Sample records for yeast strain kluyveromyces

  1. Complete Genome Sequence of Kluyveromyces lactis Strain GG799, a Common Yeast Host for Heterologous Protein Expression

    PubMed Central

    Chuzel, Léa; Ganatra, Mehul B.; Schermerhorn, Kelly M.; Gardner, Andrew F.; Anton, Brian P.

    2017-01-01

    ABSTRACT We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales. PMID:28751387

  2. Yeast Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp.

    PubMed

    Šiekštelė, Rimantas; Veteikytė, Aušra; Tvaska, Bronius; Matijošytė, Inga

    2015-10-01

    Many microbial lipases have been successfully expressed in yeasts, but not in industrially attractive Kluyveromyces lactis, which among other benefits can be cultivated on a medium supplemented with whey--cheap and easily available industrial waste. A new bacterial lipase from Serratia sp. was isolated and for the first time expressed into the yeast Kluyveromyces lactis by heterologous protein expression system based on a strong promoter of Kluyveromyces marxianus triosephosphate isomerase gene and signal peptide of Kluyveromyces marxianus endopolygalacturonase gene. In addition, the bacterial lipase gene was synthesized de novo by taking into account a codon usage bias optimal for K. lactis and was expressed into the yeast K. lactis also. Both resulting strains were characterized by high output level of the target protein secreted extracellularly. Secreted lipases were characterized for activity and stability.

  3. Encapsulated whey-native yeast Kluyveromyces marxianus as a feed additive for animal production.

    PubMed

    Díaz-Vergara, Ladislao; Pereyra, Carina Maricel; Montenegro, Mariana; Pena, Gabriela Alejandra; Aminahuel, Carla Ayelen; Cavaglieri, Lilia R

    2017-05-01

    Whey is the main byproduct of the cheese industry. While the composition is variable, it retains up to 55% of milk nutrients. The beneficial features of whey indicates a promising source of new potentially probiotic strains for the development of food additives destined for animal production. The aim of this study was to identify Kluyveromyces spp. isolated from whey, to study some probiotic properties and to select the best strain to be encapsulated using derivatised chitosan. Kluyveromyces marxianus strains (VM003, VM004 and VM005) were isolated from whey and identified by phenotypic and molecular techniques. These three yeast strains were able to survive under gastrointestinal conditions. Moreover, they exhibited weak auto-aggregation and co-aggregation with pathogenic bacteria (Salmonella sp., Serratia sp., Escherichia coli and Salmonella typhimurium). In general the K. marxianus strains had a strong antimicrobial activity against pathogenic bacteria. The potential probiotic K. marxianus VM004 strain was selected for derivatised-chitosan encapsulation. Material treated with native chitosan exhibited a strong antimicrobial activity of K. marxianus, showing a total growth inhibition at 10 min exposure. However, derivatised-chitosan encapsulation showed a reduced antimicrobial activity. This is the first study to show some probiotic properties of whey-native K. marxianus, in vitro. An encapsulation strategy was applied using derivatised chitosan.

  4. Fermentation and aerobic metabolism of cellodextrins by yeasts. [Candida wickerhamii; C. guiliermondii; C. molischiana; Debaryomyces polymorphus; Pichia guilliermondii; Clavispora lusitaniae; Kluyveromyces lactis; Brettanomyces claussenii; Rhodotorula minuta; Dekkera intermedia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freer, S.N.

    1991-03-01

    The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wicherhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization {<=} 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettanomycesmore » claussenii, Brettanomyces anomalus, Kluyveromyces dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization >3 produced an enzyme(s) that hydrolyzed cellotretose.« less

  5. Acquisition of the yeast Kluyveromyces marxianus from unpasteurised milk by a kefir grain enhances kefir quality.

    PubMed

    Gethins, Loughlin; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Kilcawley, Kieran; O'Sullivan, Maurice; Crotty, Suzanne; Morrissey, John P

    2016-08-01

    Kefir is a fermented milk beverage consumed for nutritional and health tonic benefits in many parts of the world. It is produced by the fermentation of milk with a consortium of bacteria and yeast embedded within a polysaccharide matrix. This consortium is not well defined and can vary substantially between kefir grains. There are little data on the microbial stability of kefir grains, nor on interactions between microbes in the grain and in the milk. To study this, a grain was split, with one half of each stored at -20°C and the other half passaged repeatedly in whole unpasteurised milk. Grains passaged in the unpasteurised milk recovered vigour and acquired the yeast Kluyveromyces marxainus from the milk which was confirmed to be the same strain by molecular typing. Furthermore, these passaged grains produced kefir that was distinguished chemically and organoleptically from the stored grains. Some changes in ultrastructure were also observed by scanning electron microscopy. The study showed that kefir grains can acquire yeast from their environment and the final product can be influenced by these newly acquired yeasts. Kluyveromyces marxianus is considered to be responsible for some of the most important characteristics of kefir so the finding that this yeast is part of the less stable microbiota is significant. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production.

    PubMed

    Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier

    2013-10-01

    Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus.

    PubMed

    Oliva, Jose Miguel; Sáez, Felicia; Ballesteros, Ignacio; González, Alberto; Negro, Maria José; Manzanares, Paloma; Ballesteros, Mercedes

    2003-01-01

    The filtrate from steam-pretreated poplar was analyzed to identify degradation compounds. The effect of selected compounds on growth and ethanolic fermentation of the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875 was tested. Several fermentations on glucose medium, containing individual inhibitory compounds found in the hydrolysate, were carried out. The degree of inhibition on yeast strain growth and ethanolic fermentation was determined. At concentrations found in the prehy-drolysate, none of the individual compounds significantly affected the fermentation. For all tested compounds, growth was inhibited to a lesser extent than ethanol production. Lower concentrations of catechol (0.96 g/L) and 4-hydroxybenzaldehyde (1.02 g/L) were required to produce the 50% reduction in cell mass in comparison to other tested compounds.

  8. Construction of a lactose-assimilating strain of baker's yeast.

    PubMed

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey. Copyright 1999 John Wiley & Sons, Ltd.

  9. UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 strain for improved anaerobic growth at elevated temperature on pentose and hexose sugars

    USDA-ARS?s Scientific Manuscript database

    More robust industrial yeast strains from Kluyveromyces marxianus NRRL Y-1109 and have been produced using UV-C irradiation specifically for anaerobic conversion of lignocellulosic sugar streams to fuel ethanol at elevated temperature (45°C). This type of random mutagenesis offers the possibility o...

  10. Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress.

    PubMed

    Arellano-Plaza, Melchor; Gschaedler-Mathis, Anne; Noriega-Cisneros, Ruth; Clemente-Guerrero, Mónica; Manzo-Ávalos, Salvador; González-Hernández, Juan Carlos; Saavedra-Molina, Alfredo

    2013-07-01

    During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth. In this article, we describe the behavior of Kluyveromyces marxianus isolated from spontaneous mezcal fermentation during oxidative stress, and compared it with that of Saccharomyces cerevisiae strains that were also obtained from mezcal, using the W303-1A strain as a reference. S. cerevisiae strains showed greater viability after oxidative stress compared with K. marxianus strains. However, when the yeast strains were grown in the presence of oxidants in the media, K. marxianus exhibited a greater ability to grow in menadione than it did in H2O2. Moreover, when K. marxianus SLP1 was grown in a minibioreactor, its behavior when exposed to menadione was different from its behavior with H2O2. The yeast maintained the ability to consume dissolved oxygen during the 4 h subsequent to the addition of menadione, and then stopped respiration. When exposed to H2O2, the yeast stopped consuming oxygen for the following 8 h, but began to consume oxygen when stressors were no longer applied. In conclusion, yeast isolated from spontaneous mezcal fermentation was able to resist oxidative stress for a long period of time.

  11. Genome Sequence of the Thermotolerant Yeast Kluyveromyces marxianus var. marxianus KCTC 17555

    PubMed Central

    Jeong, Haeyoung; Lee, Dae-Hee; Kim, Sun Hong; Kim, Hyun-Jin; Lee, Kyusang; Song, Ju Yeon; Kim, Byung Kwon; Sung, Bong Hyun; Sohn, Jung Hoon; Koo, Hyun Min

    2012-01-01

    Kluyveromyces marxianus is a thermotolerant yeast that has been explored for potential use in biotechnological applications, such as production of biofuels, single-cell proteins, enzymes, and other heterologous proteins. Here, we present the high-quality draft of the 10.9-Mb genome of K. marxianus var. marxianus KCTC 17555 (= CBS 6556 = ATCC 26548). PMID:23193140

  12. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation.

    PubMed

    Amaya-Delgado, L; Herrera-López, E J; Arrizon, Javier; Arellano-Plaza, M; Gschaedler, A

    2013-05-01

    Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.

  13. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    PubMed

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.

  14. Fermentation of cacao (Theobroma cacao L.) seeds with a hybrid Kluyveromyces marxianus strain improved product quality attributes.

    PubMed

    Leal, Gildemberg Amorim; Gomes, Luiz Humberto; Efraim, Priscilla; de Almeida Tavares, Flavio Cesar; Figueira, Antonio

    2008-08-01

    Fermentation of Theobroma cacao (cacao) seeds is an absolute requirement for the full development of chocolate flavor precursors. An adequate aeration of the fermenting cacao seed mass is a fundamental prerequisite for a satisfactory fermentation. Here, we evaluated whether a controlled inoculation of cacao seed fermentation using a Kluyveromyces marxianus hybrid yeast strain, with an increased pectinolytic activity, would improve an earlier liquid drainage ('sweatings') from the fermentation mass, developing a superior final product quality. Inoculation with K. marxianus increased by one third the volume of drained liquid and affected the microorganism population structure during fermentation, which was detectable up to the end of the process. Introduction of the hybrid yeast affected the profile of total seed protein degradation evaluated by polyacrylamide gel electrophoresis, with improved seed protein degradation, and reduction of titrable acidity. Sensorial evaluation of the chocolate obtained from beans fermented with the K. marxianus inoculation was more accepted by analysts in comparison with the one from cocoa obtained through natural fermentation. The increase in mass aeration during the first 24 h seemed to be fundamental for the improvement of fermentation quality, demonstrating the potential application of this improved hybrid yeast strain with superior exogenous pectinolytic activity.

  15. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing.

    PubMed

    Hu, Nan; Yuan, Bo; Sun, Juan; Wang, Shi-An; Li, Fu-Li

    2012-09-01

    Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40 °C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200 g L(-1)) at 40 °C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2 g L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7 %, respectively. In the range of 30 to 40 °C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.

  16. Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid.

    PubMed

    Juergens, Hannes; Varela, Javier A; Gorter de Vries, Arthur R; Perli, Thomas; Gast, Veronica J M; Gyurchev, Nikola Y; Rajkumar, Arun S; Mans, Robert; Pronk, Jack T; Morrissey, John P; Daran, Jean-Marc G

    2018-05-01

    While CRISPR-Cas9-mediated genome editing has transformed yeast research, current plasmids and cassettes for Cas9 and guide-RNA expression are species specific. CRISPR tools that function in multiple yeast species could contribute to the intensifying research on non-conventional yeasts. A plasmid carrying a pangenomic origin of replication and two constitutive expression cassettes for Cas9 and ribozyme-flanked gRNAs was constructed. Its functionality was tested by analyzing inactivation of the ADE2 gene in four yeast species. In two Kluyveromyces species, near-perfect targeting (≥96%) and homologous repair (HR) were observed in at least 24% of transformants. In two Ogataea species, Ade- mutants were not observed directly after transformation, but prolonged incubation of transformed cells resulted in targeting efficiencies of 9% to 63% mediated by non-homologous end joining (NHEJ). In an Ogataea parapolymorpha ku80 mutant, deletion of OpADE2 mediated by HR was achieved, albeit at low efficiencies (<1%). Furthermore the expression of a dual polycistronic gRNA array enabled simultaneous interruption of OpADE2 and OpYNR1 demonstrating flexibility of ribozyme-flanked gRNA design for multiplexing. While prevalence of NHEJ prevented HR-mediated editing in Ogataea, such targeted editing was possible in Kluyveromyces. This broad-host-range CRISPR/gRNA system may contribute to exploration of Cas9-mediated genome editing in other Saccharomycotina yeasts.

  17. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    PubMed

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  18. Enhanced production of extracellular inulinase by the yeast Kluyveromyces marxianus in xylose catabolic state.

    PubMed

    Hoshida, Hisashi; Kidera, Kenta; Takishita, Ryuta; Fujioka, Nobuhisa; Fukagawa, Taiki; Akada, Rinji

    2018-06-01

    The production of extracellular proteins by the thermotolerant yeast Kluyveromyces marxianus, which utilizes various sugars, was investigated using media containing sugars such as glucose, galactose, and xylose. SDS-PAGE analysis of culture supernatants revealed abundant production of an extracellular protein when cells were grown in xylose medium. The N-terminal sequence of the extracellular protein was identical to a part of the inulinase encoded by INU1 in the genome. Inulinase is an enzyme hydrolyzing β-2,1-fructosyl bond in inulin and sucrose and is not required for xylose assimilation. Disruption of INU1 in the strain DMKU 3-1042 lost the production of the extracellular protein and resulted in growth defect in sucrose and inulin media, indicating that the extracellular protein was inulinase (sucrase). In addition, six K. marxianus strains among the 16 strains that were analyzed produced more inulinase in xylose medium than in glucose medium. However, expression analysis indicated that the INU1 promoter activity was lower in the xylose medium than in the glucose medium, suggesting that enhanced production of inulinase is controlled in a post-transcriptional manner. The production of inulinase was also higher in cultures with more agitation, suggesting that oxygen supply affects the production of inulinase. Taken together, these results suggest that both xylose and oxygen supply shift cellular metabolism to enhance the production of extracellular inulinase. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Kluyveromyces wickerhamii killer toxin: purification and activity towards Brettanomyces/Dekkera yeasts in grape must.

    PubMed

    Comitini, Francesca; Ciani, Maurizio

    2011-03-01

    Brettanomyces/Dekkera yeasts have been identified as part of the grape yeast flora. They are well known for colonizing the cellar environmental and spoiling wines, causing haze, turbidity and strong off-flavours in wines and enhancing the volatile acidity. As the general practices applied to combat Brettanomyces/Dekkera yeasts are not particularly appropriate during wine ageing and storage, a biological alternative to curtailing their growth would be welcomed in winemaking. In this study, we investigated the Kluyveromyces wickerhamii killer toxin (Kwkt) that is active against Brettanomyces/Dekkera spoilage yeasts. Purification procedures allowed the identification of Kwkt as a protein with an apparent molecular mass of 72 kDa and without any glycosyl residue. Interestingly, purified Kwkt has fungicidal effects at low concentrations under the physicochemical conditions of winemaking. The addition of 40 and 80 mg L(-1) purified Kwkt showed efficient antispoilage effects, controlling both growth and metabolic activity of sensitive spoilage yeasts. At these two killer toxin concentrations, compounds known to contribute to the 'Brett' character of wines, such as ethyl phenols, were not produced. Thus, purified Kwkt appears to be a suitable biological strategy to control Brettanomyces/Dekkera yeasts during fermentation, wine ageing and storage. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. 21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic yeast Kluyveromyces lactis... 683), which converts lactose to glucose and galactose. It is prepared from yeast that has been grown...

  1. 21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., nontoxicogenic yeast Kluyveromyces lactis (previously named Saccharomyces lactis). It contains the enzyme β... prepared from yeast that has been grown in a pure culture fermentation and by using materials that are...

  2. 21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., nontoxicogenic yeast Kluyveromyces lactis (previously named Saccharomyces lactis). It contains the enzyme β... prepared from yeast that has been grown in a pure culture fermentation and by using materials that are...

  3. Identification and assessment of kefir yeast potential for sugar/ethanol-resistance

    PubMed Central

    Miguel, M.G.C.P.; Cardoso, P.G.; Magalhães-Guedes, K.T.; Schwan, R.F.

    2013-01-01

    Biochemical and molecular analysis was used for identification of different kefir yeasts species from Brazil, Canada and the United States of America. The sugar/ethanol-resistant activity of the yeasts was evaluated. Saccharomyces cerevisiae and Kluyveromyces marxianus had the highest growth rates, suggesting biotechnological applications possible for these strains. PMID:24159292

  4. Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus.

    PubMed

    Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P

    2015-01-01

    The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.

    PubMed

    Moreno, Antonio D; Ibarra, David; Ballesteros, Ignacio; González, Alberto; Ballesteros, Mercedes

    2013-05-01

    In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Yeasts from autochthonal cheese starters: technological and functional properties.

    PubMed

    Binetti, A; Carrasco, M; Reinheimer, J; Suárez, V

    2013-08-01

    The aim of this work was to identify 20 yeasts isolated from autochthonal cheese starters and evaluate their technological and functional properties. The capacities of the yeasts to grow at different temperatures, pH, NaCl and lactic acid concentrations as well as the proteolytic and lipolytic activities were studied. Moreover, survival to simulated gastrointestinal digestion, hydrophobicity, antimicrobial activity against pathogens and auto- and co-aggregation abilities were evaluated. The sequentiation of a fragment from the 26S rDNA gene indicated that Kluyveromyces marxianus was the predominant species, followed by Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces lactis and Galactomyces geotrichum. RAPD with primer M13 allowed a good differentiation among strains from the same species. All strains normally grew at pH 4.7-5.5 and temperatures between 15 and 35°C. Most of them tolerated 10% NaCl and 3% lactic acid. Some strains showed proteolytic (eight isolates) and/or lipolytic (four isolates) capacities. All strains evidenced high gastrointestinal resistance, moderate hydrophobicity, intermediate auto-aggregation and variable co-aggregation abilities. No strains inhibited the growth of the pathogens assayed. Some strains from dairy sources showed interesting functional and technological properties. This study has been the first contribution to the identification and characterization of yeasts isolated from autochthonal cheese starters in Argentina. Many strains could be proposed as potential candidates to be used as probiotics and/or as co-starters in cheese productions. © 2013 The Society for Applied Microbiology.

  7. Attraction of Coffee Bean Weevil, Araecerus fasciculatus, to Volatiles from the Industrial Yeast Kluyveromyces lactis.

    PubMed

    Yang, Shuai; Mei, Xiang-Dong; Zhang, Xiao-Fang; Li, Yao-Fa; She, Dongmei; Zhang, Tao; Ning, Jun

    2017-02-01

    The coffee bean weevil (CBW), Araecerus fasciculatus (De Geer, 1775) (Coleoptera: Anthribidae) is an important pest of stored products such as grains, coffee beans, cassava, and traditional Chinese medicine materials. In China, CBW causes large losses of Daqu, a traditional Chinese liquor fermentation starter, and, unfortunately, the use of conventional insecticides against CBW is not suitable in Daqu storage. We found CBW to be highly attracted to fermenting yeast cultures, such as Kluyveromyces lactis. Eight volatile compounds, produced by fermenting cultures and not by sterile samples, were identified by gas chromatography coupled with mass spectrometry. Five of these substances elicited significant responses in Y-tube behavioral bioassays. Field trapping experiments revealed 2-phenylethanol and 2-phenylethyl acetate to be crucial for attraction of CBW. Results show that yeast volatiles play an important role in host location, and that 2-phenylethanol and 2-phenylethyl acetate could be utilized as potential attractants in monitoring and control systems against this important pest.

  8. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    PubMed

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Protein Kinases Involved in Mating and Osmotic Stress in the Yeast Kluyveromyces lactis▿

    PubMed Central

    Kawasaki, Laura; Castañeda-Bueno, María; Sánchez-Paredes, Edith; Velázquez-Zavala, Nancy; Torres-Quiroz, Francisco; Ongay-Larios, Laura; Coria, Roberto

    2008-01-01

    Systematic disruption of genes encoding kinases and mitogen-activated protein kinases (MAPKs) was performed in Kluyveromyces lactis haploid cells. The mutated strains were assayed by their capacity to mate and to respond to hyperosmotic stress. The K. lactis Ste11p (KlSte11p) MAPK kinase kinase (MAPKKK) was found to act in both mating and osmoresponse pathways while the scaffold KlSte5p and the MAPK KlFus3p appeared to be specific for mating. The p21-activated kinase KlSte20p and the kinase KlSte50p participated in both pathways. Protein association experiments showed interaction of KlSte50p and KlSte20p with Gα and Gβ, respectively, the G protein subunits involved in the mating pathway. Both KlSte50p and KlSte20p also showed interaction with KlSte11p. Disruption mutants of the K. lactis PBS2 (KlPBS2) and KlHOG1 genes of the canonical osmotic response pathway resulted in mutations sensitive to high salt and high sorbitol but dispensable for mating. Mutations that eliminate the MAPKK KlSte7p activity had a strong effect on mating and also showed sensitivity to osmotic stress. Finally, we found evidence of physical interaction between KlSte7p and KlHog1p, in addition to diminished Hog1p phosphorylation after a hyperosmotic shock in cells lacking KlSte7p. This study reveals novel roles for components of transduction systems in yeast. PMID:18024598

  10. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations

    PubMed Central

    Mills, David A.; Johannsen, Eric A.; Cocolin, Luca

    2002-01-01

    Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (∼30°C) and ambient (∼20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations. PMID:12324335

  11. Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis.

    PubMed

    Jo, Hyun-Joo; Noh, Jin-Seok; Kong, Kwang-Hoon

    2013-08-01

    Brazzein is an intensely sweet-tasting protein with high water solubility, heat stability, and taste properties resembling those of carbohydrate sweeteners. In the present study, we describe the expression of the synthetic gene encoding brazzein, a sweet protein in the yeast Kluyveromyces lactis. The synthetic brazzein gene was designed based on the biased codons of the yeast, so as to optimize its expression, as well as on the extracellular secretion for expression in an active, soluble form. The synthesized brazzein gene was cloned into the secretion vector pKLAC2, which contains the yeast prepropeptide signal from the Saccharomycescerevisiae α-mating factor. The constructed plasmid pKLAC2-des-pE1M-brazzein was introduced into the yeast K. lactis GG799. The yeast transformants were cultured for high-yield secretion of the recombinant des-pE1M-brazzein in YPGal medium for 96 h at 30°C. The expressed recombinant des-pE1M-brazzein was purified by CM-Sepharose column chromatography and approximately 104 mg/L was obtained. The purity and conformational state of the recombinant des-pE1M-brazzein were confirmed using SDS-PAGE, HPLC, and circular dichroism. The identity of the recombinant protein was also confirmed by N-terminal amino acid analysis and taste testing. The purified recombinant des-pE1M-brazzein had an intrinsic sweetness in its minor form, approximately 2130 times sweeter than sucrose on a weight basis. These results demonstrate that the K. lactis expression system is useful for producing the recombinant brazzein in active form at a high yield with attributes useful in the food industry. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress.

    PubMed

    Diniz, Raphael Hermano Santos; Villada, Juan C; Alvim, Mariana Caroline Tocantins; Vidigal, Pedro Marcus Pereira; Vieira, Nívea Moreira; Lamas-Maceiras, Mónica; Cerdán, María Esperanza; González-Siso, María-Isabel; Lahtvee, Petri-Jaan; da Silveira, Wendel Batista

    2017-09-01

    The thermotolerant yeast Kluyveromyces marxianus displays a potential to be used for ethanol production from both whey and lignocellulosic biomass at elevated temperatures, which is highly alluring to reduce the cost of the bioprocess. Nevertheless, contrary to Saccharomyces cerevisiae, K. marxianus cannot tolerate high ethanol concentrations. We report the transcriptional profile alterations in K. marxianus under ethanol stress in order to gain insights about mechanisms involved with ethanol response. Time-dependent changes have been characterized under the exposure of 6% ethanol and compared with the unstressed cells prior to the ethanol addition. Our results reveal that the metabolic flow through the central metabolic pathways is impaired under the applied ethanol stress. Consistent with these results, we also observe that genes involved with ribosome biogenesis are downregulated and gene-encoding heat shock proteins are upregulated. Remarkably, the expression of some gene-encoding enzymes related to unsaturated fatty acid and ergosterol biosynthesis decreases upon ethanol exposure, and free fatty acid and ergosterol measurements demonstrate that their content in K. marxianus does not change under this stress. These results are in contrast to the increase previously reported with S. cerevisiae subjected to ethanol stress and suggest that the restructuration of K. marxianus membrane composition differs in the two yeasts which gives important clues to understand the low ethanol tolerance of K. marxianus compared to S. cerevisiae.

  13. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  14. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus.

    PubMed

    Yarimizu, Tohru; Nakamura, Mikiko; Hoshida, Hisashi; Akada, Rinji

    2015-02-14

    Targeting of cellular proteins to the extracellular environment is directed by a secretory signal sequence located at the N-terminus of a secretory protein. These signal sequences usually contain an N-terminal basic amino acid followed by a stretch containing hydrophobic residues, although no consensus signal sequence has been identified. In this study, simple modeling of signal sequences was attempted using Gaussia princeps secretory luciferase (GLuc) in the yeast Kluyveromyces marxianus, which allowed comprehensive recombinant gene construction to substitute synthetic signal sequences. Mutational analysis of the GLuc signal sequence revealed that the GLuc hydrophobic peptide length was lower limit for effective secretion and that the N-terminal basic residue was indispensable. Deletion of the 16th Glu caused enhanced levels of secreted protein, suggesting that this hydrophilic residue defined the boundary of a hydrophobic peptide stretch. Consequently, we redesigned this domain as a repeat of a single hydrophobic amino acid between the N-terminal Lys and C-terminal Glu. Stretches consisting of Phe, Leu, Ile, or Met were effective for secretion but the number of residues affected secretory activity. A stretch containing sixteen consecutive methionine residues (M16) showed the highest activity; the M16 sequence was therefore utilized for the secretory production of human leukemia inhibitory factor protein in yeast, resulting in enhanced secreted protein yield. We present a new concept for the provision of secretory signal sequence ability in the yeast K. marxianus, determined by the number of residues of a single hydrophobic residue located between N-terminal basic and C-terminal acidic amino acid boundaries.

  15. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation.

    PubMed

    Crafack, Michael; Mikkelsen, Morten B; Saerens, Sofie; Knudsen, Morten; Blennow, Andreas; Lowor, Samuel; Takrama, Jemmy; Swiegers, Jan H; Petersen, Gert B; Heimdal, Hanne; Nielsen, Dennis S

    2013-10-01

    The potential impact of aromatic and pectinolytic yeasts on cocoa flavour was investigated using two defined mixed starter cultures encompassing strains of Pichia kluyveri and Kluyveromyces marxianus for inoculating cocoa beans in small scale tray fermentations. Samples for microbial and metabolite analysis were collected at 12-24 hour intervals during 120 h of fermentation. Yeast isolates were grouped by (GTG)5-based rep-PCR fingerprinting and identified by sequencing of the D1/D2 region of the 26S rRNA gene and the actin gene. Pulsed Field Gel Electrophoresis (PFGE) was conducted on isolates belonging to the species P. kluyveri and K. marxianus to verify strain level identity with the inoculated strains. Furthermore, Denaturing Gradient Gel Electrophoresis (DGGE) was performed to follow yeast and bacterial dynamics over time including the presence of the bacterial inoculum consisting of Lactobacillus fermentum and Acetobacter pasteurianus. Yeast cell counts peaked after 12 h of fermentation with the predominant species being identified as Hanseniaspora opuntiae and Hanseniaspora thailandica. P. kluyveri and K. marxianus were found to compose 9.3% and 13.5% of the yeast population, respectively, after 12 h of fermentation whilst PFGE showed that ~88% of all P. kluyveri isolates and 100% of all K. marxianus isolates were identical to the inoculated strains. Despite never being the dominant yeast species at any stage of fermentation, the un-conched chocolates produced from the two inoculated fermentations were judged by sensory analysis to differ in flavour profile compared to the spontaneously fermented control. This could indicate that yeasts have a greater impact on the sensory qualities of cocoa than previously assumed. © 2013.

  16. Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1).

    PubMed

    Bragança, Caio Roberto Soares; Colombo, Lívia Tavares; Roberti, Alvaro Soares; Alvim, Mariana Caroline Tocantins; Cardoso, Silvia Almeida; Reis, Kledna Constancio Portes; de Paula, Sérgio Oliveira; da Silveira, Wendel Batista; Passos, Flavia Maria Lopes

    2015-02-01

    The yeast Kluyveromyces marxianus is a convenient host for industrial synthesis of biomolecules. However, despite its potential, there are few studies reporting the expression of heterologous proteins using this yeast. Here, we report expression of a dengue virus protein in K. marxianus for the first time. The dengue virus type 1 nonstructural protein 1 (NS1) was integrated into the K. marxianus UFV-3 genome at the LAC4 locus using an adapted integrative vector designed for high-level expression of recombinant protein in Kluyveromyces lactis. The NS1 gene sequence was codon-optimized to increase the level of protein expression in yeast. The synthetic gene was cloned in frame with K. lactis α-mating factor signal peptide, and the recombinant plasmid obtained was used to transform K. marxianus UFV-3 by electroporation. The transformed cells, selected in yeast extract peptone dextrose containing 200 μg mL(-1) Geneticin, were mitotically stable. Analysis of recombinant strains by RT-PCR and protein detection using blot analysis confirmed both transcription and expression of extracellular NS1 polypeptide. After induction with galactose, the NS1 protein was analyzed by sodium dodecyl sulfate-PAGE and immunogenic detection. Protein production was investigated under two conditions: with galactose and biotin pulses at 24-h intervals during 96 h of induction and without galactose and biotin supplementation. Protease activity was not detected in post-growth medium. Our results indicate that recombinant K. marxianus is a good host for the production of dengue virus NS1 protein, which has potential for diagnostic applications.

  17. Inventions on baker's yeast strains and specialty ingredients.

    PubMed

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  18. Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis.

    PubMed

    Lodi, Tiziana; Fontanesi, Flavia; Ferrero, Iliana; Donnini, Claudia

    2004-09-15

    Two new genes KlJEN1 and KlJEN2 were identified in Kluyveromyces lactis. The deduced structure of their products is typical of membrane-bound carriers and displays high similarity to Jen1p, the monocarboxylate permease of Saccharomyces cerevisiae. Both KlJEN1 and KlJEN2 are under the control of glucose repression mediated by FOG1 and FOG2, corresponding to S. cerevisiae GAL83 and SNF1 respectively, and KlCAT8, proteins involved in glucose signalling cascade in K. lactis. KlJEN1, but not KlJEN2, is induced by lactate. KlJEN2 in contrast is expressed at high level in ethanol and succinate. The physiological characterization of null mutants showed that KlJEN1 is the functional homologue of ScJEN1, whereas KlJEN2 encodes a dicarboxylic acids transporter. In fact, KlJen1p [transporter classification (TC) number: 2.A.1.12.2.] is required for lactate uptake and therefore for growth on lactate. KlJen2p is required for succinate transport, as demonstrated by succinate uptake experiments and by inability of Kljen2 mutant to grow on succinate. This carrier appears to transport also malate and fumarate because the Kljen2 mutant cannot grow on these substrates and the succinate uptake is competed by these carboxylic acids. We conclude that KlJEN2 is the first yeast gene shown to encode a dicarboxylic acids permease.

  19. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.

    PubMed

    Wang, Rongliang; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2014-01-01

    Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α-amylase from Aspergillus oryzae as well as α-amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. © 2014 American Institute of Chemical Engineers.

  20. Isolation and characterization of ethanol tolerant yeast strains

    PubMed Central

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha

    2013-01-01

    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  1. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.

    PubMed

    Nakagawa, Youji; Ogihara, Hiroyuki; Mochizuki, Chisato; Yamamura, Hideki; Iimura, Yuzuru; Hayakawa, Masayuki

    2017-03-01

    Previously reported self-cloning procedures for breeding of industrial yeast strains require DNA from other strains, plasmid DNA, or mutagenesis. Therefore, we aimed to construct a self-cloning baker's yeast strain that exhibits freeze tolerance via an improved self-cloning procedure. We first disrupted the URA3 gene of a prototrophic baker's yeast strain without the use of any marker gene, resulting in a Δura3 homozygous disruptant. Then, the URA3 gene of the parental baker's yeast strain was used as a selection marker to introduce the constitutive TDH3 promoter upstream of the PDE2 gene encoding high-affinity cyclic AMP phosphodiesterase. This self-cloning procedure was performed without using DNA from other Saccharomyces cerevisiae strains, plasmid DNA, or mutagenesis and was therefore designated an intra-strain self-cloning procedure. Using this self-cloning procedure, we succeeded in producing self-cloning baker's yeast strains that harbor the TDH3p-PDE2 gene heterozygously and homozygously, designated TDH3p-PDE2 hetero and TDH3p-PDE2 homo strains, respectively. These self-cloning strains expressed much higher levels of PDE2 mRNA than the parental strain and exhibited higher viability after freeze stress, as well as higher fermentation ability in frozen dough, when compared with the parental strain. The TDH3p-PDE2 homo strain was genetically more stable than the TDH3p-PDE2 hetero strain. These results indicate that both heterozygous and homozygous strains of self-cloning PDE2-overexpressing freeze-tolerant strains of industrial baker's yeast can be prepared using the intra-strain self-cloning procedure, and, from a practical viewpoint, the TDH3p-PDE2 homo strain constructed in this study is preferable to the TDH3p-PDE2 hetero strain for frozen dough baking. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Improving the Organoleptic Properties of a Craft Mezcal Beverage by Increasing Fatty Acid Ethyl Ester Contents through ATF1 Expression in an Engineered Kluyveromyces marxianus UMPe-1 Yeast.

    PubMed

    Campos-García, Jesús; Vargas, Alejandra; Farías-Rosales, Lorena; Miranda, Ana L; Meza-Carmen, Víctor; Díaz-Pérez, Alma L

    2018-05-02

    Mezcal, a traditional beverage that originated in Mexico, is produced from species of the Agavaceae family. The esters associated with the yeasts utilized during fermentation are important for improving the organoleptic properties of the beverage. We improved the ester contents in a mezcal beverage by using the yeast Kluyveromyces marxianus, which was engineered with the ATF1 gene. ATF1 expression in the recombinant yeast significantly increased compared with that in the parental yeast, but its fermentative parameters were unchanged. Volatile-organic-compound-content analysis showed that esters had significantly increased in the mezcal produced with the engineered yeast. In a sensory-panel test, 48% of the panelists preferred the mezcal produced from the engineered yeast, 30% preferred the mezcal produced from the wild type, and 15 and 7% preferred the two mezcal types produced following the routine procedure. Correlation analysis showed that the fruitiness/sweetness description of the mezcal produced using the ATF1-engineered K. marxianus yeast correlated with the content of the esters, whose presence improved the organoleptic properties of the craft mezcal beverage.

  3. New lager yeast strains generated by interspecific hybridization.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  4. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain

    PubMed Central

    2014-01-01

    Background The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. However, its ability to co-ferment C5 and C6 sugars under oxygen-limited conditions is far from being fully characterized. Results In the present study, K. marxianus CBS712 strain was cultivated in defined medium with glucose and xylose as carbon source. Ethanol fermentation and sugar consumption of CBS712 were investigated under different oxygen supplies (1.75%, 11.00% and 20.95% of O2) and different temperatures (30°C and 41°C). By decreasing oxygen supply, independently from the temperature, both biomass production as well as sugar utilization rate were progressively reduced. In all the tested conditions xylose consumption followed glucose exhaustion. Therefore, xylose metabolism was mainly affected by oxygen depletion. Loss in cell viability cannot explain the decrease in sugar consumption rates, as demonstrated by single cell analyses, while cofactor imbalance is commonly considered as the main cause of impairment of the xylose reductase (KmXR) - xylitol dehydrogenase (KmXDH) pathway. Remarkably, when these enzyme activities were assayed in vitro, a significant decrease was observed together with oxygen depletion, not ascribed to reduced transcription of the corresponding genes. Conclusions In the present study both oxygen supply and temperature were shown to be key parameters affecting the fermentation capability of sugars in the K. marxianus CBS712 strain. In particular, a direct correlation was observed between the decreased efficiency to consume xylose with the reduced specific activity of the two main enzymes (KmXR and KmXDH) involved in its catabolism. These data suggest that, in addition to

  5. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain.

    PubMed

    Signori, Lorenzo; Passolunghi, Simone; Ruohonen, Laura; Porro, Danilo; Branduardi, Paola

    2014-04-08

    The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. However, its ability to co-ferment C5 and C6 sugars under oxygen-limited conditions is far from being fully characterized. In the present study, K. marxianus CBS712 strain was cultivated in defined medium with glucose and xylose as carbon source. Ethanol fermentation and sugar consumption of CBS712 were investigated under different oxygen supplies (1.75%, 11.00% and 20.95% of O2) and different temperatures (30°C and 41°C). By decreasing oxygen supply, independently from the temperature, both biomass production as well as sugar utilization rate were progressively reduced. In all the tested conditions xylose consumption followed glucose exhaustion. Therefore, xylose metabolism was mainly affected by oxygen depletion. Loss in cell viability cannot explain the decrease in sugar consumption rates, as demonstrated by single cell analyses, while cofactor imbalance is commonly considered as the main cause of impairment of the xylose reductase (KmXR) - xylitol dehydrogenase (KmXDH) pathway. Remarkably, when these enzyme activities were assayed in vitro, a significant decrease was observed together with oxygen depletion, not ascribed to reduced transcription of the corresponding genes. In the present study both oxygen supply and temperature were shown to be key parameters affecting the fermentation capability of sugars in the K. marxianus CBS712 strain. In particular, a direct correlation was observed between the decreased efficiency to consume xylose with the reduced specific activity of the two main enzymes (KmXR and KmXDH) involved in its catabolism. These data suggest that, in addition to the impairment of the

  6. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts

    PubMed Central

    Hein, Eva-Maria; Hayen, Heiko

    2012-01-01

    Glycerophospholipids (GP) are the building blocks of cellular membranes and play essential roles in cell compartmentation, membrane fluidity or apoptosis. In addition, GPs are sources for multifunctional second messengers. Whereas the genome and proteome of the most intensively studied eukaryotic model organism, the baker’s yeast (Saccharomyces cerevisiae), are well characterized, the analysis of its lipid composition is still at the beginning. Moreover, different yeast species can be distinguished on the DNA, RNA and protein level, but it is currently unknown if they can also be differentiated by determination of their GP pattern. Therefore, the GP compositions of five different yeast strains, grown under identical environmental conditions, were elucidated using high performance liquid chromatography coupled to negative electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry in single and multistage mode. Using this approach, relative quantification of more than 100 molecular species belonging to nine GP classes was achieved. The comparative lipidomic profiling of Saccharomyces cerevisiae, Saccharomyces bayanus, Kluyveromyces thermotolerans, Pichia angusta, and Yarrowia lipolytica revealed characteristic GP profiles for each strain. However, genetically related yeast strains show similarities in their GP compositions, e.g., Saccharomyces cerevisiae and Saccharomyces bayanus. PMID:24957378

  7. Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts.

    PubMed

    Ballesteros, I; Oliva, J M; Ballesteros, M; Carrasco, J

    1993-01-01

    Different treatments to improve the thermotolerance of fermenting yeasts for simultaneous ethanol saccharification and fermentation process of cellulosic materials have been examined. Yeasts of the genera Saccharomyces and Kluyveromyces were tested for growth and fermentation at progressively higher temperatures in the range of 42-47 degrees C. The best results were obtained with K. marxianus LG, which was then submitted to different treatments in order to achieve thermotolerant clones. A total of 35 new clones were obtained that dramatically improved the SSF of 10% Solka-floc substrate at 45 degrees C when compared to the original strain, some with ethanol concentrations as high as 33 g/L.

  8. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    PubMed

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  9. Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans.

    PubMed

    Borrero, Juan; Kunze, Gotthard; Jiménez, Juan J; Böer, Erik; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2012-08-01

    The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.

  10. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1

    PubMed Central

    González-Siso, María Isabel; Touriño, Alba; Vizoso, Ángel; Pereira-Rodríguez, Ángel; Rodríguez-Belmonte, Esther; Becerra, Manuel; Cerdán, María Esperanza

    2015-01-01

    In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved. PMID:25186243

  11. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  12. Whole Genome Analysis of a Wine Yeast Strain

    PubMed Central

    Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902

  13. Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimisation of media supplements.

    PubMed

    Gough, S; Flynn, O; Hack, C J; Marchant, R

    1996-09-01

    The use of molasses as a substrate for ethanol production by the thermotolerant yeast Kluyveromyces marxianus var. marxianus was investigated at 45 degrees C. A maximum ethanol concentration of 7.4% (v/v) was produced from unsupplemented molasses at a concentration of 23% (v/v). The effect on ethanol production of increasing the sucrose concentration in 23% (v/v) molasses was determined. Increased sucrose concentration had a similar detrimental effect on the final ethanol produced as the increase in molasses concentration. This indicated that the effect may be due to increased osmotic activity as opposed to other components in the molasses. The optimum concentration of the supplements nitrogen, magnesium, potassium and fatty acid for maximum ethanol production rate was determined using the Nelder and Mead (Computer J 7:308-313, 1965) simplex optimisation method. The optimum concentration of the supplements were 0.576 g1(-1) magnesium sulphate, 0.288 g1(-1) potassium dihydrogen phosphate and 0.36% (v/v) linseed oil. Added nitrogen in the form of ammonium sulphate did not affect the ethanol production rate.

  14. Biological interactions to select biocontrol agents against toxigenic strains of Aspergillus flavus and Fusarium verticillioides from maize.

    PubMed

    Etcheverry, Miriam G; Scandolara, Andrea; Nesci, Andrea; Vilas Boas Ribeiro, Marta Sofia; Pereira, Paola; Battilani, Paola

    2009-05-01

    Biological control represent an alternative to the use of pesticides in crop protection. A key to progress in biological control to protect maize against Fusarium verticillioides and Aspergillus flavus maize pathogens are, to select in vitro, the best agent to be applied in the field. The aim of this study was to examine the antagonistic activity of bacterial and yeast isolates against F.verticillioides and A. flavus toxigenic strains. The first study showed the impact of Bacillus amyloliquefaciens BA-S13, Microbacterium oleovorans DMS 16091, Enterobacter hormomaechei EM-562T, and Kluyveromyces spp. L14 and L16 isolates on mycelial growth of two strains of A. flavus MPVPA 2092, 2094 and three strains of F. verticillioides MPVPA 285, 289, and 294 on 3% maize meal extract agar at different water activities (0.99, 0.97, 0.95, and 0.93). From this first assay antagonistics isolates M. oleovorans, B. amyloliquefaciens and Kluyveromyces sp. (L16) produced an increase of lag phase of growth and decreased a growth rate of all fungal strains. These isolates were selected for futher studies. In vitro non-rhizospheric maize soil (centrally and sprayed inoculated) and in vitro maize (ears apex and base inoculated) were treated with antagonistics and pathogenic strains alone in co-inoculated cultures. Bacillus amyloliquefaciens significantly reduced F. verticillioides and A. flavus count in maize soil inoculated centrally. Kluyveromyces sp. L16 reduced F. verticillioides and A. flavus count in maize soil inoculated by spray. Kluyveromyces sp. L16 was the most effective treatment limiting percent infections by F. verticillioides on the maize ears.

  15. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453.

    PubMed

    Dasgupta, Diptarka; Ghosh, Debashish; Bandhu, Sheetal; Adhikari, Dilip K

    2017-07-01

    Optimum utilization of fermentable sugars from lignocellulosic biomass to deliver multiple products under biorefinery concept has been reported in this work. Alcohol fermentation has been carried out with multiple cell recycling of Kluyveromyces marxianus IIPE453. The yeast utilized xylose-rich fraction from acid and steam treated biomass for cell generation and xylitol production with an average yield of 0.315±0.01g/g while the entire glucose rich saccharified fraction had been fermented to ethanol with high productivity of 0.9±0.08g/L/h. A detailed insight into its genome illustrated the strain's complete set of genes associated with sugar transport and metabolism for high-temperature fermentation. A set flocculation proteins were identified that aided in high cell recovery in successive fermentation cycles to achieve alcohols with high productivity. We have brought biomass derived sugars, yeast cell biomass generation, and ethanol and xylitol fermentation in one platform and validated the overall material balance. 2kg sugarcane bagasse yielded 193.4g yeast cell, and with multiple times cell recycling generated 125.56g xylitol and 289.2g ethanol (366mL). Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Ethanol production from Jerusalem artichoke tubers (Helianthus tuberosus). Using Kluyveromyces marxcianus and Saccharomyces rosei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaritis, A.; Bajpai, P.

    1982-04-01

    This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown on the extract derived from the tubers of Jerusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (FST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35 degrees C. The ethanol production was found to be growth-associated having a mu max = 0.41/h and the ethanol and biomass yields were determinedmore » to be Y p/s = 0.45 (88% of the theoretical) and Y x/s = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with Kluyveromyces marxianus, the calculated ethanol yields were found to range from 1400 kg ethanol/acre/yr to a maximum of 2700 kg ethanol/acre/yr. The SCP yields for Kluyveromyces marxianus were calculated to range between 130 to 250 kg dry wt cell/acre/yr. The potential for developing an integrated process to produce ethanol and SCP is also discussed. (Refs. 27).« less

  17. Improving industrial yeast strains: exploiting natural and artificial diversity

    PubMed Central

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  18. Carbohydrate and energy-yielding metabolism in non-conventional yeasts.

    PubMed

    Flores, C L; Rodríguez, C; Petit, T; Gancedo, C

    2000-10-01

    Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.

  19. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    PubMed Central

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  20. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    PubMed

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  1. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Mitochondrial Genome Integrity Mutations Uncouple the Yeast Saccharomyces cerevisiae ATP Synthase*║

    PubMed Central

    Wang, Yamin; Singh, Usha; Mueller, David M.

    2013-01-01

    The mitochondrial ATP synthase is a molecular motor, which couples the flow of rotons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the α-, β-, and γ-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the γ-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk. PMID:17244612

  3. Analysis of the yeast short-term Crabtree effect and its origin

    PubMed Central

    Hagman, Arne; Säll, Torbjörn; Piškur, Jure

    2014-01-01

    The short-term Crabtree effect is defined as the immediate occurrence of aerobic alcoholic fermentation in response to provision of a pulse of excess sugar to sugar-limited yeast cultures. Here we have characterized ten yeast species with a clearly defined phylogenetic relationship. Yeast species were cultivated under glucose-limited conditions, and we studied their general carbon metabolism in response to a glucose pulse. We generated an extensive collection of data on glucose and oxygen consumption, and ethanol and carbon dioxide generation. We conclude that the Pichia,Debaryomyces,Eremothecium and Kluyveromyces marxianus yeasts do not exhibit any significant ethanol formation, while Kluyveromyces lactis behaves as an intermediate yeast, and Lachancea,Torulaspora,Vanderwaltozyma and Saccharomyces yeasts exhibit rapid ethanol accumulation. Based on the present data and our previous data relating to the presence of the long-term Crabtree effect in over 40 yeast species, we speculate that the origin of the short-term effect may coincide with the origin of the long-term Crabtree effect in the Saccharomycetales lineage, occurring ∼ 150 million years ago. PMID:25161062

  4. Improving industrial yeast strains: exploiting natural and artificial diversity.

    PubMed

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  5. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    PubMed

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus.

    PubMed

    Hoshida, Hisashi; Murakami, Nobutada; Suzuki, Ayako; Tamura, Ryoko; Asakawa, Jun; Abdel-Banat, Babiker M A; Nonklang, Sanom; Nakamura, Mikiko; Akada, Rinji

    2014-01-01

    The cloning of DNA fragments into vectors or host genomes has traditionally been performed using Escherichia coli with restriction enzymes and DNA ligase or homologous recombination-based reactions. We report here a novel DNA cloning method that does not require DNA end processing or homologous recombination, but that ensures highly accurate cloning. The method exploits the efficient non-homologous end-joining (NHEJ) activity of the yeast Kluyveromyces marxianus and consists of a novel functional marker selection system. First, to demonstrate the applicability of NHEJ to DNA cloning, a C-terminal-truncated non-functional ura3 selection marker and the truncated region were PCR-amplified separately, mixed and directly used for the transformation. URA3(+) transformants appeared on the selection plates, indicating that the two DNA fragments were correctly joined by NHEJ to generate a functional URA3 gene that had inserted into the yeast chromosome. To develop the cloning system, the shortest URA3 C-terminal encoding sequence that could restore the function of a truncated non-functional ura3 was determined by deletion analysis, and was included in the primers to amplify target DNAs for cloning. Transformation with PCR-amplified target DNAs and C-terminal truncated ura3 produced numerous transformant colonies, in which a functional URA3 gene was generated and was integrated into the chromosome with the target DNAs. Several K. marxianus circular plasmids with different selection markers were also developed for NHEJ-based cloning and recombinant DNA construction. The one-step DNA cloning method developed here is a relatively simple and reliable procedure among the DNA cloning systems developed to date. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    PubMed

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  8. Kluyveromyces marxianus as a host for heterologous protein synthesis.

    PubMed

    Gombert, Andreas K; Madeira, José Valdo; Cerdán, María-Esperanza; González-Siso, María-Isabel

    2016-07-01

    The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.

  9. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper

  10. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains.

    PubMed

    Greppi, Anna; Krych, Łukasz; Costantini, Antonella; Rantsiou, Kalliopi; Hounhouigan, D Joseph; Arneborg, Nils; Cocolin, Luca; Jespersen, Lene

    2015-07-16

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus.

    PubMed

    Rodrussamee, Nadchanok; Lertwattanasakul, Noppon; Hirata, Katsushi; Suprayogi; Limtong, Savitree; Kosaka, Tomoyuki; Yamada, Mamoru

    2011-05-01

    Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.

  12. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Quality parameters and RAPD-PCR differentiation of commercial baker's yeast and hybrid strains.

    PubMed

    El-Fiky, Zaki A; Hassan, Gamal M; Emam, Ahmed M

    2012-06-01

    Baker's yeast, Saccharomyces cerevisiae, is a key component in bread baking. Total of 12 commercial baker's yeast and 2 hybrid strains were compared using traditional quality parameters. Total of 5 strains with high leavening power and the 2 hybrid strains were selected and evaluated for their alpha-amylase, maltase, glucoamylase enzymes, and compared using random amplified polymorphic DNA (RAPD). The results revealed that all selected yeast strains have a low level of alpha-amylase and a high level of maltase and glucoamylase enzymes. Meanwhile, the Egyptian yeast strain (EY) had the highest content of alpha-amylase and maltase enzymes followed by the hybrid YH strain. The EY and YH strains have the highest content of glucoamylase enzyme almost with the same level. The RAPD banding patterns showed a wide variation among commercial yeast and hybrid strains. The closely related Egyptian yeast strains (EY and AL) demonstrated close similarity of their genotypes. The 2 hybrid strains were clustered to Turkish and European strains in 1 group. The authors conclude that the identification of strains and hybrids using RAPD technique was useful in determining their genetic relationship. These results can be useful not only for the basic research, but also for the quality control in baking factories. © 2012 Institute of Food Technologists®

  14. Electron transport chain in a thermotolerant yeast.

    PubMed

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  15. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

    PubMed

    Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2008-11-01

    Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. (c) 2008 John Wiley & Sons, Ltd.

  16. Potential benefits of the application of yeast starters in table olive processing.

    PubMed

    Arroyo-López, Francisco N; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  17. Potential benefits of the application of yeast starters in table olive processing

    PubMed Central

    Arroyo-López, Francisco N.; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  18. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking.

    PubMed

    Donalies, Ute E B; Nguyen, Huyen T T; Stahl, Ulf; Nevoigt, Elke

    2008-01-01

    Yeast was the first microorganism domesticated by mankind. Indeed, the production of bread and alcoholic beverages such as beer and wine dates from antiquity, even though the fact that the origin of alcoholic fermentation is a microorganism was not known until the nineteenth century. The use of starter cultures in yeast industries became a common practice after methods for the isolation of pure yeast strains were developed. Moreover, effort has been undertaken to improve these strains, first by classical genetic methods and later by genetic engineering. In general, yeast strain development has aimed at improving the velocity and efficiency of the respective production process and the quality of the final products. This review highlights the achievements in genetic engineering of Saccharomyces yeast strains applied in food and beverage industry.

  19. A differential medium for the enumeration of the spoilage yeast Zygosaccharomyces bailii in wine.

    PubMed

    Schuller, D; Côrte-Real, M; Leão, C

    2000-11-01

    A collection of yeasts, isolated mostly from spoiled wines, was used in order to develop a differential medium for Zygosaccharomyces bailii. The 118 selected strains of 21 species differed in their origin and resistance to preservatives and belonged to the genera Pichia, Torulaspora, Dekkera, Debaryomyces, Saccharomycodes, Issatchenkia, Kluyveromyces, Kloeckera, Lodderomyces, Schizosaccharomyces, Rhodotorula, Saccharomyces, and Zygosaccharomyces. The design of the culture medium was based on the different ability of the various yeast species to grow in a mineral medium with glucose and formic acid (mixed-substrate medium) as the only carbon and energy sources and supplemented with an acid-base indicator. By manipulating the concentration of the acid and the sugar it was possible to select conditions where only Z. bailii strains gave rise to alkalinization, associated with a color change of the medium (positive response). The final composition of the mixed medium was adjusted as a compromise between the percentage of recovery and selectivity for Z. bailii. This was accomplished by the use of pure or mixed cultures of the yeast strains and applying the membrane filtration methodology. The microbiological analysis of two samples of contaminated Vinho Verde showed that the new medium can be considered as a differential medium to distinguish Z. bailii from other contaminating yeasts, having potential application in the microbiological control of wines and probably other beverages and foods.

  20. Effect of the yeast and bacteria biomass on the microbiota in the rumen.

    PubMed

    Vamanu, E; Vamanu, A; Popa, O; Vassu, Tatiana; Ghindea, Raluca; Pelinescu, Diana; Nita, Sultana; Babeanu, Narcisa

    2008-09-15

    This study aims at obtaining a probiotic product based on viable biomass from 6 yeast strains and 2 strains of lactic bacteria used for nutrition of animals. The strains are subjected to some resistance tests, at temperature, pH, pepsin, pancreatin and biliary salts so as to make obvious their viability. Tests were done by comparison to the witness strain and respectively a protective solution based on mucin and casein. Based on the resulted viabilities 2 products are formulated. Their effect is tested by inoculating fresh rumen content and supervising the microbic balance for a period of 12 days. After the final tests, it resulted that the product Fpl (20% Saccharomyces cerevisiae 1-29, 10% Kluyveromyces marxianus R-CS, 20% Issatchenkia orientalis R-BC, 30% Lactobacillus paracasei CMGB16, 20% Enterococcus faecium GM8) was chosen because anaerobic strains were preponderant as a consequence of the tests performed with rumen.

  1. Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation.

    PubMed

    Kitagaki, Hiroshi

    2009-05-29

    Since mitochondrial genes are repressed under high glucose and low O2, and these conditions correspond to the conditions in which yeast cells are exposed during alcohol fermentation, the existence and structure of yeast mitochondria during alcohol fermentation have not been elucidated. Yeast mitochondria can be observed throughout brewing of sake (Japanese rice wine) and fragment during brewing. Furthermore, it has been revealed that Fis1 [fission 1 (mitochondrial outer membrane) homologue (Saccharomyces cerevisiae)], which is a transmembrane protein with its C-terminal anchor embedded in the outer membrane of mitochondria, is required for fragmentation of yeast mitochondria during sake brewing. By utilizing this knowledge, a fis1 disruptant of a sake yeast strain has been generated that has a networked mitochondrial structure throughout sake brewing. It transpired that this strain produces a high content of malate, which imparts a crisp acidic taste, during sake brewing. This strategy is a useful and a completely novel strategy towards developing a new yeast strain which produces a high content of malate in sake, and mitochondrial morphology has now emerged as a promising target for the breeding of practical industrial strains.

  2. Yeast community in traditional Portuguese Serpa cheese by culture-dependent and -independent DNA approaches.

    PubMed

    Gonçalves Dos Santos, Maria Teresa P; Benito, María José; Córdoba, María de Guía; Alvarenga, Nuno; Ruiz-Moyano Seco de Herrera, Santiago

    2017-12-04

    This study investigated the yeast community present in the traditional Portuguese cheese, Serpa, by culture-dependent and -independent methods. Sixteen batches of Serpa cheeses from various regional industries registered with the Protected Designation of Origin (PDO) versus non-PDO registered, during spring and winter, were used. Irrespective of the producer, the yeast counts were around 5log CFU/g in winter and, overall, were lower in spring. The yeast species identified at the end of ripening (30days), using PCR-RFLP analysis and sequencing of the 26S rRNA, mainly corresponded to Debaryomyces hansenii and Kluyveromyces marxianus, with Candida spp. and Pichia spp. present to a lesser extent. The culture-independent results, obtained using high-throughput sequencing analysis, confirmed the prevalence of Debaryomyces spp. and Kluyveromyces spp. but, also, that Galactomyces spp. was relevant for three of the five producers, which indicates its importance during the early stages of the cheese ripening process, considering it was not found among the dominant viable yeast species. In addition, differences between the identified yeast isolated from cheeses obtained from PDO and non-PDO registered industries, showed that the lack of regulation of the cheese-making practice, may unfavourably influence the final yeast microbiota. The new knowledge provided by this study of the yeast diversity in Serpa cheese, could be used to modify the cheese ripening conditions, to favour desirable yeast species. Additionally, the prevalent yeast isolates identified, Debaryomyces hansenii and Kluyveromyces spp., may have an important role during cheese ripening and in the final sensorial characteristics. Thus, the study of their technological and functional properties could be relevant, in the development of an autochthonous starter culture, to ensure final quality and safety of the cheese. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Screening wild yeast strains for alcohol fermentation from various fruits.

    PubMed

    Lee, Yeon-Ju; Choi, Yu-Ri; Lee, So-Young; Park, Jong-Tae; Shim, Jae-Hoon; Park, Kwan-Hwa; Kim, Jung-Wan

    2011-03-01

    Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five α-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the α-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except α-amylase production, and fermented alcohol better than commercial wine yeasts.

  4. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus.

    PubMed

    Akanni, Gabriel B; du Preez, James C; Steyn, Laurinda; Kilian, Stephanus G

    2015-03-30

    The cladodes of Opuntia ficus-indica (prickly pear cactus) have a low protein content; for use as a balanced feed, supplementation with other protein sources is therefore desirable. We investigated protein enrichment by cultivation of the yeasts Candida utilis and Kluyveromyces marxianus in an enzymatic hydrolysate of the cladode biomass. Dilute acid pretreatment and enzymatic hydrolysis of sun-dried cladodes resulted in a hydrolysate containing (per litre) 45.5 g glucose, 6.3 g xylose, 9.1 g galactose, 10.8 g arabinose and 9.6 g fructose. Even though K. marxianus had a much higher growth rate and utilized l-arabinose and d-galactose more completely than C. utilis, its biomass yield coefficient was lower due to ethanol and ethyl acetate production despite aerobic cultivation. Yeast cultivation more than doubled the protein content of the hydrolysate, with an essential amino acid profile superior to sorghum and millet grains. This K. marxianus strain was weakly Crabtree positive. Despite its low biomass yield, its performance compared well with C. utilis. This is the first report showing that the protein content and quality of O. ficus-indica cladode biomass could substantially be improved by yeast cultivation, including a comparative evaluation of C. utilis and K. marxianus. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  5. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  6. Polygalacturonase and ethanol production in Kluyveromyces marxianus: potential use of polygalacturonase in foodstuffs.

    PubMed

    Serrat, Manuel; Bermúdez, Rosa C; Villa, Tomás G

    2004-04-01

    The coproduction of ethanol and polygalacturonase (PG) in a pilot-scale batch fermentor using yeast extract--glucose (YD)--and sugar beet molasses (SBM)-based media was implemented utilizing a new high-PG-producing strain of Kluyveromyces marxianus. A certain growth inhibition was observed in SBM medium, causing ethanol and PG production to be lower. Ethanol productivity and accumulation values of 1.94 g/(L x h) and 40 g/L, respectively, were attained in YD, whereas the best fermentation efficiency (95.1%) was achieved with SBM medium. Maximal PG synthesis occurred at the end of cell growth, with values of 1.08 and 0.46 U/(mg x h) for the YD and SBM media, respectively. When the cultures reached stationary phase, PG production stopped. The highest accumulation level (17 U/mL) occurred in YD medium, in agreement with previous laboratory-scale studies carried out for this strain. The potential applications of the crude enzyme preparations were evaluated with different fruit juices and vegetable slices. The enzyme was able to increase the filtration rate of orange, pear, and apple juices by twofold. Additionally, complete clarification of apple juice was readily accomplished, whereas cucumber, carrot, and banana tissues were macerated to a lesser extent. Copyright 2004 Humana Press Inc.

  7. Genetic Analysis of Haploids from Industrial Strains of Baker's Yeast

    PubMed Central

    Oda, Yuji; Ouchi, Kozo

    1989-01-01

    Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATα MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains. PMID:16347967

  8. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    PubMed Central

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  9. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.

    PubMed

    Urbanczyk, Henryk; Noguchi, Chiemi; Wu, Hong; Watanabe, Daisuke; Akao, Takeshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2011-07-01

    Sake yeast strains produce a high concentration of ethanol during sake brewing compared to laboratory yeast strains. As ethanol fermentation by yeast cells continues even after cell growth stops, analysis of the physiological state of the stationary phase cells is very important for understanding the mechanism of producing higher concentrations of ethanol. We compared the physiological characteristics of stationary phase cells of both sake and laboratory yeast strains in an aerobic batch culture and under sake brewing conditions. We unexpectedly found that sake yeast cells in the stationary phase had a lower buoyant density and stress tolerance than did the laboratory yeast cells under both experimental conditions. These results suggest that it is difficult for sake yeast cells to enter a quiescent state after cell growth has stopped, which may be one reason for the higher fermentation rate of sake yeast compared to laboratory yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    PubMed

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  11. Production, purification, and characterization of a polygalacturonase from a new strain of Kluyveromyces marxianus isolated from coffee wet-processing wastewater.

    PubMed

    Serrat, Manuel; Bermúdez, Rose Catalina; Villa, Tomás Gonzáles

    2002-03-01

    A new high polygalacturonase (PG)-producing Kluyveromyces marxianus strain was isolated from coffee wet-processing wastewater. PG production in this strain is not repressed in the presence of 100 g/L of glucose and, being growth-associated, reached its maximum accumulation in the culture medium at the beginning of the stationary phase. Oxygen and galacturonic acid negatively regulated enzyme synthesis, and glucose as the carbon source afforded better enzyme yields than lactose. The data reported here show that this strain exhibits the highest index of PG production among the wild-type strains reported so far (18.8 U/mL). PG was readily purified by ion-exchange chromatography on SP-Sepharose FF. The activity corresponded to a single protein with an M(r) of 41.7kDa according to sodium dodecyl sulfatepolyacrylamide gel electrophoresis. The enzyme was stable in the pH range of 3.0-5.0 and displayed an optimal temperature of 55 degrees C; it showed a typical endosplitting way of substrate hydrolysis and exhibited a fair degree of activity on pectin with a high degree of esterification.

  12. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin.

    PubMed

    Vieira-Dalodé, G; Jespersen, L; Hounhouigan, J; Moller, P L; Nago, C M; Jakobsen, M

    2007-08-01

    To identify the dominant micro-organisms involved in the production of gowé, a fermented beverage, and to select the most appropriate species for starter culture development. Samples of sorghum gowé produced twice at three different production sites were taken at different fermentation times. DNA amplification by internal transcribed spacer-polymerase chain reaction of 288 lactic acid bacteria (LAB) isolates and 16S rRNA gene sequencing of selected strains revealed that the dominant LAB responsible for gowé fermentation were Lactobacillus fermentum, Weissella confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii. DNA from 200 strains of yeasts was amplified and the D1/D2 domain of the 26S rRNA gene was sequenced for selected isolates, revealing that the yeasts species were Kluyveromyces marxianus, Pichia anomala, Candida krusei and Candida tropicalis. Gowé processing is characterized by a mixed fermentation dominated by Lact. fermentum, W. confusa and Ped. acidilactici for the LAB and by K. marxianus, P. anomala and C. krusei for the yeasts. The diversity of the LAB and yeasts identified offers new opportunities for technology upgrading and products development in gowé production. The identified species can be used as possible starter for a controlled fermentation of gowé.

  13. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles.

  14. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    PubMed

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  15. Kluyveromyces marxianus and Saccharomyces boulardii Induce Distinct Levels of Dendritic Cell Cytokine Secretion and Significantly Different T Cell Responses In Vitro

    PubMed Central

    Smith, Ida M.; Baker, Adam; Christensen, Jeffrey E.; Boekhout, Teun; Frøkiær, Hanne; Arneborg, Nils; Jespersen, Lene

    2016-01-01

    Interactions between members of the intestinal microbiota and the mucosal immune system can significantly impact human health, and in this context, fungi and food-related yeasts are known to influence intestinal inflammation through direct interactions with specialized immune cells in vivo. The aim of the present study was to characterize the immune modulating properties of the food-related yeast Kluyveromyces marxianus in terms of adaptive immune responses indicating inflammation versus tolerance and to explore the mechanisms behind the observed responses. Benchmarking against a Saccharomyces boulardii strain with probiotic effects documented in clinical trials, we evaluated the ability of K. marxianus to modulate human dendritic cell (DC) function in vitro. Further, we assessed yeast induced DC modulation of naive T cells toward effector responses dominated by secretion of IFNγ and IL-17 versus induction of a Treg response characterized by robust IL-10 secretion. In addition, we blocked relevant DC surface receptors and investigated the stimulating properties of β-glucan containing yeast cell wall extracts. K. marxianus and S. boulardii induced distinct levels of DC cytokine secretion, primarily driven by Dectin-1 recognition of β-glucan components in their cell walls. Upon co-incubation of yeast exposed DCs and naive T cells, S. boulardii induced a potent IFNγ response indicating TH1 mobilization. In contrast, K. marxianus induced a response dominated by Foxp3+ Treg cells, a characteristic that may benefit human health in conditions characterized by excessive inflammation and positions K. marxianus as a strong candidate for further development as a novel yeast probiotic. PMID:27898740

  16. Kluyveromyces marxianus and Saccharomyces boulardii Induce Distinct Levels of Dendritic Cell Cytokine Secretion and Significantly Different T Cell Responses In Vitro.

    PubMed

    Smith, Ida M; Baker, Adam; Christensen, Jeffrey E; Boekhout, Teun; Frøkiær, Hanne; Arneborg, Nils; Jespersen, Lene

    2016-01-01

    Interactions between members of the intestinal microbiota and the mucosal immune system can significantly impact human health, and in this context, fungi and food-related yeasts are known to influence intestinal inflammation through direct interactions with specialized immune cells in vivo. The aim of the present study was to characterize the immune modulating properties of the food-related yeast Kluyveromyces marxianus in terms of adaptive immune responses indicating inflammation versus tolerance and to explore the mechanisms behind the observed responses. Benchmarking against a Saccharomyces boulardii strain with probiotic effects documented in clinical trials, we evaluated the ability of K. marxianus to modulate human dendritic cell (DC) function in vitro. Further, we assessed yeast induced DC modulation of naive T cells toward effector responses dominated by secretion of IFNγ and IL-17 versus induction of a Treg response characterized by robust IL-10 secretion. In addition, we blocked relevant DC surface receptors and investigated the stimulating properties of β-glucan containing yeast cell wall extracts. K. marxianus and S. boulardii induced distinct levels of DC cytokine secretion, primarily driven by Dectin-1 recognition of β-glucan components in their cell walls. Upon co-incubation of yeast exposed DCs and naive T cells, S. boulardii induced a potent IFNγ response indicating TH1 mobilization. In contrast, K. marxianus induced a response dominated by Foxp3+ Treg cells, a characteristic that may benefit human health in conditions characterized by excessive inflammation and positions K. marxianus as a strong candidate for further development as a novel yeast probiotic.

  17. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars

    USDA-ARS?s Scientific Manuscript database

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for producing ethanol from lignocellulosic substrates at elevated temperatures. To improve its growth and ethanol yield under anaerobic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C, and surviving cells were grown a...

  18. The hydrolytic activity of esterases in the yeast Saccharomyces cerevisiae is strain dependent.

    PubMed

    Kwolek-Mirek, Magdalena; Bednarska, Sabina; Zadrąg-Tęcza, Renata; Bartosz, Grzegorz

    2011-11-01

    Ester precursors of fluorogenic or chromogenic probes are often employed in studies of yeast cell biology. This study was aimed at a comparison of the ability of several commonly used laboratory wild-type Saccharomyces cerevisiae strains to hydrolyse the following model esters: fluorescein diacetate, 2-naphthyl acetate, PNPA (p-nitrophenyl acetate) and AMQI (7-acetoxy-1-methylquinolinum iodide). In all the strains, the esterase activity was localized mainly to the cytosol. Considerable differences in esterase activity were observed between various wild-type laboratory yeast strains. The phase of growth also contributed to the variation in esterase activity of the yeast. This diversity implies the need for caution in using intracellularly hydrolysed probes for a comparison of yeast strains with various genetic backgrounds.

  19. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    PubMed Central

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  20. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain.

    PubMed

    Yan, Jinping; Wei, Zhilei; Wang, Qiaoping; He, Manman; Li, Shumei; Irbis, Chagan

    2015-10-01

    In this study, bioethanol production from NaOH/H2O2-pretreated water hyacinth was investigated. Pretreatment of water hyacinth with 1.5% (v/v) H2O2 and 3% (w/v) NaOH at 25 °C increased the production of reducing sugars (223.53 mg/g dry) and decreased the cellulose crystallinity (12.18%), compared with 48.67 mg/g dry and 22.80% in the untreated sample, respectively. The newly isolated Kluyveromyces marxianu K213 showed greater ethanol production from glucose (0.43 g/g glucose) at 45 °C than did the control Saccharomyces cerevisiae angel yeast. The maximum ethanol concentration (7.34 g/L) achieved with K. marxianu K213 by simultaneous saccharification and fermentation (SSF) from pretreated water hyacinth at 42 °C was 1.78-fold greater than that produced by angel yeast S. cerevisiae at 30 °C. The present work demonstrates that bioethanol production achieved via SSF of NaOH/H2O2-pretreated water hyacinth with K. marxianu K213 is a promising strategy to utilize water hyacinth biomass. Copyright © 2015. Published by Elsevier Ltd.

  1. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus

    PubMed Central

    Akanni, Gabriel B; du Preez, James C; Steyn, Laurinda; Kilian, Stephanus G

    2015-01-01

    BACKGROUND The cladodes of Opuntia ficus-indica (prickly pear cactus) have a low protein content; for use as a balanced feed, supplementation with other protein sources is therefore desirable. We investigated protein enrichment by cultivation of the yeasts Candida utilis and Kluyveromyces marxianus in an enzymatic hydrolysate of the cladode biomass. RESULTS Dilute acid pretreatment and enzymatic hydrolysis of sun-dried cladodes resulted in a hydrolysate containing (per litre) 45.5 g glucose, 6.3 g xylose, 9.1 g galactose, 10.8 g arabinose and 9.6 g fructose. Even though K. marxianus had a much higher growth rate and utilized l-arabinose and d-galactose more completely than C. utilis, its biomass yield coefficient was lower due to ethanol and ethyl acetate production despite aerobic cultivation. Yeast cultivation more than doubled the protein content of the hydrolysate, with an essential amino acid profile superior to sorghum and millet grains. CONCLUSIONS This K. marxianus strain was weakly Crabtree positive. Despite its low biomass yield, its performance compared well with C. utilis. This is the first report showing that the protein content and quality of O. ficus-indica cladode biomass could substantially be improved by yeast cultivation, including a comparative evaluation of C. utilis and K. marxianus. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25371280

  2. Probiotic yeasts: Anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice

    PubMed Central

    Foligné, Benoît; Dewulf, Joëlle; Vandekerckove, Pascal; Pignède, Georges; Pot, Bruno

    2010-01-01

    AIM: To evaluate the in vitro immunomodulation capacity of various non-pathogenic yeast strains and to investigate the ability of some of these food grade yeasts to prevent experimental colitis in mice. METHODS: In vitro immunomodulation was assessed by measuring cytokines [interleukin (IL)-12p70, IL-10, tumor necrosis factor and interferon γ] released by human peripheral blood mononuclear cells after 24 h stimulation with 6 live yeast strains (Saccharomyces ssp.) and with bacterial reference strains. A murine model of acute 2-4-6-trinitrobenzene sulfonic acid (TNBS)-colitis was next used to evaluate the distinct prophylactic protective capacities of three yeast strains compared with the performance of prednisolone treatment. RESULTS: The six yeast strains all showed similar non-discriminating anti-inflammatory potential when tested on immunocompetent cells in vitro. However, although they exhibited similar colonization patterns in vivo, some yeast strains showed significant anti-inflammatory activities in the TNBS-induced colitis model, whereas others had weaker or no preventive effect at all, as evidenced by colitis markers (body-weight loss, macroscopic and histological scores, myeloperoxidase activities and blood inflammatory markers). CONCLUSION: A careful selection of strains is required among the biodiversity of yeasts for specific clinical studies, including applications in inflammatory bowel disease and other therapeutic uses. PMID:20440854

  3. A CTG Clade Candida Yeast Genetically Engineered for the Genotype-Phenotype Characterization of Azole Antifungal Resistance in Human-Pathogenic Yeasts.

    PubMed

    Accoceberry, Isabelle; Rougeron, Amandine; Biteau, Nicolas; Chevrel, Pauline; Fitton-Ouhabi, Valérie; Noël, Thierry

    2018-01-01

    A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae , allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianus Candida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus , plays a critical role in fluconazole resistance. Copyright © 2017 American Society for Microbiology.

  4. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread.

    PubMed

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-10-04

    Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56%  reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO 2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.

  5. Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.

    PubMed

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts.

  6. Respiration-Dependent Utilization of Sugars in Yeasts: a Determinant Role for Sugar Transporters

    PubMed Central

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts. PMID:11751819

  7. Isolation, Identification and Characterization of Yeasts from Fermented Goat Milk of the Yaghnob Valley in Tajikistan

    PubMed Central

    Qvirist, Linnea A.; De Filippo, Carlotta; Strati, Francesco; Stefanini, Irene; Sordo, Maddalena; Andlid, Thomas; Felis, Giovanna E.; Mattarelli, Paola; Cavalieri, Duccio

    2016-01-01

    The geographically isolated region of the Yaghnob Valley, Tajikistan, has allowed its inhabitants to maintain a unique culture and lifestyle. Their fermented goat milk constitutes one of the staple foods for the Yaghnob population, and is produced by backslopping, i.e., using the previous fermentation batch to inoculate the new one. This study addresses the yeast composition of the fermented milk, assessing genotypic, and phenotypic properties. The 52 isolates included in this study revealed small species diversity, belonging to Kluyveromyces marxianus, Pichia fermentans, Saccharomyces cerevisiae, and one Kazachstania unispora. The K. marxianus strains showed two different genotypes, one of which never described previously. The two genetically different groups also differed significantly in several phenotypic characteristics, such as tolerance toward high temperatures, low pH, and presence of acid. Microsatellite analysis of the S. cerevisiae strains from this study, compared to 350 previously described strains, attributed the Yaghnobi S. cerevisiae to two different ancestry origins, both distinct from the wine and beer strains, and similar to strains isolated from human and insects feces, suggesting a peculiar origin of these strains, and the existence of a gut reservoir for S. cerevisiae. Our work constitutes a foundation for strain selection for future applications as starter cultures in food fermentations. This work is the first ever on yeast diversity from fermented milk of the previously unexplored area of the Yaghnob Valley. PMID:27857705

  8. Toxicity of nalidixic acid on candida albicans, Saccharomyces cerevisiae, and Kluyveromyces lactis.

    PubMed

    Sobieski, R J; Brewer, A R

    1976-03-01

    The antibacterial drug nalidixic acid (Nal) can suppress the growth of Candida albicans at levels of the drug normally found in urine. Growth suppression increases as drug levels are increased, and Nal also causes a similar proportional inhibition of the synthesis of all cellular macromolecules. However, growth temperature (25 versus 37 C) and the divalent cations Mg(2+) and Mn(2+) can increase C. albicans resistance to Nal. Also, nitrogen depletion of Candida shows that Nal-treated and untreated cells exhibit no difference in leucine uptake during readaptation to nitrogen. In Nal-treated, nitrogen-starved cells, ribonucleic acid and deoxyribonucleic acid (DNA) biosynthesis are less affected than in unstarved Nal-treated cells, but of the two nucleic acids DNA synthesis is the most affected. Nal-resistant strains of C. albicans exhibit a slight toxicity for macromolecular synthesis. Nal treatment of a synchronized population of Saccharomyces cerevisiae results in an increase in the culture mean doubling time of, at most, 20%, but Nal causes the loss of synchronous cell division. With a synchronized population of Kluyveromyces lactis, Nal causes an increase in the mean doubling time of upwards of 300%, with synchrony of cell division being maintained. It is known that S. cerevisiae asynchronously synthesizes mitochondrial DNA during the cell cycle, whereas with K. lactis it is synchronous. Thus, with C. albicans Nal toxicity is dependent both on the dose and the physiological state of the cell. Furthermore, Nal inhibits growth of yeast with synchronous mitochondrial DNA synthesis more adversely than yeast with asynchronous mitochondrial DNA synthesis.

  9. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    PubMed

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The

  10. Direct fermentation of Jerusalem artichoke tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus.

    PubMed

    Bae, Jung-Hoon; Kim, Hyun-Jin; Kim, Mi-Jin; Sung, Bong Hyun; Jeon, Jae-Heung; Kim, Hyun-Soon; Jin, Yong-Su; Kweon, Dae-Hyuk; Sohn, Jung-Hoon

    2018-01-20

    An efficient production system for optically pure l- and d-lactic acid (LA) from Jerusalem artichoke tuber powder (JAP) was developed by metabolic engineering of Kluyveromyces marxianus. To construct LA-producing strains, the ethanol fermentation pathway of K. marxianus was redirected to LA production by disruption of KmPDC1 and expression of l- and d-lactate dehydrogenase (LDH) genes derived from Lactobacillus plantarum under the control of the K. marxianus translation elongation factor 1α promoter. To further increase the LA titer, the l-LA and d-LA consumption pathway of host strains was blocked by deletion of the oxidative LDH genes KmCYB2 and KmDLD1. The recombinant strains produced 130g/L l-LA and 122g/L d-LA by direct fermentation from 230g/L JAP containing 140g/L inulin, without pretreatment or nutrient supplementation. The conversion efficiency and optical purity were ≫>95% and ≫>99%, respectively. This system using JAP and the inulin-assimilating yeast K. marxianus could lead to a cost-effective process for the production of LA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Genetic Basis of Variations in Nitrogen Source Utilization in Four Wine Commercial Yeast Strains

    PubMed Central

    Gutiérrez, Alicia; Beltran, Gemma; Warringer, Jonas; Guillamón, Jose M.

    2013-01-01

    The capacity of wine yeast to utilize the nitrogen available in grape must directly correlates with the fermentation and growth rates of all wine yeast fermentation stages and is, thus, of critical importance for wine production. Here we precisely quantified the ability of low complexity nitrogen compounds to support fast, efficient and rapidly initiated growth of four commercially important wine strains. Nitrogen substrate abundance in grape must failed to correlate with the rate or the efficiency of nitrogen source utilization, but well predicted lag phase length. Thus, human domestication of yeast for grape must growth has had, at the most, a marginal impact on wine yeast growth rates and efficiencies, but may have left a surprising imprint on the time required to adjust metabolism from non growth to growth. Wine yeast nitrogen source utilization deviated from that of the lab strain experimentation, but also varied between wine strains. Each wine yeast lineage harbored nitrogen source utilization defects that were private to that strain. By a massive hemizygote analysis, we traced the genetic basis of the most glaring of these defects, near inability of the PDM wine strain to utilize methionine, as consequence of mutations in its ARO8, ADE5,7 and VBA3 alleles. We also identified candidate causative mutations in these genes. The methionine defect of PDM is potentially very interesting as the strain can, in some circumstances, overproduce foul tasting H2S, a trait which likely stems from insufficient methionine catabolization. The poor adaptation of wine yeast to the grape must nitrogen environment, and the presence of defects in each lineage, open up wine strain optimization through biotechnological endeavors. PMID:23826223

  12. New Lager Brewery Strains Obtained by Crossing Techniques Using Cachaça (Brazilian Spirit) Yeasts

    PubMed Central

    Figueiredo, Bruna Inez Carvalho; Saraiva, Margarete Alice Fontes; de Souza Pimenta, Paloma Patrick; de Souza Testasicca, Miriam Conceição; Sampaio, Geraldo Magela Santos; da Cunha, Aureliano Claret; Afonso, Luis Carlos Crocco; Vieira de Queiroz, Marisa; de Miranda Castro, Ieso

    2017-01-01

    ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in

  13. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    PubMed Central

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  14. Biofortification of folates in white wheat bread by selection of yeast strain and process.

    PubMed

    Hjortmo, Sofia; Patring, Johan; Jastrebova, Jelena; Andlid, Thomas

    2008-09-30

    We here demonstrate that folate content in yeast fermented food can be dramatically increased by using a proper (i) yeast strain and (ii) cultivation procedure for the selected strain prior to food fermentation. Folate levels were 3 to 5-fold higher in white wheat bread leavened with a Saccharomyces cerevisiae strain CBS7764, cultured in defined medium and harvested in the respiro-fermentative phase of growth prior to dough preparation (135-139 microg/100 dry matter), compared to white wheat bread leavened with commercial Baker's yeast (27-43 microg/100 g). The commercial Baker's yeast strain had been industrially produced, using a fed-batch process, thereafter compressed and stored in the refrigerator until bakings were initiated. This strategy is an attractive alternative to fortification of bread with synthetically produced folic acid. By using a high folate producing strain cultured a suitable way folate levels obtained were in accordance with folic acid content in fortified cereal products.

  15. Molecular cloning of the plasma membrane H(+)-ATPase from Kluyveromyces lactis: a single nucleotide substitution in the gene confers ethidium bromide resistance and deficiency in K+ uptake.

    PubMed Central

    Miranda, M; Ramírez, J; Peña, A; Coria, R

    1995-01-01

    A Kluyveromyces lactis strain resistant to ethidium bromide and deficient in potassium uptake was isolated. Studies on the proton-pumping activity of the mutant strain showed that a decreased H(+)-ATPase specific activity was responsible for the observed phenotypes. The putative K. lactis PMA1 gene encoding the plasma membrane H(+)-ATPase was cloned by its ability to relieve the potassium transport defect of this mutant and by reversing its resistance to ethidium bromide. Its deduced amino acid sequence predicts a protein 899 residues long that is structurally colinear in its full length to H(+)-ATPases cloned from different yeasts, except for the presence of a variable N-terminal domain. By PCR-mediated amplification, we identified a transition from G to A that rendered the substitution of the fully conserved methionine at position 699 by isoleucine. We attribute to this amino acid change the low capacity of the mutant H(+)-ATPase to pump out protons. PMID:7730265

  16. Cachaça yeast strains: alternative starters to produce beer and bioethanol.

    PubMed

    Araújo, Thalita Macedo; Souza, Magalhães Teixeira; Diniz, Raphael Hermano Santos; Yamakawa, Celina Kiyomi; Soares, Lauren Bergmann; Lenczak, Jaciane Lutz; de Castro Oliveira, Juliana Velasco; Goldman, Gustavo Henrique; Barbosa, Edilene Alves; Campos, Anna Clara Silva; Castro, Ieso Miranda; Brandão, Rogelio Lopes

    2018-04-16

    This work was performed to verify the potential of yeast strains isolated from cachaça distilleries for two specific biotechnological applications: beer and bioethanol production. In the beer production, the strains were tested for characteristics required in brewery practices, such as: capacity to ferment maltose and maltotriose, ability to grow at lowest temperatures, low H 2 S production, and flocculation profile. Among the strains tested, two of them showed appropriate characteristics to produce two different beer styles: lager and ale. Moreover, both strains were tested for cachaça production and the results confirmed the capacity of these strains to improve the quality of cachaça. In the bioethanol production, the fermentation process was performed similarly to that used by bioethanol industries: recycling of yeast biomass in the fermentative process with sulfuric acid washings (pH 2.0). The production of ethanol, glycerol, organic acids, dry cell weight, carbohydrate consumption, and cellular viability were analyzed. One strain presented fermentative parameters similar to PE2, industrial/commercial strain, with equivalent ethanol yields and cellular viability during all fermentative cycles. This work demonstrates that cachaça distilleries seem to be an interesting environment to select new yeast strains to be used in biotechnology applications as beer and bioethanol production.

  17. Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance.

    PubMed

    Yazawa, Hisashi; Iwahashi, Hitoshi; Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi

    2009-03-01

    Saccharomyces cerevisiae produces saturated and monounsaturated fatty acids of 16- and 18-carbon atoms and no polyunsaturated fatty acids (PUFAs) with more than two double bonds. To study the biological significance of PUFAs in yeast, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase (KlFAD2) and omega3 fatty acid desaturase (KlFAD3) genes into S. cerevisiae to produce linoleic and alpha-linolenic acids in S. cerevisiae. The strain producing linoleic and alpha-linolenic acids showed an alkaline pH-tolerant phenotype. DNA microarray analyses showed that the transcription of a set of genes whose expressions are under the repression of Rim101p were downregulated in this strain, suggesting that Rim101p, a transcriptional repressor which governs the ion tolerance, was activated. In line with this activation, the strain also showed elevated resistance to Li(+) and Na(+) ions and to zymolyase, a yeast lytic enzyme preparation containing mainly beta-1,3-glucanase, indicating that the cell wall integrity was also strengthened in this strain. Our findings demonstrate a novel influence of PUFA production on transcriptional control that is likely to play an important role in the early stage of alkaline stress response. The Accession No. for microarray data in the Center for Information Biology Gene Expression database is CBX68.

  18. Solving ethanol production problems with genetically modified yeast strains

    PubMed Central

    Abreu-Cavalheiro, A.; Monteiro, G.

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432

  19. Solving ethanol production problems with genetically modified yeast strains.

    PubMed

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  20. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.

    PubMed

    Bleoanca, Iulia; Silva, Ana Rita Courelas; Pimentel, Catarina; Rodrigues-Pousada, Claudina; Menezes, Regina de Andrade

    2013-12-01

    Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE PAGES

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; ...

    2018-02-20

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  2. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  3. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.

    PubMed

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; Zhao, Huimin

    2018-06-01

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. However, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to construct xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories. © 2018 Wiley Periodicals, Inc.

  4. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    PubMed

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.

    PubMed

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; St Onge, Robert P

    2016-09-01

    The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here. © 2016 Cold Spring Harbor Laboratory Press.

  6. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    PubMed Central

    Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid. PMID:29098157

  7. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources.

    PubMed

    Gientka, Iwona; Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua , Debaryomyces hansenii , Kluyveromyces marxianus , Kazachstania unispora , and Zygotorulaspora florentina . We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L -1 . Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  8. Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir.

    PubMed

    Romanin, David; Serradell, María; González Maciel, Dolores; Lausada, Natalia; Garrote, Graciela L; Rumbo, Martín

    2010-06-15

    Kefir is obtained by milk fermentation with a complex microbial population included in a matrix of polysaccharide and proteins. Several health-promoting activities has been attributed to kefir consumption. The aim of this study was to select microorganisms from kefir able to down-regulate intestinal epithelial innate response and further characterize this activity. Caco-2 cells stably transfected with a human CCL20 promoter luciferase reporter were used to screen a collection of 24 yeast and 23 bacterial strains isolated from kefir. The Toll-like receptor 5 agonist, flagellin was used to activate the reporter cells, while pre-incubation with the selected strains was tested to identify strains with the capacity to inhibit cell activation. In this system, 21 yeast strains from the genera Saccharomyces, Kluyveromyces and Issatchenkia inhibited almost 100% of the flagellin-dependent activation, whereas only some lactobacilli strains showed a partial effect. K. marxianus CIDCA 8154 was selected for further characterization. Inhibitory activity was confirmed at transcriptional level on Caco-2/TC-7 and HT-29 cells upon flagellin stimulation. A similar effect was observed using other pro-inflammatory stimulation such as IL-1beta and TNF-alpha. Pre-incubation with yeasts induced a down-regulation of NF-kappaB signalling in epithelial cells in vitro, as well as expression of other pro-inflammatory chemokines such as CXCL8 and CXCL2. Furthermore, modulation of CCL20 mRNA expression upon flagellin stimulation was evidenced in vivo, in a mouse ligated intestinal loop model. Results indicate kefir contains microorganisms able to abolish the intestinal epithelial inflammatory response that could explain some of the properties attributed to this fermented milk. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine-cysteine mixtures.

    PubMed

    López Del Castillo-Lozano, M; Delile, A; Spinnler, H E; Bonnarme, P; Landaud, S

    2007-07-01

    Production of volatile sulphur compounds (VSC) was assessed in culture media supplemented with L-methionine or L-methionine/L-cysteine mixtures, using five cheese-ripening yeasts: Debaryomyces hansenii DH47(8), Kluyveromyces lactis KL640, Geotrichum candidum GC77, Yarrowia lipolytica YL200 and Saccharomyces cerevisiae SC45(3). All five yeasts produced VSC with L-methionine or L-methionine/L-cysteine, but different VSC profiles were found. GC77 and YL200 produced dimethyldisulphide and trace levels of dimethyltrisulphide while DH47(8), KL640 and SC45(3) produced mainly methionol and low levels of methional. S-methylthioacetate was produced by all the yeasts but at different concentrations. DH47(8), KL640 and SC45(3) also produced other minor VSC including 3-methylthiopropyl acetate, ethyl-3-methylthiopropanoate, a thiophenone, and an oxathiane. However, VSC production diminished in a strain-dependent behaviour when L-cysteine was supplemented, even at a low concentration (0.2 g l(-1)). This effect was due mainly to a significant decrease in L-methionine consumption in all the yeasts except YL200. Hydrogen sulphide produced by L-cysteine catabolism did not seem to contribute to VSC generation at the acid pH of yeast cultures. The significance of such results in the cheese-ripening context is discussed.

  10. Kluyveromyces aestuarii, a potential environmental quality indicator yeast for mangroves in the State of Rio de Janeiro, Brazil

    PubMed Central

    Araujo, F.V.; Hagler, A. N.

    2011-01-01

    Kluyveromyces aestuarii was found in sediments from 7 of 8 mangroves in Rio de Janeiro; and absent only at one site with heavy plastic bag pollution. Its presence suggests influence in other habitats from a mangrove and its absence in a mangrove suggests some non- fecal pollution or other habitat alteration. PMID:24031711

  11. Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol.

    PubMed

    Ballesteros, I; Ballesteros, M; Cabañas, A; Carrasco, J; Martín, C; Negro, M J; Saez, F; Saez, R

    1991-01-01

    A total of 27 yeast strains belonging to the groups Candida, Saccharomyces, and Kluyveromyces were screened for their ability to grow and ferment glucose at temperatures ranging 32-45 degrees C. K. marxianus and K. fragilis were found to be the best ethanol producing organisms at the higher temperature tested and, so, were selected for subsequent simultaneous saccharification and fermentation (SSF) studies. SSF experiments were performed at 42 and 45 degrees C, utilizing Solkafloc (10%) as cellulose substrate and a cellulase loading of 15 FPU/g substrate. Best results were achieved at 42 degrees C with K. marxianus L. G. and K. fragilis L. G., both of which produced close to 38 g/L ethanol and 0.5 ethanol yield, in 78 h.

  12. Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain.

    PubMed

    Yu, Jing; Jiang, Jiaxi; Ji, Wangming; Li, Yuyang; Liu, Jianping

    2011-01-01

    Using inulin (polyfructose) obtained from Jerusalen artichokes, we have produced fructose free of residual glucose using a recombinant inulinase-secreting strain of Saccharomyces cerevisiae in a one-step fermentation of Jerusalem artichoke tubers. For producing fructose from inulin, a recombinant inulinase-producing Saccharomyce cerevisiae strain was constructed with a deficiency in fructose uptake by disruption of two hexokinase genes hxk1 and hxk2. The inulinase gene introduced into S. cerevisiae was cloned from Kluyveromyces cicerisporus. Extracellular inulinase activity of the recombinant hxk-mutated S. cerevisiae strain reached 31 U ml(-1) after 96 h growth. When grown in a medium containing Jerusalem artichoke tubers as the sole component without any additives, the recombinant yeast accumulated fructose up to 9.2% (w/v) in the fermentation broth with only 0.1% (w/v) glucose left after 24 h.

  13. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.

    PubMed

    Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A

    2009-05-01

    The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.

  14. Technological properties of indigenous wine yeast strains isolated from wine production regions of Turkey.

    PubMed

    Bağder Elmacı, Simel; Özçelik, Filiz; Tokatlı, Mehmet; Çakır, İbrahim

    2014-05-01

    The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0-12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.

  15. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609.

    PubMed

    Sambles, Christine; Middelhaufe, Sabine; Soanes, Darren; Kolak, Dagmara; Lux, Thomas; Moore, Karen; Matoušková, Petra; Parker, David; Lee, Rob; Love, John; Aves, Stephen J

    2017-09-01

    Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula ( Rhodosporidium ) toruloides (Pucciniomycotina) is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13 × coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251).

  17. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  18. Occurrence, horizontal transfer and degeneration of VDE intein family in Saccharomycete yeasts.

    PubMed

    Okuda, Yoshihiro; Sasaki, Daisuke; Nogami, Satoru; Kaneko, Yoshinobu; Ohya, Yoshikazu; Anraku, Yasuhiro

    2003-05-01

    VDE is a homing endonuclease gene originally discovered as an intervening element in VMA1s of Saccharomyces cerevisiae. There have been two independent subfamilies of VDE, one from S. cerevisiae strain X2180-1A and the other from Saccharomyces sp. DH1-1A in the host VMA1 gene, and they share the identity of 96.3%. In order to search the occurrence, intra/interspecies transfer and molecular degeneration of VDE, complete sequences of VMA1 in 10 strains of S. cerevisiae, eight species of saccharomycete yeasts, Candida glabrata and Kluyveromyces lactis were determined. We found that six of 10 S. cerevisiae strains contain VDEs 99.7-100% identical to that of the strain X2180-1A, one has no VDE, whereas the other three harbour VDEs 100% identical to that of the strain DH1-1A. S. carlsbergensis has two VMA1s, one being 99.8% identical to that of the strain X2180-1A with VDE 100% identical to that of the strain DH1-1A and the other containing the same VMA1 in S. pastorianus with no VDE. This and other evidence indicates that intra/interspecies transmissions of VDEs have occurred among saccharomycete yeasts. Phylogenetic analyses of VMA1 and VDE suggest that the S. cerevisiae VDEs had branched earlier than other VDEs from an ancestral VDE and had invaded into the host loci as relatively late events. The two VDEs seemed to degenerate in individual host loci, retaining their splicing capacity intact. The degeneration of the endonuclease domains was distinct and, if compared, its apparent rate was much faster than that of the protein-splicing domains. Copyright 2003 John Wiley & Sons, Ltd.

  19. Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production.

    PubMed

    Zhang, Lin-Lin; Tan, Mei-Juan; Liu, Guang-Lei; Chi, Zhe; Wang, Guang-Yuan; Chi, Zhen-Ming

    2015-04-01

    The INU1 gene encoding an exo-inulinase from the marine-derived yeast Candida membranifaciens subsp. flavinogenie W14-3 was cloned and characterized. It had an open reading frame of 1,536 bp long encoding an inulinase. The coding region of it was not interrupted by any intron. The cloned gene encoded 512 amino acid residues of a protein with a putative signal peptide of 23 amino acids and a calculated molecular mass of 57.8 kDa. The protein sequence deduced from the inulinase gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP FS and Q. The protein also had six conserved putative N-glycosylation sites. The deduced inulinase from the yeast strain W14-3 was found to be closely related to that from Candida kutaonensis sp. nov. KRF1, Kluyveromyces marxianus, and Cryptococcus aureus G7a. The inulinase gene with its signal peptide encoding sequence was subcloned into the pMIRSC11 expression vector and expressed in Saccharomyces sp. W0. The recombinant yeast strain W14-3-INU-112 obtained could produce 16.8 U/ml of inulinase activity and 12.5 % (v/v) ethanol from 250 g/l of inulin within 168 h. The monosaccharides were detected after the hydrolysis of inulin with the crude inulinase (the yeast culture). All the results indicated that the cloned gene and the recombinant yeast strain W14-3-INU-112 had potential applications in biotechnology.

  20. Characterization of Osmotolerant Yeasts and Yeast-Like Molds from Apple Orchards and Apple Juice Processing Plants in China and Investigation of Their Spoilage Potential.

    PubMed

    Wang, Huxuan; Hu, Zhongqiu; Long, Fangyu; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2015-08-01

    Yeasts and yeast-like fungal isolates were recovered from apple orchards and apple juice processing plants located in the Shaanxi province of China. The strains were evaluated for osmotolerance by growing them in 50% (w/v) glucose. Of the strains tested, 66 were positive for osmotolerance and were subsequently identified by 26S or 5.8S-ITS ribosomal RNA (rRNA) gene sequencing. Physiological tests and RAPD-PCR analysis were performed to reveal the polymorphism of isolates belonging to the same species. Further, the spoilage potential of the 66 isolates was determining by evaluating their growth in 50% to 70% (w/v) glucose and measuring gas generation in 50% (w/v) glucose. Thirteen osmotolerant isolates representing 9 species were obtained from 10 apple orchards and 53 target isolates representing 19 species were recovered from 2 apple juice processing plants. In total, members of 14 genera and 23 species of osmotolerant isolates including yeast-like molds were recovered from all sources. The commonly recovered osmotolerant isolates belonged to Kluyveromyces marxianus, Hanseniaspora uvarum, Saccharomyces cerevisiae, Zygosaccharomyces rouxii, Candida tropicalis, and Pichia kudriavzevii. The polymorphism of isolates belonging to the same species was limited to 1 to 3 biotypes. The majority of species were capable of growing within a range of glucose concentration, similar to sugar concentrations found in apple juice products with a lag phase from 96 to 192 h. Overall, Z. rouxii was particularly the most tolerant to high glucose concentration with the shortest lag phase of 48 h in 70% (w/v) glucose and the fastest gas generation rate in 50% (w/v) glucose. © 2015 Institute of Food Technologists®

  1. Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance.

    PubMed

    Böswald, C; Engelhardt, G; Vogel, H; Wallnöfer, P R

    1995-01-01

    The Fusarium mycotoxin zearalenone (ZEA), added at a level of 2 micrograms/ml, was reduced stereoselectively by cultures of Candida tropicalis, Torulaspora delbrückii, Zygosaccharomyces rouxii, and 7 Saccharomyces strains to both alpha- and beta-zearalenol. In contrast, only alpha-zearalenol was produced from ZEA by Pichia fermentans and several yeast strains of the genera Candida, Hansenula, Brettanomyces, Schizosaccharomyces, and Saccharomycopsis. No glucose conjugates of ZEA (zearalenone-4-beta-D-glucopyranoside) were detected. The trichothecene mycotoxin deoxynivalenol (DON) was not metabolized by any of the yeast strains that were used for analysis.

  2. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media.

    PubMed

    Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M

    2018-02-01

    The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.

  3. Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis.

    PubMed

    Spohner, Sebastian C; Czermak, Peter

    2016-06-25

    Fructo-oligosaccharides are prebiotic and hypocaloric sweeteners that are usually extracted from chicory. They can also be produced from sucrose using fructosyltransferases, but the only commercial enzyme suitable for this purpose is Pectinex Ultra, which is produced with Aspergillus aculeatus. Here we used the yeast Kluyveromyces lactis to express a secreted recombinant fructosyltransferase from the inulin-producing fungus Aspergillus terreus. A synthetic codon-optimised version of the putative β-fructofuranosidase ATEG 04996 (XP 001214174.1) from A. terreus NIH2624 was secreted as a functional protein into the extracellular medium. At 60°C, the purified A. terreus enzyme generated the same pattern of oligosaccharides as Pectinex Ultra, but at lower temperatures it also produced oligomers with up to seven units. We achieved activities of up to 986.4U/mL in high-level expression experiments, which is better than previous reports of optimised Aspergillus spp. fermentations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936

    PubMed Central

    Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J.; Noël, Thierry

    2017-01-01

    ABSTRACT Clavispora lusitaniae, an environmental saprophytic yeast belonging to the CTG clade of Candida, can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. PMID:28774979

  5. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding.

    PubMed

    Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M

    1999-02-01

    Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.

  6. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation

    PubMed Central

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-01-01

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast “biological process” and “cellular component” according to Gene Ontology Terminology (GO Terms) and, “pathways” was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production. PMID:28350350

  7. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-03-28

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast "biological process" and "cellular component" according to Gene Ontology Terminology (GO Terms) and, "pathways" was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.

  8. Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material.

    PubMed

    Cappello, M S; Poltronieri, P; Blaiotta, G; Zacheo, G

    2010-11-15

    The knowledge about wine yeasts remains largely dominated by the extensive studies on Saccharomyces (S.) cerevisiae. Molecular methods, allowing discrimination of both species and strains in winemaking, can profitably be applied for characterization of the microflora occurring in winemaking and for monitoring the fermentation process. Recently, some novel yeast isolates have been described as hybrid between S. cerevisiae and Saccharomyces species, leaving the Saccharomyces strains containing non-Saccharomyces hybrids essentially unexplored. In this study, we have analyzed a yeast strain isolated from "Primitivo" grape (http://www.ispa.cnr.it/index.php?page=collezioni&lang=en accession number 12998) and we found that, in addition to the S. cerevisiae genome, it has acquired genetic material from a non-Saccharomyces species. The study was focused on the analysis of chromosomal and mitochondrial gene sequences (ITS and 26S rRNA, SSU and COXII, ACTIN-1 and TEF), 2D-PAGE mitochondrial proteins, and spore viability. The results allowed us to formulate the hypothesis that in the MSH199 isolate a DNA containing an rDNA sequence from Hanseniaspora vineae, a non-Saccharomyces yeast, was incorporated through homologous recombination in the grape environment where yeast species are propagated. Moreover, physiological characterization showed that the MSH199 isolate possesses high technological quality traits (fermentation performance) and glycerol production, resistance to ethanol, SO₂ and temperature) useful for industrial application. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936.

    PubMed

    Durrens, Pascal; Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J; Noël, Thierry

    2017-08-03

    Clavispora lusitaniae , an environmental saprophytic yeast belonging to the CTG clade of Candida , can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. Copyright © 2017 Durrens et al.

  10. Raman spectroscopy and chemometrics for identification and strain discrimination of the wine spoilage yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis.

    PubMed

    Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J

    2013-10-01

    The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.

  11. Influence of yeast strain, priming solution and temperature on beer bottle conditioning.

    PubMed

    Marconi, Ombretta; Rossi, Serena; Galgano, Fernanda; Sileoni, Valeria; Perretti, Giuseppe

    2016-09-01

    Recently, there has been a significant increase in the number of microbreweries. Usually, craft beers are bottle conditioned; however, few studies have investigated beer refermentation. One of the objectives of this study was to evaluate the impacts of different experimental conditions, specifically yeast strain, priming solution and temperature, on the standard quality attributes, the volatile compounds and the sensory profile of the bottle-conditioned beer. The other aim was to monitor the evolution of volatile compounds and amino acids consumption throughout the refermentation process to check if it is possible to reduce the time necessary for bottle conditioning. The results indicate that the volatile profile was mainly influenced by the strain of yeast, and this may have obscured the possible impacts of the other parameters. Our results also confirm that the two yeast strains showed different metabolic activity, particularly with respect to esters production. Moreover, we found the Safbrew S-33® strain when primed with Siromix® and refermented at 30 °C yielded the fastest formation of higher alcohols while maintaining low production of off-flavours. These results suggest a formulation that may reduce the time needed for bottle conditioning without affecting the quality of the final beer which may simultaneously improve efficiency and economic profits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    PubMed

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Raman Spectroscopy and Chemometrics for Identification and Strain Discrimination of the Wine Spoilage Yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis

    PubMed Central

    Thornton, Mark A.; Thornton, Roy J.

    2013-01-01

    The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%. PMID:23913433

  14. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication*

    PubMed Central

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  15. [Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey].

    PubMed

    Ramírez Matheus, Alejandra O; Rivas, Nilo

    2003-06-01

    The purpose of this work was to optimize the beta-galactosidase production by Kluyveromyces lactis, applying the Surface Response Methodology (SRM) and using deproteinized whey as fermentation medium. An Orthogonal Central Compound Design (OCCD) was used without repetition, with four factors: temperature, pH, agitation speed and fermentation time. Then, enzyme activity (U/ml) as response variable was used. Thirty trials in twenty-five treatments, with six repetitions at the central point, were carried out, in a New Brunswick Bioflo 2000 fermentor with a volume of 2 liters. The deproteinized whey obtained by thermocoagulation was chemically analyzed. The results were: moisture 93.83%, total solids 6.17%, protein 0.44%, lactose 4.85%, acidity 0.43% and pH 4.58. The best conditions in the enzyme production were: temperature 30.3 degrees C, pH 4.68, agitation speed 191 r.p.m. and fermentation time 18.5 h. with an enzyme production of 8.3 U/ml. The degree of purification obtained was 7.4 times and the yield was 50.8%. The purified enzyme had an optimum temperature of 60 degrees C and a pH of 6.2. This work shows that the yeast Kluyveromyces lactis grown in deproteinized whey is able to produce the enzyme beta-galactosidase and SRM can be used in the fermentology processes, specifically in determining the best suitable operation conditions.

  16. The impact of different ale brewer's yeast strains on the proteome of immature beer.

    PubMed

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-09-30

    It is well known that brewer's yeast affects the taste and aroma of beer. However, the influence of brewer's yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer's yeast strains with different abilities to degrade fermentable sugars were investigated. Beers were fermented from standard hopped wort (13° Plato) using two ale brewer's yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer.

  17. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    NASA Astrophysics Data System (ADS)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  18. Ethanol production from Jerusalem artichoke tubers (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaritis, A.; Bajpai, P.

    1982-04-01

    This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown in the extract derived from the tubers of Jeusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (EST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35/sup 0/C. The ethanol production was found to be growth-associated haveing a ..mu../sub max/ = 0.41 h/sup -1/ and the ethanol and biomass yields weremore » determined to be Y/sub p///sub = 0.45 (88% of the theoretical) and Y/sub x///sub s/ = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with K. marxianus, the calculated ethanol yields were found to range from 1400 kg ethanol acre/sup -1/ yr /sup -1/ to a maximum of 2700 kg ethanol acre/sup -1/ yr/sup -1/. The SCP yields for K. marxianus were calculated to range between 130 to 250 kg dry wt cell acre/sup -1/ yr/sup -1/. The potential for developing an integrated process to produce ethanol and SCP is also discussed.« less

  19. Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments

    NASA Astrophysics Data System (ADS)

    Chi, Zhenming; Wang, Fang; Wang, Lin; Li, Jing; Wang, Xianghong

    2007-10-01

    A total of 78 Yarrowia lipolytica yeast strains from seawater, sediments, mud of salterns, the guts of marine fish, and marine algae were obtained. After the crude protein of the yeasts was estimated by the method of Kjehldahl, we found that seven strains of the marine yeasts grown in soy bean cake hydrolysate with 20 g L-1 of glucose for 48 h at 28°C contained more than 41.0 g protein per 100 g of cell dry weight and the cell dry weight was more than 4.4 g per L of the culture. Among them, strain SWJ-1b contained the highest crude protein. The results of Biolog identification and molecular methods further confirmed that they indeed belonged to Y. lipolytica.

  20. Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production

    PubMed Central

    2014-01-01

    Background Carbon sources for biofuel production are wide-ranging and their availability depends on the climate and soil conditions of the land where the production chain is located. Henequen (Agave fourcroydes Lem.) is cultivated in Yucatán, Mexico to produce natural fibers from the leaves, and a juice containing fructans is produced during this process. Fructans can be hydrolyzed to fructose and glucose and metabolized into ethanol by appropriate yeasts. In Mexico, different Agave species provide the carbon source for (distilled and non-distilled) alcoholic beverage production using the stem of the plant, whilst the leaves are discarded. In this work, we investigated the effect of thermal acid and enzymatic hydrolysis of the juice on the amount of reducing sugars released. Growth curves were generated with the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus and fermentations were then carried out with Kluyveromyces marxianus to determine alcohol yields. Results With thermal acid hydrolysis, the greatest increase in reducing sugars (82.6%) was obtained using 5% H2SO4 at 100°C with a 30 min reaction time. Statistically similar results can be obtained using the same acid concentration at a lower temperature and with a shorter reaction time (60°C, 15 min), or by using 1% H2SO4 at 100°C with a 30 min reaction time. In the case of enzymatic hydrolysis, the use of 5.75, 11.47 and 22.82 U of enzyme did not produce significant differences in the increase in reducing sugars. Although both hydrolysis processes obtained similar results, the difference was observed after fermentation. Ethanol yields were 50.3 ± 4 and 80.04 ± 5.29% of the theoretical yield respectively. Conclusions Final reducing sugars concentrations obtained with both thermal acid and enzymatic hydrolysis were similar. Saccharomyces cerevisiae, a good ethanol producer, did not grow in the hydrolysates. Only Kluyveromyces marxianus was able to grow in them, giving a higher ethanol

  1. Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains.

    PubMed

    Hashem, Mohamed; Alamri, Saad A; Al-Zomyh, Sharefah S A A; Alrumman, Sulaiman A

    2018-04-30

    Seeking new efficient hydrocarbon-degrading yeast stains was the main goal of this study. Because microorganisms are greatly affected by the environmental factors, the biodegradation potentiality of the microorganisms varies from climatic area to another. This induces research to develop and optimize the endemic organisms in bioremediation technology. In this study, 67 yeast strains were tested for their growth potentiality on both aliphatic and aromatic hydrocarbons. The most efficient six strains were identified using sequence analysis of the variable D1/D2 domain of the large subunit 26S ribosomal DNA. The identity of these strains was confirmed as Yamadazyma mexicana KKUY-0160, Rhodotorula taiwanensis KKUY-0162, Pichia kluyveri KKUY-0163, Rhodotorula ingeniosa KKUY-0170, Candida pseudointermedia KKUY-0192 and Meyerozyma guilliermondii KKUY-0214. These species are approved for their ability to degrade both aliphatic and aromatic hydrocarbons for the first time in this study. Although, all of them were able to utilize and grow on both hydrocarbons, Rhodotorula taiwanensis KKUY-0162 emerged as the best degrader of octane, and Rhodotorula ingeniosa KKUY-170 was the best degrader of pyrene. GC-MS analysis approved the presence of many chemical compounds that could be transitional or secondary metabolites during the utilization of the hydrocarbons. Our results recommend the application of these yeast species on large scale to approve their efficiency in bioremediation of oil-contamination of the environment. Using these yeasts, either individually or in consortia, could offer a practical solution for aquatic or soil contamination with the crude oil and its derivatives in situ. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Physicochemical, microbiological and sensory profiles of fermented milk containing probiotic strains isolated from kefir.

    PubMed

    Kakisu, Emiliano; Irigoyen, Aurora; Torre, Paloma; De Antoni, Graciela L; Abraham, Analía G

    2011-11-01

    A two-strain starter culture containing Lactobacillus plantarum CIDCA 83114, a potential probiotic strain isolated from kefir grains, and Streptococcus thermophilus CIDCA 321 was tested for the preparation of a fermented milk product. Kluyveromyces marxianus CIDCA 8154, a yeast with immunomodulatory properties was included to formulate a three-strain starter culture. Supernatants of enterohaemorragic Escherichia coli, shiga-toxin-producing strain, along with a two-strain or a three-strain starter culture were included in the medium of Vero-cell surface cultures. The results demonstrated that these combinations of microorganisms antagonize the cytopathic action of shiga toxins. The cell concentration of Lb. plantarum did not decrease during fermentation, indicating that the viability of this strain was not affected by low pH, nor did the number of viable bacteria change during 21 days of storage in either fermented products. The number of viable yeasts increases during fermentation and storage. Trained assessors analyzed the general acceptability of fresh fermented milks and considered both acceptable. The milk fermented with the two-strain starter culture was considered acceptable after two week of storage, while the product fermented with the three-strain starter culture remained acceptable for less than one week. The main changes in sensory attributes detected by the trained panel were in sour taste, milky taste and also in fermented attributes. The correlation between different sensory attributes and acceptability indicated that the panel was positively influenced by milky attributes (taste, odour, and flavour) as well as the intensity of flavour. In conclusion, the two-strain starter culture would be the more promising alternative for inclusion of that potential probiotic lactobacillus in a fermented milk product.

  3. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.

    PubMed

    Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A

    2011-05-01

    Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that

  4. Characterization of a Nucleus-Encoded Chitinase from the Yeast Kluyveromyces lactis

    PubMed Central

    Colussi, Paul A.; Specht, Charles A.; Taron, Christopher H.

    2005-01-01

    Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin α-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin. PMID:15932978

  5. Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis.

    PubMed

    Colussi, Paul A; Specht, Charles A; Taron, Christopher H

    2005-06-01

    Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin.

  6. Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains. PMID:22057870

  7. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

  8. Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal.

    PubMed

    Pedersen, Line Lindegaard; Owusu-Kwarteng, James; Thorsen, Line; Jespersen, Lene

    2012-10-01

    Fura is a spontaneously fermented pearl millet product consumed in West Africa. The yeast species involved in the fermentation were identified by pheno- and genotypic methods to be Candida krusei, Kluyveromyces marxianus, Candida tropicalis, Candida rugosa, Candida fabianii, Candida norvegensis and Trichosporon asahii. C. krusei and K. marxianus were found to be the dominant species. Survival in pH 2.5 or in the presence of bile salts (0.3% (w/v) oxgall) and growth at 37°C were independently determined as indicators of the survival potential of the isolates during passage through the human gastrointestinal tract. Selected yeast species isolates were assessed for their probiotic potential. All of the examined yeast isolates survived and grew at human gastrointestinal conditions in pH 2.5, 0.3% (w/v) oxgall at 37°C. The effect on the transepithelial electrical resistance (TEER) across polarized monolayers of intestinal epithelial cells of human (Caco-2) and porcine (IPEC-J2) origin, were determined. The Caco-2 cells and IPEC-J2 cells displayed clearly different relative TEER results. The strains of C. krusei, K. marxianus, C. rugosa and T. asahii were able to increase the relative TEER of Caco-2 monolayers after 48h. In comparison, the relative TEER of IPEC-J2 monolayers decreased when exposed to the same yeasts, even though T. asahii did not differ significantly from Saccharomyces cerevisiae var. boulardii which is used as a human probiotic. C. tropicalis resulted in the largest relative TEER decrease for both the human and the porcine cell model assays. Hyphal growth was observed for C. albicans and C. tropicalis after 48h of incubation with polarized Caco-2 monolayers, whereas this was not the case for the remaining yeast species. In the present study new yeast strains with potential probiotic properties have been isolated to be used potentially as starter cultures for fura production. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Strain conformation controls the specificity of cross-species prion transmission in the yeast model.

    PubMed

    Grizel, Anastasia V; Rubel, Aleksandr A; Chernoff, Yury O

    2016-07-03

    Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.

  10. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.

    PubMed

    Jiang, Hong; Liu, Nan-Nan; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming

    2016-07-01

    The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.

  11. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    PubMed Central

    2013-01-01

    Background It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. Results Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Conclusion Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer. PMID:24079909

  12. Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae.

    PubMed

    Ballester-Tomás, Lidia; Pérez-Torrado, Roberto; Rodríguez-Vargas, Sonia; Prieto, Jose A; Randez-Gil, Francisca

    2016-03-10

    At near-freezing temperatures (0-4°C), the growth of the yeast Saccharomyces cerevisiae stops or is severely limited, and viability decreases. Under these conditions, yeast cells trigger a biochemical response, in which trehalose and glycerol accumulate and protect them against severe cold and freeze injury. However, the mechanisms that allow yeast cells to sustain this response have been not clarified. The effects of severe cold on the proteome of S. cerevisiae have been not investigated and its importance in providing cell survival at near-freezing temperatures and upon freezing remains unknown. Here, we have compared the protein profile of two industrial baker's yeast strains at 30°C and 4°C. Overall, a total of 16 proteins involved in energy-metabolism, translation and redox homeostasis were identified as showing increased abundance at 4°C. The predominant presence of glycolytic proteins among those upregulated at 4°C, likely represents a mechanism to maintain a constant supply of ATP for the synthesis of glycerol and other protective molecules. Accumulation of these molecules is by far the most important component in enhancing viability of baker's yeast strains upon freezing. Overexpression of genes encoding certain proteins associated with translation or redox homeostasis provided specifically protection against extreme cold damage, underlying the importance of these functions in the near-freezing response. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Separation of similar yeast strains by IEF techniques.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2009-06-01

    Rapid and reliable identification of the etiological agents of infectious diseases, especially species that are hardly distinguishable by routinely used laboratory methods, e.g. Candida albicans from C. dubliniensis, is necessary for early administration of an appropriate therapy. Similarly, the differentiation between biofilm-positive and biofilm-negative yeast strains is necessary for the choice of a therapeutic strategy due to higher resistance of the biofilm-positive strains to antifungals. In this study rapid separation and identification of similar strains of Candida, cells and/or their lysates, based on IEF are outlined. The isoelectric points of the monitored "similar pairs" of Candidas, C. albicans and C. dubliniensis and the biofilm-positive C. parapsilosis, C. tropicalis and their biofilm-negative strains were determined by CIEF with UV detection in the acidic pH gradient. The differences between their isoelectric points were up to 0.3 units of pI. Simultaneously, a fast and a simple technique was developed for the lysis of the outer membrane cell and characteristic fingerprints were found in lysate electrophoreograms and in gels from the capillary or the gel IEF, respectively.

  14. The secretory pathway: exploring yeast diversity.

    PubMed

    Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2013-11-01

    Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Microbiological Characteristics of Wild Yeast Strain Pichia anomala Y197-13 for Brewing Makgeolli

    PubMed Central

    Kim, Hye Ryun; Kim, Jae-Ho; Bai, Dong-Hoon

    2013-01-01

    Makgeolli is a traditional cloudy-white Korean rice wine with an alcohol content of 6~7%. The present study investigated the morphological characteristics, carbon-utilizing ability, fatty acid composition, alcohol resistance, glucose tolerance, and flocculence of Saccharomyces cerevisiae Y98-5 and Pichia anomala Y197-13, non-S. cerevisiae isolated from Nuruk, which is used in brewing Makgeolli. Similar morphological characteristics were observed for both isolated wild yeast strains; and the carbon source assimilation of Y197-13 differed from that of other P. anomala strains. Strain Y197-13 was negative for D-trehalose, mannitol, arbutin, I-erythritol, and succinic acid. The major cellular fatty acids of strain Y197-13 included C18:2n6c (33.94%), C18:1n9c (26.97%) and C16:0 (20.57%). Strain Y197-13 was Crabtree-negative, with 60% cell viability at 12% (v/v) ethanol. The flocculation level of strain Y197-13 was 8.38%, resulting in its classification as a non-flocculent yeast. PMID:24198668

  16. Filtration, haze and foam characteristics of fermented wort mediated by yeast strain.

    PubMed

    Douglas, P; Meneses, F J; Jiranek, V

    2006-01-01

    To investigate the influence of the choice of yeast strain on the haze, shelf life, filterability and foam quality characteristics of fermented products. Twelve strains were used to ferment a chemically defined wort and hopped ale or stout wort. Fermented products were assessed for foam using the Rudin apparatus, and filterability and haze characteristics using the European Brewing Convention methods, to reveal differences in these parameters as a consequence of the choice of yeast strain and growth medium. Under the conditions used, the choice of strain of Saccharomyces cerevisiae effecting the primary fermentation has an impact on all of the parameters investigated, most notably when the fermentation medium is devoid of macromolecular material. The filtration of fermented products has a large cost implication for many brewers and wine makers, and the haze of the resulting filtrate is a key quality criterion. Also of importance to the quality of beer and some wines is the foaming and head retention of these beverages. The foam characteristics, filterability and potential for haze formation in a fermented product have long been known to be dependant on the raw materials used, as well as other production parameters. The choice of Saccharomyces cerevisiae strain used to ferment has itself been shown here to influence these parameters.

  17. Extraction of genomic DNA from yeasts for PCR-based applications.

    PubMed

    Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold

    2011-05-01

    We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.

  18. Native yeasts for alternative utilization of overripe mango pulp for ethanol production.

    PubMed

    Buenrostro-Figueroa, Juan; Tafolla-Arellano, Julio C; Flores-Gallegos, Adriana C; Rodríguez-Herrera, Raúl; De la Garza-Toledo, Heliodoro; Aguilar, Cristóbal N

    2017-11-18

    Mango fruits (Mangifera indica L.) are highly perishable, causing postharvest losses and producing agroindustrial waste. In the present work, native yeasts were used to evaluate ethanol production in overripe mango pulp. The two isolated strains showed similar sequences in the 18S rDNA region corresponding to Kluyveromyces marxianus, being different to the data reported in the NCBI database. Values of up to 5% ethanol (w/v) were obtained at the end of fermentation, showing a productivity of 4g/l/day, a yield of up to 49% of ethanol and a process efficiency of 80%. These results represent a viable option for using the surplus production and all the fruits that have suffered mechanical injury that are not marketable and are considered as agroindustrial waste, thus achieving greater income and less postharvest losses. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799.

    PubMed

    Galindo-Leva, Luz Ángela; Hughes, Stephen R; López-Núñez, Juan Carlos; Jarodsky, Joshua M; Erickson, Adam; Lindquist, Mitchell R; Cox, Elby J; Bischoff, Kenneth M; Hoecker, Eric C; Liu, Siqing; Qureshi, Nasib; Jones, Marjorie A

    2016-07-01

    Economically important plants contain large amounts of inulin. Disposal of waste resulting from their processing presents environmental issues. Finding microorganisms capable of converting inulin waste to biofuel and valuable co-products at the processing site would have significant economic and environmental impact. We evaluated the ability of two mutant strains of Kluyveromyces marxianus (Km7 and Km8) to utilize inulin for ethanol production. In glucose medium, both strains consumed all glucose and produced 0.40 g ethanol/g glucose at 24 h. In inulin medium, Km7 exhibited maximum colony forming units (CFU)/mL and produced 0.35 g ethanol/g inulin at 24 h, while Km8 showed maximum CFU/mL and produced 0.02 g ethanol/g inulin at 96 h. At 24 h in inulin + glucose medium, Km7 produced 0.40 g ethanol/g (inulin + glucose) and Km8 produced 0.20 g ethanol/g (inulin + glucose) with maximum CFU/mL for Km8 at 72 h, 40 % of that for Km7 at 36 h. Extracellular inulinase activity at 6 h for both Km7 and Km8 was 3.7 International Units (IU)/mL.

  20. Cloning and sequence analysis of the invertase gene INV 1 from the yeast Pichia anomala.

    PubMed

    Pérez, J A; Rodríguez, J; Rodríguez, L; Ruiz, T

    1996-02-01

    A genomic library from the yeast Pichia anomala has been constructed and employed to clone the gene encoding the sucrose-hydrolysing enzyme invertase by complementation of a sucrose non-fermenting mutant of Saccharomyces cerevisiae. The cloned gene, INV1, was sequenced and found to encode a polypeptide of 550 amino acids which contained a 22 amino-acid signal sequence and ten potential glycosylation sites. The amino-acid sequence shows significant identity with other yeast invertases and also with Kluyveromyces marxianus inulinase, a yeast beta-fructofuranosidase which has a different substrate specificity. The nucleotide sequences of the 5' and 3' non-coding regions were found to contain several consensus motifs probably involved in the initiation and termination of gene transcription.

  1. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.

    PubMed

    Caspeta, Luis; Nielsen, Jens

    2015-07-21

    A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥ 40 °C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40 °C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3 °C, whereas they showed a growth trade-off at temperatures below 34 °C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49 °C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass

  2. Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis.

    PubMed

    Cardarelli, Silvia; Giorgi, Mauro; Naro, Fabio; Malatesta, Francesco; Biagioni, Stefano; Saliola, Michele

    2017-09-22

    Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying K m , V max and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.

  3. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks.

    PubMed

    Kim, Hye Ryun; Kim, Jae-Ho; Bae, Dong-Hoon; Ahn, Byung-Hak

    2010-12-01

    Korean traditional rice wines yakju and takju are generally brewed with nuruk as the source of the saccharogenic enzymes by natural fermentation. To improve the quality of Korean rice wine, the microorganisms in the nuruk need to be studied. The objective of this research was to improve the quality of Korean wine with the wild-type yeast strains isolated from the fermentation starter, nuruk. Only strain YA-6 showed high activity in 20% ethanol. Precipitation of Y89-5-3 was similar to that of very flocculent yeast (〉80%) at 75.95%. Using 18S rRNA sequencing, all 10 strains were identified as Saccharomyces cerevisiae. Volatile compounds present in yakju were analyzed by gas chromatography-mass selective detector. The principal component analysis (PCA) of the volatile compounds grouped long-chain esters on the right side of the first principal component, PC1; these compounds were found in yakju that was made with strains YA-6, Y89-5-3, Y89-5- 2, Y90-9, and Y89-1-1. On the other side of PC1 were short-chain esters; these compounds were found in wines that were brewed with strains Y183-2, Y268-3, Y54-3, Y98-4, and Y88-4. Overall, the results indicated that using different wild-type yeast strains in the fermentation process significantly affects the chemical characteristics of the glutinous rice wine.

  4. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars.

    PubMed

    Hughes, Stephen R; Bang, Sookie S; Cox, Elby J; Schoepke, Andrew; Ochwat, Kate; Pinkelman, Rebecca; Nelson, Danielle; Qureshi, Nasib; Gibbons, William R; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Cote, Gregory L; Rich, Joseph O; Jones, Marjorie A; Cedeño, David; Doran-Peterson, Joy; Riaño-Herrera, Nestor M; Rodríguez-Valencia, Nelson; López-Núñez, Juan C

    2013-08-01

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.

  5. Occurrence of 20S RNA and 23S RNA replicons in industrial yeast strains and their variation under nutritional stress conditions.

    PubMed

    López, Victoria; Gil, Rosario; Vicente Carbonell, José; Navarro, Alfonso

    2002-04-01

    We have characterized industrial yeast strains used in the brewing, baking, and winemaking industries for the presence or absence of cytoplasmic single-stranded 20S and 23S RNAs. Furthermore, the variation of intracellular concentrations of these replicons in brewing and laboratory strains under nutritional stress conditions was determined. Our results show a correlation between the relative abundance of these replicons and exposure of yeast to nutritionally stressful conditions, indicating that these RNAs could be employed as molecular probes to evaluate the exposure of 20S(+) and/or 23S(+) yeast strains to stress situations during industrial manipulation. During this study, several 20S(-)23S(+) Saccharomyces cerevisiae strains were isolated and identified. This is the first time that a yeast strain containing only 23S RNA has been reported, demonstrating that 20S RNA is not required for 23S RNA replication. Copyright 2002 John Wiley & Sons, Ltd.

  6. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.

    PubMed

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  7. Indigenous Georgian Wine-Associated Yeasts and Grape Cultivars to Edit the Wine Quality in a Precision Oenology Perspective.

    PubMed

    Vigentini, Ileana; Maghradze, David; Petrozziello, Maurizio; Bonello, Federica; Mezzapelle, Vito; Valdetara, Federica; Failla, Osvaldo; Foschino, Roberto

    2016-01-01

    In Georgia, one of the most ancient vine-growing environment, the homemade production of wine is still very popular in every rural family and spontaneous fermentation of must, without addition of chemical preservatives, is the norm. The present work investigated the yeast biodiversity in five Georgian areas (Guria, Imereti, Kakheti, Kartli, Ratcha-Lechkhumi) sampling grapes and wines from 22 different native cultivars, in 26 vineyards and 19 family cellars. One hundred and eighty-two isolates were ascribed to 15 different species by PCR-ITS and RFLP, and partial sequencing of D1/D2 domain 26S rDNA gene. Metschnikowia pulcherrima (F' = 0.56, I' = 0.32), Hanseniaspora guilliermondii (F' = 0.49, I' = 0.27), and Cryptococcus flavescens (F' = 0.31, I' = 0.11) were the dominant yeasts found on grapes, whereas Saccharomyces cerevisiae showed the highest prevalence into wine samples. Seventy four isolates with fermentative potential were screened for oenological traits such as ethanol production, resistance to SO2, and acetic acid, glycerol and H2S production. Three yeast strains (Kluyveromyces marxianus UMY207, S. cerevisiae UMY255, Torulaspora delbrueckii UMY196) were selected and separately inoculated in vinifications experiments at a Georgian cellar. Musts were prepared from healthy grapes of local varieties, Goruli Mtsvane (white berry cultivar) and Saperavi (black berry cultivar). Physical (°Brix) and microbial analyses (plate counts) were performed to monitor the fermentative process. The isolation of indigenous S. cerevisiae yeasts beyond the inoculated strains indicated that a co-presence occurred during the vinification tests. Results from quantitative GC-FID analysis of volatile compounds revealed that the highest amount of fermentation flavors, such as 4-ethoxy-4-oxobutanoic acid (monoethyl succinate), 2-methylpropan-1-ol, ethyl 2-hydroxypropanoate, and 2-phenylethanol, were significantly more produced in fermentation conducted in Saperavi variety inoculated

  8. L-arabinose fermenting yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  9. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  10. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    PubMed

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  11. The Deletion of the Succinate Dehydrogenase Gene KlSDH1 in Kluyveromyces lactis Does Not Lead to Respiratory Deficiency

    PubMed Central

    Saliola, Michele; Bartoccioni, Paola Chiara; De Maria, Ilaria; Lodi, Tiziana; Falcone, Claudio

    2004-01-01

    We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose. PMID:15189981

  12. Construction of a recombinant wine yeast strain expressing beta-(1,4)-endoglucanase and its use in microvinification processes.

    PubMed Central

    Pérez-González, J A; González, R; Querol, A; Sendra, J; Ramón, D

    1993-01-01

    A genetic transformation system for an industrial wine yeast strain is presented here. The system is based on the acquisition of cycloheximide resistance and is a direct adaptation of a previously published procedure for brewing yeasts (L. Del Pozo, D. Abarca, M. G. Claros, and A. Jiménez, Curr. Genet. 19:353-358, 1991). Transformants arose at an optimal frequency of 0.5 transformant per microgram of DNA, are stable in the absence of selective pressure, and produce wine in the same way as the untransformed industrial strain. By using this transformation protocol, a filamentous fungal beta-(1,4)-endoglucanase gene has been expressed in an industrial wine yeast under the control of the yeast actin gene promoter. Endoglucanolytic wine yeast secretes the fungal enzyme to the must, producing a wine with an increased fruity aroma. Images PMID:8215355

  13. Brewing characteristics of piezosensitive sake yeasts

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  14. Heterologous expression of an α-amylase inhibitor from common bean (Phaseolus vulgaris) in Kluyveromyces lactis and Saccharomyces cerevisiae.

    PubMed

    Brain-Isasi, Stephanie; Álvarez-Lueje, Alejandro; Higgins, Thomas Joseph V

    2017-06-15

    Phaseolamin or α-amylase inhibitor 1 (αAI) is a glycoprotein from common beans (Phaseolus vulgaris L.) that inhibits some insect and mammalian α-amylases. Several clinical studies support the beneficial use of bean αAI for control of diabetes and obesity. Commercial extracts of P. vulgaris are available but their efficacy is still under question, mainly because some of these extracts contain antinutritional impurities naturally present in bean seeds and also exhibit a lower specific activity αAI. The production of recombinant αAI allows to overcome these disadvantages and provides a platform for the large-scale production of pure and functional αAI protein for biotechnological and pharmaceutical applications. A synthetic gene encoding αAI from the common bean (Phaseolus vulgaris cv. Pinto) was codon-optimised for expression in yeasts (αAI-OPT) and cloned into the protein expression vectors pKLAC2 and pYES2. The yeasts Kluyveromyces lactis GG799 (and protease deficient derivatives such as YCT390) and Saccharomyces cerevisiae YPH499 were transformed with the optimised genes and transformants were screened for expression by antibody dot blot. Recombinant colonies of K. lactis YCT390 that expressed and secreted functional αAI into the culture supernatants were selected for further analyses. Recombinant αAI from K. lactis YCT390 was purified using anion-exchange and affinity resins leading to the recovery of a functional inhibitor. The identity of the purified αAI was confirmed by mass spectrometry. Recombinant clones of S. cerevisiae YPH499 expressed functional αAI intracellularly, but did not secrete the protein. This is the first report describing the heterologous expression of the α-amylase inhibitor 1 (αAI) from P. vulgaris in yeasts. We demonstrated that recombinant strains of K. lactis and S. cerevisiae expressed and processed the αAI precursor into mature and active protein and also showed that K. lactis secretes functional αAI.

  15. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry.

    PubMed

    Su, Jing; Wang, Tao; Wang, Yun; Li, Ying-Ying; Li, Hua

    2014-03-01

    In an era of economic globalization, the competition among wine businesses is likely to get tougher. Biotechnological innovation permeates the entire world and intensifies the severity of the competition of the wine industry. Moreover, modern consumers preferred individualized, tailored, and healthy and top quality wine products. Consequently, these two facts induce large gaps between wine production and wine consumption. Market-orientated yeast strains are presently being selected or developed for enhancing the core competitiveness of wine enterprises. Reasonable biological acidity is critical to warrant a high-quality wine. Many wild-type acidity adjustment yeast strains have been selected all over the world. Moreover, mutation breeding, metabolic engineering, genetic engineering, and protoplast fusion methods are used to construct new acidity adjustment yeast strains to meet the demands of the market. In this paper, strategies and concepts for strain selection or improvement methods were discussed, and many examples based upon selected studies involving acidity adjustment yeast strains were reviewed. Furthermore, the development of acidity adjustment yeast strains with minimized resource inputs, improved fermentation, and enological capabilities for an environmentally friendly production of healthy, top quality wine is presented.

  16. Mutagenizing brewing yeast strain for improving fermentation property of beer.

    PubMed

    Liu, Zengran; Zhang, Guangyi; Sun, Yunping

    2008-07-01

    A brewing yeast mutant with perfect sugar fermentation capacity was isolated by mutagenizing the Saccharomyces pastorianus transformant, which carries an integrated glucoamylase gene and has one copy of non-functional alpha-acetolactate synthase gene. The mutant was able to utilize maltotriose efficiently, and the maltotriose fermentability in YNB-2% maltotriose medium increased from 32.4% to 72.0% after 5 d in shaking culture. The wort fermentation test confirmed that the sugar fermentation property of the mutant was greatly improved, while its brewing performances were analogous to that of the wild-type strain and the characteristic trait of shortened beer maturation period was retained. Therefore, we believe that the brewing yeast mutant would benefit the beer industry and would be useful for low caloric beer production.

  17. Use of an acidophilic yeast strain to enable the growth of leaching bacteria on solid media.

    PubMed

    Ngom, Baba; Liang, Yili; Liu, Yi; Yin, Huaqun; Liu, Xueduan

    2015-03-01

    In this study, a Candida digboiensis strain was isolated from a heap leaching plant in Zambia and used in double-layer agar plate to efficiently isolate and purify leaching bacteria. Unlike Acidiphilium sp., the yeast strain was tetrathionate tolerant and could metabolize a great range of organic compounds including organic acids. These properties allowed the yeast strain to enable and fasten the growth of iron and sulfur oxidizers on double-layer agar plate. The isolates were identified as Acidithiobacillus ferrooxidans FOX1, Leptospirillun ferriphilum BN, and Acidithiobacillus thiooxidans ZMB. These three leaching bacteria were inhibited by organic acids such as acetic and propionic acids; however, their activities were enhanced by Candida digboiensis NB under dissolved organic matter stress.

  18. A rapid method for differentiating Saccharomyces sensu stricto strains from other yeast species in an enological environment.

    PubMed

    Nardi, Tiziana; Carlot, Milena; De Bortoli, Elena; Corich, Viviana; Giacomini, Alessio

    2006-11-01

    During programs for the selection of enological yeasts, several hundred natural isolates are usually screened. The scope of these operations is to isolate strains possessing good fermentative properties without necessarily arriving at a precise species designation: in other words, to detect strains belonging to the Saccharomyces sensu stricto complex. In the present study, a pair of primers, designed within the variable D1/D2 region of the 26S subunit of ribosomal yeast RNA, have been constructed. These generate an amplification fragment of 471 bp that is specific for the seven Saccharomyces sensu stricto species, while no signal was obtained for Saccharomyces sensu lato strains (17 species) or for another 18 selected species commonly found in enological environments. A second pair of primers was also constructed, within the 18S rRNA gene, composed of perfectly conserved sequences common for all 42 yeast species examined, which generate a 900 bp (c.) band for all strains. This was used as a positive experimental control in multiplex PCR analysis using all four primers.

  19. Yeast strains as potential aroma enhancers in dry fermented sausages.

    PubMed

    Flores, Mónica; Corral, Sara; Cano-García, Liliana; Salvador, Ana; Belloch, Carmela

    2015-11-06

    Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2.

    PubMed

    Reis, Vanda R; Bassi, Ana Paula G; Cerri, Bianca C; Almeida, Amanda R; Carvalho, Isis G B; Bastos, Reinaldo G; Ceccato-Antonini, Sandra R

    2018-02-16

    Even though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevisiae strain (rough colony and pseudohyphae) in single and multiple-batch fermentation trials with an industrial strain of S. cerevisiae (PE-2) as starter yeast. The results indicate that in multiple-cycle batch system, the feedstock had a minor impact on the fermentation than in single-cycle batch system, however the rough yeast contamination was more harmful than the bacterial contamination in multiple-cycle batch fermentation. The inoculation of both contaminants did not potentiate the detrimental effect in any substrate. The residual sugar concentration in the fermented broth had a higher concentration of fructose than glucose for all fermentations, but in the presence of the rough yeast, the discrepancy between fructose and glucose concentrations were markedly higher, especially in molasses. The biggest problem associated with incomplete fermentation seemed to be the lower consumption rate of sugar and the reduced fructose preference of the rough yeast rather than the lower invertase activity. Lower ethanol production, acetate production and higher residual sugar concentration are characteristics strongly associated with the rough yeast strain and they were not potentiated with the inoculation of L. fermentum.

  1. Genealogy of principal strains of the yeast genetic stock center.

    PubMed

    Mortimer, R K; Johnston, J R

    1986-05-01

    We have constructed a genealogy of strain S288C, from which many of the mutant and segregant strains currently used in studies on the genetics and molecular biology of Saccharomyces cerevisiae have been derived. We have determined that its six progenitor strains were EM93, EM126, NRRL YB-210 and the three baking strains Yeast Foam, FLD and LK. We have estimated that approximately 88% of the gene pool of S288C is contributed by strain EM93. The principal ancestral genotypes were those of segregant strains EM93-1C and EM93-3B, initially distributed by C. C. Lindegren to several laboratories. We have analyzed an isolate of lyophilized culture of strain EM93 and determined its genotype as MATa/MAT alpha SUC2/SUC2 GAL2/gal2 MAL/MAL mel/mel CUP1/cup1 FLO1/flo1. Strain EM93 is therefore the probable origin of genes SUC2, gal2, CUP1 and flo1 of S288C. We give details of the current availability of several of the progenitor strains and propose that this genealogy should be of assistance in elucidating the origins of several types of genetic and molecular heterogeneities in Saccharomyces.

  2. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. An Evolutionary Perspective on Yeast Mating-Type Switching

    PubMed Central

    Hanson, Sara J.; Wolfe, Kenneth H.

    2017-01-01

    Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching? PMID:28476860

  4. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains.

    PubMed

    Martin, Valentina; Boido, Eduardo; Giorello, Facundo; Mas, Albert; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    In several grape varieties, the dominating aryl alkyl alcohols found are the volatile group of phenylpropanoid-related compounds, such as glycosylated benzyl and 2-phenylethyl alcohol, which contribute to wine with floral and fruity aromas after being hydrolysed during fermentation. Saccharomyces cerevisiae is largely recognized as the main agent in grape must fermentation, but yeast strains belonging to other genera, including Hanseniaspora, are known to predominate during the first stages of alcoholic fermentation. Although non-Saccharomyces yeast strains have a well-recognized genetic diversity, understanding of their impact on wine flavour richness is still emerging. In this study, 11 Hansenisapora vineae strains were used to ferment a chemically defined simil-grape fermentation medium, resembling the nutrient composition of grape juice but devoid of grape-derived secondary metabolites. GC-MS analysis was performed to determine volatile compounds in the produced wines. Our results showed that benzyl alcohol, benzyl acetate and 2-phenylethyl acetate are significantly synthesized by H. vineae strains. Levels of these compounds found in fermentations with 11 H. vineae different strains were one or two orders of magnitude higher than those measured in fermentations with a known S. cerevisiae wine strain. The implications for winemaking in response to the negative correlation of benzyl alcohol, benzyl acetate and 2-phenylethyl acetate production with yeast assimilable nitrogen concentrations are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  7. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae.

    PubMed

    Schoeman, H; Vivier, M A; Du Toit, M; Dicks, L M; Pretorius, I S

    1999-06-15

    The excessive use of sulphur dioxide and other chemical preservatives in wine, beer and other fermented food and beverage products to prevent the growth of unwanted microbes holds various disadvantages for the quality of the end-products and is confronted by mounting consumer resistance. The objective of this study was to investigate the feasibility of controlling spoilage bacteria during yeast-based fermentations by engineering bactericidal strains of Saccharomyces cerevisiae. To test this novel concept, we have successfully expressed a bacteriocin gene in yeast. The pediocin operon of Pediococcus acidilactici PAC1.0 consists of four clustered genes, namely pedA (encoding a 62 amino acid precursor of the PA-1 pediocin), pedB (encoding an immunity factor), pedC (encoding a PA-1 transport protein) and pedD (encoding a protein involved in the transport and processing of PA-1). The pedA gene was inserted into a yeast expression/secretion cassette and introduced as a multicopy episomal plasmid into a laboratory strain (Y294) of S. cerevisiae. Northern blot analysis confirmed that the pedA structural gene in this construct (ADH1P-MFa1S-pedA-ADH1T, designated PED1), was efficiently expressed under the control of the yeast alcohol dehydrogenase I gene promoter (ADH1P) and terminator (ADH1T). Secretion of the PED1-encoded pediocin PA-1 was directed by the yeast mating pheromone alpha-factor's secretion signal (MFa1S). The presence of biologically active antimicrobial peptides produced by the yeast transformants was indicated by agar diffusion assays against sensitive indicator bacteria (e.g. Listeria monocytogenes B73). Protein analysis indicated the secreted heterologous peptide to be approximately 4.6 kDa, which conforms to the expected size. The heterologous peptide was present at relatively low levels in the yeast supernatant but pediocin activity was readily detected when intact yeast colonies were used in sensitive strain overlays. This study could lead to the

  8. Continuous production of pectinase by immobilized yeast cells on spent grains.

    PubMed

    Almeida, Catarina; Brányik, Tomás; Moradas-Ferreira, Pedro; Teixeira, José

    2003-01-01

    A yeast strain secreting endopolygalacturonase was used in this work to study the possibility of continuous production of this enzyme. It is a feasible and interesting alternative to fungal batch production essentially due to the specificity of the type of pectinase excreted by Kluyveromyces marxianus CCT 3172, to the lower broth viscosity and to the easier downstream operations. In order to increase the reactors' productivity, a cellulosic carrier obtained from barley spent grains was tested as an immobilization support. Two types of reactors were studied for pectinase production using glucose as a carbon and energy source--a continuous stirred tank reactor (CSTR) and a packed bed reactor (PBR) with recycled flow. The highest value for pectinase volumetric productivity (P(V)=0.98 U ml(-1) h(-1)) was achieved in the PBR for D=0.40 h(-1), a glucose concentration on the inlet of S(in)=20 g l(-1), and a biomass load in the support of X(i)=0.225 g g(-1). The results demonstrate the attractiveness of the packed bed system for pectinase production.

  9. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    PubMed

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  10. From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar.

    PubMed

    Garofalo, Carmela; Tristezza, Mariana; Grieco, Francesco; Spano, Giuseppe; Capozzi, Vittorio

    2016-04-01

    The aim of this work was to study the biodiversity of yeasts isolated from the autochthonous grape variety called "Uva di Troia", monitoring the natural diversity from the grape berries to wine during a vintage. Grapes were collected in vineyards from two different geographical areas and spontaneous alcoholic fermentations (AFs) were performed. Different restriction profiles of ITS-5.8S rDNA region, corresponding to Saccharomyces cerevisiae, Issatchenkia orientalis, Metschnikowia pulcherrima, Hanseniaspora uvarum, Candida zemplinina, Issatchenkia terricola, Kluyveromyces thermotolerans, Torulaspora delbrueckii, Metschnikowia chrysoperlae, Pichia fermentans, Hanseniaspora opuntiae and Hanseniaspora guilliermondii, were observed. The yeast occurrences varied significantly from both grape berries and grape juices, depending on the sampling location. Furthermore, samples collected at the end of AF revealed the great predominance of Saccharomyces cerevisiae, with a high intraspecific biodiversity. This is the first report on the population dynamics of 'cultivable' microbiota diversity of "Uva di Troia" cultivar from the grape to the corresponding wine ("Nero di Troia"), and more general for Southern Italian oenological productions, allowing us to provide the basis for an improved management of wine yeasts (with both non-Saccharomyces and Saccharomyces) for the production of typical wines with desired unique traits. A certain geographical-dependent variability has been reported, suggesting the need of local based formulation for autochthonous starter cultures, especially in the proportion of the different species/strains in the design of mixed microbial preparations.

  11. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana.

    PubMed

    Escalante-Minakata, P; Blaschek, H P; Barba de la Rosa, A P; Santos, L; De León-Rodríguez, A

    2008-06-01

    To identify the yeast and bacteria present in the mezcal fermentation from Agave salmiana. The restriction and sequence analysis of the amplified region, between 18S and 28S rDNA and 16S rDNA genes, were used for the identification of yeast and bacteria, respectively. Eleven different micro-organisms were identified in the mezcal fermentation. Three of them were the following yeast: Clavispora lusitaniae, Pichia fermentans and Kluyveromyces marxianus. The bacteria found were Zymomonas mobilis subsp. mobilis and Zymomonas mobilis subsp. pomaceae, Weissella cibaria, Weissella paramesenteroides, Lactobacillus pontis, Lactobacillus kefiri, Lactobacillus plantarum and Lactobacillus farraginis. The phylogenetic analysis of 16S rDNA and ITS sequences showed that microbial diversity present in mezcal is dominated by bacteria, mainly lactic acid bacteria species and Zymomonas mobilis. Pichia fermentans and K. marxianus could be micro-organisms with high potential for the production of some volatile compounds in mezcal. We identified the community of bacteria and yeast present in mezcal fermentation from Agave salmiana.

  12. Quality improvement and geographical indication of cachaça (Brazilian spirit) by using locally selected yeast strains.

    PubMed

    Barbosa, E A; Souza, M T; Diniz, R H S; Godoy-Santos, F; Faria-Oliveira, F; Correa, L F M; Alvarez, F; Coutrim, M X; Afonso, R J C F; Castro, I M; Brandão, R L

    2016-10-01

    In order to improve the quality and to create a biological basis for obtainment of the protected denomination of origin (PDO), indigenous yeast were isolated and characterized for use in Salinas city (the Brazilian region of quality cachaça production). Seven thousand and two hundred yeast colonies from 15 Salinas city distilleries were screened based on their fermentative behaviour and the physicochemical composition of cachaça. Molecular polymorphic analyses were performed to characterize these isolates. Two Saccharomyces cerevisiae strains (nos. 678 and 680) showed appropriate characteristics to use in the cachaça production: low levels of acetaldehyde and methanol, and high ethyl lactate/ethyl acetate ratio respectively. They also presented polymorphic characteristics more closely related between themselves even when compared to other strains from Salinas. The application of selected yeast to cachaça production can contribute for the improvement of the quality product as well as be used as a natural marker for PDO. This study suggests that the use of selected yeast strains could contribute to obtain a cachaça similar to those produced traditionally, while getting wide acceptation in the market, yet presenting more homogeneous organoleptic characteristics, and thus contributing to the PDO implementation. © 2016 The Society for Applied Microbiology.

  13. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    PubMed Central

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  14. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus.

    PubMed

    Zhang, Biao; Zhang, Jia; Wang, Dongmei; Han, Ruixiang; Ding, Rui; Gao, Xiaolian; Sun, Lianhong; Hong, Jiong

    2016-09-01

    Engineered Kluyveromyces marxianus strains were constructed through over-expression of various transporters for simultaneous co-fermentation of glucose and xylose. The glucose was converted into ethanol, whereas xylose was converted into xylitol which has higher value than ethanol. Over-expressing xylose-specific transporter ScGAL2-N376F mutant enabled yeast to co-ferment glucose and xylose and the co-fermentation ability was obviously improved through increasing ScGAL2-N376F expression. The production of glycerol was blocked and acetate production was reduced by disrupting gene KmGPD1. The obtained K. marxianus YZJ119 utilized 120g/L glucose and 60g/L xylose simultaneously and produced 50.10g/L ethanol and 55.88g/L xylitol at 42°C. The yield of xylitol from consumed xylose was over 98% (0.99g/g). Through simultaneous saccharification and co-fermentation at 42°C, YZJ119 produced a maximal concentration of 44.58g/L ethanol and 32.03g/L xylitol or 29.82g/L ethanol and 31.72g/L xylitol, respectively, from detoxified or non-detoxified diluted acid pretreated corncob. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates

    PubMed Central

    Ortiz-Merino, Raúl A.; Varela, Javier A.; Coughlan, Aisling Y.; Hoshida, Hisashi; da Silveira, Wendel B.; Wilde, Caroline; Kuijpers, Niels G. A.; Geertman, Jan-Maarten; Wolfe, Kenneth H.; Morrissey, John P.

    2018-01-01

    Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype. PMID:29619042

  16. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  17. Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation.

    PubMed

    Tsuyoshi, Naoko; Fudou, Ryosuke; Yamanaka, Shigeru; Kozaki, Michio; Tamang, Namrata; Thapa, Saroj; Tamang, Jyoti P

    2005-03-15

    Marcha or murcha is a traditional amylolytic starter used to produce sweet-sour alcoholic drinks, commonly called jaanr in the Himalayan regions of India, Nepal, Bhutan, and Tibet (China). The aim of this study was to examine the microflora of marcha collected from Sikkim in India, focusing on yeast flora and their roles. Twenty yeast strains were isolated from six samples of marcha and identified by genetic and phenotypic methods. They were first classified into four groups (Group I, II, III, and IV) based on physiological features using an API test. Phylogenetic, morphological, and physiological characterization identified the isolates as Saccharomyces bayanus (Group I); Candida glabrata (Group II); Pichia anomala (Group III); and Saccharomycopsis fibuligera, Saccharomycopsis capsularis, and Pichia burtonii (Group IV). Among them, the Group I, II, and III strains produced ethanol. The isolates of Group IV had high amylolytic activity. Because all marcha samples tested contained both starch degraders and ethanol producers, it was hypothesized that all four groups of yeast (Group I, II, III, and IV) contribute to starch-based alcohol fermentation.

  18. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation.

    PubMed

    López-Malo, María; García-Rios, Estéfani; Melgar, Bruno; Sanchez, Monica R; Dunham, Maitreya J; Guillamón, José Manuel

    2015-07-22

    Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12 °C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 (Thr108)) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.

  19. The occurrence and growth of yeasts in Camembert and blue-veined cheeses.

    PubMed

    Roostita, R; Fleet, G H

    1996-01-01

    Yeast populations greater than 10(6) cfu/g were found in approximately 54% and 36%, respectively in surface samples of retail Camembert (85 samples) and Blue-veined (45 samples) cheeses. The most predominant species isolated were Debaryomyces hansenii, Candida catenulata, C. lipolytica, C. kefyr, C. intermedia, Saccharomyces cerevisiae, Cryptococcus albidus and Kluyveromyces marxianus. The salt concentration of the surface samples of the cheeses varied between 2.5-5.5% (w/w) (Camembert) and 7.5-8.3 (Blue-veined), depending upon brand, and influenced the yeast ecology, especially the presence of S. cerevisiae. Yeasts grew to populations of 10(6)-10(8) cfu/g when cheeses were stored at either 25 degrees C or 10 degrees C. These populations decreased on continued storage at 25 degrees C, but such decreases were not so evident on storage at 10 degrees C. The properties of yeasts influencing their occurrence and growth in cheese were: fermentation/assimilation of lactose; production of extracellular lipolytic and proteolytic enzymes, utilisation of lactic and citric acids; and growth at 10 degrees C.

  20. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.

    PubMed

    Oda, Y; Tonomura, K

    1996-10-01

    The presence of any one of the five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 and MAL6) confers the ability to ferment maltose on the yeast Saccharomyces cerevisiae. Each locus is composed of three genes encoding maltose permease, alpha-glucosidase and MAL activator. Chromosomal DNA of seven representative baking strains has been separated by pulse-field gel electrophoresis and probed with three genes in MAL6 locus. The DNA bands to which all of the three MAL-derived probes simultaneously hybridized were chromosome VII carrying MAL1 in all of the strains tested, chromosome XI carrying MAL4 in six strains, chromosome III carrying MAL2 in three strains and chromosomes II and VIII carrying MAL3 and MAL6, respectively, in the one strain. The number of MAL loci in baking strains was comparable to those of brewing strains.

  1. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?

    PubMed

    Grangeteau, Cédric; Gerhards, Daniel; Rousseaux, Sandrine; von Wallbrunn, Christian; Alexandre, Hervé; Guilloux-Benatier, Michèle

    2015-09-01

    Isolated yeast populations of Chardonnay grape must during spontaneous fermentation were compared to those isolated on grape berries and in a winery environment before the arrival of the harvest (air, floor, winery equipment) and in the air through time. Two genera of yeast, Hanseniaspora and Saccharomyces, were isolated in grape must and in the winery environment before the arrival of the harvest but not on grape berries. The genus Hanseniaspora represented 27% of isolates in the must and 35% of isolates in the winery environment. The isolates of these two species were discriminated at the strain level by Fourier transform infrared spectroscopy. The diversity of these strains observed in the winery environment (26 strains) and in must (12 strains) was considerable. 58% of the yeasts of the genus Hanseniaspora isolated in the must corresponded to strains present in the winery before the arrival of the harvest. Although the proportion and number of strains of the genus Hanseniaspora decreased during fermentation, some strains, all from the winery environment, subsisted up to 5% ethanol content. This is the first time that the implantation in grape must of populations present in the winery environment has been demonstrated for a non-Saccharomyces genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains.

    PubMed

    del Barrio-Galán, Rubén; Medel-Marabolí, Marcela; Peña-Neira, Álvaro

    2015-07-15

    The effect of high levels of the polysaccharide Saccharomyces cerevisiae yeast strain (HPS) and another conventional yeast strain (FERM) on the polysaccharide and phenolic composition of Syrah red wines during alcoholic fermentation and subsequent aging on lees, with or without oak wood chips, and on inactive dry yeast was investigated. The HPS yeast released higher amounts of polysaccharides during alcoholic fermentation than FERM yeast (485 g L(-1) and 403 g L(-1), respectively) and after the aging period (516 g L(-1) and 500 g L(-1), respectively). The different aging techniques increased the polysaccharide concentration; the concentration was dependent on the aging technique applied. The interaction of the polysaccharides with the phenolic compounds depended on the yeast strain, aging technique, aging period and compound analysed. The HPS wines exhibited better sensory characteristics than the FERM wines after alcoholic fermentation; however, during the aging period, it was difficult to determine which technique produced the best wine due to the interactions of aging technique, aging period and sensory attribute evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    PubMed

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  4. Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment

    PubMed Central

    Katz, Michael; Knecht, Wolfgang; Compagno, Concetta; Piškur, Jure

    2018-01-01

    There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits. PMID:29624585

  5. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.

    PubMed

    Ko, Ja Kyong; Jung, Je Hyeong; Altpeter, Fredy; Kannan, Baskaran; Kim, Ha Eun; Kim, Kyoung Heon; Alper, Hal S; Um, Youngsoon; Lee, Sun-Mi

    2018-05-01

    The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.

    PubMed

    Zoppellari, Francesca; Bardi, Laura

    2013-09-25

    Whey and scotta are effluents coming from cheese and ricotta processing respectively. Whey contains minerals, lipids, lactose and proteins; scotta contains mainly lactose. Whey can be reused in several ways, such as protein extraction or animal feeding, while nowadays scotta is just considered as a waste; moreover, due to very high volumes of whey produced in the world, it poses serious environmental and disposal problems. Alternative destinations of these effluents, such as biotechnological transformations, can be a way to reach both goals of improving the added value of the agroindustrial processes and reducing their environmental impact. In this work we investigated the way to produce bioethanol from lactose of whey and scotta and to optimize the fermentation yields. Kluyveromyces marxianus var. marxianus was chosen as lactose-fermenting yeast. Batch, aerobic and anaerobic, fermentations and semicontinuous fermentations in dispersed phase and in packed bed reactor were carried out of row whey, scotta and mix 1:1 whey:scotta at a laboratory scale. Different temperatures (28-40°C) were also tested to check whether the thermotolerance of the chosen yeast could be useful to improve the ethanol yield. The best performances were reached at low temperatures (28°C); high temperatures are also compatible with good ethanol yields in whey fermentations, but not in scotta fermentations. Semicontinuous fermentations in dispersed phase gave the best fermentation performances, particularly with scotta. Then both effluents can be considered suitable for ethanol production. The good yields obtained from scotta allow us to transform this waste in a source. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders.

    PubMed

    Laaksonen, Oskar; Kuldjärv, Rain; Paalme, Toomas; Virkki, Mira; Yang, Baoru

    2017-10-15

    Hydroxycinnamic acids and flavonoids in apple juices and ciders were studied using liquid chromatography. Samples were produced from four different Estonian apple cultivars using unripe, ripe and overripe apples, and six different commercial yeasts including Saccharomyces cerevisiae, Saccharomyces bayanus, and Torulaspora delbrueckii strains. Part of the samples was additionally inoculated with malolactic bacteria, Oenococcus oeni. The most notable difference among the samples was the appearance of phloretin in malolactic ciders in comparison to conventional ciders and the juices. Furthermore, the apple cultivars were significantly different in their phenolic contents and compositions. Additionally, ciders and juices made from unripe apples contained more phenolic compounds than the ripe or overripe, but the effect was dependent on cultivar. The commercial yeast strains differed in the release of free HCAs, especially p-coumaric acid, during the yeast fermentation. In ciders inoculated with S. bayanus, the content was higher than in ciders fermented with S. cerevisiae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir.

    PubMed

    Bolla, Patricia A; Serradell, María de los Angeles; de Urraza, Patricio J; De Antoni, Graciela L

    2011-02-01

    The effect of freeze-drying on viability and probiotic properties of a microbial mixture containing selected bacterial and yeast strains isolated from kefir grains (Lactobacillus kefir, Lactobacillus plantarum, Lactococcus lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) was studied. The microorganisms were selected according to their potentially probiotic properties in vitro already reported. Two types of formulations were performed, a microbial mixture (MM) suspended in milk and a milk product fermented with MM (FMM). To test the effect of storage on viability of microorganisms, MM and FMM were freeze-dried and maintained at 4°C for six months. After 180 days of storage at 4°C, freeze-dried MM showed better survival rates for each strain than freeze-dried FMM. The addition of sugars (trehalose or sucrose) did not improve the survival rates of any of the microorganisms after freeze-drying. Freeze-drying did not affect the capacity of MM to inhibit growth of Shigella sonnei in vitro, since the co-incubation of this pathogen with freeze-dried MM produced a decrease of 2 log in Shigella viability. The safety of freeze-dried MM was tested in mice and non-translocation of microorganisms to liver or spleen was observed in BALB/c mice feed ad libitum during 7 or 20 days. To our knowledge, this is the first report about the effect of freeze-drying on viability, in vitro probiotic properties and microbial translocation of a mixture containing different strains of both bacteria and yeasts isolated from kefir.

  9. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain.

    PubMed

    Wu, Dianhui; Li, Xiaomin; Shen, Chao; Lu, Jian; Chen, Jian; Xie, Guangfa

    2014-06-16

    Saccharomyces cerevisiae metabolizes arginine to ornithine and urea during wine fermentations. In the fermentation of Chinese rice wine, yeast strains of S. cerevisiae do not fully metabolize urea, which will be secreted into the spirits and spontaneously reacts with ethanol to form ethyl carbamate, a potential carcinogenic agent for humans. To block the pathway of urea production, we genetically engineered two haploid strains to reduce the arginase (encoded by CAR1) activity, which were isolated from a diploid industrial Chinese rice wine strain. Finally the engineered haploids with opposite mating type were mated back to diploid strains, obtaining a heterozygous deletion strain (CAR1/car1) and a homozygous defect strain (car1/car1). These strains were compared to the parental industrial yeast strain in Chinese rice wine fermentations and spirit production. The strain with the homozygous CAR1 deletion showed significant reductions of urea and EC in the final spirits in comparison to the parental strain, with the concentration reductions by 86.9% and 50.5% respectively. In addition, EC accumulation was in a much lower tempo during rice wine storage. Moreover, the growth behavior and fermentation characteristics of the engineered diploid strain were similar to the parental strain. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Indigenous Georgian Wine-Associated Yeasts and Grape Cultivars to Edit the Wine Quality in a Precision Oenology Perspective

    PubMed Central

    Vigentini, Ileana; Maghradze, David; Petrozziello, Maurizio; Bonello, Federica; Mezzapelle, Vito; Valdetara, Federica; Failla, Osvaldo; Foschino, Roberto

    2016-01-01

    In Georgia, one of the most ancient vine-growing environment, the homemade production of wine is still very popular in every rural family and spontaneous fermentation of must, without addition of chemical preservatives, is the norm. The present work investigated the yeast biodiversity in five Georgian areas (Guria, Imereti, Kakheti, Kartli, Ratcha-Lechkhumi) sampling grapes and wines from 22 different native cultivars, in 26 vineyards and 19 family cellars. One hundred and eighty-two isolates were ascribed to 15 different species by PCR-ITS and RFLP, and partial sequencing of D1/D2 domain 26S rDNA gene. Metschnikowia pulcherrima (F’ = 0.56, I’ = 0.32), Hanseniaspora guilliermondii (F’ = 0.49, I’ = 0.27), and Cryptococcus flavescens (F’ = 0.31, I’ = 0.11) were the dominant yeasts found on grapes, whereas Saccharomyces cerevisiae showed the highest prevalence into wine samples. Seventy four isolates with fermentative potential were screened for oenological traits such as ethanol production, resistance to SO2, and acetic acid, glycerol and H2S production. Three yeast strains (Kluyveromyces marxianus UMY207, S. cerevisiae UMY255, Torulaspora delbrueckii UMY196) were selected and separately inoculated in vinifications experiments at a Georgian cellar. Musts were prepared from healthy grapes of local varieties, Goruli Mtsvane (white berry cultivar) and Saperavi (black berry cultivar). Physical (°Brix) and microbial analyses (plate counts) were performed to monitor the fermentative process. The isolation of indigenous S. cerevisiae yeasts beyond the inoculated strains indicated that a co-presence occurred during the vinification tests. Results from quantitative GC-FID analysis of volatile compounds revealed that the highest amount of fermentation flavors, such as 4-ethoxy-4-oxobutanoic acid (monoethyl succinate), 2-methylpropan-1-ol, ethyl 2-hydroxypropanoate, and 2-phenylethanol, were significantly more produced in fermentation conducted in Saperavi variety

  11. Improved microarray methods for profiling the yeast knockout strain collection

    PubMed Central

    Yuan, Daniel S.; Pan, Xuewen; Ooi, Siew Loon; Peyser, Brian D.; Spencer, Forrest A.; Irizarry, Rafael A.; Boeke, Jef D.

    2005-01-01

    A remarkable feature of the Yeast Knockout strain collection is the presence of two unique 20mer TAG sequences in almost every strain. In principle, the relative abundances of strains in a complex mixture can be profiled swiftly and quantitatively by amplifying these sequences and hybridizing them to microarrays, but TAG microarrays have not been widely used. Here, we introduce a TAG microarray design with sophisticated controls and describe a robust method for hybridizing high concentrations of dye-labeled TAGs in single-stranded form. We also highlight the importance of avoiding PCR contamination and provide procedures for detection and eradication. Validation experiments using these methods yielded false positive (FP) and false negative (FN) rates for individual TAG detection of 3–6% and 15–18%, respectively. Analysis demonstrated that cross-hybridization was the chief source of FPs, while TAG amplification defects were the main cause of FNs. The materials, protocols, data and associated software described here comprise a suite of experimental resources that should facilitate the use of TAG microarrays for a wide variety of genetic screens. PMID:15994458

  12. Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment.

    PubMed

    Ando, Akira; Suzuki, Chise; Shima, Jun

    2005-11-01

    Although genetic engineering techniques for baker's yeast might improve the yeast's fermentation characteristics, the lack of scientific data on the survival of such strains in natural environments as well as the effects on human health prevent their commercial use. Disruption of acid trehalase gene (ATH1) improves freeze tolerance, which is a crucial characteristic in frozen-dough baking. In this study, ATH1 disruptants constructed by genetic modification (GM) and self-cloning (SC) techniques were used as models to study such effects because these strains have higher freeze tolerance and are expected to be used commercially. Behavior of the strains in simulated natural environments, namely, in soil and water, was studied by measuring the change in the number of viable cells and in the concentration of DNA that contains ATH1 loci. Measurements were made using a real-time PCR method during 40 days of cultivation. Results showed that the number of viable cells of GM and SC strains decreased in a time-dependent manner and that the decrease rate was nearly equal to or higher than that for wild-type (WT) yeast. For all three strains (SC, GM, and WT) in the two simulated natural environments (water and soil), the DNA remained longer than did viable cells but the decrease patterns of either the DNA or the viable cells of SC and GM strains had tendencies similar to those of the WT strain. In conclusion, disruption of ATH1 by genetic engineering apparently does not promote the survival of viable cells and DNA in natural environments.

  13. Does fingerprinting truly represent the diversity of wine yeasts? A case study with interdelta genotyping of Saccharomyces cerevisiae strains.

    PubMed

    Pfliegler, W P; Sipiczki, M

    2016-12-01

    Simple and efficient genotyping methods are widely used to assess the diversity of a large number of microbial strains, e.g. wine yeasts isolated from a specific geographical area or a vintage. Such methods are often also the first to be applied, to decrease the number of strains deemed interesting for a more time-consuming physiological characterization. Here, we aimed to use a physiologically characterized strain collection of 69 Saccharomyces cerevisiae strains from Hungarian wine regions to determine whether geographical origin or physiological similarity can be recovered by clustering the strains with one or two simultaneously used variations of interdelta genotyping. Our results indicate that although a detailed clustering with high resolution can be achieved with this method, the clustering of strains is largely contrasting when different primer sets are used and it does not recover geographical or physiological groups. Genotyping is routinely used for assessing the diversity of a large number of isolates/strains of a single species, e.g. a collection of wine yeasts. We tested the efficiency of interdelta genotyping on a collection of Saccharomyces wine yeasts from four wine regions of Hungary that was previously characterized physiologically. Interdelta fingerprinting recovered neither physiological nor geographical similarities, and in addition, the two different primer pairs widely used for this method showed conflicting and barely comparable results. Thus, this method does not necessarily represent the true diversity of a strain collection, but detailed clustering may be achieved by the combined use of primer sets. © 2016 The Society for Applied Microbiology.

  14. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification.

    PubMed

    Berlowska, Joanna; Kregiel, Dorota; Ambroziak, Wojciech

    2013-07-01

    The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly.

  16. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    PubMed

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  17. Immobilized Kluyveromyces marxianus cells in carboxymethyl cellulose for production of ethanol from cheese whey: experimental and kinetic studies.

    PubMed

    Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D

    2016-09-01

    Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.

  18. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    PubMed

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces ' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus . These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p -coumaric acid, a trait not shared among the spoilage strains.

  19. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture.

    PubMed

    Øverland, Margareth; Skrede, Anders

    2017-02-01

    The global expansion in aquaculture production implies an emerging need of suitable and sustainable protein sources. Currently, the fish feed industry is dependent on high-quality protein sources of marine and plant origin. Yeast derived from processing of low-value and non-food lignocellulosic biomass is a potential sustainable source of protein in fish diets. Following enzymatic hydrolysis, the hexose and pentose sugars of lignocellulosic substrates and supplementary nutrients can be converted into protein-rich yeast biomass by fermentation. Studies have shown that yeasts such as Saccharomyces cerevisiae, Candida utilis and Kluyveromyces marxianus have favourable amino acid composition and excellent properties as protein sources in diets for fish, including carnivorous species such as Atlantic salmon and rainbow trout. Suitable downstream processing of the biomass to disrupt cell walls is required to secure high nutrient digestibility. A number of studies have shown various immunological and health benefits from feeding fish low levels of yeast and yeast-derived cell wall fractions. This review summarises current literature on the potential of yeast from lignocellulosic biomass as an alternative protein source for the aquaculture industry. It is concluded that further research and development within yeast production can be important to secure the future sustainability and economic viability of intensive aquaculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Biocontrol activity of four non- and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove ochratoxin A from grape juice.

    PubMed

    Fiori, Stefano; Urgeghe, Pietro Paolo; Hammami, Walid; Razzu, Salvatorico; Jaoua, Samir; Migheli, Quirico

    2014-10-17

    Aspergillus spp. infection of grape may lead to ochratoxin A (OTA) contamination in processed beverages such as wine and grape juice. The aim of the current study was to evaluate the biocontrol potential of two non-fermenting (Cyberlindnera jadinii 273 and Candida friedrichii 778) and two low-fermenting (Candida intermedia 235 and Lachancea thermotolerans 751) yeast strains against the pathogenic fungus and OTA-producer Aspergillus carbonarius, and their ability to remove OTA from grape juice. Two strains, 235 and 751, showed a significant ability to inhibit A. carbonarius both on grape berries and in in vitro experiments. Neither their filtrate nor their autoclaved filtrate culture broth was able to prevent consistently pathogen growth. Volatile organic compounds (VOCs) produced by all four selected yeasts were likely able to consistently prevent pathogen sporulation in vitro. VOCs produced by the non-fermenting strain 778 also significantly reduced A. carbonarius vegetative growth. Three yeast strains (235, 751, and 778) efficiently adsorbed artificially spiked OTA from grape juice, while autoclaving treatment improved OTA adsorption capacity by all the four tested strains. Biological control of A. carbonarius and OTA-decontamination using yeast is proposed as an approach to meet the Islamic dietary laws concerning the absence of alcohol in halal beverages. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. [Distiller Yeasts Producing Antibacterial Peptides].

    PubMed

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  2. Characterization and stability of lactobacilli and yeast microbiota in kefir grains.

    PubMed

    Vardjan, T; Mohar Lorbeg, P; Rogelj, I; Čanžek Majhenič, A

    2013-05-01

    Characterization and stability of lactobacilli and yeasts from kefir grains using culture-dependent and culture-independent methods were investigated in this study. Culture-dependent analysis, followed by sequencing of 16S ribosomal DNA for bacteria and 26S rRNA gene for yeasts, revealed 3 different species of lactobacilli and yeasts, respectively. The most frequently isolated bacterial species were Lactobacillus kefiranofaciens ssp. kefirgranum, Lb. parakefiri, and Lb. kefiri, whereas yeasts belonged to Kluyveromyces marxianus, Kazachstania exigua, and Rhodosporidium kratochvilovae. This study is the first to report on the presence of R. kratochvilovae in kefir grains. On the other hand, PCR-denaturing gradient gel electrophoresis in the culture-independent method showed that the dominant microorganisms were Lb. kefiranofaciens ssp. kefirgranum, Kl. marxianus and Ka. exigua, but did not reveal bands corresponding to Lb. parakefiri, Lb. kefiri, or R. kratochvilovae. Our results support the necessity of combining more techniques for detailed and reliable study of microbial communities in kefir grains. Another interesting finding confirmed that the detected dominant microbiota of kefir grains is very stable and did not change over experimental time. This finding is important to ensure consistent product quality. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production.

    PubMed

    Eleutério Dos Santos, Caroline Mongruel; Pietrowski, Giovana de Arruda Moura; Braga, Cíntia Maia; Rossi, Márcio José; Ninow, Jorge; Machado Dos Santos, Tâmisa Pires; Wosiacki, Gilvan; Jorge, Regina Maria Matos; Nogueira, Alessandro

    2015-06-01

    The amino acid profile in dessert apple must and its effect on the synthesis of fusel alcohols and esters in cider were established by instrumental analysis. The amino acid profile was performed in nine apple musts. Two apple musts with high (>150 mg/L) and low (<75 mg/L) nitrogen content, and four enological yeast strains, were used in cider fermentation. The aspartic acid, asparagine and glutamic acid amino acids were the majority in all the apple juices, representing 57.10% to 81.95%. These three amino acids provided a high consumption (>90%) during fermentation in all the ciders. Principal component analysis (PCA) explained 81.42% of data variability and the separation of three groups for the analyzed samples was verified. The ciders manufactured with low nitrogen content showed sluggish fermentation and around 50% less content of volatile compounds (independent of the yeast strain used), which were mainly 3-methyl-1-butanol (isoamyl alcohol) and esters. However, in the presence of amino acids (asparagine, aspartic acid, glutamic acid and alanine) there was a greater differentiation between the yeasts in the production of fusel alcohols and ethyl esters. High contents of these aminoacids in dessert apple musts are essential for the production of fusel alcohols and most of esters by aromatic yeasts during cider fermentation. © 2015 Institute of Food Technologists®

  4. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.

    PubMed

    Abdul Salam, Jaseetha; Lakshmi, V; Das, Devlina; Das, Nilanjana

    2013-03-01

    Lindane is a notorious organochlorine pesticide due to its high toxicity, persistence in the environment and its tendency to bioaccumulate. A yeast strain isolated from sorghum cultivation field was able to use lindane as carbon and energy source under aerobic conditions. With molecular techniques, it was identified and named as Rhodotorula strain VITJzN03. The effects of nutritional and environmental factors on yeast growth and the biodegradation of lindane was investigated. The maximum production of yeast biomass along with 100 % lindane mineralization was noted at an initial lindane concentration of 600 mg l(-1) within a period of 10 days. Lindane concentration above 600 mg l(-1) inhibited the growth of yeast in liquid medium. A positive relationship was noted between the release of chloride ions and the increase of yeast biomass as well as degradation of lindane. The calculated degradation rate and half life of lindane were found to be 0.416 day(-1) and 1.66 days, respectively. The analysis of the metabolites using GC-MS identified the formation of seven intermediates including γ-pentachlorocyclohexane(γ-PCCH), 1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4-TCCHdiene), 1,2,4-trichlorobenzene (1,2,4 TCB), 1,4-dichlorobenzene (1,4 DCB), chloro-cis-1,2-dihydroxycyclohexadiene (CDCHdiene), 3-chlorocatechol (3-CC) and maleylacetate (MA) derivatives indicating that lindane degradation follows successive dechlorination and oxido-reduction. Based on the results of the present study, the possible pathway for lindane degradation by Rhodotorula sp. VITJzN03 has been proposed. To the best of our knowledge, this is the first report on lindane degradation by yeast which can serve as a potential agent for in situ bioremediation of medium to high level lindane-contaminated sites.

  5. Comparative behaviour of yeast strains for ethanolic fermentation of culled apple juice.

    PubMed

    Modi, D R; Garg, S K; Johri, B N

    1998-07-01

    The culled apple juice contained (% w/v): nitrogen, 0.036; total sugars, 11.6 and was of pH 3.9. Saccharomyces cerevisiae NCIM 3284, Pichia kluyeri and Candida krusei produced more ethanol from culled apple juice at its optimum initial pH 4.5, whereas S. cerevisiae NCIM 3316 did so at pH 5.0. An increase in sugar concentration of apple juice from natural 11.6% to 20% exhibited enhanced ethanol production and improved fermentation efficiency of both the S. cerevisiae strains, whereas P. kluyveri and C. krusei produced high ethanol at 11.6% and 16.0% sugar levels, respectively. Urea was stimulatory for ethanol production as well as fermentation efficiency of the yeast strains under study.

  6. Glycerol production by Oenococcus oeni during sequential and simultaneous cultures with wine yeast strains.

    PubMed

    Ale, Cesar E; Farías, Marta E; Strasser de Saad, Ana M; Pasteris, Sergio E

    2014-07-01

    Growth and fermentation patterns of Saccharomyces cerevisiae, Kloeckera apiculata, and Oenococcus oeni strains cultured in grape juice medium were studied. In pure, sequential and simultaneous cultures, the strains reached the stationary growth phase between 2 and 3 days. Pure and mixed K. apiculata and S. cerevisiae cultures used mainly glucose, producing ethanol, organic acids, and 4.0 and 0.1 mM glycerol, respectively. In sequential cultures, O. oeni achieved about 1 log unit at 3 days using mainly fructose and L-malic acid. Highest sugars consumption was detected in K. apiculata supernatants, lactic acid being the major end-product. 8.0 mM glycerol was found in 6-day culture supernatants. In simultaneous cultures, total sugars and L-malic acid were used at 3 days and 98% of ethanol and glycerol were detected. This study represents the first report of the population dynamics and metabolic behavior of yeasts and O. oeni in sequential and simultaneous cultures and contributes to the selection of indigenous strains to design starter cultures for winemaking, also considering the inclusion of K. apiculata. The sequential inoculation of yeasts and O. oeni would enhance glycerol production, which confers desirable organoleptic characteristics to wines, while organic acids levels would not affect their sensory profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Glycolysis Controls Plasma Membrane Glucose Sensors To Promote Glucose Signaling in Yeasts

    PubMed Central

    Cairey-Remonnay, Amélie; Deffaud, Julien; Wésolowski-Louvel, Micheline; Lemaire, Marc

    2014-01-01

    Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation. PMID:25512610

  8. Chemical signaling and insect attraction is a conserved trait in yeasts.

    PubMed

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  9. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    PubMed Central

    Lentz, Michael; Harris, Chad

    2015-01-01

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains. PMID:28231223

  10. Trichoderma sp. spores and Kluyveromyces marxianus cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles.

    PubMed

    Palacios-Ponce, Sócrates; Ramos-González, Rodolfo; Ruiz, Héctor A; Aguilar, Miguel A; Martínez-Hernández, José L; Segura-Ceniceros, Elda P; Aguilar, Cristóbal N; Michelena, Georgina; Ilyina, Anna

    2017-07-03

    In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett-Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E + 09 spores (C-MNP g -1 ). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (K f ) estimated as 2.05E + 08 cells (C-MNP g -1 ). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.

  11. Modulation of Intestinal Inflammation by Yeasts and Cell Wall Extracts: Strain Dependence and Unexpected Anti-Inflammatory Role of Glucan Fractions

    PubMed Central

    Jawhara, Samir; Habib, Khalid; Maggiotto, François; Pignede, Georges; Vandekerckove, Pascal; Maes, Emmanuel; Dubuquoy, Laurent; Fontaine, Thierry; Guerardel, Yann; Poulain, Daniel

    2012-01-01

    Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb) reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation. Mice received a single oral challenge of C. albicans and were then given 1.5% dextran-sulphate-sodium (DSS) for 2 weeks followed by a 3-day restitution period. S. cerevisiae strains (Sb, Sc1 to Sc4), as well as mannoprotein (MP) and β-glucan crude fractions prepared from Sc2 and highly purified β-glucans prepared from C. albicans were used in this curative model, starting 3 days after C. albicans challenge. Mice were assessed for the clinical, histological and inflammatory responses related to DSS administration. Strain Sc1-1 gave the same level of protection against C. albicans as Sb when assessed by mortality, clinical scores, colonization levels, reduction of TNFα and increase in IL-10 transcription. When Sc1-1 was compared with the other S. cerevisiae strains, the preparation process had a strong influence on biological activity. Interestingly, some S. cerevisiae strains dramatically increased mortality and clinical scores. Strain Sc4 and MP fraction favoured C. albicans colonization and inflammation, whereas β-glucan fraction was protective against both. Surprisingly, purified β-glucans from C. albicans had the same protective effect. Thus, some yeasts appear to be strong modulators of intestinal inflammation. These effects are dependent on the strain, species, preparation process and cell wall fraction. It was striking that β-glucan fractions or pure β-glucans from C. albicans displayed the most potent anti-inflammatory effect in the DSS model. PMID

  12. Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28.

    PubMed

    Nakayama, Shunichi; Tabata, Ken; Oba, Takahiro; Kusumoto, Kenichi; Mitsuiki, Shinji; Kadokura, Toshimori; Nakazato, Atsumi

    2012-09-01

    We characterized a high malic acid production mechanism in sake yeast strain No. 28. No considerable differences in the activity of the enzymes that were involved in malic acid synthesis were observed between strain No. 28 and its parent strain, K1001. However, compared with strain K1001, which actively took up rhodamine 123 during staining, the cells of strain No. 28 were only lightly stained, even when cultured in high glucose concentrations. In addition, malic acid production by the respiratory-deficient strain of K1001 was 2.5-fold higher than that of the wild-type K1001 and wild-type No. 28. The findings of this study demonstrated that the high malic acid production by strain No. 28 is attributed to the suppression of mitochondrial activity. Copyright © 2012. Published by Elsevier B.V.

  13. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Comparison of Yeasts as Hosts for Recombinant Protein Production.

    PubMed

    Vieira Gomes, Antonio Milton; Souza Carmo, Talita; Silva Carvalho, Lucas; Mendonça Bahia, Frederico; Parachin, Nádia Skorupa

    2018-04-29

    Recombinant protein production emerged in the early 1980s with the development of genetic engineering tools, which represented a compelling alternative to protein extraction from natural sources. Over the years, a high level of heterologous protein was made possible in a variety of hosts ranging from the bacteria Escherichia coli to mammalian cells. Recombinant protein importance is represented by its market size, which reached $1654 million in 2016 and is expected to reach $2850.5 million by 2022. Among the available hosts, yeasts have been used for producing a great variety of proteins applied to chemicals, fuels, food, and pharmaceuticals, being one of the most used hosts for recombinant production nowadays. Historically, Saccharomyces cerevisiae was the dominant yeast host for heterologous protein production. Lately, other yeasts such as Komagataella sp., Kluyveromyces lactis , and Yarrowia lipolytica have emerged as advantageous hosts. In this review, a comparative analysis is done listing the advantages and disadvantages of using each host regarding the availability of genetic tools, strategies for cultivation in bioreactors, and the main techniques utilized for protein purification. Finally, examples of each host will be discussed regarding the total amount of protein recovered and its bioactivity due to correct folding and glycosylation patterns.

  15. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu

    PubMed Central

    Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takashita, Hideharu

    2018-01-01

    ABSTRACT Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. PMID:29622617

  16. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts.

    PubMed

    Vong, Weng Chan; Liu, Shao-Quan

    2017-01-01

    Soybean residue (okara), a by-product of soymilk, is produced in large volumes by the soy food industry and is often discarded due to its undesirable flavour. As it contains a considerable amount of protein and fats, biotransformation of okara to improve its flavour presents an opportunity for alternative utilisation. This paper evaluated 10 yeasts in the solid-state fermentation of okara based on their volatile profiles as analysed with HS-SPME GC-MS/FID. Four 'dairy yeasts' (Geotrichum candidum, Yarrowia lipolytica, Debaryomyces hansenii and Kluyveromyces lactis) and six 'wine yeasts' (Saccharomyces cerevisiae, Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia kluyveri, Torulaspora delbrueckii, and Williopsis saturnus) were studied. The main off-odourants in okara, hexanal and trans-2-hexenal, significantly decreased after fermentation due to their bioconversion into methyl ketones and/or esters. The okara fermented by dairy yeasts contained greater proportions of methyl ketones, while that by wine yeasts contained more ethyl and acetyl esters. Notably, the okara fermented by W. saturnus contained 13 esters and the total GC-FID peak area of esters was about 380 times that in fresh okara, leading to a perceptible fruity note. Okara can be exploited as an inexpensive substrate for bioflavour extraction and/or a more pleasant food ingredient via yeast fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

    PubMed Central

    Scannell, Devin R.; Zill, Oliver A.; Rokas, Antonis; Payen, Celia; Dunham, Maitreya J.; Eisen, Michael B.; Rine, Jasper; Johnston, Mark; Hittinger, Chris Todd

    2011-01-01

    High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org. PMID:22384314

  18. Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria.

    PubMed

    Berlowska, Joanna; Dudkiewicz, Marta; Kregiel, Dorota; Czyzowska, Agata; Witonska, Izabela

    2015-01-01

    This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24-48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast

    PubMed Central

    Jespersen, Lene; Cesar, Lene B.; Meaden, Philip G.; Jakobsen, Mogens

    1999-01-01

    Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure. PMID:9925567

  20. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    PubMed Central

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    Summary The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  1. Freeze-drying of yeast cultures.

    PubMed

    Bond, Chris

    2007-01-01

    A method is described that allows yeast species to be stored using a variation on the standard freeze-drying method, which employs evaporative cooling in a two-stage process. Yeast cultures are placed in glass ampoules after having been mixed with a lyoprotectant. Primary drying is carried out using a centrifuge head connected to a standard freeze-dryer. Once the centrifuge head is running, air is removed and evaporated liquid is captured in the freeze-dryer. Centrifugation continues for 15 min and primary drying for a further 3 h. The ampoules are constricted using a glass blowing torch. They are then placed on the freeze-dryer manifold for secondary drying under vacuum overnight, using phosphorus pentoxide as a desiccant. The ampoules are sealed and removed from the manifold by melting the constricted section. Although the process causes an initial large drop in viability, further losses after storage are minimal. Yeast strains have remained viable for more than 30 yr when stored using this method and sufficient cells are recovered to produce new working stocks. Although survival rates are strain specific, nearly all National Collection of Yeast Cultures strains covering most yeast genera, have been successfully stored with little or no detectable change in strain characteristics.

  2. Transformation of Saccharomyces cerevisiae with linear DNA killer plasmids from Kluyveromyces lactis.

    PubMed Central

    Gunge, N; Murata, K; Sakaguchi, K

    1982-01-01

    Protoplasts of Saccharomyces cerevisiae were mixed with linear DNA plasmids, pGKl1 and pGKl2, isolated from a Kluyveromyces lactis killer strain and treated with polyethylene glycol. Out of 2,000 colonies regenerated on a nonselective medium, two killer transformants were obtained. The pGKl plasmids and the killer character were stably maintained in one (Pdh-1) of them. Another transformant, Pdl-1, was a weak killer, and the subclones consisted of a mixture of weak and nonkiller cells. The weak killers were characterized by the presence of pGKl1 in a decreased amount, and nonkillers were characterized by the absence of pGKl1. The occurrence of two new plasmids which migrated faster than pGKl1 in an agarose gel was observed in Pdl-1 and its subclones, whether weak or nonkillers. Staining with 4',6-diamidino-2-phenylindole revealed that the pGKl plasmids exist in the cytosol of transformant cells with numerous copy numbers. Images PMID:7045080

  3. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    PubMed Central

    Viel, Alessia; Legras, Jean-Luc; Nadai, Chiara; Carlot, Milena; Lombardi, Angiolella; Crespan, Manna; Migliaro, Daniele; Giacomini, Alessio; Corich, Viviana

    2017-01-01

    In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota. PMID:28883812

  4. Microbial terroir and food innovation: The case of yeast biodiversity in wine.

    PubMed

    Capozzi, Vittorio; Garofalo, Carmela; Chiriatti, Maria Assunta; Grieco, Francesco; Spano, Giuseppe

    2015-12-01

    Saccharomyces and non-Saccharomyces represents a heterogeneous class in the grape/must/wine environments including several yeast genera (e.g., Saccharomyces, Hanseniaspora, Pichia, Candida, Metschnikowia, Kluyveromyces, Zygosaccharomyces, Torulaspora, Dekkera and Schizosaccharomyces) and species. Since, each species may differently contribute to the improvement/depreciation of wine qualities, it appears clear the reason why species belong to non-Saccharomyces are also considered a biotechnological resource in wine fermentation. Here, we briefly review the oenological significance of this specific part of microbiota associated with grapes/musts/wine. Moreover, the diversity of cultivable non-Saccharomyces genera and their contribute to typical wines fermentations will be discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    PubMed

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  6. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  7. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  8. Fermentation of biomass sugars to ethanol using native industrial yeast strains.

    PubMed

    Yuan, Dawei; Rao, Kripa; Relue, Patricia; Varanasi, Sasidhar

    2011-02-01

    In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production.

    PubMed

    Reis, Viviane Castelo Branco; Nicola, André Moraes; de Souza Oliveira Neto, Osmar; Batista, Vinícius Daniel Ferreira; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves

    2012-11-01

    Used for millennia to produce beverages and food, Saccharomyces cerevisiae also became a workhorse in the production of biofuels, most notably bioethanol. Yeast strains have acquired distinct characteristics that are the result of evolutionary adaptation to the stresses of industrial ethanol production. JP1 is a dominant industrial S. cerevisiae strain isolated from a sugarcane mill and is becoming increasingly popular for bioethanol production in Brazil. In this work, we carried out the genetic characterization of this strain and developed a set of tools to permit its genetic manipulation. Using flow cytometry, mating type, and sporulation analysis, we verified that JP1 is diploid and homothallic. Vectors with dominant selective markers for G418, hygromycin B, zeocin, and ρ-fluoro-DL-phenylalanine were used to successfully transform JP1 cells. Also, an auxotrophic ura3 mutant strain of JP1 was created by gene disruption using integration cassettes with dominant markers flanked by loxP sites. Marker excision was accomplished by the Cre/loxP system. The resulting auxotrophic strain was successfully transformed with an episomal vector that allowed green fluorescent protein expression.

  10. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  11. A Loss-of-Function Mutation in the PAS Kinase Rim15p Is Related to Defective Quiescence Entry and High Fermentation Rates of Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Watanabe, Daisuke; Araki, Yuya; Zhou, Yan; Maeya, Naoki; Akao, Takeshi

    2012-01-01

    Sake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program in Saccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-length RIM15 gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G1 arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functional RIM15 gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in the RIM15 gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains. PMID:22447585

  12. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Watanabe, Daisuke; Araki, Yuya; Zhou, Yan; Maeya, Naoki; Akao, Takeshi; Shimoi, Hitoshi

    2012-06-01

    Sake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program in Saccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-length RIM15 gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G(1) arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functional RIM15 gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in the RIM15 gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains.

  13. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis.

    PubMed

    Lodi, Tiziana; Donnini, Claudia

    2005-05-01

    The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.

  14. Analysis and Dynamics of the Chromosomal Complements of Wild Sparkling-Wine Yeast Strains

    PubMed Central

    Nadal, Dolors; Carro, David; Fernández-Larrea, Juan; Piña, Benjamin

    1999-01-01

    We isolated Saccharomyces cerevisiae yeast strains that are able to carry out the second fermentation of sparkling wine from spontaneously fermenting musts in El Penedès (Spain) by specifically designed selection protocols. All of them (26 strains) showed one of two very similar mitochondrial DNA (mtDNA) restriction patterns, whereas their karyotypes differed. These strains showed high rates of karyotype instability, which were dependent on both the medium and the strain, during vegetative growth. In all cases, the mtDNA restriction pattern was conserved in strains kept under the same conditions. Analysis of different repetitive sequences in their genomes suggested that ribosomal DNA repeats play an important role in the changes in size observed in chromosome XII, whereas SUC genes or Ty elements did not show amplification or transposition processes that could be related to rearrangements of the chromosomes showing these sequences. Karyotype changes also occurred in monosporidic diploid derivatives. We propose that these changes originated mainly from ectopic recombination between repeated sequences interspersed in the genome. None of the rearranged karyotypes provided a selective advantage strong enough to allow the strains to displace the parental strains. The nature and frequency of these changes suggest that they may play an important role in the establishment and maintenance of the genetic diversity observed in S. cerevisiae wild populations. PMID:10103269

  15. Genome Sequence of the Lager-Brewing Yeast Saccharomyces sp. Strain M14, Used in the High-Gravity Brewing Industry in China

    PubMed Central

    Liu, Chunfeng; Niu, Chengtuo; Zheng, Feiyun; Li, Yongxian; Zhao, Yun; Yin, Xiangsheng

    2017-01-01

    ABSTRACT Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. PMID:29074666

  16. Virgin olive oil yeasts: A review.

    PubMed

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Substrate-Limited Saccharomyces cerevisiae Yeast Strains Allow Control of Fermentation during Bread Making.

    PubMed

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-04-26

    Identification and use of yeast strains that are unable to consume one or more otherwise fermentable substrate types could allow a more controlled fermentation process with more flexibility regarding fermentation times. In this study, Saccharomyces cerevisiae strains with different capacities to consume substrates present in wheat were selected to investigate the impact of substrate limitation on dough fermentation and final bread volume. Results show that fermentation of dough with maltose-negative strains relies on the presence of fructan and sucrose as fermentable substrates and can be used for regular bread making. Levels of fructan and sucrose, endogenously present or added, hence determine the extent of fermentation and timing at the proofing stage. Whole meal is inherently more suitable for substrate-limited fermentation than white flour due to the presence of higher native levels of these substrates. Bread making protocols with long fermentation times are accommodated by addition of substrates such as sucrose.

  18. Computational Models for Prediction of Yeast Strain Potential for Winemaking from Phenotypic Profiles

    PubMed Central

    Umek, Lan; Fonseca, Elza; Drumonde-Neves, João; Dequin, Sylvie; Zupan, Blaz; Schuller, Dorit

    2013-01-01

    Saccharomyces cerevisiae strains from diverse natural habitats harbour a vast amount of phenotypic diversity, driven by interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests that are most useful to predict a strain's potential for winemaking. We have constituted a S. cerevisiae collection comprising 172 strains of worldwide geographical origins or technological applications. Their phenotype was screened by considering 30 physiological traits that are important from an oenological point of view. Growth in the presence of potassium bisulphite, growth at 40°C, and resistance to ethanol were mostly contributing to strain variability, as shown by the principal component analysis. In the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and vineyards were scattered throughout all clusters, whereas commercial winemaking strains tended to co-cluster. Mann-Whitney test revealed significant associations between phenotypic results and strain's technological application or origin. Naïve Bayesian classifier identified 3 of the 30 phenotypic tests of growth in iprodion (0.05 mg/mL), cycloheximide (0.1 µg/mL) and potassium bisulphite (150 mg/mL) that provided most information for the assignment of a strain to the group of commercial strains. The probability of a strain to be assigned to this group was 27% using the entire phenotypic profile and increased to 95%, when only results from the three tests were considered. Results show the usefulness of computational approaches to simplify strain selection

  19. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    PubMed

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  20. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    PubMed Central

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  1. Identification of yeasts and evaluation of their distribution in Taiwanese Kefir and Viili starters.

    PubMed

    Wang, S Y; Chen, H C; Liu, J R; Lin, Y C; Chen, M J

    2008-10-01

    The objective of the present study was to investigate yeast communities in kefir grains and viili starters in Taiwan through conventional microbiological cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The DNA sequencing was used as a validity technique to ensure that all isolates within each group belonged to just one species, and to confirm the identified results of PCR-DGGE. Results indicated that a combination of conventional microbiological cultivation with PCR-DGGE and sequencing could successfully identify 4 yeast species from both types of cultures in Taiwan. Kluyveromyces marxianus, Saccharomyces turicensis, and Pichia fermentans were found in Taiwanese kefir grains with a distribution of 76, 22, and 2%, respectively, whereas Klu. marxianus, Saccharomyces unisporus and P. fermentans were identified in viili starters corresponding to 58, 11, and 31% of the total cell counts, respectively. Furthermore, the culture-independent method was applied to identify the yeast species using DGGE. Only 2 yeast species, Klu. marxianus and S. turicensis, were found in kefir grains and 2, Klu. marxianus and P. fermentans, in viili starters. These results suggest that in samples containing multiple species, PCR-DGGE may fail to detect some species. Sequences of yeast isolates reported in this study have been deposited in the GenBank database under accession nos. DQ139802, AF398485, DQ377652, and AY007920.

  2. Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.

    PubMed

    Vidgren, Virve; Ruohonen, Laura; Londesborough, John

    2005-12-01

    Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad substrate specificity transporters, such as Agt1p. Maltose transport by three lager strains was weakly inhibited by other alpha-glucosides, suggesting the use of narrow substrate specificity transporters. Hybridization studies showed that all five strains contained complete MAL1, MAL2, MAL3, and MAL4 loci, except for one ale strain, which lacked a MAL2 locus. All five strains also contained both AGT1 (coding a broad specificity alpha-glucoside transporter) and MAL11 alleles. MPH genes (maltose permease homologues) were present in the lager but not in the ale strains. During growth on maltose, the lager strains expressed AGT1 at low levels and MALx1 genes at high levels, whereas the ale strains expressed AGT1 at high levels and MALx1 genes at low levels. MPHx expression was negligible in all strains. The AGT1 sequences from the ale strains encoded full-length (616 amino acid) polypeptides, but those from both sequenced lager strains encoded truncated (394 amino acid) polypeptides that are unlikely to be functional transporters. Thus, despite the apparently similar genotypes of these ale and lager strains revealed by hybridization, maltose is predominantly carried by AGT1-encoded transporters in the ale strains and by MALx1-encoded transporters in the lager strains.

  3. Genetic analysis of Saccharomyces cerevisiae strains isolated from palm wine in eastern Nigeria. Comparison with other African strains.

    PubMed

    Ezeronye, O U; Legras, J-L

    2009-05-01

    To study the yeast diversity of Nigerian palm wines by comparison with other African strains. Twenty-three Saccharomyces cerevisiae strains were obtained from palm wine samples collected at four locations in eastern Nigeria, and characterized using different molecular techniques: internal transcribed spacer restriction fragment length polymorphism and sequence analysis, pulsed field gel electrophoresis, inter delta typing and microsatellite multilocus analysis. These techniques revealed that palm wine yeasts represent a group of closely related strains that includes other West African isolates (CBS400, NCYC110, DVPG6044). Population analysis revealed an excess of homozygote strains and an allelic richness similar to wine suggestive of local domestication. Several other African yeast strains were not connected to this group. Ghana sorghum beer strains and other African strains (DBVPG1853 and MUCL28071) displayed strikingly high relatedness with European bread, beer or wine strains, and the genome of strain MUCL30909 contained African and wine-type alleles, indicating its hybrid origin. Nigerian palm wine yeast represents a local specific yeast flora, whereas a European origin or hybrid was suspected for several other Africa isolates. This study presents the first genetic characterization of an autochthonous African palm wine yeast population and confirms the idea that human intervention has favoured yeast migration.

  4. Novel brewing yeast hybrids: creation and application.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  5. Inhibition of Listeria monocytogenes by Food-Borne Yeasts†

    PubMed Central

    Goerges, Stefanie; Aigner, Ulrike; Silakowski, Barbara; Scherer, Siegfried

    2006-01-01

    Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar. PMID:16391059

  6. Genome Sequence of the Lager-Brewing Yeast Saccharomyces sp. Strain M14, Used in the High-Gravity Brewing Industry in China.

    PubMed

    Liu, Chunfeng; Li, Qi; Niu, Chengtuo; Zheng, Feiyun; Li, Yongxian; Zhao, Yun; Yin, Xiangsheng

    2017-10-26

    Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. Copyright © 2017 Liu et al.

  7. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    PubMed Central

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  8. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  9. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters.

    PubMed

    Vogelmann, Stephanie A; Seitter, Michael; Singer, Ulrike; Brandt, Markus J; Hertel, Christian

    2009-04-15

    The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.

  10. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation.

    PubMed

    Szopinska, Aleksandra; Christ, Eva; Planchon, Sebastien; König, Helmut; Evers, Daniele; Renaut, Jenny

    2016-02-01

    During fermentation oenological yeast cells are subjected to a number of different stress conditions and must respond rapidly to the continuously changing environment of this harsh ecological niche. In this study we gained more insights into the cell adaptation mechanisms by linking proteome monitoring with knowledge on physiological behaviour of different strains during fermentation under model winemaking conditions. We used 2D-DIGE technology to monitor the proteome evolution of two newly discovered environmental yeast strains Saccharomyces bayanus and triple hybrid Saccharomyces cerevisiae × Saccharomyces kudriavzevii × S. bayanus and compared them to data obtained for the commercially available S. cerevisiae strain. All strains examined showed (i) different fermentative behaviour, (ii) stress resistance as well as (iii) susceptibility to stuck fermentation which was reflected in significant differences in protein expression levels. During our research we identified differentially expressed proteins in 155 gel spots which correspond to 70 different protein functions. Differences of expression between strains were observed mainly among proteins involved in stress response, proteins degradation pathways, cell redox homeostasis and amino acids biosynthesis. Interestingly, the newly discovered triple hybrid S. cerevisiae × S. kudriavzevii × S. bayanus strain which has the ability to naturally restart stuck fermentation showed a very strong induction of expression of two proteolytic enzymes: Pep4 and Prc1 that appear as numerous isoforms on the gel image and which may be the key to its unique properties. This study is an important step towards the better understanding of wine fermentations at a molecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  12. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae.

    PubMed

    Englezos, Vasileios; Cravero, Francesco; Torchio, Fabrizio; Rantsiou, Kalliopi; Ortiz-Julien, Anne; Lambri, Milena; Gerbi, Vincenzo; Rolle, Luca; Cocolin, Luca

    2018-02-01

    Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast that has been proposed as a co-inoculant of selected Saccharomyces cerevisiae strains in mixed culture fermentations to enhance the analytical composition of the wines. In order to acquire further knowledge on the metabolic interactions between these two species, in this study we investigated the impact of oxygen addition and combination of Starm. bacillaris with S. cerevisiae strains on the microbial growth and metabolite production. Fermentations were carried out under two different conditions of oxygen availability. Oxygen availability and strain combination clearly influenced the population dynamics throughout the fermentation. Oxygen concentration increased the survival time of Starm. bacillaris and decreased the growth rate of S. cerevisiae strains in mixed culture fermentations, whereas it did not affect the growth of the latter in pure culture fermentations. This study reveals new knowledge about the influence of oxygen availability on the successional evolution of yeast species during wine fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [The Engineering of a Yarrowia lipolytica Yeast Strain Capable of Homologous Recombination of the Mitochondrial Genome].

    PubMed

    Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I

    2015-01-01

    None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).

  14. What do we know about the yeast strains from the Brazilian fuel ethanol industry?

    PubMed

    Della-Bianca, Bianca Eli; Basso, Thiago Olitta; Stambuk, Boris Ugarte; Basso, Luiz Carlos; Gombert, Andreas Karoly

    2013-02-01

    The production of fuel ethanol from sugarcane-based raw materials in Brazil is a successful example of a large-scale bioprocess that delivers an advanced biofuel at competitive prices and low environmental impact. Two to three fed-batch fermentations per day, with acid treatment of the yeast cream between consecutive cycles, during 6-8 months of uninterrupted production in a nonaseptic environment are some of the features that make the Brazilian process quite peculiar. Along the past decades, some wild Saccharomyces cerevisiae strains were isolated, identified, characterized, and eventually, reintroduced into the process, enabling us to build up knowledge on these organisms. This information, combined with physiological studies in the laboratory and, more recently, genome sequencing data, has allowed us to start clarifying why and how these strains behave differently from the better known laboratory, wine, beer, and baker's strains. All these issues are covered in this minireview, which also presents a brief discussion on future directions in the field and on the perspectives of introducing genetically modified strains in this industrial process.

  15. Isolation and identification of yeast flora from genital tract in healthy female camels (Camelus dromedarius).

    PubMed

    Shokri, Hojjatollah; Khosravi, Alireza; Sharifzadeh, Aghil; Tootian, Zahra

    2010-07-29

    Yeasts are commensal organisms found in the skin, genital and gastrointestinal tracts, and other mucosal sites in mammalians. The purposes of this study were to identify yeast flora and to determine the number of colony forming units (CFUs) in genital tract of healthy female dromedary camels, establishing their connection in both mated and unmated conditions. The samples were taken from different parts of genital tract including vestibule, vagina, cervix, uterine body, and uterine horns of 50 camels using sterilized cotton swabs. They were cultured onto Sabouraud glucose agar containing chloramphenicol and incubated at 30 degrees C for 7-10 days. A total of 454 yeast colonies were obtained from genital tract. Yeast isolates belonged to 8 genera: Candida (73.1%), Trichosporon (10.1%), Geotrichum (7.5%), Kluyveromyces (3.5%), Rhodotorula (2.4%), Aureobasidium (1.4%), Cryptococcus (1.1%) and Prototheca (0.8%). Among different Candida species, C. zeylanoides was the most common isolated species, representing significant difference with other Candida species (P<0.05). The mean number of yeasts found in the vestibule (46%) was significantly higher than the results obtained from other parts (P<0.05). In addition, the mean value of CFUs from unmated females (71.1%) was significantly higher than mated females (P<0.05). The results showed that C. zeylanoides was a common component of healthy camel females' genital mycoflora and the number of yeasts varied between mated and unmated females. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Melatonin and derived l-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains.

    PubMed

    Fernández-Cruz, E; Álvarez-Fernández, M A; Valero, E; Troncoso, A M; García-Parrilla, M C

    2017-02-15

    Melatonin is a neurohormone involved in the regulation of circadian rhythms in humans. Evidence has recently been found of its occurrence in wines and its role in the winemaking process. The yeast Saccharomyces cerevisiae is consequently thought to be important in Melatonin synthesis, but limited data and reference texts are available on this synthetic pathway. This paper aims to elucidate whether the synthetic pathway of Melatonin in Saccharomyces and non-Saccharomyces strains involves these intermediates. To this end, seven commercial strains comprising Saccharomyces cerevisiae (Red Fruit, ES488, Lalvin QA23, Uvaferm BC, and Lalvin ICV GRE) and non-Saccharomyces (Torulaspora delbrueckii and Metschnikowia pulcherrima) were monitored, under controlled fermentation conditions, in synthetic must, for seven days. Samples were analysed using a UHPLC-HRMS system (Qexactive). Five out of the seven strains formed Melatonin during the fermentation process: three S. cerevisiae strains and the two non-Saccharomyces. Additionally, other compounds derived from l-tryptophan occurred during fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    PubMed

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain

  19. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication.

    PubMed

    Hagman, Arne; Säll, Torbjörn; Compagno, Concetta; Piskur, Jure

    2013-01-01

    When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker's yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.

  20. Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70.

    PubMed

    Cousseau, F E M; Alves, S L; Trichez, D; Stambuk, B U

    2013-01-01

    The genome from the Saccharomyces pastorianus industrial lager brewing strain Weihenstephan 34/70, a natural Saccharomyces cerevisiae/Saccharomyces eubayanus hybrid, indicated the presence of two different maltotriose transporter genes: a new gene in the S. eubayanus subgenome with 81% of homology to the AGT1 permease from S. cerevisiae, and an amplification of the S. eubayanus MTY1 maltotriose permease previously identified in S. pastorianus yeasts. To characterize these S. eubayanus transporter genes, we used a S. cerevisiae strain deleted in the AGT1 permease and introduced the desired permease gene(s) into this locus through homologous recombination. Our results indicate that both the MTY1 and AGT1 genes from the S. eubayanus subgenome encode functional maltotriose transporters that allow fermentation of this sugar by yeast cells, despite their apparent differences in the kinetics of maltotriose-H(+) symport activity. The presence of two maltotriose transporters in the S. eubayanus subgenome not only highlights the importance of sugar transport for efficient maltotriose utilization by industrial yeasts, but these new genes can be used in breeding and/or selection programs aimed at increasing yeast fitness for the efficient fermentation of brewer's wort. © 2012 The Society for Applied Microbiology.

  1. Novel features of ARS selection in budding yeast Lachancea kluyveri

    PubMed Central

    2011-01-01

    Background The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. Results In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. Conclusions Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs. PMID:22204614

  2. Novel features of ARS selection in budding yeast Lachancea kluyveri.

    PubMed

    Liachko, Ivan; Tanaka, Emi; Cox, Katherine; Chung, Shau Chee Claire; Yang, Lu; Seher, Arael; Hallas, Lindsay; Cha, Eugene; Kang, Gina; Pace, Heather; Barrow, Jasmine; Inada, Maki; Tye, Bik-Kwoon; Keich, Uri

    2011-12-28

    The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs.

  3. Yeast communities associated with artisanal mezcal fermentations from Agave salmiana.

    PubMed

    Verdugo Valdez, A; Segura Garcia, L; Kirchmayr, M; Ramírez Rodríguez, P; González Esquinca, A; Coria, R; Gschaedler Mathis, A

    2011-11-01

    The aims of this work were to characterize the fermentation process of mezcal from San Luis Potosi, México and identify the yeasts present in the fermentation using molecular culture-dependent methods (RFLP of the 5.8S-ITS and sequencing of the D1/D2 domain) and also by using a culture-independent method (DGGE). The alcoholic fermentations of two separate musts obtained from Agave salmiana were analyzed. Sugar, ethanol and major volatile compounds concentrations were higher in the first fermentation, which shows the importance of having a quality standard for raw materials, particularly in the concentration of fructans, in order to produce fermented Agave salmiana must with similar characteristics. One hundred ninety-two (192) different yeast colonies were identified, from those present on WL agar plates, by RFLP analysis of the ITS1-5.8S- ITS2 from the rRNA gene, with restriction endonucleases, HhaI, HaeIII and HinfI. The identified yeasts were: Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kluyveri, Zygosaccharomyces bailii, Clavispora lusitaniae, Torulaspora delbrueckii, Candida ethanolica and Saccharomyces exiguus. These identifications were confirmed by sequencing the D1-D2 region of the 26S rRNA gene. With the PCR-DGGE method, bands corresponding to S. cerevisiae, K. marxianus and T. delbrueckii were clearly detected, confirming the results obtained with classic techniques.

  4. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast, Saccharomyces...

  5. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  6. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  7. KNQ1, a Kluyveromyces lactis gene encoding a transmembrane protein, may be involved in iron homeostasis.

    PubMed

    Marchi, Emmanuela; Lodi, Tiziana; Donnini, Claudia

    2007-08-01

    The original purpose of the experiments described in this article was to identify, in the biotechnologically important yeast Kluyveromyces lactis, gene(s) that are potentially involved in oxidative protein folding within the endoplasmic reticulum (ER), which often represents a bottleneck for heterologous protein production. Because treatment with the membrane-permeable reducing agent dithiothreitol inhibits disulfide bond formation and mimics the reducing effect that the normal transit of folding proteins has in the ER environment, the strategy was to search for genes that conferred higher levels of resistance to dithiothreitol when present in multiple copies. We identified a gene (KNQ1) encoding a drug efflux permease for several toxic compounds that in multiple copies conferred increased dithiothreitol resistance. However, the KNQ1 product is not involved in the excretion of dithiothreitol or in recombinant protein secretion. We generated a knq1 null mutant, and showed that both overexpression and deletion of the KNQ1 gene resulted in increased resistance to dithiothreitol. KNQ1 amplification and deletion resulted in enhanced transcription of iron transport genes, suggesting, for the membrane-associated protein Knq1p, a new, unexpected role in iron homeostasis on which dithiothreitol tolerance may depend.

  8. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    PubMed

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fluorescence and fluorescence-lifetime imaging microscopy (FLIM) to characterize yeast strains by autofluorescence

    NASA Astrophysics Data System (ADS)

    Bhatta, H.; Goldys, E. M.; Ma, J.

    2006-02-01

    We characterised populations of wild type baking and brewing yeast cells using intrinsic fluorescence and fluorescence lifetime microscopy, in order to obtain quantitative identifiers of different strains. The cell autofluorescence was excited at 405 nm and observed within 440-540 nm range where strong cell to cell variability was observed. The images were analyzed using customised public domain software, which provided information on cell size, intensity and texture-related features. In light of significant diversity of the data, statistical methods were utilized to assess the validity of the proposed quantitative identifiers for strain differentiation. The Kolmogorov-Smirnov test was applied to confirm that empirical distribution functions for size, intensity and entropy for different strains were statistically different. These characteristics were followed with culture age of 24, 48 and 72 h, (the latter corresponding to a stationary growth phase) and size, and to some extent entropy, were found to be independent of age. The fluorescence intensity presented a distinctive evolution with age, different for each of the examined strains. The lifetime analysis revealed a short decay time component of 1.4 ns and a second, longer one with the average value of 3.5 ns and a broad distribution. High variability of lifetime values within cells was observed however a lifetime texture feature in the studied strains was statistically different.

  10. Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6.

    PubMed

    Sood, Nitu; Patle, Sonali; Lal, Banwari

    2010-03-01

    Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1-3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions. The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography-mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises. The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg(-1) soil as compared to a TPH reduction from 183.85 to 151.10 g kg(-1) soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m(2) area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg(-1) soil in 175 days. Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade

  11. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    PubMed

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method.

    PubMed

    Martínez-Rodríguez, A J; Carrascosa, A V; Martín-Alvarez, P J; Moreno-Arribas, V; Polo, M C

    2002-12-01

    The influence of five yeast strains on the nitrogen fractions, amino acids, peptides and proteins, during 12 months of aging of sparkling wines produced by the traditional or Champenoise method, was studied. High-performance liquid chromatography (HPLC) techniques were used for analysis of the amino acid and peptide fractions. Proteins plus polypeptides were determined by the colorimetric Bradford method. Four main stages were detected in the aging of wines with yeast. In the first stage, a second fermentation took place; amino acids and proteins plus polypeptides diminished, and peptides were liberated. In the second stage, there was a release of amino acids and proteins, and peptides were degraded. In the third stage, the release of proteins and peptides predominated. In the fourth stage, the amino acid concentration diminished. The yeast strain used influenced the content of free amino acids and peptides and the aging time in all the nitrogen fractions.

  13. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts

    PubMed Central

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase. PMID:24949272

  14. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    PubMed

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  15. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii.

    PubMed

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M K; Brewer, Bonita J

    2011-02-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. 2010 John Wiley & Sons, Ltd.

  16. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii

    PubMed Central

    Di Rienzi, Sara C.; Lindstrom, Kimberly C.; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M. K.; Brewer, Bonita J.

    2011-01-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. PMID:21246627

  17. Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process.

    PubMed

    Paulino de Souza, Jonas; Dias do Prado, Cleiton; Eleutherio, Elis C A; Bonatto, Diego; Malavazi, Iran; Ferreira da Cunha, Anderson

    2018-06-01

    In Brazil, bioethanol is produced by sucrose fermentation from sugarcane by Saccharomyces cerevisiae in a fed-batch process that uses high density of yeast cells (15-25 % of wet weight/v) and high sugar concentration (18-22 % of total sugars). Several research efforts have been employed to improve the efficiency of this process through the isolation of yeasts better adapted to the Brazilian fermentation conditions. Two important wild strains named CAT-1 and PE-2 were isolated during the fermentation process and were responsible for almost 60 % of the total ethanol production in Brazil. However, in the last decade the fermentative substrate composition was much modified, since new sugar cane crops were developed, the use of molasses instead of sugar cane juice increase and with the prohibition of burning of sugarcane prior harvest. As consequence, these previously isolated strains are being replaced by new wild yeasts in most of ethanol plants. In this new scenario the isolation of novel better adapted yeasts with improved fermentative characteristics is still a big challenge. Here, we discuss the main aspects of Brazilian ethanol production and the efforts for the selection, characterization and genetic modifications of new strains with important phenotypic traits such as thermotolerance. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting.

    PubMed

    da Silva-Filho, Eurípedes Alves; Brito dos Santos, Scheila Karina; Resende, Alecsandra do Monte; de Morais, José Otamar Falcão; de Morais, Marcos Antonio; Ardaillon Simões, Diogo

    2005-07-01

    Yeast population used in industrial production of fuel-ethanol may vary according to the plant process condition and to the environmental stresses imposed to yeast cells. Therefore, yeast strains isolated from a particular industrial process may be adapted to such conditions and should be used as starter strain instead of less adapted commercial strains. This work reports the use of PCR-fingerprinting method based on microsatellite primer (GTG)5 to characterize the yeast population dynamics along the fermentation period in six distilleries. The results show that indigenous fermenting strains present in the crude substrate can be more adapted to the industrial process than commercial strains. We also identified new strains that dominate the yeast population and were more present either in molasses or sugar cane fermenting distilleries. Those strains were proposed to be used as starters in those industrial processes. This is the first report on the use of molecular markers to discriminate Saccharomyces cerevisiae strains from fuel-ethanol producing process.

  19. Biosorption of nickel by yeasts in an osmotically unsuitable environment.

    PubMed

    Breierová, Emilia; Certík, Milan; Kovárová, Annamaria; Gregor, Tomas

    2008-01-01

    The tolerance, sorption of nickel(II) ions, and changes in the production and composition of exopolymers of eight yeast strains grown under nickel presence with/without NaCl were studied. Strains of Pichia anomala and Candida maltosa known as the most resistant yeasts against nickel tolerated up to 3 mM Ni2+. NaCl addition decreased both the resistance of the yeast strains toward nickel ions and the sorption of metal ions into cells. All yeasts absorbed nickel predominantly into exopolymers (glycoproteins) and on the surface of cells. However, while the amount of polysaccharide moieties of exoglycoproteins of most of the resistant yeasts was induced by stress conditions, the ratio polysaccharide/protein in the exopolymers remained unchanged in the sensitive species Cystofilobasidium. The exopolymer composition might play a key role in yeast adaptation to stress conditions caused by heavy metal ions.

  20. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    PubMed

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value<1.7. Two strains could not be identified at first as they represented a mix of two different species. These mixes were Rhodotorula babjevae with Meyerozyma caribbica and Clavispora lusitaniae with Debaryomyces hansenii. After separation, all four species could be correctly identified with scores>1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. BAPJ69-4A: a yeast two-hybrid strain for both positive and negative genetic selection.

    PubMed

    Shaffer, Hally Anne; Rood, Michael Kenneth; Kashlan, Badar; Chang, Eileen I-ling; Doyle, Donald Francis; Azizi, Bahareh

    2012-10-01

    Genetic selection systems, such as the yeast two-hybrid system, are efficient methods to detect protein-protein and protein-ligand interactions. These systems have been further developed to assess negative interactions, such as inhibition, using the URA3 genetic selection marker. Previously, chemical complementation was used to assess positive selection in Saccharomyces cerevisiae. In this work, a new S. cerevisiae strain, called BAPJ69-4A, containing three selective markers ADE2, HIS3, and URA3 as well as the lacZ gene controlled by Gal4 response elements, was developed and characterized using the retinoid X receptor (RXR) and its ligand 9-cis retinoic acid (9cRA). Further characterization was performed using RXR variants and the synthetic ligand LG335. To assess the functionality of the strain, RXR was compared to the parent strain PJ69-4A in adenine, histidine, and uracil selective media. In positive selection, associating partners that lead to cell growth were observed in all media in the presence of ligand, whereas partners that did not associate due to the absence of ligand displayed no growth. Conversely, in negative selection, partners that did not associate in 5-FOA medium did not display cell death due to the lack of expression of the URA3 gene. The creation of the BAPJ69-4A yeast strain provides a high-throughput selection system, called negative chemical complementation, which can be used for both positive and negative selection, providing a fast, powerful tool for discovering novel ligand receptor pairs for applications in drug discovery and protein engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Yeast “Make-Accumulate-Consume” Life Strategy Evolved as a Multi-Step Process That Predates the Whole Genome Duplication

    PubMed Central

    Hagman, Arne; Säll, Torbjörn; Compagno, Concetta; Piskur, Jure

    2013-01-01

    When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker’s yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined. PMID:23869229

  3. Technological properties of bakers' yeasts in durum wheat semolina dough.

    PubMed

    Giannone, Virgilio; Longo, Chiara; Damigella, Arcangelo; Raspagliesi, Domenico; Spina, Alfio; Palumbo, Massimo

    2010-04-01

    Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.

  4. Occurrence of mycotoxins and yeasts and moulds identification in corn silages in tropical climate.

    PubMed

    Carvalho, B F; Ávila, C L S; Krempser, P M; Batista, L R; Pereira, M N; Schwan, R F

    2016-05-01

    This study was aimed to identify yeasts and moulds as well as to detect mycotoxin in corn silages in southern Minas Gerais, Brazil. Corn silages from 36 farms were sampled to analyse dry matter, crude protein, ether extract, ash, neutral detergent fibre, nonfibre carbohydrates and mycotoxins contents, yeasts and moulds population, pH and temperature values. The mycotoxins found in high frequency were aflatoxin in 77·7% of analysed samples, ochratoxin (33·3%) and zearalenone (22·2%). There was no significant correlation between the mycotoxin concentration and the presence of moulds. The pH was negatively correlated with ochratoxin concentration. Aspergillus fumigatus was identified in all silages that presented growth of moulds. Ten different yeast species were identified using the culture-dependent method: Candida diversa, Candida ethanolica, Candida rugosa, Issatchenkia orientalis, Kluyveromyces marxianus, Pichia manshurica, Pichia membranifaciens, Saccharomyces cerevisiae, Trichosporon asahii and Trichosporon japonicum. Another six different yeast species were identified using the culture-independent method. A high mycotoxin contamination rate (91·6% of the analysed silages) was observed. The results indicated that conventional culturing and PCR-DGGE should be combined to optimally describe the microbiota associated with corn silage. This study provides information about the corn silage fermentation dynamics and our findings are relevant to optimization of this silage fermentation. © 2016 The Society for Applied Microbiology.

  5. Effects of distillation system and yeast strain on the aroma profile of Albariño (Vitis vinifera L.) grape pomace spirits.

    PubMed

    Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I

    2014-10-29

    Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.

  6. Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry.

    PubMed

    Aslani, Narges; Janbabaei, Ghasem; Abastabar, Mahdi; Meis, Jacques F; Babaeian, Mahasti; Khodavaisy, Sadegh; Boekhout, Teun; Badali, Hamid

    2018-01-08

    Opportunistic infections due to Candida species occur frequently in cancer patients because of their inherent immunosuppression. The aim of the present study was to investigate the epidemiology of yeast species from the oral cavity of patients during treatment for oncological and haematological malignancies. MALDI-TOF was performed to identify yeasts isolated from the oral cavity of 350 cancer patients. Moreover, antifungal susceptibility testing was performed in according to CLSI guidelines (M27-A3). Among 162 yeasts and yeast-like fungi isolated from the oral cavity of cancer patients, Candida albicans was the most common species (50.6%), followed by Candida glabrata (24.7%), Pichia kudriavzevii (Candida krusei (9.9%)), Candida tropicalis (4.3%), Candida dubliniensis (3.7%), Kluyveromyces marxianus (Candida kefyr (3.7%)) and Candida parapsilosis (1%). In addition, uncommon yeast species i.e., Saprochaete capitata, Saccharomyces cerevisiae, Clavispora lusitaniae (C. lusitaniae) and Pichia kluyveri (C. eremophila) were recovered from oral lesions. Oral colonization by C. albicans, non-albicans Candida species and uncommon yeasts were as follow; 55%, 44% and 1%, whereas oral infection due to C. albicans was 33.3%, non-albicans Candida species 60.6%, and uncommon yeasts 6.1%. Poor oral hygiene and xerostomia were identified as independent risk factors associated with oral yeast colonization. The overall resistance to fluconazole was 11.7% (19/162). Low MIC values were observed for anidulafungin for all Candida and uncommon yeast species. This current study provides insight into the prevalence and susceptibility profiles of Candida species, including emerging Candida species and uncommon yeasts, isolated from the oral cavity of Iranian cancer patients. The incidence of oral candidiasis was higher amongst patients with hematological malignancies. The majority of oral infections were caused by non-albicans Candida species which were often more resistant to anti

  7. QTL mapping of sake brewing characteristics of yeast.

    PubMed

    Katou, Taku; Namise, Masahiro; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2009-04-01

    A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.

  8. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal

    PubMed Central

    Timilsina, Parash Mani; Yadav, Archana; Joshi, Yogesh; Bhujel, Sahansila; Adhikari, Rojina; Neupane, Katyayanee

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker's yeast and compare them with the commercial baker's yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree “Dar” were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker's yeast. PMID:29387490

  9. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal.

    PubMed

    Karki, Tika B; Timilsina, Parash Mani; Yadav, Archana; Pandey, Gyanu Raj; Joshi, Yogesh; Bhujel, Sahansila; Adhikari, Rojina; Neupane, Katyayanee

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker's yeast and compare them with the commercial baker's yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree "Dar" were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker's yeast.

  10. Presence and distribution of yeasts in the reproductive tract in healthy female horses.

    PubMed

    Azarvandi, A; Khosravi, A R; Shokri, H; Talebkhan Garoussi, M; Gharahgouzlou, F; Vahedi, G; Sharifzadeh, A

    2017-09-01

    Yeasts are commensal organisms found in the reproductive and gastrointestinal tracts, and on the skin and other mucosa in mammals. The purpose of this study was to isolate and identify yeast flora in the caudal reproductive tract in healthy female horses. Longitudinal study. A total of 453 samples were collected using double-guarded swabs from the vestibule, clitoral fossa and vagina in 151 horses. All samples were cultured on Sabouraud 4% dextrose agar and incubated at 35°C for 7-10 days. Isolates were identified according to their morphological characteristics and biochemical profiles. Yeast colonies were isolated from 60 (39.7%) of the 151 horses. The isolated yeasts belonged to nine genera, and included Candida spp. (53.2%), Cryptococcus spp. (12.2%), Saccharomyces spp. (10.5%), Geotrichum spp. (8.0%), Rhodotorula spp. (7.1%), Malassezia spp. (3.7%), Trichosporon spp. (2.6%), Kluyveromyces spp. (2.6%) and Sporothrix spp. (0.2%). Candida krusei (43.1%) was the most frequent Candida species isolated. There was a significant difference in prevalence between C. krusei and other Candida species (P<0.05). The vestibule contained more yeast isolates (48.0%) than the vagina (18.3%). The isolation of yeast colonies from multiparous females (76.8%) was significantly higher than from maiden mares (P<0.05). The study was limited by the difficulty of distinguishing between normal flora and potential pathogens. Candida spp., in particular C. krusei, represent important flora resident in the caudal reproductive tract in healthy female horses. This is particularly important in contexts that require the initiation of empirical treatment prior to the completion of culture results. © 2016 EVJ Ltd.

  11. A Novel Strategy to Construct Yeast Saccharomyces cerevisiae Strains for Very High Gravity Fermentation

    PubMed Central

    Liu, Tianzhe; Wang, Pinmei; Zhao, Wenpeng; Zhu, Muyuan; Jiang, Xinhang; Zhao, Yuhua; Wu, Xuechang

    2012-01-01

    Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes. PMID:22363590

  12. Creating libraries for commercial yeast strains through miniaturization of cloning and transformations using the BioRAPTR FRD Microfluidic workstation

    USDA-ARS?s Scientific Manuscript database

    The ability to miniaturize molecular reactions can lead to significant cost savings when creating libraries of thousands of clones. For this application Beckman Coulter partnered with the USDA to provide a low-volume automated solution for library cloning for use in the development of yeast strains...

  13. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must.

    PubMed

    Gutiérrez, Alicia; Chiva, Rosana; Sancho, Marta; Beltran, Gemma; Arroyo-López, Francisco Noé; Guillamon, José Manuel

    2012-08-01

    Nitrogen deficiencies in grape musts are one of the main causes of stuck or sluggish wine fermentations. Currently, the most common method for dealing with nitrogen-deficient fermentations is adding supplementary nitrogen (usually ammonium phosphate). However, it is important to know the specific nitrogen requirement of each strain, to avoid excessive addition that can lead to microbial instability and ethyl carbamate accumulation. In this study, we aimed to determine the effect of increasing nitrogen concentrations of three different nitrogen sources on growth and fermentation performance in four industrial wine yeast strains. This task was carried out using statistical modeling techniques. The strains PDM and RVA showed higher growth-rate and maximum population size and consumed nitrogen much more quickly than strains ARM and TTA. Likewise, the strains PDM and RVA were also the greatest nitrogen demanders. Thus, we can conclude that these differences in nitrogen demand positively correlated with higher growth rate and higher nitrogen uptake rate. The most direct effect of employing an adequate nitrogen concentration is the increase in biomass, which involves a higher fermentation rate. However, the impact of nitrogen on fermentation rate is not exclusively due to the increase in biomass because the strain TTA, which showed the worst growth behavior, had the best fermentation activity. Some strains may adapt a strategy whereby fewer cells with higher metabolic activity are produced. Regarding the nitrogen source used, all the strains showed the better and worse fermentation performance with arginine and ammonium, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed Central

    Hoang, Don; Kopp, Artyom

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker’s yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host–microbe interactions can have profound effects on host biology, the results from D. melanogaster–S. cerevisiae laboratory experiments may not be fully representative of host–microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  15. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  16. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    PubMed

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2011-02-01

    A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight® and compared with the activity of Fructozyme®. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme®, which is important for its potential application in the tequila industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Cutinase-Like Enzyme from the Yeast Cryptococcus sp. Strain S-2 Hydrolyzes Polylactic Acid and Other Biodegradable Plastics

    PubMed Central

    Masaki, Kazuo; Kamini, Numbi Ramudu; Ikeda, Hiroko; Iefuji, Haruyuki

    2005-01-01

    A purified lipase from the yeast Cryptococcus sp. strain S-2 exhibited remote homology to proteins belonging to the cutinase family rather than to lipases. This enzyme could effectively degrade the high-molecular-weight compound polylactic acid, as well as other biodegradable plastics, including polybutylene succinate, poly (ɛ-caprolactone), and poly(3-hydroxybutyrate). PMID:16269800

  19. Occurrence of killer yeasts in leaf-cutting ant nests.

    PubMed

    Carreiro, S C; Pagnocca, F C; Bacci, M; Bueno, O C; Hebling, M J A; Middelhoven, W J

    2002-01-01

    Killer activity was screened in 99 yeast strains isolated from the nests of the leaf-cutting ant Atta sexdens against 6 standard sensitive strains, as well as against each other. Among this yeast community killer activity was widespread since 77 strains (78%) were able to kill or inhibit the growth of at least one standard strain or nest strain. Toxin production was observed in representatives of all the studied genera including Aureobasidium, Rhodotorula, Tremella and Trichosporon, whose killer activity has not yet been described.

  20. SYSTEMATICS OF THE GENERA SACCHAROMYCES, SCHIZOSACCHAROMYCES, ENDOMYCOPSIS, KLUYVEROMYCES, SCHWANNIOMYCES AND BRETTANOMYCES: PROTON MAGNETIC RESONANCE SPECTRA OF THE MANNANS AND MANNOSE-CONTAINING POLYSACCHARIDES AS AN AID IN CLASSIFICATION,

    DTIC Science & Technology

    Endomycopsis, Kluyveromyces, Brettanomyces , Nematospora and Schwanniomyces and of some apparently related species of Torulopsis were determined, grouped...mannans produced by Saccharomyces, Kluyveromyces, Nematospora, Brettanomyces and Torulopsis were placed in 10 groups. The galactomannans formed by the

  1. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species

    PubMed Central

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-01-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698

  2. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.

    PubMed

    Alexandre, Hervé

    2013-10-15

    The aging of certain white wines is dependent on the presence of yeast strains that develop a biofilm on the wine surface after the alcoholic fermentation. These strains belong to the genus Saccharomyces and are called flor yeasts. These strains possess distinctive characteristics compared with Saccharomyces cerevisiae fermenting strain. The most important one is their capacity to form a biofilm on the air-liquid interface of the wine. The major gene involved in this phenotype is FLO11, however other genes are also involved in velum formation by these yeast and will be detailed. Other striking features presented in this review are their aneuploidy, and their mitochondrial DNA polymorphism which seems to reflect adaptive evolution of the yeast to a stressful environment where acetaldehyde and ethanol are present at elevated concentration. The biofilm assures access to oxygen and therefore permits continued growth on non-fermentable ethanol. This specific metabolism explains the peculiar organoleptic profile of these wines, especially their content in acetaldehyde and sotolon. This review deals with these different specificities of flor yeasts and will also underline the existing gaps regarding these astonishing yeasts. © 2013.

  3. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines.

    PubMed

    Rinaldi, Alessandra; Blaiotta, Giuseppe; Aponte, Maria; Moio, Luigi

    2016-02-01

    Nine Saccharomyces cerevisiae cultures, isolated from different sources, were tested for their ability to reduce tannins reactive towards salivary proteins, and potentially responsible for wine astringency. Strains were preliminary genetically characterized and evaluated for physiological features of technological interest. Laboratory-scale fermentations were performed in three synthetic media: CT) containing enological grape tannin; CTP) CT supplemented with organic nitrogen sources; CTPV) CTP supplemented with vitamins. Adsorption of total tannins, tannins reactive towards salivary proteins, yellow pigments, phenolics having antioxidant activity, and total phenols, characterizing the enological tannin, was determined by spectrophotometric methods after fermentation. The presence of vitamins and peptones in musts greatly influenced the adsorption of tannins reactive towards salivary proteins (4.24 g/L gallic acid equivalent), thus promoting the reduction of the potential astringency of model wines. With reference to the different phenolic classes, yeast strains showed different adsorption abilities. From a technological point of view, the yeast choice proved to be crucial in determining changes in gustative and mouthfeel profile of red wines and may assist winemakers to modulate colour and astringency of wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Yeast selection for fuel ethanol production in Brazil.

    PubMed

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  5. An original method for producing acetaldehyde and diacetyl by yeast fermentation.

    PubMed

    Rosca, Irina; Petrovici, Anca Roxana; Brebu, Mihai; Stoica, Irina; Minea, Bogdan; Marangoci, Narcisa

    In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color) and diacetyl with Brady's reagent (yellow precipitate). The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5°SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05mgL -1 acetaldehyde) while a total titratable acidity value of 7°SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58mgL -1 diacetyl). Importantly, the results presented here suggest that this can be potentially used in the baking industry. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Genetic and phenotypic characteristics of baker's yeast: relevance to baking.

    PubMed

    Randez-Gil, Francisca; Córcoles-Sáez, Isaac; Prieto, José A

    2013-01-01

    Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.

  7. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  8. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  9. Interactions of Saprophytic Yeasts with a nor Mutant of Aspergillus flavus

    PubMed Central

    Hua, Sui-Sheng T.; Baker, James L.; Flores-Espiritu, Melanie

    1999-01-01

    The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities. PMID:10347069

  10. Characterization of technological features of dry yeast (strain I-7-43) preparation, product of electrofusion between Saccharomyces cerevisiae and Saccharomyces diastaticus, in industrial application.

    PubMed

    Kotarska, Katarzyna; Kłosowski, Grzegorz; Czupryński, Bogusław

    2011-06-10

    The aim of the study was to verify the technological usability and stability of biotechnological features of active dry distillery yeast preparation (strain I-7-43 with amylolytic abilities) applied to full-scale production of agricultural distillery. Various reduced doses of glucoamylase preparation (San-Extra L) were used for starch saccharification, from 90% to 70% in relation to the full standard dose of preparation. The dry distillery yeast I-7-43 were assessed positively in respect to fermentation activity and yield of ethanol production. Application of the dry yeast I-7-43 preparation in distillery practice lowers the costs of spirit production by saving the glucoamylase preparation (up to 30%) used in the process of mash saccharification. Concentrations of the volatile fermentation by-products in raw spirits obtained from fermentations with application of I-7-43 strain were on the levels guaranteeing good organoleptic properties of distillates. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains.

    PubMed

    Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2014-01-01

    We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+). Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    PubMed

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  14. Bactericidal activity of culture fluid components of Lactobacillus fermentum strain 90 TS-4 (21) clone 3, and their capacity to modulate adhesion of Candida albicans yeast-like fungi to vaginal epithelial cells.

    PubMed

    Anokhina, I V; Kravtsov, E G; Protsenko, A V; Yashina, N V; Yermolaev, A V; Chesnokova, V L; Dalin, M V

    2007-03-01

    Antagonistic activities of L. fermentum strain 90 TS-4 (21), L. casei ATCC 27216, and L. acidophilus ATCC 4356 and bactericidal activity of lactobacillus culture fluid towards E. coli strain K12, S. aureus, and S. epidermidis test cultures were studied. The bactericidal effect of L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation (pH 6.0) on the test cultures was dose-dependent. Adhesion of C. albicans yeast-like fungi to vaginal epitheliocytes was more pronounced for strains isolated from women with asymptomatic infection than for strains isolated from women with manifest forms. L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation modulated adhesion of yeast-like fungi only if the fungal strain was initially highly adherent.

  15. Assessment of Multi Fragment Melting Analysis System (MFMAS) for the Identification of Food-Borne Yeasts.

    PubMed

    Kesmen, Zülal; Büyükkiraz, Mine E; Özbekar, Esra; Çelik, Mete; Özkök, F Özge; Kılıç, Özge; Çetin, Bülent; Yetim, Hasan

    2018-06-01

    Multi Fragment Melting Analysis System (MFMAS) is a novel approach that was developed for the species-level identification of microorganisms. It is a software-assisted system that performs concurrent melting analysis of 8 different DNA fragments to obtain a fingerprint of each strain analyzed. The identification is performed according to the comparison of these fingerprints with the fingerprints of known yeast species recorded in a database to obtain the best possible match. In this study, applicability of the yeast version of the MFMAS (MFMAS-yeast) was evaluated for the identification of food-associated yeast species. For this purpose, in this study, a total of 145 yeast strains originated from foods and beverages and 19 standard yeast strains were tested. The DNAs isolated from these yeast strains were analyzed by the MFMAS, and their species were successfully identified with a similarity rate of 95% or higher. It was shown that the strains belonged to 43 different yeast species that are widely found in the foods. A clear discrimination was also observed in the phylogenetically related species. In conclusion, it might be suggested that the MFMAS-yeast seems to be a highly promising approach for a rapid, accurate, and one-step identification of the yeasts isolated from food products and/or their processing environments.

  16. The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database

    PubMed Central

    Engel, Stacia R.; Cherry, J. Michael

    2013-01-01

    The first completed eukaryotic genome sequence was that of the yeast Saccharomyces cerevisiae, and the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the original model organism database. SGD remains the authoritative community resource for the S. cerevisiae reference genome sequence and its annotation, and continues to provide comprehensive biological information correlated with S. cerevisiae genes and their products. A diverse set of yeast strains have been sequenced to explore commercial and laboratory applications, and a brief history of those strains is provided. The publication of these new genomes has motivated the creation of new tools, and SGD will annotate and provide comparative analyses of these sequences, correlating changes with variations in strain phenotypes and protein function. We are entering a new era at SGD, as we incorporate these new sequences and make them accessible to the scientific community, all in an effort to continue in our mission of educating researchers and facilitating discovery. Database URL: http://www.yeastgenome.org/ PMID:23487186

  17. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    PubMed

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selection of oleaginous yeasts for fatty acid production.

    PubMed

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  19. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    NASA Astrophysics Data System (ADS)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  20. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    PubMed Central

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  1. Application of genetics to the development of starch-fermenting yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattoon, J.R.; Kim, K.; Laluce, C.

    1987-01-01

    Yeast strains capable of direct fermentation of manioc starch were developed by hybridizing strains of Saccharomyces diastaticus and Saccharomyces cerevisiae. Hybrids were evaluated for speed of alcohol production, and yields and speed of formation of glycoamylase. Up to 6% solutions of Lintner starch could be fermented directly with about 80% conversion to alcohol. Pretreatment of crude 40% manioc starch suspensions with alpha-amylase, followed by fermentations with a starch-fermenting yeast strain, permitted accumulation of 12% ethanol within three days. Starch conversion was almost 100%. A fragment of DNA was cloned from S. diastaticus using the yeast-E. coli shuttle vector, YEp13, andmore » was used to transform a strain of S. cerevisiae to a starch-fermenting state. Supported by National Science Foundation grant INT 7927328 and National Institutes of Health grant GM 27860. Dr. Laluce was supported by a grant from Fundacao de Amparo a Pesquisa do Estado do Sao Paulo and by her university. (Refs. 5).« less

  2. Yeast Identification During Fermentation of Turkish Gemlik Olives.

    PubMed

    Mujdeci, Gamze; Arévalo-Villena, María; Ozbas, Z Yesim; Briones Pérez, Ana

    2018-05-01

    Naturally fermented black table olives of the Gemlik variety are one of the most consumed fermented products in Turkey. The objective of this work was to identify yeast strains isolated during their natural fermentation by using Restriction Fragments Lengths Polymorphism-Polimerase Chain Reaction (RFLP-PCR) and DNA sequencing methods. The study also focused on determining the effect of regional differences on yeast microflora of naturally fermented Gemlik olives. A total of 47 yeast strains belonging to 12 different species which had been previously isolated from the natural brine of Akhisar and Iznik-Gemlik cv. olives were characterized by molecular methods. Forty-two of the tested strains could be identified by RFLP-PCR to species level. These yeast species were determined as Candida mycetangi, Candida hellenica, Candida membranaefaciens, Candida famata, Candida pelliculosa, Saccharomyces cerevisiae, and Zygosaccharomyces mrakii. Five strains were identified by DNA sequencing. These strains belonged to three different species: Aureobasidium pullulans, Kloeckera apiculate, and Cryptococcus saitoi. The most frequent species were C. famata and C. pelliculosa in both regions. This work studies the yeasts from Turkish table olives which could prove to be of importance to the food industry in that area. On the other hand, it compares identification by molecular and classical biochemical methods and offers an idea about the differences between the ecosystems of Gemlik olives in the Akhisar (AO) and Iznik (IO) regions. The study could be useful in characterizing a very important product and, in this way, could help to promote its marketing. © 2018 Institute of Food Technologists®.

  3. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.

    PubMed

    Wu, Dianhui; Li, Xiaomin; Lu, Jian; Chen, Jian; Zhang, Liang; Xie, Guangfa

    2016-01-01

    Urea and ethanol are the main precursors of ethyl carbamate (EC) in Chinese rice wine. During fermentation, urea is generated from arginine by arginase in Saccharomyces cerevisiae, and subsequently cleaved by urea amidolyase or directly transported out of the cell into the fermentation liquor, where it reacts with ethanol to form EC. To reduce the amount of EC in Chinese rice wine, we metabolically engineered two yeast strains, N85(DUR1,2) and N85(DUR1,2)-c, from the wild-type Chinese rice wine yeast strain N85. Both new strains were capable of constitutively expressing DUR1,2 (encodes urea amidolyase) and thus enhancing urea degradation. The use of N85(DUR1,2) and N85(DUR1,2)-c reduced the concentration of EC in Chinese rice wine fermented on a small-scale by 49.1% and 55.3%, respectively, relative to fermentation with the parental strain. All of the engineered strains showed good genetic stability and minimized the production of urea during fermentation, with no exogenous genes introduced during genetic manipulation, and were therefore suitable for commercialization to increase the safety of Chinese rice wine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Screening of a thiamine-auxotrophic yeast for alpha-ketoglutaric acid overproduction.

    PubMed

    Zhou, Jingwen; Zhou, Haiyan; Du, Guocheng; Liu, Liming; Chen, Jian

    2010-09-01

    To obtain a thiamine-auxotrophic yeast strain that overproduces alpha-ketoglutaric acid (alpha-KG) from glycerol and to investigate nutrient effects on alpha-KG production. Yeast strain WSH-Z06, a thiamine auxotroph that gave high yields of alpha-KG from glycerol, was obtained by screening for ampicillin/kanamycin resistance and thiamine auxotrophy. The strain was identified as Yarrowia lipolytica based on physiological, chemical, and phylogenetic analysis. The ability of the strain to convert glycerol to alpha-KG was analysed by investigating the effects of nutritional factors, including thiamine, riboflavin, nitrogen sources, and calcium ion. Thiamine and calcium ion concentration had the greatest effect on alpha-KG accumulation. Under optimal conditions, a yield of 39.2 g l(-1)alpha-KG was obtained from 100 g l(-1) glycerol, with 16.84 g l(-1) pyruvate as a by-product. The current work provides a method for screening for an alpha-KG overproducer. Nutrients have a significant impact on alpha-KG production in the yeast strain presented here. The alpha-KG-overproducing yeast strain Y. lipolytica WSH-Z06 is a promising parent strain for further metabolic engineering to lower by-product accumulation and accelerate glycerol utilization.

  5. The role of lager beer yeast in oxidative stability of model beer.

    PubMed

    Berner, T S; Arneborg, N

    2012-03-01

    In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. Screening of 21 lager brewing yeast strains against diamide and paraquat showed that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced ageing experiments. Interestingly, the strain with the lowest oxidative stress resistance and lowest secretion of thioredoxin, as measured by Western blotting, resulted in the highest uptake of iron, as measured by inductively coupled plasma-mass spectrometry, and the slowest formation of radicals in the model beers. A more oxidative stable beer is not obtained by a more-oxidative-stress-tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less-oxidative-stress-tolerant strain, exhibiting a higher iron uptake. To obtain lager beers with enhanced oxidative stability, yeast strains should be screened for their low oxidative stress tolerance and/or high ability to take up iron rather than for their high oxidative stress tolerance and/or high ability to secrete thioredoxin. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    PubMed

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  7. Construction of Novel Saccharomyces cerevisiae Strains for Bioethanol Active Dry Yeast (ADY) Production

    PubMed Central

    Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes. PMID:24376860

  8. Wine yeasts for the future.

    PubMed

    Fleet, Graham H

    2008-11-01

    International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.

  9. Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts.

    PubMed

    Suh, Sung-Oui; Zhou, Jianlong

    2010-07-01

    Seven yeast strains were isolated from the body surface and galleries of Xyloterinus politus, the ambrosia beetle that attacks black oak trees. Based on rDNA sequence comparisons and other taxonomic characteristics, five of the strains were identified as members of the species Saccharomycopsis microspora, Wickerhamomyces hampshirensis and Candida mycetangii, which have been reported previously as being associated with insects. The remaining two yeast strains were proposed as representatives of two novel species, Candida xyloterini sp. nov. (type strain ATCC 62898(T)=CBS 11547(T)) and Candida palmyrensis sp. nov. (type strain ATCC 62899(T)=CBS 11546(T)). C. xyloterini sp. nov. is a close sister taxon to Ogataea dorogensis and assimilates methanol as a sole carbon source but lacks ascospores. On the other hand, C. palmyrensis sp. nov. is phylogenetically distinct from any other ambrosia yeast reported so far. The species was placed near Candida sophiae-reginae and Candida beechii based on DNA sequence analyses, but neither of these were close sister taxa to C. palmyrensis sp. nov.

  10. Synthetic biology stretching the realms of possibility in wine yeast research.

    PubMed

    Jagtap, Umesh B; Jadhav, Jyoti P; Bapat, Vishwas A; Pretorius, Isak S

    2017-07-03

    It took several millennia to fully understand the scientific intricacies of the process through which grape juice is turned into wine. This yeast-driven fermentation process is still being perfected and advanced today. Motivated by ever-changing consumer preferences and the belief that the 'best' wine is yet to be made, numerous approaches are being pursued to improve the process of yeast fermentation and the quality of wine. Central to recent enhancements in winemaking processes and wine quality is the development of Saccharomyces cerevisiae yeast strains with improved robustness, fermentation efficiencies and sensory properties. The emerging science of Synthetic Biology - including genome engineering and DNA editing technologies - is taking yeast strain development into a totally new realm of possibility. The first example of how future wine strain development might be impacted by these new 'history-making' Synthetic Biology technologies, is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast containing a synthetic DNA cassette. This article explores how this breakthrough and the imminent outcome of the international Yeast 2.0 (or Sc2.0) project, aimed at the synthesis of the entire genome of a laboratory strain of S. cerevisiae, might accelerate the design of improved wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Yeasts in sustainable bioethanol production: A review.

    PubMed

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  12. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  13. Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar

    PubMed Central

    Grangeteau, Cédric; Gerhards, Daniel; von Wallbrunn, Christian; Alexandre, Hervé; Rousseaux, Sandrine; Guilloux-Benatier, Michèle

    2016-01-01

    Different genera and/or species of yeasts present on grape berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina), Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at the strain level by FT-IR spectroscopy (207 different FTIR strain pattern). Only a small proportion of non-Saccharomyces yeasts present in musts came directly from grape berries for the three species studied. Some strains were found in the must in two consecutive years and some of them were also found in the cellar environment before the arrival of the harvest of second vintage. This study demonstrates for the first time the persistence of non-Saccharomyces yeast strains from year to year in the cellar. Sulfur dioxide can affect yeast populations in the must and therefore their persistence in the cellar environment. PMID:27014199

  14. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters.

    PubMed

    Dung, N T P; Rombouts, F M; Nout, M J R

    2006-06-01

    The role of starch-degrading mycelial fungi, and the alcohol production and ethanol tolerance of the yeasts isolated from selected Vietnamese traditional rice wine starters were examined, and optimum conditions for these essential steps in rice wine fermentation were determined. Of pure isolates from Vietnamese rice wine starters, mould strains identified as Amylomyces rouxii, Amylomyces aff. rouxii, Rhizopus oligosporus and Rhizopus oryzae, were superior in starch degradation, glucose production and amyloglucosidase activity during the saccharification of purple glutinous rice. A. rouxii was able to produce up to 25%w/w glucose with an amyloglucosidase activity up to 0.6 Ug(-1) of fermented moulded mass. Five yeast isolates identified as Saccharomyces cerevisiae were selected for their superior alcohol productivity. They were able to deplete a relatively high initial percentage of glucose (20% w/v), forming 8.8% w/v ethanol. The ethanol tolerance of S. cerevisiae in challenge tests was 9-10% w/v, and 13.4% w/v as measured in fed-batch fermentations. Optimum conditions for the saccharification were: incubation for 2 d at 34 degrees C, of steamed rice inoculated with 5 log cfu g(-1); for the alcoholic fermentation 4 d at 28.3 degrees C, of saccharified rice liquid inoculated with 5.5 log cfu mL(-1).

  15. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    PubMed

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications.

  16. Recombination Can Cause Telomere Elongations as Well as Truncations Deep within Telomeres in Wild-Type Kluyveromyces lactis Cells ▿

    PubMed Central

    Bechard, Laura H.; Jamieson, Nathan; McEachern, Michael J.

    2011-01-01

    In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis. We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae, however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52. Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis. PMID:21148753

  17. Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells.

    PubMed

    Goretti, Marta; Ponzoni, Chiara; Caselli, Elisa; Marchegiani, Elisabetta; Cramarossa, Maria Rita; Turchetti, Benedetta; Forti, Luca; Buzzini, Pietro

    2011-03-01

    The bioreduction of α,β-unsaturated ketones (ketoisophorone, 2-methyl- and 3-methyl-cyclopentenone) and aldehydes [(S)-(-)-perillaldehyde and α-methyl-cinnamaldehyde] by 23 "non-conventional" yeasts (NCYs) belonging to 21 species of the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma, and Wickerhamomyces was reported. The results highlight the potential of NCYs as whole-cell biocatalysts for selective biotransformation of electron-poor alkenes. A few NCYs exhibited extremely high (>90%) or even total ketoisophorone and 2-methyl-cyclopentenone bioconversion yields via asymmetric reduction of the conjugated CC bond catalyzed by enoate reductases. Catalytic efficiency declined after switching from ketones to aldehydes. High chemoselectivity due to low competing carbonyl reductases was also sometimes observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Thailandins A and B, New Polyene Macrolactone Compounds Isolated from Actinokineospora bangkokensis Strain 44EHW(T), Possessing Antifungal Activity against Anthracnose Fungi and Pathogenic Yeasts.

    PubMed

    Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai

    2016-06-29

    Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.

  19. Assessment of yeast Saccharomyces cerevisiae component binding to Mycobacterium avium subspecies paratuberculosis using bovine epithelial cells.

    PubMed

    Li, Ziwei; You, Qiumei; Ossa, Faisury; Mead, Philip; Quinton, Margaret; Karrow, Niel A

    2016-03-01

    Since yeast Saccharomyces cerevisiae and its components are being used for the prevention and treatment of enteric diseases in different species, they may also be useful for preventing Johne's disease, a chronic inflammatory bowel disease of ruminants caused by Mycobacterium avium spp. paratuberculosis (MAP). This study aimed to identify potential yeast derivatives that may be used to help prevent MAP infection. The adherence of mCherry-labeled MAP to bovine mammary epithelial cell line (MAC-T cells) and bovine primary epithelial cells (BECs) co-cultured with yeast cell wall components (CWCs) from four different yeast strains (A, B, C and D) and two forms of dead yeast from strain A was investigated. The CWCs from all four yeast strains and the other two forms of dead yeast from strain A reduced MAP adhesion to MAC-T cells and BECs in a concentration-dependent manner after 6-h of exposure, with the dead yeast having the greatest effect. The following in vitro binding studies suggest that dead yeast and its' CWCs may be useful for reducing risk of MAP infection.

  20. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  1. Nitrogen availability of grape juice limits killer yeast growth and fermentation activity during mixed-culture fermentation with sensitive commercial yeast strains.

    PubMed Central

    Medina, K; Carrau, F M; Gioia, O; Bracesco, N

    1997-01-01

    The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed. PMID:9212430

  2. Comparison of two alternative dominant selectable markers for wine yeast transformation.

    PubMed

    Cebollero, Eduardo; Gonzalez, Ramon

    2004-12-01

    Genetic improvement of industrial yeast strains is restricted by the availability of selectable transformation markers. Antibiotic resistance markers have to be avoided for public health reasons, while auxotrophy markers are generally not useful for wine yeast strain transformation because most industrial Saccharomyces cerevisiae strains are prototrophic. For this work, we performed a comparative study of the usefulness of two alternative dominant selectable markers in both episomic and centromeric plasmids. Even though the selection for sulfite resistance conferred by FZF1-4 resulted in a larger number of transformants for a laboratory strain, the p-fluoro-DL-phenylalanine resistance conferred by ARO4-OFP resulted in a more suitable selection marker for all industrial strains tested. Both episomic and centromeric constructions carrying this marker resulted in transformation frequencies close to or above 10(3) transformants per microg of DNA for the three wine yeast strains tested.

  3. Bioproduction of 2-phenylethanol and 2-phenethyl acetate by Kluyveromyces marxianus through the solid-state fermentation of sugarcane bagasse.

    PubMed

    Martínez, Oscar; Sánchez, Antoni; Font, Xavier; Barrena, Raquel

    2018-06-01

    2-Phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) are important aroma compounds widely used in food and cosmetic industries due to their rose-like odor. Nowadays, due to the growing demand for natural products, the development of bioprocesses for obtaining value-added compounds has become of great significance. 2-PE and 2-PEA can be produced through the biotransformation of L-phenylalanine using the generally recognized as safe strain Kluyveromyces marxianus. L-phenylalanine bioconversion systems have been typically focused on submerged fermentation processes (SmF), but there is no information about other alternative productive approaches. Here, the solid-state fermentation (SSF) of sugarcane bagasse supplemented with L-phenylalanine was investigated as a sustainable alternative for producing 2-PE and 2-PEA in a residue-based system using Kluyveromyces marxianus as inoculum. An initial screening of the operational variables indicated that air supply, temperature, and initial moisture content significantly affect the product yield. Besides, it was found that the feeding strategy also affects the production and the efficiency of the process. While a basic batch system produced 16 mg products per gram of residue (dry basis), by using split feeding strategies (fed-batch) of only sugarcane bagasse, a maximum of 18.4 mg Products  g -1 residue were achieved. Increase in product yield was also accompanied by an increase in the consumption efficiency of nutrients and precursor. The suggested system results as effective as other more complex SmF systems to obtain 2-PE and 2-PEA, showing the feasibility of SSF as an alternative for producing these compounds through the valorization of an agro-industrial residue.

  4. Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis.

    PubMed

    Zhan, Fei Xiang; Wang, Qin Hong; Jiang, Si Jing; Zhou, Yu Ling; Zhang, Gui Min; Ma, Yan He

    2014-12-16

    Xylanase can replace chemical additives to improve the volume and sensory properties of bread in the baking. Suitable baking xylanase with improved yield will promote the application of xylanase in baking industry. The xylanase XYNZG from the Plectosphaerella cucumerina has been previously characterized by heterologous expression in Pichia pastoris. However, P. pastoris is not a suitable host for xylanase to be used in the baking process since P. pastoris does not have GRAS (Generally Regarded As Safe) status and requires large methanol supplement during the fermentation in most conditions, which is not allowed to be used in the food industry. Kluyveromyces lactis, as another yeast expression host, has a GRAS status, which has been successfully used in food and feed applications. No previous work has been reported concerning the heterologous expression of xylanase gene xynZG in K. lactis with an aim for application in baking. The xylanase gene xynZG from the P. cucumerina was heterologously expressed in K. lactis. The recombinant protein XYNZG in K. lactis presented an approximately 19 kDa band on SDS-PAGE and zymograms analysis. Transformant with the highest halo on the plate containing the RBB-xylan (Remazol Brilliant Blue-xylan) was selected for the flask fermentation in different media. The results indicated that the highest activity of 115 U/ml at 72 h was obtained with the YLPU medium. The mass spectrometry analysis suggested that the hydrolytic products of xylan by XYNZG were mainly xylobiose and xylotriose. The results of baking trials indicated that the addition of XYNZG could reduce the kneading time of dough, increase the volume of bread, improve the texture, and have more positive effects on the sensory properties of bread. Xylanase XYNZG is successfully expressed in K. lactis, which exhibits the highest activity among the published reports of the xylanase expression in K. lactis. The recombinant XYNZG can be used to improve the volume and sensory

  5. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-17

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.

  6. Reducing patulin contamination in apple juice by using inactive yeast.

    PubMed

    Yue, Tianli; Dong, Qinfang; Guo, Caixia; Worobo, Randy W

    2011-01-01

    The mycotoxin, patulin (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one), is a secondary metabolite produced mainly in rotten parts of fruits and vegetables, most notably apples and apple products, by a wide range of fungal species in the genera Penicillium, Aspergillus, and Byssochlamys. Due to its mutagenic and teratogenic nature and possible health risks to consumers, many countries have regulations to reduce levels of patulin in apple products. In the present study, reduction of patulin contamination in apple juice by using 10 different inactivated yeast strains was assessed. Our results indicated that nearly twofold differences in biomass existed among the 10 yeast strains. Eight of the 10 inactivated yeast strains could provide >50% patulin reduction in apple juice within 24 h, with the highest reduction rate being >72%. Furthermore, juice quality parameters, i.e., degrees Brix, total sugar, titratable acidity, color value, and clarity, of the treated apple juice were very similar to those of the untreated patulin-free juice. Potential applications of using inactivated yeast strain for patulin control are also discussed.

  7. Distribution of yeast-like fungi at a university hospital in Turkey.

    PubMed

    Ece, Gulfem

    2014-12-01

    The increased life span has led to application of more invasive procedures for diagnosis and treatment of particularly immunosuppressed individuals. This situation drew more attention to fungal infections due to existence of yeast-like fungi. Candida infections have increased due to transplant in patients, prolonged intensive care unit (ICU) stays, and invasive procedures. Recently, identification of yeast-like fungi as well as antifungal susceptibility test has been gaining more importance. In our study, we aimed to evaluate the distribution of yeast-like fungi strains isolated from blood, urine, wound and respiratory specimens, which were sent from various departments of Izmir University School of Medicine University Hospital. The 262 yeast strains (of 13860 clinical specimens), isolated during 30.05.2012-20.05.2013, which were sent from various departments of Izmir University School of Medicine to Medical Microbiology Laboratory, were included in this study. Blood, wound, respiratory (sputum, tracheal secretion), and urine specimens were cultivated on blood agar and Sabouraud dextrose agar and incubated for 24-48 hours at 37°C. The isolates were cultivated on CHROMagar Candida and Cornmeal Tween 80 medium for identification. Besides, the automatized Vitek version 2.0 system was used for identification of the yeast strains as well as the antifungal susceptibility of blood culture strains. A total of 262 strains, isolated from the Anesthesiology and Reanimation Unit, as well as from the departments of Hematology, Urology, Infectious Diseases, Gynecology and Obstetrics, and Ear Nose and Throat, were included in this study. The most common isolated yeast-like species was Candida albicans. C. parapsilosis was the most common yeast-like fungus isolated from blood cultures. All the blood culture strains were susceptible to amphotericin B, flucytosine, fluconazole and voriconazole. Candida strains isolated from newborns, elderly patients, and intensive care patients

  8. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  9. Remanence and survival of commercial yeast in different ecological niches of the vineyard.

    PubMed

    Cordero-Bueso, Gustavo; Arroyo, Teresa; Serrano, Ana; Valero, Eva

    2011-08-01

    The use of commercial wine yeast strains as starters has been grown extensively over the past three decades. Wine yeasts are annually released in winery environments; however, little is known about the fate of these strains in the vineyard. To evaluate the industrial starter yeasts' ability to survive in nature and become part of the natural microbiota of musts, commercial yeast was disseminated voluntarily in an experimental vineyard in the Madrid region (Spain). A large sampling plan was devised over 3 years, including samples of grapes, leaves, bark and soil. The disseminated yeast was well represented in the vineyard during the first 8 months. After 2 years, the commercial yeast strain had not survived in the sprayed plants, but a residual population was found in plants situated 50 m east of the sprayed area. After 3 years, commercial yeast disseminated was not found in the sampled vineyard. Grapes and soil showed the highest number of yeasts isolated in the vegetative period, the bark being the main natural reservoir during the resting stages. The result of analysis of population variations from year to year indicated that permanent implantation of commercial strain (K1M) in the vineyard did not occur and its presence was limited in time. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Modification of Salmonella Typhimurium Motility by the Probiotic Yeast Strain Saccharomyces boulardii

    PubMed Central

    Pontier-Bres, Rodolphe; Prodon, François; Munro, Patrick; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean François; Czerucka, Dorota

    2012-01-01

    Background Motility is an important component of Salmonella enterica serovar Typhimurium (ST) pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. Methodology/Principal Findings Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software). This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV) of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL) showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT) and increased by 22% the number of bacteria with rotator tract (RT). Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. Conclusions This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification of Salmonella

  11. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    PubMed

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  12. Fermentation of Apple Juice with a Selected Yeast Strain Isolated from the Fermented Foods of Himalayan Regions and Its Organoleptic Properties.

    PubMed

    Kanwar, S S; Keshani

    2016-01-01

    Twenty-three Saccharomyces cerevisiae strains isolated from different fermented foods of Western Himalayas have been studied for strain level and functional diversity in our department. Among these 23 strains, 10 S. cerevisiae strains on the basis of variation in their brewing traits were selected to study their organoleptic effect at gene level by targeting ATF1 gene, which is responsible for ester synthesis during fermentation. Significant variation was observed in ATF1 gene sequences, suggesting differences in aroma and flavor of their brewing products. Apple is a predominant fruit in Himachal Pradesh and apple cider is one of the most popular drinks all around the world hence, it was chosen for sensory evaluation of six selected yeast strains. Organoleptic studies and sensory analysis suggested Sc21 and Sc01 as best indigenous strains for soft and hard cider, respectively, indicating their potential in enriching the local products with enhanced quality.

  13. Genome Sequence of Saccharomyces carlsbergensis, the World’s First Pure Culture Lager Yeast

    PubMed Central

    Walther, Andrea; Hesselbart, Ana; Wendland, Jürgen

    2014-01-01

    Lager yeast beer production was revolutionized by the introduction of pure culture strains. The first established lager yeast strain is known as the bottom fermenting Saccharomyces carlsbergensis, which was originally termed Unterhefe No. 1 by Emil Chr. Hansen and has been used in production in since 1883. S. carlsbergensis belongs to group I/Saaz-type lager yeast strains and is better adapted to cold growth conditions than group II/Frohberg-type lager yeasts, e.g., the Weihenstephan strain WS34/70. Here, we sequenced S. carlsbergensis using next generation sequencing technologies. Lager yeasts are descendants from hybrids formed between a S. cerevisiae parent and a parent similar to S. eubayanus. Accordingly, the S. carlsbergensis 19.5-Mb genome is substantially larger than the 12-Mb S. cerevisiae genome. Based on the sequence scaffolds, synteny to the S. cerevisae genome, and by using directed polymerase chain reaction for gap closure, we generated a chromosomal map of S. carlsbergensis consisting of 29 unique chromosomes. We present evidence for genome and chromosome evolution within S. carlsbergensis via chromosome loss and loss of heterozygosity specifically of parts derived from the S. cerevisiae parent. Based on our sequence data and via fluorescence-activated cell-sorting analysis, we determined the ploidy of S. carlsbergensis. This inferred that this strain is basically triploid with a diploid S. eubayanus and haploid S. cerevisiae genome content. In contrast the Weihenstephan strain, which we resequenced, is essentially tetraploid composed of two diploid S. cerevisiae and S. eubayanus genomes. Based on conserved translocations between the parental genomes in S. carlsbergensis and the Weihenstephan strain we propose a joint evolutionary ancestry for lager yeast strains. PMID:24578374

  14. Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. [Cryptococcus; Pichia stipitis; Candida shehatae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H.; Biely, P.; Latta, R.K.

    Yeasts able to grow on D-xylose were screened for the ability to hydrolyze xylan. Xylanase activity was found to be rare; a total of only 19 of more than 250 strains yielded a positive test result. The activity was localized largely in the genus Cryptococcus and in Pichia stipitis and its anamorph Candida shehatae. The ability to hydrolyze xylan was generally uncoupled from that to hydrolyze cellulose; only three of the xylan-positive strains also yielded a positive test for cellulolytic activity. Of the 19 xylanolytic strains. 2. P. stipitis CBS 5773 and CBS 5775, converted xylan into ethanol, with aboutmore » 60% of a theoretical yield computed on the basis of the amount of D-xylose present originally that could be released by acid hydrolysis.« less

  15. Alcoholic Fermentation of d-Xylose by Yeasts

    PubMed Central

    Toivola, Ansa; Yarrow, David; van den Bosch, Eduard; van Dijken, Johannes P.; Scheffers, W. Alexander

    1984-01-01

    Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of d-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces naardenensis, Candida shehatae, Candida tenuis, Pachysolen tannophilus, Pichia segobiensis, and Pichia stipitis. Subsequent screening of these yeasts for their capacity to ferment d-cellobiose revealed that only Candida tenuis CBS 4435 was a good fermenter of both xylose and cellobiose under the test conditions used. PMID:16346558

  16. Occurrence and diversity of marine yeasts in Antarctica environments

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Hua, Mingxia; Song, Chunli; Chi, Zhenming

    2012-03-01

    A total of 28 yeast strains were obtained from the sea sediment of Antarctica. According to the results of routine identification and molecular characterization, the strains belonged to species of Yarrowia lipolytica, Debaryomyces hansenii, Rhodotorula slooffiae, Rhodotorula mucilaginosa, Sporidiobolus salmonicolor, Aureobasidium pullulans, Mrakia frigida and Guehomyces pullulans, respectively. The Antarctica yeasts have wide potential applications in biotechnology, for some of them can produce β-galactosidase and killer toxins.

  17. Fuel ethanol production from Jerusalem artichoke stalks using different yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaritis, A.; Bajpai, P.; Bajpai, P.K.

    1983-01-01

    The inulin-type sugars present in the stalks of Jerusalem artichoke (Helianthus tuberosus) were extracted with hot water and were used as a substrate to produce fuel EtOH. Seven different yeasts were used to obtain batch kinetic data. The medium consisted of stalk extract from Jerusalem artichoke containing 7.3% total sugars, supplemented with 0.01% oleic acid, 0.01% corn steep liquor, and 0.05% Tween 80. All batch fermentations were carried out in a 1-L bioreactor at 35 degrees and pH 4.6, and the following parameters were measured as a function of time: total sugars, EtOH and biomass concentration, maximum specific growth rate,more » and biomass and EtOH yields. The best EtOH producer was Kluyveromyces marxianus UCD (FST) 55-82 which gave an EtOH-to-sugar yield 97% of the theoretical maximum value, with almost 100% sugar utilization.« less

  18. Yeast flocculation: New story in fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  19. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    PubMed

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  20. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast

    PubMed Central

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi

    2017-01-01

    ABSTRACT The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their “petite” strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic

  1. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters.

    PubMed

    Zhang, Jia; Zhang, Biao; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-01-01

    Three transporter genes including Kluyveromyces marxianus aquaglyceroporin gene (KmFPS1), Candida intermedia glucose/xylose facilitator gene (CiGXF1) or glucose/xylose symporter gene (CiGXS1) were over-expressed in K. marxianus YZJ017 to improve xylitol production at elevated temperatures. The xylitol production of YZJ074 that harbored CiGXF1 was improved to 147.62g/L in Erlenmeyer flask at 42°C. In fermenter, 99.29 and 149.60g/L xylitol were produced from 99.55 and 151.91g/L xylose with productivity of 4.14 and 3.40g/L/h respectively at 42°C. Even at 45°C, YZJ074 could produce 101.30g/L xylitol from 101.41g/L xylose with productivity of 2.81g/L/h. Using fed-batch fermentation through repeatedly adding non-sterilized substrate directly, YZJ074 could produce 312.05g/L xylitol which is the highest yield reported to date. The engineered strains YZJ074 which can produce xylitol at elevated temperatures is an excellent foundation for xylitol bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain.

    PubMed

    Bazoti, Suzana F; Golunski, Simone; Pereira Siqueira, Diego; Scapini, Thamarys; Barrilli, Évelyn T; Alex Mayer, Diego; Barros, Katharina O; Rosa, Carlos A; Stambuk, Boris U; Alves, Sérgio L; Valério, Alexsandra; de Oliveira, Débora; Treichel, Helen

    2017-11-01

    This work aims to evaluate the production of second-generation ethanol from sugarcane bagasse hydrolysate without acetic acid (inhibitor) detoxification. Three isolated yeast strains from lignocellulosic materials were evaluated, and one strain (UFFS-CE-3.1.2), identified using large subunit rDNA sequences as Wickerhamomyces sp., showed satisfactory results in terms of ethanol production without acetic acid removal. A Plackett-Burman design was used to evaluate the influence of hydrolysate composition and nutrients supplementation in the fermentation medium for the second-generation ethanol production. Two fermentation kinetics were performed, with controlled pH at 5.5, or keeping the initial pH at 4.88. The fermentation conducted without pH adjustment and supplementation of nutrients reported the best result in terms of second-generation ethanol production. Wickerhamomyces sp., isolated as UFFS-CE-3.1.2, was considered promising in the production of second-generation ethanol by using crude (non-detoxified) sugarcane hydrolysate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding

    PubMed Central

    Ohnuki, Shinsuke; Okada, Hiroki; Friedrich, Anne; Kanno, Yoichiro; Goshima, Tetsuya; Hasuda, Hirokazu; Inahashi, Masaaki; Okazaki, Naoto; Tamura, Hiroyasu; Nakamura, Ryo; Hirata, Dai; Fukuda, Hisashi; Shimoi, Hitoshi; Kitamoto, Katsuhiko; Watanabe, Daisuke; Schacherer, Joseph; Akao, Takeshi; Ohya, Yoshikazu

    2017-01-01

    Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomyces cerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies. PMID:28642365

  4. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    PubMed

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, suchmore » as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.« less

  6. Expression of LIP1 and LIP2 genes from Geotrichum species in Baker's yeast strains and their application to the bread-making process.

    PubMed

    Monfort, A; Blasco, A; Sanz, P; Prieto, J A

    1999-02-01

    Lipolytic baker's yeast strains able to produce extracellular active lipase have been constructed by transformation with plasmids containing the LIP1 and LIP2 genes from Geotrichum sp. under the control of the Saccharomyces cerevisiae actin promoter (pACT1). Lipase productivity differed between both constructs, YEpACT-LIP1-t and YEpACT-LIP2-t, being higher for the strain bearing the LIP2 gene in all culture media tested. This result appeared not to be the consequence of a defect in the transcription of the LIP1 gene as revealed by Northern blot analysis. Replacing the signal sequence of LIP1 by that of LIP2 in the YEpACT-LIP1-t plasmid enhanced significantly the secretion of lipase 1, but the levels of lipase activity were still lower than those found for the YEpACT-LIP2-t transformant. Recombinant lipase 2 protein produced by baker's yeast exhibited biochemical properties similar to those of the natural enzyme. Fermented dough prepared with YEpACT-LIP2-t-carrying cells rendered a bread with a higher loaf volume and a more uniform crumb structure than that prepared with control yeast. These effects were stronger by the addition in the bread dough formulas of a preferment enriched in recombinant lipase 2.

  7. Enological Qualities and Interactions Between Native Yeast and Lactic Acid Bacteria from Queretaro, Mexico.

    PubMed

    Miranda-Castilleja, Dalia E; Martínez-Peniche, Ramón Á; Nadal Roquet-Jalmar, Montserrat; Aldrete-Tapia, J Alejandro; Arvizu-Medrano, Sofía M

    2018-06-15

    Despite the importance of strain compatibility, most of the enological strain selection studies are carried out separately on yeasts and lactic acid bacteria (LAB). In this study, the enological traits and interactions between native yeasts and LAB were studied. The H 2 S and acetic acid production, growth rates at 8 °C, killer phenotypes, flocculation, and tolerance to must and wine inhibitors were determined for 25 Saccharomyces yeasts. The ability to grow under two wine-like conditions was also determined in 37 LAB (Oenococcus oeni and Lactobacillus plantarum). The yeast-LAB compatibility of selected strains was tested in a sequential scheme. Finally, microvinification trials were performed using two strains from each group to determine the efficiencies and quality parameters. The phenotypic characterization by the K-means and hierarchical clusters indicated a correlation between flocculation and optical density increase in simulated must and wine medium (r = -0.415) and grouped the prominent yeasts SR19, SR26, and N05 as moderately flocculent, killer, acid producing, and highly tolerant strains. Among the LAB, L. plantarum FU39 grew 230% more than the rest. With regard to interactions, LAB growth stimulation (14-fold on average) due to the previous action of yeasts, particularly of SR19, was observed. The final quality of all wines was similar, but yeast SR19 performed a faster and more efficient fermentation than did N05, Also L. plantarum FU39 fermented faster than did O. oeni VC32. The use of quantitative data, and multivariate analyses allowed an integrative approach to the selection of a compatible and efficient pair of enological yeast-LAB strains. An alternative scheme is proposed for the joint selection of yeast and lactic acid bacteria strains, which allows us to foresee the interactions that may occur between them during winemaking. The kinetic parameters, turbidimetrically measured and analyzed by multivariate methods, simplify the detection of

  8. Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations

    PubMed Central

    Rodríguez-Cousiño, Nieves

    2016-01-01

    ABSTRACT Saccharomyces cerevisiae killer strains secrete a protein toxin active on nonkiller strains of the same (or other) yeast species. Different killer toxins, K1, K2, K28, and Klus, have been described. Each toxin is encoded by a medium-size (1.5- to 2.3-kb) M double-stranded RNA (dsRNA) located in the cytoplasm. M dsRNAs require L-A helper virus for maintenance. L-A belongs to the Totiviridae family, and its dsRNA genome of 4.6 kb codes for the major capsid protein Gag and a minor Gag-Pol protein, which form the virions that separately encapsidate L-A or the M satellites. Different L-A variants exist in nature; on average, 24% of their nucleotides are different. Previously, we reported that L-A-lus was specifically associated with Mlus, suggesting coevolution, and proposed a role of the toxin-encoding M dsRNAs in the appearance of new L-A variants. Here we confirm this by analyzing the helper virus in K2 killer wine strains, which we named L-A-2. L-A-2 is required for M2 maintenance, and neither L-A nor L-A-lus shows helper activity for M2 in the same genetic background. This requirement is overcome when coat proteins are provided in large amounts by a vector or in ski mutants. The genome of another totivirus, L-BC, frequently accompanying L-A in the same cells shows a lower degree of variation than does L-A (about 10% of nucleotides are different). Although L-BC has no helper activity for M dsRNAs, distinct L-BC variants are associated with a particular killer strain. The so-called L-BC-lus (in Klus strains) and L-BC-2 (in K2 strains) are analyzed. IMPORTANCE Killer strains of S. cerevisiae secrete protein toxins that kill nonkiller yeasts. The “killer phenomenon” depends on two dsRNA viruses: L-A and M. M encodes the toxin, and L-A, the helper virus, provides the capsids for both viruses. Different killer toxins exist: K1, K2, K28, and Klus, encoded on different M viruses. Our data indicate that each M dsRNA depends on a specific helper virus; these

  9. Fermentation of Apple Juice with a Selected Yeast Strain Isolated from the Fermented Foods of Himalayan Regions and Its Organoleptic Properties

    PubMed Central

    Kanwar, S. S.; Keshani

    2016-01-01

    Twenty-three Saccharomyces cerevisiae strains isolated from different fermented foods of Western Himalayas have been studied for strain level and functional diversity in our department. Among these 23 strains, 10 S. cerevisiae strains on the basis of variation in their brewing traits were selected to study their organoleptic effect at gene level by targeting ATF1 gene, which is responsible for ester synthesis during fermentation. Significant variation was observed in ATF1 gene sequences, suggesting differences in aroma and flavor of their brewing products. Apple is a predominant fruit in Himachal Pradesh and apple cider is one of the most popular drinks all around the world hence, it was chosen for sensory evaluation of six selected yeast strains. Organoleptic studies and sensory analysis suggested Sc21 and Sc01 as best indigenous strains for soft and hard cider, respectively, indicating their potential in enriching the local products with enhanced quality. PMID:27446050

  10. Development of mutated Kluyveromyces marxianus strains for ethanol production at elevated temperature from biomass hydrolysate

    USDA-ARS?s Scientific Manuscript database

    The yeast K. marxianus has advantages over the most commonly used industrial ethanologen, Saccharomyces cerevisiae, such as the ability to grow at 47°C, to produce ethanol at temperatures above 40°C, and to grow on a wide variety of substrates, including starch, sucrose, pectins, and cellulosic biom...

  11. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes.

  12. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    PubMed

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Distribution of Yeast-Like Fungi at a University Hospital in Turkey

    PubMed Central

    Ece, Gulfem

    2014-01-01

    Background: The increased life span has led to application of more invasive procedures for diagnosis and treatment of particularly immunosuppressed individuals. This situation drew more attention to fungal infections due to existence of yeast-like fungi. Candida infections have increased due to transplant in patients, prolonged intensive care unit (ICU) stays, and invasive procedures. Recently, identification of yeast-like fungi as well as antifungal susceptibility test has been gaining more importance. Objectives: In our study, we aimed to evaluate the distribution of yeast-like fungi strains isolated from blood, urine, wound and respiratory specimens, which were sent from various departments of Izmir University School of Medicine University Hospital. Materials and Methods: The 262 yeast strains (of 13860 clinical specimens), isolated during 30.05.2012-20.05.2013, which were sent from various departments of Izmir University School of Medicine to Medical Microbiology Laboratory, were included in this study. Blood, wound, respiratory (sputum, tracheal secretion), and urine specimens were cultivated on blood agar and Sabouraud dextrose agar and incubated for 24-48 hours at 37°C. The isolates were cultivated on CHROMagar Candida and Cornmeal Tween 80 medium for identification. Besides, the automatized Vitek version 2.0 system was used for identification of the yeast strains as well as the antifungal susceptibility of blood culture strains. Results: A total of 262 strains, isolated from the Anesthesiology and Reanimation Unit, as well as from the departments of Hematology, Urology, Infectious Diseases, Gynecology and Obstetrics, and Ear Nose and Throat, were included in this study. The most common isolated yeast-like species was Candida albicans. C. parapsilosis was the most common yeast-like fungus isolated from blood cultures. All the blood culture strains were susceptible to amphotericin B, flucytosine, fluconazole and voriconazole. Conclusions: Candida strains

  14. Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway.

    PubMed

    Salam, Jaseetha Abdul; Das, Nilanjana

    2014-04-01

    A new yeast strain was isolated from sugarcane cultivation field which was able to utilize lindane as sole carbon source for growth in mineral medium. The yeast was identified and named as Candida sp. VITJzN04 based on a polyphasic approach using morphological, biochemical and 18S rDNA, D1/D2 and ITS sequence analysis. The isolated yeast strain efficiently degraded 600 mg L⁻¹ of lindane within 6 days in mineral medium under the optimal conditions (pH 7; temperature 30 °C and inoculum dosage 0.06 g L⁻¹) with the least half-life of 1.17 days and degradation constant of 0.588 per day. Lindane degradation was tested with various kinetic models and results revealed that the reaction could be described best by first-order and pseudo first-order models. In addition, involvement of the enzymes viz. dechlorinase, dehalogenase, dichlorohydroquinone reductive dechlorinase, lignin peroxidase and manganese peroxidase was noted during lindane degradation. Addition of H2O2 in the mineral medium showed 32 % enhancement of lindane degradation within 3 days. Based on the metabolites identified by GC-MS and FTIR analysis, sequential process of lindane degradation by Candida VITJzN04 was proposed. To the best of our knowledge, this is the first report of isolation and characterization of lindane-degrading Candida sp. and elucidation of enzyme systems during the degradation process.

  15. Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. region.

    PubMed

    Marin-Menguiano, Miriam; Romero-Sanchez, Sandra; Barrales, Ramón R; Ibeas, Jose I

    2017-03-06

    Fino is the most popular sherry wine produced in southern Spain. Fino is matured by biological aging under a yeast biofilm constituted of Saccharomyces cerevisiae yeasts. Although different S. cerevisiae strains can be identified in such biofilms, their diversity and contribution to wine character have been poorly studied. In this work, we analyse the flor yeast population in five different wineries from the Montilla-Moriles D.O. (Denominación de Origen) in southern Spain. Yeasts present in wines of different ages were identified using two different culture-dependent molecular techniques. From 2000 individual yeast isolates, five different strains were identified with one of them dominating in four out of the five wineries analysed, and representing 76% of all the yeast isolates collected. Surprisingly, this strain is similar to the predominant strain isolated twenty years ago in Jerez D.O. wines, suggesting that this yeast is particularly able to adapt to such a stressful environment. Fino wine produced with pure cultures of three of the isolated strains resulted in different levels of acetaldehyde. Because acetaldehyde levels are a distinctive characteristic of fino wines and an indicator of fino aging, the use of molecular techniques for yeast identification and management of yeast populations may be of interest for fino wine producers looking to control one of the main features of this wine. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    PubMed Central

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  17. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    PubMed

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    PubMed

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation.

  19. Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences.

    PubMed

    Rollero, Stéphanie; Bloem, Audrey; Ortiz-Julien, Anne; Camarasa, Carole; Divol, Benoit

    2018-05-07

    Saccharomyces cerevisiae is currently the most important yeast involved in food fermentations, particularly in oenology. However, several other yeast species occur naturally in grape must that are highly promising for diversifying and improving the aromatic profile of wines. If the nitrogen requirement of S. cerevisiae has been described in detail, those of non-Saccharomyces yeasts remain poorly studied despite their increasingly widespread use in winemaking. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we explored the fermentation performances, the utilization of nitrogen sources and the volatile compound production of ten strains of non-conventional yeasts in pure culture. Two different conditions were tested: one mimicking the grape juice's nitrogen composition and one with all the nitrogen sources at the same level. We highlighted the diversity in terms of nitrogen preference and amount consumed among the yeast strains. Some nitrogen sources (arginine, glutamate, glycine, tryptophan and GABA) displayed the largest variations between strains throughout the fermentation. Several non-Saccharomyces strains produced important aroma compounds such as higher alcohols, acetate and ethyl esters in significantly higher quantities than S. cerevisiae.

  20. Survival of commercial yeasts in the winery environment and their prevalence during spontaneous fermentations.

    PubMed

    Blanco, P; Orriols, I; Losada, A

    2011-01-01

    Inoculation of active dry yeasts during the wine-making process has become a common practice in most wine-producing regions; this practice may affect the diversity of the indigenous population of Saccharomyces cerevisiae in the winery. The aim of this work was to study the incidence of commercial yeasts in the experimental winery of Estación de Viticultura e Enoloxía de Galicia (EVEGA) and their ability to lead spontaneous fermentations. To do this, 64 spontaneous fermentations were carried out in the experimental cellar of EVEGA over a period of 7 years. Samples were taken from must and at the beginning, vigorous and final stages of fermentation. A representative number of yeast colonies was isolated from each sample. S. cerevisiae strains were characterised by analysis of mitochondrial DNA restriction patterns. The results showed that although more than 40 different strains of S. cerevisiae were identified, only 10 were found as the dominant strain or in codominance with other strains in spontaneous fermentations. The genetic profiles (mtDNA-RFLPs) of eight of these strains were similar to those of different commercial yeasts that had been previously used in the EVEGA cellar. The remaining two strains were autochthonous ones that were able to reach implantation frequencies as high of those of commercial yeasts. These results clearly indicated that commercial wine yeasts were perfectly adapted to survive in EVEGA cellar conditions, and they successfully competed with the indigenous strains of S. cerevisiae, even during spontaneous fermentations. On the other hand, autochthonous dominant strains that presented desirable oenological traits could be of interest to preserve wine typicity.

  1. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection

    PubMed Central

    Guillamón, José M.; Barrio, Eladio

    2017-01-01

    The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties. PMID:28522998

  3. Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines.

    PubMed

    Bellon, Jennifer R; Eglinton, Jeffery M; Siebert, Tracey E; Pollnitz, Alan P; Rose, Louisa; de Barros Lopes, Miguel; Chambers, Paul J

    2011-08-01

    Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.

  4. Oleaginous yeasts for biodiesel: current and future trends in biology and production.

    PubMed

    Sitepu, Irnayuli R; Garay, Luis A; Sestric, Ryan; Levin, David; Block, David E; German, J Bruce; Boundy-Mills, Kyria L

    2014-11-15

    Production of biodiesel from edible plant oils is quickly expanding worldwide to fill a need for renewable, environmentally-friendly liquid transportation fuels. Due to concerns over use of edible commodities for fuels, production of biodiesel from non-edible oils including microbial oils is being developed. Microalgae biodiesel is approaching commercial viability, but has some inherent limitations such as requirements for sunlight. While yeast oils have been studied for decades, recent years have seen significant developments including discovery of new oleaginous yeast species and strains, greater understanding of the metabolic pathways that determine oleaginicity, optimization of cultivation processes for conversion of various types of waste plant biomass to oil using oleaginous yeasts, and development of strains with enhanced oil production. This review examines aspects of oleaginous yeasts not covered in depth in other recent reviews. Topics include the history of oleaginous yeast research, especially advances in the early 20th century; the phylogenetic diversity of oleaginous species, beyond the few species commonly studied; and physiological characteristics that should be considered when choosing yeast species and strains to be utilized for conversion of a given type of plant biomass to oleochemicals. Standardized terms are proposed for units that describe yeast cell mass and lipid production. Copyright © 2014. Published by Elsevier Inc.

  5. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  6. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  7. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    PubMed

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  8. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation

    PubMed Central

    Zhu, Yuan O.; Sherlock, Gavin; Petrov, Dmitri A.

    2016-01-01

    Budding yeast has undergone several independent transitions from commercial to clinical lifestyles. The frequency of such transitions suggests that clinical yeast strains are derived from environmentally available yeast populations, including commercial sources. However, despite their important role in adaptive evolution, the prevalence of polyploidy and aneuploidy has not been extensively analyzed in clinical strains. In this study, we have looked for patterns governing the transition to clinical invasion in the largest screen of clinical yeast isolates to date. In particular, we have focused on the hypothesis that ploidy changes have influenced adaptive processes. We sequenced 144 yeast strains, 132 of which are clinical isolates. We found pervasive large-scale genomic variation in both overall ploidy (34% of strains identified as 3n/4n) and individual chromosomal copy numbers (36% of strains identified as aneuploid). We also found evidence for the highly dynamic nature of yeast genomes, with 35 strains showing partial chromosomal copy number changes and eight strains showing multiple independent chromosomal events. Intriguingly, a lineage identified to be baker’s/commercial derived with a unique damaging mutation in NDC80 was particularly prone to polyploidy, with 83% of its members being triploid or tetraploid. Polyploidy was in turn associated with a >2× increase in aneuploidy rates as compared to other lineages. This dataset provides a rich source of information on the genomics of clinical yeast strains and highlights the potential importance of large-scale genomic copy variation in yeast adaptation. PMID:27317778

  9. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles.

    PubMed

    Lauterbach, Alexander; Usbeck, Julia C; Behr, Jürgen; Vogel, Rudi F

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own "in-house strains". During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable "brewing yeast" spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

  10. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.

    PubMed

    Kaino, Tomohiro; Tateiwa, Tetsuya; Mizukami-Murata, Satomi; Shima, Jun; Takagi, Hiroshi

    2008-09-01

    We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking.

  11. Synthetic genome engineering forging new frontiers for wine yeast.

    PubMed

    Pretorius, Isak S

    2017-02-01

    Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future

  12. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    PubMed

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters.

  13. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  14. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-03

    During bread-making processes, yeast cells are exposed to various baking-associated stresses. High-sucrose concentrations exert severe osmotic stress that seriously damages cellular components by generation of reactive oxygen species (ROS). Previously, we found that the accumulation of proline conferred freeze-thaw stress tolerance and the baker's yeast strain that accumulated proline retained higher-level fermentation abilities in frozen doughs than the wild-type strain. In this study, we constructed self-cloning diploid baker's yeast strains that accumulate proline. These resultant strains showed higher cell viability and lower intracellular oxidation levels than that observed in the wild-type strain under high-sucrose stress condition. Proline accumulation also enhanced the fermentation ability in high-sucrose-containing dough. These results demonstrate the usefulness of proline-accumulating baker's yeast for sweet dough baking. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    PubMed Central

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  16. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity.

    PubMed

    Padilla, Beatriz; Gil, José V; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed.

  17. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    PubMed

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp. strain MBH23 KCTC 11960BP.

    PubMed

    Rahim, M B H; Syed, M A; Shukor, M Y

    2012-10-01

    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Kazachstania Zubkova (1971)

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the ascomycete yeast genus Kazachstania and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Kazachstania is newly described and was constructed from certain species previously assigned to the genera Saccharomyces, Kluyveromyces and Arxozyma follo...

  20. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    PubMed Central

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  1. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

    PubMed

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji; Kitagaki, Hiroshi

    2014-02-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.

  2. Enhancement of Ethanol Fermentation in Saccharomyces cerevisiae Sake Yeast by Disrupting Mitophagy Function

    PubMed Central

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji

    2014-01-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts. PMID:24271183

  3. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    PubMed

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  4. Description of Dioszegia patagonica sp. nov., a novel carotenogenic yeast isolated from cold environments.

    PubMed

    Trochine, Andrea; Turchetti, Benedetta; Vaz, Aline B M; Brandao, Luciana; Rosa, Luiz H; Buzzini, Pietro; Rosa, Carlos; Libkind, Diego

    2017-11-01

    During a survey of carotenogenic yeasts from cold and oligotrophic environments in Patagonia, several yeasts of the genus Dioszegia (Tremellales, Agaricomycotina) were detected, including three strains that could not be assigned to any known taxa. Analyses of internal transcribed spacer and D1/D2 regions of the large subunit rRNA gene showed these strains are conspecific with several other strains found in the Italian Alps and in Antarctica soil. Phylogenetic analyses showed that 19 of these strains represent a novel yeast species of the genus Dioszegia. The name Dioszegia patagonica sp. nov. is proposed to accommodate these strains and CRUB 1147 T (UFMG 195 T =CBMAI 1564 T =DBVPG 10618 T =CBS 14901 T ; MycoBank MB 819782) was designated as the type strain. This Dioszegia species accumulates biotechnologically valuable compounds such as carotenoid pigments and mycosporines.

  5. Killer yeasts inhibit the growth of the phytopathogen Moniliophthora perniciosa, the causal agent of Witches’ Broom disease

    PubMed Central

    de Souza Cabral, Anderson; de Carvalho, Patricia Maria Barroso; Pinotti, Tatiana; Hagler, Allen Norton; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2009-01-01

    Fruit and soil yeasts isolated from the Amazon, Atlantic Rainforests and an organic farm were screened for killer activity against yeasts. Killer yeasts were then tested against the phytopathogen Moniliophthora perniciosa (syn. Crinipellis perniciosa) and a Dipodascus capitatus strain and a Candida sp strain inhibited its growth. PMID:24031327

  6. Simultaneous and successive inoculations of yeasts and lactic acid bacteria on the fermentation of an unsulfited Tannat grape must

    PubMed Central

    Muñoz, Viviana; Beccaria, Bruno; Abreo, Eduardo

    2014-01-01

    Interactions between yeasts and lactic acid bacteria are strain specific, and their outcome is expected to change in simultaneous alcoholic - malolactic fermentations from the pattern observed in successive fermentations. One Oenococcus oeni strain Lalvin VP41™ was inoculated with two Saccharomyces cerevisiae strains either simultaneously, three days after the yeast inoculation, or when alcoholic fermentation was close to finish. Early bacterial inoculations with each yeast strain allowed for the growth of the bacterial populations, and the length of malolactic fermentation was reduced to six days. Alcoholic fermentation by Lalvin ICV D80® yeast strain left the highest residual sugar, suggesting a negative effect of the bacterial growth and malolactic activity on its performance. In sequential inoculations the bacterial populations did not show actual growth with either yeast strain. In this strategy, both yeast strains finished the alcoholic fermentations, and malolactic fermentations took longer to finish. Lalvin ICV D80® allowed for higher viability and activity of the bacterial strain than Fermicru UY4® under the three inoculation strategies. This was beneficial for the sequential completion of both fermentations, but negatively affected the completion of alcoholic fermentation by Lalvin ICV D80® in the early bacteria additions. Conversely, Fermicru UY4®, which was rather inhibitory towards the bacteria, favored the timely completion of both fermentations simultaneously. As bacteria in early inoculations with low or no SO2 addition can be expected to multiply and interact with fermenting yeasts, not only are the yeast-bacterium strains combination and time point of the inoculation to be considered, but also the amount of bacteria inoculated. PMID:24948914

  7. Identification of Candida lusitaniae as an opportunistic yeast in humans.

    PubMed

    Holzschu, D L; Presley, H L; Miranda, M; Phaff, H J

    1979-08-01

    Four yeast strains, causally associated with infection in a patient with acute myelogenous leukemia, were identified by standard methods currently used in yeast taxonomy as representatives of Candida lusitania van Uden et do Carmo-Sousa. Because this species has not been recognized previously as an opportunistic yeast in humans, molecular taxonomic methods were applied to confirm its identity. The nuclear deoxyribonucleic acid (DNA) base composition of two clinical isolates was shown to be 45.1 mol% guanine plus cytosine as compared to 44.7 mol% guanine plus cytosine for the type strain of this species. DNA/DNA reassociation experiments revealed more than 95% complementarity between the DNAs from the clinical isolates and that of the type strain of C. lusitaniae, thus confirming their classification by conventional taxonomy. A key is provided to differentiate C. lusitaniae from two phenotypically similar Candida species.

  8. Identification of Candida lusitaniae as an opportunistic yeast in humans.

    PubMed Central

    Holzschu, D L; Presley, H L; Miranda, M; Phaff, H J

    1979-01-01

    Four yeast strains, causally associated with infection in a patient with acute myelogenous leukemia, were identified by standard methods currently used in yeast taxonomy as representatives of Candida lusitania van Uden et do Carmo-Sousa. Because this species has not been recognized previously as an opportunistic yeast in humans, molecular taxonomic methods were applied to confirm its identity. The nuclear deoxyribonucleic acid (DNA) base composition of two clinical isolates was shown to be 45.1 mol% guanine plus cytosine as compared to 44.7 mol% guanine plus cytosine for the type strain of this species. DNA/DNA reassociation experiments revealed more than 95% complementarity between the DNAs from the clinical isolates and that of the type strain of C. lusitaniae, thus confirming their classification by conventional taxonomy. A key is provided to differentiate C. lusitaniae from two phenotypically similar Candida species. PMID:292646

  9. Synergism between hydrogen peroxide and seventeen acids against five agri-food-borne fungi and one yeast strain.

    PubMed

    Martin, H; Maris, P

    2012-12-01

    The objective of this study was to evaluate fungicidal efficacy of hydrogen peroxide administered in combination with 17 mineral and organic acids authorized for use in the food industry. The assays were performed on a 96-well microplate using a microdilution technique based on the checkerboard titration method. The six selected strains (one yeast and five fungi) were reference strains and strains representative of contaminating fungi found in the food industry. Each synergistic hydrogen peroxide/acid combination found after fifteen minutes contact time at 20 °C in distilled water was then tested in conditions simulating four different use conditions. Twelve combinations were synergistic in distilled water, eleven of these remained synergistic with one or more of the four mineral and organic interfering substances selected. Hydrogen peroxide/formic acid combination remained effective against four strains and was never antagonistic against the other two fungi. Combinations with propionic acid and acetic acid stayed synergistic against two strains. Those with oxalic acid and lactic acid kept their synergism only against Candida albicans. No synergism was detected against Penicillium cyclopium. Synergistic combinations of disinfectants were revealed, among them the promising hydrogen peroxide/formic acid combination. A rapid screening method developed in our laboratory for bacteria was adapted to fungi and used to reveal the synergistic potential of disinfectants and/or sanitizers combinations. © 2012 The Society for Applied Microbiology.

  10. Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products.

    PubMed

    Ogunremi, O R; Sanni, A I; Agrawal, R

    2015-09-01

    To determine the starter culture and multifunctional potentials of yeast strains from some cereal-based Nigerian traditional fermented food products. Yeast isolates were screened for enzyme production and identified by sequencing the D1/D2 region of 26S rDNA. Pichia kluyveri LKC17, Issatchenkia orientalis OSL11, Pichia kudriavzevii OG32, Pichia kudriavzevii ROM11 and Candida tropicalis BOM21 exhibited the highest protease, lipase and phytase activity. They were selected and further evaluated for gastrointestinal survival and adherence ability. Although strain-specific, they retained viability at 37°C and showed survival at pH 2·0., I. orientalis OSL11 showed the highest survival at 2% bile salts concentration and P. kudriavzevii ROM11 showed the least survival. The yeast strains showed strong autoaggregation ability (81·24-91·85%) and hydrophobicity to n-hexadecane (33·61-42·30%). The highest co-aggregation ability was detected for P. kudriavzevii OG32 and Escherichia coli (71·57%). All the yeast strains removed cholesterol in the range of 49·03-74·05% over 48 h and scavenged for free radicals in methanol reaction system. In this study, we isolated new yeast strains with multifunctional potentials that can be used as functional starter cultures to produce cereal-based probiotic products. The development of probiotic yeast strains as starter culture to improve the quality attributes and confer functional value on cereal-based traditional fermented foods is beneficial. © 2015 The Society for Applied Microbiology.

  11. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. "Vinos de Madrid" Using Real-Time Quantitative PCR.

    PubMed

    García, Margarita; Esteve-Zarzoso, Braulio; Crespo, Julia; Cabellos, Juan M; Arroyo, Teresa

    2017-01-01

    There is an increasing trend toward understanding the impact of non- Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non- Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non- Saccharomyces ( Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima , and Lachancea thermotolorans ) native yeast strains from D.O. "Vinos de Madrid" at the laboratory scale. The best inoculation strategies between S. cerevisiae and non- Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR) combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/ S. cerevisiae CLI 889 and C. stellata CLI 920/ S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889.

  12. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors.

    PubMed

    Vajzovic, Azra; Bura, Renata; Kohlmeier, Kevin; Doty, Sharon L

    2012-10-01

    A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30 g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5 g/l of furfural stimulated production of xylitol to 77 % of theoretical yield (10 % higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3 g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99 % of theoretical yield (15 % higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5 g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.

  13. Molecular analysis of UAS(E), a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis.

    PubMed

    Mazzoni, C; Santori, F; Saliola, M; Falcone, C

    2000-01-01

    KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity, which is specifically induced by ethanol and insensitive to glucose repression. In this work, we report the molecular analysis of UAS(E), an element of the KlADH4 promoter which is essential for the induction of KlADH4 in the presence of ethanol. UAS(E) contains five stress response elements (STREs), which have been found in many genes of Saccharomyces cerevisiae involved in the response of cells to conditions of stress. Whereas KlADH4 is not responsive to stress conditions, the STREs present in UAS(E) seem to play a key role in the induction of the gene by ethanol, a situation that has not been observed in the related yeast S. cerevisiae. Gel retardation experiments showed that STREs in the KlADH4 promoter can bind factor(s) under non-inducing conditions. Moreover, we observed that the RAP1 binding site present in UAS(E) binds KlRap1p.

  14. Cellodextrin transport in yeast for improved biofuel production.

    PubMed

    Galazka, Jonathan M; Tian, Chaoguang; Beeson, William T; Martinez, Bruno; Glass, N Louise; Cate, Jamie H D

    2010-10-01

    Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.

  15. Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025.

    PubMed

    Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; Melo, Vania M M; Gonçalves, Luciana R B; de Macedo, Gorete Ribeiro

    2011-08-01

    The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (μ(max)), overall yields of ethanol based on glucose consumption [Formula: see text] and based on glucose + xylose consumption (Y ( P/S )), overall yield of ethanol based on biomass (Y ( P/X )), and ethanol productivity (P (E)) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l(-1) of ethanol with a volumetric production rate of 0.257 ± 0.002 g l(-1) h(-1) and an ethanol yield of 0.417 ± 0.003 g g(-1) glucose.

  16. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    NASA Astrophysics Data System (ADS)

    Wang, Jufang; Lu, Dong; Wu, Xin; Sun, Haining; Ma, Shuang; Li, Renmin; Li, Wenjian

    2010-09-01

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV μm -1) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV μm -1. The mutation cross section saturated when LET was higher than 58.2 keV μm -1. Meanwhile, the highest RBE i for inactivation located at 120.0 keV μm -1 and the highest RBE m for mutation was at 58.2 keV μm -1. The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  17. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    PubMed

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  18. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis.

    PubMed

    Jiménez, Juan J; Borrero, Juan; Gútiez, Loreto; Arbulu, Sara; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2014-06-01

    The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.

  19. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  20. Identification of yeasts isolated from raffia wine (Raphia hookeri) produced in Côte d'Ivoire and genotyping of Saccharomyces cerevisiae strains by PCR inter-delta.

    PubMed

    Tra Bi, Charles Y; N'guessan, Florent K; Kouakou, Clémentine A; Jacques, Noemie; Casaregola, Serge; Djè, Marcellin K

    2016-08-01

    Raffia wine is a traditional alcoholic beverage produced in several African countries where it plays a significant role in traditional customs and population diet. Alcoholic fermentation of this beverage is ensured by a complex natural yeast flora which plays a decisive role in the quality of the final product. This present study aims to evaluate the distribution and the diversity of the yeast strains isolated in raffia wine from four sampling areas (Abengourou, Alépé, Grand-Lahou and Adzopé) in Côte d'Ivoire. Based on the D1/D2 domain of the LSU rDNA sequence analysis, nine species belonging to six genera were distinguished. With a percentage of 69.5 % out of 171 yeast isolates, Saccharomyces cerevisiae was the predominant species in the raffia wine, followed by Kodamaea ohmeri (20.4 %). The other species isolated were Candida haemulonii (4.1 %), Candida phangngensis (1.8 %), Pichia kudriavzevii (1.2 %), Hanseniaspora jakobsenii (1.2 %), Candida silvae (0.6 %), Hanseniaspora guilliermondii (0.6 %) and Meyerozyma caribbica (0.6 %). The molecular characterization of S. cerevisiae isolates at the strain level using the PCR-interdelta method revealed the presence of 21 profiles (named I to XXI) within 115 isolates. Only four profiles (I, III, V and XI) were shared by the four areas under study. Phenotypic characterization of K. ohmeri strains showed two subgroups for sugar fermentation and no diversity for the nitrogen compound assimilations and the growth at different temperatures.

  1. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.

    PubMed

    Wu, Jiaqiang; Hu, Jinlong; Zhao, Shumiao; He, Mingxiong; Hu, Guoquan; Ge, Xiangyang; Peng, Nan

    2018-05-01

    Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg -1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L -1  h -1 and the yield of 0.40 g g -1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L -1  h -1 and yield of 0.17 g g -1 straw. C. intermedia FL023 was tolerant to 0.5 g L -1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L -1 xylitol from xylose with the productivity of 0.38 g L -1  h -1 and the yield of 0.57 g g -1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.

  2. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    PubMed

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  3. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions.

    PubMed

    Yuan, W J; Chang, B L; Ren, J G; Liu, J P; Bai, F W; Li, Y Y

    2012-01-01

    Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase-producing yeast Kluyveromyces marxianus Y179 and fed-batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch-based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l(-1) was achieved when 0·15 g l(-1) K(2) HPO(4) was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Jerusalem artichoke tubers are an alternative to grain-based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the

  4. Game dynamic model for yeast development.

    PubMed

    Huang, Yuanyuan; Wu, Zhijun

    2012-07-01

    Game theoretic models, along with replicator equations, have been applied successfully to the study of evolution of populations of competing species, including the growth of a population, the reaching of the population to an equilibrium state, and the evolutionary stability of the state. In this paper, we analyze a game model proposed by Gore et al. (Nature 456:253-256, 2009) in their recent study on the co-development of two mixed yeast strains. We examine the mathematical properties of this model with varying experimental parameters. We simulate the growths of the yeast strains and compare them with the experimental results. We also compute and analyze the equilibrium state of the system and prove that it is asymptotically and evolutionarily stable.

  5. Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Buzzini, Pietro; Turchetti, Benedetta; Diolaiuti, Guglielmina; D'Agata, Carlo; Martini, Alessandro; Smiraglia, Claudio

    The meltwaters draining from two glaciers in the Italian Alps contain metabolically active yeasts isolable by culture-based laboratory procedures. The average number of culturable yeast cells in the meltwaters was 10 20 colony-forming units (CFU) L-1, whereas supraglacial stream waters originating from overlying glacier ice contained <1 CFU L-1. Yeast cell number increased as the suspended-sediment content of the water samples increased. Basidiomycetous yeasts represent >80% of isolated strains (Cryptococcus spp. and Rhodotorula spp. were 33.3% and 17.8% of total strains, respectively). Culturable yeasts were psychrotolerant, predominantly obligate aerobes and able to degrade organic macromolecules (e.g. starch, esters, lipids, proteins). To the authors' knowledge, this is the first study to report the presence of culturable yeasts in meltwaters originating from glaciers. On the basis of these results, it is reasonable to suppose that the viable yeasts observed in meltwaters derived predominantly from the subglacial zone and that they originated from the subglacial microbial community. Their metabolic abilities could contribute to the microbial activity occurring in subglacial environments.

  6. Glycerol Production by Fermenting Yeast Cells Is Essential for Optimal Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M.; Verstrepen, Kevin J.

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts. PMID:25764309

  7. From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Okazaki, Fumiyoshi; Djohan, Apridah Cameliawati; Hara, Kiyotaka Y; Asai-Nakashima, Nanami; Teramura, Hiroshi; Andriani, Ade; Tominaga, Masahiro; Wakai, Satoshi; Kahar, Prihardi; Yopi; Prasetya, Bambang; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.

  8. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. [Effects of 33% grapefruit extract on the growth of the yeast--like fungi, dermatopytes and moulds].

    PubMed

    Krajewska-Kułak, E; Lukaszuk, C; Niczyporuk, W

    2001-01-01

    Grapefruit seed extract was discovered by Jacob Harich an american immunologist in 1980. Assessment of the influence of grapefruit extract on the yeast-like fungi strains--Candida albicans growth. Material used in this investigation was ATCC test Candida albicans strains no 10231, 200 of Candida albicans strains, 5 of Candida sp. strains isolated from patients with candidiasis symptoms from different ontocenosis and 12 of dermatophytes and moulds isolated from patients. The susceptibility of the Candida was determined by serial dilution method. It seems that 33% grapefruit extract exert a potent antifungal activity against the yeast like fungi strains and had low activity against dermatophytes and moulds. Further studies in vitro and in vivo on greater number of the yeast-like fungi strains and other fungi species are needed.

  10. Studying Functions of All Yeast Genes Simultaneously

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  11. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  12. Influence of aeration during propagation of pitching yeast on fermentation and beer flavor.

    PubMed

    Cheong, Chul; Wackerbauer, Karl; Kang, Soon Ah

    2007-02-01

    The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.

  13. Yeast culture collections in the twenty-first century: new opportunities and challenges.

    PubMed

    Boundy-Mills, Kyria L; Glantschnig, Ewald; Roberts, Ian N; Yurkov, Andrey; Casaregola, Serge; Daniel, Heide-Marie; Groenewald, Marizeth; Turchetti, Benedetta

    2016-07-01

    The twenty-first century has brought new opportunities and challenges to yeast culture collections, whether they are long-standing or recently established. Basic functions such as archiving, characterizing and distributing yeasts continue, but with expanded responsibilities and emerging opportunities. In addition to a number of well-known, large public repositories, there are dozens of smaller public collections that differ in the range of species and strains preserved, field of emphasis and services offered. Several collections have converted their catalogues to comprehensive databases and synchronize them continuously through public services, making it easier for users worldwide to locate a suitable source for specific yeast strains and the data associated with these yeasts. In-house research such as yeast taxonomy continues to be important at culture collections. Because yeast culture collections preserve a broad diversity of species and strains within a species, they are able to make discoveries in many other areas as well, such as biotechnology, functional, comparative and evolution genomics, bioprocesses and novel products. Due to the implementation of the Convention of Biological Diversity (CBD) and the Nagoya Protocol (NP), there are new requirements for both depositors and users to ensure that yeasts were collected following proper procedures and to guarantee that the country of origin will be considered if benefits arise from a yeast's utilization. Intellectual property rights (IPRs) are extremely relevant to the current access and benefit-sharing (ABS) mechanisms; most research and development involving genetic resources and associated traditional knowledge will be subject to this topic. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    PubMed Central

    García, Margarita; Esteve-Zarzoso, Braulio; Crespo, Julia; Cabellos, Juan M.; Arroyo, Teresa

    2017-01-01

    There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans) native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR) combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889. PMID:29326669

  15. New insights on the baker's yeast-mediated hydration of oleic acid: the bacterial contaminants of yeast are responsible for the stereoselective formation of (R)-10-hydroxystearic acid.

    PubMed

    Serra, S; De Simeis, D

    2018-03-01

    The preparation of the high-value flavour γ-dodecalactone is based on the biotransformation of natural 10-HSA, which is in turn obtained by microbial hydration of oleic acid. We want to establish a reliable baker's yeast-mediated procedure for 10-HSA preparation. The previously reported yeast-mediated hydration procedures are unreliable because bacteria-free baker's yeast is not able to hydrate oleic acid. The actual responsible for performing this reaction are the bacterial contaminants present in baker's yeast. Moreover, we demonstrated that the enantioselectivity in the production of (R)-10-HSA is affected mainly by the temperature used in the biotransformation. We demonstrated that Saccharomyces cerevisiae is not able to hydrate oleic acid, whereas different bacterial strains present in baker's yeast transform oleic acid into (R)-10-HSA. We reported a general procedure for the preparation of (R)-10-HSA starting from oleic acid and using commercially available baker's yeast. This study holds both scientific and industrial interest. It unambiguously establishes that the eukaryote micro-organisms present in baker's yeast are not able to hydrate oleic acid. The isolation of oleic acid hydrating bacterial strains from commercial baker's yeast points to their prospective use for the industrial synthesis of 10-HSA. © 2017 The Society for Applied Microbiology.

  16. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media.

    PubMed

    Bell, P J; Higgins, V J; Attfield, P V

    2001-04-01

    To compare the fermentative capacity of wild and domesticated isolates of the genus Saccharomyces. The fermentative capacity of yeasts from a variety of wild and domesticated sources was tested in synthetic dough media that mimic major bread dough types. Domesticated yeast strains were found to have better maltose-utilizing capacity than wild yeast strains. The capacity to ferment sugars under high osmotic stress was randomly distributed amongst wild and baking strains of Saccharomyces. The domestication of bakers' yeast has enhanced the ability of yeasts to ferment maltose, without a similar impact on the fermentative capacity under high osmotic conditions. This study, combined with molecular studies of both wild and domesticated yeast, showed that domestication of bakers' yeast has resulted in improved maltose utilization, apparently via the duplication and mutation of the MAL genes.

  17. Expression of GPD1 and SIP18 genes during rehydration in active dry industrial Saccharomyces cerevisiae cider-making yeast strains (ADY).

    PubMed

    Goncerzewicz, Anna; Kamińska-Wojteczek, Karolina; Młynarczyk, Izabella; Misiewicz, Anna

    2017-01-01

    In this study we determined the influence of different sugar concentration in media, time of rehydration and type of strain on relative expression level of GPD1 and SIP18 genes of active dry cider-making yeast strains, followed by the assessment of the impact of rehydration on the fermentation process. High expression of SIP18 at the beginning of rehydration was shown to be due to high transcription of the gene during the drying process. High sugar concentrations of media initiated transcription of the GPD1 gene and triggered the cellular glycerol biosynthesis pathway in examined strains. Rehydration time and type of strain showed to have no statistically significant impact on the course of the fermentation; RT qPCR results depended mainly on the time of rehydration and sugar concentration of the medium. This is the first attempt to confront rehydration time and molecular mechanisms acting upon rehydration with the course of the fermentation process.

  18. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    PubMed

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  20. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles

    PubMed Central

    Lauterbach, Alexander; Usbeck, Julia C.; Behr, Jürgen

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own “in-house strains”. During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable “brewing yeast” spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking. PMID

  1. Genome Sequence of the Native Apiculate Wine Yeast Hanseniaspora vineae T02/19AF

    PubMed Central

    Giorello, Facundo M.; Berná, Luisa; Greif, Gonzalo; Camesasca, Laura; Salzman, Valentina; Medina, Karina; Robello, Carlos; Gaggero, Carina; Aguilar, Pablo S.

    2014-01-01

    The use of novel yeast strains for winemaking improves quality and provides variety including subtle characteristic differences in fine wines. Here we report the first genome of a yeast strain native to Uruguay, Hanseniaspora vineae T02/19AF, which has been shown to positively contribute to aroma and wine quality. PMID:24874663

  2. Cystobasidiomycetes yeasts from Patagonia (Argentina): description of Rhodotorula meli sp. nov. from glacial meltwater.

    PubMed

    Libkind, Diego; Sampaio, José Paulo; van Broock, Maria

    2010-09-01

    A basidiomycetous yeast, strain CRUB 1032(T), which formed salmon-pink colonies, was isolated from glacial meltwater in Patagonia, Argentina. Morphological, physiological and biochemical characterization indicated that this strain belonged to the genus Rhodotorula. Molecular taxonomic analysis based on the 26S rDNA D1/D2 domain and internal transcribed spacer region sequences showed that strain CRUB 1032(T) represents an undescribed yeast species, for which the name Rhodotorula meli sp. nov. is proposed (type strain is CRUB 1032(T)=CBS 10797(T)=JCM 15319(T)). Phylogenetic analysis showed that Rhodotorula lamellibrachii was the closest known species, which, together with R. meli, formed a separate cluster related to the Sakaguchia clade within the Cystobasidiomycetes. Additional Patagonian yeast isolates of the class Cystobasidiomycetes are also investigated in the present work.

  3. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  4. Aroma profiling of an aerated fermentation of natural grape must with selected yeast strains at pilot scale.

    PubMed

    Tronchoni, Jordi; Curiel, José Antonio; Sáenz-Navajas, María Pilar; Morales, Pilar; de-la-Fuente-Blanco, Arancha; Fernández-Zurbano, Purificación; Ferreira, Vicente; Gonzalez, Ramon

    2018-04-01

    The use of non-Saccharomyces strains in aerated conditions has proven effective for alcohol content reduction in wine during lab-scale fermentation. The process has been scaled up to 20 L batches, in order to produce lower alcohol wines amenable to sensory analysis. Sequential instead of simultaneous inoculation was chosen to prevent oxygen exposure of Saccharomyces cerevisiae during fermentation, since previous results indicated that this would result in increased acetic acid production. In addition, an adaptation step was included to facilitate non-Saccharomyces implantation in natural must. Wines elaborated with Torulaspora delbrueckii or Metschnikowia pulcherrima in aerated conditions contained less alcohol than control wine (S. cerevisiae, non-aerated). Sensory and aroma analysis revealed that the quality of mixed fermentations was affected by the high levels of some yeast amino acid related byproducts, which suggests that further progress requires a careful selection of non-Saccharomyces strains and the use of specific N-nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast.

    PubMed

    Ohdate, Takumi; Omura, Fumihiko; Hatanaka, Haruyo; Zhou, Yan; Takagi, Masami; Goshima, Tetsuya; Akao, Takeshi; Ono, Eiichiro

    2018-01-01

    For maltose fermentation, budding yeast Saccharomyces cerevisiae operates a mechanism that involves transporters (MALT), maltases (MALS) and regulators (MALR) collectively known as MAL genes. However, functional relevance of MAL genes during sake brewing process remains largely elusive, since sake yeast is cultured under glucose-rich condition achieved by the co-culture partner Aspergillus spp.. Here we isolated an ethyl methane sulfonate (EMS)-mutagenized sake yeast strain exhibiting enhanced maltose fermentation compared to the parental strain. The mutant carried a single nucleotide insertion that leads to the extension of the C-terminal region of a previously uncharacterized MALR gene YPR196W-2, which was renamed as MAL73. Introduction of the mutant allele MAL73L with extended C-terminal region into the parental or other sake yeast strains enhanced the growth rate when fed with maltose as the sole carbon source. In contrast, disruption of endogenous MAL73 in the sake yeasts decreased the maltose fermentation ability of sake yeast, confirming that the original MAL73 functions as a MALR. Importantly, the MAL73L-expressing strain fermented more maltose in practical condition compared to the parental strain during sake brewing process. Our data show that MAL73(L) is a novel MALR gene that regulates maltose fermentation, and has been functionally attenuated in sake yeast by single nucleotide deletion during breeding history. Since the MAL73L-expressing strain showed enhanced ability of maltose fermentation, MAL73L might also be a valuable tool for enhancing maltose fermentation in yeast in general.

  6. Influence of yeast macromolecules on sweetness in dry wines: role of the saccharomyces cerevisiae protein Hsp12.

    PubMed

    Marchal, Axel; Marullo, Philippe; Moine, Virginie; Dubourdieu, Denis

    2011-03-09

    Yeast autolysis during lees contact influences the organoleptic properties of wines especially by increasing their sweet taste. Although observed by winemakers, this phenomenon is poorly explained in enology. Moreover, the compounds responsible for sweetness in wine remain unidentified. This work provides new insights in this way by combining sensorial, biochemical and genetic approaches. First, we verified by sensory analysis that yeast autolysis in red wine has a significant effect on sweetness. Moderate additions of ethanol or glycerol did not have the same effect. Second, a sapid fraction was isolated from lees extracts by successive ultrafiltrations and HPLC purifications. Using nano-LC-MS/MS, peptides released by the yeast heat shock protein Hsp12p were distinctly identified in this sample. Third, we confirmed the sweet contribution of this protein by sensorial comparison of red wines incubated with two kinds of yeast strains: a wild-type strain containing the native Hsp12p and a deletion mutant strain that lacks the Hsp12p protein (Δ°HSP12 strain). Red wines incubated with wild-type strain showed a significantly higher sweetness than control wines incubated with Δ°HSP12 strains. These results demonstrated the contribution of protein Hsp12p in the sweet perception consecutive to yeast autolysis in wine.

  7. Candidiasis During Pregnancy May Result From Isogenic Commensal Strains

    PubMed Central

    Daniels, Wayne; Glover, Douglas D.; Essmann, Michael

    2001-01-01

    Objective: Our laboratory previously demonstrated that asymptomatic vaginal colonization during pregnancy is a factor predisposing patients to subsequent symptomatic vulvovaginal candidiasis. It is unknown whether symptoms result from strain replacement or a change in host relationship to the original colonizing strain. This study was undertaken to determine whether Candida albicans isolates from asymptomatic women could be responsible for subsequent symptomatic vaginitis. Methods: We retained isolates of C. albicans from women followed longitudinally through pregnancy, and identified six pairs of cultures from women who were colonized without symptoms and who later became symptomatic (average time 14 weeks). We used a random amplification of polymorphic DNA (RAPD) analysis to determine whether isolates from our study patients were genetically similar or dissimilar. Results: Analysis of these pairs of yeast strains by RAPD revealed that five of the six women had symptoms apparently due to the same yeast strain that was found initially as a commensal strain. To increase the power of these observations, we also performed RAPD analysis on six randomly selected yeast strains from other women in this study who had not become symptomatic to determine whether any of these unrelated strains matched strains from those women who became symptomatic. Conclusion: Symptomatic yeast vaginitis is usually due to strains of C. albicans already carried in the lower genital tract, underscoring the need to understand regulation of growth and virulence of the organism in vivo. PMID:11495556

  8. Investigating flavour characteristics of British ale yeasts: techniques, resources and opportunities for innovation

    PubMed Central

    Parker, Neva; James, Steve; Dicks, Jo; Bond, Chris; Nueno-Palop, Carmen; White, Chris; Roberts, Ian N

    2015-01-01

    Five British ale yeast strains were subjected to flavour profiling under brewery fermentation conditions in which all other brewing parameters were kept constant. Significant variation was observed in the timing and quantity of flavour-related chemicals produced. Genetic tests showed no evidence of hybrid origins in any of the strains, including one strain previously reported as a possible hybrid of Saccharomyces cerevisiae and S. bayanus. Variation maintained in historical S. cerevisiae ale yeast collections is highlighted as a potential source of novelty in innovative strain improvement for bioflavour production. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25361168

  9. Influence of gamma radiation on ethanol production from yeast.

    PubMed

    Del-Mastro, N L; Gimenes, J J; Villavicencio, A L

    1988-01-01

    The effect of up to 6,000 Gray (Gy; 1 Gy = 1 J/k) 60Co gamma irradiation on the fermentative capacity of two strains of yeast cells is reported. Ethanol production by the irradiated cells was unchanged for both strains at 3,000 Gy and reduced 43% for only one strain at 6,000 Gy in spite of a marked decrease in viability at higher doses (2-8% at 3,000 Gy and 0.01% at 6,000 Gy). These results suggest that the yeast fermentation system for converting sugar to alcohol is a relatively radioresistant process and not inhibited by the stable by-products produced during irradiation. Furthermore, these data indicate that radiation polymerization for immobilizing these cells should not interfere with their fermentation capacity.

  10. A systems-level approach for metabolic engineering of yeast cell factories.

    PubMed

    Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens

    2012-03-01

    The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    PubMed

    Young, Eric M; Zhao, Zheng; Gielesen, Bianca E M; Wu, Liang; Benjamin Gordon, D; Roubos, Johannes A; Voigt, Christopher A

    2018-05-09

    Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the construction of strain libraries from which the maximum information can be extracted without sampling every possible combination. We use Saccharomyces cerevisiae as a host for a novel six-gene pathway to itaconic acid, selected by comparing alternative shunt pathways that bypass the mitochondrial TCA cycle. The pathway is distinctive for the use of acetylating acetaldehyde dehydrogenase to increase cytosolic acetyl-CoA pools, a bacterial enzyme to synthesize citrate in the cytosol, and an itaconic acid exporter. Precise control over the expression of each gene is enabled by a set of promoter-terminator pairs that span a 174-fold range. Two large combinatorial libraries (160 variants, 2.4Mb and 32 variants, 0.6Mb) are designed where the expression levels are selected by statistical methods (I-optimal response surface methodology, full factorial, or Plackett-Burman) with the intent of extracting different types of guiding information after the screen. This is applied to the design of a third library (24 variants, 0.5Mb) intended to alleviate a bottleneck in cis-aconitate decarboxylase (CAD) expression. The top strain produces 815mg/l itaconic acid, a 4-fold improvement over the initial strain achieved by iteratively balancing pathway expression. Including a methylated product in the total, the strain produces 1.3g/l combined itaconic acids. Further, a regression analysis of the libraries reveals the optimal expression level of CAD as well as pairwise interdependencies between genes that result in increased titer and purity of itaconic acid. This work demonstrates adapting algorithmic design strategies to guide automated yeast strain construction and learn

  12. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals.

    PubMed

    Rapoport, Alexander; Turchetti, Benedetta; Buzzini, Pietro

    2016-06-01

    Dehydration of yeast cells causes them to enter a state of anhydrobiosis in which their metabolism is temporarily and reversibly suspended. This unique state among organisms is currently used in the production of active dry yeasts, mainly used in baking and winemaking. In recent decades non-conventional applications of yeast dehydration have been proposed for various modern biotechnologies. This mini-review briefly summarises current information on the application of dry yeasts in traditional and innovative fields. It has been shown that dry yeast preparations can be used for the efficient protection, purification and bioremediation of the environment from heavy metals. The high sorption activity of dehydrated yeasts can be used as an interesting tool in winemaking due to their effects on quality and taste. Dry yeasts are also used in agricultural animal feed. Another interesting application of yeast dehydration is as an additional stage in new methods for the stable immobilisation of microorganisms, especially in cases when biotechnologically important strains have no affinity with the carrier. Such immobilisation methods also provide a new approach for the successful conservation of yeast strains that are very sensitive to dehydration. In addition, the application of dehydration procedures opens up new possibilities for the use of yeast as a model system. Separate sections of this review also discuss possible uses of dry yeasts in biocontrol, bioprotection and biotransformations, in analytical methods as well as in some other areas.

  13. Glycobiology in yeast: production of bio-ative biopolymers and small molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheller, Henrik

    The accomplished goals of the CRADA were the establishment of a yeast strain capable of producing levels of vanillin suitable for commercial production and the identification of novel glycosyltransferases to construct the biosynthetic pathway of a gum Arabic-variant in yeast.

  14. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    PubMed Central

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  15. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.

    PubMed

    Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G

    2016-06-01

    Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.

  16. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing.

    PubMed

    Codón, Antonio C; Rincón, Ana M; Moreno-Mateos, Miguel A; Delgado-Jarana, Jesús; Rey, Manuel; Limón, Carmen; Rosado, Ivan V; Cubero, Beatriz; Peñate, Xenia; Castrejón, Francisco; Benítez, Tahía

    2003-01-15

    Three procedures were used to obtain new Saccharomyces cerevisiae baker's yeasts with increased storage stability at -20, 4, 22, and 30 degrees C. The first used mitochondria from highly ethanol-tolerant wine yeast, which were transferred to baker's strains. Viability of the heteroplasmons was improved shortly after freezing. However, after prolonged storage, viability dramatically decreased and was accompanied by an increase in the frequency of respiratory-deficient (petite) mutant formation. This indicated that mitochondria were not stable and were incompatible with the nucleus. The strains tested regained their original resistance to freezing after recovering their own mitochondria. The second procedure used hybrid formation after protoplast fusion and isolation on selective media of fusants from baker's yeast meiotic products resistant to parafluorphenylalanine and cycloheximide, respectively. No hybrids were obtained when using the parentals, probably due to the high ploidy of the baker's strains. Hybrids obtained from nonisogenic strains manifested in all cases a resistance to freezing intermediate between those of their parental strains. Hybrids from crosses between meiotic products of the same strain were always more sensitive than their parentals. The third method was used to develop baker's yeast mutants resistant to 2-deoxy-d-glucose (DOG) and deregulated for maltose and sucrose metabolism. Mutant DOG21 displayed a slight increase in trehalose content and viability both in frozen doughs and during storage at 4 and 22 degrees C. This mutant also displayed a capacity to ferment, under laboratory conditions, both lean and sweet fresh and frozen doughs. For industrial uses, fermented lean and sweet bakery products, both from fresh and frozen doughs obtained with mutant DOG21, were of better quality with regard to volume, texture, and organoleptic properties than those produced by the wild type.

  17. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol

    PubMed Central

    Favaro, Lorenzo; Jooste, Tania; Basaglia, Marina; Rose, Shaunita H.; Saayman, Maryna; Görgens, Johann F.; Casella, Sergio; van Zyl, Willem H.

    2013-01-01

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one step process, is a promising strategy for the effective ethanol production from cheap lignocellulosic and starchy materials. CBP requires a highly engineered microbial strain able to both hydrolyze biomass with enzymes produced on its own and convert the resulting simple sugars into high-titer ethanol. Recently, heterologous production of cellulose and starch-degrading enzymes has been achieved in yeast hosts, which has realized direct processing of biomass to ethanol. However, essentially all efforts aimed at the efficient heterologous expression of saccharolytic enzymes in yeast have involved laboratory strains and much of this work has to be transferred to industrial yeasts that provide the fermentation capacity and robustness desired for large scale bioethanol production. Specifically, the development of an industrial CBP amylolytic yeast would allow the one-step processing of low-cost starchy substrates into ethanol. This article gives insight in the current knowledge and achievements on bioethanol production from starchy materials with industrial engineered S. cerevisiae strains. PMID:22989992

  18. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine.

    PubMed

    Gobbi, Mirko; Comitini, Francesca; Domizio, Paola; Romani, Cristina; Lencioni, Livio; Mannazzu, Ilaria; Ciani, Maurizio

    2013-04-01

    In the last few years there is an increasing interest on the use of mixed fermentation of Saccharomyces and non-Saccharomyces wine yeasts for inoculation of wine fermentations to enhance the quality and improve complexity of wines. In the present work Lachancea (Kluyveromyces) thermotolerans and Saccharomyces cerevisiae were evaluated in simultaneous and sequential fermentation with the aim to enhance acidity and improve the quality of wine. In this specific pairing of yeast strains in mixed fermentations (S. cerevisiae EC1118 and L. thermotolerans 101), this non-Saccharomyces yeast showed a high level of competitiveness. Nevertheless the S. cerevisiae strain dominated the fermentation over the spontaneous S. cerevisiae strains also under the industrial fermentation conditions. The different condition tested (modalities of inoculum, temperature of fermentation, different grape juice) influenced the specific interactions and the fermentation behaviour of the co-culture of S. cerevisiae and L. thermotolerans. However, some metabolic behaviours such as pH reduction and enhancement of 2-phenylethanol and glycerol, were shown here under all of the conditions tested. The specific chemical profiles of these wines were confirmed by the sensory analysis test, which expressed these results at the tasting level as significant increases in the spicy notes and in terms of total acidity increases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Genome Sequence of the Native Apiculate Wine Yeast Hanseniaspora vineae T02/19AF.

    PubMed

    Giorello, Facundo M; Berná, Luisa; Greif, Gonzalo; Camesasca, Laura; Salzman, Valentina; Medina, Karina; Robello, Carlos; Gaggero, Carina; Aguilar, Pablo S; Carrau, Francisco

    2014-05-29

    The use of novel yeast strains for winemaking improves quality and provides variety including subtle characteristic differences in fine wines. Here we report the first genome of a yeast strain native to Uruguay, Hanseniaspora vineae T02/19AF, which has been shown to positively contribute to aroma and wine quality. Copyright © 2014 Giorello et al.

  20. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-05-01

    Freeze tolerance is a necessary characteristic for industrial baker's yeast because frozen-dough baking is one of the key technologies for supplying oven-fresh bakery products to consumers. Both proline and trehalose are known to function as cryoprotectants in yeast cells. In order to enhance the freeze tolerance of yeast cells, we constructed a self-cloning diploid baker's yeast strain with simultaneous accumulation of proline, by expressing the PRO1-I150T allele, encoding the proline-feedback inhibition-less sensitive γ-glutamyl kinase, and trehalose, by disrupting the NTH1 gene, encoding neutral trehalase. The resultant strain retained higher tolerance to oxidative and freezing stresses than did the single proline- or trehalose-accumulating strain. Interestingly, our results suggest that proline and trehalose protect yeast cells from short-term and long-term freezing, respectively. Simultaneous accumulation of proline and trehalose in industrial baker's yeast also enhanced the fermentation ability in the frozen dough compared with the single accumulation of proline or trehalose. These results indicate that baker's yeast that accumulates both proline and trehalose is applicable for frozen-dough baking. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.