 48, t = 3.202, p = 0.002), and a more dramatic (n = 17, 49%) down-regulation in MDD patients than control (n = 49, t = 2.114, p = 0.001). We also identified 37 genes that displayed a strong correlation with PRKCB1 mRNA expression levels in SSD patients. The expression of PRKCB1 was regulated by multiple single nucleotide polymorphisms (SNPs) both at the transcript level and exon level. In conclusion, we first found a significant decrease of PRCKB1 mRNA expression in SSD, suggesting PRKCB1 might be the candidate gene and biomarker for SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator

    PubMed Central

    Usaite, Renata; Jewett, Michael C; Oliveira, Ana Paula; Yates, John R; Olsson, Lisbeth; Nielsen, Jens

    2009-01-01

    Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite levels in wild type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 knockout strains. Using four newly developed computational tools, including novel DOGMA sub-network analysis, we showed the benefits of three-level ome-data integration to uncover the global Snf1 kinase role in yeast. We for the first time identified Snf1's global regulation on gene and protein expression levels, and showed that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of AMPK in humans, our findings showed that Snf1 is a low-energy checkpoint and that yeast can be used more extensively as a model system for studying the molecular mechanisms underlying the global regulation of AMPK in mammals, failure of which leads to metabolic diseases. PMID:19888214

  9. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-05

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Mitochondrial fission proteins regulate programmed cell death in yeast.

    PubMed

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  11. The Yeast Copper Response Is Regulated by DNA Damage

    PubMed Central

    Dong, Kangzhen; Addinall, Stephen G.; Lydall, David

    2013-01-01

    Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798

  12. Isolation and expression of a gene (CGR1) regulated during the yeast-hyphal transition in Candida albicans.

    PubMed

    Cho, T; Sudoh, M; Tanaka, T; Nakashima, Y; Chibana, H; Kaminishi, H

    2001-01-26

    We used RNA fingerprinting of arbitrarily primed PCR to isolate genes upregulated during the yeast-hyphal transition in Candida albicans. The sequence and expression of one of these genes (CGR1, Candida growth regulation) are presented. Our results suggest that CGR1 expression is associated with a growth cessation of yeast cells, a prerequisite for germination in this organism.

  13. Output calculation of electron therapy at extended SSD using an improved LBR method.

    PubMed

    Alkhatib, Hassaan A; Gebreamlak, Wondesen T; Tedeschi, David J; Mihailidis, Dimitris; Wright, Ben W; Neglia, William J; Sobash, Philip T; Fontenot, Jonas D

    2015-02-01

    To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes-one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm(3) Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSDeff) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σR(z)] was calculated. Taking the cutout size dependence of σR(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSDeff values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. The improved LBR method has been generalized to calculate the output factor of electron therapy at extended SSD. The

  14. MgATP hydrolysis destabilizes the interaction between subunit H and yeast V1-ATPase, highlighting H's role in V-ATPase regulation by reversible disassembly.

    PubMed

    Sharma, Stuti; Oot, Rebecca A; Wilkens, Stephan

    2018-05-12

    Vacuolar H+-ATPases (V-ATPases; V1Vo-ATPases) are rotary motor proton pumps that acidify intracellular compartments and in some tissues, the extracellular space. V-ATPase is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel sectors. An important player in V-ATPase regulation is subunit H, which binds at the interface of V1 and Vo. H is required for MgATPase activity in holo V-ATPase, but also for stabilizing the MgADP inhibited state in membrane detached V1. However, how H fulfills these two functions is poorly understood. To characterize the H-V1 interaction and its role in reversible disassembly, we determined binding affinities of full length H and its N-terminal domain (HNT) for an isolated heterodimer of subunits E and G (EG), the N-terminal domain of subunit a (aNT), and V1 lacking subunit H (V1ΔH). Using isothermal titration calorimetry (ITC) and biolayer interferometry (BLI), we show that HNT binds EG with moderate affinity, that full length H binds aNT weakly, and that both H and HNT bind V1ΔH with high affinity. We also found that only one molecule of HNT binds V1ΔH with high affinity, suggesting conformational asymmetry of the three EG heterodimers in V1ΔH. Moreover, MgATP hydrolysis-driven conformational changes in V1 destabilized the interaction of H, or HNT, with V1ΔH, suggesting an interplay between MgADP inhibition and subunit H. Our observation that H binding is affected by MgATP hydrolysis in V1 points to H's role in the mechanism of reversible disassembly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  15. SSD with generalized phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothenberg, J.

    1996-01-09

    Smoothing by spectral dispersion (SSD) with standard frequency modulation (FM), although simple to implement, has the disadvantage that low spatial frequencies present in the spectrum of the target illumination are not smoothed as effectively as with a more general smoothing method (eg, induced spatial incoherence method). The reduced smoothing performance of standard FM-SSD can result in spectral power of the speckle noise at these low spatial frequencies as much as one order of magnitude larger than that achieved with a more general method. In fact, at small integration times FM-SSD has no smoothing effect at all for a broad bandmore » of low spatial frequencies. This effect may have important implications for both direct and indirect drive ICF.« less

  16. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  17. Research of beam smoothing technologies using CPP, SSD, and PS

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Hu, Dongxia; Li, Ping; Yuan, Haoyu; Zhou, Wei; Yuan, Qiang; Wang, Yuancheng; Tian, Xiaocheng; Xu, Dangpeng; Dong, Jun; Zhu, Qihua

    2015-02-01

    Precise physical experiments place strict requirements on target illumination uniformity in Inertial Confinement Fusion. To obtain a smoother focal spot and suppress transverse SBS in large aperture optics, Multi-FM smoothing by spectral dispersion (SSD) was studied combined with continuous phase plate (CPP) and polarization smoothing (PS). New ways of PS are being developed to improve the laser irradiation uniformity and solve LPI problems in indirect-drive laser fusion. The near field and far field properties of beams using polarization smoothing were studied and compared, including birefringent wedge and polarization control array. As more parameters can be manipulated in a combined beam smoothing scheme, quad beam smoothing was also studies. Simulation results indicate through adjusting dispersion directions of one-dimensional (1-D) SSD beams in a quad, two-dimensional SSD can be obtained. Experiments have been done on SG-III laser facility using CPP and Multi-FM SSD. The research provides some theoretical and experimental basis for the application of CPP, SSD and PS on high-power laser facilities.

  18. Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis

    PubMed Central

    Li, Ping; Shao, Yize; Jin, Hui

    2015-01-01

    Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. PMID:25897084

  19. Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.

    PubMed

    Repetto, B; Tzagoloff, A

    1989-06-01

    Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several

  20. Feature-fused SSD: fast detection for small objects

    NASA Astrophysics Data System (ADS)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  1. Regulation of Neurospora crassa cell wall remodeling via the cot-1 pathway is mediated by gul-1.

    PubMed

    Herold, Inbal; Yarden, Oded

    2017-02-01

    Impairment of the Neurospora crassa Nuclear DBF2-related kinase-encoding gene cot-1 results in pleiotropic effects, including abnormally thick hyphal cell walls and septa. An increase in the transcript abundance of genes encoding chitin and glucan synthases and the chitinase gh18-5, but not the cell wall integrity pathway transcription factor rlm-1, accompany the phenotypic changes observed. Deletion of chs-5 or chs-7 in a cot-1 background results in a reduction of hyperbranching frequency characteristic of the cot-1 parent. gul-1 (a homologue of the yeast SSD1 gene) encodes a translational regulator and has been shown to partially suppress cot-1. We demonstrate that the high expression levels of the cell wall remodeling genes analyzed is curbed, and reaches near wild type levels, when gul-1 is inactivated. This is accompanied by morphological changes that include reduced cell wall thickness and restoration of normal chitin levels. We conclude that gul-1 is a mediator of cell wall remodeling within the cot-1 pathway.

  2. Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy

    PubMed Central

    Shiraishi, Kosuke; Oku, Masahide; Kawaguchi, Kosuke; Uchida, Daichi; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2015-01-01

    Recently, microbe-plant interactions at the above-ground parts have attracted great attention. Here we describe nitrogen metabolism and regulation of autophagy in the methylotrophic yeast Candida boidinii, proliferating and surviving on the leaves of Arabidopsis thaliana. After quantitative analyses of yeast growth on the leaves of A. thaliana with the wild-type and several mutant yeast strains, we showed that on young leaves, nitrate reductase (Ynr1) was necessary for yeast proliferation, and the yeast utilized nitrate as nitrogen source. On the other hand, a newly developed methylamine sensor revealed appearance of methylamine on older leaves, and methylamine metabolism was induced in C. boidinii, and Ynr1 was subjected to degradation. Biochemical and microscopic analysis of Ynr1 in vitro during a shift of nitrogen source from nitrate to methylamine revealed that Ynr1 was transported to the vacuole being the cargo for biosynthetic cytoplasm-to-vacuole targeting (Cvt) pathway, and degraded. Our results reveal changes in the nitrogen source composition for phyllospheric yeasts during plant aging, and subsequent adaptation of the yeasts to this environmental change mediated by regulation of autophagy. PMID:25900611

  3. Implication of Ca2+ in the regulation of replicative life span of budding yeast.

    PubMed

    Tsubakiyama, Ryohei; Mizunuma, Masaki; Gengyo, Anri; Yamamoto, Josuke; Kume, Kazunori; Miyakawa, Tokichi; Hirata, Dai

    2011-08-19

    In eukaryotic cells, Ca(2+)-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca(2+)/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca(2+) sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, we investigated a relationship between Ca(2+) signaling and life span in yeast. Here we show that Ca(2+) affected the replicative life span (RLS) of yeast. Increased external and intracellular Ca(2+) levels caused a reduction in their RLS. Consistently, the increase in calcineurin activity by either the zds1 deletion or the constitutively activated calcineurin reduced RLS. Indeed, the shortened RLS of zds1Δ cells was suppressed by the calcineurin deletion. Further, the calcineurin deletion per se promoted aging without impairing the gene silencing typically observed in short-lived sir mutants, indicating that calcineurin plays an important role in a regulation of RLS even under normal growth condition. Thus, our results indicate that Ca(2+) homeostasis/Ca(2+) signaling are required to regulate longevity in budding yeast.

  4. Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis.

    PubMed

    Li, Ping; Shao, Yize; Jin, Hui; Yu, Hong-Guo

    2015-04-27

    Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. © 2015 Li et al.

  5. The RasGAP Proteins Ira2 and Neurofibromin Are Negatively Regulated by Gpb1 in Yeast and ETEA in Humans▿

    PubMed Central

    Phan, Vernon T.; Ding, Vivianne W.; Li, Fenglei; Chalkley, Robert J.; Burlingame, Alma; McCormick, Frank

    2010-01-01

    The neurofibromatosis type 1 (NF1) gene encodes the GTPase-activating protein (GAP) neurofibromin, which negatively regulates Ras activity. The yeast Saccharomyces cerevisiae has two neurofibromin homologs, Ira1 and Ira2. To understand how these proteins are regulated, we utilized an unbiased proteomics approach to identify Ira2 and neurofibromin binding partners. We demonstrate that the Gpb1/Krh2 protein binds and negatively regulates Ira2 by promoting its ubiquitin-dependent proteolysis. We extended our findings to show that in mammalian cells, the ETEA/UBXD8 protein directly interacts with and negatively regulates neurofibromin. ETEA contains both UBA and UBX domains. Overexpression of ETEA downregulates neurofibromin in human cells. Purified ETEA, but not a mutant of ETEA that lacks the UBX domain, ubiquitinates the neurofibromin GAP-related domain in vitro. Silencing of ETEA expression increases neurofibromin levels and downregulates Ras activity. These findings provide evidence for conserved ubiquitination pathways regulating the RasGAP proteins Ira2 (in yeast) and neurofibromin (in humans). PMID:20160012

  6. Quantitative Analysis of Pac1/LIS1-mediated Dynein Targeting: Implications for Regulation of Dynein Activity in Budding Yeast

    PubMed Central

    Markus, Steven M.; Plevock, Karen M.; St. Germain, Bryan J.; Punch, Jesse J.; Meaden, Christopher W.; Lee, Wei-Lih

    2011-01-01

    LIS1 is a critical regulator of dynein function during mitosis and organelle transport. Here, we investigated how Pac1, the budding yeast LIS1 homologue, regulates dynein targeting and activity during nuclear migration. We show that Pac1 and Dyn1 (dynein heavy chain) are dependent upon each other and upon Bik1 (budding yeast CLIP-170 homologue) for plus end localization, whereas Bik1 is independent of either. Dyn1, Pac1 and Bik1 interact in vivo at the plus ends, where an excess amount of Bik1 recruits approximately equal amounts of Pac1 and Dyn1. Overexpression of Pac1 enhanced plus end targeting of Dyn1 and vice versa, while affinity-purification of Dyn1 revealed that it exists in a complex with Pac1 in the absence of Bik1, leading us to conclude that the Pac1-Dyn1 complex preassembles in the cytoplasm prior to loading onto Bik1-decorated plus ends. Strikingly, we found that Pac1-overexpression augments cortical dynein activity through a mechanism distinct from loss of She1, a negative regulator of dynein-dynactin association. While Pac1-overexpression enhances the frequency of cortical targeting for dynein and dynactin, the stoichiometry of these complexes remains relatively unchanged at the plus ends compared to that in wild-type cells (~3 dynein to 1 dynactin). Loss of She1, however, enhances dynein-dynactin association at the plus ends and the cell cortex, resulting in an apparent 1:1 stoichiometry. Our results reveal differential regulation of cortical dynein activity by She1 and Pac1, and provide a potentially new regulatory step in the off-loading model for dynein function. PMID:21294277

  7. Dietary glucose regulates yeast consumption in adult Drosophila males.

    PubMed

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  8. Comparative analysis of the frequency, distribution and population sizes of yeasts associated with canine seborrheic dermatitis and healthy skin.

    PubMed

    Yurayart, Chompoonek; Chindamporn, Ariya; Suradhat, Sanipa; Tummaruk, Padet; Kajiwara, Susumu; Prapasarakul, Nuvee

    2011-03-24

    The purpose of this study was to investigate the diversity of yeast associated with the degree of canine seborrheic dermatitis (SD) by anatomical sites. Fifty-seven samples were divided as 17 healthy skin, 20 with primary seborrheic dermatitis (PSD), and 20 with secondary seborrheic dermatitis (SSD). Yeast isolation and characterization were carried out based on microscopical features and biochemical properties. DNA analysis at the internal transcribed spacer I of 26S rDNA region was utilized for species confirmation. Four species of yeast consisting Malassezia pachydermatis, Malassezia furfur, Candida parapsilosis and Candida tropicalis recovered from examined dogs. M. pachydermatis and C. parapsilosis were isolated from all dogs, but C. tropicalis and M. furfur were recovered from 3 healthy dogs and one diseased dog, respectively. The number of M. pachydermatis and C. parapsilosis in diseased dogs was higher than that of healthy specimens (P<0.01). High frequency and population size of C. parapsilosis were closely associated to PSD, while those of M. pachydermatis were associated with both PSD and SSD (P<0.01). C. parapsilosis were predominant at the perianal area. This study demonstrated the co-colonization of M. pachydermatis and C. parapsilosis in large amounts and frequency associated with stage of disease and anatomical site. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Hybrid RAID With Dual Control Architecture for SSD Reliability

    NASA Astrophysics Data System (ADS)

    Chatterjee, Santanu

    2010-10-01

    The Solid State Devices (SSD) which are increasingly being adopted in today's data storage Systems, have higher capacity and performance but lower reliability, which leads to more frequent rebuilds and to a higher risk. Although SSD is very energy efficient compared to Hard Disk Drives but Bit Error Rate (BER) of an SSD require expensive erase operations between successive writes. Parity based RAID (for Example RAID4,5,6)provides data integrity using parity information and supports losing of any one (RAID4, 5)or two drives(RAID6), but the parity blocks are updated more often than the data blocks due to random access pattern so SSD devices holding more parity receive more writes and consequently age faster. To address this problem, in this paper we propose a Model based System of hybrid disk array architecture in which we plan to use RAID 4(Stripping with Parity) technique and SSD drives as Data drives while any fastest Hard disk drives of same capacity can be used as dedicated parity drives. By this proposed architecture we can open the door to using commodity SSD's past their erasure limit and it can also reduce the need for expensive hardware Error Correction Code (ECC) in the devices.

  10. Yap5 Protein-regulated Transcription of the TYW1 Gene Protects Yeast from High Iron Toxicity*

    PubMed Central

    Li, Liangtao; Jia, Xuan; Ward, Diane M.; Kaplan, Jerry

    2011-01-01

    The budding yeast Saccharomyces cerevisiae responds to high cytosolic iron by inducing Yap5-mediated transcription. We identified genes regulated by Yap5 in response to iron and show that one of the genes induced is TYW1, which encodes an iron-sulfur cluster enzyme that participates in the synthesis of wybutosine-modified tRNA. Strains deleted for TYW1 do not show a phenotype in standard yeast medium. In contrast, overexpression of TYW1 results in decreased cell growth and induction of the iron regulon, leading to increased expression of the high affinity iron transporters. We identified a minimal domain of S. cerevisiae Tyw1 that is sufficient to induce the iron regulon. CCC1, a vacuolar iron importer, is a Yap5-regulated gene, and deletion of either CCC1 or YAP5 resulted in high iron sensitivity. Deletion of TYW1 in a Δccc1 strain led to increased iron sensitivity. The increased iron sensitivity of Δccc1Δtyw1 could be suppressed by overexpression of iron-sulfur cluster enzymes. We conclude that the Yap5-mediated induction of TYW1 provides protection from high iron toxicity by the consumption of free cytosolic iron through the formation of protein-bound iron-sulfur clusters. PMID:21917924

  11. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  12. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  13. The Yeast Forkhead Transcription Factors Fkh1 and Fkh2 Regulate Lifespan and Stress Response Together with the Anaphase-Promoting Complex

    PubMed Central

    Postnikoff, Spike D. L.; Malo, Mackenzie E.; Wong, Berchman; Harkness, Troy A. A.

    2012-01-01

    Forkhead box O (FOXO) transcription factors have a conserved function in regulating metazoan lifespan. A key function in this process involves the regulation of the cell cycle and stress responses including free radical scavenging. We employed yeast chronological and replicative lifespan assays, as well as oxidative stress assays, to explore the potential evolutionary conservation of function between the FOXOs and the yeast forkhead box transcription factors FKH1 and FKH2. We report that the deletion of both FKH genes impedes normal lifespan and stress resistance, particularly in stationary phase cells, which are non-responsive to caloric restriction. Conversely, increased expression of the FKHs leads to extended lifespan and improved stress response. Here we show the Anaphase-Promoting Complex (APC) genetically interacts with the Fkh pathway, likely working in a linear pathway under normal conditions, as fkh1Δ fkh2Δ post-mitotic survival is epistatic to that observed in apc5CA mutants. However, under stress conditions, post-mitotic survival is dramatically impaired in apc5CA fkh1Δ fkh2Δ, while increased expression of either FKH rescues APC mutant growth defects. This study establishes the FKHs role as evolutionarily conserved regulators of lifespan in yeast and identifies the APC as a novel component of this mechanism under certain conditions, likely through combined regulation of stress response, genomic stability, and cell cycle regulation. PMID:22438832

  14. Regulation of Blood Pressure by Targeting CaV1.2-Galectin-1 Protein Interaction.

    PubMed

    Hu, Zhenyu; Li, Guang; Wang, Jiong-Wei; Chong, Suet Yen; Yu, Dejie; Wang, Xiaoyuan; Soon, Jia Lin; Liang, Mui Cheng; Wong, Yuk Peng; Huang, Na; Colecraft, Henry M; Liao, Ping; Soong, Tuck Wah

    2018-04-12

    Background -L-type Ca V 1.2 channels play crucial roles in regulation of blood pressure. Galectin-1 (Gal-1), has been reported to bind to the I-II loop of Ca V 1.2 channels to reduce their current density. However, the mechanistic understanding for the down-regulation of Ca V 1.2 channels by Gal-1, and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. Methods - In vitro experiments involving co-IP, western blot, patch-clamp recordings, immunohistochemistry and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 down-regulates Ca V 1.2 channel in transfected HEK 293 cells, smooth muscle cells, arteries from Lgasl1 -/- mice, rat and human patients. In vivo experiments involving delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting Ca V 1.2-Gal-1 interaction on blood pressure monitored by tail cuff or telemetry methods. Results -Our study reveals that Gal-1 is a key regulator for proteasomal degradation of Ca V 1.2 channels. Gal-1 competed allosterically with Ca V β subunit for binding to the I-II loop of Ca V 1.2 channel. This competitive disruption of Ca V β binding led to Ca V 1.2 degradation by exposing the channels to poly-ubiquitination. Notably, we demonstrated that the inverse relationship of reduced Gal-1 and increased Ca V 1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice due to up-regulated Ca V 1.2 protein level in arteries. To directly regulate blood pressure by targeting the Ca V 1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1, by a mini-osmotic pump and this specific disruption of Ca V 1.2-Gal-1 coupling increased smooth muscle Ca V 1.2 currents, induced larger arterial contraction and caused hypertension in rats. In contrasting experiments, over-expression of Gal-1 in smooth muscle by a

  15. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast.

    PubMed

    Banerjee, Subhrajit; Kane, Patricia M

    2017-09-15

    Luminal pH and phosphoinositide content are fundamental features of organelle identity. Vacuolar H + -ATPases (V-ATPases) drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endolysosomal lipid PI(3,5)P 2 activates V-ATPases containing the vacuolar a-subunit isoform in Saccharomyces cerevisiae Here we demonstrate that PI(4)P, the predominant Golgi phosphatidylinositol (PI) species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform Stv1. Lysine-84 of Stv1NT is essential for interaction with PI(4)P in vitro and in vivo, and interaction with PI(4)P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI(4)P in vitro, consistent with its Golgi localization and function. We propose that NT domains of V o a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases. © 2017 Banerjee and Kane. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. NRL SSD Research Achievements: 19701980. Volume 2

    DTIC Science & Technology

    2015-10-30

    Astronomy Observatory (HEAO-1) was launched, which carried the very large NRL SSD Large Area Sky Survey (LASS) experiment (HEAO-1 A1). These X-ray...overview of this research. High energy space environment research was fundamentally advanced in the 1970’s. The first High Energy Astronomy ...larger than any previously flown X-ray astronomy spacecraft, and the X-ray detectors provided the most comprehensive X-ray catalogue of astrophysical

  17. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Source to Skin Distance (SSD) Characteristics from Varian CX Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Bahari Nurdin, Wira; Purnomo, Aji; Dewang, Syamsir

    2018-03-01

    This study aims to describe the characteristics of the source to skin distance (SSD) of Varian CX linear accelerator (LINAC) using the X-ray beam of 6 MV and 10 MV. The variation of the source to the SSD are 90, 100 and 110 cms; the depth of the water phantom used are 5, 10, 15, 20, and 25 cms, respectively. The depth of the water phantom was created for analysis of percentage depth dose (PDD) and profile dose. It can be concluded from the tests that from the measured SSD, SSD of 110 cm with the depth water phantom of 20-25 cm for energy beam of 6 MV and at all levels of depth for 10 MV energy corresponding tolerance limits to be used in clinical radiotherapy. For the SSD 90 and 100, the values beam symmetry and flatness obtained slightly beyond the limits of tolerance.

  19. Methanol Expression Regulator 1 (Mxr1p) Is Essential for the Utilization of Amino Acids as the Sole Source of Carbon by the Methylotrophic Yeast, Pichia pastoris.

    PubMed

    Sahu, Umakant; Rangarajan, Pundi N

    2016-09-23

    Unlike Saccharomyces cerevisiae, the methylotrophic yeast Pichia pastoris can assimilate amino acids as the sole source of carbon and nitrogen. It can grow in media containing yeast extract and peptone (YP), yeast nitrogen base (YNB) + glutamate (YNB + Glu), or YNB + aspartate (YNB + Asp). Methanol expression regulator 1 (Mxr1p), a zinc finger transcription factor, is essential for growth in these media. Mxr1p regulates the expression of several genes involved in the utilization of amino acids as the sole source of carbon and nitrogen. These include the following: (i) GDH2 encoding NAD-dependent glutamate dehydrogenase; (ii) AAT1 and AAT2 encoding mitochondrial and cytosolic aspartate aminotransferases, respectively; (iii) MDH1 and MDH2 encoding mitochondrial and cytosolic malate dehydrogenases, respectively; and (iv) GLN1 encoding glutamine synthetase. Synthesis of all these enzymes is regulated by Mxr1p at the level of transcription except GDH2, whose synthesis is regulated at the level of translation. Mxr1p activates the transcription of AAT1, AAT2, and GLN1 in cells cultured in YP as well as in YNB + Glu media, whereas transcription of MDH1 and MDH2 is activated in cells cultured in YNB + Glu but not in YP. A truncated Mxr1p composed of 400 N-terminal amino acids activates transcription of target genes in cells cultured in YP but not in YNB + Glu. Mxr1p binds to Mxr1p response elements present in the promoters of AAT2, MDH2, and GLN1 We conclude that Mxr1p is essential for utilization of amino acids as the sole source of carbon and nitrogen, and it is a global regulator of multiple metabolic pathways in P. pastoris. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Regulation of yeast fatty acid desaturase in response to iron deficiency.

    PubMed

    Romero, Antonia María; Jordá, Tania; Rozès, Nicolas; Martínez-Pastor, María Teresa; Puig, Sergi

    2018-06-01

    Unsaturated fatty acids (UFA) are essential components of phospholipids that greatly contribute to the biophysical properties of cellular membranes. Biosynthesis of UFAs relies on a conserved family of iron-dependent fatty acid desaturases, whose representative in the model yeast Saccharomyces cerevisiae is Ole1. OLE1 expression is tightly regulated to adapt UFA biosynthesis and lipid bilayer properties to changes in temperature, and in UFA or oxygen availability. Despite iron deficiency being the most extended nutritional disorder worldwide, very little is known about the mechanisms and the biological relevance of fatty acid desaturases regulation in response to iron starvation. In this report, we show that endoplasmic reticulum-anchored transcription factor Mga2 activates OLE1 transcription in response to nutritional and genetic iron deficiencies. Cells lacking MGA2 display low UFA levels and do not grow under iron-limited conditions, unless UFAs are supplemented or OLE1 is overexpressed. The proteasome, E3 ubiquitin ligase Rsp5 and the Cdc48 Npl4/Ufd1 complex are required for OLE1 activation during iron depletion. Interestingly, Mga2 also activates the transcription of its own mRNA in response to iron deficiency, hypoxia, low temperature and low UFAs. MGA2 up-regulation contributes to increase OLE1 expression in these situations. These results reveal the mechanism of OLE1 regulation when iron is scarce and identify the MGA2 auto-regulation as a potential activation strategy in multiple stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    PubMed

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Homocysteine regulates fatty acid and lipid metabolism in yeast

    PubMed Central

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O.; Wolinski, Heimo; Rechberger, Gerald N.; Tehlivets, Oksana

    2018-01-01

    S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. PMID:29414770

  3. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tan; Taylor, Jackson; Jiang, Yang

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo andmore » in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.« less

  4. Coordinate Regulation of Yeast Sterol Regulatory Element-binding Protein (SREBP) and Mga2 Transcription Factors.

    PubMed

    Burr, Risa; Stewart, Emerson V; Espenshade, Peter J

    2017-03-31

    The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis.

    PubMed

    Mahmoud, Shima; Planes, María Dolores; Cabedo, Marc; Trujillo, Cristina; Rienzo, Alessandro; Caballero-Molada, Marcos; Sharma, Sukesh C; Montesinos, Consuelo; Mulet, José Miguel; Serrano, Ramón

    2017-07-01

    We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H + -ATPase Pma1 (which drives nutrient and K + uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K + uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K + transport. © 2017 Federation of European Biochemical Societies.

  6. A Dual-Color Reporter Assay of Cohesin-Mediated Gene Regulation in Budding Yeast Meiosis.

    PubMed

    Fan, Jinbo; Jin, Hui; Yu, Hong-Guo

    2017-01-01

    In this chapter, we describe a quantitative fluorescence-based assay of gene expression using the ratio of the reporter green fluorescence protein (GFP) to the internal red fluorescence protein (RFP) control. With this dual-color heterologous reporter assay, we have revealed cohesin-regulated genes and discovered a cis-acting DNA element, the Ty1-LTR, which interacts with cohesin and regulates gene expression during yeast meiosis. The method described here provides an effective cytological approach for quantitative analysis of global gene expression in budding yeast meiosis.

  7. ReHypar: A Recursive Hybrid Chunk Partitioning Method Using NAND-Flash Memory SSD

    PubMed Central

    Park, Sung-Soon; Lim, Cheol-Su

    2014-01-01

    Due to the rapid development of flash memory, SSD is considered to be the replacement of HDD in the storage market. Although SSD retains several promising characteristics, such as high random I/O performance and nonvolatility, its high expense per capacity is the main obstacle in replacing HDD in all storage solutions. An alternative is to provide a hybrid structure where a small portion of SSD address space is combined with the much larger HDD address space. In such a structure, maximizing the space utilization of SSD in a cost-effective way is extremely important to generate high I/O performance. We developed ReHypar (recursive hybrid chunk partitioning) that enables improving the space utilization of SSD in the hybrid structure. The first objective of ReHypar is to mitigate the fragmentation overhead of SSD address space, by reusing the remaining free space of I/O units as much as possible. Furthermore, ReHypar allows defining several, logical data sections in SSD address space, with each of those sections being configured with the different I/O unit. We integrated ReHypar with ext2 and ext4 and evaluated it using two public benchmarks including IOzone and Postmark. PMID:24987741

  8. Loss of Vacuolar H+-ATPase (V-ATPase) Activity in Yeast Generates an Iron Deprivation Signal That Is Moderated by Induction of the Peroxiredoxin TSA2 *

    PubMed Central

    Diab, Heba I.; Kane, Patricia M.

    2013-01-01

    Vacuolar H+-ATPases (V-ATPases) acidify intracellular organelles and help to regulate overall cellular pH. Yeast vma mutants lack V-ATPase activity and allow exploration of connections between cellular pH, iron, and redox homeostasis common to all eukaryotes. A previous microarray study in a vma mutant demonstrated up-regulation of multiple iron uptake genes under control of Aft1p (the iron regulon) and only one antioxidant gene, the peroxiredoxin TSA2 (Milgrom, E., Diab, H., Middleton, F., and Kane, P. M. (2007) Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 282, 7125–7136). Fluorescent biosensors placing GFP under transcriptional control of either an Aft1-dependent promoter (PFIT2-GFP) or the TSA2 promoter (PTSA2-GFP) were constructed to monitor transcriptional signaling. Both biosensors were up-regulated in the vma2Δ mutant, and acute V-ATPase inhibition with concanamycin A induced coordinate up-regulation from both promoters. PTSA2-GFP induction was Yap1p-dependent, indicating an oxidative stress signal. Total cell iron measurements indicate that the vma2Δ mutant is iron-replete, despite up-regulation of the iron regulon. Acetic acid up-regulated PFIT2-GFP expression in wild-type cells, suggesting that loss of pH control contributes to an iron deficiency signal in the mutant. Iron supplementation significantly decreased PFIT2-GFP expression and, surprisingly, restored PTSA2-GFP to wild-type levels. A tsa2Δ mutation induced both nuclear localization of Aft1p and PFIT2-GFP expression. The data suggest a novel function for Tsa2p as a negative regulator of Aft1p-driven transcription, which is induced in V-ATPase mutants to limit transcription of the iron regulon. This represents a new mechanism bridging the antioxidant and iron-regulatory pathways that is intimately linked to pH homeostasis. PMID:23457300

  9. Loss of vacuolar H+-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2.

    PubMed

    Diab, Heba I; Kane, Patricia M

    2013-04-19

    Vacuolar H(+)-ATPases (V-ATPases) acidify intracellular organelles and help to regulate overall cellular pH. Yeast vma mutants lack V-ATPase activity and allow exploration of connections between cellular pH, iron, and redox homeostasis common to all eukaryotes. A previous microarray study in a vma mutant demonstrated up-regulation of multiple iron uptake genes under control of Aft1p (the iron regulon) and only one antioxidant gene, the peroxiredoxin TSA2 (Milgrom, E., Diab, H., Middleton, F., and Kane, P. M. (2007) Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 282, 7125-7136). Fluorescent biosensors placing GFP under transcriptional control of either an Aft1-dependent promoter (P(FIT2)-GFP) or the TSA2 promoter (P(TSA2)-GFP) were constructed to monitor transcriptional signaling. Both biosensors were up-regulated in the vma2Δ mutant, and acute V-ATPase inhibition with concanamycin A induced coordinate up-regulation from both promoters. PTSA2-GFP induction was Yap1p-dependent, indicating an oxidative stress signal. Total cell iron measurements indicate that the vma2Δ mutant is iron-replete, despite up-regulation of the iron regulon. Acetic acid up-regulated P(FIT2)-GFP expression in wild-type cells, suggesting that loss of pH control contributes to an iron deficiency signal in the mutant. Iron supplementation significantly decreased P(FIT2)-GFP expression and, surprisingly, restored P(TSA2)-GFP to wild-type levels. A tsa2Δ mutation induced both nuclear localization of Aft1p and P(FIT2)-GFP expression. The data suggest a novel function for Tsa2p as a negative regulator of Aft1p-driven transcription, which is induced in V-ATPase mutants to limit transcription of the iron regulon. This represents a new mechanism bridging the antioxidant and iron-regulatory pathways that is intimately linked to pH homeostasis.

  10. The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast.

    PubMed

    Nishimura, Akira; Nasuno, Ryo; Takagi, Hiroshi

    2012-07-30

    The proline metabolism intermediate Δ(1)-pyrroline-5-carboxylate (P5C) induces cell death in animals, plants and yeasts. To elucidate how P5C triggers cell death, we analyzed P5C metabolism, mitochondrial respiration and superoxide anion generation in the yeast Saccharomyces cerevisiae. Gene disruption analysis revealed that P5C-mediated cell death was not due to P5C metabolism. Interestingly, deficiency in mitochondrial respiration suppressed the sensitivity of yeast cells to P5C. In addition, we found that P5C inhibits the mitochondrial respiration and induces a burst of superoxide anions from the mitochondria. We propose that P5C regulates cell death via the inhibition of mitochondrial respiration. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  12. Identification of Cell Cycle-regulated Genes in Fission YeastD⃞

    PubMed Central

    Peng, Xu; Karuturi, R. Krishna Murthy; Miller, Lance D.; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T.; Balasubramanian, Mohan K.; Liu, Jianhua

    2005-01-01

    Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found ∼140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC. PMID:15616197

  13. V-1 regulates capping protein activity in vivo.

    PubMed

    Jung, Goeh; Alexander, Christopher J; Wu, Xufeng S; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A

    2016-10-25

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."

  14. V-1 regulates capping protein activity in vivo

    PubMed Central

    Jung, Goeh; Wu, Xufeng S.; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A.

    2016-01-01

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1–null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1’s ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their “actin phenotype.” PMID:27791032

  15. Development and Validation of the Somatic Symptom Disorder-B Criteria Scale (SSD-12).

    PubMed

    Toussaint, Anne; Murray, Alexandra M; Voigt, Katharina; Herzog, Annabel; Gierk, Benjamin; Kroenke, Kurt; Rief, Winfried; Henningsen, Peter; Löwe, Bernd

    2016-01-01

    To develop and validate a new self-report questionnaire for the assessment of the psychological features of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition somatic symptom disorder. The Somatic Symptom Disorder-B Criteria Scale (SSD-12) was developed in several steps from an initial pool of 98 items. The SSD-12 is composed of 12 items; each of the three psychological subcriteria is measured by four items. In a cross-sectional study, the SSD-12 was administered to 698 patients (65.8% female, mean [standard deviation] age = 38.79 [14.15] years) from a psychosomatic outpatient clinic. Item and scale characteristics as well as measures of reliability and validity were determined. The SSD-12 has good item characteristics and excellent reliability (Cronbach α = .95). Confirmatory factor analyses suggested that a three-factorial structure that reflects the three psychological criteria interpreted as cognitive, affective, and behavioral aspects (n = 663, Comparative Fit Index > 0.99, Tucker-Lewis Index > 0.99, Root Mean Square Error of Approximation = 0.06, 90% confidence interval = 0.01-0.08). SSD-12 total sum score was significantly associated with somatic symptom burden (r = 0.47, p < .001) and health anxiety (r = 0.71, p < .001), and moderately associated with general anxiety (r = 0.35, p < .001) and depressive symptoms (r = 0.22, p < .001). Patients with a higher SSD-12 psychological symptom burden reported higher general physical and mental health impairment and significantly higher health care use. The SSD-12 is the first self-report questionnaire that operationalizes the new psychological characteristics of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition somatic symptom disorder. Initial assessment indicates that the SSD-12 has sufficient reliability and validity to warrant further testing in both research and clinical settings.

  16. Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir.

    PubMed

    Romanin, David; Serradell, María; González Maciel, Dolores; Lausada, Natalia; Garrote, Graciela L; Rumbo, Martín

    2010-06-15

    Kefir is obtained by milk fermentation with a complex microbial population included in a matrix of polysaccharide and proteins. Several health-promoting activities has been attributed to kefir consumption. The aim of this study was to select microorganisms from kefir able to down-regulate intestinal epithelial innate response and further characterize this activity. Caco-2 cells stably transfected with a human CCL20 promoter luciferase reporter were used to screen a collection of 24 yeast and 23 bacterial strains isolated from kefir. The Toll-like receptor 5 agonist, flagellin was used to activate the reporter cells, while pre-incubation with the selected strains was tested to identify strains with the capacity to inhibit cell activation. In this system, 21 yeast strains from the genera Saccharomyces, Kluyveromyces and Issatchenkia inhibited almost 100% of the flagellin-dependent activation, whereas only some lactobacilli strains showed a partial effect. K. marxianus CIDCA 8154 was selected for further characterization. Inhibitory activity was confirmed at transcriptional level on Caco-2/TC-7 and HT-29 cells upon flagellin stimulation. A similar effect was observed using other pro-inflammatory stimulation such as IL-1beta and TNF-alpha. Pre-incubation with yeasts induced a down-regulation of NF-kappaB signalling in epithelial cells in vitro, as well as expression of other pro-inflammatory chemokines such as CXCL8 and CXCL2. Furthermore, modulation of CCL20 mRNA expression upon flagellin stimulation was evidenced in vivo, in a mouse ligated intestinal loop model. Results indicate kefir contains microorganisms able to abolish the intestinal epithelial inflammatory response that could explain some of the properties attributed to this fermented milk. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast

    PubMed Central

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.

    2009-01-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732

  18. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.

    PubMed

    Martínez-Pastor, María Teresa; Perea-García, Ana; Puig, Sergi

    2017-04-01

    Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.

  19. SU-E-T-276: Dose Calculation Accuracy with a Standard Beam Model for Extended SSD Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisling, K; Court, L; Kirsner, S

    2015-06-15

    Purpose: While most photon treatments are delivered near 100cm SSD or less, a subset of patients may benefit from treatment at SSDs greater than 100cm. A proposed rotating chair for upright treatments would enable isocentric treatments at extended SSDs. The purpose of this study was to assess the accuracy of the Pinnacle{sup 3} treatment planning system dose calculation for standard beam geometries delivered at extended SSDs with a beam model commissioned at 100cm SSD. Methods: Dose to a water phantom at 100, 110, and 120cm SSD was calculated with the Pinnacle {sup 3} CC convolve algorithm for 6x beams formore » 5×5, 10×10, 20×20, and 30×30cm{sup 2} field sizes (defined at the water surface for each SSD). PDDs and profiles (depths of 1.5, 12.5, and 22cm) were compared to measurements in water with an ionization chamber. Point-by-point agreement was analyzed, as well as agreement in field size defined by the 50% isodose. Results: The deviations of the calculated PDDs from measurement, analyzed from depth of maximum dose to 23cm, were all within 1.3% for all beam geometries. In particular, the calculated PDDs at 10cm depth were all within 0.7% of measurement. For profiles, the deviations within the central 80% of the field were within 2.2% for all geometries. The field sizes all agreed within 2mm. Conclusion: The agreement of the PDDs and profiles calculated by Pinnacle3 for extended SSD geometries were within the acceptability criteria defined by Van Dyk (±2% for PDDs and ±3% for profiles). The accuracy of the calculation of more complex beam geometries at extended SSDs will be investigated to further assess the feasibility of using a standard beam model commissioned at 100cm SSD in Pinnacle3 for extended SSD treatments.« less

  20. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts

    PubMed Central

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia

    2016-01-01

    ABSTRACT Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker’s yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. PMID:27795405

  1. The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Akiko; Kamei, Yuka; Mukai, Yukio

    In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and twomore » small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress. - Highlights: • Fhl1p regulates replicative lifespan and transcription of RNR large subunit genes. • Rnr1p uniquely acts as a lifespan regulator independent of the RNR complex. • dNTP levels modulate longevity by protection against replication stress.« less

  2. NET1 and HFI1 genes of yeast mediate both chromosome maintenance and mitochondrial rho(-) mutagenesis.

    PubMed

    Koltovaya, N A; Guerasimova, A S; Tchekhouta, I A; Devin, A B

    2003-08-01

    An increase in the mitochondrial rho(-) mutagenesis is a well-known response of yeast cells to mutations in numerous nuclear genes as well as to various kinds of stress. Despite extensive studies for several decades, the biological significance of this response is still not fully understood. The genetic approach to solving this enigma includes a study of genes that are required for the high incidence of spontaneous rho(-) mutants. We have obtained mutations of a few nuclear genes of that sort and found that mutations in certain genes, including CDC28, the central cell-cycle regulation gene, result in a decrease in spontaneous rho(-) mutability and simultaneously affect the maintenance of the yeast chromosomes and plasmids. Two more genes resembling CDC28 in this respect are identified in the present work as a result of the characterization of four new mutants. These two genes are NET1 and HFI1 which mediate important regulatory protein-protein interactions in the yeast cell. The effects of four mutations, including net1-srm and hfi1-srm, on the maintenance of the yeast mitochondrial genome, chromosomes and plasmids, as well as on the cell's sensitivity to ionizing radiation, are also described. The data presented suggest that the pleiotropic srm mutations determining coordinate changes in the fidelity of mitotic transmission of chromosomes, plasmids and mtDNA molecules identify genes that most probably operate high up in the hierarchy of the general genetic regulation of yeast. Copyright 2003 John Wiley & Sons, Ltd.

  3. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  4. Purification and characterisation of a new hypothalamic satiety peptide, cocaine and amphetamine regulated transcript (CART), produced in yeast.

    PubMed

    Thim, L; Nielsen, P F; Judge, M E; Andersen, A S; Diers, I; Egel-Mitani, M; Hastrup, S

    1998-05-29

    Cocaine and amphetamine regulated transcript (CART) is a newly discovered hypothalamic peptide with a potent appetite suppressing activity following intracerebroventricular administration. When the mature rat CART sequence encoding CART(1-102) was inserted in the yeast expression plasmid three CART peptides could be purified from the fermentation broth reflecting processing at dibasic sequences. None of these corresponded to the naturally occurring CART(55-102). In order to obtain CART(55-102) the precursor Glu-Glu-Ile-Asp-CART(55-102) has been produced and CART(55-102) was generated by digestion of the precursor with dipeptidylaminopeptidase-1. All four generated CART peptides have been characterised by N-terminal amino acid sequencing and mass spectrometry. The CART peptides contain six cysteine residues and using the yeast expressed CART(62-102) the disulphide bond configuration was found to be I-III, II-V and IV-VI. When the four CART peptides were intracerebroventricularly injected in fasted mice (0.1 to 2.0 microg) they all produced a dose dependent inhibition of food intake.

  5. A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle.

    PubMed

    Linke, Christian; Chasapi, Anastasia; González-Novo, Alberto; Al Sawad, Istabrak; Tognetti, Silvia; Klipp, Edda; Loog, Mart; Krobitsch, Sylvia; Posas, Francesc; Xenarios, Ioannis; Barberis, Matteo

    2017-01-01

    Precise timing of cell division is achieved by coupling waves of cyclin-dependent kinase (Cdk) activity with a transcriptional oscillator throughout cell cycle progression. Although details of transcription of cyclin genes are known, it is unclear which is the transcriptional cascade that modulates their expression in a timely fashion. Here, we demonstrate that a Clb/Cdk1-mediated regulation of the Fkh2 transcription factor synchronizes the temporal mitotic CLB expression in budding yeast. A simplified kinetic model of the cyclin/Cdk network predicts a linear cascade where a Clb/Cdk1-mediated regulation of an activator molecule drives CLB3 and CLB2 expression. Experimental validation highlights Fkh2 as modulator of CLB3 transcript levels, besides its role in regulating CLB2 expression. A Boolean model based on the minimal number of interactions needed to capture the information flow of the Clb/Cdk1 network supports the role of an activator molecule in the sequential activation, and oscillatory behavior, of mitotic Clb cyclins. This work illustrates how transcription and phosphorylation networks can be coupled by a Clb/Cdk1-mediated regulation that synchronizes them.

  6. Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast*

    PubMed Central

    Burr, Risa; Stewart, Emerson V.; Shao, Wei; Zhao, Shan; Hannibal-Bach, Hans Kristian; Ejsing, Christer S.; Espenshade, Peter J.

    2016-01-01

    Eukaryotic lipid synthesis is oxygen-dependent with cholesterol synthesis requiring 11 oxygen molecules and fatty acid desaturation requiring 1 oxygen molecule per double bond. Accordingly, organisms evaluate oxygen availability to control lipid homeostasis. The sterol regulatory element-binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis in response to changing sterol and oxygen levels. However, notably missing is an SREBP-1 analog that regulates triacylglycerol and glycerophospholipid homeostasis in response to low oxygen. Consistent with this, studies have shown that the Sre1 transcription factor regulates only a fraction of all genes up-regulated under low oxygen. To identify new regulators of low oxygen adaptation, we screened the S. pombe nonessential haploid deletion collection and identified 27 gene deletions sensitive to both low oxygen and cobalt chloride, a hypoxia mimetic. One of these genes, mga2, is a putative transcriptional activator. In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid saturation. Indeed, addition of exogenous oleic acid to mga2Δ cells rescued the observed growth defects. Together, these results establish Mga2 as a transcriptional regulator of triacylglycerol and glycerophospholipid homeostasis in S. pombe, analogous to mammalian SREBP-1. PMID:27053105

  7. A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae.

    PubMed

    Adle, David J; Sinani, Devis; Kim, Heejeong; Lee, Jaekwon

    2007-01-12

    Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpectedly, when compared with two independent natural isolates and an industrial S. cerevisiae strain, the PCA1 allele of the common laboratory strains we have examined possesses a missense mutation in a predicted ATP-binding residue conserved in P1B-type ATPases. Consistent with a previous report that identifies an equivalent mutation in a copper-transporting P1B-type ATPase of a Wilson disease patient, the PCA1 allele found in laboratory yeast strains is nonfunctional. Overexpression or deletion of the functional allele in yeast demonstrates that PCA1 is a cadmium efflux pump. Cadmium as well as copper and silver, but not other metals examined, dramatically increase PCA1 protein expression through post-transcriptional regulation and promote subcellular localization to the plasma membrane. Our study has revealed a novel metal detoxification mechanism in yeast mediated by a P1B-type ATPase that is unique in structure, substrate specificity, and mode of regulation.

  8. Wee1 and Cdc25 are controlled by conserved PP2A-dependent mechanisms in fission yeast.

    PubMed

    Lucena, Rafael; Alcaide-Gavilán, Maria; Anastasia, Steph D; Kellogg, Douglas R

    2017-03-04

    Wee1 and Cdc25 are conserved regulators of mitosis. Wee1 is a kinase that delays mitosis via inhibitory phosphorylation of Cdk1, while Cdc25 is a phosphatase that promotes mitosis by removing the inhibitory phosphorylation. Although Wee1 and Cdc25 are conserved proteins, it has remained unclear whether their functions and regulation are conserved across diverse species. Here, we analyzed regulation of Wee1 and Cdc25 in fission yeast. Both proteins undergo dramatic cell cycle-dependent changes in phosphorylation that are dependent upon PP2A associated with the regulatory subunit Pab1. The mechanisms that control Wee1 and Cdc25 in fission yeast appear to share similarities to those in budding yeast and vertebrates, which suggests that there may be common mechanisms that control mitotic entry in all eukaryotic cells.

  9. Wee1 and Cdc25 are controlled by conserved PP2A-dependent mechanisms in fission yeast

    PubMed Central

    2017-01-01

    ABSTRACT Wee1 and Cdc25 are conserved regulators of mitosis. Wee1 is a kinase that delays mitosis via inhibitory phosphorylation of Cdk1, while Cdc25 is a phosphatase that promotes mitosis by removing the inhibitory phosphorylation. Although Wee1 and Cdc25 are conserved proteins, it has remained unclear whether their functions and regulation are conserved across diverse species. Here, we analyzed regulation of Wee1 and Cdc25 in fission yeast. Both proteins undergo dramatic cell cycle-dependent changes in phosphorylation that are dependent upon PP2A associated with the regulatory subunit Pab1. The mechanisms that control Wee1 and Cdc25 in fission yeast appear to share similarities to those in budding yeast and vertebrates, which suggests that there may be common mechanisms that control mitotic entry in all eukaryotic cells. PMID:28103117

  10. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.

    PubMed

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard

    2016-10-18

    Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby

  11. Automatic verification of SSD and generation of respiratory signal with lasers in radiotherapy: a preliminary study.

    PubMed

    Prabhakar, Ramachandran

    2012-01-01

    Source to surface distance (SSD) plays a very important role in external beam radiotherapy treatment verification. In this study, a simple technique has been developed to verify the SSD automatically with lasers. The study also suggests a methodology for determining the respiratory signal with lasers. Two lasers, red and green are mounted on the collimator head of a Clinac 2300 C/D linac along with a camera to determine the SSD. A software (SSDLas) was developed to estimate the SSD automatically from the images captured by a 12-megapixel camera. To determine the SSD to a patient surface, the external body contour of the central axis transverse computed tomography (CT) cut is imported into the software. Another important aspect in radiotherapy is the generation of respiratory signal. The changes in the lasers separation as the patient breathes are converted to produce a respiratory signal. Multiple frames of laser images were acquired from the camera mounted on the collimator head and each frame was analyzed with SSDLas to generate the respiratory signal. The SSD as observed with the ODI on the machine and SSD measured by the SSDlas software was found to be within the tolerance limit. The methodology described for generating the respiratory signals will be useful for the treatment of mobile tumors such as lung, liver, breast, pancreas etc. The technique described for determining the SSD and the generation of respiratory signals using lasers is cost effective and simple to implement. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. A Compute Capable SSD Architecture for Next-Generation Non-volatile Memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Arup

    2014-01-01

    Existing storage technologies (e.g., disks and ash) are failing to cope with the processor and main memory speed and are limiting the overall perfor- mance of many large scale I/O or data-intensive applications. Emerging fast byte-addressable non-volatile memory (NVM) technologies, such as phase-change memory (PCM), spin-transfer torque memory (STTM) and memristor are very promising and are approaching DRAM-like performance with lower power con- sumption and higher density as process technology scales. These new memories are narrowing down the performance gap between the storage and the main mem- ory and are putting forward challenging problems on existing SSD architecture, I/O interfacemore » (e.g, SATA, PCIe) and software. This dissertation addresses those challenges and presents a novel SSD architecture called XSSD. XSSD o oads com- putation in storage to exploit fast NVMs and reduce the redundant data tra c across the I/O bus. XSSD o ers a exible RPC-based programming framework that developers can use for application development on SSD without dealing with the complication of the underlying architecture and communication management. We have built a prototype of XSSD on the BEE3 FPGA prototyping system. We implement various data-intensive applications and achieve speedup and energy ef- ciency of 1.5-8.9 and 1.7-10.27 respectively. This dissertation also compares XSSD with previous work on intelligent storage and intelligent memory. The existing ecosystem and these new enabling technologies make this system more viable than earlier ones.« less

  13. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer.

    PubMed

    Steel, Jared; Stewart, Allan; Satory, Philip

    2009-09-01

    Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the electron beam SSD increased

  14. The impact of nonpolar lipids on the regulation of the steryl ester hydrolases Tgl1p and Yeh1p in the yeast Saccharomyces cerevisiae.

    PubMed

    Klein, Isabella; Korber, Martina; Athenstaedt, Karin; Daum, Günther

    2017-12-01

    In the yeast Saccharomyces cerevisiae degradation of steryl esters is catalyzed by the steryl ester hydrolases Tgl1p, Yeh1p and Yeh2p. The two steryl ester hydrolases Tgl1p and Yeh1p localize to lipid droplets, a cell compartment storing steryl esters and triacylglycerols. In the present study we investigated regulatory aspects of these two hydrolytic enzymes, namely the gene expression level, protein amount, stability and enzyme activity of Tgl1p and Yeh1p in strains lacking both or only one of the two major nonpolar lipids, steryl esters and triacylglycerols. In a strain lacking both nonpolar lipids and consequently lipid droplets, Tgl1p as well as Yeh1p were present at low amount, became highly unstable compared to wild-type cells, and lost their enzymatic activity. Under these conditions both steryl ester hydrolases were retained in the endoplasmic reticulum. The lack of steryl esters alone was not sufficient to cause an altered intracellular localization of Tgl1p and Yeh1p. Surprisingly, the stability of Tgl1p and Yeh1p was markedly reduced in a strain lacking triacylglycerols, but their capacity to mobilize steryl esters remained unaffected. We also tested a possible cross-regulation of Tgl1p and Yeh1p by analyzing the behavior of each hydrolase in the absence of its counterpart steryl ester hydrolases. In summary, this study demonstrates a strong regulation of the two lipid droplet associated steryl ester hydrolases Tgl1p and Yeh1p due to the presence/absence of their host organelle. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast.

    PubMed

    Li, Liangtao; Kaplan, Jerry; Ward, Diane M

    2017-09-15

    The budding yeast Saccharomyces cerevisiae stores iron in the vacuole, which is a major resistance mechanism against iron toxicity. One key protein involved in vacuolar iron storage is the iron importer Ccc1, which facilitates iron entry into the vacuole. Transcription of the CCC1 gene is largely regulated by the binding of iron-sulfur clusters to the activator domain of the transcriptional activator Yap5. Additional evidence, however, suggests that Yap5-independent transcriptional activation of CCC1 also contributes to iron resistance. Here, we demonstrate that components of the signaling pathway involving the low-glucose sensor Snf1 regulate CCC1 transcription and iron resistance. We found that SNF1 deletion acts synergistically with YAP5 deletion to regulate CCC1 transcription and iron resistance. A kinase-dead mutation of Snf1 lowered iron resistance as did deletion of SNF4 , which encodes a partner protein of Snf1. Deletion of all three alternative partners of Snf1 encoded by SIT1 , SIT2 , and GAL83 decreased both CCC1 transcription and iron resistance. The Snf1 complex is known to activate the general stress transcription factors Msn2 and Msn4. We show that Msn2 and Msn4 contribute to Snf1-mediated CCC1 transcription. Of note, SNF1 deletion in combination with MSN2 and MSN4 deletion resulted in additive effects on CCC1 transcription, suggesting that other activators contribute to the regulation of CCC1 transcription. In conclusion, we show that yeast have developed multiple transcriptional mechanisms to regulate Ccc1 expression and to protect against high cytosolic iron toxicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. ATP6V1H regulates the growth and differentiation of bone marrow stromal cells.

    PubMed

    Li, Lin; Yang, Shaoqing; Zhang, Yanli; Ji, Dongrui; Jin, Zuolin; Duan, Xiaohong

    2018-05-18

    ATP6V1H encodes subunit H of vacuolar ATPase (V-ATPase) and may regulate osteoclastic function. The deficiency of ATP6V1H caused bone loss in human, mouse and zebrafish. In this report, we identified the mechanisms by which ATP6V1H regulates proliferation and differentiation of bone marrow stromal cells (BMSCs). We found that ATP6V1H was expressed in BMSCs, andAtp6v1h +/- BMSCs exhibited the lower proliferation rate, cell cycle arrest and reduced osteogenic differentiation capacity, as well as the increased adipogenic potentials. Histologic analysis confirmed less bone formation and more fatty degeneration in Atp6v1h +/- mice in the different age groups. Q-PCR analysis revealed that loss of ATP6V1H function downregulated the mRNA level of TGF-β1 receptor, and its binding molecule, subunit β of adaptor protein complex 2 (AP-2), suggesting ATP6V1H regulates the proliferation and differentiation of BMSCs by interacting with TGF-β receptor I and AP-2 complex. Copyright © 2018. Published by Elsevier Inc.

  17. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    NASA Astrophysics Data System (ADS)

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  18. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

    PubMed

    Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor

    2018-01-01

    Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Stress Conditions Promote Yeast Gap1 Permease Ubiquitylation and Down-regulation via the Arrestin-like Bul and Aly Proteins*

    PubMed Central

    Crapeau, Myriam; Merhi, Ahmad; André, Bruno

    2014-01-01

    Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation. PMID:24942738

  20. A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield

    NASA Astrophysics Data System (ADS)

    Kazama, Yoriko; Kujirai, Toshihiro

    2014-10-01

    A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.

  1. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes

    PubMed Central

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954

  2. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    PubMed

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Isolated yeast promoter sequence and a method of regulated heterologous expression

    DOEpatents

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2005-05-31

    The present invention provides the promoter clone discovery of a glucoamylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated glucoamylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  4. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    PubMed

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  5. NRL SSD Research Achievements: 20002010. Volume 5

    DTIC Science & Technology

    2015-10-30

    monochromatic spectral images of the solar corona at unprecedented spatial and spectral resolution, allowing the physical properties of the corona to be...launch, is a tremendous astrophysical mission that is opening up the gamma ray sky. NRL SSD has played leading roles in the development of GLAST...experimentation program to study the atmospheres of the Sun and the Earth, the physics and properties of high-energy space environments, and solar

  6. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1pmore » in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.« less

  7. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, themore » mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.« less

  8. The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability.

    PubMed

    Wilms, Tobias; Swinnen, Erwin; Eskes, Elja; Dolz-Edo, Laura; Uwineza, Alice; Van Essche, Ruben; Rosseels, Joëlle; Zabrocki, Piotr; Cameroni, Elisabetta; Franssens, Vanessa; De Virgilio, Claudio; Smits, Gertien J; Winderickx, Joris

    2017-06-01

    The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase) to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc) homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing.

  9. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    PubMed

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies.

    PubMed

    Podholová, Kristýna; Plocek, Vítězslav; Rešetárová, Stanislava; Kučerová, Helena; Hlaváček, Otakar; Váchová, Libuše; Palková, Zdena

    2016-03-29

    Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation.

  11. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  12. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast

    PubMed Central

    Henry, Susan A.; Gaspar, Maria L.; Jesch, Stephen A.

    2014-01-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed. PMID:24418527

  13. Vasopressin V1 receptor in rat hippocampus is regulated by adrenocortical functions.

    PubMed

    Saito, R; Ishiharada, N; Ban, Y; Honda, K; Takano, Y; Kamiya, H

    1994-05-16

    Two subtypes of arginine vasopressin (AVP) receptors (V1 and V2) have been distinguished. In this study, we examined the characteristics of AVP binding in rat hippocampus and the effects of bilateral adrenalectomy and adrenal steroids on its [3H]AVP binding. [3H]AVP binding to rat liver and the hippocampal membranes was strongly inhibited by the V1 antagonist, OPC-21268. ADX resulted in a significant decrease in the Bmax of AVP binding in the hippocampus. Chronic treatment with aldosterone and corticosterone restored the ADX-induced reduction, but treatment with dexamethasone did not. These results suggest that the AVP V1 receptor in the hippocampus is regulated by adrenocortical neuroregulatory functions.

  14. Proton Irradiation of the 16GB Intel Optane SSD

    NASA Technical Reports Server (NTRS)

    Wyrwas, E. J.

    2017-01-01

    The purpose of this test is to assess the single event effects (SEE) and radiation susceptibility of the Intel Optane Memory device (SSD) containing the 3D Xpoint phase change memory (PCM) technology. This test is supported by the NASA Electronics Parts and Packaging Program (NEPP).

  15. Identification of discrete sites in Yip1A necessary for regulation of endoplasmic reticulum structure.

    PubMed

    Dykstra, Kaitlyn M; Ulengin, Idil; Delrose, Nicholas; Lee, Tina H

    2013-01-01

    The endoplasmic reticulum (ER) of specialized cells can undergo dramatic changes in structural organization, including formation of concentric whorls. We previously reported that depletion of Yip1A, an integral membrane protein conserved between yeast and mammals, caused ER whorl formation reminiscent of that seen in specialized cells. Yip1A and its yeast homologue Yip1p cycle between the ER and early Golgi, have been implicated in a number of distinct trafficking steps, and interact with a conserved set of binding partners including Yif1p/Yif1A and the Ypt1/Ypt31 Rab GTPases. Here, we carried out a mutational analysis of Yip1A to obtain insight into how it regulates ER whorl formation. Most of the Yip1A cytoplasmic domain was dispensable, whereas the transmembrane (TM) domain, especially residues within predicted TM helices 3 and 4, were sensitive to mutagenesis. Comprehensive analysis revealed two discrete functionally required determinants. One was E95 and flanking residues L92 and L96 within the cytoplasmic domain; the other was K146 and nearby residue V152 within the TM domain. Notably, the identified determinants correspond closely to two sites previously found to be essential for yeast viability (E76 and K130 in Yip1p corresponding to E95 and K146 in Yip1A, respectively). In contrast, a third site (E89) also essential for yeast viability (E70 in Yip1p) was dispensable for regulation of whorl formation. Earlier work showed that E76 (E95) was dispensable for binding Yif1p or Ypt1p/Ypt31p, whereas E70 (E89) was required. Collectively, these findings suggest that the ability of Yip1A to bind its established binding partners may be uncoupled from its ability to control ER whorl formation. In support, Yif1A knockdown did not cause ER whorl formation. Thus Yip1A may use the sites identified herein to interact with a novel binding partner to regulate ER membrane organization.

  16. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

    PubMed

    Oomuro, Mayu; Kato, Taku; Zhou, Yan; Watanabe, Daisuke; Motoyama, Yasuo; Yamagishi, Hiromi; Akao, Takeshi; Aizawa, Masayuki

    2016-11-01

    One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G 0 ) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G 0 , we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G 0 ; and a CLN3ΔPEST mutant, in which the G 1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G 1 arrest and/or G 0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G 0 /G 1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    PubMed Central

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  18. Impacts of pesticide mixtures in European rivers as predicted by the Species Sensitivity Distribution (SSD) models and SPEAR bioindication

    NASA Astrophysics Data System (ADS)

    Jesenska, Sona; Liess, Mathias; Schäfer, Ralf; Beketov, Mikhail; Blaha, Ludek

    2013-04-01

    Species sensitivity distribution (SSD) is statistical method broadly used in the ecotoxicological risk assessment of chemicals. Originally it has been used for prospective risk assessment of single substances but nowadays it is becoming more important also in the retrospective risk assessment of mixtures, including the catchment scale. In the present work, SSD predictions (impacts of mixtures consisting of 25 pesticides; data from several catchments in Germany, France and Finland) were compared with SPEAR-pesticides, which a bioindicator index based on biological traits responsive to the effects of pesticides and post-contamination recovery. The results showed statistically significant correlations (Pearson's R, p<0.01) between SSD (predicted msPAF values) and values of SPEAR-pesticides (based on field biomonitoring observations). Comparisons of the thresholds established for the SSD and SPEAR approaches (SPEAR-pesticides=45%, i.e. LOEC level, and msPAF = 0.05 for SSD, i.e. HC5) showed that use of chronic toxicity data significantly improved the agreement between the two methods but the SPEAR-pesticides index was still more sensitive. Taken together, the validation study shows good potential of SSD models in predicting the real impacts of micropollutant mixtures on natural communities of aquatic biota.

  19. Endosomal sorting of GLUT4 and Gap1 is conserved between yeast and insulin-sensitive cells

    PubMed Central

    Shewan, Annette M.; McCann, Rebecca K.; Lamb, Christopher A.; Stirrat, Laura; Kioumourtzoglou, Dimitrios; Adamson, Iain S.; Verma, Suzie; James, David E.; Bryant, Nia J.

    2013-01-01

    Summary The insulin-regulated trafficking of the facilitative glucose transporter GLUT4 in human fat and muscle cells and the nitrogen-regulated trafficking of the general amino acid permease Gap1 in the yeast Saccharomyces cerevisiae share several common features: Both Gap1 and GLUT4 are nutrient transporters that are mobilised to the cell surface from an intracellular store in response to an environmental cue; both are polytopic membrane proteins harbouring amino acid targeting motifs in their C-terminal tails that are required for their regulated trafficking; ubiquitylation of both Gap1 and GLUT4 plays an important role in their regulated trafficking, as do the ubiquitin-binding GGA (Golgi-localised, γ-ear-containing, ARF-binding) adaptor proteins. Here, we find that when expressed heterologously in yeast, human GLUT4 is subject to nitrogen-regulated trafficking in an ubiquitin-dependent manner similar to Gap1. In addition, by expressing a GLUT4/Gap1 chimeric protein in adipocytes we show that the carboxy-tail of Gap1 directs intracellular sequestration and insulin-regulated trafficking in adipocytes. These findings demonstrate that the trafficking signals and their cognate molecular regulatory machinery that mediate regulated exocytosis of membrane proteins are conserved across evolution. PMID:23424197

  20. Structure and Interactions of the CS Domain of Human H/ACA RNP Assembly Protein Shq1

    DOE PAGES

    Singh, Mahavir; Wang, Zhonghua; Cascio, Duilio; ...

    2014-12-29

    Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here in this paper, we present the crystalmore » structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two β-sheets that form an immunoglobulin-like β-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra β-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data.« less

  1. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.

    PubMed

    Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2013-01-02

    Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the

  2. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    PubMed

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. SSD 5-4-3: A Dialogical Writing Warm-Up

    ERIC Educational Resources Information Center

    Mulder, Tom

    2012-01-01

    The Silent Socratic Dialogue (SSD) writing warm-up technique places college students in a dialogic setting in which they construct the texts that explore, inform, and challenge each other through a succession of questions and answers. It validates students' voices, ideas, and interactions as worthy of study while engaging them in the…

  4. Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot.

    PubMed Central

    Hirota, Kouji; Hoffman, Charles S; Shibata, Takehiko; Ohta, Kunihiro

    2003-01-01

    Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1(+) gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ATF-type transcription factor Atf1*Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1(+) transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1(+) promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1(+) was remodeled under derepressed conditions in concert with the robust activation of fbp1(+) transcription. Strains with tup11delta tup12delta double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2(+), encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11delta tup12delta defects in chromatin regulation but not in transcription repression. The chromatin at the M26 site in mitotic cultures of a tup11delta tup12delta mutant resembled that of wild-type meiotic cells. These observations suggest that these fission yeast Tup1-like corepressors repress chromatin remodeling at CRE-related sequences and that Rst2 antagonizes this function. PMID:14573465

  5. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    NASA Astrophysics Data System (ADS)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  6. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  7. Hsp90 Orchestrates Transcriptional Regulation by Hsf1 and Cell Wall Remodelling by MAPK Signalling during Thermal Adaptation in a Pathogenic Yeast

    PubMed Central

    Leach, Michelle D.; Budge, Susan; Walker, Louise; Munro, Carol; Cowen, Leah E.; Brown, Alistair J. P.

    2012-01-01

    Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90) interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red), but not osmotic stress (NaCl). We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling. PMID:23300438

  8. The Regulation of Filamentous Growth in Yeast

    PubMed Central

    Cullen, Paul J.; Sprague, George F.

    2012-01-01

    Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host–cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways—rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)—also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior. PMID:22219507

  9. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    PubMed

    Timón-Gómez, Alba; Proft, Markus; Pascual-Ahuir, Amparo

    2013-01-01

    Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  10. The m6A methyltransferase Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in haploid yeast cells.

    PubMed

    Yadav, Pradeep Kumar; Rajasekharan, Ram

    2017-08-18

    N 6 -Methyladenosine (m 6 A) is among the most common modifications in eukaryotic mRNA. The role of yeast m 6 A methyltransferase, Ime4, in meiosis and sporulation in diploid strains is very well studied, but its role in haploid strains has remained unknown. Here, with the help of an immunoblotting strategy and Ime4-GFP protein localization studies, we establish the physiological role of Ime4 in haploid cells. Our data showed that Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology through the long-chain fatty acyl-CoA synthetase Faa1, independently of the RNA methylation complex (MIS complex). The MIS complex consists of the Ime4, Mum2, and Slz1 proteins. Our affinity enrichment strategy (methylated RNA immunoprecipitation assays) using m 6 A polyclonal antibodies coupled with mRNA isolation, quantitative real-time PCR, and standard PCR analyses confirmed the presence of m 6 A-modified FAA1 transcripts in haploid yeast cells. The term "epitranscriptional regulation" encompasses the RNA modification-mediated regulation of genes. Moreover, we demonstrate that the Aft2 transcription factor up-regulates FAA1 expression. Because the m 6 A methylation machinery is fundamentally conserved throughout eukaryotes, our findings will help advance the rapidly emerging field of RNA epitranscriptomics. The metabolic link identified here between m 6 A methylation and triacylglycerol metabolism via the Ime4 protein provides new insights into lipid metabolism and the pathophysiology of lipid-related metabolic disorders, such as obesity. Because the yeast vacuole is an analogue of the mammalian lysosome, our findings pave the way to better understand the role of m 6 A methylation in lysosome-related functions and diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  12. Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast

    PubMed Central

    Benjamin, Jeremy J. R.; Poon, Pak P.; Drysdale, John D.; Wang, Xiangmin; Singer, Richard A.; Johnston, Gerald C.

    2011-01-01

    Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition. PMID:21562219

  13. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    PubMed Central

    Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José M.; Arroyo, Javier

    2017-01-01

    Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies. PMID:29371494

  14. Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae†

    PubMed Central

    Chasse, Scott A.; Flanary, Paul; Parnell, Stephen C.; Hao, Nan; Cha, Jiyoung Y.; Siderovski, David P.; Dohlman, Henrik G.

    2006-01-01

    A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein α subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Gα proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation. PMID:16467474

  15. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p).

    PubMed

    Chan, Chun-Yuan; Prudom, Catherine; Raines, Summer M; Charkhzarrin, Sahba; Melman, Sandra D; De Haro, Leyma P; Allen, Chris; Lee, Samuel A; Sklar, Larry A; Parra, Karlett J

    2012-03-23

    Vacuolar ATPases (V-ATPases) are important for many cellular processes, as they regulate pH by pumping cytosolic protons into intracellular organelles. The cytoplasm is acidified when V-ATPase is inhibited; thus we conducted a high-throughput screen of a chemical library to search for compounds that acidify the yeast cytosol in vivo using pHluorin-based flow cytometry. Two inhibitors, alexidine dihydrochloride (EC(50) = 39 μM) and thonzonium bromide (EC(50) = 69 μM), prevented ATP-dependent proton transport in purified vacuolar membranes. They acidified the yeast cytosol and caused pH-sensitive growth defects typical of V-ATPase mutants (vma phenotype). At concentrations greater than 10 μM the inhibitors were cytotoxic, even at the permissive pH (pH 5.0). Membrane fractions treated with alexidine dihydrochloride and thonzonium bromide fully retained concanamycin A-sensitive ATPase activity despite the fact that proton translocation was inhibited by 80-90%, indicating that V-ATPases were uncoupled. Mutant V-ATPase membranes lacking residues 362-407 of the tether of Vph1p subunit a of V(0) were resistant to thonzonium bromide but not to alexidine dihydrochloride, suggesting that this conserved sequence confers uncoupling potential to V(1)V(0) complexes and that alexidine dihydrochloride uncouples the enzyme by a different mechanism. The inhibitors also uncoupled the Candida albicans enzyme and prevented cell growth, showing further specificity for V-ATPases. Thus, a new class of V-ATPase inhibitors (uncouplers), which are not simply ionophores, provided new insights into the enzyme mechanism and original evidence supporting the hypothesis that V-ATPases may not be optimally coupled in vivo. The consequences of uncoupling V-ATPases in vivo as potential drug targets are discussed.

  16. Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters

    PubMed Central

    Goossens, Alain; de la Fuente, Natalia; Forment, Javier; Serrano, Ramon; Portillo, Francisco

    2000-01-01

    The regulation of electrical membrane potential is a fundamental property of living cells. This biophysical parameter determines nutrient uptake, intracellular potassium and turgor, uptake of toxic cations, and stress responses. In fungi and plants, an important determinant of membrane potential is the electrogenic proton-pumping ATPase, but the systems that modulate its activity remain largely unknown. We have characterized two genes from Saccharomyces cerevisiae, PTK2 and HRK1 (YOR267c), that encode protein kinases implicated in activation of the yeast plasma membrane H+-ATPase (Pma1) in response to glucose metabolism. These kinases mediate, directly or indirectly, an increase in affinity of Pma1 for ATP, which probably involves Ser-899 phosphorylation. Ptk2 has the strongest effect on Pma1, and ptk2 mutants exhibit a pleiotropic phenotype of tolerance to toxic cations, including sodium, lithium, manganese, tetramethylammonium, hygromycin B, and norspermidine. A plausible interpretation is that ptk2 mutants have a decreased membrane potential and that diverse cation transporters are voltage dependent. Accordingly, ptk2 mutants exhibited reduced uptake of lithium and methylammonium. Ptk2 and Hrk1 belong to a subgroup of yeast protein kinases dedicated to the regulation of plasma membrane transporters, which include Npr1 (regulator of Gap1 and Tat2 amino acid transporters) and Hal4 and Hal5 (regulators of Trk1 and Trk2 potassium transporters). PMID:11003661

  17. Biolayer interferometry of lipid nanodisc-reconstituted yeast vacuolar H+ -ATPase.

    PubMed

    Sharma, Stuti; Wilkens, Stephan

    2017-05-01

    Vacuolar H + -ATPase (V-ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V-ATPase activity is regulated by reversible disassembly, resulting in cytosolic V 1 -ATPase and membrane-integral V 0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein-protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein-protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc-reconstituted V-ATPase (V 1 V 0 ND). We show that V 1 V 0 ND can be immobilized on streptavidin-coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation. © 2017 The Protein Society.

  18. Select α-arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model.

    PubMed

    Hager, Natalie A; Krasowski, Collin J; Mackie, Timothy D; Kolb, Alexander R; Needham, Patrick G; Augustine, Andrew A; Dempsey, Alison; Szent-Gyorgyi, Christopher; Bruchez, Marcel P; Bain, Daniel J; Kwiatkowski, Adam V; O'Donnell, Allyson F; Brodsky, Jeffrey L

    2018-05-21

    Protein composition at the plasma membrane is tightly regulated, with rapid protein internalization and selective targeting to the cell surface occurring in response to environmental changes. For example, ion channels are dynamically relocalized to or from the plasma membrane in response to physiological alterations, allowing cells and organisms to maintain osmotic and salt homeostasis. To identify additional factors that regulate the selective trafficking of a specific ion channel, we used a yeast model for a mammalian potassium channel, the K+ inwardly rectifying channel Kir2.1. Kir2.1 maintains potassium homeostasis in heart muscle cells, and Kir2.1 defects lead to human disease. By examining the ability of Kir2.1 to rescue the growth of yeast cells lacking endogenous potassium channels, we discovered that specific α-arrestins regulate Kir2.1 localization. Specifically, we found that the Ldb19/Art1, Aly1/Art6, and Aly2/Art3 α-arrestin adaptor proteins promote Kir2.1 trafficking to the cell surface, increase Kir2.1 activity at the plasma membrane, and raise intracellular potassium levels. To better quantify the intracellular and cell-surface populations of Kir2.1, we created fluorescence-activating protein fusions and for the first time used this technique to measure the cell-surface residency of a plasma membrane protein in yeast. Our experiments revealed that two α-arrestin effectors also control Kir2.1 localization. In particular, both the Rsp5 ubiquitin ligase and the protein phosphatase calcineurin facilitated the α-arrestin-mediated trafficking of Kir2.1. Together, our findings implicate α-arrestins in regulating an additional class of plasma membrane proteins and establish a new tool for dissecting the trafficking itinerary of any membrane protein in yeast. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.

    PubMed

    Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2014-07-01

    Among industrial yeasts used for alcoholic beverage production, most wine and weizen beer yeasts decarboxylate ferulic acid to 4-vinylguaiacol, which has a smoke-like flavor, whereas sake, shochu, top-fermenting, and bottom-fermenting yeast strains lack this ability. However, the factors underlying this difference among industrial yeasts are not clear. We previously confirmed that both PAD1 (phenylacrylic acid decarboxylase gene, YDR538W) and FDC1 (ferulic acid decarboxylase gene, YDR539W) are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. In the present study, single nucleotide polymorphisms (SNPs) of PAD1 and FDC1 in sake, shochu, wine, weizen, top-fermenting, bottom-fermenting, and laboratory yeast strains were examined to clarify the differences in ferulic acid decarboxylation ability between these types of yeast. For PAD1, a nonsense mutation was observed in the gene sequence of standard top-fermenting yeast. Gene sequence analysis of FDC1 revealed that sake, shochu, and standard top-fermenting yeasts contained a nonsense mutation, whereas a frameshift mutation was identified in the FDC1 gene of bottom-fermenting yeast. No nonsense or frameshift mutations were detected in laboratory, wine, or weizen beer yeast strains. When FDC1 was introduced into sake and shochu yeast strains, the transformants exhibited ferulic acid decarboxylation activity. Our findings indicate that a positive relationship exists between SNPs in PAD1 and FDC1 genes and the ferulic acid decarboxylation ability of industrial yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Regulated assembly and disassembly of the yeast telomerase quaternary complex

    PubMed Central

    Tucey, Timothy M.

    2014-01-01

    The enzyme telomerase, which elongates chromosome termini, is a critical factor in determining long-term cellular proliferation and tissue renewal. Hence, even small differences in telomerase levels can have substantial consequences for human health. In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. We show here that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. The assembly pathway, which is driven by interaction of the Est3 telomerase subunit with a previously formed Est1–TLC1–Est2 preassembly complex, is highly regulated, involving Est3-binding sites on both Est2 and Est1 as well as an interface on Est3 itself that functions as a toggle switch. Telomerase subsequently disassembles by a mechanistically distinct pathway due to dissociation of the catalytic subunit from the complex in every cell cycle. The balance between the assembly and disassembly pathways, which dictate the levels of the active holoenzyme in the cell, reveals a novel mechanism by which telomerase (and hence telomere homeostasis) is regulated. PMID:25240060

  1. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.

    PubMed

    Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U Deva; Mishra, Krishnaveni

    2015-12-02

    Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD(+)-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Regulation of yeast central metabolism by enzyme phosphorylation

    PubMed Central

    Oliveira, Ana Paula; Ludwig, Christina; Picotti, Paola; Kogadeeva, Maria; Aebersold, Ruedi; Sauer, Uwe

    2012-01-01

    As a frequent post-translational modification, protein phosphorylation regulates many cellular processes. Although several hundred phosphorylation sites have been mapped to metabolic enzymes in Saccharomyces cerevisiae, functionality was demonstrated for few of them. Here, we describe a novel approach to identify in vivo functionality of enzyme phosphorylation by combining flux analysis with proteomics and phosphoproteomics. Focusing on the network of 204 enzymes that constitute the yeast central carbon and amino-acid metabolism, we combined protein and phosphoprotein levels to identify 35 enzymes that change their degree of phosphorylation during growth under five conditions. Correlations between previously determined intracellular fluxes and phosphoprotein abundances provided first functional evidence for five novel phosphoregulated enzymes in this network, adding to nine known phosphoenzymes. For the pyruvate dehydrogenase complex E1 α subunit Pda1 and the newly identified phosphoregulated glycerol-3-phosphate dehydrogenase Gpd1 and phosphofructose-1-kinase complex β subunit Pfk2, we then validated functionality of specific phosphosites through absolute peptide quantification by targeted mass spectrometry, metabolomics and physiological flux analysis in mutants with genetically removed phosphosites. These results demonstrate the role of phosphorylation in controlling the metabolic flux realised by these three enzymes. PMID:23149688

  3. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  4. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE PAGES

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.; ...

    2014-11-20

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  5. The Yeast Anaerobic Response Element AR1b Regulates Aerobic Antifungal Drug-dependent Sterol Gene Expression*

    PubMed Central

    Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.

    2013-01-01

    Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365

  6. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    PubMed

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-02

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation?

    PubMed

    Zadrag-Tecza, Renata; Skoneczna, Adrianna

    2016-11-01

    The yeast Saccharomyces cerevisiae is a unicellular organism commonly used as a model to explain mechanisms of aging in multicellular organisms. It is used as a model organism for both replicative and chronological aging. Replicative aging is defined as the number of daughter cells produced by an individual cell during its life. A widely accepted hypothesis assumes that replicative aging of yeast is related to the existence of a so called "senescence factor" that gradually accumulates in the mother cell, which consequently leads to its death. One of the earliest proposed "senescence factors" were extrachromosomal rDNA circles (ERCs). However, their role in the regulation of the replicative lifespan is somewhat controversial and subject to discussion. In this paper, we propose a more comprehensive approach to this problem by analysing the length of life and the correlation between the cell size and the replicative lifespan of yeast cells with different level of ERCs, i.e. Δrad52 and Δsgs1 mutants. This analysis shows that it is not the accumulation of ERCs but genomic instability and hypertrophy that play an important role in the regulation of reproductive potential and total lifespan of the S. cerevisiae yeast. However, these two factors have a different impact on various phases of the yeast cell life, i.e. reproductive and post-reproductive phases. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. F-box proteins Pof3 and Pof1 regulate Wee1 degradation and mitotic entry in fission yeast.

    PubMed

    Qiu, Cui; Yi, Yuan-Yuan; Lucena, Rafael; Wu, Meng-Juan; Sun, Jia-Hao; Wang, Xi; Jin, Quan-Wen; Wang, Yamei

    2018-02-02

    The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are β-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1- Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process. © 2018. Published by The Company of Biologists Ltd.

  9. Kinetic Model for 1D aggregation of yeast ``prions''

    NASA Astrophysics Data System (ADS)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv

    2004-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  10. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell

    NASA Astrophysics Data System (ADS)

    Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.

    2015-03-01

    Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.

  11. Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica.

    PubMed

    Wakayama, Keishi; Yamaguchi, Sakiko; Takeuchi, Akihito; Mizumura, Tasuku; Ozawa, Shotaro; Tomizuka, Noboru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2016-11-01

    In this study we found that the methylotrophic yeast Pichia methanolica showed impaired growth on high methanol medium (>5%, or 1.56 M, methanol). In contrast, P. methanolica grew well on glucose medium containing 5% methanol, but the growth defects reappeared on glucose medium supplemented with 5 mM formaldehyde. During methanol growth of P. methanolica, formaldehyde accumulated in the medium up to 0.3 mM before it was consumed rapidly based on cell growth. These findings indicate that the growth defect of P. methanolica on high methanol media is not caused directly by methanol toxicity, but rather by formaldehyde, which is a key toxic intermediate of methanol metabolism. Moreover, during methanol growth of P. methanolica, expression of enzymes in the methanol-oxidation pathway were induced before the alcohol oxidase isozymes Mod1p and Mod2p, and Mod1p expression was induced before Mod2p. These results suggest that to avoid excess accumulation of formaldehyde-the toxic intermediate of methanol metabolism-P. methanolica grown on methanol strictly regulates the order in which methanol-metabolizing enzymes are expressed. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    PubMed

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  13. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    PubMed Central

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  14. Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain.

    PubMed

    Sundh, Ingvar; Melin, Petter

    2011-01-01

    Yeasts have been important components of spontaneous fermentations in food and beverage processing for millennia. More recently, the potential of utilising antagonistic yeasts, e.g. Pichia anomala and Candida spp., for post-harvest biological control of spoilage fungi during storage of plant-derived produce ('biopreservation') has been clearly demonstrated. Although some yeast species are among the safest microorganisms known, several have been reported in opportunistic infections in humans, including P. anomala and bakers' yeast, Saccharomyces cerevisiae. More research is needed about the dominant pathogenicity and virulence factors in opportunistic yeasts, and whether increased utilisation of biopreservative yeasts in general could contribute to an increased prevalence of yeast infections. The regulatory situation for yeasts used in post-harvest biocontrol is complex and the few products that have reached the market are mainly registered as biological pesticides. The qualified presumption of safety (QPS) approach to safety assessments of microorganisms intentionally added to food or feed, recently launched by the European Food Safety Authority, can lead to more efficient evaluations of new products containing microbial species with a sufficient body of knowledge or long-term experience on their safety. P. anomala is one of several yeast species that have been given QPS status, although the status is restricted to use of this yeast for enzyme and metabolite production purposes. With regard to authorisation of new biopreservative yeasts, we recommend that the possibility to regulate microorganisms for food biopreservation as food additives be considered.

  15. The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in Saccharomyces cerevisiae

    PubMed Central

    Finnigan, Gregory C.; Hanson-Smith, Victor; Houser, Benjamin D.; Park, Hae J.; Stevens, Tom H.

    2011-01-01

    The vacuolar-type, proton-translocating ATPase (V-ATPase) is a multisubunit enzyme responsible for organelle acidification in eukaryotic cells. Many organisms have evolved V-ATPase subunit isoforms that allow for increased specialization of this critical enzyme. Differential targeting of the V-ATPase to specific subcellular organelles occurs in eukaryotes from humans to budding yeast. In Saccharomyces cerevisiae, the two subunit a isoforms are the only difference between the two V-ATPase populations. Incorporation of Vph1p or Stv1p into the V-ATPase dictates the localization of the V-ATPase to the vacuole or late Golgi/endosome, respectively. A duplication event within fungi gave rise to two subunit a genes. We used ancestral gene reconstruction to generate the most recent common ancestor of Vph1p and Stv1p (Anc.a) and tested its function in yeast. Anc.a localized to both the Golgi/endosomal network and vacuolar membrane and acidified these compartments as part of a hybrid V-ATPase complex. Trafficking of Anc.a did not require retrograde transport from the late endosome to the Golgi that has evolved for retrieval of the Stv1p isoform. Rather, Anc.a localized to both structures through slowed anterograde transport en route to the vacuole. Our results suggest an evolutionary model that describes the differential localization of the two yeast V-ATPase isoforms. PMID:21737673

  16. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    PubMed

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Modulation of Ca(v)3.1 T-type Ca2+ channels by the ran binding protein RanBPM.

    PubMed

    Kim, Taehyun; Kim, Sunoh; Yun, Hyung-Mun; Chung, Kwang Chul; Han, Ye Sun; Shin, Hee-Sup; Rhim, Hyewhon

    2009-01-02

    In order to study the currently unknown cellular signaling pathways of Ca(v)3.1 T-type Ca(2+) channels (Ca(v)3.1 channels), we performed a yeast two-hybrid screening using intracellular domains of Ca(v)3.1 alpha1 subunit as bait. After screening the human brain cDNA library, several proteins, including RanBPM, were identified as interacting with Ca(v)3.1 channels. RanBPM was found to bind to the cytoplasmic intracellular loop between transmembrane domains I and II of Ca(v)3.1 channels. Using whole-cell patch-clamp techniques, we found that Ca(v)3.1 currents were increased by the expression of RanBPM in HEK293/Ca(v)3.1 cells. We next examined whether RanBPM affected the biophysical properties and plasma membrane expression of Ca(v)3.1 channels. Furthermore, we showed that the PKC activator inhibited Ca(v)3.1 currents, an effect that was abolished by the expression of RanBPM. These results suggest that RanBPM could be a key regulator of Ca(v)3.1 channel-mediated signaling pathways.

  18. Light-mediated control of DNA transcription in yeast

    PubMed Central

    Hughes, Robert M.; Bolger, Steven; Tapadia, Hersh; Tucker, Chandra L.

    2012-01-01

    A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light / cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems. PMID:22922268

  19. Peripheral stator of the yeast V-ATPase: stoichiometry and specificity of interaction between the EG complex and subunits C and H.

    PubMed

    Féthière, James; Venzke, David; Madden, Dean R; Böttcher, Bettina

    2005-12-06

    V-ATPases are multisubunit membrane protein complexes that use the energy provided by ATP hydrolysis to generate a proton gradient across various intracellular and plasma membranes. In doing so, they maintain an acidic pH in the lumen of intracellular organelles and acidify extracellular milieu to support specific cellular functions. V-ATPases are structurally similar to the F1F0-ATP synthase, with an intrinsic membrane domain (V0) and an extrinsic peripheral domain (V1) joined by several connecting elements. To gain a clear functional understanding of the catalytic mechanism, and of the stability requirements for regulatory processes in the enzyme, a clear topology of the enzyme has to be established. In particular, the composition and arrangement of the peripheral stator subunits must be firmly settled, as these play specific roles in catalysis and regulation. We have designed a strategy allowing us to coexpress different combinations of these subunits to delineate specific interactions. In this study, we report the interaction between the peripheral stator EG complex and subunits C and H of the V-ATPase from the yeast Saccharomyces cerevisae. A combination of analytical gel filtration, native gel electrophoresis, and ultracentrifugation analysis allowed us to ascertain the homogeneity and molar mass of the purified EGC complex as well as of the EG complex, supporting the formation of 1:1(:1) stoichiometric complexes. The EGC complex can be formed in vitro by combining equimolar amounts of subunit C and the EG subcomplex and results most likely from the initial interaction between subunits E and C.

  20. The fission yeast cytokinetic contractile ring regulates septum shape and closure

    PubMed Central

    Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D.; O'Shaughnessy, Ben

    2015-01-01

    ABSTRACT During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. PMID:26240178

  1. The fission yeast cytokinetic contractile ring regulates septum shape and closure.

    PubMed

    Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D; O'Shaughnessy, Ben

    2015-10-01

    During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. © 2015. Published by The Company of Biologists Ltd.

  2. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    PubMed Central

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  3. Fission yeast tropomyosin specifies directed transport of myosin-V along actin cables

    PubMed Central

    Clayton, Joseph E.; Pollard, Luther W.; Sckolnick, Maria; Bookwalter, Carol S.; Hodges, Alex R.; Trybus, Kathleen M.; Lord, Matthew

    2014-01-01

    A hallmark of class-V myosins is their processivity—the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity. PMID:24196839

  4. Rif1 is a global regulator of timing of replication origin firing in fission yeast

    PubMed Central

    Hayano, Motoshi; Kanoh, Yutaka; Matsumoto, Seiji; Renard-Guillet, Claire; Shirahige, Katsuhiko; Masai, Hisao

    2012-01-01

    One of the long-standing questions in eukaryotic DNA replication is the mechanisms that determine where and when a particular segment of the genome is replicated. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication and may affect the site selection and timing of origin firing. We identified rif1Δ, a null mutant of rif1+, a conserved telomere-binding factor, as an efficient bypass mutant of fission yeast hsk1. Extensive deregulation of dormant origins over a wide range of the chromosomes occurs in rif1Δ in the presence or absence of hydroxyurea (HU). At the same time, many early-firing, efficient origins are suppressed or delayed in firing timing in rif1Δ. Rif1 binds not only to telomeres, but also to many specific locations on the arm segments that only partially overlap with the prereplicative complex assembly sites, although Rif1 tends to bind in the vicinity of the late/dormant origins activated in rif1Δ. The binding to the arm segments occurs through M to G1 phase in a manner independent of Taz1 and appears to be essential for the replication timing program during the normal cell cycle. Our data demonstrate that Rif1 is a critical determinant of the origin activation program on the fission yeast chromosomes. PMID:22279046

  5. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    PubMed

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  6. Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER.

    PubMed

    Sobering, Andrew K; Watanabe, Reika; Romeo, Martin J; Yan, Benjamin C; Specht, Charles A; Orlean, Peter; Riezman, Howard; Levin, David E

    2004-05-28

    The yeast ERI1 gene encodes a small ER-localized protein that associates in vivo with GTP bound Ras2 in an effector loop-dependent manner. We showed previously that loss of Eri1 function results in hyperactive Ras phenotypes. Here, we demonstrate that Eri1 is a component of the GPI-GlcNAc transferase (GPI-GnT) complex in the ER, which catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI-anchors for cell surface proteins. We also show that GTP bound Ras2 associates with the GPI-GnT complex in vivo and inhibits its activity, indicating that yeast Ras uses the ER as a signaling platform from which to negatively regulate the GPI-GnT. We propose that diminished GPI-anchor protein production contributes to hyperactive Ras phenotypes.

  7. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans

    PubMed Central

    Qi, Chunjian; Cai, Yihua; Gunn, Lacey; Ding, Chuanlin; Li, Bing; Kloecker, Goetz; Qian, Keqing; Vasilakos, John; Saijo, Shinobu; Iwakura, Yoichiro; Yannelli, John R.

    2011-01-01

    β-glucans have been reported to function as a potent adjuvant to stimulate innate and adaptive immune responses. However, β-glucans from different sources are differential in their structure, conformation, and thus biologic activity. Different preparations of β-glucans, soluble versus particulate, further complicate their mechanism of action. Here we show that yeast-derived particulate β-glucan activated dendritic cells (DCs) and macrophages via a C-type lectin receptor dectin-1 pathway. Activated DCs by particulate β-glucan promoted Th1 and cytotoxic T-lymphocyte priming and differentiation in vitro. Treatment of orally administered yeast-derived particulate β-glucan elicited potent antitumor immune responses and drastically down-regulated immunosuppressive cells, leading to the delayed tumor progression. Deficiency of the dectin-1 receptor completely abrogated particulate β-glucan–mediated antitumor effects. In contrast, yeast-derived soluble β-glucan bound to DCs and macrophages independent of the dectin-1 receptor and did not activate DCs. Soluble β-glucan alone had no therapeutic effect but significantly augmented antitumor monoclonal antibody-mediated therapeutic efficacy via a complement activation pathway but independent of dectin-1 receptor. These findings reveal the importance of different preparations of β-glucans in the adjuvant therapy and allow for the rational design of immunotherapeutic protocols usable in clinical trials. PMID:21531981

  8. Cleavage of the SUN-domain protein Mps3 at its N-terminus regulates centrosome disjunction in budding yeast meiosis

    PubMed Central

    Koch, Bailey A.; Han, Xuemei

    2017-01-01

    Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge. Using the unique feature in yeast meiosis that centrosomes are linked for hours before their separation, we have revealed that Mps3 is cleaved at its nucleus-localized N-terminal domain, the process of which is regulated by its phosphorylation at serine 70. Cleavage of Mps3 takes place at the yeast centrosome and requires proteasome activity. We show that noncleavable Mps3 (Mps3-nc) inhibits centrosome separation during yeast meiosis. In addition, overexpression of mps3-nc in vegetative yeast cells also inhibits centrosome separation and is lethal. Our findings provide a genetic mechanism for the regulation of SUN-domain protein-mediated activities, including centrosome separation, by irreversible protein cleavage at the nuclear periphery. PMID:28609436

  9. Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization.

    PubMed

    Huang, Miaojun; Li, Tianjie; Pan, Ting; Zhao, Naru; Yao, Yongchang; Zhai, Zhichen; Zhou, Jiaan; Du, Chang; Wang, Yingjun

    2016-10-01

    Yeast cells have controllable biosorption on metallic ions during metabolism. However, few studies were dedicated to using yeast-regulated biomimetic mineralization process to control the strontium-doped positions in calcium phosphate microcapsules. In this study, the yeast cells were allowed to pre-adsorb strontium ions metabolically and then served as sacrificing template for the precipitation and calcination of mineral shell. The pre-adsorption enabled the microorganism to enrich of strontium ions into the inner part of the microcapsules, which ensured a slow-release profile of the trace element from the microcapsule. The co-culture with human marrow stromal cells showed that gene expressions of alkaline phosphatase and Collagen-I were promoted. The promotion of osteogenic differentiation was further confirmed in the 3D culture of cell-material complexes. The strategy using living microorganism as 'smart doping apparatus' to control incorporation of trace element into calcium phosphate paved a pathway to new functional materials for hard tissue regeneration.

  10. A Steroidal Saponin from Ophiopogon japonicus Extends the Lifespan of Yeast via the Pathway Involved in SOD and UTH1

    PubMed Central

    Sun, Kaiyue; Cao, Shining; Pei, Liang; Matsuura, Akira; Xiang, Lan; Qi, Jianhua

    2013-01-01

    Nolinospiroside F is a steroidal saponin isolated from Ophiopogon japonicus (O. japonicus). In this study, we found that nolinospiroside F significantly extends the replicative lifespan of K6001 yeast at doses of 1, 3 and 10 μM, indicating that it has an anti-aging effect. This may be attributed to its anti-oxidative effect, as nolinospiroside F could increase yeast survival under oxidative stress conditions and decrease the level of malondialdehyde (MDA), an oxidative stress biomarker. It could also increase anti-oxidative stress genes, SOD1 and SOD2, expression, and the activity of superoxide dismutase (SOD). It increase the activity of SIRT1, an upstream inducer of SOD2 expression. In sod1 and sod2 mutant yeast strains, nolinospiroside F failed to extend their replicative lifespan. These results indicate that SOD participates in the anti-aging effect of nolinospiroside F. Furthermore, nolinospiroside F inhibited the expression of UTH1, a yeast-aging gene that is involved in the oxidative stress of yeast, and failed to extend the replicative lifespan of uth1 or skn7 mutant yeast cells. SKN7 is the transcriptional activator of UTH1. We also demonstrate that SOD and UTH1 regulate each other’s expression. Together, these results suggest that SOD and UTH1 genes are required for and play interactive roles in nolinospiroside F-mediated yeast lifespan extension. PMID:23439553

  11. Biolayer interferometry of lipid nanodisc‐reconstituted yeast vacuolar H+‐ATPase

    PubMed Central

    Sharma, Stuti

    2017-01-01

    Abstract Vacuolar H+‐ATPase (V‐ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V‐ATPase activity is regulated by reversible disassembly, resulting in cytosolic V 1‐ATPase and membrane‐integral V 0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein‐protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein–protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc‐reconstituted V‐ATPase (V 1 V 0ND). We show that V 1 V 0ND can be immobilized on streptavidin‐coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation. PMID:28241399

  12. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast.

    PubMed

    Ohdate, Takumi; Omura, Fumihiko; Hatanaka, Haruyo; Zhou, Yan; Takagi, Masami; Goshima, Tetsuya; Akao, Takeshi; Ono, Eiichiro

    2018-01-01

    For maltose fermentation, budding yeast Saccharomyces cerevisiae operates a mechanism that involves transporters (MALT), maltases (MALS) and regulators (MALR) collectively known as MAL genes. However, functional relevance of MAL genes during sake brewing process remains largely elusive, since sake yeast is cultured under glucose-rich condition achieved by the co-culture partner Aspergillus spp.. Here we isolated an ethyl methane sulfonate (EMS)-mutagenized sake yeast strain exhibiting enhanced maltose fermentation compared to the parental strain. The mutant carried a single nucleotide insertion that leads to the extension of the C-terminal region of a previously uncharacterized MALR gene YPR196W-2, which was renamed as MAL73. Introduction of the mutant allele MAL73L with extended C-terminal region into the parental or other sake yeast strains enhanced the growth rate when fed with maltose as the sole carbon source. In contrast, disruption of endogenous MAL73 in the sake yeasts decreased the maltose fermentation ability of sake yeast, confirming that the original MAL73 functions as a MALR. Importantly, the MAL73L-expressing strain fermented more maltose in practical condition compared to the parental strain during sake brewing process. Our data show that MAL73(L) is a novel MALR gene that regulates maltose fermentation, and has been functionally attenuated in sake yeast by single nucleotide deletion during breeding history. Since the MAL73L-expressing strain showed enhanced ability of maltose fermentation, MAL73L might also be a valuable tool for enhancing maltose fermentation in yeast in general.

  13. Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens

    PubMed Central

    Kalay, Gizem; Lusk, Richard; Dome, Mackenzie; Hens, Korneel; Deplancke, Bart; Wittkopp, Patricia J.

    2016-01-01

    The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming. PMID:27527791

  14. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    PubMed

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The [KIL-d] element specifically regulates viral gene expression in yeast.

    PubMed Central

    Tallóczy, Z; Mazar, R; Georgopoulos, D E; Ramos, F; Leibowitz, M J

    2000-01-01

    The cytoplasmically inherited [KIL-d] element epigenetically regulates killer virus gene expression in Saccharomyces cerevisiae. [KIL-d] results in variegated defects in expression of the M double-stranded RNA viral segment in haploid cells that are "healed" in diploids. We report that the [KIL-d] element is spontaneously lost with a frequency of 10(-4)-10(-5) and reappears with variegated phenotypic expression with a frequency of > or =10(-3). This high rate of loss and higher rate of reappearance is unlike any known nucleic acid replicon but resembles the behavior of yeast prions. However, [KIL-d] is distinct from the known yeast prions in its relative guanidinium hydrochloride incurability and independence of Hsp104 protein for its maintenance. Despite its transmissibility by successive cytoplasmic transfers, multiple cytoplasmic nucleic acids have been proven not to carry the [KIL-d] trait. [KIL-d] epigenetically regulates the expression of the M double-stranded RNA satellite virus genome, but fails to alter the expression of M cDNA. This specificity remained even after a cycle of mating and meiosis. Due to its unique genetic properties and viral RNA specificity, [KIL-d] represents a new type of genetic element that interacts with a viral RNA genome. PMID:10835384

  16. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  17. Yeast for virus research

    PubMed Central

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  18. Bcs1p can rescue a large and productive cytochrome bc(1) complex assembly intermediate in the inner membrane of yeast mitochondria.

    PubMed

    Conte, Laura; Trumpower, Bernard L; Zara, Vincenzo

    2011-01-01

    The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa. This immature bc(1) core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc(1) core structure leading to the formation of the functional homodimeric bc(1) complex. Following Bcs1p expression, the mature bc(1) complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc(1) complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc(1) complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc(1) core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc(1) complex and gives new insights into the molecular mechanisms involved in the last steps of bc(1) assembly. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements.

    PubMed

    Daulny, Anne; Mejía-Ramírez, Eva; Reina, Oscar; Rosado-Lugo, Jesus; Aguilar-Arnal, Lorena; Auer, Herbert; Zaratiegui, Mikel; Azorin, Fernando

    2016-10-01

    It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Phosphorylation of a conserved Thr357 in yeast Nedd4-like ubiquitin ligase Rsp5 is involved in down-regulation of the general amino acid permease Gap1.

    PubMed

    Sasaki, Toshiya; Takagi, Hiroshi

    2013-06-01

    Rsp5, an essential HECT-type ubiquitin ligase, is the only yeast Saccharomyces cerevisiae member of the Nedd4 family. Rsp5 triggers the ubiquitination-dependent endocytosis of the general amino acid permease Gap1 in response to a good nitrogen source. Previously, we showed that the Thr357Ala/Lys764Glu variant Rsp5 induces the constitutive inactivation of Gap1, which is mainly involved in uptake of the toxic proline analogue, l-azetidine-2-carboxylate (AZC). Here, our experimental results indicated that the Thr357Ala substitution in the substrate-recognizing WW2 domain of Rsp5 constitutively causes the down-regulation of four proline permeases (Gap1, Put4, Agp1 and Gnp1), leading to AZC tolerance to yeast cells. In RSP5(T357A) cells, Gap1 was highly ubiquitinated and constantly delivered to the vacuole from the Golgi without sorting to the plasma membrane. Analyses of RSP5 mutants using antiphosphopeptide antibody suggest that Thr phosphorylation occurred in all three WW domains and, interestingly, that Thr357 in the WW2 domain was phosphorylated, in agreement with the in vitro result for the mouse Rsp5 orthologue. Furthermore, the phosphorylation-mimic mutant (Thr357Asp) showed strong sensitivity to AZC. From these results, we propose a possible mechanism involved in the regulation of Rsp5 activity for Gap1 down-regulation via the phosphorylation of a conserved Thr357 in the Nedd4 family. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  1. Brewing characteristics of piezosensitive sake yeasts

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  2. The Regulation of Coenzyme Q Biosynthesis in Eukaryotic Cells: All That Yeast Can Tell Us

    PubMed Central

    González-Mariscal, Isabel; García-Testón, Elena; Padilla, Sergio; Martín-Montalvo, Alejandro; Pomares Viciana, Teresa; Vazquez-Fonseca, Luis; Gandolfo Domínguez, Pablo; Santos-Ocaña, Carlos

    2014-01-01

    Coenzyme Q (CoQ) is a mitochondrial lipid, which functions mainly as an electron carrier from complex I or II to complex III at the mitochondrial inner membrane, and also as antioxidant in cell membranes. CoQ is needed as electron acceptor in β-oxidation of fatty acids and pyridine nucleotide biosynthesis, and it is responsible for opening the mitochondrial permeability transition pore. The yeast model has been very useful to analyze the synthesis of CoQ, and therefore, most of the knowledge about its regulation was obtained from the Saccharomyces cerevisiae model. CoQ biosynthesis is regulated to support 2 processes: the bioenergetic metabolism and the antioxidant defense. Alterations of the carbon source in yeast, or in nutrient availability in yeasts or mammalian cells, upregulate genes encoding proteins involved in CoQ synthesis. Oxidative stress, generated by chemical or physical agents or by serum deprivation, modifies specifically the expression of some COQ genes by means of stress transcription factors such as Msn2/4p, Yap1p or Hsf1p. In general, the induction of COQ gene expression produced by metabolic changes or stress is modulated downstream by other regulatory mechanisms such as the protein import to mitochondria, the assembly of a multi-enzymatic complex composed by Coq proteins and also the existence of a phosphorylation cycle that regulates the last steps of CoQ biosynthesis. The CoQ biosynthetic complex assembly starts with the production of a nucleating lipid such as HHB by the action of the Coq2 protein. Then, the Coq4 protein recognizes the precursor HHB acting as the nucleus of the complex. The activity of Coq8p, probably as kinase, allows the formation of an initial pre-complex containing all Coq proteins with the exception of Coq7p. This pre-complex leads to the synthesis of 5-demethoxy-Q6 (DMQ6), the Coq7p substrate. When de novo CoQ biosynthesis is required, Coq7p becomes dephosphorylated by the action of Ptc7p increasing the synthesis

  3. The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast

    PubMed Central

    Coulton, Arthur T.; East, Daniel A.; Galinska-Rakoczy, Agnieszka; Lehman, William; Mulvihill, Daniel P.

    2010-01-01

    Tropomyosin (Tm) is a conserved dimeric coiled-coil protein, which forms polymers that curl around actin filaments in order to regulate actomyosin function. Acetylation of the Tm N-terminal methionine strengthens end-to-end bonds, which enhances actin binding as well as the ability of Tm to regulate myosin motor activity in both muscle and non-muscle cells. In this study we explore the function of each Tm form within fission yeast cells. Electron microscopy and live cell imaging revealed that acetylated and unacetylated Tm associate with distinct actin structures within the cell, and that each form has a profound effect upon the shape and integrity of the polymeric actin filament. We show that, whereas Tm acetylation is required to regulate the in vivo motility of class II myosins, acetylated Tm had no effect on the motility of class I and V myosins. These findings illustrate a novel Tm-acetylation-state-dependent mechanism for regulating specific actomyosin cytoskeletal interactions. PMID:20807799

  4. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    PubMed

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value<1.7. Two strains could not be identified at first as they represented a mix of two different species. These mixes were Rhodotorula babjevae with Meyerozyma caribbica and Clavispora lusitaniae with Debaryomyces hansenii. After separation, all four species could be correctly identified with scores>1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast.

    PubMed

    Chia, Minghao; van Werven, Folkert J

    2016-09-07

    Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for two hours, the vast majority of cells exhibit synchrony during pre-meiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate containing medium, but can be achieved in cells grown in rich medium until saturation. Our system solely requires IME1 because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be easily combined with other stage specific synchronization methods, and thereby applied to study specific stages of sporulation or the complete sporulation program. Copyright © 2016 Author et al.

  6. DBC1 promotes castration-resistant prostate cancer by positively regulating DNA binding and stability of AR-V7.

    PubMed

    Moon, Sue Jin; Jeong, Byong Chang; Kim, Hwa Jin; Lim, Joung Eun; Kwon, Ghee Young; Kim, Jeong Hoon

    2018-03-01

    Constitutively active AR-V7, one of the major androgen receptor (AR) splice variants lacking the ligand-binding domain, plays a key role in the development of castration-resistant prostate cancer (CRPC) and anti-androgen resistance. However, our understanding of the regulatory mechanisms of AR-V7-driven transcription is limited. Here we report DBC1 as a key regulator of AR-V7 transcriptional activity and stability in CRPC cells. DBC1 functions as a coactivator for AR-V7 and is required for the expression of AR-V7 target genes including CDH2, a mesenchymal marker linked to CRPC progression. DBC1 is required for recruitment of AR-V7 to its target enhancers and for long-range chromatin looping between the CDH2 enhancer and promoter. Mechanistically, DBC1 enhances DNA-binding activity of AR-V7 by direct interaction and inhibits CHIP E3 ligase-mediated ubiquitination and degradation of AR-V7 by competing with CHIP for AR-V7 binding, thereby stabilizing and activating AR-V7. Importantly, DBC1 depletion suppresses the tumorigenic and metastatic properties of CRPC cells. Our results firmly establish DBC1 as a critical AR-V7 coactivator that plays a key role in the regulation of DNA binding and stability of AR-V7 and has an important physiological role in CRPC progression.

  7. Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation.

    PubMed

    Lee, Ji Young; Jun, Do Youn; Park, Ju Eun; Kwon, Gi Hyun; Kim, Jong-Sik; Kim, Young Ho

    2017-03-28

    To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1 , the yeast ortholog, was compared with that of the wild-type (WT)- MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The moh1 Δ mutant exhibited enhanced cell viability compared with the WT- MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, 100 µ CPT, heat shock at 50°C, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT- MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the moh1 Δ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2- YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT- MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (ΔΨm) loss, and metacaspase activation, occurred to a much lesser extent in the moh1 Δ mutant compared with the WT- MOH1 strain and the mutant strain bearing pYES2- MOH1 or pYES2- YPEL5 . These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.

  8. Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.

    PubMed

    Hickman, Mark J; Petti, Allegra A; Ho-Shing, Olivia; Silverman, Sanford J; McIsaac, R Scott; Lee, Traci A; Botstein, David

    2011-11-01

    A yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency. To identify the suppressor mutations, we used genome-wide single-nucleotide polymorphism and standard genetic analyses. The most common suppressors were loss-of-function mutations in OPI1, encoding a transcriptional repressor of phospholipid metabolism. Using a new system that allows rapid and specific degradation of Met4p, we could study the dynamic expression of all genes following loss of Met4p. Experiments using this system with and without Opi1p showed that Met4 activates and Opi1p represses genes that maintain levels of S-adenosylmethionine (SAM), the substrate for most methyltransferase reactions. Cells lacking Met4p grow normally when either SAM is added to the media or one of the SAM synthetase genes is overexpressed. SAM is used as a methyl donor in three Opi1p-regulated reactions to create the abundant membrane phospholipid, phosphatidylcholine. Our results show that rapidly growing cells require significant methylation, likely for the biosynthesis of phospholipids.

  9. The Hsk1(Cdc7) Replication Kinase Regulates Origin Efficiency

    PubMed Central

    Patel, Prasanta K.; Kommajosyula, Naveen; Rosebrock, Adam; Bensimon, Aaron; Leatherwood, Janet; Bechhoefer, John

    2008-01-01

    Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency. PMID:18799612

  10. [Synthesis and regulation of flavor compounds derived from brewing yeast: Esters].

    PubMed

    Loviso, Claudia L; Libkind, Diego

    2018-04-04

    During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product. Copyright © 2018 The Authors. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    PubMed

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  12. Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Henry, Susan A.; Kohlwein, Sepp D.; Carman, George M.

    2012-01-01

    Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways. PMID:22345606

  13. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200.

    PubMed

    Morselli, Eugenia; Shen, Shensi; Ruckenstuhl, Christoph; Bauer, Maria Anna; Mariño, Guillermo; Galluzzi, Lorenzo; Criollo, Alfredo; Michaud, Mickael; Maiuri, Maria Chiara; Chano, Tokuhiro; Madeo, Frank; Kroemer, Guido

    2011-08-15

    The tumor suppressor protein p53 tonically suppresses autophagy when it is present in the cytoplasm. This effect is phylogenetically conserved from mammals to nematodes, and human p53 can inhibit autophagy in yeast, as we show here. Bioinformatic investigations of the p53 interactome in relationship to the autophagy-relevant protein network underscored the possible relevance of a direct molecular interaction between p53 and the mammalian ortholog of the essential yeast autophagy protein Atg17, namely RB1-inducible coiled-coil protein 1 (RB1CC1), also called FAK family kinase-interacting protein of 200 KDa (FIP200). Mutational analyses revealed that a single point mutation in p53 (K382R) abolished its capacity to inhibit autophagy upon transfection into p53-deficient human colon cancer or yeast cells. In conditions in which wild-type p53 co-immunoprecipitated with RB1CC1/FIP200, p53 (K382R) failed to do so, underscoring the importance of the physical interaction between these proteins for the control of autophagy. In conclusion, p53 regulates autophagy through a direct molecular interaction with RB1CC1/FIP200, a protein that is essential for the very apical step of autophagy initiation.

  14. Androgen Receptor and its Splice Variant, AR-V7, Differentially Regulate FOXA1 Sensitive Genes in LNCaP Prostate Cancer Cells

    PubMed Central

    Krause, William C.; Shafi, Ayesha A.; Nakka, Manjula; Weigel, Nancy L.

    2014-01-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. PMID:25008967

  15. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    PubMed

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  16. The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato1

    PubMed Central

    Gisbert, Carmina; Rus, Ana M.; Bolarín, M. Carmen; López-Coronado, J. Miguel; Arrillaga, Isabel; Montesinos, Consuelo; Caro, Manuel; Serrano, Ramon; Moreno, Vicente

    2000-01-01

    Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K+ concentration and decreasing intracellular Na+ during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K+ to Na+ ratios showed that transgenic lines were able to retain more K+ than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast. PMID:10806256

  17. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our datamore » strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.« less

  18. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and therebymore » suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed.« less

  19. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae.

    PubMed

    Xu, Zhaojun; Tsurugi, Kunio

    2007-03-01

    Energy-metabolism oscillation (EMO) in an aerobic chemostat culture of yeast is basically regulated by a feedback loop of redox reactions in energy metabolism and modulated by metabolism of storage carbohydrates. In this study, we investigated the role of Gts1p in the stabilization of EMO, using the GTS1-deleted transformant gts1Delta. We found that fluctuations in the redox state of the NAD co-factor and levels of redox-regulated metabolites in glycolysis, especially of ethanol, are markedly reduced in amplitude during EMO of gts1Delta, while respiration indicated by the oxygen uptake rate (OUR) and energy charge is not so affected throughout EMO in gts1Delta. Further, the transitions of the levels of OUR, NAD(+) : NADH ratio and intracellular pH between the two phases were apparently retarded compared with those in the wild-type, suggesting attenuation of EMO in gts1Delta. Furthermore, the mRNA levels of genes encoding enzymes for the synthesis of trehalose and glycogen are fairly reduced in gts1Delta, consistent with the decreased synthesis of storage carbohydrates. In addition, the level of inorganic phosphate, which is required for the reduction of NAD(+) and mainly supplied from trehalose synthesis, was decreased in the early respiro-fermentative phase in gts1Delta. Thus, we suggested that the deletion of GTS1 as a transcriptional co-activator for these genes inhibited the metabolism of storage carbohydrates, which causes attenuation of the feedback loop of dehydrogenase reactions in glycolysis with the restricted fluctuation of ethanol as a main synchronizing agent for EMO in a cell population.

  20. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    PubMed

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used

  1. Biogenesis of the yeast cytochrome bc1 complex.

    PubMed

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  2. Mmi1, the Yeast Homologue of Mammalian TCTP, Associates with Stress Granules in Heat-Shocked Cells and Modulates Proteasome Activity

    PubMed Central

    Grousl, Tomas; Stradalova, Vendula; Heeren, Gino; Richter, Klaus; Breitenbach-Koller, Lore; Malinsky, Jan; Hasek, Jiri; Breitenbach, Michael

    2013-01-01

    As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells. PMID:24204967

  3. Fission yeast Csk1 is a CAK-activating kinase (CAKAK).

    PubMed Central

    Hermand, D; Pihlak, A; Westerling, T; Damagnez, V; Vandenhaute, J; Cottarel, G; Mäkelä, T P

    1998-01-01

    Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK). PMID:9857180

  4. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation.

    PubMed

    Cordente, Antonio G; Cordero-Bueso, Gustavo; Pretorius, Isak S; Curtin, Christopher D

    2013-02-01

    Acetic acid, a byproduct formed during yeast alcoholic fermentation, is the main component of volatile acidity (VA). When present in high concentrations in wine, acetic acid imparts an undesirable 'vinegary' character that results in a significant reduction in quality and sales. Previously, it has been shown that saké yeast strains resistant to the antifungal cerulenin produce significantly lower levels of VA. In this study, we used a classical mutagenesis method to isolate a series of cerulenin-resistant strains, derived from a commercial diploid wine yeast. Four of the selected strains showed a consistent low-VA production phenotype after small-scale fermentation of different white and red grape musts. Specific mutations in YAP1, a gene encoding a transcription factor required for oxidative stress tolerance, were found in three of the four low-VA strains. When integrated into the genome of a haploid wine strain, the mutated YAP1 alleles partially reproduced the low-VA production phenotype of the diploid cerulenin-resistant strains, suggesting that YAP1 might play a role in (regulating) acetic acid production during fermentation. This study offers prospects for the development of low-VA wine yeast starter strains that could assist winemakers in their effort to consistently produce wine to definable quality specifications. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.

    PubMed

    Palermo, Vanessa; Mangiapelo, Eleonora; Piloto, Cristina; Pieri, Luisa; Muscolini, Michela; Tuosto, Loretta; Mazzoni, Cristina

    2013-11-01

    The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In the yeast Saccharomyces cerevisiae, the overexpression of the human p53 leads to growth inhibition and apoptotic cell death on minimal medium. In the present work, we show that p53-expressing cells are more susceptible to cell death after an apoptotic stimulus such as H2O2. The analysis of mutants involved in yeast apoptosis-like death suggests that the observed cell death is Yca1 independent and mainly mediated through Nuc1p. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y

    2016-01-01

    HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.

  7. SSD for R: A Comprehensive Statistical Package to Analyze Single-System Data

    ERIC Educational Resources Information Center

    Auerbach, Charles; Schudrich, Wendy Zeitlin

    2013-01-01

    The need for statistical analysis in single-subject designs presents a challenge, as analytical methods that are applied to group comparison studies are often not appropriate in single-subject research. "SSD for R" is a robust set of statistical functions with wide applicability to single-subject research. It is a comprehensive package…

  8. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Phosphatidate Phosphatase Plays Role in Zinc-mediated Regulation of Phospholipid Synthesis in Yeast*

    PubMed Central

    Soto-Cardalda, Aníbal; Fakas, Stylianos; Pascual, Florencia; Choi, Hyeon-Son; Carman, George M.

    2012-01-01

    In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322–330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565–18569). The synthesis of phosphatidylcholine is balanced by the repression of CDP-diacylglycerol pathway enzymes and the induction of Kennedy pathway enzymes. PAH1-encoded phosphatidate phosphatase catalyzes the penultimate step in triacylglycerol synthesis, and the diacylglycerol generated in the reaction may also be used for phosphatidylcholine synthesis via the Kennedy pathway. In this work, we showed that the expression of PAH1-encoded phosphatidate phosphatase was induced by zinc deficiency through a mechanism that involved interaction of the Zap1p zinc-responsive transcription factor with putative upstream activating sequence zinc-responsive elements in the PAH1 promoter. The pah1Δ mutation resulted in the derepression of the CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol pathway enzyme) and loss of the zinc-mediated regulation of the enzyme. Loss of phosphatidate phosphatase also resulted in the derepression of the CKI1-encoded choline kinase (Kennedy pathway enzyme) but decreased the synthesis of phosphatidylcholine when cells were deficient of zinc. This result confirmed the role phosphatidate phosphatase plays in phosphatidylcholine synthesis via the Kennedy pathway. PMID:22128164

  10. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae.

    PubMed

    Semchyshyn, Halyna M; Abrat, Oleksandra B; Miedzobrodzki, Jacek; Inoue, Yoshiharu; Lushchak, Volodymyr I

    2011-01-01

    The influence of acetic and propionic acids on baker's yeast was investigated in order to expand our understanding of the effect of weak organic acid food preservatives on eukaryotic cells. Both acids decreased yeast survival in a concentration-dependent manner, but with different efficiencies. The acids inhibited the fluorescein efflux from yeast cells. The inhibition constant of fluorescein extrusion from cells treated with acetate was significantly lower in parental strain than in either PDR12 (ABC-transporter Pdr12p) or WAR1 (transcriptional factor of Pdr12p) defective mutants. The constants of inhibition by propionate were virtually the same in all strains used. Yeast exposure to acetate increased the level of oxidized proteins and the activity of antioxidant enzymes, while propionate did not change these parameters. This suggests that various mechanisms underlie the yeast toxicity by acetic and propionic acids. Our studies with mutant cells clearly indicated the involvement of Yap1p transcriptional regulator and de novo protein synthesis in superoxide dismutase up-regulation by acetate. The up-regulation of catalase was Yap1p independent. Yeast pre-incubation with low concentrations of H₂O₂ caused cellular cross-protection against high concentrations of acetate. The results are discussed from the point of view that acetate induces a prooxidant effect in vivo, whereas propionate does not.

  11. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    PubMed

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates

  12. Functional adaptation between yeast actin and its cognate myosin motors.

    PubMed

    Stark, Benjamin C; Wen, Kuo-Kuang; Allingham, John S; Rubenstein, Peter A; Lord, Matthew

    2011-09-02

    We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins.

  13. Experimental Systems to Study Yeast Pexophagy.

    PubMed

    Yamashita, Shun-Ichi; Oku, Masahide; Sakai, Yasuyoshi; Fujiki, Yukio

    2017-01-01

    Peroxisome abundance is tightly regulated according to the physiological contexts, through regulations of both proliferation and degradation of the organelles. Here, we describe detailed methods to analyze processes for autophagic degradation of peroxisomes, termed pexophagy, in yeast organisms. The assay systems include a method for biochemical detection of pexophagy completion, and one for microscopic visualization of specialized membrane structures acting in pexophagy. As a model yeast organism utilized in studies of pexophagy, the methylotrophic yeast Komagataella phaffii (Pichia pastoris) is referred to in this chapter and related information on the studies with baker's yeast (Saccharomyces cerevisiae) is also included. The described techniques facilitate elucidation of molecular machineries for pexophagy and understanding of peroxisome-selective autophagic pathways.

  14. Identification of She3 as an SCFGrr1 Substrate in Budding Yeast

    PubMed Central

    Wang, Ruiwen; Solomon, Mark J.

    2012-01-01

    The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF) complex. Acting in concert with the substrate-binding F-box protein Grr1, SCFGrr1 promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth. PMID:23144720

  15. CKA2 functions in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NO accumulation in yeast.

    PubMed

    Liu, Wen-Cheng; Yuan, Hong-Mei; Li, Yun-Hui; Lu, Ying-Tang

    2015-09-01

    Nitric oxide (NO) plays key roles in yeast responses to various environmental factors, such as H2O2 and high temperature. However, the gene encoding NO synthase (NOS) in yeast has not yet been identified, and the mechanism underlying the regulation of NOS-like activity is poorly understood. Here, we report on the involvement of CKA2 in H2O2-induced yeast apoptosis and yeast high-temperature stress tolerance. Our results showed that although Δcka2 mutant had reduced NO accumulation with decreased apoptosis after H2O2 exposure, treatment with a NO donor, sodium nitroprusside, resulted in similar survival rate of Δcka2 mutant compared to that of wild-type yeast when subjected to H2O2 stress. This finding occurred because H2O2-enhanced NOS-like activity in wild-type yeast was significantly repressed in Δcka2. Our additional experiments indicated that both high-temperature-enhanced NO accumulation and NOS-like activity were also suppressed in Δcka2, leading to the hypersensitivity of the mutant to high temperature in terms of changes in survival rate. Thus, our results showed that CKA2 functioned in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NOS-like-dependent NO accumulation in yeast. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. SU-E-T-145: MRI Gel Dosimetry Applied to Dose Profile Determination for 50kV X-Ray Tube.

    PubMed

    Schwarcke, M; Marques, T; Nicolucci, P; Filho, O Baffa

    2012-06-01

    The aim of this study was to use MRI gel dosimetry to determine the dose profile of 50kV MAGNUM® X-ray tube, MOXTEK Inc., in order to calibrate small solid dosimeters of alanine, tooth enamel and LiF-TLDs, commonly used in clinical quality assurance and datation dosimetry. MAGIC-f polymer gel was kept in two plastic containers of 100mL, avoiding attenuation of the primary beam trough the wall. Beam aberture of 3mm and dose rate of 16.5Gy/min were set, reproducing irradiation conditions of interest. The dose rate was assumed based on data of the vendor information of the tube and dose of 30Gy was delivered at the surface of the gel. MAGIC-f gel was irradiated at source-surface distances(SSD) of 0.1cm and 1.0cm. After 24hours of irradiation, gel was scanned in an Achieva® 3T Philips® MRI tomography using relaxometry sequence with 32 Echos, Time-to-Echo(TE) of 15.0ms, Time-to-Repetition(TR) of 6000ms and Field-of-View(FOV) of 0.5×0.5×2.0mm. Dose map at the central plain of irradiation was calculated from T2 relaxometry map. The gel dosimetry results evidenced a build-up depth of 0.13cm for SSD=0.1cm and no build-up was detected for SSD=1.0cm. However, the dose profile evidenced high gradient of dose in SSD=0.1, decreasing the dose from 100% to 30% in 1.4cm depth inside the gel; In turn, the dose distribution is homogeneous after 0.4cm deth for SSD=1.0cm. MRI gel dosimetry using MAGIC-f presented as feasible technique to determine dose profiles for kilovoltage x-rays tubes. The results evidenced that the calibration of small solid dosimeters can be performed using SSD of 1.0cm in the 50kV MAGNUM® X-ray tube using 0.4cm/g/cm 3 filter. This work was funded supported by CNPQ, CAPES and FAPESP. © 2012 American Association of Physicists in Medicine.

  17. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    PubMed

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  19. Deteriorated Stress Response in Stationary-Phase Yeast: Sir2 and Yap1 Are Essential for Hsf1 Activation by Heat Shock and Oxidative Stress, Respectively

    PubMed Central

    Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response. PMID:25356557

  20. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    PubMed

    Nussbaum, Inbal; Weindling, Esther; Jubran, Ritta; Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  1. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eid, Rawan; Department of Biology, Queen's University, Kingston, Ontario; Boucher, Eric

    Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomycesmore » cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress. - Highlights: • Human ferritin, heavy polypeptide 1 (FTH1) was identified as a suppressor of the pro-apoptotic Bax in yeast. • Based on its similarity to ferritin we examined Rgi1p/YER067W for potential ferritin like functions. • Like human H-ferritin, RGI1 confers increased resistance to apoptotic inducing stresses in

  2. Yeast Los1p Has Properties of an Exportin-Like Nucleocytoplasmic Transport Factor for tRNA

    PubMed Central

    Hellmuth, Klaus; Lau, Denise M.; Bischoff, F. Ralf; Künzler, Markus; Hurt, Ed; Simos, George

    1998-01-01

    Saccharomyces cerevisiae Los1p, which is genetically linked to the nuclear pore protein Nsp1p and several tRNA biogenesis factors, was recently grouped into the family of importin/karyopherin-β-like proteins on the basis of its sequence similarity. In a two-hybrid screen, we identified Nup2p as a nucleoporin interacting with Los1p. Subsequent purification of Los1p from yeast demonstrates its physical association not only with Nup2p but also with Nsp1p. By the use of the Gsp1p-G21V mutant, Los1p was shown to preferentially bind to the GTP-bound form of yeast Ran. Furthermore, overexpression of full-length or N-terminally truncated Los1p was shown to have dominant-negative effects on cell growth and different nuclear export pathways. Finally, Los1p could interact with Gsp1p-GTP, but only in the presence of tRNA, as revealed in an indirect in vitro binding assay. These data confirm the homology between Los1p and the recently identified human exportin for tRNA and reinforce the possibility of a role for Los1p in nuclear export of tRNA in yeast. PMID:9774653

  3. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases.

    PubMed

    Cao, Lu; Tang, Yingzhi; Quan, Zhenzhen; Zhang, Zhe; Oliver, Stephen G; Zhang, Nianshu

    2016-12-01

    Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding 'signaling' proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast.

  4. Study of the Plasma Membrane Proteome Dynamics Reveals Novel Targets of the Nitrogen Regulation in Yeast.

    PubMed

    Villers, Jennifer; Savocco, Jérôme; Szopinska, Aleksandra; Degand, Hervé; Nootens, Sylvain; Morsomme, Pierre

    2017-09-01

    Yeast cells, to be able to grow on a wide variety of nitrogen sources, regulate the set of nitrogen transporters present at their plasma membrane. Such regulation relies on both transcriptional and post-translational events. Although microarray studies have identified most nitrogen-sensitive genes, nitrogen-induced post-translational regulation has only been studied for very few proteins among which the general amino acid permease Gap1. Adding a preferred nitrogen source to proline-grown cells triggers Gap1 endocytosis and vacuolar degradation in an Rsp5-Bul1/2-dependent manner. Here, we used a proteomic approach to follow the dynamics of the plasma membrane proteome after addition of a preferred nitrogen source. We identified new targets of the nitrogen regulation and four transporters of poor nitrogen sources-Put4, Opt2, Dal5, and Ptr2-that rapidly decrease in abundance. Although the kinetics is different for each transporter, we found that three of them-Put4, Dal5, and Ptr2-are endocytosed, like Gap1, in an Rsp5-dependent manner and degraded in the vacuole. Finally, we showed that Gap1 stabilization at the plasma membrane, through deletion of Bul proteins, regulates the abundance of Put4, Dal5 and Ptr2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Human parainfluenza virus type 2 V protein inhibits caspase-1.

    PubMed

    Ohta, Keisuke; Matsumoto, Yusuke; Nishio, Machiko

    2018-04-01

    The multifunctional V protein of human parainfluenza virus type 2 (hPIV2) plays important roles in controlling viral genome replication, inhibiting the host interferon response and promoting virus growth. We screened a yeast two-hybrid library using V protein as bait to identify host factors that are important for other functions of V. One of several positive clones isolated from HeLa cell-derived cDNA library encodes caspase-1. We found that the C-terminal region of V interacts with the C-terminal region of caspase-1 in mammalian cells. Moreover, the V protein repressed caspase-1 activity and the formation of interleukin-1β (IL-1β) in a dose-dependent manner. IL-1β secretion induced by wild-type hPIV2 infection in human monocytic THP-1 cells was significantly lower than that induced by recombinant hPIV2 lacking V protein or having a mutant V. These data suggest that hPIV2 V protein inhibits caspase-1-mediated maturation of IL-1β via its interaction with caspase-1.

  6. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    PubMed

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1. © 2016 Höckner et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast

    NASA Technical Reports Server (NTRS)

    Sze, H.; Liang, F.; Hwang, I.; Curran, A. C.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.

  8. Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating

    PubMed Central

    Wiget, Philippe; Shimada, Yukiko; Butty, Anne-Christine; Bi, Efrei; Peter, Matthias

    2004-01-01

    Receptor-mediated cell polarization via heterotrimeric G-proteins induces cytoskeletal rearrangements in a variety of organisms. In yeast, Far1p is required for orienting cell growth towards the mating partner by linking activated Gβγ to the guanine-nucleotide exchange factor (GEF) Cdc24p, which activates the Rho-type GTPase Cdc42p. Here we investigated the role of Far1p in the regulation of Cdc24p in vivo. Using time-lapse microscopy of mating cells and artificial membrane targeting of Far1p, we show that Far1p is necessary and sufficient to recruit Cdc24p to the plasma membrane. Wild-type Far1p contains a PH-like domain, which is required for its membrane localization in vivo. Interestingly, expression of membrane-targeted Far1p causes toxicity, most likely by activating Cdc42p uniformly at the cell cortex. The ability of full-length Far1p to function as an activator of Cdc24p in vivo requires its interaction with Cdc24p and Gβγ. Our results imply that Gβγ not only targets Far1p to the correct site but may also trigger a conformational change in Far1p that is required for its ability to activate Cdc24p in vivo. PMID:14988725

  9. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  10. Control of mitotic chromosome condensation by the fission yeast transcription factor Zas1.

    PubMed

    Schiklenk, Christoph; Petrova, Boryana; Kschonsak, Marc; Hassler, Markus; Klein, Carlo; Gibson, Toby J; Haering, Christian H

    2018-05-07

    Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C 2 H 2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation. © 2018 Schiklenk et al.

  11. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    PubMed Central

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  12. Proteolytic cleavage and PKA phosphorylation of α1C subunit are not required for adrenergic regulation of CaV1.2 in the heart.

    PubMed

    Katchman, Alexander; Yang, Lin; Zakharov, Sergey I; Kushner, Jared; Abrams, Jeffrey; Chen, Bi-Xing; Liu, Guoxia; Pitt, Geoffrey S; Colecraft, Henry M; Marx, Steven O

    2017-08-22

    Calcium influx through the voltage-dependent L-type calcium channel (Ca V 1.2) rapidly increases in the heart during "fight or flight" through activation of the β-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of β-adrenergic activation of cardiac Ca V 1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α 1C and C-terminal proteolytic cleavage of the α 1C subunit. We generated transgenic mice expressing an α 1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for β-adrenergic regulation of Ca V 1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute β-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α 1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α 1C Prevention of C-terminal cleavage did not alter β-adrenergic stimulation of Ca V 1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α 1C in β-adrenergic stimulation of Ca V 1.2, and show that phosphoregulatory sites on α 1C are not redundant and do not each fractionally contribute to the net stimulatory effect of β-adrenergic stimulation. Further, proteolytic cleavage of α 1C is not required for β-adrenergic stimulation of Ca V 1.2.

  13. The ubiquitin–proteasome system regulates membrane fusion of yeast vacuoles

    PubMed Central

    Kleijnen, Maurits F; Kirkpatrick, Donald S; Gygi, Steven P

    2007-01-01

    Ubiquitination is known to regulate early stages of intracellular vesicular transport, without proteasomal involvement. We now show that, in yeast, ubiquitination regulates a late-stage, membrane fusion, with proteasomal involvement. A known proteasome mutant had a vacuolar fragmentation phenotype in vivo often associated with vacuolar membrane fusion defects, suggesting a proteasomal role in fusion. Inhibiting vacuolar proteasomes interfered with membrane fusion in vitro, showing that fusion cannot occur without proteasomal degradation. If so, one would expect to find ubiquitinated proteins on vacuolar membranes. We found a small number of these, identified the most prevalent one as Ypt7 and mapped its two major ubiquitination sites. Ubiquitinated Ypt7 was linked to the degradation event that is necessary for fusion: vacuolar Ypt7 and vacuolar proteasomes were interdependent, ubiquitinated Ypt7 became a proteasomal substrate during fusion, and proteasome inhibitors reduced fusion to greater degree when we decreased Ypt7 ubiquitination. The strongest model holds that fusion cannot proceed without proteasomal degradation of ubiquitinated Ypt7. As Ypt7 is one of many Rab GTPases, ubiquitin–proteasome regulation may be involved in membrane fusion elsewhere. PMID:17183369

  14. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae.

    PubMed

    Eid, Rawan; Boucher, Eric; Gharib, Nada; Khoury, Chamel; Arab, Nagla T T; Murray, Alistair; Young, Paul G; Mandato, Craig A; Greenwood, Michael T

    2016-03-01

    Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Fission yeast Ccq1 is a modulator of telomerase activity

    PubMed Central

    Armstrong, Christine A; Moiseeva, Vera; Collopy, Laura C; Pearson, Siân R; Ullah, Tomalika R; Xi, Shidong T; Martin, Jennifer; Subramaniam, Shaan; Marelli, Sara; Amelina, Hanna

    2018-01-01

    Abstract Shelterin, the telomeric protein complex, plays a crucial role in telomere homeostasis. In fission yeast, telomerase is recruited to chromosome ends by the shelterin component Tpz1 and its binding partner Ccq1, where telomerase binds to the 3′ overhang to add telomeric repeats. Recruitment is initiated by the interaction of Ccq1 with the telomerase subunit Est1. However, how telomerase is released following elongation remains to be established. Here, we show that Ccq1 also has a role in the suppression of telomere elongation, when coupled with the Clr4 histone H3 methyl-transferase complex and the Clr3 histone deacetylase and nucleosome remodelling complex, SHREC. We have dissected the functions of Ccq1 by establishing a Ccq1-Est1 fusion system, which bypasses the telomerase recruitment step. We demonstrate that Ccq1 forms two distinct complexes for positive and negative telomerase regulation, with Est1 and Clr3 respectively. The negative form of Ccq1 promotes dissociation of Ccq1-telomerase from Tpz1, thereby restricting local telomerase activity. The Clr4 complex also has a negative regulation activity with Ccq1, independently of SHREC. Thus, we propose a model in which Ccq1-Est1 recruits telomerase to mediate telomere extension, whilst elongated telomeric DNA recruits Ccq1 with the chromatin-remodelling complexes, which in turn releases telomerase from the telomere. PMID:29216371

  16. Induction of a G1-S checkpoint in fission yeast.

    PubMed

    Bøe, Cathrine A; Krohn, Marit; Rødland, Gro Elise; Capiaghi, Christoph; Maillard, Olivier; Thoma, Fritz; Boye, Erik; Grallert, Beáta

    2012-06-19

    Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.

  17. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus.

    PubMed

    Malay, Ali D; Umehara, Takashi; Matsubara-Malay, Kazuko; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2008-05-16

    The assembly of core histones onto eukaryotic DNA is modulated by several histone chaperone complexes, including Asf1, CAF-1, and HIRA. Asf1 is a unique histone chaperone that participates in both the replication-dependent and replication-independent pathways. Here we report the crystal structures of the apo-form of fission yeast Asf1/Cia1 (SpAsf1N; residues 1-161) as well as its complexes with the B-domain of the fission yeast HIRA orthologue Hip1 (Hip1B) and the C-terminal region of the Cac2 subunit of CAF-1 (Cac2C). The mode of the fission yeast Asf1N-Hip1B recognition is similar to that of the human Asf1-HIRA recognition, suggesting that Asf1N recognition of Hip1B/HIRA is conserved from yeast to mammals. Interestingly, Hip1B and Cac2C show remarkably similar interaction modes with Asf1. The binding between Asf1N and Hip1B was almost completely abolished by the D37A and L60A/V62A mutations in Asf1N, indicating the critical role of salt bridge and van der Waals contacts in the complex formation. Consistently, both of the aforementioned Asf1 mutations also drastically reduced the binding to Cac2C. These results provide a structural basis for a mutually exclusive Asf1-binding model of CAF-1 and HIRA/Hip1, in which Asf1 and CAF-1 assemble histones H3/H4 (H3.1/H4 in vertebrates) in a replication-dependent pathway, whereas Asf1 and HIRA/Hip1 assemble histones H3/H4 (H3.3/H4 in vertebrates) in a replication-independent pathway.

  18. DNA replication components as regulators of epigenetic inheritance--lesson from fission yeast centromere.

    PubMed

    He, Haijin; Gonzalez, Marlyn; Zhang, Fan; Li, Fei

    2014-06-01

    Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.

  19. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Whelan, James

    2012-02-17

    In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1(T).

    PubMed

    Yuan, Bo; Hu, Nan; Sun, Juan; Wang, Shi-An; Li, Fu-Li

    2012-12-01

    A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1(T), and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.5. The K (m) and V (max) values of the purified enzyme for inulin were 2.3 mg/mL and 4.8 mg/min, respectively. The optimum temperature of the inulinase was 50 °C, and the enzyme remained 78 % of activity at 60 °C for 2 h. The inulinase showed an amino acid sequence identity of 58 % to its closest homolog in Meyerozyma (Pichia) guilliermondii. In the secondary structure, the domain G (VMEVH) of the enzyme contained three unique residues (V, M, and H). Compared with previously reported inulinases, the enzyme from strain KRF1(T) displayed strong acid resistance, notable thermostability, and high affinity for the substrate of inulin. Based on sequence analysis of the 26S rDNA D1/D2 domain and phenotypic characterization, the yeast strain KRF1(T) was found to represent a novel anamorphic, ascomycetous yeast species. A complete description of the species is given and the name Candida kutaonensis sp. nov (type strain = KRF1(T) = AS 2.4027(T) = CBS 11388(T)) is proposed.

  1. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Slibinskas, Rimantas; Staniulis, Juozas; Sasnauskas, Kestutis; Shiell, Brian J; Wang, Lin-Fa; Michalski, Wojtek P

    2007-03-01

    Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.

  2. Regulation of the yeast EKI1-encoded ethanolamine kinase by inositol and choline.

    PubMed

    Kersting, Michael C; Choi, Hyeon-Son; Carman, George M

    2004-08-20

    Regulation of the EKI1-encoded ethanolamine kinase by inositol and choline was examined in Saccharomyces cerevisiae. Transcription of the EKI1 gene was monitored by following the expression of beta-galactosidase activity driven by a P(EKI1)-lacZ reporter gene. The addition of inositol to the growth medium resulted in a dose-dependent decrease in EKI1 expression. Supplementation of choline to inositol-containing growth medium brought about a further decrease in expression, whereas choline supplementation alone had no effect. Analysis of EKI1 expression in ino2Delta, ino4Delta, and opi1Delta mutants indicated that the transcription factors Ino2p, Ino4p, and Opi1p played a role in this regulation. Moreover, mutational analysis showed that the UAS(INO) element in the EKI1 promoter was required for the inositol-mediated regulation. The regulation of EKI1 expression by inositol and choline was confirmed by corresponding changes in ethanolamine kinase mRNA, protein, and activity levels. The repression of ethanolamine kinase by inositol supplementation correlated with a decrease in the incorporation of ethanolamine into CDP-ethanolamine pathway intermediates and into phosphatidylethanolamine and phosphatidylcholine.

  3. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast.

    PubMed

    Isom, Daniel G; Page, Stephani C; Collins, Leonard B; Kapolka, Nicholas J; Taghon, Geoffrey J; Dohlman, Henrik G

    2018-02-16

    The yeast Saccharomyces cerevisiae employs multiple pathways to coordinate sugar availability and metabolism. Glucose and other sugars are detected by a G protein-coupled receptor, Gpr1, as well as a pair of transporter-like proteins, Rgt2 and Snf3. When glucose is limiting, however, an ATP-driven proton pump (Pma1) is inactivated, leading to a marked decrease in cytoplasmic pH. Here we determine the relative contribution of the two sugar-sensing pathways to pH regulation. Whereas cytoplasmic pH is strongly dependent on glucose abundance and is regulated by both glucose-sensing pathways, ATP is largely unaffected and therefore cannot account for the changes in Pma1 activity. These data suggest that the pH is a second messenger of the glucose-sensing pathways. We show further that different sugars differ in their ability to control cellular acidification, in the manner of inverse agonists. We conclude that the sugar-sensing pathways act via Pma1 to invoke coordinated changes in cellular pH and metabolism. More broadly, our findings support the emerging view that cellular systems have evolved the use of pH signals as a means of adapting to environmental stresses such as those caused by hypoxia, ischemia, and diabetes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases

    PubMed Central

    Tang, Yingzhi; Quan, Zhenzhen; Zhang, Zhe; Oliver, Stephen G.; Zhang, Nianshu

    2016-01-01

    Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding ‘signaling’ proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast. PMID:27923067

  5. The PathoYeastract database: an information system for the analysis of gene and genomic transcription regulation in pathogenic yeasts.

    PubMed

    Monteiro, Pedro Tiago; Pais, Pedro; Costa, Catarina; Manna, Sauvagya; Sá-Correia, Isabel; Teixeira, Miguel Cacho

    2017-01-04

    We present the PATHOgenic YEAst Search for Transcriptional Regulators And Consensus Tracking (PathoYeastract - http://pathoyeastract.org) database, a tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in the pathogenic yeasts Candida albicans and C. glabrata Upon data retrieval from hundreds of publications, followed by curation, the database currently includes 28 000 unique documented regulatory associations between transcription factors (TF) and target genes and 107 DNA binding sites, considering 134 TFs in both species. Following the structure used for the YEASTRACT database, PathoYeastract makes available bioinformatics tools that enable the user to exploit the existing information to predict the TFs involved in the regulation of a gene or genome-wide transcriptional response, while ranking those TFs in order of their relative importance. Each search can be filtered based on the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. Promoter analysis tools and interactive visualization tools for the representation of TF regulatory networks are also provided. The PathoYeastract database further provides simple tools for the prediction of gene and genomic regulation based on orthologous regulatory associations described for other yeast species, a comparative genomics setup for the study of cross-species evolution of regulatory networks. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress.

    PubMed

    Shiraishi, Kosuke; Hioki, Takahiro; Habata, Akari; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2018-01-09

    The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii , we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  7. XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts

    PubMed Central

    Rowley, Paul A.; Ho, Brandon; Bushong, Sarah; Johnson, Arlen; Sawyer, Sara L.

    2016-01-01

    In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. We find a highly refined, species-specific relationship between Xrn1p and the “L-A” totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, Xrn1p appears to co-evolve with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. We demonstrate that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs. PMID:27711183

  8. Yeast Pah1p Phosphatidate Phosphatase Is Regulated by Proteasome-mediated Degradation*

    PubMed Central

    Pascual, Florencia; Hsieh, Lu-Sheng; Soto-Cardalda, Aníbal; Carman, George M.

    2014-01-01

    Yeast PAH1-encoded phosphatidate phosphatase is the enzyme responsible for the production of the diacylglycerol used for the synthesis of triacylglycerol that accumulates in the stationary phase of growth. Paradoxically, the growth phase-mediated inductions of PAH1 and phosphatidate phosphatase activity do not correlate with the amount of Pah1p; enzyme abundance declined in a growth phase-dependent manner. Pah1p from exponential phase cells was a relatively stable protein, and its abundance was not affected by incubation with an extract from stationary phase cells. Recombinant Pah1p was degraded upon incubation with the 100,000 × g pellet fraction of stationary phase cells, although the enzyme was stable when incubated with the same fraction of exponential phase cells. MG132, an inhibitor of proteasome function, prevented degradation of the recombinant enzyme. Endogenously expressed and plasmid-mediated overexpressed levels of Pah1p were more abundant in the stationary phase of cells treated with MG132. Pah1p was stabilized in mutants with impaired proteasome (rpn4Δ, blm10Δ, ump1Δ, and pre1 pre2) and ubiquitination (hrd1Δ, ubc4Δ, ubc7Δ, ubc8Δ, and doa4Δ) functions. The pre1 pre2 mutations that eliminate nearly all chymotrypsin-like activity of the 20 S proteasome had the greatest stabilizing effect on enzyme levels. Taken together, these results supported the conclusion that Pah1p is subject to proteasome-mediated degradation in the stationary phase. That Pah1p abundance was stabilized in pah1Δ mutant cells expressing catalytically inactive forms of Pah1p and dgk1Δ mutant cells with induced expression of DGK1-encoded diacylglycerol kinase indicated that alteration in phosphatidate and/or diacylglycerol levels might be the signal that triggers Pah1p degradation. PMID:24563465

  9. Stopped in its tracks: negative regulation of the dynein motor by the yeast protein She1

    PubMed Central

    Moore, Jeffrey K.

    2013-01-01

    Summary How do cells direct the microtubule motor protein dynein to move cellular components to the right place at the right time? Recent studies in budding yeast shed light on a new mechanism for directing dynein, involving the protein She1. She1 restricts where and when dynein moves the nucleus and mitotic spindle. Experiments with purified proteins show that She1 binds to microtubules and inhibits dynein by stalling the motor on its track. Here I describe what we have learned so far about She1, based on a combination of genetic, cell biology, and biophysical approaches. These findings set the stage for further interrogation of the She1 mechanism, and raise the question of whether similar mechanisms exist in other species. PMID:23666903

  10. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.

    PubMed

    Munson, M; Chen, X; Cocina, A E; Schultz, S M; Hughson, F M

    2000-10-01

    In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 A resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.

  11. Multiple histone deacetylases are recruited by corepressor Sin3 and contribute to gene repression mediated by Opi1 regulator of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae.

    PubMed

    Grigat, Mathias; Jäschke, Yvonne; Kliewe, Felix; Pfeifer, Matthias; Walz, Susanne; Schüller, Hans-Joachim

    2012-06-01

    Yeast genes of phospholipid biosynthesis are negatively regulated by repressor protein Opi1 when precursor molecules inositol and choline (IC) are available. Opi1-triggered gene repression is mediated by recruitment of the Sin3 corepressor complex. In this study, we systematically investigated the regulatory contribution of subunits of Sin3 complexes and identified Pho23 as important for IC-dependent gene repression. Two non-overlapping regions within Pho23 mediate its direct interaction with Sin3. Previous work has shown that Sin3 recruits the histone deacetylase (HDAC) Rpd3 to execute gene repression. While deletion of SIN3 strongly alleviates gene repression by IC, an rpd3 null mutant shows almost normal regulation. We thus hypothesized that various HDACs may contribute to Sin3-mediated repression of IC-regulated genes. Indeed, a triple mutant lacking HDACs, Rpd3, Hda1 and Hos1, could phenocopy a sin3 single mutant. We show that these proteins are able to contact Sin3 in vitro and in vivo and mapped three distinct HDAC interaction domains, designated HID1, HID2 and HID3. HID3, which is identical to the previously described structural motif PAH4 (paired amphipathic helix), can bind all HDACs tested. Chromatin immunoprecipitation studies finally confirmed that Hda1 and Hos1 are recruited to promoters of phospholipid biosynthetic genes INO1 and CHO2.

  12. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-RasV12 -induced cell transformation.

    PubMed

    Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chiou, Yu-Wei; Wu, Ching-Lung; Chiu, Wen-Tai; Tang, Ming-Jer

    2018-05-01

    Caveolin-1 (Cav1) is down-regulated during MK4 (MDCK cells harbouring inducible Ha-Ras V12 gene) transformation by Ha-Ras V12 . Cav1 overexpression abrogates the Ha-Ras V12 -driven transformation of MK4 cells; however, the targeted down-regulation of Cav1 is not sufficient to mimic this transformation. Cav1-silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction-related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I-CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha-Ras V12 -inducing MK4 cells increased exosome-like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I-CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I-CM (MK4+I-EXs). Wnt5a, a downstream product of Ha-Ras V12 , was markedly secreted by MK4+I-CM and MK4+I-EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha-Ras V12 - and MK4+I-CM-induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down-regulation, either by Ha-Ras V12 or targeted shRNA, increased frizzled-2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I-EXs in MDCK cells. These data suggest that Cav1-dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha-Ras V12 -Wnt5a-Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha-Ras V12 -driven cell transformation. © 2018 The Authors

  13. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain.

    PubMed

    Wilbur, Jeremy D; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K; Fletterick, Robert J; Brodsky, Frances M

    2008-11-21

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.

  14. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.

    PubMed

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2013-08-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.

  15. Frataxin Depletion in Yeast Triggers Up-regulation of Iron Transport Systems before Affecting Iron-Sulfur Enzyme Activities*

    PubMed Central

    Moreno-Cermeño, Armando; Obis, Èlia; Bellí, Gemma; Cabiscol, Elisa; Ros, Joaquim; Tamarit, Jordi

    2010-01-01

    The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells. PMID:20956517

  16. Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens.

    PubMed

    Ben Daniel, Bat-Hen; Cattan, Esther; Wachtel, Chaim; Avrahami, Dorit; Glick, Yair; Malichy, Asaf; Gerber, Doron; Miller, Gad

    2016-08-01

    To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses. © 2016 Scandinavian Plant Physiology Society.

  17. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning.

    PubMed

    Nanou, Evanthia; Scheuer, Todd; Catterall, William A

    2016-11-15

    Many forms of short-term synaptic plasticity rely on regulation of presynaptic voltage-gated Ca 2+ type 2.1 (Ca V 2.1) channels. However, the contribution of regulation of Ca V 2.1 channels to other forms of neuroplasticity and to learning and memory are not known. Here we have studied mice with a mutation (IM-AA) that disrupts regulation of Ca V 2.1 channels by calmodulin and related calcium sensor proteins. Surprisingly, we find that long-term potentiation (LTP) of synaptic transmission at the Schaffer collateral-CA1 synapse in the hippocampus is substantially weakened, even though this form of synaptic plasticity is thought to be primarily generated postsynaptically. LTP in response to θ-burst stimulation and to 100-Hz tetanic stimulation is much reduced. However, a normal level of LTP can be generated by repetitive 100-Hz stimulation or by depolarization of the postsynaptic cell to prevent block of NMDA-specific glutamate receptors by Mg 2+ The ratio of postsynaptic responses of NMDA-specific glutamate receptors to those of AMPA-specific glutamate receptors is decreased, but the postsynaptic current from activation of NMDA-specific glutamate receptors is progressively increased during trains of stimuli and exceeds WT by the end of 1-s trains. Strikingly, these impairments in long-term synaptic plasticity and the previously documented impairments in short-term synaptic plasticity in IM-AA mice are associated with pronounced deficits in spatial learning and memory in context-dependent fear conditioning and in the Barnes circular maze. Thus, regulation of Ca V 2.1 channels by calcium sensor proteins is required for normal short-term synaptic plasticity, LTP, and spatial learning and memory in mice.

  18. Immunostimulant effects and potential application of β-glucans derived from marine yeast Debaryomyces hansenii in goat peripheral blood leucocytes.

    PubMed

    Medina-Córdova, Noé; Reyes-Becerril, Martha; Ascencio, Felipe; Castellanos, Thelma; Campa-Córdova, Angel I; Angulo, Carlos

    2018-05-12

    Debaryomyces hansenii has been described to be effective probiotic and immunostimulatory marine yeast in fish. Nonetheless, to the best of our knowledge, it has been not assayed in ruminants. This study attempts to describe the immunostimulatory effects of its β-glucan content through in vitro assays using goat peripheral blood leukocytes at 24 h of stimulation. The structural characterization of yeast glucans by proton nuclear magnetic resonance indicated structures containing (1-6)-branched (1-3)-β-D-glucan. In vitro assays using peripheral blood leukocytes stimulated with β-glucans derived from three D. hansenii strains and zymosan revealed that β-glucans significantly increased cell immune parameters, such as phagocytic ability, reactive oxygen species production (respiratory burst), peroxidase activity and nitric oxide production. Antioxidant enzymes revealed an increase in superoxide dismutase and catalase activities in leukocytes stimulated with yeast β-glucans. This study revealed that yeast β-glucans were able to activate dectin-1 mRNA gene expression in leukocytes. The TLR4 gene expression was up-regulated in leukocytes after stimulation with yeast β-glucans. In conclusion, β-glucans were able to modulate the immune system by promoting cell viability, phagocytic activity, antioxidant immune response and immune-related gene expression in leukocytes. Therefore, β-glucans derived from Debaryomyces hansenii should be considered a potential immunostimulant for goat production systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    PubMed Central

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  20. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast

    PubMed Central

    2014-01-01

    Background Nrd1 and Nab3 are essential sequence-specific yeast RNA binding proteins that function as a heterodimer in the processing and degradation of diverse classes of RNAs. These proteins also regulate several mRNA coding genes; however, it remains unclear exactly what percentage of the mRNA component of the transcriptome these proteins control. To address this question, we used the pyCRAC software package developed in our laboratory to analyze CRAC and PAR-CLIP data for Nrd1-Nab3-RNA interactions. Results We generated high-resolution maps of Nrd1-Nab3-RNA interactions, from which we have uncovered hundreds of new Nrd1-Nab3 mRNA targets, representing between 20 and 30% of protein-coding transcripts. Although Nrd1 and Nab3 showed a preference for binding near 5′ ends of relatively short transcripts, they bound transcripts throughout coding sequences and 3′ UTRs. Moreover, our data for Nrd1-Nab3 binding to 3′ UTRs was consistent with a role for these proteins in the termination of transcription. Our data also support a tight integration of Nrd1-Nab3 with the nutrient response pathway. Finally, we provide experimental evidence for some of our predictions, using northern blot and RT-PCR assays. Conclusions Collectively, our data support the notion that Nrd1 and Nab3 function is tightly integrated with the nutrient response and indicate a role for these proteins in the regulation of many mRNA coding genes. Further, we provide evidence to support the hypothesis that Nrd1-Nab3 represents a failsafe termination mechanism in instances of readthrough transcription. PMID:24393166

  1. Chemicals or mutations that target mitochondrial translation can rescue the respiratory deficiency of yeast bcs1 mutants.

    PubMed

    Panozzo, C; Laleve, A; Tribouillard-Tanvier, D; Ostojić, J; Sellem, C H; Friocourt, G; Bourand-Plantefol, A; Burg, A; Delahodde, A; Blondel, M; Dujardin, G

    2017-12-01

    Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III 2 /IV in yeast or I/III 2 /IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes. Copyright © 2017. Published by Elsevier B.V.

  2. TERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeast

    PubMed Central

    Wanat, Jennifer J.; Logsdon, Glennis A.; Driskill, Jordan H.; Deng, Zhong; Lieberman, Paul M.

    2018-01-01

    The events underlying senescence induced by critical telomere shortening are not fully understood. Here we provide evidence that TERRA, a non-coding RNA transcribed from subtelomeres, contributes to senescence in yeast lacking telomerase (tlc1Δ). Levels of TERRA expressed from multiple telomere ends appear elevated at senescence, and expression of an artificial RNA complementary to TERRA (anti-TERRA) binds TERRA in vivo and delays senescence. Anti-TERRA acts independently from several other mechanisms known to delay senescence, including those elicited by deletions of EXO1, TEL1, SAS2, and genes encoding RNase H enzymes. Further, it acts independently of the senescence delay provided by RAD52-dependent recombination. However, anti-TERRA delays senescence in a fashion epistatic to inactivation of the conserved histone methyltransferase Dot1. Dot1 associates with TERRA, and anti-TERRA disrupts this interaction in vitro and in vivo. Surprisingly, the anti-TERRA delay is independent of the C-terminal methyltransferase domain of Dot1 and instead requires only its N-terminus, which was previously found to facilitate release of telomeres from the nuclear periphery. Together, these data suggest that TERRA and Dot1 cooperate to drive senescence. PMID:29649255

  3. Type 1 diabetes in children is not a predisposing factor for oral yeast colonization.

    PubMed

    Costa, Ana L; Silva, Branca M A; Soares, Rui; Mota, Diana; Alves, Vera; Mirante, Alice; Ramos, João C; Maló de Abreu, João; Santos-Rosa, Manuel; Caramelo, Francisco; Gonçalves, Teresa

    2017-06-01

    Type 1 diabetes mellitus (T1D) is considered a risk factor associated with oral yeast infections. The aim of this study was to evaluate the yeast oral carriage (in saliva and mucosal surface) of children with T1D and potential relation with host factors, particularly the subset of CD4+ T cells. Yeasts were quantified and identified in stimulated saliva and in cheek mucosal swabs of 133 diabetic T1D and 72 healthy control subjects. Salivary lymphocytes were quantified using flow cytometry. The presence of yeasts in the oral cavity (60% of total patients) was not affected by diabetes, metabolic control, duration of the disease, salivary flow rate or saliva buffer capacity, by age, sex, place of residence, number of daily meals, consumption of sweets or frequency of tooth brushing. Candida albicans was the most prevalent yeast species, but a higher number of yeast species was isolated in nondiabetics. T1D children with HbA1c ≤ 7.5 (metabolically controlled) presented higher number of CD4+ T salivary subsets when compared with the other groups of children (non-diabetic and nonmetabolically controlled) and also presented the highest number of individuals without oral yeast colonization. In conclusion, T1D does not predisposes for increased oral yeast colonization and a higher number of salivary CD4+T cells seems to result in the absence of oral colonization by yeasts. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay.

    PubMed

    Bakhrat, Anya; Eltzov, Evgeni; Finkelstein, Yishay; Marks, Robert S; Raveh, Dina

    2011-06-01

    We describe a Saccharomyces cerevisiae bioluminescence assay for UV and arsenate in which bacterial luciferase genes are regulated by the promoter of the yeast gene, UFO1. UFO1 encodes the F-box subunit of the Skp1–Cdc53–F-box protein ubiquitin ligase complex and is induced by DNA damage and by arsenate. We engineered the UFO1 promoter into an existing yeast bioreporter that employs human genes for detection of steroid hormone-disrupting compounds in water bodies. Our analysis indicates that use of an endogenous yeast promoter in different mutant backgrounds allows discrimination between different environmental signals. The UFO1-engineered yeast give a robust bioluminescence response to UVB and can be used for evaluating UV protective sunscreens. They are also effective in detecting extremely low concentrations of arsenate, particularly in pdr5Δ mutants that lack a mechanism to extrude toxic chemicals; however, they do not respond to cadmium or mercury. Combined use of endogenous yeast promoter elements and mutants of stress response pathways may facilitate development of high-specificity yeast bioreporters able to discriminate between closely related chemicals present together in the environment.

  5. 42 CFR 137.225 - What regulations may be waived under Title V?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Regulation Waiver § 137.225 What regulations may be waived under Title V? A Self-Governance Tribe may request a waiver of... 42 Public Health 1 2010-10-01 2010-10-01 false What regulations may be waived under Title V? 137...

  6. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    PubMed

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  7. The glyoxylate pathway contributes to enhanced extracellular electron transfer in yeast-based biofuel cell.

    PubMed

    Hubenova, Yolina; Hubenova, Eleonora; Slavcheva, Evelina; Mitov, Mario

    2017-08-01

    This study provides a new insight into our understanding of yeast response to starvation conditions (sole acetate as carbon source) and applied polarization and offers important information about the role of the glyoxylate cycle in the carbohydrate synthesis and extracellular charge transfer processes in biofuel cells. The biosynthetic capabilities of yeast C. melibiosica 2491 and the up/down-regulation of the glyoxylate cycle are evaluated by modifying the cellular metabolism by feedback inhibition or carbohydrate presence and establishing the malate dehydrogenase activity and carbohydrate content together with the electric charge passed through bioelectrochemical system. 10mM malate leads to a decrease of the produced quantity of electricity with ca. 55%. At the same time, 24-times lower intracellular malate dehydrogenase activity is established. At polarization conditions the glyoxylate pathway is up-regulated and huge amount of malate is intra-converted into oxaloacetate. The yeasts are able to synthesize carbohydrates from acetate and a part of them is used for the electricity generation. It is recognized that the enhanced charge transfer in acetate fed yeast-based biofuel cell is implemented by secreted endogenous mediator and changes in the cellular surface redox activity depending on the addition of carbohydrate in the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cloning and Biochemical Characterization of TAF-172, a Human Homolog of Yeast Mot1

    PubMed Central

    Chicca, John J.; Auble, David T.; Pugh, B. Franklin

    1998-01-01

    The TATA binding protein (TBP) is a central component of the eukaryotic transcriptional machinery and is the target of positive and negative transcriptional regulators. Here we describe the cloning and biochemical characterization of an abundant human TBP-associated factor (TAF-172) which is homologous to the yeast Mot1 protein and a member of the larger Snf2/Swi2 family of DNA-targeted ATPases. Like Mot1, TAF-172 binds to the conserved core of TBP and uses the energy of ATP hydrolysis to dissociate TBP from DNA (ADI activity). Interestingly, ATP also causes TAF-172 to dissociate from TBP, which has not been previously observed with Mot1. Unlike Mot1, TAF-172 requires both TBP and DNA for maximal (∼100-fold) ATPase activation. TAF-172 inhibits TBP-driven RNA polymerase II and III transcription but does not appear to affect transcription driven by TBP-TAF complexes. As it does with Mot1, TFIIA reverses TAF-172-mediated repression of TBP. Together, these findings suggest that human TAF-172 is the functional homolog of yeast Mot1 and uses the energy of ATP hydrolysis to remove TBP (but apparently not TBP-TAF complexes) from DNA. PMID:9488487

  9. The Msd1–Wdr8–Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies

    PubMed Central

    Yukawa, Masashi; Ikebe, Chiho

    2015-01-01

    The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity. PMID:25987607

  10. Form and function of topologically associating genomic domains in budding yeast.

    PubMed

    Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat; Straight, Aaron F; Duan, Zhijun; Noble, William Stafford; Skotheim, Jan M

    2017-04-11

    The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.

  11. Actin Binding by Hip1 (Huntingtin-interacting Protein 1) and Hip1R (Hip1-related Protein) Is Regulated by Clathrin Light Chain*S⃞

    PubMed Central

    Wilbur, Jeremy D.; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K.; Fletterick, Robert J.; Brodsky, Frances M.

    2008-01-01

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function. PMID:18790740

  12. Exploring the Yeast Acetylome Using Functional Genomics

    PubMed Central

    Duffy, Supipi Kaluarachchi; Friesen, Helena; Baryshnikova, Anastasia; Lambert, Jean-Philippe; Chong, Yolanda T.; Figeys, Daniel; Andrews, Brenda

    2014-01-01

    SUMMARY Lysine acetylation is a dynamic posttranslational modification with a well-defined role in regulating histones. The impact of acetylation on other cellular functions remains relatively uncharacterized. We explored the budding yeast acetylome with a functional genomics approach, assessing the effects of gene overexpression in the absence of lysine deacetylases (KDACs). We generated a network of 463 synthetic dosage lethal (SDL) interactions involving class I and II KDACs, revealing many cellular pathways regulated by different KDACs. A biochemical survey of genes interacting with the KDAC RPD3 identified 72 proteins acetylated in vivo. In-depth analysis of one of these proteins, Swi4, revealed a role for acetylation in G1-specific gene expression. Acetylation of Swi4 regulates interaction with its partner Swi6, both components of the SBF transcription factor. This study expands our view of the yeast acetylome, demonstrates the utility of functional genomic screens for exploring enzymatic pathways, and provides functional information that can be mined for future studies. PMID:22579291

  13. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa.

    PubMed

    Liu, J; Kipreos, E T

    2000-07-01

    Cyclin-dependent kinases (CDKs) function as central regulators of both the cell cycle and transcription. CDK activation depends on phosphorylation by a CDK-activating kinase (CAK). Different CAKs have been identified in budding yeast, fission yeast, and metazoans. All known CAKs belong to the extended CDK family. The sole budding yeast CAK, CAK1, and one of the two CAKs in fission yeast, csk1, have diverged considerably from other CDKs. Cell cycle regulatory components have been largely conserved in eukaryotes; however, orthologs of neither CAK1 nor csk1 have been identified in other species to date. To determine the evolutionary relationships of yeast and metazoan CAKs, we performed a phylogenetic analysis of the extended CDK family in budding yeast, fission yeast, humans, the fruit fly Drosophila melanogaster, and the nematode Caenorhabditis elegans. We observed that there were 10 clades for CDK-related genes, of which seven appeared ancestral, containing both yeast and metazoan genes. The four clades that contain CDKs that regulate transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA Polymerase II generally have only a single orthologous gene in each species of yeast and metazoans. In contrast, the ancestral cell cycle CDK (analogous to budding yeast CDC28) gave rise to a number of genes in metazoans, as did the ancestor of budding yeast PHO85. One ancestral clade is unique in that there are fission yeast and metazoan members, but there is no budding yeast ortholog, suggesting that it was lost subsequent to evolutionary divergence. Interestingly, CAK1 and csk1 branch together with high bootstrap support values. We used both the relative apparent synapomorphy analysis (RASA) method in combination with the S-F method of sampling reduced character sets and gamma-corrected distance methods to confirm that the CAK1/csk1 association was not an artifact of long-branch attraction. This result suggests that CAK1 and csk1 are orthologs and that a

  14. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre

    PubMed Central

    Zhao, X.; Moates, G.K.; Elliston, A.; Wilson, D.R.; Coleman, M.J.; Waldron, K.W.

    2015-01-01

    This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g−1 substrate) cellulase plus β-glucosidase (2 U g−1 substrate) and a yeast inoculum of 10% (v/v or 8.0 × 107 cells mL−1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. PMID:26210138

  15. Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies.

    PubMed

    Liu, Zhongbo; Mohan, Subburaman; Yakar, Shoshana

    2016-04-01

    The contribution of the gonadotropic axis to skeletal sexual dimorphism (SSD) was clarified in recent years. Studies with animal models of estrogen receptor (ER) or androgen receptor (AR) null mice, as well as mice with bone cell-specific ablation of ER or AR, revealed that both hormones play major roles in skeletal acquisition, and that estrogen regulates skeletal accrual in both sexes. The growth hormone (GH) and its downstream effector, the insulin-like growth factor-1 (IGF-1) are also major determinants of peak bone mass during puberty and young adulthood, and play important roles in maintaining bone integrity during aging. A few studies in both humans and animal models suggest that in addition to the differences in sex steroid actions on bone, sex-specific effects of GH and IGF-1 play essential roles in SSD. However, the contributions of the somatotropic (GH/IGF-1) axis to SSD are controversial and data is difficult to interpret. GH/IGF-1 are pleotropic hormones that act in an endocrine and autocrine/paracrine fashion on multiple tissues, affecting body composition as well as metabolism. Thus, understanding the contribution of the somatotropic axis to SSD requires the use of mouse models that will differentiate between these two modes of action. Elucidation of the relative contribution of GH/IGF-1 axis to SSD is significant because GH is approved for the treatment of normal children with short stature and children with congenital growth disorders. Thus, if the GH/IGF-1 axis determines SSD, treatment with GH may be tailored according to sex. In the following review, we give an overview of the roles of sex steroids in determining SSD and how they may interact with the GH/IGF-1 axis in bone. We summarize several mouse models with impaired somatotropic axis and speculate on the possible contribution of that axis to SSD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    PubMed

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Expression of Malus xiaojinensis IRT1 (MxIRT1) protein in transgenic yeast cells leads to degradation through autophagy in the presence of excessive iron.

    PubMed

    Li, Shuang; Zhang, Xi; Zhang, Xiu-Yue; Xiao, Wei; Berry, James O; Li, Peng; Jin, Si; Tan, Song; Zhang, Peng; Zhao, Wei-Zhong; Yin, Li-Ping

    2015-07-01

    Iron is essential for plants, but highly toxic when present in excess. Consequently, iron uptake by root transporters must be finely tuned to avoid excess uptake from soil under iron excess. The iron-regulated transporter of Malus xiaojinensis (MxIRT1), induced in roots under iron deficiency, is a highly effective iron(II) transporter. Here, we investigated how the presence of excessive iron leads to MxIRT1 degradation in yeast expressing this plant iron transporter protein. To determine the relationship between iron abundance and MxIRT1 degradation, relative levels of autophagy-related gene-8 (ATG8) mRNA and the active ATG8-phosphatidylethanolamine-conjugated (PE) protein were measured in wild-type yeast and the autophagic mutant strains atg1∆, atg5∆, atg7∆, ypt7∆ and tor1∆ under normal and excessive iron conditions. The data showed that the exposure of MxIRT1-eGFP-transformed wild-type and tor1∆ strains to excessive iron led to significantly increased levels of ATG8 transcript and ATG8-PE protein, which resulted in enhanced MxIRT1 degradation. Co-localization of mCherry-ATG8 and MxIRT1-eGFP provided evidence that these proteins interact during autophagy in yeast. While inhibition of autophagic initiation, autophagosome formation and vacuole fusion all decreased MxIRT1 degradation. PMSF inhibition of autophagy prevented degradation, leading to the accumulation of MxIRT1-containing vesicles in the vacuoles. MxIRT1-vesicles were sorted into autophagosomes for iron-induced degradation in yeast, whereas the endogenous iron(II) transporter Fet4 was degraded in an autophagy-independent manner. Moreover, immunoprecipitation showed that multimono-ubiquitins provided MxIRT1 with the ubiquitination signal. Together, three factors, iron excess, autophagy and mono-ubiquitination, affect the functional activity and stability of exogenous MxIRT1 in yeast, thereby preventing iron uptake via this root transporter. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway.

    PubMed

    Sandoval, Alejandro; Duran, Paz; Gandini, María A; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2017-09-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca 2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated Ca V 1.3L-type Ca 2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant Ca V 1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the Ca V α 1 ion-conducting subunit of the Ca V 1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca 2+ macroscopic currents and impair insulin release stimulated with high K + . In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for Ca V 1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the Ca V α 1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate Ca V 1.3 channels and contribute to regulate insulin secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Rga6 is a fission yeast Rho GAP involved in Cdc42 regulation of polarized growth

    PubMed Central

    Revilla-Guarinos, M. T.; Martín-García, Rebeca; Villar-Tajadura, M. Antonia; Estravís, Miguel; Coll, Pedro M.; Pérez, Pilar

    2016-01-01

    Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6, another fission yeast Cdc42 GAP, shares some functions with Rga4. Cells lacking Rga6 are viable but slightly shorter and broader than wild type, and cells lacking Rga6 and Rga4 simultaneously are rounded. In these cells, active Cdc42 is observed all around the membrane. These additive effects indicate that both GAPs collaborate in the spatial regulation of active Cdc42. Rga6 localizes to the plasma membrane, forming clusters different from those formed by Rga4. A polybasic region at the Rga6 C-terminus is responsible for its membrane localization. Rga6-GFP fluorescence decreases considerably at the growing tips, and this decrease is dependent on the actin cables. Of note, in the absence of Rga6, the amplitude of active Cdc42 oscillations at the tips decreases, and less GTP-Cdc42 accumulates at the new end of the cells. We propose that Rga6 collaborates with Rga4 to spatially restrict active Cdc42 at the cell tips and maintain cell dimensions. PMID:26960792

  20. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    PubMed

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.

  1. Septin Organization and Functions in Budding Yeast

    PubMed Central

    Glomb, Oliver; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins. PMID:27857941

  2. 5 CFR 5.1 - Civil Service regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Civil Service regulations. 5.1 Section 5.1 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE RULES REGULATIONS, INVESTIGATION, AND ENFORCEMENT (RULE V) § 5.1 Civil Service regulations. The Director, Office of Personnel...

  3. 5 CFR 5.1 - Civil Service regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Civil Service regulations. 5.1 Section 5.1 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE RULES REGULATIONS, INVESTIGATION, AND ENFORCEMENT (RULE V) § 5.1 Civil Service regulations. The Director, Office of Personnel...

  4. Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span.

    PubMed

    Longo, Valter D; Nislow, Corey; Fabrizio, Paola

    2010-11-01

    Accumulating evidence from various organisms points to a role for autophagy in the regulation of life span. By performing a genome-wide screen to identify novel life span determinants in Saccharomyces cerevisiae, we have obtained further insights into the autophagy-related and -unrelated degradation processes that may be important for preventing cellular senescence. The generation of multivesicular bodies and their fusion with the vacuole in the endosomal pathway emerged as novel cell functions involved in yeast chronological survival and longevity extension.

  5. Oxytocin differently regulates pressor responses to stress in WKY and SHR rats: the role of central oxytocin and V1a receptors.

    PubMed

    Wsol, A; Szczepanska-Sadowska, E; Kowalewski, S; Puchalska, L; Cudnoch-Jedrzejewska, A

    2014-01-01

    The role of central oxytocin in the regulation of cardiovascular parameters under resting conditions and during acute stress was investigated in male normotensive Wistar-Kyoto (WKY; n = 40) and spontaneously hypertensive rats (SHR; n = 28). In Experiment 1, mean arterial blood pressure (MABP) and heart rate (HR) were recorded in WKY and SHR rats at rest and after an air-jet stressor during intracerebroventricular (ICV) infusions of vehicle, oxytocin or oxytocin receptor (OTR) antagonist. In Experiment 2, the effects of vehicle, oxytocin and OTR antagonist were determined in WKY rats after prior administration of a V1a vasopressin receptor (V1aR) antagonist. Resting MABP and HR were not affected by any of the ICV infusions either in WKY or in SHR rats. In control experiments (vehicle), the pressor response to stress was significantly higher in SHR. Oxytocin enhanced the pressor response to stress in the WKY rats but reduced it in SHR. During V1aR blockade, oxytocin infusion entirely abolished the pressor response to stress in WKY rats. Combined blockade of V1aR and OTR elicited a significantly greater MABP response to stress than infusion of V1a antagonist and vehicle. This study reveals significant differences in the regulation of blood pressure in WKY and SHR rats during alarming stress. Specifically, the augmentation of the pressor response to stress by exogenous oxytocin in WKY rats is caused by its interaction with V1aR, and endogenous oxytocin regulates the magnitude of the pressor response to stress in WKY rats by simultaneous interaction with OTR and V1aR.

  6. Food-Associated Lactobacillus plantarum and Yeasts Inhibit the Genotoxic Effect of 4-Nitroquinoline-1-Oxide

    PubMed Central

    Prete, Roberta; Tofalo, Rosanna; Federici, Ermanno; Ciarrocchi, Aurora; Cenci, Giovanni; Corsetti, Aldo

    2017-01-01

    Lactic acid bacteria and yeasts, representing the prevailing microbiota associated with different foods generally consumed without any cooking, were identified and characterized in vitro for some functional properties, such as acid-bile tolerance and antigenotoxic activity. In particular, 22 Lactobacillus plantarum strains and 14 yeasts were studied. The gastro-intestinal tract tolerance of all the strains was determined by exposing washed cell suspensions at 37°C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and to a simulated small intestinal juice (pH 8.0), containing pancreatin (1 mg mL-1) and bile extract (0.5%), thus monitoring changes in total viable count. In general, following a strain-dependent behavior, all the tested strains persisted alive after combined acid-bile challenge. Moreover, many strains showed high in vitro inhibitory activity against a model genotoxin, 4-nitroquinoline-1-oxide (4-NQO), as determined by the short-term method, SOS-Chromotest. Interestingly, the supernatants from bacteria- or yeasts-genotoxin co-incubations exhibited a suppression on SOS-induction produced by 4-NQO on the tester strain Escherichia coli PQ37 (sfiA::lacZ) exceeding, in general, the value of 75%. The results highlight that food associated microorganisms may reach the gut in viable form and prevent genotoxin DNA damage in situ. Our experiments can contribute to elucidate the functional role of food-associated microorganisms general recognized as safe ingested with foods as a part of the diet. PMID:29234315

  7. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.

    PubMed

    Takagi, Hiroshi; Hashida, Keisuke; Watanabe, Daisuke; Nasuno, Ryo; Ohashi, Masataka; Iha, Tomoya; Nezuo, Maiko; Tsukahara, Masatoshi

    2015-02-01

    Awamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from α-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of α-isopropylmalate synthase (IPMS). Here, we isolated mutants resistant to the L-leucine analog 5,5,5-trifluoro-DL-leucine (TFL) derived from diploid awamori yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular L-leucine, and among them, one mutant overproduced i-AmOH in awamori brewing. This mutant carried an allele of the LEU4 gene encoding the Ser542Phe/Ala551Val variant IPMS, which is less sensitive to feedback inhibition by L-leucine. Interestingly, we found that either of the constituent mutations (LEU4(S542F) and LEU4(A551V)) resulted in the TFL tolerance of yeast cells and desensitization to L-leucine feedback inhibition of IPMS, leading to intracellular L-leucine accumulation. Homology modeling also suggested that L-leucine binding was drastically inhibited in the Ser542Phe, Ala551Val, and Ser542Phe/Ala551Val variants due to steric hindrance in the cavity of IPMS. As we expected, awamori yeast cells expressing LEU4(S542F), LEU4(A551V), and LEU4(S542F/A551V) showed a prominent increase in extracellular i-AmOH production, compared with that of cells carrying the vector only. The approach described here could be a practical method for the breeding of novel awamori yeasts to expand the diversity of awamori taste and flavor. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Systematic mutational analysis of the intracellular regions of yeast Gap1 permease.

    PubMed

    Merhi, Ahmad; Gérard, Nicolas; Lauwers, Elsa; Prévost, Martine; André, Bruno

    2011-04-19

    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g., ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER). We used alanine-scanning mutagenesis to isolate 64 mutant Gap1 proteins altered in the NT, the CT, or one of the five TM-connecting intracellular loops (L2, -4, -6, -8 and -10). We found 17 mutations (in L2, L8, L10 and CT) impairing Gap1 exit from the ER. Of the 47 mutant proteins reaching the plasma membrane normally, two are unstable and rapidly down-regulated even when the nitrogen source is poor. Six others are totally inactive and another four, altered in a 16-amino-acid sequence in the NT, are resistant to ammonium-induced down-regulation. Finally, a mutation in L6 causes missorting of Gap1 from the secretory pathway to the vacuole. Interestingly, this direct vacuolar sorting seems to be independent of Gap1 ubiquitylation. This study illustrates the importance of multiple intracellular regions of Gap1 in its secretion, transport activity, and down-regulation.

  9. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins

    PubMed Central

    Bayliak, Maria M.; Burdyliuk, Nadia I.; Izers’ka, Lilia I.; Lushchak, Volodymyr I.

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed. PMID:24659935

  10. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  11. Humanlike substitutions to Ω-loop D of yeast iso-1-cytochrome c only modestly affect dynamics and peroxidase activity.

    PubMed

    Lei, Haotian; Bowler, Bruce E

    2018-06-01

    Structural studies of yeast iso-1-cytochrome c (L.J. McClelland, T.-C. Mou, M.E. Jeakins-Cooley, S.R. Sprang, B.E. Bowler, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 6648-6653) show that modest movement of Ω-loop D (residues 70-85, average RMSD versus the native structure: 0.81 Å) permits loss of Met80-heme ligation creating an available coordination site to catalyze the peroxidase activity mediated by cytochrome c early in apoptosis. However, Ala81 and Gly83 move significantly (RMSDs of 2.18 and 1.26 Å, respectively). Ala81 and Gly83 evolve to Ile and Val, respectively, in human cytochrome c and peroxidase activity decreases 25-fold relative to the yeast protein at pH 7. To test the hypothesis that these residues evolved to restrict the peroxidase activity of cytochrome c, A81I and G83V variants of yeast iso-1-cytochrome c were prepared. For both variants, the apparent pK a of the alkaline transition increases by 0.2 to 0.3 relative to the wild type (WT) protein and the rate of opening the heme crevice is slowed. The cooperativity of acid unfolding is decreased for the G83V variant. At pH 7 and 8, the catalytic rate constant, k cat , for the peroxidase activity of both variants decreases relative to WT, consistent with the effects on alkaline isomerization. Below pH 7, the loss in the cooperativity of acid unfolding causes k cat for peroxidase activity to increase for the G83V variant relative to WT. Neither variant decreases k cat to the level of the human protein, indicating that other residues also contribute to the low peroxidase activity of human cytochrome c. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Analysis of yeast prp20 mutations and functional complementation by the human homologue RCC1, a protein involved in the control of chromosome condensation.

    PubMed

    Fleischmann, M; Clark, M W; Forrester, W; Wickens, M; Nishimoto, T; Aebi, M

    1991-07-01

    Mutations in the PRP20 gene of yeast show a pleiotropic phenotype, in which both mRNA metabolism and nuclear structure are affected. srm1 mutants, defective in the same gene, influence the signal transduction pathway for the pheromone response. The yeast PRP20/SRM1 protein is highly homologous to the RCC1 protein of man, hamster and frog. In mammalian cells, this protein is a negative regulator for initiation of chromosome condensation. We report the analysis of two, independently isolated, recessive temperature-sensitive prp20 mutants. They have identical G to A transitions, leading to the alteration of a highly conserved glycine residue to glutamic acid. By immunofluorescence microscopy the PRP20 protein was localized in the nucleus. Expression of the RCC1 protein can complement the temperature-sensitive phenotype of prp20 mutants, demonstrating the functional similarity of the yeast and mammalian proteins.

  13. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae.

    PubMed

    Liao, Hsien-Ching; Chen, Mei-Yu

    2012-02-24

    The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.

  14. DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.

    PubMed

    Yang, Jing; Yu, Hui; Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan

    2013-01-01

    Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named "Differential Regulation Analysis" (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.

  15. Guidelines and recommendations on yeast cell death nomenclature.

    PubMed

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.

  16. Guidelines and recommendations on yeast cell death nomenclature

    PubMed Central

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647

  17. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre.

    PubMed

    Zhao, X; Moates, G K; Elliston, A; Wilson, D R; Coleman, M J; Waldron, K W

    2015-10-01

    This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Novel Gbeta Mimic Kelch Proteins Gpb1 and Gpb2 Connect G-Protein Signaling to Ras via Yeast Neurofibromin Homologs Ira 1 and Ira 2: A Model for Human NF1

    DTIC Science & Technology

    2006-03-01

    Introduction Molecular switches composed of G-protein coupled receptors (GPCRs) and associated heterotrimeric G proteins transduce extracellular stimuli...We are investigating the molecular mechanisms by which the Ras GAP activity of the yeast neurofibromin homologs Ira1/2 is regulated as a model to...NF1 (For reviews, see Dasgupta and Gutmann, 2003; Parada, 2000; Zhu and Parada, 2002). It is therefore critical to elucidate the molecular mechanisms

  19. MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milgrom, Elena M.; Milgrom, Yakov M., E-mail: milgromy@upstate.edu

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer MgATP protects V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Black-Right-Pointing-Pointer V-ATPase activity saturation with MgATP is not sufficient for complete protection. Black-Right-Pointing-Pointer The results support a bi-site catalytic mechanism for V-ATPase. -- Abstract: Catalytic site occupancy of the yeast vacuolar V-ATPase during ATP hydrolysis in the presence of an ATP-regenerating system was probed using sensitivity of the enzyme to inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). The results show that, regardless of the presence or absence of the proton-motive force across the vacuolar membrane, saturation of V-ATPase activity at increasing MgATP concentrations is accompanied by only partial protection of the enzyme from inhibitionmore » by NBD-Cl. Both in the presence and absence of an uncoupler, complete protection of V-ATPase from inhibition by NBD-Cl requires MgATP concentrations that are significantly higher than those expected from the K{sub m} values for MgATP. The results are inconsistent with a tri-site model and support a bi-site model for a mechanism of ATP hydrolysis by V-ATPase.« less

  20. Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast.

    PubMed

    Ren, Bingbing; Tan, Hwei Ling; Nguyen, Thi Thuy Trang; Sayed, Ahmed Mahmoud Mohammed; Li, Ying; Mok, Yu-Keung; Yang, Henry; Chen, Ee Sin

    2018-01-09

    Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)-a novel histone H3 modification-participates in the regulation of heterochromatin in fission yeast. We show that a loss-of-function mutant of H3Y41 can suppress heterochromatin de-silencing in the centromere and subtelomere repeat regions, suggesting a de-silencing role for H3Y41p on heterochromatin. Furthermore, we show both in vitro and in vivo that H3Y41p differentially regulates two CD-containing proteins without the change in the level of H3K9 methylation: it promotes the binding of Chp1 to histone H3 and the exclusion of Swi6. H3Y41p is preferentially enriched on centromeric heterochromatin during M- to early S phase, which coincides with the localization switch of Swi6/Chp1. The loss-of-function H3Y41 mutant could suppress the hypersensitivity of the RNAi mutants towards hydroxyurea (HU), which arrests replication in S phase. Overall, we describe H3Y41p as a novel histone modification that differentially regulates heterochromatin silencing in fission yeast via the binding of CD-containing proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration.

    PubMed

    Lemeshko, Victor V

    2017-11-01

    Inhibition of cell respiration by high concentrations of glucose (glucose repression), known as "Crabtree effect", has been demonstrated for various cancerous strains, highly proliferating cells and yeast lines. Although significant progress in understanding metabolic events associated with the glucose repression of cell respiration has been achieved, it is not yet clear whether the Crabtree effect is the result of a limited activity of the respiratory chain, or of some glucose-mediated regulation of mitochondrial metabolic state. In this work we propose an electrical mechanism of glucose repression of the yeast S. cerevisiae, resulting from generation of the mitochondrial outer membrane potential (OMP) coupled to the direct oxidation of cytosolic NADH in mitochondria. This yeast-type mechanism of OMP generation is different from the earlier proposed VDAC-hexokinase-mediated voltage generation of cancer-type, associated with the mitochondrial outer membrane. The model was developed assuming that VDAC is more permeable to NADH than to NAD + . Thermodynamic estimations of OMP, generated as a result of NADH(2-)/NAD + (1-) turnover through the outer membrane, demonstrated that the values of calculated negative OMP match the known range of VDAC voltage sensitivity, thus suggesting a possibility of OMP-dependent VDAC-mediated regulation of cell energy metabolism. According to the proposed mechanism, we suggest that the yeast-type Crabtree effect is the result of a fast VDAC-mediated electrical repression of mitochondria due to a decrease in the outer membrane permeability to charged metabolites and owing their redistribution between the mitochondrial intermembrane space and the cytosol, both controlled by metabolically-derived OMP. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    PubMed Central

    Andreasson, Erik; Jenkins, Thomas; Brodersen, Peter; Thorgrimsen, Stephan; Petersen, Nikolaj H T; Zhu, Shijiang; Qiu, Jin-Long; Micheelsen, Pernille; Rocher, Anne; Petersen, Morten; Newman, Mari-Anne; Bjørn Nielsen, Henrik; Hirt, Heribert; Somssich, Imre; Mattsson, Ole; Mundy, John

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors. PMID:15990873

  3. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.

    PubMed

    Takagi, Hiroshi

    2008-11-01

    Proline is an important amino acid in terms of its biological functions and biotechnological applications. In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. However, it has been shown that proline levels are not increased under various stress conditions in the yeast Saccharomyces cerevisiae cells. Proline is believed to serve multiple functions in vitro such as protein and membrane stabilization, lowering the T (m) of DNA, and scavenging of reactive oxygen species, but the mechanisms of these functions in vivo are poorly understood. Yeast cells biosynthesize proline from glutamate in the cytoplasm via the same pathway found in bacteria and plants and also convert excess proline to glutamate in the mitochondria. Based on the fact that proline has stress-protective activity, S. cerevisiae cells that accumulate proline were constructed by disrupting the PUT1 gene involved in the degradation pathway and by expressing the mutant PRO1 gene encoding the feedback inhibition-less sensitive gamma-glutamate kinase to enhance the biosynthetic activity. The engineered yeast strains successfully showed enhanced tolerance to many stresses, including freezing, desiccation, oxidation, and ethanol. However, the appropriate cellular level and localization of proline play pivotal roles in the stress-protective effect. These results indicate that the increased stress protection is observed in yeast cells under the artificial condition of proline accumulation. Proline is expected to contribute to yeast-based industries by improving the production of frozen dough and alcoholic beverages or breakthroughs in bioethanol production.

  4. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    PubMed

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  5. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.

    PubMed

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-06-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p < 0.05) of AFB1 binding at both pH values were achieved with products containing hydrolyzed yeast cells or yeast cell walls rather than intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p > 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  6. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1

    PubMed Central

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-01-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p < 0.05) of AFB1 binding at both pH values were achieved with products containing hydrolyzed yeast cells or yeast cell walls rather than intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p > 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins. PMID:26273277

  7. Regulation of Mih1/Cdc25 by protein phosphatase 2A and casein kinase 1

    PubMed Central

    Pal, Gayatri; Paraz, Maria T.Z.; Kellogg, Douglas R.

    2008-01-01

    The Cdc25 phosphatase promotes entry into mitosis by removing cyclin-dependent kinase 1 (Cdk1) inhibitory phosphorylation. Previous work suggested that Cdc25 is activated by Cdk1 in a positive feedback loop promoting entry into mitosis; however, it has remained unclear how the feedback loop is initiated. To learn more about the mechanisms that regulate entry into mitosis, we have characterized the function and regulation of Mih1, the budding yeast homologue of Cdc25. We found that Mih1 is hyperphosphorylated early in the cell cycle and is dephosphorylated as cells enter mitosis. Casein kinase 1 is responsible for most of the hyperphosphorylation of Mih1, whereas protein phosphatase 2A associated with Cdc55 dephosphorylates Mih1. Cdk1 appears to directly phosphorylate Mih1 and is required for initiation of Mih1 dephosphorylation as cells enter mitosis. Collectively, these observations suggest that Mih1 regulation is achieved by a balance of opposing kinase and phosphatase activities. Because casein kinase 1 is associated with sites of polar growth, it may regulate Mih1 as part of a signaling mechanism that links successful completion of growth-related events to cell cycle progression. PMID:18316413

  8. Mitochondrial fission proteins Fis1 and Mdv1, but not Dnm1, play a role in maintenance of heteroplasmy in budding yeast.

    PubMed

    Bradshaw, Elliot; Yoshida, Minoru; Ling, Feng

    2012-04-24

    In budding yeast, the mitochondrial DNA (mtDNA) replication pathway involving the homologous DNA pairing protein Mhr1 promotes mitochondrial allele segregation. Mitochondrial fusion facilitates the recombination-mediated replication pathway; however, the role of fission remains largely unknown. By monitoring mitochondrial allele segregation during zygotic division, we found that the absence of fission proteins Fis1 or Mdv1, but not Dnm1, resulted in increased initial homoplasmy levels and decreased mtDNA copy number. However, decreases in mtDNA copy number alone were not sufficient for rapid establishment of homoplasmy, suggesting that inhibiting the activities of certain fission proteins promotes homoplasmy by reducing the number of mtDNA segregation units. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations.

    PubMed

    Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J; Genta, Fernando Ariel

    2016-01-01

    Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.

  10. Regulation of Cell Cycle and Stress Responses to Hydrostatic Pressure in Fission Yeast

    PubMed Central

    George, Vinoj T.; Brooks, Gavin

    2007-01-01

    We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress. PMID:17699598

  11. Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes.

    PubMed

    Sreelatha, Anju; Bennett, Terry L; Carpinone, Emily M; O'Brien, Kevin M; Jordan, Kamyron D; Burdette, Dara L; Orth, Kim; Starai, Vincent J

    2015-01-06

    Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the V(o) domain of the conserved V-type H(+)-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.

  12. Through its F-BAR and RhoGAP domains, Rgd1p acts in different polarized growth processes in budding yeast

    PubMed Central

    Lefebvre, Fabien; Prouzet-Mauléon, Valérie; Vieillemard, Aurélie; Thoraval, Didier; Crouzet, Marc

    2009-01-01

    Protein domain architecture can be used to construct supramolecular structures, to carry out specific functions and to mediate signaling in prokaryotic and eukaryotic cells. The Rgd1p protein of budding yeast contains two domains with different functions in the cell: the F-BAR and RhoGAP domains. The F-BAR domain has been shown to interact with membrane phospholipids and is thought to induce or sense membrane curvature. The RhoGAP domain activates the GTP hydrolysis of two Rho GTPases, thereby regulating different cellular pathways. Specific molecular interactions with the F-BAR and RhoGAP domains, cell signaling and interplay between these domains may allow the Rgd1p protein to act in several different biological processes, all of which are required for polarized growth in yeast. PMID:19704907

  13. Forsythoside A exerts antipyretic effect on yeast-induced pyrexia mice via inhibiting transient receptor potential vanilloid 1 function

    PubMed Central

    Liu, Cuiling; Su, Hongchang; Wan, Hongye; Qin, Qingxia; Wu, Xuan; Kong, Xiangying; Lin, Na

    2017-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel gated by noxious heat, playing major roles in thermoregulation. Forsythoside A (FT-A) is the most abundant phenylethanoid glycosides in Fructus Forsythiae, which has been prescribed as a medicinal herb for treating fever in China for a long history. However, how FT-A affects pyrexia and what is the underlying molecular mechanism remain largely unknown. Here we found that FT-A exerted apparent antipyretic effect through decreasing the levels of prostaglandin E2 (PGE2) and interleukin 8 (IL-8) in a dose-dependent fashion on the yeast induced pyrexia mice. Interestingly, FT-A significantly downregulated TRPV1 expression in the hypothalamus and dorsal root ganglion (DRG) of the yeast induced pyrexia mice. Moreover, FT-A inhibited IL-8 and PGE2 secretions, and calcium influx in the HEK 293T-TRPV1 cells after stimulated with capsaicin, the specific TRPV1 agonist. Further investigation of the molecular mechanisms revealed that FT-A treatment rapidly inhibited phosphorylation of extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 in both yeast induced pyrexia mice and HEK 293T-TRPV1 cells. These results suggest that FT-A may serve as a potential antipyretic agent and the therapeutic action of Fructus Forsythiae on pyretic related disease is, in part, due to the FT-A activities. PMID:28123347

  14. The yeast genome may harbor hypoxia response elements (HRE).

    PubMed

    Ferreira, Túlio César; Hertzberg, Libi; Gassmann, Max; Campos, Elida Geralda

    2007-01-01

    The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.

  15. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis.

    PubMed

    Doblas, Verónica G; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M; Botella, Miguel A

    2013-02-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.

  16. Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p.

    PubMed

    Santiago, Teresa C; Mamoun, Choukri Ben

    2003-10-03

    In Saccharomyces cerevisiae, genes encoding phospholipid-synthesizing enzymes are regulated by inositol and choline (IC). The current model suggests that when these precursors become limiting, the transcriptional complex Ino2p-Ino4p activates the expression of these genes, whereas repression requires Opi1p and occurs when IC are available. In this study, microarray-based expression analysis was performed to assess the global transcriptional response to IC in a wild-type strain and in the opi1delta, ino2delta, and ino4delta null mutant strains. Fifty genes were either activated or repressed by IC in the wild-type strain, including three already known IC-repressed genes. We demonstrated that the IC response was not limited to genes involved in membrane biogenesis, but encompassed various metabolic pathways such as biotin synthesis, one-carbon compound metabolism, nitrogen-containing compound transport and degradation, cell wall organization and biogenesis, and acetyl-CoA metabolism. The expression of a large number of IC-regulated genes did not change in the opi1delta, ino2delta, and ino4delta strains, thus implicating new regulatory elements in the IC response. Our studies revealed that Opi1p, Ino2p, and Ino4p have dual regulatory activities, acting in both positive and negative transcriptional regulation of a large number of genes, most of which are not regulated by IC and only a subset of which is involved in membrane biogenesis. These data provide the first global response profile of yeast to IC and reveal novel regulatory mechanisms by these precursors.

  17. TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.

    PubMed

    Nakazawa, Nobushige; Sato, Aya; Hosaka, Masahiro

    2016-03-01

    Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    PubMed Central

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.

    2015-01-01

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation. PMID:26711267

  19. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8more » is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.« less

  20. Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1

    PubMed Central

    Béraud-Dufour, Sophie; Gautier, Romain; Albiges-Rizo, Corinne; Chardin, Pierre; Faurobert, Eva

    2007-01-01

    The small G protein Rap1 regulates diverse cellular processes such as integrin activation, cell adhesion, cell-cell junction formation and cell polarity. It is crucial to identify Rap1 effectors to better understand signalling pathways controlling these processes. Krit1, a FERM protein, was identified as a Rap1 partner in a yeast two-hydrid screen, but this interaction was not confirmed in subsequent studies. As evidence suggests a role for Krit1 in Rap1-dependent pathways, we readdressed this question. Here, we demonstrate by biochemical assays that Krit1 is a specific Rap1 effector. We show that, like other FERM proteins, Krit1 adopts two conformations: a closed conformation in which its N-terminal NPAY motif interacts with its C-terminus and an opened conformation bound to ICAP-1, a negative regulator of focal adhesion assembly. We show that a ternary complex can form in vitro between Krit1, Rap1 and ICAP-1 and that Rap1 binds Krit1 FERM domain in both closed and opened conformations. Unlike ICAP-1, Rap1 does not open Krit1. Using sedimentation assays, we show that Krit1 binds in vitro to microtubules through its N and C-termini and that Rap1 and ICAP-1 inhibit Krit1 binding to microtubules. Consistently, YFP-Krit1 localizes on CFP-labelled microtubules in BHK cells and is delocalized from microtubules upon co-expression with activated Rap1V12. Finally, we show that Krit1 binds to PIP2 containing liposomes and that Rap1 enhances this binding. Based on these results, we propose a model in which Krit1 would be delivered by microtubules to the plasma membrane where it would be captured by Rap1 and ICAP-1. PMID:17916086

  1. PCIE interface design for high-speed image storage system based on SSD

    NASA Astrophysics Data System (ADS)

    Wang, Shiming

    2015-02-01

    This paper proposes and implements a standard interface of miniaturized high-speed image storage system, which combines PowerPC with FPGA and utilizes PCIE bus as the high speed switching channel. Attached to the PowerPC, mSATA interface SSD(Solid State Drive) realizes RAID3 array storage. At the same time, a high-speed real-time image compression patent IP core also can be embedded in FPGA, which is in the leading domestic level with compression rate and image quality, making that the system can record higher image data rate or achieve longer recording time. The notebook memory card buckle type design is used in the mSATA interface SSD, which make it possible to complete the replacement in 5 seconds just using single hand, thus the total length of repeated recordings is increased. MSI (Message Signaled Interrupts) interruption guarantees the stability and reliability of continuous DMA transmission. Furthermore, only through the gigabit network, the remote display, control and upload to backup function can be realized. According to an optional 25 frame/s or 30 frame/s, upload speeds can be up to more than 84 MB/s. Compared with the existing FLASH array high-speed memory systems, it has higher degree of modularity, better stability and higher efficiency on development, maintenance and upgrading. Its data access rate is up to 300MB/s, realizing the high speed image storage system miniaturization, standardization and modularization, thus it is fit for image acquisition, storage and real-time transmission to server on mobile equipment.

  2. Uncoupling reproduction from metabolism extends chronological lifespan in yeast

    PubMed Central

    Nagarajan, Saisubramanian; Kruckeberg, Arthur L.; Schmidt, Karen H.; Kroll, Evgueny; Hamilton, Morgan; McInnerney, Kate; Summers, Ryan; Taylor, Timothy; Rosenzweig, Frank

    2014-01-01

    Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions. PMID:24706810

  3. Yeast as a model to study apoptosis?

    PubMed

    Fleury, Christophe; Pampin, Mathieu; Tarze, Agathe; Mignotte, Bernard

    2002-02-01

    Programmed cell death (PCD) serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Despite the striking heterogeneity of cell death induction pathways, the execution of the death program is often associated with characteristic morphological and biochemical changes termed apoptosis. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of programmed cell death. This crucial position of mitochondria in programmed cell death control is not due to a simple loss of function (deficit in energy supplying), but rather to an active process in the regulation of effector mechanisms. The large diversity of regulators of apoptosis in mammals and their numerous interactions complicate the analysis of their individual functions. Yeast, eukaryotic but unicellular organism, lack the main regulators of apoptosis (caspases, Bcl-2 family members, ...) found in mammals. This absence render them a powerful tool for heterologous expression, functional studies, and even cloning of new regulators of apoptosis. Great advances have thus been made in our understanding of the molecular mechanisms of Bcl-2 family members interactions with themselves and other cellular proteins, specially thanks to the two hybrid system and the easy manipulation of yeast (molecular biology and genetics). This review will focus on the use of yeast as a tool to identify new regulators and study function of mammalian apoptosis regulators.

  4. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction

    PubMed Central

    Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.

    2010-01-01

    Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911

  5. OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.).

    PubMed

    Deng, Minjuan; Hu, Bin; Xu, Lei; Liu, Yang; Wang, Fang; Zhao, Hongyu; Wei, Xijuan; Wang, Jichao; Yi, Keke

    2014-12-01

    Phosphorus is one of the most essential and limiting nutrients in all living organisms, thus the organisms have evolved complicated and precise regulatory mechanisms for phosphorus acquisition, storage and homeostasis. In the budding yeast, Saccharomyces cerevisiae, the modification of PHO4 by the PHO80 and PHO85 complex is a core regulation system. However, the existence and possible functions in phosphate signaling of the homologs of the PHO80 and PHO85 components in plants has yet to be determined. Here we describe the identification of a family of seven PHO80 homologous genes in rice named OsCYCPs. Among these, the OsCYCP1;1 gene was able to partially rescue the pho80 mutant strain of yeast. The OsCYCP1;1 protein was predominantly localized in the nucleus, and was ubiquitously expressed throughout the whole plant and during the entire growth period of rice. Consistent with the negative role of PHO80 in phosphate signaling in yeast, OsCYCP1;1 expression was reduced by phosphate starvation in the roots. This reduction was dependent on PHR2, the central regulator of phosphate signaling in rice. Overexpression and suppression of the expression of OsCYCP1;1 influenced the phosphate starvation signaling response. The inducible expression of phosphate starvation inducible and phosphate transporter genes was suppressed in the OsCYCP1;1 overexpression lines and was relatively enhanced in the OsCYCP1;1 RNAi plants by phosphate starvation. Together, these results demonstrate the role of PHO80 homologs in the phosphate starvation signaling pathway in rice.

  6. Effect of Ethanol, Sulfur Dioxide and Glucose on the Growth of Wine Spoilage Yeasts Using Response Surface Methodology

    PubMed Central

    Chandra, Mahesh; Oro, Inês; Ferreira-Dias, Suzana; Malfeito-Ferreira, Manuel

    2015-01-01

    Response surface methodology (RSM) was used to study the effect of three factors, sulfur dioxide, ethanol and glucose, on the growth of wine spoilage yeast species, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Seventeen central composite rotatable design (CCRD) trials were designed for each test yeast using realistic concentrations of the factors (variables) in premium red wine. Polynomial regression equations were fitted to experimental data points, and the growth inhibitory conditions of these three variables were determined. The overall results showed Sa. ludwigii as the most resistant species growing under high ethanol/free sulfur dioxide concentrations, i.e., 15% (v/v)/20 mg L-1, 14% (v/v)/32 mg L-1 and 12.5% (v/v)/40 mg L-1, whereas other yeasts did not survive under the same levels of ethanol/free sulfur dioxide concentrations. The inhibitory effect of ethanol was primarily observed during longer incubation periods, compared with sulfur dioxide, which showed an immediate effect. In some CCRD trials, Sa. ludwigii and S. cerevisiae showed growth recovery after a short death period under the exposure of 20–32 mg L-1 sulfur dioxide in the presence of 11% (v/v) or more ethanol. However, Sc. pombe and Z. bailii did not show such growth recovery under similar conditions. Up to 10 g L-1 of glucose did not prevent cell death under the sulfur dioxide or ethanol stress. This observation demonstrates that the sugar levels commonly used in wine to sweeten the mouthfeel do not increase wine susceptibility to spoilage yeasts, contrary to the anecdotal evidence. PMID:26107389

  7. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    PubMed

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Functional mapping of yeast genomes by saturated transposition

    PubMed Central

    Michel, Agnès H; Hatakeyama, Riko; Kimmig, Philipp; Arter, Meret; Peter, Matthias; Matos, Joao; De Virgilio, Claudio; Kornmann, Benoît

    2017-01-01

    Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput. DOI: http://dx.doi.org/10.7554/eLife.23570.001 PMID:28481201

  9. Interactions between N and C termini of α1C subunit regulate inactivation of CaV1.2 L-type Ca2+ channel

    PubMed Central

    Benmocha Guggenheimer, Adva; Almagor, Lior; Tsemakhovich, Vladimir; Tripathy, Debi Ranjan; Hirsch, Joel A; Dascal, Nathan

    2016-01-01

    The modulation and regulation of voltage-gated Ca2+ channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca2+ channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca2+, presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca2+-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca2+ entry into the cell. PMID:26577286

  10. Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels

    PubMed Central

    Nanou, Evanthia; Yan, Jin; Whitehead, Nicholas P.; Kim, Min Jeong; Froehner, Stanley C.; Scheuer, Todd; Catterall, William A.

    2016-01-01

    Facilitation and inactivation of P/Q-type calcium (Ca2+) currents through the regulation of voltage-gated Ca2+ (CaV) 2.1 channels by Ca2+ sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca2+ entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10–30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50–100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo. PMID:26755585

  11. Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

    PubMed Central

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209

  12. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast.

    PubMed

    Meyer, Régis E; Kim, Seoyoung; Obeso, David; Straight, Paul D; Winey, Mark; Dawson, Dean S

    2013-03-01

    The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.

  13. The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation.

    PubMed

    Ye, Tian; Elbing, Karin; Hohmann, Stefan

    2008-09-01

    It recently became apparent that the highly conserved Snf1p protein kinase plays roles in controlling different cellular processes in the yeast Saccharomyces cerevisiae, in addition to its well-known function in glucose repression/derepression. We have previously reported that Snf1p together with Gis4p controls ion homeostasis by regulating expression of ENA1, which encodes the Ena1p Na(+) extrusion system. In this study we found that Snf1p is rapidly phosphorylated when cells are exposed to NaCl and this phosphorylation is required for the role of Snf1p in Na(+) tolerance. In contrast to activation by low glucose levels, the salt-induced phosphorylation of Snf1p promoted neither phosphorylation nor nuclear export of the Mig1p repressor. The mechanism that prevents Mig1p phosphorylation by active Snf1p under salt stress does not involve either hexokinase PII or the Gis4p regulator. Instead, Snf1p may mediate upregulation of ENA1 expression via the repressor Nrg1p. Activation of Snf1p in response to glucose depletion requires any of the three upstream protein kinases Sak1p, Tos3p and Elm1p, with Sak1p playing the most prominent role. The same upstream kinases were required for salt-induced Snf1p phosphorylation, and also under these conditions Sak1p played the most prominent role. Unexpectedly, however, it appears that Elm1p plays a dual role in acquisition of salt tolerance by activating Snf1p and in a presently unknown parallel pathway. Together, these results indicate that under salt stress Snf1p takes part in a different pathway from that during glucose depletion and this role is performed together as well as in parallel with its upstream kinase Elm1p. Snf1p appears to be part of a wider functional network than previously anticipated and the full complexity of this network remains to be elucidated.

  14. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing.

    PubMed

    Melangath, Geetha; Sen, Titash; Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha; Vijayraghavan, Usha

    2017-01-01

    Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene

  15. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing

    PubMed Central

    Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha

    2017-01-01

    Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3’ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5’ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5’ss in dtd1+ intron 1 and of an upstream alternative 3’ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5’ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5’ ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3’ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional

  16. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons.

    PubMed

    Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A

    2016-01-26

    Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.

  17. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors.

    PubMed

    Christiaens, Joaquin F; Franco, Luis M; Cools, Tanne L; De Meester, Luc; Michiels, Jan; Wenseleers, Tom; Hassan, Bassem A; Yaksi, Emre; Verstrepen, Kevin J

    2014-10-23

    Yeast cells produce various volatile metabolites that are key contributors to the pleasing fruity and flowery aroma of fermented beverages. Several of these fruity metabolites, including isoamyl acetate and ethyl acetate, are produced by a dedicated enzyme, the alcohol acetyl transferase Atf1. However, despite much research, the physiological role of acetate ester formation in yeast remains unknown. Using a combination of molecular biology, neurobiology, and behavioral tests, we demonstrate that deletion of ATF1 alters the olfactory response in the antennal lobe of fruit flies that feed on yeast cells. The flies are much less attracted to the mutant yeast cells, and this in turn results in reduced dispersal of the mutant yeast cells by the flies. Together, our results uncover the molecular details of an intriguing aroma-based communication and mutualism between microbes and their insect vectors. Similar mechanisms may exist in other microbes, including microbes on flowering plants and pathogens. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.

    PubMed

    Bleoanca, Iulia; Silva, Ana Rita Courelas; Pimentel, Catarina; Rodrigues-Pousada, Claudina; Menezes, Regina de Andrade

    2013-12-01

    Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Phosphorylation of Elp1 by Hrr25 Is Required for Elongator-Dependent tRNA Modification in Yeast

    PubMed Central

    Abdel-Fattah, Wael; Jablonowski, Daniel; Di Santo, Rachael; Thüring, Kathrin L.; Scheidt, Viktor; Hammermeister, Alexander; ten Have, Sara; Helm, Mark; Schaffrath, Raffael; Stark, Michael J. R.

    2015-01-01

    Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase. PMID:25569479

  1. Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Matsumoto, Sanae; Bandyopadhyay, Amitabha; Kwiatkowski, David J; Maitra, Umadas; Matsumoto, Tomohiro

    2002-01-01

    Heterozygous inactivation of either human TSC1 or TSC2 causes tuberous sclerosis (TSC), in which development of benign tumors, hamartomas, occurs via a two-hit mechanism. In this study, fission yeast genes homologous to TSC1 and TSC2 were identified, and their protein products were shown to physically interact like the human gene products. Strains lacking tsc1(+) or tsc2(+) were defective in uptake of nutrients from the environment. An amino acid permease, which is normally positioned on the plasma membrane, aggregated in the cytoplasm or was confined in vacuole-like structures in Deltatsc1 and Deltatsc2 strains. Deletion of tsc1(+) or tsc2(+) also caused a defect in conjugation. When a limited number of the cells were mixed, they conjugated poorly. The conjugation efficiency was improved by increased cell density. Deltatsc1 cells were not responsive to a mating pheromone, P-factor, suggesting that Tsc1 has an important role in the signal cascade for conjugation. These results indicate that the fission yeast Tsc1-Tsc2 complex plays a role in the regulation of protein trafficking and suggest a similar function for the human proteins. We also show that fission yeast Int6 is involved in a similar process, but functions in an independent genetic pathway. PMID:12136010

  2. Mutants of the Paf1 Complex Alter Phenotypic Expression of the Yeast Prion [PSI+

    PubMed Central

    Strawn, Lisa A.; Lin, Changyi A.; Tank, Elizabeth M.H.; Osman, Morwan M.; Simpson, Sarah A.

    2009-01-01

    The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability. PMID:19225160

  3. Glycolysis Controls Plasma Membrane Glucose Sensors To Promote Glucose Signaling in Yeasts

    PubMed Central

    Cairey-Remonnay, Amélie; Deffaud, Julien; Wésolowski-Louvel, Micheline; Lemaire, Marc

    2014-01-01

    Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation. PMID:25512610

  4. The essence of yeast quiescence.

    PubMed

    De Virgilio, Claudio

    2012-03-01

    Like all microorganisms, yeast cells spend most of their natural lifetime in a reversible, quiescent state that is primarily induced by limitation for essential nutrients. Substantial progress has been made in defining the features of quiescent cells and the nutrient-signaling pathways that shape these features. A view that emerges from the wealth of new data is that yeast cells dynamically configure the quiescent state in response to nutritional challenges by using a set of key nutrient-signaling pathways, which (1) regulate pathway-specific effectors, (2) converge on a few regulatory nodes that bundle multiple inputs to communicate unified, graded responses, and (3) mutually modulate their competences to transmit signals. Here, I present an overview of our current understanding of the architecture of these pathways, focusing on how the corresponding core signaling protein kinases (i.e. PKA, TORC1, Snf1, and Pho85) are wired to ensure an adequate response to nutrient starvation, which enables cells to tide over decades, if not centuries, of famine. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  6. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor.

    PubMed

    Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2018-04-01

    Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    PubMed

    Callender, Tracy L; Laureau, Raphaelle; Wan, Lihong; Chen, Xiangyu; Sandhu, Rima; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T; Prugar, Evelyn; Gaines, William A; Kwon, YoungHo; Börner, G Valentin; Nicolas, Alain; Neiman, Aaron M; Hollingsworth, Nancy M

    2016-08-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  9. Human Cpr (Cell Cycle Progression Restoration) Genes Impart a Far(-) Phenotype on Yeast Cells

    PubMed Central

    Edwards, M. C.; Liegeois, N.; Horecka, J.; DePinho, R. A.; Sprague-Jr., G. F.; Tyers, M.; Elledge, S. J.

    1997-01-01

    Regulated cell cycle progression depends on the proper integration of growth control pathways with the basic cell cycle machinery. While many of the central molecules such as cyclins, CDKs, and CKIs are known, and many of the kinases and phosphatases that modify the CDKs have been identified, little is known about the additional layers of regulation that impinge upon these molecules. To identify new regulators of cell proliferation, we have selected for human and yeast cDNAs that when overexpressed were capable of specifically overcoming G(1) arrest signals from the cell cycle branch of the mating pheromone pathway, while still maintaining the integrity of the transcriptional induction branch. We have identified 13 human CPR (cell cycle progression restoration) genes and 11 yeast OPY (overproduction-induced pheromone-resistant yeast) genes that specifically block the G(1) arrest by mating pheromone. The CPR genes represent a variety of biochemical functions including a new cyclin, a tumor suppressor binding protein, chaperones, transcription factors, translation factors, RNA-binding proteins, as well as novel proteins. Several CPR genes require individual CLNs to promote pheromone resistance and those that require CLN3 increase the basal levels of Cln3 protein. Moreover, several of the yeast OPY genes have overlapping functions with the human CPR genes, indicating a possible conservation of roles. PMID:9383053

  10. Unsolved mysteries of Rag GTPase signaling in yeast.

    PubMed

    Hatakeyama, Riko; De Virgilio, Claudio

    2016-10-01

    The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.

  11. Unsolved mysteries of Rag GTPase signaling in yeast

    PubMed Central

    Hatakeyama, Riko; De Virgilio, Claudio

    2016-01-01

    ABSTRACT The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes. PMID:27400376

  12. Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains. PMID:22057870

  13. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

  14. The SUD1 Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Arabidopsis[C][W

    PubMed Central

    Doblas, Verónica G.; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M.; Botella, Miguel A.

    2013-01-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum–associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals. PMID:23404890

  15. Characterization, Ecological Distribution, and Population Dynamics of Saccharomyces Sensu Stricto Killer Yeasts in the Spontaneous Grape Must Fermentations of Southwestern Spain

    PubMed Central

    Maqueda, Matilde; Zamora, Emiliano; Álvarez, María L.

    2012-01-01

    Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size double-stranded RNA (dsRNA) viruses, Saccharomyces cerevisiae virus (ScV)-M2 and ScV-Mlus, whose genome sizes ranged from 1.3 to 1.75 kb and from 2.1 to 2.3 kb, respectively. The K2 yeasts were found in all the wine-producing subareas for all the vintages analyzed, while the Klus yeasts were found in the warmer subareas and mostly in the warmer ripening/harvest seasons. The middle-size isotypes of the M2 dsRNA were the most frequent among K2 yeasts, probably because they encoded the most intense K2 killer phenotype. However, the smallest isotype of the Mlus dsRNA was the most frequent for Klus yeasts, although it encoded the least intense Klus killer phenotype. The killer yeasts were present in most (59.5%) spontaneous fermentations. Most were K2, with Klus being the minority. The proportion of killer yeasts increased during fermentation, while the proportion of sensitive yeasts decreased. The fermentation speed, malic acid, and wine organoleptic quality decreased in those fermentations where the killer yeasts replaced at least 15% of a dominant population of sensitive yeasts, while volatile acidity and lactic acid increased, and the amount of bacteria in the tumultuous and the end fermentation stages also increased in an unusual way. PMID:22101056

  16. Capns1, a new binding partner of RasGAP-SH3 domain in K-Ras(V12) oncogenic cells: modulation of cell survival and migration.

    PubMed

    Pamonsinlapatham, Perayot; Gril, Brunilde; Dufour, Sylvie; Hadj-Slimane, Réda; Gigoux, Véronique; Pethe, Stéphanie; L'hoste, Sébastien; Camonis, Jacques; Garbay, Christiane; Raynaud, Françoise; Vidal, Michel

    2008-11-01

    Ras GTPase-activating protein (RasGAP) is hypothesized to be an effector of oncogenic Ras stimulating numerous downstream cellular signaling cascades involved in survival, proliferation and motility. In this study, we identified calpain small subunit-1 (Capns1) as a new RasGAP-SH3 domain binding partner, using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation assay and was found specific to cells expressing oncogenic K-Ras. We used confocal microscopy to analyze our stably transfected cell model producing mutant Ras (PC3Ras(V12)). Staining for RasGAP-SH3/Capns1 co-localization was two-fold stronger in the protrusions of Ras(V12) cells than in PC3 cells. RasGAP or Capns1 knockdown in PC3Ras(V12) cells induced a two- to three-fold increase in apoptosis. Capns1 gene silencing reduced the speed and increased the persistence of movement in PC3Ras(V12) cells. In contrast, RasGAP knockdown in PC3Ras(V12) cells increased cell migration. Knockdown of both proteins altered the speed and directionality of cell motility. Our findings suggest that RasGAP and Capns1 interaction in oncogenic Ras cells is involved in regulating migration and cell survival.

  17. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat

    PubMed Central

    Jiang, Wenhui; Liu, Tianxiang; Nan, Wenzhi; Jeewani, Diddugodage Chamila; Niu, Yanlu; Li, Chunlian; Shi, Xue; Wang, Cong; Wang, Jiahuan; Li, Yang; Wang, Zhonghua

    2018-01-01

    Abstract Purple pericarps of bread wheat (Triticum aestivum L.) are a useful source of dietary anthocyanins. Previous mapping results indicated that the purple pericarp trait is controlled by two complementary genes located on chromosomes 7D and 2A. However, the identity of the genes and the mechanisms by which they regulate the trait are unknown. In this study, two transcription factors were characterised as anthocyanin activators in purple pericarps: TaPpm1 (purple pericarp-MYB 1) and TaPpb1 (purple pericarp-bHLH 1). Three non-functional variants were detected in the coding sequence of TaPpm1 from non-purple seed lines, in which the function of TaPpm1 was destroyed either by insertion-induced frame shifts or truncated peptides. There were six 261-bp tandem repeats in the promoter region of TaPpb1 in the purple-grained varieties, while there was only one repeat unit present in the non-purple varieties. Furthermore, using yeast two-hybrid, dual luciferase, yeast one-hybrid, and transient assays, we were able to demonstrate that the interaction of TaPpm1 and TaPpb1 co-regulates the synthesis of anthocyanin. Overall, our results provide a better understanding of the molecular basis of anthocyanin synthesis in the wheat pericarp and indicate the existence of an integrated regulatory mechanism that controls production. PMID:29562292

  18. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 {yields} S transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay

    2011-07-01

    Highlights: {yields} TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. {yields} TCP4 expression in yeast retards cell division by blocking G1 {yields} S transition. {yields} Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, theirmore » exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 {yields} S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 {yields} S arrest is discussed.« less

  19. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae.

    PubMed

    François, J; Parrou, J L

    2001-01-01

    Glycogen and trehalose are the two glucose stores of yeast cells. The large variations in the cell content of these two compounds in response to different environmental changes indicate that their metabolism is controlled by complex regulatory systems. In this review we present information on the regulation of the activity of the enzymes implicated in the pathways of synthesis and degradation of glycogen and trehalose as well as on the transcriptional control of the genes encoding them. cAMP and the protein kinases Snf1 and Pho85 appear as major actors in this regulation. From a metabolic point of view, glucose-6-phosphate seems the major effector in the net synthesis of glycogen and trehalose. We discuss also the implication of the recently elucidated TOR-dependent nutrient signalling pathway in the control of the yeast glucose stores and its integration in growth and cell division. The unexpected roles of glycogen and trehalose found in the control of glycolytic flux, stress responses and energy stores for the budding process, demonstrate that their presence confers survival and reproductive advantages to the cell. The findings discussed provide for the first time a teleonomic value for the presence of two different glucose stores in the yeast cell.

  20. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation.

    PubMed

    Matsuo, Yuzy; Maurer, Sebastian P; Yukawa, Masashi; Zakian, Silva; Singleton, Martin R; Surrey, Thomas; Toda, Takashi

    2016-12-15

    Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein. Using an in vitro microscopy assay, we find that purified Dis1 autonomously tracks growing microtubule ends and is a bona fide microtubule polymerase. Mal3 recruits additional Dis1 to microtubule ends, explaining the synergistic enhancement of microtubule dynamicity by these proteins. A non-canonical binding motif in Dis1 mediates the interaction with Mal3. X-ray crystallography shows that this new motif interacts in an unconventional configuration with the conserved hydrophobic cavity formed within the Mal3 C-terminal region that typically interacts with the canonical SXIP motif. Selectively perturbing the Mal3-Dis1 interaction in living cells demonstrates that it is important for accurate chromosome segregation. Whereas, in some metazoans, the interaction between EB1 and the XMAP215/TOG family members requires an additional binding partner, fission yeast relies on a direct interaction, indicating evolutionary plasticity of this critical interaction module. © 2016. Published by The Company of Biologists Ltd.

  1. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency.

    PubMed

    Kajikawa, Masataka; Sawaragi, Yuri; Shinkawa, Haruka; Yamano, Takashi; Ando, Akira; Kato, Misako; Hirono, Masafumi; Sato, Naoki; Fukuzawa, Hideya

    2015-06-01

    Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Cell-cycle regulation of formin-mediated actin cable assembly

    PubMed Central

    Miao, Yansong; Wong, Catherine C. L.; Mennella, Vito; Michelot, Alphée; Agard, David A.; Holt, Liam J.; Yates, John R.; Drubin, David G.

    2013-01-01

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation. PMID:24133141

  3. 21SSD: a new public 21-cm EoR database

    NASA Astrophysics Data System (ADS)

    Eames, Evan; Semelin, Benoît

    2018-05-01

    With current efforts inching closer to detecting the 21-cm signal from the Epoch of Reionization (EoR), proper preparation will require publicly available simulated models of the various forms the signal could take. In this work we present a database of such models, available at 21ssd.obspm.fr. The models are created with a fully-coupled radiative hydrodynamic simulation (LICORICE), and are created at high resolution (10243). We also begin to analyse and explore the possible 21-cm EoR signals (with Power Spectra and Pixel Distribution Functions), and study the effects of thermal noise on our ability to recover the signal out to high redshifts. Finally, we begin to explore the concepts of `distance' between different models, which represents a crucial step towards optimising parameter space sampling, training neural networks, and finally extracting parameter values from observations.

  4. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae).

    PubMed

    Chen, Yawei; Tan, Tianwei

    2018-05-23

    In the biosynthesis of S-adenosylmethionine (SAM) in baker's yeast ( Saccharomyces cerevisiae), ATP functions as both a precursor and a driving force. However, few published reports have dealt with the control of ATP concentration using genetic design. In this study we have adopted a new ATP regulation strategy in yeast for enhancing SAM biosynthesis, including altering NADH availability and regulating the oxygen supply. Different ATP regulation systems were designed based on the introduction of water-forming NADH oxidase, Vitreoscilla hemoglobin, and phosphite dehydrogenase in combination with overexpression of the gene SAM2. Via application of this strategy, after 28 h cultivation, the SAM titer in the yeast strain ABYSM-2 reached a maximum level close to 55 mg/L, an increase of 67% compared to the control strain. The results show that the ATP regulation strategy is a valuable tool for SAM production and might further enhance the synthesis of other ATP-driven metabolites in yeast.

  5. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.

  6. A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast.

    PubMed

    Specht, Sandra; Liedgens, Linda; Duarte, Margarida; Stiegler, Alexandra; Wirth, Ulrike; Eberhardt, Maike; Tomás, Ana; Hell, Kai; Deponte, Marcel

    2018-05-01

    Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErv C17S . Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Yeast community in traditional Portuguese Serpa cheese by culture-dependent and -independent DNA approaches.

    PubMed

    Gonçalves Dos Santos, Maria Teresa P; Benito, María José; Córdoba, María de Guía; Alvarenga, Nuno; Ruiz-Moyano Seco de Herrera, Santiago

    2017-12-04

    This study investigated the yeast community present in the traditional Portuguese cheese, Serpa, by culture-dependent and -independent methods. Sixteen batches of Serpa cheeses from various regional industries registered with the Protected Designation of Origin (PDO) versus non-PDO registered, during spring and winter, were used. Irrespective of the producer, the yeast counts were around 5log CFU/g in winter and, overall, were lower in spring. The yeast species identified at the end of ripening (30days), using PCR-RFLP analysis and sequencing of the 26S rRNA, mainly corresponded to Debaryomyces hansenii and Kluyveromyces marxianus, with Candida spp. and Pichia spp. present to a lesser extent. The culture-independent results, obtained using high-throughput sequencing analysis, confirmed the prevalence of Debaryomyces spp. and Kluyveromyces spp. but, also, that Galactomyces spp. was relevant for three of the five producers, which indicates its importance during the early stages of the cheese ripening process, considering it was not found among the dominant viable yeast species. In addition, differences between the identified yeast isolated from cheeses obtained from PDO and non-PDO registered industries, showed that the lack of regulation of the cheese-making practice, may unfavourably influence the final yeast microbiota. The new knowledge provided by this study of the yeast diversity in Serpa cheese, could be used to modify the cheese ripening conditions, to favour desirable yeast species. Additionally, the prevalent yeast isolates identified, Debaryomyces hansenii and Kluyveromyces spp., may have an important role during cheese ripening and in the final sensorial characteristics. Thus, the study of their technological and functional properties could be relevant, in the development of an autochthonous starter culture, to ensure final quality and safety of the cheese. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation

    PubMed Central

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I.; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2016-01-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 when bound to yeast TBP, together with mutational data. The yTAF1-TAND1, which in itself acts as a transcriptional activator, binds into the DNA-binding TBP concave surface by presenting similar anchor residues to TBP as E. coli Mot1 but from a distinct structural scaffold. Furthermore, we show how yTAF1-TAND2 employs an aromatic and acidic anchoring pattern to bind a conserved yTBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides compelling insight into the competitive multiprotein TBP interplay critical to transcriptional regulation. PMID:23851461

  9. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1.

    PubMed

    Deroover, Sofie; Ghillebert, Ruben; Broeckx, Tom; Winderickx, Joris; Rolland, Filip

    2016-06-01

    Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA.

    PubMed

    Chen, Xin Jie; Wang, Xiaowen; Butow, Ronald A

    2007-08-21

    Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.

  11. Kinetic and Stochastic Models of 1D yeast ``prions"

    NASA Astrophysics Data System (ADS)

    Kunes, Kay

    2005-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.

  12. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  13. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Rbf1 (RPG-box binding factor), a transcription factor involved in yeast-hyphal transition of Candida albicans].

    PubMed

    Aoki, Y; Ishii, N; Watanabe, M; Yoshihara, F; Arisawa, M

    1998-01-01

    The major fungal pathogen for fungal diseases which have become a major medical problem in the last few years is Candida albicans, which can grow both in yeast and hyphae forms. This ability of C. albicans is thought to contribute to its colonization and dissemination within host tissues. In a recent few years, accompanying the introduction of molecular biological tools into C. albicans organism, several factors involved in the signal transduction pathway for yeast-hyphal transition have been identified. One MAP kinase pathway in C. albicans, similar to that leading to STE12 activation in Saccharomyces cerevisiae, has been reported. C. albicans strains mutant in these genes show retarded filamentous growth on a solid media but no impairment of filamentous growth in mice. These results suggest two scenarios that a kinase signaling cascade plays a part in stimulating the morphological transition in C. albicans, and that there would be another signaling pathway effective in animals. In this latter true hyphal pathway, although some candidate proteins, such as Efg1 (transcription factor), Int1 (integrin-like membrane protein), or Phr1 (pH-regulated membrane protein), have been identified, it is still too early to say that we understand the whole picture of that cascade. We have cloned a C. albicans gene encoding a novel DNA binding protein, Rbf1, that predominantly localizes in the nucleus, and shows transcriptional activation capability. Disruption of the functional RBF1 genes of C. albicans induced the filamentous growth on all solid and liquid media tested, suggesting that Rbf1 might be another candidate for the true hyphal pathway. Relationships with other factors described above, and the target (regulated) genes of Rbf1 is under investigation.

  15. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    PubMed

    Guo, Yi-Cheng; Zhang, Lin; Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  16. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage. PMID:27152421

  17. Production of freeze-dried yeast culture for the brewing of traditional sorghum beer, tchapalo.

    PubMed

    N'Guessan, Florent K; Coulibaly, Hermann W; Alloue-Boraud, Mireille W A; Cot, Marlène; Djè, Koffi Marcellin

    2016-01-01

    Freeze-drying is a well-known dehydration method widely used to preserve microorganisms. In order to produce freeze-dried yeast starter culture for the brewing purpose of African sorghum beer, we tested protective agents (sucrose, glucose, glycerol) in combination with support materials (millet, maize, sorghum, and cassava flours) at 1:1 ratio (v/v). The yeast strains Saccharomyces cerevisiae F 12-7 and Candida tropicalis C 0-7 previously isolated from sorghum beer were used in a mixed culture at a ratio of 2:1 (C. tropicalis/S. cerevisiae). After the freeze-drying, the residual water contents were between 0.78 -2.27%, 0.55 -4.09%, and 0.40-2.61%, respectively, with sucrose, glucose and glycerol. The dried yeasts viabilities were between 4.0% and 10.6%. Among the protective agents used, sucrose was found to be the best protectant giving cell viabilities of 8.4-10.6%. Considering the support materials, millet flour was the best support after drying. When the freeze-dried yeast powders were stored at 4°C and room temperature (25-28°C) for up to 3 months, the survival rates were the highest with cassava flour as the support material.

  18. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  19. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  20. Vibrio effector protein VopQ inhibits fusion of V-ATPase–containing membranes

    PubMed Central

    Sreelatha, Anju; Bennett, Terry L.; Carpinone, Emily M.; O’Brien, Kevin M.; Jordan, Kamyron D.; Burdette, Dara L.; Orth, Kim; Starai, Vincent J.

    2015-01-01

    Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the Vo domain of the conserved V-type H+-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro. PMID:25453092

  1. Quantification of 1,3-β-D-glucan from yeast added as a functional ingredient to bread.

    PubMed

    Rieder, Anne; Ballance, Simon; Böcker, Ulrike; Knutsen, Svein

    2018-02-01

    Due to their immunomodulatory effect, 1,3-β-G from yeast are used as functional ingredients, but reliable methods for their detection in foods are lacking. We have adapted a method based on fluorescence detection with aniline blue to quantify the amount of five commercial yeast β-glucan preparations added to crisp or yeast-leavened bread. This assay detected yeast β-glucan preparations added to different breads with an average recovery of 90, 96, 99 and 105%, while one of the preparations was overestimated, with an average recovery of 157%. The presence of cereal 1,3-1,4-β- D- glucans did not interfere with assay performance. The addition of 1,3-β-G at 0.2 and 0.5 g/100g is low compared to the recommended dose of 1,3-β-G per serving demonstrating assay sensitivity. However, more research is needed to fully understand the effect of 1,3-β-G conformation/structure on aniline blue interaction as well as the effect of baking on structure and dissolution properties of yeast β-glucans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. DNA double strand break induction in yeast.

    PubMed

    Kiefer, J; Egenolf, R; Ikpeme, S E

    2002-01-01

    The induction of DNA double strand breaks (DSBs) by accelerated heavy ions was systematically measured in diploid yeast cells. Particles were provided by the accelerators at GSI, Darmstadt, and HMI, Berlin. DNA was separated using pulsed field gel electrophoresis and the intensity of the largest bands used to determine the loss of molecular weight. Since the DNA content of each chromosome is exactly known absolute values for DSB induction can be measured without calibration procedures. Ions used range from protons to uranium with LET values between 2 and about 15,000 keV.micron-1. Induction cross sections increase in the lower LET region approaching a plateau around 200 keV.micron-1. With higher LET values the dependence can no longer be described by a common curve with each ion showing a specific behaviour. With very heavy particles the influence of the penumbra becomes obvious: cross sections decrease with LET because of the reduced penumbra extensions. Classical target theory would predict cross sections to follow a simple saturation function which is not substantiated by the data. Track structure analysis as introduced by Butts and Katz in 1967 is also not able to predict the experimental results. A semi-empirical fit indicates a linear-quadratic dependence of induction cross sections on LET up to about 1000 keV.micron-1. RBE for DSB induction rises above unity reaching a maximum of about 2.5 around 200 keV.micron-1. This is different from many experiments in mammalian cells and is presumably due to differences in chromatin structure since yeast cells seem to lack a functional III histone.

  3. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    PubMed

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  4. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope

    PubMed Central

    Upadhyay, Chitra; Mayr, Luzia M.; Zhang, Jing; Kumar, Rajnish; Gorny, Miroslaw K.; Nádas, Arthur; Zolla-Pazner, Susan

    2014-01-01

    ABSTRACT Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking

  5. SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast.

    PubMed

    Baro, Barbara; Játiva, Soraya; Calabria, Inés; Vinaixa, Judith; Bech-Serra, Joan-Josep; de LaTorre, Carolina; Rodrigues, João; Hernáez, María Luisa; Gil, Concha; Barceló-Batllori, Silvia; Larsen, Martin R; Queralt, Ethel

    2018-05-01

    Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2ACdc55 phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2ACdc55 substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2ACdc55 phosphatase and new PP2A-related processes in mitotic arrested cells. We identified 62 statistically significant PP2ACdc55 substrates involved mainly in actin-cytoskeleton organization. In addition, we validated new PP2ACdc55 substrates such as Slk19 and Lte1, involved in early and late anaphase pathways, and Zeo1, a component of the cell wall integrity pathway. Finally, we constructed docking models of Cdc55 and its substrate Mob1. We found that the predominant interface on Cdc55 is mediated by a protruding loop consisting of residues 84-90, thus highlighting the relevance of these aminoacids for substrate interaction. We used phosphoproteomics of Cdc55-deficient cells to uncover new PP2ACdc55 substrates and functions in mitosis. As expected, several hyperphosphorylated proteins corresponded to Cdk1-dependent substrates, although other kinases' consensus motifs were also enriched in our dataset, suggesting that PP2ACdc55 counteracts and regulates other kinases distinct from Cdk1. Indeed, Pkc1 emerged as a novel node of PP2ACdc55 regulation, highlighting a major role of PP2ACdc55 in actin cytoskeleton and cytokinesis, gene ontology terms significantly enriched in the PP2ACdc55-dependent phosphoproteome.

  6. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    PubMed Central

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  7. The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/Sch9 kinases.

    PubMed

    Rodríguez-Colman, María José; Sorolla, M Alba; Vall-Llaura, Núria; Tamarit, Jordi; Ros, Joaquim; Cabiscol, Elisa

    2013-08-01

    Within Saccharomyces cerevisiae, Hcm1is a member of the forkhead transcription factor family with a role in chromosome organization. Our group recently described its involvement in mitochondrial biogenesis and stress resistance, and reports here that Hcm1 played a role in adaptation to respiratory metabolism when glucose or nitrogen was decreased. Regulation of Hcm1 activity occurs in at least three ways: i) protein quantity, ii) subcellular localization, and iii) transcriptional activity. Transcriptional activity was measured using a reporter gene fused to a promoter that contains a binding site for Hcm1. We also analyzed the levels of several genes whose expression is known to be regulated by Hcm1 levels and the role of the main kinases known to respond to nutrients. Lack of sucrose-nonfermenting (Snf1) kinase increases cytoplasmic localization of Hcm1, whereas Δtor1 cells showed a mild increase in nuclear Hcm1. In vitro experiments showed that Snf1 clearly phosphorylates Hcm1 while Sch9 exerts a milder phosphorylation. Although in vitroTor1 does not directly phosphorylate Hcm1, in vivo rapamycin treatment increases nuclear Hcm1. We conclude that Hcm1 participates in the adaptation of cells from fermentation to respiratory metabolism during nutrient scarcity. According to our hypothesis, when nutrient levels decrease, Snf1 phosphorylates Hcm1. This results in a shift from the cytoplasm to the nucleus and increased transcriptional activity of genes involved in respiration, use of alternative energy sources, NAD synthesis and oxidative stress resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation.

    PubMed

    Schuberth, Christian; Wedlich-Söldner, Roland

    2015-04-01

    The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. An Evolutionary Perspective on Yeast Mating-Type Switching

    PubMed Central

    Hanson, Sara J.; Wolfe, Kenneth H.

    2017-01-01

    Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching? PMID:28476860

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mahavir; Wang, Zhonghua; Cascio, Duilio

    Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here in this paper, we present the crystalmore » structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two β-sheets that form an immunoglobulin-like β-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra β-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data.« less

  11. Reconstructing the Qo Site of Plasmodium falciparum bc 1 Complex in the Yeast Enzyme

    PubMed Central

    Vallières, Cindy; Fisher, Nicholas; Meunier, Brigitte

    2013-01-01

    The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials. PMID:23951230

  12. Rapid Glucose Depletion Immobilizes Active Myosin-V on Stabilized Actin Cables

    PubMed Central

    Xu, Li; Bretscher, Anthony

    2014-01-01

    Summary Polarization of eukaryotic cells requires organelles and protein complexes to be transported to their proper destinations along the cytoskeleton [1]. When nutrients are abundant, budding yeast grows rapidly transporting secretory vesicles for localized growth and actively segregating organelles [2, 3]. This is mediated by myosin-Vs transporting cargos along F-actin bundles known as actin cables [4]. Actin cables are dynamic structures regulated by assembly, stabilization and disassembly [5]. Polarized growth and actin filament dynamics consume energy. For most organisms, glucose is the preferred energy source and generally represses alternative carbon source usage [6]. Thus upon abrupt glucose depletion, yeast shuts down pathways consuming large amounts of energy, including the vacuolar-ATPase [7, 8], translation [9] and phosphoinositide metabolism [10]. Here we show that glucose withdrawal rapidly (<1 min) depletes ATP levels and the yeast myosin V, Myo2, responds by relocalizing to actin cables, making it the fastest response documented. Myo2 immobilized on cables releases its secretory cargo, defining a new rigor-like state of a myosin-V in vivo. Only actively transporting Myo2 can be converted to the rigor-like state. Glucose depletion has differential effects on the actin cytoskeleton resulting in disassembly of actin patches with concomitant inhibition of endocytosis, and strong stabilization of actin cables, thereby revealing a selective and previously unappreciated ATP requirement for actin cable disassembly. A similar response is seen in HeLa cells to ATP depletion. These findings reveal a new fast-acting energy conservation strategy halting growth by immobilizing myosin-V in a newly described state on selectively stabilized actin cables. PMID:25308080

  13. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response.

    PubMed

    Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei

    2017-01-01

    The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.

  14. Characterization of CaV1.2 exon 33 heterozygous knockout mice and negative correlation between Rbfox1 and CaV1.2 exon 33 expressions in human heart failure.

    PubMed

    Wang, Juejin; Li, Guang; Yu, Dejie; Wong, Yuk Peng; Yong, Tan Fong; Liang, Mui Cheng; Liao, Ping; Foo, Roger; Hoppe, Uta C; Soong, Tuck Wah

    2018-01-01

    Recently, we reported that homozygous deletion of alternative exon 33 of Ca V 1.2 calcium channel in the mouse resulted in ventricular arrhythmias arising from increased Ca V 1.2 Δ33 I CaL current density in the cardiomyocytes. We wondered whether heterozygous deletion of exon 33 might produce cardiac phenotype in a dose-dependent manner, and whether the expression levels of RNA splicing factors known to regulate alternative splicing of exon 33 might change in human heart failure. Unexpectedly, we found that exon 33 +/- cardiomyocytes showed similar Ca V 1.2 channel properties as wild-type cardiomyocyte, even though Ca V 1.2 Δ33 channels exhibit a gain-in-function. In human hearts, we found that the mRNA level of splicing factor Rbfox1, but not Rbfox2, was downregulated in dilated cardiomyopathy, and CACNA1C mRNA level was dramatically decreased in the both of dilated and ischemic cardiomyopathy. These data imply Rbfox1 may be involved in the development of cardiomyopathies via regulating the alternative splicing of Ca V 1.2 exon 33. (149 words).

  15. Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death

    PubMed Central

    Arlia-Ciommo, Anthony; Leonov, Anna; Beach, Adam; Richard, Vincent R.; Bourque, Simon D.; Burstein, Michelle T.; Kyryakov, Pavlo; Gomez-Perez, Alejandra; Koupaki, Olivia; Feldman, Rachel; Titorenko, Vladimir I.

    2018-01-01

    A dietary regimen of caloric restriction delays aging in evolutionarily distant eukaryotes, including the budding yeast Saccharomyces cerevisiae. Here, we assessed how caloric restriction influences morphological, biochemical and cell biological properties of chronologically aging yeast advancing through different stages of the aging process. Our findings revealed that this low-calorie diet slows yeast chronological aging by mechanisms that coordinate the spatiotemporal dynamics of various cellular processes before entry into a non-proliferative state and after such entry. Caloric restriction causes a stepwise establishment of an aging-delaying cellular pattern by tuning a network that assimilates the following: 1) pathways of carbohydrate and lipid metabolism; 2) communications between the endoplasmic reticulum, lipid droplets, peroxisomes, mitochondria and the cytosol; and 3) a balance between the processes of mitochondrial fusion and fission. Through different phases of the aging process, the caloric restriction-dependent remodeling of this intricate network 1) postpones the age-related onsets of apoptotic and liponecrotic modes of regulated cell death; and 2) actively increases the chance of cell survival by supporting the maintenance of cellular proteostasis. Because caloric restriction decreases the risk of cell death and actively increases the chance of cell survival throughout chronological lifespan, this dietary intervention extends longevity of chronologically aging yeast. PMID:29662634

  16. Yeast as a model for Ras signalling.

    PubMed

    Tisi, Renata; Belotti, Fiorella; Martegani, Enzo

    2014-01-01

    For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.

  17. The complexity and implications of yeast prion domains

    PubMed Central

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731

  18. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis.

    PubMed

    Peng, Yuancheng; Chen, Liangliang; Li, Shengjun; Zhang, Yueying; Xu, Ran; Liu, Zupei; Liu, Wuxia; Kong, Jingjing; Huang, Xiahe; Wang, Yingchun; Cheng, Beijiu; Zheng, Leiying; Li, Yunhai

    2018-04-18

    Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown. Here we report that BRI1 and BAK1 are involved in sugar-responsive growth and development. Glucose influences the physical interactions and phosphorylations of BRI1 and BAK1 in a concentration-dependent manner. BRI1 and BAK1 physically interact with G proteins that are essential for mediating sugar signaling. Biochemical data show that BRI1 can phosphorylate G protein β subunit and γ subunits, and BAK1 can phosphorylate G protein γ subunits. Genetic analyses suggest that BRI1 and BAK1 function in a common pathway with G-protein subunits to regulate sugar responses. Thus, our findings reveal an important genetic and molecular mechanism by which BR receptors associate with G proteins to regulate sugar-responsive growth and development.

  19. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    PubMed

    Ruchala, Justyna; Kurylenko, Olena O; Soontorngun, Nitnipa; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2017-02-28

    Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerevisiae, organism, which does not metabolize xylose, gene CAT8 encodes a Zn-cluster transcriptional activator necessary for expression of genes involved in gluconeogenesis, respiration, glyoxylic cycle and ethanol utilization. Xylose is a carbon source that could be fermented to ethanol and simultaneously could be used in gluconeogenesis for hexose synthesis. This potentially suggests involvement of CAT8 in xylose metabolism. Here, the role of CAT8 homolog in the natural xylose-fermenting thermotolerant yeast O. polymorpha was characterized. The CAT8 ortholog was identified in O. polymorpha genome and deleted both in the wild-type strain and in advanced ethanol producer from xylose. Constructed cat8Δ strain isolated from wild strain showed diminished growth on glycerol, ethanol and xylose as well as diminished respiration on the last substrate. At the same time, cat8Δ mutant isolated from the best available O. polymorpha ethanol producer showed only visible defect in growth on ethanol. CAT8 deletant was characterized by activated transcription of genes XYL3, DAS1 and RPE1 and slight increase in the activity of several enzymes involved in xylose metabolism and alcoholic fermentation. Ethanol production from xylose in cat8Δ mutants in the background of wild-type strain and the best available ethanol producer from xylose increased for 50 and 30%, respectively. The maximal titer of ethanol during xylose fermentation was 12.5 g ethanol/L at 45 °C. Deletion of CAT8 did not change ethanol production from glucose. Gene CAT8 was also overexpressed under control of the strong constitutive

  20. Generation of Tioman virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae.

    PubMed

    Petraityte, Rasa; Tamosiunas, Paulius L; Juozapaitis, Mindaugas; Zvirbliene, Aurelija; Sasnauskas, Kestutis; Shiell, Brian; Russell, Gail; Bingham, John; Michalski, Wojtek P

    2009-10-01

    Tioman virus (TioV) was isolated from a number of pooled urine samples of Tioman Island flying foxes (Pteropus hypomelanus) during the search for the reservoir host of Nipah virus. Studies have established TioV as a new virus in the family Paramyxoviridae. This novel paramyxovirus is antigenically related to Menangle virus that was isolated in Australia in 1997 during disease outbreak in pigs. TioV causes mild disease in pigs and has a predilection for lymphoid tissues. Recent serosurvey showed that 1.8% of Tioman Islanders had neutralizing antibodies against TioV, indicating probable past infection. For the development of convenient serological tests for this virus, recombinant TioV nucleocapsid (N) protein was expressed in the yeast Saccharomyces cerevisiae. High yields of recombinant TioV N protein were obtained. Electron microscopy demonstrated that purified recombinant N protein self-assembled into nucleocapsid-like particles which were identical in density and morphology to authentic nucleocapsids from paramyxovirus-infected cells. Different size nucleocapsid-like particles were stable and readily purified by CsCl gradient ultracentrifugation. Polyclonal sera raised in rabbits after immunization with recombinant TioV N protein reacted reliably with TioV infected tissues in immunohistochemistry tests. It confirmed that the antigenic properties of yeast derived TioV N protein are identical to authentic viral protein.

  1. The Effects of a Probiotic Yeast on the Bacterial Diversity and Population Structure in the Rumen of Cattle

    PubMed Central

    Pinloche, Eric; McEwan, Neil; Marden, Jean-Philippe; Bayourthe, Corinne; Auclair, Eric; Newbold, C. Jamie

    2013-01-01

    It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis). PMID:23844101

  2. Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome Positioning

    PubMed Central

    Gévry, Nicolas; Adam, Maryse; Blanchette, Mathieu

    2005-01-01

    H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in regulating chromatin structure. Here we mapped H2A.Z across the yeast genome at an approximately 300-bp resolution, using chromatin immunoprecipitation combined with tiling microarrays. We have identified 4,862 small regions—typically one or two nucleosomes wide—decorated with H2A.Z. Those “Z loci” are predominantly found within specific nucleosomes in the promoter of inactive genes all across the genome. Furthermore, we have shown that H2A.Z can regulate nucleosome positioning at the GAL1 promoter. Within HZAD domains, the regions where H2A.Z shows an antisilencing function, H2A.Z is localized in a wider pattern, suggesting that the variant histone regulates a silencing and transcriptional activation via different mechanisms. Our data suggest that the incorporation of H2A.Z into specific promoter-bound nucleosomes configures chromatin structure to poise genes for transcriptional activation. The relevance of these findings to higher eukaryotes is discussed. PMID:16248679

  3. Subsurface damage in some single crystalline optical materials.

    PubMed

    Randi, Joseph A; Lambropoulos, John C; Jacobs, Stephen D

    2005-04-20

    We present a nondestructive method for estimating the depth of subsurface damage (SSD) in some single crystalline optical materials (silicon, lithium niobate, calcium fluoride, magnesium fluoride, and sapphire); the method is established by correlating surface microroughness measurements, specifically, the peak-to-valley (p-v) microroughness, to the depth of SSD found by a novel destructive method. Previous methods for directly determining the depth of SSD may be insufficient when applied to single crystals that are very soft or very hard. Our novel destructive technique uses magnetorheological finishing to polish spots onto a ground surface. We find that p-v surface microroughness, appropriately scaled, gives an upper bound to SSD. Our data suggest that SSD in the single crystalline optical materials included in our study (deterministically microground, lapped, and sawed) is always less than 1.4 times the p-v surface microroughness found by white-light interferometry. We also discuss another way of estimating SSD based on the abrasive size used.

  4. PAS Kinase Promotes Cell Survival and Growth Through Activation of Rho1

    PubMed Central

    Cardon, Caleb M.; Beck, Thomas; Hall, Michael N.; Rutter, Jared

    2014-01-01

    In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions. PMID:22296835

  5. Characterization of Osmotolerant Yeasts and Yeast-Like Molds from Apple Orchards and Apple Juice Processing Plants in China and Investigation of Their Spoilage Potential.

    PubMed

    Wang, Huxuan; Hu, Zhongqiu; Long, Fangyu; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2015-08-01

    Yeasts and yeast-like fungal isolates were recovered from apple orchards and apple juice processing plants located in the Shaanxi province of China. The strains were evaluated for osmotolerance by growing them in 50% (w/v) glucose. Of the strains tested, 66 were positive for osmotolerance and were subsequently identified by 26S or 5.8S-ITS ribosomal RNA (rRNA) gene sequencing. Physiological tests and RAPD-PCR analysis were performed to reveal the polymorphism of isolates belonging to the same species. Further, the spoilage potential of the 66 isolates was determining by evaluating their growth in 50% to 70% (w/v) glucose and measuring gas generation in 50% (w/v) glucose. Thirteen osmotolerant isolates representing 9 species were obtained from 10 apple orchards and 53 target isolates representing 19 species were recovered from 2 apple juice processing plants. In total, members of 14 genera and 23 species of osmotolerant isolates including yeast-like molds were recovered from all sources. The commonly recovered osmotolerant isolates belonged to Kluyveromyces marxianus, Hanseniaspora uvarum, Saccharomyces cerevisiae, Zygosaccharomyces rouxii, Candida tropicalis, and Pichia kudriavzevii. The polymorphism of isolates belonging to the same species was limited to 1 to 3 biotypes. The majority of species were capable of growing within a range of glucose concentration, similar to sugar concentrations found in apple juice products with a lag phase from 96 to 192 h. Overall, Z. rouxii was particularly the most tolerant to high glucose concentration with the shortest lag phase of 48 h in 70% (w/v) glucose and the fastest gas generation rate in 50% (w/v) glucose. © 2015 Institute of Food Technologists®

  6. Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1*

    PubMed Central

    Niu, Yingbo; Zhang, Lihui; Yu, Jiaojiao; Wang, Chih-chen; Wang, Lei

    2016-01-01

    The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys90-Cys97 disulfide in Pdi1p. The principal client-binding site in the Pdi1p b′ domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway. PMID:26846856

  7. Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay.

    PubMed

    Aung, Hsu Mon; Huangteerakul, Chananya; Panvongsa, Wittaya; Jensen, Amornrat N; Chairoungdua, Arthit; Sukrong, Suchada; Jensen, Laran T

    2018-09-15

    Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF). Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo

    PubMed Central

    Chen, Chen; Lim, Hong Hwa; Shi, Jian; Tamura, Sachiko; Maeshima, Kazuhiro; Surana, Uttam; Gan, Lu

    2016-01-01

    Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin—nucleosomes—are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae. Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an “open” configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome–nucleosome associations. PMID:27605704

  9. Npr1 Ser/Thr Protein Kinase Links Nitrogen Source Quality and Carbon Availability with the Yeast Nitrate Transporter (Ynt1) Levels*

    PubMed Central

    Martín, Yusé; González, Yelvis V.; Cabrera, Elisa; Rodríguez, Celia; Siverio, José M.

    2011-01-01

    Ynt1, the single high affinity nitrate and nitrite transporter of the yeast Hansenula polymorpha, is regulated by the quality of nitrogen sources. Preferred nitrogen sources cause Ynt1 dephosphorylation, ubiquitinylation, endocytosis, and vacuolar degradation. In contrast, under nitrogen limitation Ynt1 is phosphorylated and sorted to the plasma membrane. We show here the involvement of the Ser/Thr kinase HpNpr1 in Ynt1 phosphorylation and regulation of Ynt1 levels in response to nitrogen source quality and the availability of carbon. In Δnpr1, Ynt1 phosphorylation does not take place, although Ynt1 ubiquitin conjugates increase. As a result, in this strain Ynt1 is sorted to the vacuole, from both plasma membrane and the later biosynthetic pathway in nitrogen-free conditions and nitrate. In contrast, overexpression of NPR1 blocks down-regulation of Ynt1, increasing Ynt1 phosphorylation at Ser-244 and -246 and reducing ubiquitinylation. Furthermore, Npr1 is phosphorylated in response to the preferred nitrogen sources, and indeed it is dephosphorylated in nitrogen-free medium. Under conditions where Npr1 is phosphorylated, Ynt1 is not and vice versa. We show for the first time that carbon starvation leads to Npr1 phosphorylation, whereas Ynt1 is dephosphorylated and degraded in the vacuole. Rapamycin prevents this, indicating a possible role of the target of rapamycin signaling pathway in this process. We concluded that Npr1 plays a key role in adapting Ynt1 levels to the nitrogen quality and availability of a source of carbon. PMID:21652715

  10. The Fission Yeast Minichromosome Maintenance (MCM)-binding Protein (MCM-BP), Mcb1, Regulates MCM Function during Prereplicative Complex Formation in DNA Replication*

    PubMed Central

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-01-01

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. PMID:23322785

  11. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication.

    PubMed

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-03-08

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.

  12. Chemical shift assignments of the first and second RRMs of Nrd1, a fission yeast MAPK-target RNA binding protein.

    PubMed

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2017-10-01

    Negative regulator differentiation 1 (Nrd1), a fission yeast RNA binding protein, modulates cytokinesis and sexual development and contributes to stress granule formation in response to environmental stresses. Nrd1 comprises four RRM domains and binds and stabilizes Cdc4 mRNA that encodes the myosin II light chain. Nrd1 binds the Cpc2 fission-yeast RACK1 homolog, and the interaction promotes Nrd1 localization to stress granules. Interestingly, Pmk1 mitogen-activated protein kinase phosphorylates Thr40 in the unstructured N-terminal region and Thr126 in the first RRM domain of Nrd1. Phosphorylation significantly reduces RNA-binding activity and likely modulates Nrd1 function. To reveal the relationship between the structure and function of Nrd1 and how phosphorylation affects structure, we used heteronuclear NMR techniques to investigate the three-dimensional structure of Nrd1. Here we report the 1 H, 13 C, and 15 N resonance assignments of RRM1-RRM2 (residues 108-284) comprising the first and second RRMs obtained using heteronuclear NMR techniques. Secondary structures derived from the chemical shifts are reported. These data should contribute to the understanding of the three-dimensional structure of the RRM1-RRM2 region of Nrd1 and the perturbation caused by phosphorylation.

  13. The secretory pathway: exploring yeast diversity.

    PubMed

    Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2013-11-01

    Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Characterization of the antifungal activity of Lactobacillus harbinensis K.V9.3.1Np and Lactobacillus rhamnosus K.C8.3.1I in yogurt.

    PubMed

    Delavenne, Emilie; Cliquet, Sophie; Trunet, Clément; Barbier, Georges; Mounier, Jérôme; Le Blay, Gwenaëlle

    2015-02-01

    Few antifungal protective cultures adapted to fermented dairy products are commercially available because of the numerous constraints linked to their market implementation. Consumer's demand for naturally preserved food products is growing and the utilization of lactic acid bacteria is a promising way to achieve this goal. In this study, using a 2(5-1) factorial fractional design, we first evaluated the effects of fermentation time, of initial sucrose concentration and of the initial contamination amount of a spoilage yeast, on antifungal activities of single and mixed cultures of Lactobacillus rhamnosus K.C8.3.1I and Lactobacillus harbinensis K.V9.3.1Np in yogurt. L. harbinensis K.V9.3.1Np, the most relevant strain with regard to antifungal activity was then studied to determine its minimal inhibitory inoculation rate, its antifungal stability during storage and its impact on yogurt organoleptic properties. We showed that L. harbinensis K.V9.3.1Np maintained a stable antifungal activity over time, which was not affected by initial sucrose, nor by a reduction of the fermentation time. This inhibitory activity was an all-or-nothing phenomenon. Once L. harbinensis K.V9.3.1Np reached a population of ∼ 2.5 × 10(6) cfu/g of yogurt at the time of contamination, total inhibition of the yeast was achieved. We also showed that an inoculation rate of 5 × 10(6) cfu/ml in milk had no detrimental effect on yogurt organoleptic properties. In conclusion, L. harbinensis K.V9.3.1Np is a promising antifungal bioprotective strain for yogurt preservation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Budding Yeast Silencing Complexes and Regulation of Sir2 Activity by Protein-Protein Interactions

    PubMed Central

    Tanny, Jason C.; Kirkpatrick, Donald S.; Gerber, Scott A.; Gygi, Steven P.; Moazed, Danesh

    2004-01-01

    Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo. PMID:15282295

  16. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  17. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.

    PubMed

    Ho, Cheuk Y; Choy, Christopher H; Wattson, Christina A; Johnson, Danielle E; Botelho, Roberto J

    2015-04-10

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH < 5 in PIKfyve-inhibited mammalian cells. In addition, quantitative fluorescence microscopy of vacuole-targeted pHluorin, a pH-sensitive GFP variant, indicates that fab1Δ vacuoles are as acidic as wild-type yeast. Importantly, we also employed fluorimetry of vacuoles loaded with cDCFDA, a pH-sensitive dye, to show that both wild-type and fab1Δ vacuoles have a pH < 5.0. In comparison, the vacuolar pH of the V-ATPase mutant vph1Δ or vph1Δ fab1Δ double mutant was 6.1. Although the steady-state vacuolar pH is not affected by PtdIns(3,5)P2 depletion, it may have a role in stabilizing the vacuolar pH during salt shock. Overall, we propose a model in which PtdIns(3,5)P2 does not govern the steady-state pH of vacuoles or lysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The Fab1/PIKfyve Phosphoinositide Phosphate Kinase Is Not Necessary to Maintain the pH of Lysosomes and of the Yeast Vacuole*

    PubMed Central

    Ho, Cheuk Y.; Choy, Christopher H.; Wattson, Christina A.; Johnson, Danielle E.; Botelho, Roberto J.

    2015-01-01

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH < 5 in PIKfyve-inhibited mammalian cells. In addition, quantitative fluorescence microscopy of vacuole-targeted pHluorin, a pH-sensitive GFP variant, indicates that fab1Δ vacuoles are as acidic as wild-type yeast. Importantly, we also employed fluorimetry of vacuoles loaded with cDCFDA, a pH-sensitive dye, to show that both wild-type and fab1Δ vacuoles have a pH < 5.0. In comparison, the vacuolar pH of the V-ATPase mutant vph1Δ or vph1Δ fab1Δ double mutant was 6.1. Although the steady-state vacuolar pH is not affected by PtdIns(3,5)P2 depletion, it may have a role in stabilizing the vacuolar pH during salt shock. Overall, we propose a model in which PtdIns(3,5)P2 does not govern the steady-state pH of vacuoles or lysosomes. PMID:25713145

  19. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae

    PubMed Central

    Curcio, M. Joan; Lutz, Sheila; Lesage, Pascale

    2015-01-01

    Summary Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology. PMID:25893143

  20. Interplay between chromatin modulators and histone acetylation regulates the formation of accessible chromatin in the upstream regulatory region of fission yeast fbp1.

    PubMed

    Adachi, Akira; Senmatsu, Satoshi; Asada, Ryuta; Abe, Takuya; Hoffman, Charles S; Ohta, Kunihiro; Hirota, Kouji

    2018-05-03

    Numerous noncoding RNA transcripts are detected in eukaryotic cells. Noncoding RNAs transcribed across gene promoters are involved in the regulation of mRNA transcription via chromatin modulation. This function of noncoding RNA transcription was first demonstrated for the fission yeast fbp1 gene, where a cascade of noncoding RNA transcription events induces chromatin remodeling to facilitate transcription factor binding. We recently demonstrated that the noncoding RNAs from the fbp1 upstream region facilitate binding of the transcription activator Atf1 and thereby promote histone acetylation. Histone acetylation by histone acetyl transferases (HATs) and ATP-dependent chromatin remodelers (ADCRs) are implicated in chromatin remodeling, but the interplay between HATs and ADCRs in this process has not been fully elucidated. Here, we examine the roles played by two distinct ADCRs, Snf22 and Hrp3, and by the HAT Gcn5 in the transcriptional activation of fbp1. Snf22 and Hrp3 redundantly promote disassembly of chromatin in the fbp1 upstream region. Gcn5 critically contributes to nucleosome eviction in the absence of either Snf22 or Hrp3, presumably by recruiting Hrp3 in snf22∆ cells and Snf22 in hrp3∆ cells. Conversely, Gcn5-dependent histone H3 acetylation is impaired in snf22∆/hrp3∆ cells, suggesting that both redundant ADCRs induce recruitment of Gcn5 to the chromatin array in the fbp1 upstream region. These results reveal a previously unappreciated interplay between ADCRs and histone acetylation in which histone acetylation facilitates recruitment of ADCRs, while ADCRs are required for histone acetylation.

  1. An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae

    PubMed Central

    Lee, Insuk; Li, Zhihua; Marcotte, Edward M.

    2007-01-01

    Background Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org. PMID:17912365

  2. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    PubMed

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  3. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores.

    PubMed

    London, Nitobe; Ceto, Steven; Ranish, Jeffrey A; Biggins, Sue

    2012-05-22

    Kinetochores are the macromolecular complexes that interact with microtubules to mediate chromosome segregation. Accurate segregation requires that kinetochores make bioriented attachments to microtubules from opposite poles. Attachments between kinetochores and microtubules are monitored by the spindle checkpoint, a surveillance system that prevents anaphase until every pair of chromosomes makes proper bioriented attachments. Checkpoint activity is correlated with the recruitment of checkpoint proteins to the kinetochore. Mps1 is a conserved protein kinase that regulates segregation and the spindle checkpoint, but few of the targets that mediate its functions have been identified. Here, we show that Mps1 is the major kinase activity that copurifies with budding yeast kinetochore particles and identify the conserved Spc105/KNL-1/blinkin kinetochore protein as a substrate. Phosphorylation of conserved MELT motifs within Spc105 recruits the Bub1 protein to kinetochores, and this is reversed by protein phosphatase I (PP1). Spc105 mutants lacking Mps1 phosphorylation sites are defective in the spindle checkpoint and exhibit growth defects. Together, these data identify Spc105 as a key target of the Mps1 kinase and show that the opposing activities of Mps1 and PP1 regulate the kinetochore localization of the Bub1 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    NASA Astrophysics Data System (ADS)

    Wang, Jufang; Lu, Dong; Wu, Xin; Sun, Haining; Ma, Shuang; Li, Renmin; Li, Wenjian

    2010-09-01

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV μm -1) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV μm -1. The mutation cross section saturated when LET was higher than 58.2 keV μm -1. Meanwhile, the highest RBE i for inactivation located at 120.0 keV μm -1 and the highest RBE m for mutation was at 58.2 keV μm -1. The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  5. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    PubMed

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Electron transport chain in a thermotolerant yeast.

    PubMed

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  7. Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies.

    PubMed

    Kitagaki, Hiroshi; Takagi, Hiroshi

    2014-04-01

    Mitochondria are sites of oxidative respiration. During sake brewing, sake yeasts are exposed to long periods of hypoxia; the structure, role, and metabolism of mitochondria of sake yeasts have not been studied in detail. It was first elucidated that the mitochondrial structure of sake yeast transforms from filamentous to dotted structure during sake brewing, which affects malate metabolism. Based on the information of yeast mitochondria during sake brewing, practical technologies have been developed; (i) breeding pyruvate-underproducing sake yeast by the isolation of a mutant resistant to an inhibitor of mitochondrial pyruvate transport; and (ii) modifying malate and succinate production by manipulating mitochondrial activity. During the bread-making process, baker's yeast cells are exposed to a variety of baking-associated stresses, such as freeze-thaw, air-drying, and high sucrose concentrations. These treatments induce oxidative stress generating reactive oxygen species due to mitochondrial damage. A novel metabolism of proline and arginine catalyzed by N-acetyltransferase Mpr1 in the mitochondria eventually leads to synthesis of nitric oxide, which confers oxidative stress tolerance on yeast cells. The enhancement of proline and arginine metabolism could be promising for breeding novel baker's yeast strains that are tolerant to multiple baking-associated stresses. These new and practical methods provide approaches to improve the processes in the field of industrial fermentation technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Possible role of the Nipah virus V protein in the regulation of the interferon beta induction by interacting with UBX domain-containing protein1.

    PubMed

    Uchida, Shotaro; Horie, Ryo; Sato, Hiroki; Kai, Chieko; Yoneda, Misako

    2018-05-16

    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes lethal encephalitis in humans. We previously reported that the V protein, one of the three accessory proteins encoded by the P gene, is one of the key determinants of the pathogenesis of NiV in a hamster infection model. Satterfield B.A. et al. have also revealed that V protein is required for the pathogenicity of henipavirus in a ferret infection model. However, the complete functions of NiV V have not been clarified. In this study, we identified UBX domain-containing protein 1 (UBXN1), a negative regulator of RIG-I-like receptor signaling, as a host protein that interacts with NiV V. NiV V interacted with the UBX domain of UBXN1 via its proximal zinc-finger motif in the C-terminal domain. NiV V increased the level of UBXN1 protein by suppressing its proteolysis. Furthermore, NiV V suppressed RIG-I and MDA5-dependent interferon signaling by stabilizing UBXN1 and increasing the interaction between MAVS and UBXN1 in addition to directly interrupting the activation of MDA5. Our results suggest a novel molecular mechanism by which the induction of interferon is potentially suppressed by NiV V protein via UBXN1.

  9. Permittivity and temperature effects on rectification performance of self-switching diodes with different geometrical structures using two-dimensional device simulator

    NASA Astrophysics Data System (ADS)

    Zakaria, N. F.; Kasjoo, S. R.; Zailan, Z.; Isa, M. M.; Taking, S.; Arshad, M. K. M.

    2017-12-01

    Characterization on an InGaAs-based self-switching diode (SSD) using technology computer aided design (TCAD) aimed for optimizing the electrical rectification performance of the device is reported. The rectifying performance is mainly contributed by a parameter known as the curvature coefficient which is derived from the current-voltage (I-V) behavior of the device. As such, the curvature coefficient of SSD was analyzed in this work, not only by varying the device's geometrical structure, but also by implementing different dielectric relative permittivity of the device's trenches, ranging from 1.0 to 10. Furthermore, the simulations were performed under temperature range of 300-600 K. The results showed that increased temperature degraded the SSD's rectifying performance due to increased reverse current which can deteriorate the nonlinearity of the device's I-V characteristic. Moreover, an improved curvature coefficient can be achieved using silicon dioxide (∼3.9) as the SSD trenches. The cut-off frequency of SSD with zero-bias curvature coefficient of ∼30 V-1 attained in this work was approximately 80 GHz, operating at unbiased condition. The results obtained can assist the design of SSD to efficiently operate as rectifiers at microwave and terahertz frequencies.

  10. The yeast replicative aging model.

    PubMed

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  11. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    PubMed

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Yeast diversity on grapes in two German wine growing regions.

    PubMed

    Brysch-Herzberg, Michael; Seidel, Martin

    2015-12-02

    The yeast diversity on wine grapes in Germany, one of the most northern wine growing regions of the world, was investigated by means of a culture dependent approach. All yeast isolates were identified by sequence analysis of the D1/D2 domain of the 26S rDNA and the ITS region. Besides Hanseniaspora uvarum and Metschnikowia pulcherrima, which are well known to be abundant on grapes, Metschnikowia viticola, Rhodosporidium babjevae, and Curvibasidium pallidicorallinum, as well as two potentially new species related to Sporidiobolus pararoseus and Filobasidium floriforme, turned out to be typical members of the grape yeast community. We found M. viticola in about half of the grape samples in high abundance. Our data strongly suggest that M. viticola is one of the most important fermenting yeast species on grapes in the temperate climate of Germany. The frequent occurrence of Cu. pallidicorallinum and strains related to F. floriforme is a new finding. The current investigation provides information on the distribution of recently described yeast species, some of which are known from a very few strains up to now. Interestingly yeasts known for their role in the wine making process, such as Saccharomyces cerevisiae, Saccharomyces bayanus ssp. uvarum, Torulaspora delbrueckii, and Zygosaccharomyces bailii, were not found in the grape samples. Copyright © 2015. Published by Elsevier B.V.

  13. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1.

    PubMed

    Elsztein, Carolina; de Lucena, Rodrigo M; de Morais, Marcos A

    2011-08-19

    Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  14. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    PubMed Central

    2011-01-01

    Background Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes. PMID:21854579

  15. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.

    PubMed

    Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela

    2017-09-06

    In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.

  16. Making Sense of the Yeast Sphingolipid Pathway.

    PubMed

    Megyeri, Márton; Riezman, Howard; Schuldiner, Maya; Futerman, Anthony H

    2016-12-04

    Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters

    PubMed Central

    Ho, Cheng-Hsun; Frommer, Wolf B

    2014-01-01

    To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research. DOI: http://dx.doi.org/10.7554/eLife.01917.001 PMID:24623305

  18. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.

    PubMed

    Ohba, M

    1997-06-09

    In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.

  19. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-05-01

    Freeze tolerance is a necessary characteristic for industrial baker's yeast because frozen-dough baking is one of the key technologies for supplying oven-fresh bakery products to consumers. Both proline and trehalose are known to function as cryoprotectants in yeast cells. In order to enhance the freeze tolerance of yeast cells, we constructed a self-cloning diploid baker's yeast strain with simultaneous accumulation of proline, by expressing the PRO1-I150T allele, encoding the proline-feedback inhibition-less sensitive γ-glutamyl kinase, and trehalose, by disrupting the NTH1 gene, encoding neutral trehalase. The resultant strain retained higher tolerance to oxidative and freezing stresses than did the single proline- or trehalose-accumulating strain. Interestingly, our results suggest that proline and trehalose protect yeast cells from short-term and long-term freezing, respectively. Simultaneous accumulation of proline and trehalose in industrial baker's yeast also enhanced the fermentation ability in the frozen dough compared with the single accumulation of proline or trehalose. These results indicate that baker's yeast that accumulates both proline and trehalose is applicable for frozen-dough baking. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Phosphatidylinositol 3-Kinase Promotes V-ATPase Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence1

    PubMed Central

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-01-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H+-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence. PMID:26739232

  1. The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae.

    PubMed

    Plachta, Michal; Halas, Agnieszka; McIntyre, Justyna; Sledziewska-Gojska, Ewa

    2015-05-01

    Polymerase eta (Pol eta) is a ubiquitous translesion DNA polymerase that is capable of bypassing UV-induced pyrimidine dimers in an error-free manner. However, this specialized polymerase is error prone when synthesizing through an undamaged DNA template. In Saccharomyces cerevisiae, both depletion and overproduction of Pol eta result in mutator phenotypes. Therefore, regulation of the cellular abundance of this enzyme is of particular interest. However, based on the investigation of variously tagged forms of Pol eta, mutually contradictory conclusions have been reached regarding the stability of this polymerase in yeast. Here, we optimized a protocol for the detection of untagged yeast Pol eta and established that the half-life of the native enzyme is 80 ± 14 min in asynchronously growing cultures. Experiments with synchronized cells indicated that the cellular abundance of this translesion polymerase changes throughout the cell cycle. Accordingly, we show that the stability of Pol eta, but not its mRNA level, is cell cycle stage dependent. The half-life of the polymerase is more than fourfold shorter in G1-arrested cells than in those at G2/M. Our results, in concert with previous data for Rev1, indicate that cell cycle regulation is a general property of Y family TLS polymerases in S. cerevisiae. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.

    PubMed

    Phadnis, Naina; Mehta, Reema; Meednu, Nida; Sia, Elaine A

    2006-07-13

    Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.

  3. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    PubMed Central

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  4. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain.

    PubMed

    Wu, Dianhui; Li, Xiaomin; Shen, Chao; Lu, Jian; Chen, Jian; Xie, Guangfa

    2014-06-16

    Saccharomyces cerevisiae metabolizes arginine to ornithine and urea during wine fermentations. In the fermentation of Chinese rice wine, yeast strains of S. cerevisiae do not fully metabolize urea, which will be secreted into the spirits and spontaneously reacts with ethanol to form ethyl carbamate, a potential carcinogenic agent for humans. To block the pathway of urea production, we genetically engineered two haploid strains to reduce the arginase (encoded by CAR1) activity, which were isolated from a diploid industrial Chinese rice wine strain. Finally the engineered haploids with opposite mating type were mated back to diploid strains, obtaining a heterozygous deletion strain (CAR1/car1) and a homozygous defect strain (car1/car1). These strains were compared to the parental industrial yeast strain in Chinese rice wine fermentations and spirit production. The strain with the homozygous CAR1 deletion showed significant reductions of urea and EC in the final spirits in comparison to the parental strain, with the concentration reductions by 86.9% and 50.5% respectively. In addition, EC accumulation was in a much lower tempo during rice wine storage. Moreover, the growth behavior and fermentation characteristics of the engineered diploid strain were similar to the parental strain. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Living organisms as an alternative to hyphenated techniques for metal speciation. Evaluation of baker's yeast immobilized on silica gel for Hg speciation*1

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, Teresa; Madrid-Albarrán, Yolanda; Cámara, Carmen; Beceiro, Elisa

    1998-02-01

    The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH 3Hg +], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L -1 HCl for methylmercury and 0.8 mol L -1 CN - for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.

  6. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    NASA Astrophysics Data System (ADS)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  7. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  8. CRISPR/Cas system for yeast genome engineering: advances and applications

    PubMed Central

    Stovicek, Vratislav; Holkenbrink, Carina

    2017-01-01

    Abstract The methods based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system have quickly gained popularity for genome editing and transcriptional regulation in many organisms, including yeast. This review aims to provide a comprehensive overview of CRISPR application for different yeast species: from basic principles and genetic design to applications. PMID:28505256

  9. Transcription factor Sp1 regulates T-type Ca(2+) channel CaV 3.1 gene expression.

    PubMed

    González-Ramírez, Ricardo; Martínez-Hernández, Elizabeth; Sandoval, Alejandro; Felix, Ricardo

    2014-05-01

    Voltage-gated T-type Ca(2+) (CaV 3) channels mediate a number of physiological events in developing and mature cells, and are implicated in neurological and cardiovascular diseases. In mammals, there are three distinct T-channel genes (CACNA1G, CACNA1H, and CACNA1I) encoding proteins (CaV 3.1-CaV 3.3) that differ in their localization as well as in molecular, biophysical, and pharmacological properties. The CACNA1G is a large gene that contains 38 exons and is localized in chromosome 17q22. Only basic characteristics of the CACNA1G gene promoter region have been investigated classifying it as a TATA-less sequence containing several potential transcription factor-binding motifs. Here, we cloned and characterized a proximal promoter region and initiated the analysis of transcription factors that control CaV 3.1 channel expression using the murine Cacna1g gene as a model. We isolated a ∼1.5 kb 5'-upstream region of Cacna1g and verified its transcriptional activity in the mouse neuroblastoma N1E-115 cell line. In silico analysis revealed that this region possesses a TATA-less minimal promoter that includes two potential transcription start sites and four binding sites for the transcription factor Sp1. The ability of one of these sites to interact with the transcription factor was confirmed by electrophoretic mobility shift assays. Consistent with this, Sp1 over-expression enhanced promoter activity while siRNA-mediated Sp1 silencing significantly decreased the level of CaV 3.1 protein and reduced the amplitude of whole-cell T-type Ca(2+) currents expressed in the N1E-115 cells. These results provide new insights into the molecular mechanisms that control CaV 3.1 channel expression. © 2013 Wiley Periodicals, Inc.

  10. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be themore » potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.« less

  11. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing.

    PubMed

    Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas

    2010-03-01

    Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.

  12. The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast

    PubMed Central

    Shimoi, Hitoshi; Sakamoto, Kazutoshi; Okuda, Masaki; Atthi, Ratchanee; Iwashita, Kazuhiro; Ito, Kiyoshi

    2002-01-01

    Sake, a traditional alcoholic beverage in Japan, is brewed with sake yeasts, which are classified as Saccharomyces cerevisiae. Almost all sake yeasts form a thick foam layer on sake mash during the fermentation process because of their cell surface hydrophobicity, which increases the cells' affinity for bubbles. To reduce the amount of foam, nonfoaming mutants were bred from foaming sake yeasts. Nonfoaming mutants have hydrophilic cell surfaces and no affinity for bubbles. We have cloned a gene from a foam-forming sake yeast that confers foaming ability to a nonfoaming mutant. This gene was named AWA1 and structures of the gene and its product were analyzed. The N- and C-terminal regions of Awa1p have the characteristic sequences of a glycosylphosphatidylinositol anchor protein. The entire protein is rich in serine and threonine residues and has a lot of repetitive sequences. These results suggest that Awa1p is localized in the cell wall. This was confirmed by immunofluorescence microscopy and Western blotting analysis using hemagglutinin-tagged Awa1p. Moreover, an awa1 disruptant of sake yeast was hydrophilic and showed a nonfoaming phenotype in sake mash. We conclude that Awa1p is a cell wall protein and is required for the foam-forming phenotype and the cell surface hydrophobicity of sake yeast. PMID:11916725

  13. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati.

    PubMed

    Yaacob, Norhayati; Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  14. The structure of a β-(1→3)-d-glucan from yeast cell walls

    PubMed Central

    Manners, David J.; Masson, Alan J.; Patterson, James C.

    1973-01-01

    Yeast glucan as normally prepared by various treatments of yeast (Saccharomyces cerevisiae) cell walls to remove mannan and glycogen is still heterogeneous. The major component (about 85%) is a branched β-(1→3)-glucan of high molecular weight (about 240000) containing 3% of β-(1→6)-glucosidic interchain linkages. The minor component is a branched β-(1→6)-glucan. A comparison of our results with those of other workers suggests that different glucan preparations may differ in the degree of heterogeneity and that the major β-(1→3)-glucan component may vary considerably in degree of branching. PMID:4359920

  15. Transcription Regulation of HYPK by Heat Shock Factor 1

    PubMed Central

    Das, Srijit; Bhattacharyya, Nitai Pada

    2014-01-01

    HYPK (Huntingtin Yeast Partner K) was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin. Further investigation revealed that HYPK is involved in diverse cellular processes and required for normal functioning of cells. In this study we observed that hyperthermia increases HYPK expression in human and mouse cells in culture. Expression of exogenous Heat Shock Factor 1 (HSF1), upon heat treatment could induce HYPK expression, whereas HSF1 knockdown reduced endogenous as well as heat-induced HYPK expression. Putative HSF1-binding site present in the promoter of human HYPK gene was identified and validated by reporter assay. Chromatin immunoprecipitation revealed in vivo interaction of HSF1 and RNA polymerase II with HYPK promoter sequence. Additionally, acetylation of histone H4, a known epigenetic marker of inducible HSF1 binding, was observed in response to heat shock in HYPK gene promoter. Overexpression of HYPK inhibited cells from lethal heat-induced death whereas knockdown of HYPK made the cells susceptible to lethal heat shock-induced death. Apart from elevated temperature, HYPK was also upregulated by hypoxia and proteasome inhibition, two other forms of cellular stress. We concluded that chaperone-like protein HYPK is induced by cellular stress and under transcriptional regulation of HSF1. PMID:24465598

  16. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    PubMed

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Zinc Finger Proteins Mxr1p and Repressor of Phosphoenolpyruvate Carboxykinase (ROP) Have the Same DNA Binding Specificity but Regulate Methanol Metabolism Antagonistically in Pichia pastoris*

    PubMed Central

    Kumar, Nallani Vijay; Rangarajan, Pundi N.

    2012-01-01

    The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5′ CYCCNY 3′ motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species. PMID:22888024

  18. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  19. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    NASA Astrophysics Data System (ADS)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  20. Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2015-12-01

    The influence of mitochondrial electron transport chain inhibitors on the electricity outputs of Candida melibiosica yeast-based biofuel cell was investigated. The addition of 30 μM rotenone or antimycin A to the yeast suspension results in a decrease in the current generation, corresponding to 25.7±1.3%, respectively 38.8±1.9% reduction in the electric charge passed through the bioelectrochemical system. The latter percentage coincides with the share of aerobic respiration in the yeast catabolic processes, determined by the decrease of the ethanol production during cultivation in the presence of oxygen compared with that obtained under strict anaerobic conditions. It was established that the presence of both inhibitors leads to almost complete mitochondrial dysfunction, expressed by inactivation of cytochrome c oxidase and NADH:ubiquinone oxidoreductase as well as reduced electrochemical activity of isolated yeast mitochondria. It was also found that methylene blue partially neutralized the rotenone poisoning, probably serving as alternative intracellular electron shuttle for by-passing the complex I blockage. Based on the obtained results, we suppose that electrons generated through the aerobic respiration processes in the mitochondria participate in the extracellular electron transfer from the yeast cells to the biofuel cell anode, which contributes to higher current outputs at aerobic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The Histone Acetyltransferase Gcn5 Regulates ncRNA-ICR1 and FLO11 Expression during Pseudohyphal Development in Saccharomyces cerevisiae

    PubMed Central

    Wang, Long-Chi; Montalvo-Munoz, Fernando; Tsai, Yuan-Chan; Liang, Chung-Yi; Chang, Chun-Chuan; Lo, Wan-Sheng

    2015-01-01

    Filamentous growth is one of the key features of pathogenic fungi during the early infectious phase. The pseudohyphal development of yeast Saccharomyces cerevisiae shares similar characteristics with hyphae elongation in pathogenic fungi. The expression of FLO11 is essential for adhesive growth and filament formation in yeast and is governed by a multilayered transcriptional network. Here we discovered a role for the histone acetyltransferase general control nonderepressible 5 (Gcn5) in regulating FLO11-mediated pseudohyphal growth. The expression patterns of FLO11 were distinct in haploid and diploid yeast under amino acid starvation induced by 3-amino-1,2,4-triazole (3AT). In diploids, FLO11 expression was substantially induced at a very early stage of pseudohyphal development and decreased quickly, but in haploids, it was gradually induced. Furthermore, the transcription factor Gcn4 was recruited to the Sfl1-Flo8 toggle sites at the FLO11 promoter under 3AT treatment. Moreover, the histone acetylase activity of Gcn5 was required for FLO11 induction. Finally, Gcn5 functioned as a negative regulator of the noncoding RNA ICR1, which is known to suppress FLO11 expression. Gcn5 plays an important role in the regulatory network of FLO11 expression via Gcn4 by downregulating ICR1 expression, which derepresses FLO11 for promoting pseudohyphal development. PMID:25922832

  2. Human XPA and XRCC1 DNA repair proteins expressed in yeast, Saccharomyces cerevisiae.

    PubMed

    Pushnova, E A; Ostanin, K; Thelen, M P

    2001-11-01

    Human XPA and XRCC1 DNA repair proteins have been expressed in a series of novel yeast episomal vectors. Expression of XPA cDNA resulted in synthesis of anti-XPA crossreacting polypeptides of 40 and 42 kDa, the status of the native protein found in human cells. Likewise, the majority of the recombinant XRCC1 found in the yeast intracellular fraction corresponded to the molecular mass of the full-length human protein. Recombinant XPA protein expressed as an NH(2)-terminal polyhistidine fusion could be affinity purified using Ni(2+) agarose. Copyright 2001 Academic Press.

  3. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications

    PubMed Central

    Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana

    2016-01-01

    In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596

  4. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast.

    PubMed

    Song, M; Ouyang, Z; Liu, Z L

    2009-05-01

    Composed of linear difference equations, a discrete dynamical system (DDS) model was designed to reconstruct transcriptional regulations in gene regulatory networks (GRNs) for ethanologenic yeast Saccharomyces cerevisiae in response to 5-hydroxymethylfurfural (HMF), a bioethanol conversion inhibitor. The modelling aims at identification of a system of linear difference equations to represent temporal interactions among significantly expressed genes. Power stability is imposed on a system model under the normal condition in the absence of the inhibitor. Non-uniform sampling, typical in a time-course experimental design, is addressed by a log-time domain interpolation. A statistically significant DDS model of the yeast GRN derived from time-course gene expression measurements by exposure to HMF, revealed several verified transcriptional regulation events. These events implicate Yap1 and Pdr3, transcription factors consistently known for their regulatory roles by other studies or postulated by independent sequence motif analysis, suggesting their involvement in yeast tolerance and detoxification of the inhibitor.

  5. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  6. Budding yeast telomerase RNA transcription termination is dictated by the Nrd1/Nab3 non-coding RNA termination pathway

    PubMed Central

    Noël, Jean-François; Larose, Stéphanie; Abou Elela, Sherif; Wellinger, Raymund J.

    2012-01-01

    The RNA component of budding yeast telomerase (Tlc1) occurs in two forms, a non-polyadenylated form found in functional telomerase and a rare polyadenylated version with unknown function. Previous work suggested that the functional Tlc1 polyA− RNA is processed from the polyA+ form, but the mechanisms regulating its transcription termination and 3′-end formation remained unclear. Here we examined transcription termination of Tlc1 RNA in the sequences 3′ of the TLC1 gene and relate it to telomere maintenance. Strikingly, disruption of all probable or cryptic polyadenylation signals near the 3′-end blocked the accumulation of the previously reported polyA+ RNA without affecting the level, function or specific 3′ nucleotide of the mature polyA− form. A genetic approach analysing TLC1 3′-end sequences revealed that transcription terminates upstream of the polyadenylation sites. Furthermore, the results also demonstrate that the function of this Tlc1 terminator depends on the Nrd1/Nab3 transcription termination pathway. The data thus show that transcription termination of the budding yeast telomerase RNA occurs as that of snRNAs and Tlc1 functions in telomere maintenance are not strictly dependent on a polyadenylated precursor, even if the polyA+ form can serve as intermediate in a redundant termination/maturation pathway. PMID:22379137

  7. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    PubMed

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  8. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes.

    PubMed

    Zhang, Hua; Zhao, Yu; Zhou, Dao-Xiu

    2017-12-01

    Sirtuins, a family of proteins with homology to the yeast silent information regulator 2 (Sir2), are NAD+-dependent histone deacetylases and play crucial roles in energy sensing and regulation in yeast and animal cells. Plants are autotrophic organisms and display distinct features of carbon and energy metabolism. It remains largely unexplored whether and how plant cells sense energy/redox status to control carbon metabolic flux under various growth conditions. In this work, we show that the rice nuclear sirtuin OsSRT1 not only functions as an epigenetic regulator to repress glycolytic genes expression and glycolysis in seedlings, but also inhibits transcriptional activity of glyceraldehyde-3-phosphatedehydrogenase (GAPDH) that is enriched on glycolytic genes promoters and stimulates their expression. We show that OsSRT1 reduces GAPDH lysine acetylation and nuclear accumulation that are enhanced by oxidative stress. Mass spectrometry identified six acetylated lysines regulated by OsSRT1. OsSRT1-dependent lysine deacetylation of OsGAPDH1 represses transcriptional activity of the protein. The results indicate that OsSRT1 represses glycolysis by both regulating epigenetic modification of histone and inhibiting the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes in rice. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. RNA interactome capture in yeast.

    PubMed

    Beckmann, Benedikt M

    2017-04-15

    RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3days to complete. Next to a comprehensive explanation of the method, we focus on our findings about the choice of crosslinking in yeast and discuss the rationale of individual steps in the protocol. Copyright © 2016. Published by Elsevier Inc.

  10. Transferrin receptor-like proteins control the degradation of a yeast metal transporter

    PubMed Central

    Stimpson, Helen E M; Lewis, Michael J; Pelham, Hugh R B

    2006-01-01

    Plasma membrane transporters are often downregulated by their substrates. The yeast manganese transporter Smf1 is subject to two levels of regulation: heavy metals induce its sequestration within the cell, and also its ubiquitination and degradation in the vacuole. Degradation requires Bsd2, a membrane protein with a PPxY motif that recruits the ubiquitin ligase Rsp5, and which has a role in the quality control of membrane proteins, that expose hydrophilic residues to the lipid bilayer. We show that degradation of Smf1 requires in addition one of a pair of related yeast proteins, Tre1 and Tre2, that also contain PPxY motifs. Tre1 can partially inhibit manganese uptake without Bsd2, but requires Bsd2 to induce Smf1 degradation. It has a relatively hydrophilic transmembrane domain and binds to Bsd2. We propose that the Tre proteins specifically link Smf1 to the Bsd2-dependent quality control system. Their luminal domains are related to the transferrin receptor, but these are dispensable for Smf1 regulation. Tre proteins and the transferrin receptors appear to have evolved independently from the same family of membrane-associated proteases. PMID:16456538

  11. Genetic incorporation of Nε-acetyllysine reveals a novel acetylation-sumoylation switch in yeast.

    PubMed

    Kim, Sang-Woo; Lee, Kyung Jin; Kim, Sinil; Kim, Jihyo; Cho, Kyukwang; Ro, Hyeon-Su; Park, Hee-Sung

    2017-11-01

    The lysine acetylation of proteins plays a key role in regulating protein functions, thereby controlling a wide range of cellular processes. Despite the prevalence and significance of lysine acetylation in eukaryotes, however, its systematic study has been challenged by the technical limitations of conventional approaches for selective lysine acetylation in vivo. Here, we report the in vivo study of lysine acetylation via the genetic incorporation of N ε -acetyllysine in yeast. We demonstrate that a newly discovered acetylation-sumoylation switch precisely controls the localization and cellular function of the yeast septin protein, Cdc11, during the cell cycle. This approach should facilitate the comprehensive in vivo study of lysine acetylation across a wide range of proteins in eukaryotic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bacterial vaginosis and vaginal yeast, but not vaginal cleansing, increase HIV-1 acquisition in African women.

    PubMed

    van de Wijgert, Janneke H H M; Morrison, Charles S; Cornelisse, Peter G A; Munjoma, Marshall; Moncada, Jeanne; Awio, Peter; Wang, Jing; Van der Pol, Barbara; Chipato, Tsungai; Salata, Robert A; Padian, Nancy S

    2008-06-01

    To evaluate interrelationships between bacterial vaginosis (BV), vaginal yeast, vaginal practices (cleansing and drying/tightening), mucosal inflammation, and HIV acquisition. A multicenter, prospective, observational cohort study was conducted, enrolling 4531 HIV-negative women aged 18 to 35 years attending family planning clinics in Zimbabwe and Uganda. Participants were tested for HIV and reproductive tract infections and were interviewed about vaginal practices every 3 months for 15 to 24 months. BV was measured by Gram stain Nugent scoring, vaginal yeast by wet mount, and mucosal inflammation by white blood cells on Gram stain. HIV incidence was 4.12 and 1.53 per 100 woman-years of follow-up in Zimbabwe and Uganda, respectively (a total of 213 incident infections). Women with BV or vaginal yeast were more likely to acquire HIV, especially if the condition was present at the same visit as the new HIV infection and the visit preceding it (hazard ratio [HR] = 2.50, 95% confidence interval [CI]: 1.68 to 3.72 and HR = 2.97, 95% CI: 1.67 to 5.28 for BV and yeast, respectively). These relationships did not seem to be mediated by mucosal inflammation. Vaginal drying/tightening was associated with HIV acquisition in univariate (HR = 1.49, 95% CI: 1.03 to 2.15) but not multivariate models. Vaginal cleansing was not associated with HIV acquisition. BV and yeast may contribute more to the HIV epidemic than previously thought.

  13. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  14. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  15. Identification of Isn1 and Sdt1 as Glucose- and Vitamin-regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5′-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside*

    PubMed Central

    Bogan, Katrina L.; Evans, Charles; Belenky, Peter; Song, Peng; Burant, Charles F.; Kennedy, Robert; Brenner, Charles

    2009-01-01

    Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD+, which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD+ metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5′-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5′-nucleotidase, and Sdt1, initially classified as a pyrimidine 5′-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD+. Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD+ metabolism. PMID:19846558

  16. Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.

    PubMed

    Bogan, Katrina L; Evans, Charles; Belenky, Peter; Song, Peng; Burant, Charles F; Kennedy, Robert; Brenner, Charles

    2009-12-11

    Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD(+), which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD(+) metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5'-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5'-nucleotidase, and Sdt1, initially classified as a pyrimidine 5'-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD(+). Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD(+) metabolism.

  17. Cdk1 Regulates the Temporal Recruitment of Telomerase and Cdc13-Stn1-Ten1 Complex for Telomere Replication

    PubMed Central

    Liu, Chang-Ching; Gopalakrishnan, Veena; Poon, Lai-Fong; Yan, TingDong

    2014-01-01

    In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance. PMID:24164896

  18. Isolation and identification of yeast flora from genital tract in healthy female camels (Camelus dromedarius).

    PubMed

    Shokri, Hojjatollah; Khosravi, Alireza; Sharifzadeh, Aghil; Tootian, Zahra

    2010-07-29

    Yeasts are commensal organisms found in the skin, genital and gastrointestinal tracts, and other mucosal sites in mammalians. The purposes of this study were to identify yeast flora and to determine the number of colony forming units (CFUs) in genital tract of healthy female dromedary camels, establishing their connection in both mated and unmated conditions. The samples were taken from different parts of genital tract including vestibule, vagina, cervix, uterine body, and uterine horns of 50 camels using sterilized cotton swabs. They were cultured onto Sabouraud glucose agar containing chloramphenicol and incubated at 30 degrees C for 7-10 days. A total of 454 yeast colonies were obtained from genital tract. Yeast isolates belonged to 8 genera: Candida (73.1%), Trichosporon (10.1%), Geotrichum (7.5%), Kluyveromyces (3.5%), Rhodotorula (2.4%), Aureobasidium (1.4%), Cryptococcus (1.1%) and Prototheca (0.8%). Among different Candida species, C. zeylanoides was the most common isolated species, representing significant difference with other Candida species (P<0.05). The mean number of yeasts found in the vestibule (46%) was significantly higher than the results obtained from other parts (P<0.05). In addition, the mean value of CFUs from unmated females (71.1%) was significantly higher than mated females (P<0.05). The results showed that C. zeylanoides was a common component of healthy camel females' genital mycoflora and the number of yeasts varied between mated and unmated females. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    NASA Astrophysics Data System (ADS)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  20. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability.

    PubMed

    Yu, Xiao; Chen, Shuliang; Hou, Panpan; Wang, Min; Chen, Yu; Guo, Deyin

    2015-04-03

    Eukaryotic cellular and most viral RNAs carry a 5'-terminal cap structure, a 5'-5' triphosphate linkage between the 5' end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2'-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Sfp1 and Rtg3 reciprocally modulate carbon source‐conditional stress adaptation in the pathogenic yeast Candida albicans

    PubMed Central

    Kastora, Stavroula L.; Herrero‐de‐Dios, Carmen; Avelar, Gabriela M.; Munro, Carol A.

    2017-01-01

    Summary The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host‐imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these ‘non‐standard’ growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source‐conditional manner. SFP1 is induced in stressed glucose‐grown cells, whereas RTG3 is upregulated in stressed lactate‐grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source‐dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation. PMID:28574606

  2. Architecture of the Yeast RNA Polymerase II Open Complex and Regulation of Activity by TFIIF

    PubMed Central

    Fishburn, James

    2012-01-01

    To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB–p-bromoacetamidobenzyl–EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain. PMID:22025674

  3. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps.

    PubMed

    García-Salcedo, Raúl; Lubitz, Timo; Beltran, Gemma; Elbing, Karin; Tian, Ye; Frey, Simone; Wolkenhauer, Olaf; Krantz, Marcus; Klipp, Edda; Hohmann, Stefan

    2014-04-01

    The AMP-activated protein kinase, AMPK, controls energy homeostasis in eukaryotic cells but little is known about the mechanisms governing the dynamics of its activation/deactivation. The yeast AMPK, SNF1, is activated in response to glucose depletion and mediates glucose de-repression by inactivating the transcriptional repressor Mig1. Here we show that overexpression of the Snf1-activating kinase Sak1 results, in the presence of glucose, in constitutive Snf1 activation without alleviating glucose repression. Co-overexpression of the regulatory subunit Reg1 of the Glc-Reg1 phosphatase complex partly restores glucose regulation of Snf1. We generated a set of 24 kinetic mathematical models based on dynamic data of Snf1 pathway activation and deactivation. The models that reproduced our experimental observations best featured (a) glucose regulation of both Snf1 phosphorylation and dephosphorylation, (b) determination of the Mig1 phosphorylation status in the absence of glucose by Snf1 activity only and (c) a regulatory step directing active Snf1 to Mig1 under glucose limitation. Hence it appears that glucose de-repression via Snf1-Mig1 is regulated by glucose via at least two independent steps: the control of activation of the Snf1 kinase and directing active Snf1 to inactivating its target Mig1. © 2014 FEBS.

  4. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    PubMed

    Laomettachit, Teeraphan; Chen, Katherine C; Baumann, William T; Tyson, John J

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.

  5. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks

    PubMed Central

    Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  6. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation.

    PubMed

    Odell, Anahi V; Tran, Fanny; Foderaro, Jenna E; Poupart, Séverine; Pathak, Ravi; Westwood, Nicholas J; Ward, Gary E

    2015-01-01

    Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.

  7. The effect of yeast weight and temperature on ethanol production from sorghum and iles-iles flour

    NASA Astrophysics Data System (ADS)

    Kusmiyati, Shitophyta, Lukhi Mulia

    2015-12-01

    An increased of human need that spend a lot of energy, especially fuel resulting in excessive energy consumption. Therefore, the existence of alternative energy that renewable and environmentally friendly, such as bioethanol is required. In this study the use of sorghum and iles-iles as raw materials for bioethanol production were investigated. The variables studied were the saccharification time, weight of dry yeast Saccharomyces cerevisiae added in the starter culture (2.5, 5, 10, 15, 20 g) and fermentation temperature (30, 35, 40, 45, 50°C). Bioethanol production consisted of the enzymatic hydrolysis (liquefaction and saccharification), and fermentation. For liquefaction, 1.6% v/w α-amylase enzyme, 1 hour, T = 95-100° C, pH 6 were used. For saccharification, 3.2% v/w b-amylase enzyme, time 4,8,24,48 hours, T = 60°C, pH 5 were used. For fermentation, Saccharomyces cerevisiae yeast were used with conditions of time for 120 hours, pH 4.5. The effect of dry yeast weight and fermentation temperature indicated that 15 g yeast weight and temperature 30° C were found to be the best condition which resulted the highest ethanol concentration of 85.20 g/L and 79.94 g/L for sorghum and iles-iles flour, respectively.

  8. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.

    PubMed

    Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy

    2004-12-01

    Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.

  9. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Dever, Thomas E.; Kinzy, Terri Goss; Pavitt, Graham D.

    2016-01-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae. The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs. PMID:27183566

  10. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly

    PubMed Central

    Cook, Jeremy D.; Kondapalli, Kalyan C.; Rawat, Swati; Childs, William C.; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L.

    2010-01-01

    Frataxin, a conserved nuclear encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich’s ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two: Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone n the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to better understand the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry (ITC). Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into a Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly. PMID:20815377

  11. Molecular Details of the Yeast Frataxin-Isu1 Interaction during Mitochondrial Fe-S Cluster Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.; Kondapalli, K; Rawat, S

    2010-01-01

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural modulemore » to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.« less

  12. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly.

    PubMed

    Cook, Jeremy D; Kondapalli, Kalyan C; Rawat, Swati; Childs, William C; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L

    2010-10-12

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.

  13. The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake.

    PubMed

    Saliba, Elie; Evangelinos, Minoas; Gournas, Christos; Corrillon, Florent; Georis, Isabelle; André, Bruno

    2018-03-23

    The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H + influx catalyzed by amino-acid/H + symporters. H + -dependent uptake of other nutrients, ionophore-mediated H + diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H + elicited by these processes stimulates the compensating H + -export activity of the plasma membrane H + -ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H + -ATPase, H + influx or increase fails to activate TORC1. Our results show that H + influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. © 2018, Saliba et al.

  14. A Novel Family of Cell Wall-Related Proteins Regulated Differently during the Yeast Life Cycle

    PubMed Central

    Rodríguez-Peña, José Manuel; Cid, Víctor J.; Arroyo, Javier; Nombela, César

    2000-01-01

    The Saccharomyces cerevisiae Ygr189c, Yel040w, and Ylr213c gene products show significant homologies among themselves and with various bacterial β-glucanases and eukaryotic endotransglycosidases. Deletion of the corresponding genes, either individually or in combination, did not produce a lethal phenotype. However, the removal of YGR189c and YEL040w, but not YLR213c, caused additive sensitivity to compounds that interfere with cell wall construction, such as Congo red and Calcofluor White, and overexpression of YEL040w led to resistance to these compounds. These genes were renamed CRH1 and CRH2, respectively, for Congo red hypersensitive. By site-directed mutagenesis we found that the putative glycosidase domain of CRH1 was critical for its function in complementing hypersensitivity to the inhibitors. The involvement of CRH1 and CRH2 in the development of cell wall architecture was clearly shown, since the alkali-soluble glucan fraction in the crh1Δ crh2Δ strain was almost twice the level in the wild-type. Interestingly, the three genes were subject to different patterns of transcriptional regulation. CRH1 and YLR213c (renamed CRR1, for CRH related) were found to be cell cycle regulated and also expressed under sporulation conditions, whereas CRH2 expression did not vary during the mitotic cycle. Crh1 and Crh2 are localized at the cell surface, particularly in chitin-rich areas. Consistent with the observed expression patterns, Crh1–green fluorescent protein was found at the incipient bud site, around the septum area in later stages of budding, and in ascospore envelopes. Crh2 was found to localize mainly at the bud neck throughout the whole budding cycle, in mating projections and zygotes, but not in ascospores. These data suggest that the members of this family of putative glycosidases might exert a common role in cell wall organization at different stages of the yeast life cycle. PMID:10757808

  15. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism.

    PubMed

    Frieman, Matthew B; Chen, Jun; Morrison, Thomas E; Whitmore, Alan; Funkhouser, William; Ward, Jerrold M; Lamirande, Elaine W; Roberts, Anjeanette; Heise, Mark; Subbarao, Kanta; Baric, Ralph S

    2010-04-08

    Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1-/- mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1-/- mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation.

  16. E1B-55K mediated regulation of RNF4 STUbL promotes HAdV gene expression.

    PubMed

    Müncheberg, Sarah; Hay, Ron T; Ip, Wing H; Meyer, Tina; Weiß, Christina; Brenke, Jara; Masser, Sawinee; Hadian, Kamyar; Dobner, Thomas; Schreiner, Sabrina

    2018-04-25

    HAdV E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in non-permissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 Ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established.RNF4, a cellular SUMO-targeted Ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM, and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNAi resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies. IMPORTANCE Daxx is a PML-NB-associated transcription factor, which was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 Ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain productive viral life

  17. Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae.

    PubMed

    Li, Jinmei; Yan, Gonghong; Liu, Sichi; Jiang, Tong; Zhong, Mingming; Yuan, Wenjie; Chen, Shaoxian; Zheng, Yin; Jiang, Yong; Jiang, Yu

    2017-12-01

    In yeast target of rapamycin complex 1 (TORC1) and Tap42-associated phosphatases regulate expression of genes involved in nitrogen limitation response and the nitrogen discrimination pathway. However, it remains unclear whether TORC1 and the phosphatases are required for sensing nitrogen conditions. Utilizing temperature sensitive mutants of tor2 and tap42, we examined the role of TORC1 and Tap42 in nuclear entry of Gln3, a key transcription factor in yeast nitrogen metabolism, in response to changes in nitrogen conditions. Our data show that TORC1 is essential for Gln3 nuclear entry upon nitrogen limitation and downshift in nitrogen quality. However, Tap42-associated phosphatases are required only under nitrogen limitation condition. In cells grown in poor nitrogen medium, the nitrogen permease reactivator kinase (Npr1) inhibits TORC1 activity and alters its association with Tap42, rendering Tap42-associated phosphatases unresponsive to nitrogen limitation. These findings demonstrate a direct role for TORC1 and Tap42-associated phosphatases in sensing nitrogen conditions and unveil an Npr1-dependent mechanism that controls TORC1 and the phosphatases in response to changes in nitrogen quality. © 2017 John Wiley & Sons Ltd.

  18. Yeast Two-Hybrid and One-Hybrid Screenings Identify Regulators of hsp70 Gene Expression.

    PubMed

    Saito, Youhei; Nakagawa, Takanobu; Kakihana, Ayana; Nakamura, Yoshia; Nabika, Tomomi; Kasai, Michihiro; Takamori, Mai; Yamagishi, Nobuyuki; Kuga, Takahisa; Hatayama, Takumi; Nakayama, Yuji

    2016-09-01

    The mammalian stress protein Hsp105β, which is specifically expressed during mild heat shock and localizes to the nucleus, induces the major stress protein Hsp70. In the present study, we performed yeast two-hybrid and one-hybrid screenings to identify the regulators of Hsp105β-mediated hsp70 gene expression. Six and two proteins were detected as Hsp105β- and hsp70 promoter-binding proteins, respectively. A luciferase reporter gene assay revealed that hsp70 promoter activation is enhanced by the transcriptional co-activator AF9 and splicing mediator SNRPE, but suppressed by the coiled-coil domain-containing protein CCDC127. Of these proteins, the knockdown of SNRPE suppressed the expression of Hsp70 irrespective of the presence of Hsp105β, indicating that SNRPE essentially functions as a transcriptional activator of hsp70 gene expression. The overexpression of HSP70 in tumor cells has been associated with cell survival and drug resistance. We here identified novel regulators of Hsp70 expression in stress signaling and also provided important insights into Hsp70-targeted anti-cancer therapy. J. Cell. Biochem. 117: 2109-2117, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. β-(1 → 3)-Glucanolytic yeasts from Brazilian grape microbiota: production and characterization of β-glucanolytic enzymes by Aureobasidium pullulans 1WA1 cultivated on fungal Mycelium.

    PubMed

    Bauermeister, Anelize; Amador, Ismael R; Pretti, Carla P; Giese, Ellen C; Oliveira, André L M

    2015-01-14

    A total of 95 yeast strains were isolated from the microbiota of different grapes collected at vineyards in southern Brazil. The yeasts were screened for β-(1 → 3)-glucanases using a newly developed zymogram method that relies upon the appearance of clearance zones around growing colonies cultured on agar–botryosphaeran medium and also by submerged fermentation on nutrient medium containing botryosphaeran, a (1 → 3),(1 → 6)-β-d-glucan. Among 14 β-(1 → 3)-glucanase-positive yeasts identified, four strains produced the highest β-glucanolytic activities and were evaluated for enzyme production on cellobiose, botryosphaeran, and mycelial biomass from Botryosphaeria rhodina (MAMB-05). Yeast strain 1WA1 produced the highest β-(1 → 3)-glucanase and β-glucosidase activities and was identified by molecular characterization as Aureobasidium pullulans. The physicochemical properties of the crude β-glucanolytic enzyme preparation were characterized, and the preparation was used to hydrolyze several β-d-glucans (laminarin, botryosphaeran, lasiodiplodan, pustulan, and curdlan). The production and physicochemical properties of the β-glucanolytic preparation enable its potential applications in wine enology and production of prebiotics through hydrolysis of β-d-glucans.

  20. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters.

    PubMed

    Dung, N T P; Rombouts, F M; Nout, M J R

    2006-06-01

    The role of starch-degrading mycelial fungi, and the alcohol production and ethanol tolerance of the yeasts isolated from selected Vietnamese traditional rice wine starters were examined, and optimum conditions for these essential steps in rice wine fermentation were determined. Of pure isolates from Vietnamese rice wine starters, mould strains identified as Amylomyces rouxii, Amylomyces aff. rouxii, Rhizopus oligosporus and Rhizopus oryzae, were superior in starch degradation, glucose production and amyloglucosidase activity during the saccharification of purple glutinous rice. A. rouxii was able to produce up to 25%w/w glucose with an amyloglucosidase activity up to 0.6 Ug(-1) of fermented moulded mass. Five yeast isolates identified as Saccharomyces cerevisiae were selected for their superior alcohol productivity. They were able to deplete a relatively high initial percentage of glucose (20% w/v), forming 8.8% w/v ethanol. The ethanol tolerance of S. cerevisiae in challenge tests was 9-10% w/v, and 13.4% w/v as measured in fed-batch fermentations. Optimum conditions for the saccharification were: incubation for 2 d at 34 degrees C, of steamed rice inoculated with 5 log cfu g(-1); for the alcoholic fermentation 4 d at 28.3 degrees C, of saccharified rice liquid inoculated with 5.5 log cfu mL(-1).

  1. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Athenstaedt, Karin

    2011-10-01

    The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. SARS-CoV regulates immune function-related gene expression in human monocytic cells.

    PubMed

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A

    2012-08-01

    Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.

  3. SARS-CoV Regulates Immune Function-Related Gene Expression in Human Monocytic Cells

    PubMed Central

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang

    2012-01-01

    Abstract Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS. PMID:22876772

  4. The H159A mutant of yeast enolase 1 has significant activity.

    PubMed

    Brewer, J M; Holland, M J; Lebioda, L

    2000-10-05

    The function of His159 in the enolase mechanism is disputed. Recently, Vinarov and Nowak (Biochemistry (1999) 38, 12138-12149) prepared the H159A mutant of yeast enolase 1 and expressed this in Escherichia coli. They reported minimal (ca. 0.01% of the native value) activity, though the protein appeared to be correctly folded, according to its CD spectrum, tryptophan fluorescence, and binding of metal ion and substrate. We prepared H159A enolase using a multicopy plasmid and expressed the enzyme in yeast. Our preparations of H159A enolase have 0.2-0.4% of the native activity under standard assay conditions and are further activated by Mg(2+) concentrations above 1 mM to 1-1.5% of the native activity. Native enolase 1 (and enolase 2) are inhibited by such Mg(2+) concentrations. It is possible that His159 is necessary for correct folding of the enzyme and that expression in E. coli leads to largely misfolded protein. Copyright 2000 Academic Press.

  5. Nutrient supplements boost yeast transformation efficiency

    PubMed Central

    Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.

    2016-01-01

    Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994

  6. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents

    PubMed Central

    2016-01-01

    Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between −30 and −40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982

  7. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases.

  8. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  9. The ER membrane insertase Get1/2 is required for efficient mitophagy in yeast.

    PubMed

    Onishi, Mashun; Nagumo, Sachiyo; Iwashita, Shohei; Okamoto, Koji

    2018-05-10

    Mitophagy is an evolutionarily conserved autophagy pathway that selectively eliminates mitochondria to control mitochondrial quality and quantity. Although mitophagy is thought to be crucial for cellular homeostasis, how this catabolic process is regulated remains largely unknown. Here we demonstrate that mitophagy during prolonged respiratory growth is strongly impaired in yeast cells lacking Get1/2, a transmembrane complex mediating insertion of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane. Under the same conditions, loss of Get1/2 caused only slight defects in other types of selective and bulk autophagy. In addition, mitophagy and other autophagy-related processes are mostly normal in cells lacking Get3, a cytosolic ATP-driven chaperone that promotes delivery of TA proteins to the Get1/2 complex. We also found that Get1/2-deficient cells exhibited wildtype-like induction and mitochondrial localization of Atg32, a protein essential for mitophagy. Notably, Get1/2 is important for Atg32-independent, ectopically promoted mitophagy. Together, we propose that Get1/2-dependent TA protein(s) and/or the Get1/2 complex itself may act specifically in mitophagy. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Carbohydrate and energy-yielding metabolism in non-conventional yeasts.

    PubMed

    Flores, C L; Rodríguez, C; Petit, T; Gancedo, C

    2000-10-01

    Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.

  11. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1.

    PubMed

    Vlaming, Hanneke; Molenaar, Thom M; van Welsem, Tibor; Poramba-Liyanage, Deepani W; Smith, Desiree E; Velds, Arno; Hoekman, Liesbeth; Korthout, Tessy; Hendriks, Sjoerd; Altelaar, A F Maarten; van Leeuwen, Fred

    2016-12-06

    Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features.

  12. Kinetics of growth and sugar consumption in yeasts.

    PubMed

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  13. A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates.

    PubMed

    Morse, David; Daoust, Philip; Benribague, Siham

    2016-12-01

    Dinoflagellates are a group of unicellular and generally marine protists, of interest to many because of their ability to form the large algal blooms commonly called "red tides". The large algal concentrations in these blooms require sustained cell replication, yet to date little is known about cell cycle regulation in these organisms. To address this issue, we have screened the transcriptomes of two dinoflagellates, Lingulodinium polyedrum and Symbiodinium sp., with budding yeast cell cycle pathway components. We find most yeast cell cycle regulators have homologs in these dinoflagellates, suggesting that the yeast model is appropriate for understanding regulation of the dinoflagellate cell cycle. The dinoflagellates are lacking several components essential in yeast, but a comparison with a broader phylogenetic range of protists reveals these components are usually also missing in other organisms. Lastly, phylogenetic analyses show that the dinoflagellates contain at least three cyclin-dependent kinase (CDK) homologs (belonging to the CDK1, CDK5 and CDK8 families), and that the dinoflagellate cyclins belong exclusively to the A/B type. This suggests that dinoflagellate CDKs likely play a limited role outside regulation of the cell cycle. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Estimating the size of the MSM populations for 38 European countries by calculating the survey-surveillance discrepancies (SSD) between self-reported new HIV diagnoses from the European MSM internet survey (EMIS) and surveillance-reported HIV diagnoses among MSM in 2009

    PubMed Central

    2013-01-01

    Background Comparison of rates of newly diagnosed HIV infections among MSM across countries is challenging for a variety of reasons, including the unknown size of MSM populations. In this paper we propose a method of triangulating surveillance data with data collected in a pan-European MSM Internet Survey (EMIS) to estimate the sizes of the national MSM populations and the rates at which HIV is being diagnosed amongst them by calculating survey-surveillance discrepancies (SSD) as a measure of selection biases of survey participants. Methods In 2010, the first EMIS collected self-reported data on HIV diagnoses among more than 180,000 MSM in 38 countries of Europe. These data were compared with data from national HIV surveillance systems to explore possible sampling and reporting biases in the two approaches. The Survey-Surveillance Discrepancy (SSD) represents the ratio of survey members diagnosed in 2009 (HIVsvy) to total survey members (Nsvy), divided by the ratio of surveillance reports of diagnoses in 2009 (HIVpop) to the estimated total MSM population (Npop). As differences in household internet access may be a key component of survey selection biases, we analysed the relationship between household internet access and SSD in countries conducting consecutive MSM internet surveys at different time points with increasing levels of internet access. The empirically defined SSD was used to calculate the respective MSM population sizes (Npop), using the formula Npop = HIVpop*Nsvy*SSD/HIVsvy. Results Survey-surveillance discrepancies for consecutive MSM internet surveys between 2003 and 2010 with different levels of household internet access were best described by a potential equation, with high SSD at low internet access, declining to a level around 2 with broad access. The lowest SSD was calculated for the Netherlands with 1.8, the highest for Moldova with 9.0. Taking the best available estimate for surveillance reports of HIV diagnoses among MSM in 2009 (HIVpop

  15. Mitochondrial Cochaperone Mge1 Is Involved in Regulating Susceptibility to Fluconazole in Saccharomyces cerevisiae and Candida Species.

    PubMed

    Demuyser, Liesbeth; Swinnen, Erwin; Fiori, Alessandro; Herrera-Malaver, Beatriz; Vestrepen, Kevin; Van Dijck, Patrick

    2017-07-18

    MGE1 encodes a yeast chaperone involved in Fe-S cluster metabolism and protein import into the mitochondria. In this study, we identified MGE1 as a multicopy suppressor of susceptibility to the antifungal fluconazole in the model yeast Saccharomyces cerevisiae We demonstrate that this phenomenon is not exclusively dependent on the integrity of the mitochondrial DNA or on the presence of the drug efflux pump Pdr5. Instead, we show that the increased dosage of Mge1 plays a protective role by retaining increased amounts of ergosterol upon fluconazole treatment. Iron metabolism and, more particularly, Fe-S cluster formation are involved in regulating this process, since the responsible Hsp70 chaperone, Ssq1, is required. Additionally, we show the necessity but, by itself, insufficiency of activating the iron regulon in establishing the Mge1-related effect on drug susceptibility. Finally, we confirm a similar role for Mge1 in fluconazole susceptibility in the pathogenic fungi Candida glabrata and Candida albicans IMPORTANCE Although they are mostly neglected compared to bacterial infections, fungal infections pose a serious threat to the human population. While some of them remain relatively harmless, infections that reach the bloodstream often become lethal. Only a few therapies are available, and resistance of the pathogen to these drugs is a frequently encountered problem. It is thus essential that more research is performed on how these pathogens cope with the treatment and cause recurrent infections. Baker's yeast is often used as a model to study pathogenic fungi. We show here, by using this model, that iron metabolism and the formation of the important iron-sulfur clusters are involved in regulating susceptibility to fluconazole, the most commonly used antifungal drug. We show that the same process likely also occurs in two of the most regularly isolated pathogenic fungi, Candida glabrata and Candida albicans . Copyright © 2017 Demuyser et al.

  16. Engineering of synthetic, stress-responsive yeast promoters

    PubMed Central

    Rajkumar, Arun S.; Liu, Guodong; Bergenholm, David; Arsovska, Dushica; Kristensen, Mette; Nielsen, Jens; Jensen, Michael K.; Keasling, Jay D.

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest. PMID:27325743

  17. Effects and mechanisms of apolipoprotein A-V on the regulation of lipid accumulation in cardiomyocytes.

    PubMed

    Luo, Jun; Xu, Li; Li, Jiang; Zhao, Shuiping

    2018-03-12

    Apolipoprotein (apo) A-V is a key regulator of triglyceride (TG) metabolism. We investigated effects of apoA-V on lipid metabolism in cardiomyocytes in this study. We first examined whether apoA-V can be taken up by cardiomyocytes and whether low density lipoprotein receptor family members participate in this process. Next, triglyceride (TG) content and lipid droplet changes were detected at different concentrations of apoA-V in normal and lipid-accumulation cells in normal and obese animals. Finally, we tested the levels of fatty acids (FAs) taken up into cardiomyocytes and lipid secretion through [ 14 C]-oleic acid. Our results show that heart tissue has apoA-V protein, and apoA-V is taken up by cardiomyocytes. When HL-1 cells were transfected with low density lipoprotein receptor (LDLR)-related protein 1(LRP1) siRNA, apoA-V intake decreased by 53% (P<0.05), while a 37% lipid accumulation in HL-1 cells remain unchanged. ApoA-V localized to the cytoplasm and was associated with lipid droplets in HL-1 cells. A 1200 and 1800 ng/mL apoA-V intervention decreased TG content by 28% and 45% in HL-1 cells, respectively and decreased TG content by 39% in mouse heart tissue (P<0.05). However, apoA-V had no effects on TG content in either normal HL-1 cells or mice. The levels of FAs taken up into cardiomyocytes decreased by 43% (P < 0.05), and the levels of TG and cholesterol ester secretion increased by 1.2-fold and 1.6-fold, respectively (P < 0.05). ApoA-V is a novel regulator of lipid metabolism in cardiomyocytes.

  18. Dynamic relocation of the TORC1–Gtr1/2–Ego1/2/3 complex is regulated by Gtr1 and Gtr2

    PubMed Central

    Kira, Shintaro; Kumano, Yuri; Ukai, Hirofumi; Takeda, Eigo; Matsuura, Akira; Noda, Takeshi

    2016-01-01

    TORC1 regulates cellular growth, metabolism, and autophagy by integrating various signals, including nutrient availability, through the small GTPases RagA/B/C/D in mammals and Gtr1/2 in budding yeast. Rag/Gtr is anchored to the lysosomal/vacuolar membrane by the scaffold protein complex Ragulator/Ego. Here we show that Ego consists of Ego1 and Ego3, and novel subunit Ego2. The ∆ego2 mutant exhibited only partial defects both in Gtr1-dependent TORC1 activation and Gtr1 localization on the vacuole. Ego1/2/3, Gtr1/2, and Tor1/Tco89 were colocalized on the vacuole and associated puncta. When Gtr1 was in its GTP-bound form and TORC1 was active, these proteins were preferentially localized on the vacuolar membrane, whereas when Gtr1 was in its GDP-bound form, they were mostly localized on the puncta. The localization of TORC1 to puncta was further facilitated by direct binding to Gtr2, which is involved in suppression of TORC1 activity. Thus regulation of TORC1 activity through Gtr1/Gtr2 is tightly coupled to the dynamic relocation of these proteins. PMID:26609069

  19. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.

    PubMed Central

    Lorenz, M C; Heitman, J

    1998-01-01

    Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth. PMID:9832522

  20. The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects.

    PubMed

    Lechner, Esther; Xie, Daoxin; Grava, Sandrine; Pigaglio, Emmanuelle; Planchais, Severine; Murray, James A H; Parmentier, Yves; Mutterer, Jerome; Dubreucq, Bertrand; Shen, Wen-Hui; Genschik, Pascal

    2002-12-20

    Recently in yeast and animal cells, one particular class of ubiquitin ligase (E3), called the SCF, was demonstrated to regulate diverse processes including cell cycle and development. In plants SCF-dependent proteolysis is also involved in different developmental and hormonal regulations. To further investigate the function of SCF, we characterized at the molecular level the Arabidopsis RING-H2 finger protein AtRbx1. We demonstrated that the plant gene is able to functionally complement a yeast knockout mutant strain and showed that AtRbx1 protein interacts physically with at least two members of the Arabidopsis cullin family (AtCul1 and AtCul4). AtRbx1 also associates with AtCul1 and the Arabidopsis SKP1-related proteins in planta, indicating that it is part of plant SCF complexes. AtRbx1 mRNAs accumulate in various tissues of the plant, but at higher levels in tissues containing actively dividing cells. Finally to study the function of the gene in planta, we either overexpressed AtRbx1 or reduced its expression by a dsRNA strategy. Down-regulation of AtRbx1 impaired seedling growth and development, indicating that the gene is essential in plants. Furthermore, the AtRbx1-silenced plants showed a reduced level of AtCul1 protein, but accumulated higher level of cyclin D3.