Sample records for yeasts including saccharomyces

  1. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    PubMed

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  2. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    PubMed

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  3. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    PubMed Central

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  4. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    PubMed

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  5. Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts.

    PubMed

    Ganga, M A; Martínez, C

    2004-01-01

    The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of beta-glycosidase. The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non-Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions.

  6. Evolution and variation of the yeast (Saccharomyces) genome.

    PubMed

    Mortimer, R K

    2000-04-01

    In this review we describe the role of the yeast Saccharomyces in the development of human societies including the use of this organism in the making of wine, bread, beer, and distilled beverages. We also discuss the tremendous diversity of yeast found in natural (i.e., noninoculated) wine fermentations and the scientific uses of yeast over the past 60 years. In conclusion, we present ideas on the model of "genome renewal" and the use of this model to explain the mode by which yeast has evolved and how diversity can be generated.

  7. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii.

    PubMed

    Naumov, Gennadi I; Lee, Ching-Fu; Naumova, Elena S

    2013-01-01

    Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.

  8. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.

    PubMed

    Shekhawat, Kirti; Bauer, Florian F; Setati, Mathabatha E

    2017-03-01

    The sequential or co-inoculation of grape must with non-Saccharomyces yeast species and Saccharomyces cerevisiae wine yeast strains has recently become a common practice in winemaking. The procedure intends to enhance unique aroma and flavor profiles of wine. The extent of the impact of non-Saccharomyces strains depends on their ability to produce biomass and to remain metabolically active for a sufficiently long period. However, mixed-culture wine fermentations tend to become rapidly dominated by S. cerevisiae, reducing or eliminating the non-Saccharomyces yeast contribution. For an efficient application of these yeasts, it is therefore essential to understand the environmental factors that modulate the population dynamics of such ecosystems. Several environmental parameters have been shown to influence population dynamics, but their specific effect remains largely uncharacterized. In this study, the population dynamics in co-fermentations of S. cerevisiae and three non-Saccharomyces yeast species: Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima, was investigated as a function of oxygen availability. In all cases, oxygen availability strongly influenced population dynamics, but clear species-dependent differences were observed. Our data show that L. thermotolerans required the least oxygen, followed by T. delbrueckii and M. pulcherrima. Distinct species-specific chemical volatile profiles correlated in all cases with increased persistence of non-Saccharomyces yeasts, in particular increases in some higher alcohols and medium chain fatty acids. The results highlight the role of oxygen in regulating the succession of yeasts during wine fermentations and suggests that more stringent aeration strategies would be necessary to support the persistence of non-Saccharomyces yeasts in real must fermentations.

  9. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    PubMed

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    PubMed Central

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  11. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity.

    PubMed

    Padilla, Beatriz; Gil, José V; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed.

  12. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    PubMed Central

    Gaensly, Fernanda; Picheth, Geraldo; Brand, Debora; Bonfim, Tania M.B.

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended. PMID:25242932

  13. Analysis of non-Saccharomyces yeast populations isolated from grape musts from Sicily (Italy).

    PubMed

    Romancino, D P; Di Maio, S; Muriella, R; Oliva, D

    2008-12-01

    The aim of this study was to identify the non-Saccharomyces yeast populations present in the grape must microflora from wineries from different areas around the island of Sicily. Yeasts identification was conducted on 2575 colonies isolated from six musts, characterized using Wallerstein Laboratory (WL) nutrient agar, restriction analysis of the amplified 5.8S-internal transcribed spacer region and restriction profiles of amplified 26S rDNA. In those colonies, we identified 11 different yeast species originating from wine musts from two different geographical areas of the island of Sicily. We isolated non-Saccharomyces yeasts and described the microflora in grape musts from different areas of Sicily. Moreover, we discovered two new colony morphologies for yeasts on WL agar never previously described. This investigation is a first step in understanding the distribution of non-Saccharomyces yeasts in grape musts from Sicily. The contribution is important as a tool for monitoring the microflora in grape musts and for establishing a new non-Saccharomyces yeast collection; in the future, this collection will be used for understanding the significance of these yeasts in oenology.

  14. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    PubMed Central

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  15. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile.

    PubMed

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non- Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non- Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non- Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non- Saccharomyces yeasts ( Starmerella bacillaris, Metschnikowia pulcherrima , and Pichia membranifaciens ) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae , to assess the impact of the non- Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae . Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae . We report here, for the first time, that non- Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris , aspartic acid was assimilated very slowly by M. pulcherrima , and glutamine was not assimilated by P. membranifaciens . By contrast, cysteine appeared to be a preferred nitrogen source for all non- Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non- Saccharomyces yeasts may account for

  16. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  17. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    PubMed Central

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  18. Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar

    PubMed Central

    Grangeteau, Cédric; Gerhards, Daniel; von Wallbrunn, Christian; Alexandre, Hervé; Rousseaux, Sandrine; Guilloux-Benatier, Michèle

    2016-01-01

    Different genera and/or species of yeasts present on grape berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina), Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at the strain level by FT-IR spectroscopy (207 different FTIR strain pattern). Only a small proportion of non-Saccharomyces yeasts present in musts came directly from grape berries for the three species studied. Some strains were found in the must in two consecutive years and some of them were also found in the cellar environment before the arrival of the harvest of second vintage. This study demonstrates for the first time the persistence of non-Saccharomyces yeast strains from year to year in the cellar. Sulfur dioxide can affect yeast populations in the must and therefore their persistence in the cellar environment. PMID:27014199

  19. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    PubMed

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  20. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  1. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    PubMed

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  2. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

    PubMed

    Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé

    2012-12-01

    There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    PubMed

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Saccharomyces cerevisiae vaginitis: transmission from yeast used in baking.

    PubMed

    Nyirjesy, P; Vazquez, J A; Ufberg, D D; Sobel, J D; Boikov, D A; Buckley, H R

    1995-09-01

    To determine whether vaginitis due to Saccharomyces cerevisiae can be caused by exposure to exogenous sources of baker's yeast. Eight women with S cerevisiae vaginitis were identified from a cohort of women referred for the evaluation of chronic vaginal symptoms. In those with high-level exposure to exogenous sources of S cerevisiae, isolates from the vagina and those sources were sent in a blinded fashion for contour-clamped homogeneous electric-field electrophoresis. Four women from a cohort of approximately 750 referred patients had high-level exposures to S cerevisiae. In one of these patients, electrophoresis analysis revealed similarities between the strains isolated from her vagina, her husband's fingers, and the yeast he used in his pizza shop. Saccharomyces cerevisiae vaginitis can be the result of the inoculation of this yeast from exogenous sources.

  5. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts.

    PubMed

    Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G

    2008-02-01

    The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.

  6. Immunoelectron Microscopy of Cryofixed Freeze-Substituted Yeast Saccharomyces cerevisiae.

    PubMed

    Fišerová, Jindřiška; Richardson, Christine; Goldberg, Martin W

    2016-01-01

    Immunolabeling electron microscopy is a challenging technique with demands for perfect ultrastructural and antigen preservation. High-pressure freezing offers an excellent way to fix cellular structure. However, its use for immunolabeling has remained limited because of the low frequency of labeling due to loss of protein antigenicity or accessibility. Here we present a protocol for immunogold labeling of the yeast Saccharomyces cerevisiae that gives specific and multiple labeling while keeping the finest structural details. We use the protocol to reveal the organization of individual nuclear pore complex proteins and the position of transport factors in the yeast Saccharomyces cerevisiae in relation to actual transport events.

  7. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  8. PCR on yeast colonies: an improved method for glyco-engineered Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Saccharomyces cerevisiae is extensively used in bio-industries. However, its genetic engineering to introduce new metabolism pathways can cause unexpected phenotypic alterations. For example, humanisation of the glycosylation pathways is a high priority pharmaceutical industry goal for production of therapeutic glycoproteins in yeast. Genomic modifications can lead to several described physiological changes: biomass yields decrease, temperature sensitivity or cell wall structure modifications. We have observed that deletion of several N-mannosyltransferases in Saccharomyces cerevisiae, results in strains that can no longer be analyzed by classical PCR on yeast colonies. Findings In order to validate our glyco-engineered Saccharomyces cerevisiae strains, we developed a new protocol to carry out PCR directly on genetically modified yeast colonies. A liquid culture phase, combined with the use of a Hot Start DNA polymerase, allows a 3-fold improvement of PCR efficiency. The results obtained are repeatable and independent of the targeted sequence; as such the protocol is well adapted for intensive screening applications. Conclusions The developed protocol enables by-passing of many of the difficulties associated with PCR caused by phenotypic modifications brought about by humanisation of the glycosylation in yeast and allows rapid validation of glyco-engineered Saccharomyces cerevisiae cells. It has the potential to be extended to other yeast strains presenting cell wall structure modifications. PMID:23688076

  9. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  10. Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts

    PubMed Central

    Rozpędowska, Elżbieta; Hellborg, Linda; Ishchuk, Olena P.; Orhan, Furkan; Galafassi, Silvia; Merico, Annamaria; Woolfit, Megan; Compagno, Concetta; Piškur, Jure

    2011-01-01

    Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make–accumulate–consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect. PMID:21556056

  11. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.

    PubMed

    Alexandre, Hervé

    2013-10-15

    The aging of certain white wines is dependent on the presence of yeast strains that develop a biofilm on the wine surface after the alcoholic fermentation. These strains belong to the genus Saccharomyces and are called flor yeasts. These strains possess distinctive characteristics compared with Saccharomyces cerevisiae fermenting strain. The most important one is their capacity to form a biofilm on the air-liquid interface of the wine. The major gene involved in this phenotype is FLO11, however other genes are also involved in velum formation by these yeast and will be detailed. Other striking features presented in this review are their aneuploidy, and their mitochondrial DNA polymorphism which seems to reflect adaptive evolution of the yeast to a stressful environment where acetaldehyde and ethanol are present at elevated concentration. The biofilm assures access to oxygen and therefore permits continued growth on non-fermentable ethanol. This specific metabolism explains the peculiar organoleptic profile of these wines, especially their content in acetaldehyde and sotolon. This review deals with these different specificities of flor yeasts and will also underline the existing gaps regarding these astonishing yeasts. © 2013.

  12. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis

    PubMed Central

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-01

    ABSTRACT Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection. PMID:27435998

  13. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    PubMed

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  14. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  15. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    PubMed Central

    de Ponzzes-Gomes, Camila M.P.B.S.; de Mélo, Dângelly L.F.M.; Santana, Caroline A.; Pereira, Giuliano E.; Mendonça, Michelle O.C.; Gomes, Fátima C.O.; Oliveira, Evelyn S.; Barbosa, Antonio M.; Trindade, Rita C.; Rosa, Carlos A.

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 105 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production. PMID:25242923

  17. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley.

    PubMed

    de Ponzzes-Gomes, Camila M P B S; de Mélo, Dângelly L F M; Santana, Caroline A; Pereira, Giuliano E; Mendonça, Michelle O C; Gomes, Fátima C O; Oliveira, Evelyn S; Barbosa, Antonio M; Trindade, Rita C; Rosa, Carlos A

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 10(5) cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  18. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    PubMed

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  20. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii.

    PubMed

    Khatri, Indu; Akhtar, Akil; Kaur, Kamaldeep; Tomar, Rajul; Prasad, Gandham Satyanarayana; Ramya, Thirumalai Nallan Chakravarthy; Subramanian, Srikrishna

    2013-10-22

    The yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain. We report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes. Our analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties.

  1. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    PubMed

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  2. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  3. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    PubMed

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii

    PubMed Central

    2013-01-01

    Background The yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain. Results We report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes. Conclusions Our analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties. PMID:24148866

  5. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    PubMed

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    PubMed

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots.

    PubMed

    Nally, M C; Pesce, V M; Maturano, Y P; Rodriguez Assaf, L A; Toro, M E; Castellanos de Figueroa, L I; Vazquez, F

    2015-07-02

    The aim of this study was to determine the putative modes of action of 59 viticultural yeasts (31 Saccharomyces and 28 non-Saccharomyces) that inhibited fungi isolated from sour and grey rot in grapes. Inhibition of fungal mycelial growth by metabolites, enzyme activities (laminarinases, chitinases), antifungal volatiles, competition for nutrients (siderophores, Niche Overlap Index (NOI)), inhibition of fungal spore germination and decreased germinal tube length and induction of resistance were assayed. Biofungicide yeasts were classified into "antifungal patterns", according to their mechanisms of action. Thirty isolates presented at least two of the mechanisms assayed. We propose that inhibition of fungal mycelial growth by metabolites, laminarinases, competition for nutrients, inhibition of fungal spore germination and decreased germinal tube length, and antifungal volatiles by Saccharomyces and non-Saccharomyces viticultural yeasts is used as putative biocontrol mechanisms against phytopathogenic fungi. Twenty-four different antifungal patterns were identified. Siderophore production (N)and a combination of siderophore production and NOI>0.92 (M)were the most frequent antifungal patterns observed in the biofungicide yeasts assayed. Elucidation of these mechanisms could be useful for optimization of an inoculum formulation, resulting in a more consistent control of grey and sour rot with Saccharomyces and non-Saccharomyces biocontrol yeasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the ‘yeast mitochondrial genetic code’

    PubMed Central

    Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš

    2017-01-01

    Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063

  9. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    PubMed

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  10. The YeastGenome app: the Saccharomyces Genome Database at your fingertips.

    PubMed

    Wong, Edith D; Karra, Kalpana; Hitz, Benjamin C; Hong, Eurie L; Cherry, J Michael

    2013-01-01

    The Saccharomyces Genome Database (SGD) is a scientific database that provides researchers with high-quality curated data about the genes and gene products of Saccharomyces cerevisiae. To provide instant and easy access to this information on mobile devices, we have developed YeastGenome, a native application for the Apple iPhone and iPad. YeastGenome can be used to quickly find basic information about S. cerevisiae genes and chromosomal features regardless of internet connectivity. With or without network access, you can view basic information and Gene Ontology annotations about a gene of interest by searching gene names and gene descriptions or by browsing the database within the app to find the gene of interest. With internet access, the app provides more detailed information about the gene, including mutant phenotypes, references and protein and genetic interactions, as well as provides hyperlinks to retrieve detailed information by showing SGD pages and views of the genome browser. SGD provides online help describing basic ways to navigate the mobile version of SGD, highlights key features and answers frequently asked questions related to the app. The app is available from iTunes (http://itunes.com/apps/yeastgenome). The YeastGenome app is provided freely as a service to our community, as part of SGD's mission to provide free and open access to all its data and annotations.

  11. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, suchmore » as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.« less

  12. Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70.

    PubMed

    Cousseau, F E M; Alves, S L; Trichez, D; Stambuk, B U

    2013-01-01

    The genome from the Saccharomyces pastorianus industrial lager brewing strain Weihenstephan 34/70, a natural Saccharomyces cerevisiae/Saccharomyces eubayanus hybrid, indicated the presence of two different maltotriose transporter genes: a new gene in the S. eubayanus subgenome with 81% of homology to the AGT1 permease from S. cerevisiae, and an amplification of the S. eubayanus MTY1 maltotriose permease previously identified in S. pastorianus yeasts. To characterize these S. eubayanus transporter genes, we used a S. cerevisiae strain deleted in the AGT1 permease and introduced the desired permease gene(s) into this locus through homologous recombination. Our results indicate that both the MTY1 and AGT1 genes from the S. eubayanus subgenome encode functional maltotriose transporters that allow fermentation of this sugar by yeast cells, despite their apparent differences in the kinetics of maltotriose-H(+) symport activity. The presence of two maltotriose transporters in the S. eubayanus subgenome not only highlights the importance of sugar transport for efficient maltotriose utilization by industrial yeasts, but these new genes can be used in breeding and/or selection programs aimed at increasing yeast fitness for the efficient fermentation of brewer's wort. © 2012 The Society for Applied Microbiology.

  13. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz

    2013-12-01

    Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  16. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    PubMed Central

    Langkjær, R. B.; Casaregola, S.; Ussery, D. W.; Gaillardin, C.; Piškur, J.

    2003-01-01

    The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand. PMID:12799436

  17. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  18. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii

    PubMed Central

    Douradinha, Bruno; Reis, Viviane CB; Rogers, Matthew B; Torres, Fernando AG; Evans, Jared D; Marques Jr, Ernesto TA

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (>96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest. PMID:24013355

  19. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.

    PubMed

    Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.

  20. The ecology and evolution of non-domesticated Saccharomyces species.

    PubMed

    Boynton, Primrose J; Greig, Duncan

    2014-12-01

    Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  1. The ecology and evolution of non-domesticated Saccharomyces species

    PubMed Central

    Boynton, Primrose J; Greig, Duncan

    2014-01-01

    Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution. © 2014 The Authors. Yeast published by John Wiley & Sons Ltd. PMID:25242436

  2. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    PubMed

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: Part II.

    PubMed

    Moyad, Mark A

    2008-02-01

    Yeast is the term generally applied to a unicellular fungus, and there are hundreds of species now identified. One of the most notable and well-known species of yeast in health and wellness is known as Saccharomyces cerevisiae, which is also known by its more common names, brewer's yeast or baker's yeast. Typically, brewer's yeast is used as a protein supplement, energy booster, immune enhancer, or other vehicle where other compounds can be inserted to create a commercialized health product. For example, one of the most notable positive findings was the encouraging results from a large randomized trial of adults recently vaccinated for seasonal influenza who also received an over-the-counter daily adjuvant modified brewer's yeast-based product (EpiCor) to prevent colds and flu symptoms. The modified yeast-based product significantly reduced the incidence and duration of this common condition. Yeast-based technology is also being used as a molecular mechanistic model of caloric restriction (CR) with the goal of improving the human life span. The current and potential impact of yeast-based technology in medicine is encouraging and should receive more attention, but the recent preliminary positive results of CR in humans may be in part due to what has been already learned from brewer's yeast.

  4. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae).

    PubMed

    Chen, Yawei; Tan, Tianwei

    2018-05-23

    In the biosynthesis of S-adenosylmethionine (SAM) in baker's yeast ( Saccharomyces cerevisiae), ATP functions as both a precursor and a driving force. However, few published reports have dealt with the control of ATP concentration using genetic design. In this study we have adopted a new ATP regulation strategy in yeast for enhancing SAM biosynthesis, including altering NADH availability and regulating the oxygen supply. Different ATP regulation systems were designed based on the introduction of water-forming NADH oxidase, Vitreoscilla hemoglobin, and phosphite dehydrogenase in combination with overexpression of the gene SAM2. Via application of this strategy, after 28 h cultivation, the SAM titer in the yeast strain ABYSM-2 reached a maximum level close to 55 mg/L, an increase of 67% compared to the control strain. The results show that the ATP regulation strategy is a valuable tool for SAM production and might further enhance the synthesis of other ATP-driven metabolites in yeast.

  5. Optimization of air-blast drying process for manufacturing Saccharomyces cerevisiae and non-Saccharomyces yeast as industrial wine starters.

    PubMed

    Lee, Sae-Byuk; Choi, Won-Seok; Jo, Hyun-Jung; Yeo, Soo-Hwan; Park, Heui-Dong

    2016-12-01

    Wine yeast (Saccharomyces cerevisiae D8) and non-Saccharomyces wine yeasts (Hanseniaspora uvarum S6 and Issatchenkia orientalis KMBL5774) were studied using air-blast drying instead of the conventional drying methods (such as freeze and spray drying). Skim milk-a widely used protective agent-was used and in all strains, the highest viabilities following air-blast drying were obtained using 10% skim milk. Four excipients (wheat flour, nuruk, artichoke powder, and lactomil) were evaluated as protective agents for yeast strains during air-blast drying. Our results showed that 7 g lactomil was the best excipient in terms of drying time, powder form, and the survival rate of the yeast in the final product. Finally, 7 types of sugars were investigated to improve the survival rate of air-blast dried yeast cells: 10% trehalose, 10% sucrose, and 10% glucose had the highest survival rate of 97.54, 92.59, and 79.49% for S. cerevisiae D8, H. uvarum S6, and I. orientalis KMBL5774, respectively. After 3 months of storage, S. cerevisiae D8 and H. uvarum S6 demonstrated good survival rates (making them suitable for use as starters), whereas the survival rate of I. orientalis KMBL5774 decreased considerably compared to the other strains. Air-blast dried S. cerevisiae D8 and H. uvarum S6 showed metabolic activities similar to those of non-dried yeast cells, regardless of the storage period. Air-blast dried I. orientalis KMBL5774 showed a noticeable decrease in its ability to decompose malic acid after 3 months of storage at 4 °C.

  6. Thermal resistance of Saccharomyces yeast ascospores in beers.

    PubMed

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-03

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Looking for immunotolerance: a case of allergy to baker's yeast (Saccharomyces cerevisiae).

    PubMed

    Pajno, G B; Passalacqua, G; Salpietro, C; Vita, D; Caminiti, L; Barberio, G

    2005-09-01

    We describe one case of baker's yeast true allergy in a boy with previously diagnosed mite-allergy and atopic dermatitis. At the age of 6, being atopic dermatitis and rhinitis well controlled by drugs, he began to experience generalized urticaria and asthma after eating pizza and bread, but only fresh from the oven. The diagnostic workup revealed single sensitization to baker's yeast (Saccharomyces cerevisiae), and a severe systemic reaction also occurred during the prick-by-prick procedure. After discussing with parents, no special dietary restriction was suggested but the use of autoinjectable adrenaline and on demand salbutamol. A diary of symptoms was recorded by means of a visual-analog scale. During the subsequent 2 years, the severity of symptoms was progressively reduced, and presently urticaria has disappeared. Only cough persists, invariantly after eating just-baked and yeast-containing foods. If bread, pizza and cakes are ate more than one hour after preparation, no symptom occur at all. Baker's yeast is a common component of everyday diet and it usually acts as an allergen only by the inhalatory route. We speculate that the continuous exposure to saccharomyces in foods may have lead to an immunotolerance with a progressive reduction of symptoms, whereas why the allergens is active only in ready-baked foods remains unexplained.

  8. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts.

    PubMed

    Chang, Shang-Lin; Leu, Jun-Yi; Chang, Tien-Hsien

    2015-08-01

    Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double-stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co-evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co-evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species. © 2015 John Wiley & Sons Ltd.

  9. Biosynthesis of Drug Glucuronide Metabolites in the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Ikushiro, Shinichi; Nishikawa, Miyu; Masuyama, Yuuka; Shouji, Tadashi; Fujii, Miharu; Hamada, Masahiro; Nakajima, Noriyuki; Finel, Moshe; Yasuda, Kaori; Kamakura, Masaki; Sakaki, Toshiyuki

    2016-07-05

    Glucuronidation is one of the most common pathways in mammals for detoxification and elimination of hydrophobic xenobiotic compounds, including many drugs. Metabolites, however, can form active or toxic compounds, such as acyl glucuronides, and their safety assessment is often needed. The absence of efficient means for in vitro synthesis of correct glucuronide metabolites frequently limits such toxicological analyses. To overcome this hurdle we have developed a new approach, the essence of which is a coexpression system containing a human, or another mammalian UDP-glucuronosyltransferases (UGTs), as well as UDP-glucose-6-dehydrogenase (UGDH), within the budding yeast, Saccharomyces cerevisiae. The system was first tested using resting yeast cells coexpressing UGDH and human UGT1A6, 7-hydroxycoumarin as the substrate, in a reaction medium containing 8% glucose, serving as a source of UDP-glucuronic acid. Glucuronides were readily formed and recovered from the medium. Subsequently, by selecting suitable mammalian UGT enzyme for the coexpression system we could obtain the desired glucuronides of various compounds, including molecules with multiple conjugation sites and acyl glucuronides of several carboxylic acid containing drugs, namely, mefenamic acid, flufenamic acid, and zomepirac. In conclusion, a new and flexible yeast system with mammalian UGTs has been developed that exhibits a capacity for efficient production of various glucuronides, including acyl glucuronides.

  10. Uptake of yeast (Saccharomyces boulardii) in normal and rotavirus treated intestine.

    PubMed Central

    Cartwright-Shamoon, J; Dickson, G R; Dodge, J; Carr, K E

    1996-01-01

    BACKGROUND: There has recently been a growing interest in the use of the non-pathogenic yeast Saccharomyces boulardii, in the treatment of gastrointestinal disorders, including diarrhoea. The full effects of administration of the yeast are not fully understood. AIMS: To investigate the morphological effects of inoculated S boulardii on mouse intestinal villi, both in control animals and those treated with rotavirus. METHODS: Seven day old BALB/c seronegative mice were intubated with either rotavirus (30 microliters orally) or S boulardii (1.5 g/kg) or both rotavirus and S boulardii administered together. Control animals were given saline only. Animals were killed by decapitation 48 hours post-treatment. The middle region of the small intestine was studied using light microscopy and transmission and scanning electron microscopy, including backscattered electron imaging. RESULTS: Animals treated with rotavirus with or without S boulardii developed severe diarrhoea and showed morphological villous changes such as stromal separation and increased epithelial vacuolation. Specimens treated with S boulardii contained yeast particles within the mucosal tissues. CONCLUSION: The administration of S boulardii did not influence the changes produced by rotavirus, but yeast particles appeared to be taken up by the villous mucosa, with the predominant route apparently being uptake between adjacent epithelial cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8991857

  11. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    PubMed

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: part I.

    PubMed

    Moyad, Mark A

    2007-12-01

    Yeast is the term generally applied to a unicellular fungus, and there are hundreds of species now identified. One of the most notable and well-known species of yeast in health and wellness is known as Saccharomyces cerevisiae, which is also known by its more common names, brewer's yeast or baker's yeast. It is usually grown on hops or another substrate similar to the plant utilized in the beer-making industry, after which it is harvested and killed. The final product is generally half composed of protein, as well as a large amount of B vitamins and minerals, and depending on the technology, a diverse number of other healthy compounds. Typically, brewer's yeast is used as a protein supplement, energy booster, immune enhancer, or other vehicle where other compounds can be inserted to create a commercialized health product. A more extensive review of the preventive medical aspects of yeast will be covered in Part 2 of this article to be published in a future issue of Urologic Nursing. Yeast-based technology is also being used as a molecular mechanistic model of caloric restriction with the goal of improving the human life span. The current and potential impact of yeast-based technology in medicine is encouraging.

  13. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles.

    PubMed

    Lauterbach, Alexander; Usbeck, Julia C; Behr, Jürgen; Vogel, Rudi F

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own "in-house strains". During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable "brewing yeast" spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

  14. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking.

    PubMed

    Donalies, Ute E B; Nguyen, Huyen T T; Stahl, Ulf; Nevoigt, Elke

    2008-01-01

    Yeast was the first microorganism domesticated by mankind. Indeed, the production of bread and alcoholic beverages such as beer and wine dates from antiquity, even though the fact that the origin of alcoholic fermentation is a microorganism was not known until the nineteenth century. The use of starter cultures in yeast industries became a common practice after methods for the isolation of pure yeast strains were developed. Moreover, effort has been undertaken to improve these strains, first by classical genetic methods and later by genetic engineering. In general, yeast strain development has aimed at improving the velocity and efficiency of the respective production process and the quality of the final products. This review highlights the achievements in genetic engineering of Saccharomyces yeast strains applied in food and beverage industry.

  15. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    PubMed

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  16. No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system.

    PubMed

    Charron, Guillaume; Landry, Christian R

    2017-06-01

    Although microorganisms account for the largest fraction of Earth's biodiversity, we know little about how their reproductive barriers evolve. Sexual microorganisms such as Saccharomyces yeasts rapidly develop strong intrinsic post-zygotic isolation, but the role of extrinsic isolation in the early speciation process remains to be investigated. We measured the growth of F 1 hybrids between two incipient species of Saccharomyces paradoxus to assess the presence of extrinsic post-zygotic isolation across 32 environments. More than 80% of hybrids showed either partial dominance of the best parent or over-dominance for growth, revealing no fitness defects in F 1 hybrids. Extrinsic reproductive isolation therefore likely plays little role in limiting gene flow between incipient yeast species and is not a requirement for speciation. © 2017 The Author(s).

  17. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media.

    PubMed

    Bell, P J; Higgins, V J; Attfield, P V

    2001-04-01

    To compare the fermentative capacity of wild and domesticated isolates of the genus Saccharomyces. The fermentative capacity of yeasts from a variety of wild and domesticated sources was tested in synthetic dough media that mimic major bread dough types. Domesticated yeast strains were found to have better maltose-utilizing capacity than wild yeast strains. The capacity to ferment sugars under high osmotic stress was randomly distributed amongst wild and baking strains of Saccharomyces. The domestication of bakers' yeast has enhanced the ability of yeasts to ferment maltose, without a similar impact on the fermentative capacity under high osmotic conditions. This study, combined with molecular studies of both wild and domesticated yeast, showed that domestication of bakers' yeast has resulted in improved maltose utilization, apparently via the duplication and mutation of the MAL genes.

  18. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles

    PubMed Central

    Lauterbach, Alexander; Usbeck, Julia C.; Behr, Jürgen

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own “in-house strains”. During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable “brewing yeast” spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking. PMID

  19. Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system

    USDA-ARS?s Scientific Manuscript database

    A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a differ...

  20. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    PubMed Central

    2012-01-01

    Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Conclusions Yeast 5 expands and refines the computational reconstruction of yeast metabolism and improves the predictive accuracy of a

  1. Saccharomyces cerevisiae Produces a Yeast Substance that Exhibits Estrogenic Activity in Mammalian Systems

    NASA Astrophysics Data System (ADS)

    Feldman, David; Stathis, Peter A.; Hirst, Margaret A.; Price Stover, E.; Do, Yung S.; Kurz, Walter

    1984-06-01

    Partially purified lipid extracts of Saccharomyces cerevisiae contain a substance that displaces tritiated estradiol from rat uterine cytosol estrogen receptors. The yeast product induces estrogenic bioresponses in mammalian systems as measured by induction of progesterone receptors in cultured MCF-7 human breast cancer cells and by a uterotrophic response and progesterone receptor induction after administration to ovariectomized mice. The findings raise the possibility that bakers' yeast may be a source of environmental estrogens.

  2. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine

    PubMed Central

    Contreras, A.; Hidalgo, C.; Henschke, P. A.; Chambers, P. J.; Curtin, C.

    2014-01-01

    Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in

  3. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  4. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

    PubMed Central

    Scannell, Devin R.; Zill, Oliver A.; Rokas, Antonis; Payen, Celia; Dunham, Maitreya J.; Eisen, Michael B.; Rine, Jasper; Johnston, Mark; Hittinger, Chris Todd

    2011-01-01

    High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org. PMID:22384314

  5. A rapid method for differentiating Saccharomyces sensu stricto strains from other yeast species in an enological environment.

    PubMed

    Nardi, Tiziana; Carlot, Milena; De Bortoli, Elena; Corich, Viviana; Giacomini, Alessio

    2006-11-01

    During programs for the selection of enological yeasts, several hundred natural isolates are usually screened. The scope of these operations is to isolate strains possessing good fermentative properties without necessarily arriving at a precise species designation: in other words, to detect strains belonging to the Saccharomyces sensu stricto complex. In the present study, a pair of primers, designed within the variable D1/D2 region of the 26S subunit of ribosomal yeast RNA, have been constructed. These generate an amplification fragment of 471 bp that is specific for the seven Saccharomyces sensu stricto species, while no signal was obtained for Saccharomyces sensu lato strains (17 species) or for another 18 selected species commonly found in enological environments. A second pair of primers was also constructed, within the 18S rRNA gene, composed of perfectly conserved sequences common for all 42 yeast species examined, which generate a 900 bp (c.) band for all strains. This was used as a positive experimental control in multiplex PCR analysis using all four primers.

  6. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    PubMed

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. The hydrolytic activity of esterases in the yeast Saccharomyces cerevisiae is strain dependent.

    PubMed

    Kwolek-Mirek, Magdalena; Bednarska, Sabina; Zadrąg-Tęcza, Renata; Bartosz, Grzegorz

    2011-11-01

    Ester precursors of fluorogenic or chromogenic probes are often employed in studies of yeast cell biology. This study was aimed at a comparison of the ability of several commonly used laboratory wild-type Saccharomyces cerevisiae strains to hydrolyse the following model esters: fluorescein diacetate, 2-naphthyl acetate, PNPA (p-nitrophenyl acetate) and AMQI (7-acetoxy-1-methylquinolinum iodide). In all the strains, the esterase activity was localized mainly to the cytosol. Considerable differences in esterase activity were observed between various wild-type laboratory yeast strains. The phase of growth also contributed to the variation in esterase activity of the yeast. This diversity implies the need for caution in using intracellularly hydrolysed probes for a comparison of yeast strains with various genetic backgrounds.

  8. Genetic relationship and biological status of the industrially important yeast Saccharomyces eubayanus Sampaio et al.

    PubMed

    Naumov, G I

    2017-03-01

    The genomes of the recently discovered yeast Saccharomyces eubayanus and traditional S. cerevisiae are known to be found in the yeast S. pastorianus (syn. S. carlsbergensis), which are essential for brewing. The cryotolerant yeast S. bayanus var. uvarum is of great importance for production of some wines. Based on ascospore viability and meiotic recombination of the control parental markers in hybrids, we have shown that there is no complete interspecies post-zygotic isolation between the yeasts S. eubayanus, S. bayanus var. bayanus and S. bayanus var. uvarum. The genetic data presented indicate that all of the three taxa belong to the same species.

  9. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. © 2014 Wiley Periodicals, Inc.

  10. The Yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins.

    PubMed

    Siggers, Keri A; Lesser, Cammie F

    2008-07-17

    Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.

  11. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.

    PubMed

    Molon, Mateusz; Zadrag-Tecza, Renata

    2016-04-01

    The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.

  12. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur.

    PubMed

    Naseeb, Samina; James, Stephen A; Alsammar, Haya; Michaels, Christopher J; Gini, Beatrice; Nueno-Palop, Carmen; Bond, Christopher J; McGhie, Henry; Roberts, Ian N; Delneri, Daniela

    2017-06-01

    Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain.

  13. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    PubMed

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  14. Saccharomyces and non-Saccharomyces Competition during Microvinification under Different Sugar and Nitrogen Conditions

    PubMed Central

    Lleixà, Jessica; Manzano, Maria; Mas, Albert; Portillo, María del C.

    2016-01-01

    The inoculation of wines with autochthonous yeast allows obtaining complex wines with a peculiar microbial footprint characteristic from a wine region. Mixed inoculation of non-Saccharomyces yeasts and S. cerevisiae is of interest for the wine industry for technological and sensory reasons. However, the interactions between these yeasts are not well understood, especially those regarding the availability of nutrients. The aim of the present study was to analyze the effect of nitrogen and sugar concentration on the evolution of mixed yeast populations on controlled laboratory-scale fermentations monitored by density, plate culturing, PCR-DGGE and sugar and nitrogen consumption. Furthermore, the effect of the time of inoculation of Saccharomyces cerevisiae respect the initial co-inoculation of three non-Saccharomyces yeasts was evaluated over the evolution of fermentation. Our results have shown that S. cerevisiae inoculation during the first 48 h conferred a stabilizing effect over the fermentations with non-Saccharomyces strains tested and, generally, reduced yeast diversity at the end of the fermentation. On the other hand, nitrogen limitation increased the time of fermentation and also the proportion of non-Saccharomyces yeasts at mid and final fermentation. High sugar concentration resulted in different proportions of the inoculated yeast depending on the time of S. cerevisiae inoculation. This work emphasizes the importance of the concentration of nutrients on the evolution of mixed fermentations and points to the optimal conditions for a stable fermentation in which the inoculated yeasts survived until the end. PMID:27994585

  15. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

    PubMed

    Lis, Paweł; Zarzycki, Marek; Ko, Young H; Casal, Margarida; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2012-02-01

    We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.

  16. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts

    PubMed Central

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase. PMID:24949272

  17. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    PubMed

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  18. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    PubMed

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast Copyright © 2013 John Wiley & Sons, Ltd.

  19. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur

    PubMed Central

    Alsammar, Haya; Michaels, Christopher J.; Gini, Beatrice; Nueno-Palop, Carmen; Bond, Christopher J.; McGhie, Henry; Roberts, Ian N.

    2017-01-01

    Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain. PMID:28639933

  20. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hydrolysate from Saccharomyces cerevisiae on all food commodities when applied/used for the management of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from...

  1. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Slibinskas, Rimantas; Staniulis, Juozas; Sasnauskas, Kestutis; Shiell, Brian J; Wang, Lin-Fa; Michalski, Wojtek P

    2007-03-01

    Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.

  2. Screening of transporters to improve xylodextrin utilization in the yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Chenlu; Acosta-Sampson, Ligia; Yu, Vivian Yaci; Cate, Jamie H D

    2017-01-01

    The economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of yeast on xylodextrins aerobically. However, the consumption rate of xylodextrin requires improvement for industrial applications, including consumption in anaerobic conditions. As a first step in this improvement, we report analysis of orthologues of the N. crassa transporters CDT-1 and CDT-2. Transporter ST16 from Trichoderma virens enables faster aerobic growth of S. cerevisiae on xylodextrins compared to CDT-2. ST16 is a xylodextrin-specific transporter, and the xylobiose transport activity of ST16 is not inhibited by cellobiose. Other transporters identified in the screen also enable growth on xylodextrins including xylotriose. Taken together, these results indicate that multiple transporters might prove useful to improve xylodextrin utilization in S. cerevisiae. Efforts to use directed evolution to improve ST16 from a chromosomally-integrated copy were not successful, due to background growth of yeast on other carbon sources present in the selection medium. Future experiments will require increasing the baseline growth rate of the yeast population on xylodextrins, to ensure that the selective pressure exerted on xylodextrin transport can lead to isolation of improved xylodextrin transporters.

  3. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  4. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  5. Anti-Saccharomyces cerevisiae antibodies (ASCA) are associated with body fat mass and systemic inflammation, but not with dietary yeast consumption: a cross-sectional study.

    PubMed

    Kvehaugen, Anne Stine; Aasbrenn, Martin; Farup, Per G

    2017-01-01

    Baker's/brewer's yeast, Saccharomyces cerevisiae , has been used as an alternative to antibiotic growth promoters to improve growth performance in animals. In humans, Saccharomyces cerevisiae is among the most commonly detected fungi in fecal samples and likely originates from food. Recently, an association between anti- Saccharomyces cerevisiae antibodies (ASCA) and obesity in humans was suggested, but the cause of the elevated ASCA levels is not clear. Our aim was to study ASCA in morbidly obese subjects and explore potential associations with anthropometrics, diet, co-morbidities and biomarkers of inflammation and gut permeability. Subjects with morbid obesity referred to a specialized hospital unit were included. Diet and clinical data were recorded with self-administered questionnaires. Main dietary sources of baker's/brewer's yeast (e.g. bread and beer) were used as a proxy for the intake of yeast. Laboratory analyses included ASCA, serum zonulin (reflecting gut permeability), C-reactive protein and a routine haematological and biochemical screening. One-hundred-and-forty subjects; 109 (78%) female, 98 with dietary records, mean age 43 years and BMI 42 kg/m 2 were included. The number of ASCA positive subjects was 31 (22%) for IgG, 4 (2.9%) for IgA and 3 (2.1%) for IgM. Age, body fat mass and C-reactive protein were significantly higher in IgG-positive compared to IgG-negative subjects ( P  < 0.05). A borderline significant association was found between elevated zonulin and ASCA IgG-positivity ( P  = 0.06). No association was found between yeast-containing food and ASCA IgG-positivity, or between yeast-containing food and fat mass. The findings indicate that ASCA IgG-positivity may be linked to the generalized inflammation commonly seen with increased adiposity, but not to dietary yeast intake. Other potential causes for the raised ASCA IgG concentrations, such as genetic predisposition, deviations in the gut microbiota and cross-reactivity of ASCA with

  6. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    PubMed

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  7. Cytosine DNA Methylation Is Found in Drosophila melanogaster but Absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Other Yeast Species

    PubMed Central

    2014-01-01

    The methylation of cytosine to 5-methylcytosine (5-meC) is an important epigenetic DNA modification in many bacteria, plants, and mammals, but its relevance for important model organisms, including Caenorhabditis elegans and Drosophila melanogaster, is still equivocal. By reporting the presence of 5-meC in a broad variety of wild, laboratory, and industrial yeasts, a recent study also challenged the dogma about the absence of DNA methylation in yeast species. We would like to bring to attention that the protocol used for gas chromatography/mass spectrometry involved hydrolysis of the DNA preparations. As this process separates cytosine and 5-meC from the sugar phosphate backbone, this method is unable to distinguish DNA- from RNA-derived 5-meC. We employed an alternative LC–MS/MS protocol where by targeting 5-methyldeoxycytidine moieties after enzymatic digestion, only 5-meC specifically derived from DNA is quantified. This technique unambiguously identified cytosine DNA methylation in Arabidopsis thaliana (14.0% of cytosines methylated), Mus musculus (7.6%), and Escherichia coli (2.3%). Despite achieving a detection limit at 250 attomoles (corresponding to <0.00002 methylated cytosines per nonmethylated cytosine), we could not confirm any cytosine DNA methylation in laboratory and industrial strains of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saccharomyces boulardii, Saccharomyces paradoxus, or Pichia pastoris. The protocol however unequivocally confirmed DNA methylation in adult Drosophila melanogaster at a value (0.034%) that is up to 2 orders of magnitude below the detection limit of bisulphite sequencing. Thus, 5-meC is a rare DNA modification in drosophila but absent in yeast. PMID:24640988

  8. The long-lasting love affair between the budding yeast Saccharomyces cerevisiae and the Epstein-Barr virus.

    PubMed

    Lista, María José; Voisset, Cécile; Contesse, Marie-Astrid; Friocourt, Gaëlle; Daskalogianni, Chrysoula; Bihel, Frédéric; Fåhraeus, Robin; Blondel, Marc

    2015-09-01

    The Epstein-Barr gammaherpesvirus (EBV) is the first oncogenic virus discovered in human. Indeed, EBV has been known for more than 50 years to be tightly associated with certain human cancers. As such, EBV has been the subject of extensive studies aiming at deciphering various aspects of its biological cycle, ranging from the regulation of its genome replication and maintenance to the induction of its lytic cycle, including the mechanisms that allow its immune evasion or that are related to its tumorogenicity. For more than 30 years the budding yeast Saccharomyces cerevisiae has fruitfully contributed to a number of these studies. The aim of this article is to review the various aspects of EBV biology for which yeast has been instrumental, and to propose new possible applications for these yeast-based assays, as well as the creation of further yeast models dedicated to EBV. This review article illustrates the tremendous potential of S. cerevisiae in integrated chemobiological approaches for the biomedical research. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database

    PubMed Central

    Engel, Stacia R.; Cherry, J. Michael

    2013-01-01

    The first completed eukaryotic genome sequence was that of the yeast Saccharomyces cerevisiae, and the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the original model organism database. SGD remains the authoritative community resource for the S. cerevisiae reference genome sequence and its annotation, and continues to provide comprehensive biological information correlated with S. cerevisiae genes and their products. A diverse set of yeast strains have been sequenced to explore commercial and laboratory applications, and a brief history of those strains is provided. The publication of these new genomes has motivated the creation of new tools, and SGD will annotate and provide comparative analyses of these sequences, correlating changes with variations in strain phenotypes and protein function. We are entering a new era at SGD, as we incorporate these new sequences and make them accessible to the scientific community, all in an effort to continue in our mission of educating researchers and facilitating discovery. Database URL: http://www.yeastgenome.org/ PMID:23487186

  10. Non-conventional Yeast Species for Lowering Ethanol Content of Wines

    PubMed Central

    Ciani, Maurizio; Morales, Pilar; Comitini, Francesca; Tronchoni, Jordi; Canonico, Laura; Curiel, José A.; Oro, Lucia; Rodrigues, Alda J.; Gonzalez, Ramon

    2016-01-01

    Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must. PMID:27199967

  11. New family of pectinase genes PGU1b-PGU3b of the pectinolytic yeast Saccharomyces bayanus var. uvarum.

    PubMed

    Naumov, G I; Shalamitskiy, M Yu; Naumova, E S

    2016-03-01

    Using yeast genome databases and literature data, we have conducted a phylogenetic analysis of pectinase PGU genes from Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and hybrid taxon S. pastorianus (syn. S. carlsbergensis). Single PGU genes were observed in all Saccharomyces species, except S. bayanus. The superfamily of divergent PGU genes has been documented in S. bayanus var. uvarum for the first time. Chromosomal localization of new PGU1b, PGU2b, and PGU3b genes in the yeast S. bayanus var. uvarum has been determined by molecular karyotyping and Southern hybridization.

  12. Biosynthesis of diphthamide in the yeast Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.Y.C.

    1985-01-01

    Inactivation of EF-2 by diphtheria toxin requires the presence of a posttranslationally synthesized amino acid residue, diphthamide. The present work was undertaken to study the biosynthetic mechanism of diphthamide synthesis in the yeast Saccharomyces cerevisiae in order to gain better understanding of the biological roles of this unique amino acid residue. Thirty-one haploid ADP-ribosylation-negative mutants, comprising 5 complementation groups, were obtained. One of these mutants contains a toxin-resistant form of EF-2 which can be converted to a toxin-sensitive form through the methylation reaction catalyzed by a S-AdoMet:EF-2 methyltransferase enzyme which is present in other yeast strains. The (/sup 3/He)methylated residuemore » in the EF-2 modified by the methyltransferase in the presence of S-Ado-L-(/sup 3/H-methyl)-Met has been analyzed chromatographically following both acid and enzymatic hydrolysis. At the conclusion of the reaction, all of the radiolabel was recovered as diphthine (the unamidated form of diphthamide). The authors conclude that the S-AdoMet:EF-2-methyltransferase is specific for the addition of at least the last two of the three methyl groups present in diphthine.« less

  13. L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon.

    PubMed

    Kwolek-Mirek, Magdalena; Molon, Mateusz; Kaszycki, Pawel; Zadrag-Tecza, Renata

    2016-08-01

    Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced.

  14. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    PubMed Central

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  15. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    PubMed

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  16. Genomics and the making of yeast biodiversity

    USDA-ARS?s Scientific Manuscript database

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  17. Alternative Saccharomyces interspecies hybrid combinations and their potential for low‐temperature wort fermentation

    PubMed Central

    Nikulin, Jarkko; Krogerus, Kristoffer

    2017-01-01

    Abstract The lager yeast hybrid (Saccharomyces cerevisiae × Saccharomyces eubayanus) possesses two key characteristics that are essential for lager brewing: efficient sugar utilization and cold tolerance. Here we explore the possibility that the lager yeast phenotype can be recreated by hybridizing S. cerevisiae ale yeast with a number of cold‐tolerant Saccharomyces species including Saccharomyces arboricola, Saccharomyces eubayanus, Saccharomyces mikatae and Saccharomyces uvarum. Interspecies hybrids performed better than parental strains in lager brewing conditions (12°C and 12°P wort), with the S. mikatae hybrid performing as well as the S. eubayanus hybrid. Where the S. cerevisiae parent was capable of utilizing maltotriose, this trait was inherited by the hybrids. A greater production of higher alcohols and esters by the hybrids resulted in the production of more aromatic beers relative to the parents. Strong fermentation performance relative to the parents was dependent on ploidy, with polyploid hybrids (3n, 4n) performing better than diploid hybrids. All hybrids produced 4‐vinyl guaiacol, a smoke/clove aroma generally considered an off flavour in lager beer. This characteristic could however be eliminated by isolating spore clones from a fertile hybrid of S. cerevisiae and S. mikatae. The results suggest that S. eubayanus is dispensable when constructing yeast hybrids that express the typical lager yeast phenotype. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:28755430

  18. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.

    PubMed

    García-Ríos, Estéfani; Morard, Miguel; Parts, Leopold; Liti, Gianni; Guillamón, José M

    2017-02-14

    Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci. In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions' adaptive nature. The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.

  19. The effect of yeast (Saccharomyces cerevisiae) on nutrient intake, digestibility and finishing performance of lambs fed a diet based on dried molasses sugar beet-pulp.

    PubMed

    Payandeh, S; Kafilzadeh, F

    2007-12-15

    This experiment was conducted to determine the effect of yeast (Saccharomyces cerevisiae, SC47) on finishing performance, digestibility, some blood metabolites and carcass characteristics of male lambs fed a diet based on dried Molasses Sugar Beet-Pulp (MSBP). Eighteen Sanjabi male lambs (20.95 +/- 2.7 kg initial body weight and 3 month of age) were used in a completely randomized design. Animals were assigned to one of the two dietary treatments (with or without yeast). Digestibility and nitrogen balance experiment was carried out using six mature rams on finishing diet with and without yeast. Serum metabolites were determined in samples taken from lambs at the end of finishing period. Dry matter digestibility of finishing diet was significantly increased by yeast addition. However, yeast did not have any significant effect on apparent digestibility of OM, NDF, CP and energy. Nitrogen retention was also not affected by yeast addition. Yeast resulted in a significant increase in the average daily gain, dry matter and organic matter intake. However, feed conversion ratio was not significantly affected by addition of yeast. The concentration of the serum metabolites including glucose, urea, cholesterol, sodium, potassium, calcium, phosphorous and cratinine were not affected significantly by yeast supplementation, but triglyceride concentrations increased significantly when yeast was fed. Addition of yeast to the diet did not have any significant effect on the carcass characteristics. Results of this study suggest that feeding saccharomyces cerevisiae with a diet based on MSBP can improve the performance of fattening lambs without any change in carcass characteristics or cuts.

  20. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Feng, Quanzhou; Weber, Scott A.; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production. PMID:29621349

  1. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.

    PubMed

    Feng, Quanzhou; Liu, Z Lewis; Weber, Scott A; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production.

  2. Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: a survey and the discovery of eight new yeast species.

    PubMed

    Sylvester, Kayla; Wang, Qi-Ming; James, Brielle; Mendez, Russell; Hulfachor, Amanda Beth; Hittinger, Chris Todd

    2015-05-01

    Compared to its status as an experimental model system and importance to industry, the ecology and genetic diversity of the genus Saccharomyces has received less attention. To investigate systematically the biogeography, community members and habitat of these important yeasts, we isolated and identified nearly 600 yeast strains using sugar-rich enrichment protocols. Isolates were highly diverse and contained representatives of more than 80 species from over 30 genera, including eight novel species that we describe here: Kwoniella betulae f.a. (yHKS285(T) = NRRL Y-63732(T) = CBS 13896(T)), Kwoniella newhampshirensis f.a. (yHKS256(T) = NRRL Y-63731(T) = CBS 13917(T)), Cryptococcus wisconsinensis (yHKS301(T) = NRRL Y-63733(T) = CBS 13895(T)), Cryptococcus tahquamenonensis (yHAB242(T) = NRRL Y-63730(T) = CBS 13897(T)), Kodamaea meredithiae f.a. (yHAB239(T) = NRRL Y-63729(T) = CBS 13899(T)), Blastobotrys buckinghamii (yHAB196(T) = NRRL Y-63727(T) = CBS 13900(T)), Candida sungouii (yHBJ21(T) = NRRL Y-63726(T) = CBS 13907(T)) and Cyberlindnera culbertsonii f.a. (yHAB218(T) = NRRL Y-63728(T) = CBS 13898(T)), spp. nov. Saccharomyces paradoxus was one of the most frequently isolated species and was represented by three genetically distinct lineages in Wisconsin alone. We found a statistically significant association between Quercus (oak) samples and the isolation of S. paradoxus, as well as several novel associations. Variation in temperature preference was widespread across taxonomic ranks and evolutionary timescales. This survey highlights the genetic and taxonomic diversity of yeasts and suggests that host and temperature preferences are major ecological factors. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The Impact of Saccharomyces cerevisiae on a Wine Yeast Consortium in Natural and Inoculated Fermentations

    PubMed Central

    Bagheri, Bahareh; Bauer, Florian F.; Setati, Mathabatha E.

    2017-01-01

    Natural, also referred to as spontaneous wine fermentations, are carried out by the native microbiota of the grape juice, without inoculation of selected, industrially produced yeast or bacterial strains. Such fermentations are commonly initiated by non-Saccharomyces yeast species that numerically dominate the must. Community composition and numerical dominance of species vary significantly between individual musts, but Saccharomyces cerevisiae will in most cases dominate the late stages of the fermentation and complete the process. Nevertheless, non-Saccharomyces species contribute significantly, positively or negatively, to the character and quality of the final product. The contribution is species and strain dependent and will depend on each species or strain’s absolute and relative contribution to total metabolically active biomass, and will therefore, be a function of its relative fitness within the microbial ecosystem. However, the population dynamics of multispecies fermentations are not well understood. Consequently, the oenological potential of the microbiome in any given grape must, can currently not be evaluated or predicted. To better characterize the rules that govern the complex wine microbial ecosystem, a model yeast consortium comprising eight species commonly encountered in South African grape musts and an ARISA based method to monitor their dynamics were developed and validated. The dynamics of these species were evaluated in synthetic must in the presence or absence of S. cerevisiae using direct viable counts and ARISA. The data show that S. cerevisiae specifically suppresses certain species while appearing to favor the persistence of other species. Growth dynamics in Chenin blanc grape must fermentation was monitored only through viable counts. The interactions observed in the synthetic must, were upheld in the natural must fermentations, suggesting the broad applicability of the observed ecosystem dynamics. Importantly, the presence of

  4. The Impact of Saccharomyces cerevisiae on a Wine Yeast Consortium in Natural and Inoculated Fermentations.

    PubMed

    Bagheri, Bahareh; Bauer, Florian F; Setati, Mathabatha E

    2017-01-01

    Natural, also referred to as spontaneous wine fermentations, are carried out by the native microbiota of the grape juice, without inoculation of selected, industrially produced yeast or bacterial strains. Such fermentations are commonly initiated by non- Saccharomyces yeast species that numerically dominate the must. Community composition and numerical dominance of species vary significantly between individual musts, but Saccharomyces cerevisiae will in most cases dominate the late stages of the fermentation and complete the process. Nevertheless, non- Saccharomyces species contribute significantly, positively or negatively, to the character and quality of the final product. The contribution is species and strain dependent and will depend on each species or strain's absolute and relative contribution to total metabolically active biomass, and will therefore, be a function of its relative fitness within the microbial ecosystem. However, the population dynamics of multispecies fermentations are not well understood. Consequently, the oenological potential of the microbiome in any given grape must, can currently not be evaluated or predicted. To better characterize the rules that govern the complex wine microbial ecosystem, a model yeast consortium comprising eight species commonly encountered in South African grape musts and an ARISA based method to monitor their dynamics were developed and validated. The dynamics of these species were evaluated in synthetic must in the presence or absence of S. cerevisiae using direct viable counts and ARISA. The data show that S. cerevisiae specifically suppresses certain species while appearing to favor the persistence of other species. Growth dynamics in Chenin blanc grape must fermentation was monitored only through viable counts. The interactions observed in the synthetic must, were upheld in the natural must fermentations, suggesting the broad applicability of the observed ecosystem dynamics. Importantly, the presence of

  5. Assessment of yeast Saccharomyces cerevisiae component binding to Mycobacterium avium subspecies paratuberculosis using bovine epithelial cells.

    PubMed

    Li, Ziwei; You, Qiumei; Ossa, Faisury; Mead, Philip; Quinton, Margaret; Karrow, Niel A

    2016-03-01

    Since yeast Saccharomyces cerevisiae and its components are being used for the prevention and treatment of enteric diseases in different species, they may also be useful for preventing Johne's disease, a chronic inflammatory bowel disease of ruminants caused by Mycobacterium avium spp. paratuberculosis (MAP). This study aimed to identify potential yeast derivatives that may be used to help prevent MAP infection. The adherence of mCherry-labeled MAP to bovine mammary epithelial cell line (MAC-T cells) and bovine primary epithelial cells (BECs) co-cultured with yeast cell wall components (CWCs) from four different yeast strains (A, B, C and D) and two forms of dead yeast from strain A was investigated. The CWCs from all four yeast strains and the other two forms of dead yeast from strain A reduced MAP adhesion to MAC-T cells and BECs in a concentration-dependent manner after 6-h of exposure, with the dead yeast having the greatest effect. The following in vitro binding studies suggest that dead yeast and its' CWCs may be useful for reducing risk of MAP infection.

  6. Tributyltin induces cell cycle arrest at G1 phase in the yeast Saccharomyces cerevisiae.

    PubMed

    Sekito, Takayuki; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Akiyama, Koichi; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi

    2014-04-01

    Tributyltin (TBT) has long been recognized as a major environmental pollutant that can cause significant damage to the cellular functions as well as disruption of endocrine homeostasis. TBT induces apoptosis accompanied by production of reactive oxygen species (ROS) in mammalian and yeast cells. We observed that the budding yeast cells exposed to this compound at low concentrations exhibited cell growth arrest, but not cell death. Flow cytometric analysis of yeast cells without synchronization and morphological assessment of cells synchronized at M phase by nocodazole treatment indicated that TBT-exposed Saccharomyces cerevisiae cells were arrested at G1 phase of the cell cycle. This arrest was recovered by the addition of N-acetylcysteine, suggesting the involvement of ROS production by TBT. This is the first study to evaluate the action of TBT on cell cycle events.

  7. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis...

  8. S-Adenosyl-L-methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death.

    PubMed

    Cascio, Vincent; Gittings, Daniel; Merloni, Kristen; Hurton, Matthew; Laprade, David; Austriaco, Nicanor

    2013-02-13

    Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone.

  9. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu

    PubMed Central

    Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takashita, Hideharu

    2018-01-01

    ABSTRACT Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. PMID:29622617

  10. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  11. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  12. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  13. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic acid...

  14. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae.

    PubMed

    Gómez-Sánchez, R; Sánchez-Wandelmer, J; Reggiori, F

    2017-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful and versatile model organism for studying multiple aspects of the biology of eukaryotic cells, including the molecular principles underlying autophagy. One of the unique advantages of this unicellular system is its amenability to genetic and biochemical approaches, which had a pivotal role in the discovery and characterization of most of the autophagy-related (Atg) proteins, the central players of autophagy. The relevance of investigating autophagy in this cell model lies in the high conservation of this pathway among eukaryotes, i.e., most of the yeast Atg proteins possess one or more mammalian orthologs. In addition to the experimental advantages, a very large collection of reagents keeps S. cerevisiae in a leading position for the study of the molecular mechanism and regulation of autophagy. In this chapter, we describe fluorescence microscopy and biochemical methods that allow to monitor in vivo the assembly the of Atg machinery, a key step of autophagy. These approaches can be very useful to those researchers that would like to assess the progression of the autophagosomal precursor structure formation under various conditions, in the presence of specific Atg protein mutants or in the absence of other factors. © 2017 Elsevier Inc. All rights reserved.

  15. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation.

    PubMed

    Satomura, Atsushi; Katsuyama, Yoshiaki; Miura, Natsuko; Kuroda, Kouichi; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro; Ueda, Mitsuyoshi

    2013-01-01

    A thermotolerant Saccharomyces cerevisiae yeast strain, YK60-1, was bred from a parental strain, MT8-1, via stepwise adaptation. YK60-1 grew at 40°C, a temperature at which MT8-1 could not grow at all. YK60-1 exhibited faster growth than MT8-1 at 30°C. To investigate the mechanisms how MT8-1 acquired thermotolerance, DNA microarray analysis was performed. The analysis revealed the induction of stress-responsive genes such as those encoding heat shock proteins and trehalose biosynthetic enzymes in YK60-1. Furthermore, nontargeting metabolome analysis showed that YK60-1 accumulated more trehalose, a metabolite that contributes to stress tolerance in yeast, than MT8-1. In conclusion, S. cerevisiae MT8-1 acquired thermotolerance by induction of specific stress-responsive genes and enhanced intracellular trehalose levels. © 2013 American Institute of Chemical Engineers.

  16. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde

    USDA-ARS?s Scientific Manuscript database

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We dissected gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challeng...

  17. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  18. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  19. Detection of yeast Saccharomyces cerevisiae with ionic liquid mediated carbon dots.

    PubMed

    Wang, Jia-Li; Teng, Ji-Yuan; Jia, Te; Shu, Yang

    2018-02-01

    Hydrophobic nitrogen-doped carbon dots are prepared with energetic ionic liquid (1,3-dibutylimidazolium dicyandiamide, BbimDCN) as carbon source. A yield of as high as 58% is obtained for the carbon dots, shortly termed as BbimDCN-OCDs, due to the presence of thermal-instable N(CN) 2 - moiety. BbimDCN-OCDs exhibit favorable biocompability and excellent imaging capacity for fluorescence labelling of yeast cell Saccharomyces cerevisiae. In addition, chitosan-modified Dy 3+ -doped magnetic nanoparticles (shortly as Chitosan@Fe 2.75 Dy 0.25 O 4 ) with superparamagnetism are prepared. The electrostatic attraction between positively charged magnetic nanoparticles and negatively charged yeast cells facilitates exclusive recognition/isolation of S. cerevisiae. In practice, S. cerevisiae is labelled by BbimDCN-OCDs and adhered onto the Chitosan@Fe 2.75 Dy 0.25 O 4 . The yeast/ BbimDCN-OCDs/Chitosan@Fe 2.75 Dy 0.25 O 4 composite is then isolated with an external magnet and the fluorescence from BbimDCN-OCDs incorporated in S. cerevisiae is monitored. The fluorescence intensity is linearly correlated with the content of yeast cell, showing a calibration graph of F = 3.01log[C]+11.7, offering a detection limit of 5×10 2 CFU/mL. S. cerevisiae content in various real sample matrixes are quantified by using this protocol. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    PubMed

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd

    2016-07-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  1. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peris, David; Langdon, Quinn K.; Moriarty, Ryan V.

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike alestyle beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains tomore » each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. Furthermore, we conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.« less

  2. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus

    PubMed Central

    Sylvester, Kayla; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R.; Libkind, Diego; Hittinger, Chris Todd

    2016-01-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes. PMID:27385107

  3. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus

    DOE PAGES

    Peris, David; Langdon, Quinn K.; Moriarty, Ryan V.; ...

    2016-07-06

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike alestyle beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains tomore » each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. Furthermore, we conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.« less

  4. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    PubMed

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  5. A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test.

    PubMed

    Dolezalova, Jaroslava; Rumlova, Lubomira

    2014-11-01

    This new biological test of water toxicity is based on monitoring of specific conductivity changes of yeast Saccharomyces cerevisiae suspension as a result of yeast fermentation activity inhibition in toxic conditions. The test was verified on ten substances with various mechanisms of toxic effect and the results were compared with two standard toxicity tests based on Daphnia magna mobility inhibition (EN ISO 6341) and Vibrio fischeri bioluminescence inhibition (EN ISO 11348-2) and with the results of the S. cerevisiae lethal test (Rumlova and Dolezalova, 2012). The new biological test - S. cerevisiae conductometric test - is an express method developed primarily for field conditions. It is applicable in case of need of immediate information about water toxicity. Fast completion is an advantage of this test (time necessary for test completion is about 60min), the test is simple and the test organism - dried instant yeast - belongs among its biggest advantages because of its long-term storage life and broad availability. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Mitochondrial Genome Integrity Mutations Uncouple the Yeast Saccharomyces cerevisiae ATP Synthase*║

    PubMed Central

    Wang, Yamin; Singh, Usha; Mueller, David M.

    2013-01-01

    The mitochondrial ATP synthase is a molecular motor, which couples the flow of rotons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the α-, β-, and γ-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the γ-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk. PMID:17244612

  7. The anthracenedione compound bostrycin induces mitochondria-mediated apoptosis in the yeast Saccharomyces cerevisiae.

    PubMed

    Xu, Chunling; Wang, Jiafeng; Gao, Ye; Lin, Huangyu; Du, Lin; Yang, Shanshan; Long, Simei; She, Zhigang; Cai, Xiaoling; Zhou, Shining; Lu, Yongjun

    2010-05-01

    Bostrycin is an anthracenedione with phytotoxic and antibacterial activity that belongs to the large family of quinones. We have isolated bostrycin from the secondary metabolites of a mangrove endophytic fungus, no. 1403, collected from the South China Sea. Using the yeast Saccharomyces cerevisiae as a model, we show that bostrycin inhibits cell proliferation by blocking the cell cycle at G1 phase and ultimately leads to cell death in a time- and dose-dependent manner. Bostrycin-induced lethal cytotoxicity is accompanied with increased levels of intracellular reactive oxygen species and hallmarks of apoptosis such as chromatin condensation, DNA fragmentation and externalization of phosphatidylserine. We further show that bostrycin decreases mitochondrial membrane electric potential and causes mitochondrial destruction during the progression of cell death. Bostrycin-induced cell death was promoted in YCA1 null yeast strain but was partially rescued in AIF1 null mutant both in fermentative and respiratory media, strongly indicating that bostrycin induces apoptosis in yeast cells through a mitochondria-mediated but caspase-independent pathway.

  8. Characterization, Ecological Distribution, and Population Dynamics of Saccharomyces Sensu Stricto Killer Yeasts in the Spontaneous Grape Must Fermentations of Southwestern Spain

    PubMed Central

    Maqueda, Matilde; Zamora, Emiliano; Álvarez, María L.

    2012-01-01

    Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size double-stranded RNA (dsRNA) viruses, Saccharomyces cerevisiae virus (ScV)-M2 and ScV-Mlus, whose genome sizes ranged from 1.3 to 1.75 kb and from 2.1 to 2.3 kb, respectively. The K2 yeasts were found in all the wine-producing subareas for all the vintages analyzed, while the Klus yeasts were found in the warmer subareas and mostly in the warmer ripening/harvest seasons. The middle-size isotypes of the M2 dsRNA were the most frequent among K2 yeasts, probably because they encoded the most intense K2 killer phenotype. However, the smallest isotype of the Mlus dsRNA was the most frequent for Klus yeasts, although it encoded the least intense Klus killer phenotype. The killer yeasts were present in most (59.5%) spontaneous fermentations. Most were K2, with Klus being the minority. The proportion of killer yeasts increased during fermentation, while the proportion of sensitive yeasts decreased. The fermentation speed, malic acid, and wine organoleptic quality decreased in those fermentations where the killer yeasts replaced at least 15% of a dominant population of sensitive yeasts, while volatile acidity and lactic acid increased, and the amount of bacteria in the tumultuous and the end fermentation stages also increased in an unusual way. PMID:22101056

  9. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

    PubMed

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji; Kitagaki, Hiroshi

    2014-02-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.

  10. Enhancement of Ethanol Fermentation in Saccharomyces cerevisiae Sake Yeast by Disrupting Mitophagy Function

    PubMed Central

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji

    2014-01-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts. PMID:24271183

  11. Further Improvement of the Robust Recombinant Saccharomyces Yeast for the Conversion of Lignocellulosic Biomass to Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Nancy W. Y.; Adamec, Jiri; Mosier, Nathan, S.

    2011-04-09

    Since 1980, the PI’s laboratory at Purdue University has been at the forefront in developing recombinant Saccharomyces yeast for cellulosic ethanol production. Their innovation enabled them to successfully develop the recombinant Saccharomyces yeast strain 424A(LNH-ST) that has been validated by scientists in industry, universities, and National Laboratories. Strain 424A(LNH-ST) has also been used by a company to produce cellulosic ethanol since 2004. Nevertheless, this strain still needs improvement, particularly to achieve high ethanol titer when cellulosic biomass hydrolysates are used for ethanol production. In this project, we were able to carry out a total genetic overhaul of our yeast bymore » carrying out nine different tasks to improve our 424A(LNH-ST) strain. Through these tasks we enabled the yeast to co-ferment arabinose together with other four sugars generally present in all cellulosic biomass. Thus 424A(LNH-ST) can now ferment all five sugars, glucose, xylose, mannose, galactose and arabinose present in any cellulosic biomass. We also successfully used adaptation techniques and direct genetic improvements to develop improved 424A(LNH-ST) strains that are more resistant to acetic acid or ethanol. These are the most significant inhibitors of those commonly present in cellulosic hydrolysates that prevent 424A(LNH-ST) from producing high concentrations of cellulosic ethanol. The acetic acid resistant strain has 89% better xylose utilization in the presence of acetic acid and 25% better overall ethanol yield. The ethanol resistant strain has 250% better ethanol volumetric productivity. The three tasks for improving the main metabolic pathways have all been successfully completed but the impact of these improvements was less dramatic. This demonstrates our yeast already has effective metabolic systems for co-fermenting cellulosic sugars. However, our attempt to improve the yeast to transport xylose and arabinose more efficiently had only limited

  12. Further Improvement of the Robust Recombinant Saccharomyces Yeast for the Conversion of Lignocellulosic Biomass to Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Nancy, W. Y.; Adamec, Jiri; Mosier, Nathan, S.

    2011-04-07

    Since 1980, the PI's laboratory at Purdue University has been at the forefront in developing recombinant Saccharomyces yeast for cellulosic ethanol production. Their innovation enabled them to successfully develop the recombinant Saccharomyces yeast strain 424A(LNH-ST) that has been validated by scientists in industry, universities, and National Laboratories. Strain 424A(LNH-ST) has also been used by a company to produce cellulosic ethanol since 2004. Nevertheless, this strain still needs improvement, particularly to achieve high ethanol titer when cellulosic biomass hydrolysates are used for ethanol production. In this project, we were able to carry out a total genetic overhaul of our yeast bymore » carrying out nine different tasks to improve our 424A(LNH-ST) strain. Through these tasks we enabled the yeast to co-ferment arabinose together with other four sugars generally present in all cellulosic biomass. Thus 424A(LNH-ST) can now ferment all five sugars, glucose, xylose, mannose, galactose and arabinose present in any cellulosic biomass. We also successfully used adaptation techniques and direct genetic improvements to develop improved 424A(LNH-ST) strains that are more resistant to acetic acid or ethanol. These are the most significant inhibitors of those commonly present in cellulosic hydrolysates that prevent 424A(LNH-ST) from producing high concentrations of cellulosic ethanol. The acetic acid resistant strain has 89% better xylose utilization in the presence of acetic acid and 25% better overall ethanol yield. The ethanol resistant strain has 250% better ethanol volumetric productivity. The three tasks for improving the main metabolic pathways have all been successfully completed but the impact of these improvements was less dramatic. This demonstrates our yeast already has effective metabolic systems for co-fermenting cellulosic sugars. However, our attempt to improve the yeast to transport xylose and arabinose more efficiently had only limited success

  13. S-Adenosyl-L-Methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death

    PubMed Central

    2013-01-01

    Background Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. Results We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. Conclusions In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone. PMID:23402325

  14. Effects of Temperature on the Meiotic Recombination Landscape of the Yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Wu, Xue-Chang; Zheng, Dao-Qiong; Petes, Thomas D

    2017-12-19

    Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae , regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures. IMPORTANCE In the yeast Saccharomyces cerevisiae , recombination is usually studied in cells that undergo meiosis at 25°C or 30°C. In a genome-wide analysis, we showed that the locations of genomic regions with high and low levels of meiotic recombination (hot spots and cold spots, respectively) differed

  15. The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Imai, T; Ohno, T

    1995-01-01

    The relationship between viability (cell proliferation activity) and intracellular pH in the yeast Saccharomyces cerevisiae was investigated by using cells that had been deactivated by low-temperature storage, ethanol treatment, or heat treatment. The intracellular pH was measured with a microscopic image processor or a spectrofluorophotometer. At first, the intracellular pH measurements of individual cells were compared with slide culture results by microscopic image processing. A clear correlation existed between the proliferation activity and intracellular pH. Moreover, by spectrofluorophotometry analysis, it was found that there was a relationship between the viability and intracellular pH of brewing yeast under conditions of low external pH (n = 15, r = 0.960, P = 0.001). This relationship was also observed in baker's yeast (n = 13, r = 0.950, P = 0.001). On the other hand, when the fluorescein staining method was used in these experiments, the relationship between viability and staining percentage was not observed. From these results, intracellular pH was found to be a sensitive factor for estimating yeast physiology. The possible role of cell deterioration is also discussed. PMID:7486996

  16. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    PubMed

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  17. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America.

    PubMed

    Charron, Guillaume; Leducq, Jean-Baptiste; Bertin, Chloé; Dubé, Alexandre K; Landry, Christian R

    2014-03-01

    We examined the northern limit of Saccharomyces cerevisiae and Saccharomyces paradoxus in northeast America. We collected 876 natural samples at 29 sites and applied enrichment methods for the isolation of mesophilic yeasts. We uncovered a large diversity of yeasts, in some cases, associated with specific substrates. Sequencing of the ITS1, 5.8S and ITS2 loci allowed to assign 226 yeast strains at the species level, including 41 S. paradoxus strains. Our intensive sampling suggests that if present, S. cerevisiae is rare at these northern latitudes. Our sampling efforts spread across several months of the year revealed that successful sampling increases throughout the summer and diminishes significantly at the beginning of the fall. The data obtained on the ecological context of yeasts corroborate what was previously reported on Pichiaceae, Saccharomycodaceae, Debaryomycetaceae and Phaffomycetaceae yeast families. We identified 24 yeast isolates that could not be assigned to any known species and that may be of taxonomic, medical, or biotechnological importance. Our study reports new data on the taxonomic diversity of yeasts and new resources for studying the evolution and ecology of S. paradoxus. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    PubMed Central

    Akao, Takeshi; Yashiro, Isao; Hosoyama, Akira; Kitagaki, Hiroshi; Horikawa, Hiroshi; Watanabe, Daisuke; Akada, Rinji; Ando, Yoshinori; Harashima, Satoshi; Inoue, Toyohisa; Inoue, Yoshiharu; Kajiwara, Susumu; Kitamoto, Katsuhiko; Kitamoto, Noriyuki; Kobayashi, Osamu; Kuhara, Satoru; Masubuchi, Takashi; Mizoguchi, Haruhiko; Nakao, Yoshihiro; Nakazato, Atsumi; Namise, Masahiro; Oba, Takahiro; Ogata, Tomoo; Ohta, Akinori; Sato, Masahide; Shibasaki, Seiji; Takatsume, Yoshifumi; Tanimoto, Shota; Tsuboi, Hirokazu; Nishimura, Akira; Yoda, Koji; Ishikawa, Takeaki; Iwashita, Kazuhiro; Fujita, Nobuyuki; Shimoi, Hitoshi

    2011-01-01

    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast. PMID:21900213

  19. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression.

    PubMed

    Delorme-Axford, Elizabeth; Guimaraes, Rodrigo Soares; Reggiori, Fulvio; Klionsky, Daniel J

    2015-03-01

    Macroautophagy (hereafter autophagy) is a highly evolutionarily conserved process essential for sustaining cellular integrity, homeostasis, and survival. Most eukaryotic cells constitutively undergo autophagy at a low basal level. However, various stimuli, including starvation, organelle deterioration, stress, and pathogen infection, potently upregulate autophagy. The hallmark morphological feature of autophagy is the formation of the double-membrane vesicle known as the autophagosome. In yeast, flux through the pathway culminates in autophagosome-vacuole fusion, and the subsequent degradation of the resulting autophagic bodies and cargo by vacuolar hydrolases, followed by efflux of the breakdown products. Importantly, aberrant autophagy is associated with diverse human pathologies. Thus, there is a need for ongoing work in this area to further understand the cellular factors regulating this process. The field of autophagy research has grown exponentially in recent years, and although numerous model organisms are being used to investigate autophagy, the baker's yeast Saccharomyces cerevisiae remains highly relevant, as there are significant and unique benefits to working with this organism. In this review, we will focus on the current methods available to evaluate and monitor autophagy in S. cerevisiae, which in several cases have also been subsequently exploited in higher eukaryotes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    PubMed

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.

  1. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae, Saccharomyces...

  2. Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii

    PubMed Central

    Hudson, Lauren E.; Fasken, Milo B.; McDermott, Courtney D.; McBride, Shonna M.; Kuiper, Emily G.; Guiliano, David B.; Corbett, Anita H.; Lamb, Tracey J.

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders. PMID:25391025

  3. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    PubMed

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  4. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    PubMed

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  5. An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae

    PubMed Central

    Lee, Insuk; Li, Zhihua; Marcotte, Edward M.

    2007-01-01

    Background Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org. PMID:17912365

  6. Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae.

    PubMed

    Ballester-Tomás, Lidia; Pérez-Torrado, Roberto; Rodríguez-Vargas, Sonia; Prieto, Jose A; Randez-Gil, Francisca

    2016-03-10

    At near-freezing temperatures (0-4°C), the growth of the yeast Saccharomyces cerevisiae stops or is severely limited, and viability decreases. Under these conditions, yeast cells trigger a biochemical response, in which trehalose and glycerol accumulate and protect them against severe cold and freeze injury. However, the mechanisms that allow yeast cells to sustain this response have been not clarified. The effects of severe cold on the proteome of S. cerevisiae have been not investigated and its importance in providing cell survival at near-freezing temperatures and upon freezing remains unknown. Here, we have compared the protein profile of two industrial baker's yeast strains at 30°C and 4°C. Overall, a total of 16 proteins involved in energy-metabolism, translation and redox homeostasis were identified as showing increased abundance at 4°C. The predominant presence of glycolytic proteins among those upregulated at 4°C, likely represents a mechanism to maintain a constant supply of ATP for the synthesis of glycerol and other protective molecules. Accumulation of these molecules is by far the most important component in enhancing viability of baker's yeast strains upon freezing. Overexpression of genes encoding certain proteins associated with translation or redox homeostasis provided specifically protection against extreme cold damage, underlying the importance of these functions in the near-freezing response. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Highly cold-active pectinases under wine-like conditions from non-Saccharomyces yeasts for enzymatic production during winemaking.

    PubMed

    Merín, M G; Morata de Ambrosini, V I

    2015-05-01

    The influence of oenological factors on cold-active pectinases from 15 preselected indigenous yeasts belonging to Aureobasidium pullulans, Filobasidium capsuligenum, Rhodotorula dairenensis, Cryptococcus saitoi and Saccharomyces cerevisiae was investigated. Pectinolytic enzymes were constitutive or partially constitutive; and high glucose concentration (200 g l(-1) ) did not affect or increased pectinase production at 12°C and pH 3·5 (up to 113·9 U mg(-1) ) only in A. pullulans strains. SO2 (120 mg l(-1) ) slightly affected the growth of A. pullulans strains but did not affect pectinase production levels. Ethanol (15%) barely affected pectinase activity of A. pullulans strains but diminished relative activity to 12-79% of basidiomycetous yeasts. Moreover, non-Saccharomyces strains showed promising properties of oenological interest. This study demonstrates that cold-active pectinases from some A. pullulans strains were able to remain active at glucose, ethanol and SO2 concentrations usually found in vinification, and suggests their potential use as processing aids for low-temperature winemaking. Nowadays, there is increasing interest in low-temperature winemaking. Nevertheless, commercial oenological pectinases, produced by fungi, are rarely active at low temperatures. Cold-active pectinases that are stable under vinification conditions are needed. This study indicated that cold-active and acid-tolerant pectinases from non-Saccharomcyes yeasts were able to remain active at glucose, ethanol and SO2 concentrations usually found in winemaking. Furthermore, not only are these yeasts a source of cold-active pectinases, but the yeasts themselves are also potential adjunct cultures for oenology to produce these enzymes during cold-winemaking. © 2015 The Society for Applied Microbiology.

  8. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    PubMed

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  9. Genome Sequence of the Lager-Brewing Yeast Saccharomyces sp. Strain M14, Used in the High-Gravity Brewing Industry in China

    PubMed Central

    Liu, Chunfeng; Niu, Chengtuo; Zheng, Feiyun; Li, Yongxian; Zhao, Yun; Yin, Xiangsheng

    2017-01-01

    ABSTRACT Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. PMID:29074666

  10. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae

    PubMed Central

    Curcio, M. Joan; Lutz, Sheila; Lesage, Pascale

    2015-01-01

    Summary Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology. PMID:25893143

  12. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    PubMed

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  13. The lager yeast Saccharomyces pastorianus removes and transforms Fusarium trichothecene mycotoxins during fermentation of brewer's wort.

    PubMed

    Nathanail, Alexis V; Gibson, Brian; Han, Li; Peltonen, Kimmo; Ollilainen, Velimatti; Jestoi, Marika; Laitila, Arja

    2016-07-15

    An investigation was conducted to determine the fate of deoxynivalenol, deoxynivalenol-3-glucoside, HT-2 toxin and T-2 toxin, during a four-day fermentation with the lager yeast Saccharomyces pastorianus. The influence of excessive mycotoxin concentrations on yeast growth, productivity and viability were also assessed. Mycotoxins were dosed at varying concentrations to 11.5° Plato wort. Analysis of yeast revealed that presence of the toxins even at concentrations up to 10,000 μg/L had little or no effect on sugar utilisation, alcohol production, pH, yeast growth or cell viability. Of the dosed toxin amounts 9-34% were removed by the end of fermentation, due to physical binding and/or biotransformation by yeast. Deoxynivalenol-3-glucoside was not reverted to its toxic precursor during fermentation. Processing of full-scan liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) data with MetaboLynx and subsequent LC-QTOF-MS/MS measurements resulted in annotation of several putative metabolites. De(acetylation), glucosylation and sulfonation were the main metabolic pathways activated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae.

    PubMed

    Du, Yang; Cheng, Wang; Li, Wei-Fang

    2012-08-01

    Iron homeostasis plays a crucial role in growth and division of cells in all kingdoms of life. Although yeast iron metabolism has been extensively studied, little is known about the molecular mechanism of response to surplus iron. In this study, expression profiling of Saccharomyces cerevisiae in the presence of surplus iron revealed a dual effect at 1 and 4 h. A cluster of stress-responsive genes was upregulated via activation of the stress-resistance transcription factor Msn4, which indicated the stress effect of surplus iron on yeast metabolism. Genes involved in aerobic metabolism and several anabolic pathways are also upregulated in iron-surplus conditions, which could significantly accelerate yeast growth. This dual effect suggested that surplus iron might participate in a more complex metabolic network, in addition to serving as a stress inducer. These findings contribute to our understanding of the global response of yeast to the fluctuating availability of iron in the environment.

  15. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation.

    PubMed

    Rezaei, Mohammad N; Dornez, Emmie; Jacobs, Pieter; Parsi, Anali; Verstrepen, Kevin J; Courtin, Christophe M

    2014-05-01

    Fermentation of sugars into CO2, ethanol and secondary metabolites by baker's yeast (Saccharomyces cerevisiae) during bread making leads to leavening of dough and changes in dough rheology. The aim of this study was to increase our understanding of the impact of yeast on dough related aspects by investigating the effect of harvesting yeast at seven different points of the growth profile on its fermentation performance, metabolite production, and the effect on critical dough fermentation parameters, such as gas retention potential. The yeast cells harvested during the diauxic shift and post-diauxic growth phase showed a higher fermentation rate and, consequently, higher maximum dough height than yeast cells harvested in the exponential or stationary growth phase. The results further demonstrate that the onset of CO2 loss from fermenting dough is correlated with the fermentation rate of yeast, but not with the amount of CO2 that accumulated up to the onset point. Analysis of the yeast metabolites produced in dough yielded a possible explanation for this observation, as they are produced in different levels depending on physiological phase and in concentrations that can influence dough matrix properties. Together, our results demonstrate a strong effect of yeast physiology at the time of harvest on subsequent dough fermentation performance, and hint at an important role of yeast metabolites on the subsequent gas holding capacity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and Their Role in Human Tumorigenesis

    PubMed Central

    Cazzanelli, Giulia; Francisco, Rita; Azevedo, Luísa; Carvalho, Patrícia Dias; Almeida, Ana; Côrte-Real, Manuela; Oliveira, Maria José; Lucas, Cândida; Sousa, Maria João

    2018-01-01

    The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy. PMID:29463063

  17. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  18. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  19. Genome Sequence of the Lager-Brewing Yeast Saccharomyces sp. Strain M14, Used in the High-Gravity Brewing Industry in China.

    PubMed

    Liu, Chunfeng; Li, Qi; Niu, Chengtuo; Zheng, Feiyun; Li, Yongxian; Zhao, Yun; Yin, Xiangsheng

    2017-10-26

    Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. Copyright © 2017 Liu et al.

  20. Raman spectroscopy and chemometrics for identification and strain discrimination of the wine spoilage yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis.

    PubMed

    Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J

    2013-10-01

    The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.

  1. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.

    PubMed

    Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio

    2015-11-01

    During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation.

  2. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    PubMed

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.

    PubMed

    Martínez-Pastor, María Teresa; Perea-García, Ana; Puig, Sergi

    2017-04-01

    Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.

  4. LISTA, a comprehensive compilation of nucleotide sequences encoding proteins from the yeast Saccharomyces.

    PubMed Central

    Linder, P; Dölz, R; Mossé, M O; Lazowska, J; Slonimski, P P

    1993-01-01

    The amount of nucleotide sequence data is increasing exponentially. We therefore made an effort to make a comprehensive database (LISTA) for the yeast Saccharomyces cerevisiae. Each sequence has been attributed a single genetic name and in the case of allelic duplicated sequences, synonyms are given, if necessary. For the nomenclature we have introduced a standard principle for naming gene sequences based on priority rules. We have also applied a simple method to distinguish duplicated sequences of one and the same gene from non-allelic sequences of duplicated genes. By using these principles we have sorted out a lot of confusion in the literature and databanks. Along with the genetic name, the mnemonic from the EMBL databank, the codon bias, reference of the publication of the sequence and the EMBL accession numbers are included in each entry. PMID:8332521

  5. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing.

    PubMed

    Codón, Antonio C; Rincón, Ana M; Moreno-Mateos, Miguel A; Delgado-Jarana, Jesús; Rey, Manuel; Limón, Carmen; Rosado, Ivan V; Cubero, Beatriz; Peñate, Xenia; Castrejón, Francisco; Benítez, Tahía

    2003-01-15

    Three procedures were used to obtain new Saccharomyces cerevisiae baker's yeasts with increased storage stability at -20, 4, 22, and 30 degrees C. The first used mitochondria from highly ethanol-tolerant wine yeast, which were transferred to baker's strains. Viability of the heteroplasmons was improved shortly after freezing. However, after prolonged storage, viability dramatically decreased and was accompanied by an increase in the frequency of respiratory-deficient (petite) mutant formation. This indicated that mitochondria were not stable and were incompatible with the nucleus. The strains tested regained their original resistance to freezing after recovering their own mitochondria. The second procedure used hybrid formation after protoplast fusion and isolation on selective media of fusants from baker's yeast meiotic products resistant to parafluorphenylalanine and cycloheximide, respectively. No hybrids were obtained when using the parentals, probably due to the high ploidy of the baker's strains. Hybrids obtained from nonisogenic strains manifested in all cases a resistance to freezing intermediate between those of their parental strains. Hybrids from crosses between meiotic products of the same strain were always more sensitive than their parentals. The third method was used to develop baker's yeast mutants resistant to 2-deoxy-d-glucose (DOG) and deregulated for maltose and sucrose metabolism. Mutant DOG21 displayed a slight increase in trehalose content and viability both in frozen doughs and during storage at 4 and 22 degrees C. This mutant also displayed a capacity to ferment, under laboratory conditions, both lean and sweet fresh and frozen doughs. For industrial uses, fermented lean and sweet bakery products, both from fresh and frozen doughs obtained with mutant DOG21, were of better quality with regard to volume, texture, and organoleptic properties than those produced by the wild type.

  6. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    PubMed

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  7. Organization of the SUC gene family in Saccharomyces.

    PubMed Central

    Carlson, M; Botstein, D

    1983-01-01

    The SUC gene family of yeast (Saccharomyces) includes six structural genes for invertase (SUC1 through SUC5 and SUC7) found at unlinked chromosomal loci. A given yeast strain does not usually carry SUC+ alleles at all six loci; the natural negative alleles are called suc0 alleles. Cloned SUC2 DNA probes were used to investigate the physical structure of the SUC gene family in laboratory strains, commercial wine strains, and different Saccharomyces species. The active SUC+ genes are homologous. The suc0 allele at the SUC2 locus (suc2(0) in some strains is a silent gene or pseudogene. Other SUC loci carrying suc0 alleles appear to lack SUC DNA sequences. These findings imply that SUC genes have transposed to different chromosomal locations in closely related Saccharomyces strains. Images PMID:6843548

  8. Saccharomyces Boulardii

    MedlinePlus

    ... blisters. High cholesterol. Hives. Lactose intolerance. Lyme disease. Urinary tract infections (UTIs). Yeast infections. Other conditions. More evidence is needed to rate Saccharomyces boulardii for these uses.

  9. Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast ( Saccharomyces cerevisiae )-mediated degradation.

    PubMed

    Verspreet, Joran; Hemdane, Sami; Dornez, Emmie; Cuyvers, Sven; Delcour, Jan A; Courtin, Christophe M

    2013-02-13

    The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.

  10. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng Y.; Cabelli D.; Stich, T.A.

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O{sub 2}{sup -}). This behavior limits the amount of H{sub 2}O{sub 2} produced at high [O{sub 2}{sup -}]; its desirability can be explained by the multiple roles of H{sub 2}O{sub 2} in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantlymore » in the reduced state (unlike most other MnSODs). At high [O{sub 2}{sup -}], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn{sup 3+} species in yeast Mn{sup 3+}SODs, including the well-characterized 5-coordinate Mn{sup 3+} species and a 6-coordinate L-Mn{sup 3+} species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O{sub 2}{sup -}].« less

  11. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    PubMed Central

    Sheng, Yuewei; Stich, Troy A.; Barnese, Kevin; Gralla, Edith B.; Cascio, Duilio; Britt, R. David; Cabelli, Diane E.; Valentine, Joan Selverstone

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O2−). This behavior limits the amount of H2O2 produced at high [O2−]; its desirability can be explained by the multiple roles of H2O2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O2−] the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn3+ species in yeast Mn3+SODs, including the well-characterized 5-coordinate Mn3+ species and a 6-coordinate L-Mn3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O2−]. PMID:22077216

  12. A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae.

    PubMed

    Adle, David J; Sinani, Devis; Kim, Heejeong; Lee, Jaekwon

    2007-01-12

    Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpectedly, when compared with two independent natural isolates and an industrial S. cerevisiae strain, the PCA1 allele of the common laboratory strains we have examined possesses a missense mutation in a predicted ATP-binding residue conserved in P1B-type ATPases. Consistent with a previous report that identifies an equivalent mutation in a copper-transporting P1B-type ATPase of a Wilson disease patient, the PCA1 allele found in laboratory yeast strains is nonfunctional. Overexpression or deletion of the functional allele in yeast demonstrates that PCA1 is a cadmium efflux pump. Cadmium as well as copper and silver, but not other metals examined, dramatically increase PCA1 protein expression through post-transcriptional regulation and promote subcellular localization to the plasma membrane. Our study has revealed a novel metal detoxification mechanism in yeast mediated by a P1B-type ATPase that is unique in structure, substrate specificity, and mode of regulation.

  13. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae.

    PubMed

    Orentaite, Irma; Poranen, Minna M; Oksanen, Hanna M; Daugelavicius, Rimantas; Bamford, Dennis H

    2016-03-01

    Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability.

    PubMed

    González, Beatriz; Vázquez, Jennifer; Morcillo-Parra, M Ángeles; Mas, Albert; Torija, María Jesús; Beltran, Gemma

    2018-09-01

    Aromatic alcohols (tryptophol, phenylethanol, tyrosol) positively contribute to organoleptic characteristics of wines, and are also described as bioactive compounds and quorum sensing molecules. These alcohols are produced by yeast during alcoholic fermentation via the Erhlich pathway, although in non-Saccharomyces this production has been poorly studied. We studied how different wine yeast species modulate the synthesis patterns of aromatic alcohol production depending on glucose, nitrogen and aromatic amino acid availability. Nitrogen limitation strongly promoted the production of aromatic alcohols in all strains, whereas low glucose generally inhibited it. Increased aromatic amino acid concentrations stimulated the production of aromatic alcohols in all of the strains and conditions tested. Thus, there was a clear association between the nutrient conditions and production of aromatic alcohols in most of the wine yeast species analysed. Additionally, the synthesis pattern of these alcohols has been evaluated for the first time in Torulaspora delbrueckii, Metschnikowia pulcherrima and Starmellera bacillaris. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    PubMed Central

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  17. Raman Spectroscopy and Chemometrics for Identification and Strain Discrimination of the Wine Spoilage Yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis

    PubMed Central

    Thornton, Mark A.; Thornton, Roy J.

    2013-01-01

    The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%. PMID:23913433

  18. The links between hypertrophy, reproductive potential and longevity in the Saccharomyces cerevisiae yeast.

    PubMed

    Molon, Mateusz; Zadrag-Tecza, Renata

    2016-01-01

    The yeast Saccharomyces cerevisiae has long been used as a model organism for studying the basic mechanisms of aging. However, the main problem with the use of this unicellular fungus is the unit of "longevity". For all organisms, lifespan is expressed in units of time, while in the case of yeast it is defined by the number of daughter cells produced. Additionally, in yeast the phenotypic effects of mutations often show a clear dependence on the genetic background, suggesting the need for an analysis of strains representing different genetic backgrounds. Our results confirm the data presented in earlier papers that the reproductive potential is strongly associated with an increase in cell volume per generation. An excessive cell volume results in the loss of reproductive capacity. These data clearly support the hypertrophy hypothesis. The time of life of all analysed mutants, with the exception of sch9D, is the same as in the case of the wild-type strain. Interestingly, the 121% increase of the fob1D mutant's reproductive potential compared to the sfp1D mutant does not result in prolongation of the mutant's time of life (total lifespan).

  19. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.

    PubMed

    Shima, Jun; Takagi, Hiroshi

    2009-05-29

    During the fermentation of dough and the production of baker's yeast (Saccharomyces cerevisiae), cells are exposed to numerous environmental stresses (baking-associated stresses) such as freeze-thaw, high sugar concentrations, air-drying and oxidative stresses. Cellular macromolecules, including proteins, nucleic acids and membranes, are seriously damaged under stress conditions, leading to the inhibition of cell growth, cell viability and fermentation. To avoid lethal damage, yeast cells need to acquire a variety of stress-tolerant mechanisms, for example the induction of stress proteins, the accumulation of stress protectants, changes in membrane composition and repression of translation, and by regulating the corresponding gene expression via stress-triggered signal-transduction pathways. Trehalose and proline are considered to be critical stress protectants, as is glycerol. It is known that these molecules are effective for providing protection against various types of environmental stresses. Modifications of the metabolic pathways of trehalose and proline by self-cloning methods have significantly increased tolerance to baking-associated stresses. To clarify which genes are required for stress tolerance, both a comprehensive phenomics analysis and a functional genomics analysis were carried out under stress conditions that simulated those occurring during the commercial baking process. These analyses indicated that many genes are involved in stress tolerance in yeast. In particular, it was suggested that vacuolar H+-ATPase plays important roles in yeast cells under stress conditions.

  20. Switching the mode of metabolism in the yeast Saccharomyces cerevisiae

    PubMed Central

    Otterstedt, Karin; Larsson, Christer; Bill, Roslyn M; Ståhlberg, Anders; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena

    2004-01-01

    The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction. PMID:15071495

  1. Probiotic yeast Saccharomyces boulardii (nom. nud.) modulates adhesive properties of Candida glabrata.

    PubMed

    Tomičić, Zorica; Zupan, Jure; Matos, Tadeja; Raspor, Peter

    2016-11-01

    Following the widespread use of immunosuppressive therapy together with broad-spectrum antimycotic therapy, the frequency of mucosal and systemic infections caused by the pathogenic yeast Candida glabrata has increased in the past decades. Due to the resistance of C. glabrata to existing azole drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. In this study, we investigated the effect of the probiotic yeast Saccharomyces boulardii (nom. nud.) on C. glabrata adhesion at different temperatures, pH values, and in the presence of fluconazole, itraconazole and amphotericin B. We also studied the adhesion of C. glabrata co-culture with Candida krusei, Saccharomyces cerevisiae, two bacterial probiotics Lactobacillus rhamnosus and Lactobacillus casei The method used to assess adhesion was crystal violet staining. Our results showed that despite the nonadhesiveness of S. boulardii cells, this probiotic significantly affected the adherence ability of C. glabrata This effect was highly dependent on C. glabrata strain and was either antagonistic or synergistic. Regarding the extrinsic factors, temperature did not indicate any significant influence on this S. boulardii modulatory effect, while at high pH and at increased concentrations of antimycotics, S. boulardii did not manage to repress the adhesion of C. glabrata strains. The experiments of C. glabrata co-cultures with other species showed that the adhesiveness of two separate cultures could not be used to predict the adhesiveness of their co-culture. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Gateway Vectors for Efficient Artificial Gene Assembly In Vitro and Expression in Yeast Saccharomyces cerevisiae

    PubMed Central

    Giuraniuc, Claudiu V.; MacPherson, Murray; Saka, Yasushi

    2013-01-01

    Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and their expression in the budding yeast Saccharomyces cerevisiae. Our method enables the rapid construction of an artificial gene from a promoter and an open reading frame (ORF) cassette by one-step recombination reaction in vitro. Furthermore, the plasmid thus created can readily be introduced into yeast cells to test the assembled gene’s functionality. As flexible regulatory components of a synthetic genetic network, we also created new versions of the tetracycline-regulated transactivators tTA and rtTA by fusing them to the auxin-inducible degron (AID). Using our gene assembly approach, we made yeast expression vectors of these engineered transactivators, AIDtTA and AIDrtTA and then tested their functions in yeast. We showed that these factors can be regulated by doxycycline and degraded rapidly after addition of auxin to the medium. Taken together, the method for combinatorial gene assembly described here is versatile and would be a valuable tool for yeast synthetic biology. PMID:23675537

  3. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    PubMed

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  4. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    USDA-ARS?s Scientific Manuscript database

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  5. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts

    DOE PAGES

    Baker, Emily Clare; Wang, Bing; Bellora, Nicolas; ...

    2015-08-11

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae ( S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts havemore » experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. In conclusion, our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.« less

  6. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts

    PubMed Central

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A.; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-01-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. PMID:26269586

  7. Genome Sequence of Saccharomyces carlsbergensis, the World’s First Pure Culture Lager Yeast

    PubMed Central

    Walther, Andrea; Hesselbart, Ana; Wendland, Jürgen

    2014-01-01

    Lager yeast beer production was revolutionized by the introduction of pure culture strains. The first established lager yeast strain is known as the bottom fermenting Saccharomyces carlsbergensis, which was originally termed Unterhefe No. 1 by Emil Chr. Hansen and has been used in production in since 1883. S. carlsbergensis belongs to group I/Saaz-type lager yeast strains and is better adapted to cold growth conditions than group II/Frohberg-type lager yeasts, e.g., the Weihenstephan strain WS34/70. Here, we sequenced S. carlsbergensis using next generation sequencing technologies. Lager yeasts are descendants from hybrids formed between a S. cerevisiae parent and a parent similar to S. eubayanus. Accordingly, the S. carlsbergensis 19.5-Mb genome is substantially larger than the 12-Mb S. cerevisiae genome. Based on the sequence scaffolds, synteny to the S. cerevisae genome, and by using directed polymerase chain reaction for gap closure, we generated a chromosomal map of S. carlsbergensis consisting of 29 unique chromosomes. We present evidence for genome and chromosome evolution within S. carlsbergensis via chromosome loss and loss of heterozygosity specifically of parts derived from the S. cerevisiae parent. Based on our sequence data and via fluorescence-activated cell-sorting analysis, we determined the ploidy of S. carlsbergensis. This inferred that this strain is basically triploid with a diploid S. eubayanus and haploid S. cerevisiae genome content. In contrast the Weihenstephan strain, which we resequenced, is essentially tetraploid composed of two diploid S. cerevisiae and S. eubayanus genomes. Based on conserved translocations between the parental genomes in S. carlsbergensis and the Weihenstephan strain we propose a joint evolutionary ancestry for lager yeast strains. PMID:24578374

  8. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    PubMed Central

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural practices such as farming (organic versus conventional) and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir,’ have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality, and the unique flavor of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast. PMID:23805132

  9. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Whelan, James

    2012-02-17

    In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed Central

    Hoang, Don; Kopp, Artyom

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker’s yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host–microbe interactions can have profound effects on host biology, the results from D. melanogaster–S. cerevisiae laboratory experiments may not be fully representative of host–microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  11. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  12. Genomic Insights into the Saccharomyces sensu stricto Complex

    PubMed Central

    Borneman, Anthony R.; Pretorius, Isak S.

    2015-01-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical “domestication” of these yeasts for baking, brewing, and winemaking. PMID:25657346

  13. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    PubMed

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  14. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts

    PubMed Central

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to FLO11 expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air–liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the FLO11 gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts. PMID:25369456

  15. p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.

    PubMed

    Palermo, Vanessa; Mangiapelo, Eleonora; Piloto, Cristina; Pieri, Luisa; Muscolini, Michela; Tuosto, Loretta; Mazzoni, Cristina

    2013-11-01

    The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In the yeast Saccharomyces cerevisiae, the overexpression of the human p53 leads to growth inhibition and apoptotic cell death on minimal medium. In the present work, we show that p53-expressing cells are more susceptible to cell death after an apoptotic stimulus such as H2O2. The analysis of mutants involved in yeast apoptosis-like death suggests that the observed cell death is Yca1 independent and mainly mediated through Nuc1p. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments.

    PubMed

    Lopandic, Ksenija

    2018-01-01

    The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. In vitro studies on the translocation of acid phosphatase into the endoplasmic reticulum of the yeast Saccharomyces cerevisiae.

    PubMed

    Krebs, H O; Hoffschulte, H K; Müller, M

    1989-05-01

    We demonstrate here the in vitro translocation of yeast acid phosphatase into rough endoplasmic reticulum. The precursor of the repressible acid phosphatase from Saccharomyces cerevisiae encoded by the PHO5 gene, was synthesized in a yeast lysate programmed with in vitro transcribed PHO5 mRNA. In the presence of yeast rough microsomes up to 16% of the acid phosphatase synthesized was found to be translocated into the microsomes, as judged by proteinase resistance, and fully core-glycosylated. The translocation efficiency however, decreased to 3% if yeast rough microsomes were added after synthesis of acid phosphatase had been terminated. When a wheat-germ extract was used for in vitro synthesis, the precursor of acid phosphatase was translocated into canine pancreatic rough microsomes and thereby core-glycosylated in a signal-recognition-particle-dependent manner. Replacing canine with yeast rough microsomes in the wheat-germ translation system, however, resulted in a significant decrease in the ability to translocate and glycosylate the precursor. Translocation and glycosylation were partially restored by a high-salt extract prepared from yeast ribosomes. The results presented here suggest that yeast-specific factors are needed to translocate and glycosylate acid phosphatase efficiently in vitro.

  18. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.

  19. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Hu, X H; Wang, M H; Tan, T; Li, J R; Yang, H; Leach, L; Zhang, R M; Luo, Z W

    2007-03-01

    Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.

  20. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Arlia-Ciommo, Anthony; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2014-05-27

    A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  1. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae.

    PubMed

    Park, Yang-Nim; Masison, Daniel; Eisenberg, Evan; Greene, Lois E

    2011-09-01

    The yeast Saccharomyces cerevisiae has proved to be an excellent model organism to study the function of proteins. One of the many advantages of yeast is the many genetic tools available to manipulate gene expression, but there are still limitations. To complement the many methods used to control gene expression in yeast, we have established a conditional gene deletion system by using the FLP/FRT system on yeast vectors to conditionally delete specific yeast genes. Expression of Flp recombinase, which is under the control of the GAL1 promoter, was induced by galactose, which in turn excised FRT sites flanked genes. The efficacy of this system was examined using the FRT site-flanked genes HSP104, URA3 and GFP. The pre-excision frequency of this system, which might be caused by the basal activity of the GAL1 promoter or by spontaneous recombination between FRT sites, was detected ca. 2% under the non-selecting condition. After inducing expression of Flp recombinase, the deletion efficiency achieved ca. 96% of cells in a population within 9 h. After conditional deletion of the specific gene, protein degradation and cell division then diluted out protein that was expressed from this gene prior to its excision. Most importantly, the specific protein to be deleted could be expressed under its own promoter, so that endogenous levels of protein expression were maintained prior to excision by the Flp recombinase. Therefore, this system provides a useful tool for the conditional deletion of genes in yeast. Published in 2011 by John Wiley & Sons, Ltd.

  2. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    PubMed

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. Genomic insights into the Saccharomyces sensu stricto complex.

    PubMed

    Borneman, Anthony R; Pretorius, Isak S

    2015-02-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical "domestication" of these yeasts for baking, brewing, and winemaking. Copyright © 2015 by the Genetics Society of America.

  4. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.

    PubMed

    Flis, Vid V; Fankl, Ariane; Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.

  5. A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media

    PubMed Central

    Zarei, Omid; Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam

    2016-01-01

    Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this procedure mechanical methods such as high temperature and pressure were utilized to produce the yeast extract. The growth of the bacteria feed with the produced yeast extract was monitored in order to assess the quality of the product. The results showed that the quality of the produced yeast extract was very promising concluded from the growth pattern of bacterial cells in media prepared from this product and was comparable with that of the three commercial yeast extracts in terms of bacterial growth properties. One of the main advantages of the current method was that no chemicals and enzymes were used, leading to the reduced production cost. The method is very simple and cost effective, and can be performed in a reasonable time making it suitable for being adopted by research laboratories. Furthermore, it can be scaled up to produce large quantities for industrial applications. PMID:28243289

  6. A new series of yeast shuttle vectors for the recovery and identification of multiple plasmids from Saccharomyces cerevisiae.

    PubMed

    Frazer, LilyAnn Novak; O'Keefe, Raymond T

    2007-09-01

    The availability of Saccharomyces cerevisiae yeast strains with multiple auxotrophic markers allows the stable introduction and selection of more than one yeast shuttle vector containing marker genes that complement the auxotrophic markers. In certain experimental situations there is a need to recover more than one shuttle vector from yeast. To facilitate the recovery and identification of multiple plasmids from S. cerevisiae, we have constructed a series of plasmids based on the pRS series of yeast shuttle vectors. Bacterial antibiotic resistance genes to chloramphenicol, kanamycin and zeocin have been combined with the yeast centromere sequence (CEN6), the autonomously replicating sequence (ARSH4) and one of the four yeast selectable marker genes (HIS3, TRP1, LEU2 or URA3) from the pRS series of vectors. The 12 plasmids produced differ in antibiotic resistance and yeast marker gene within the backbone of the multipurpose plasmid pBluescript II. The newly constructed vectors show similar mitotic stability to the original pRS vectors. In combination with the ampicillin-resistant pRS series of yeast shuttle vectors, these plasmids now allow the recovery and identification in bacteria of up to four different vectors from S. cerevisiae. Copyright (c) 2007 John Wiley & Sons, Ltd.

  7. A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts

    PubMed Central

    Lu, Tzu-Chiao; Leu, Jun-Yi; Lin, Wen-Chang

    2017-01-01

    Abstract Novel genes arising from random DNA sequences (de novo genes) have been suggested to be widespread in the genomes of different organisms. However, our knowledge about the origin and evolution of de novo genes is still limited. To systematically understand the general features of de novo genes, we established a robust pipeline to analyze >20,000 transcript-supported coding sequences (CDSs) from the budding yeast Saccharomyces cerevisiae. Our analysis pipeline combined phylogeny, synteny, and sequence alignment information to identify possible orthologs across 20 Saccharomycetaceae yeasts and discovered 4,340 S. cerevisiae-specific de novo genes and 8,871 S. sensu stricto-specific de novo genes. We further combine information on CDS positions and transcript structures to show that >65% of de novo genes arose from transcript isoforms of ancient genes, especially in the upstream and internal regions of ancient genes. Fourteen identified de novo genes with high transcript levels were chosen to verify their protein expressions. Ten of them, including eight transcript isoform-associated CDSs, showed translation signals and five proteins exhibited specific cytosolic localizations. Our results suggest that de novo genes frequently arise in the S. sensu stricto complex and have the potential to be quickly integrated into ancient cellular network. PMID:28981695

  8. Kinetics of growth and sugar consumption in yeasts.

    PubMed

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  9. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    PubMed

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Improving the performance of the Granulosis virus of Codling moth (Lepidoptera: Tortricideae) by adding the yeast Saccharomyces cerevisiae with sugar

    USDA-ARS?s Scientific Manuscript database

    Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...

  11. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David James; Marullo, Philippe; Todd Hittinger, Chris; Gonçalves, Paula; Sampaio, José Paulo

    2014-06-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.

  12. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-05

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Hopper, Anita K.

    2013-01-01

    Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3′ mature sequence and, for tRNAHis, addition of a 5′ G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain. PMID:23633143

  14. Experimental Systems to Study Yeast Pexophagy.

    PubMed

    Yamashita, Shun-Ichi; Oku, Masahide; Sakai, Yasuyoshi; Fujiki, Yukio

    2017-01-01

    Peroxisome abundance is tightly regulated according to the physiological contexts, through regulations of both proliferation and degradation of the organelles. Here, we describe detailed methods to analyze processes for autophagic degradation of peroxisomes, termed pexophagy, in yeast organisms. The assay systems include a method for biochemical detection of pexophagy completion, and one for microscopic visualization of specialized membrane structures acting in pexophagy. As a model yeast organism utilized in studies of pexophagy, the methylotrophic yeast Komagataella phaffii (Pichia pastoris) is referred to in this chapter and related information on the studies with baker's yeast (Saccharomyces cerevisiae) is also included. The described techniques facilitate elucidation of molecular machineries for pexophagy and understanding of peroxisome-selective autophagic pathways.

  15. A reference model systesm of industrial yeasts Saccharomyces cerevisiae is needed for development of the next-generation biocatalyst toward advanced biofuels production

    USDA-ARS?s Scientific Manuscript database

    Diploid industrial yeast Saccharomyces cerevisiae has demonstrated distinct characteristics that differ from haploid laboratory model strains. However, as a workhorse for a broad range of fermentation-based industrial applications, it was poorly characterized at the genome level. Observations on the...

  16. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content.

    PubMed

    Contreras, A; Hidalgo, C; Schmidt, S; Henschke, P A; Curtin, C; Varela, C

    2015-07-16

    High alcohol concentrations reduce the complexity of wine sensory properties. In addition, health and economic drivers have the wine industry actively seeking technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol, however commercially available wine yeasts produce very similar ethanol yields. Non-conventional yeast, in particular non-Saccharomyces species, have shown potential for producing wines with lower alcohol content. These yeasts are naturally present in the early stages of fermentation but in general are not capable of completing alcoholic fermentation. We have evaluated 48 non-Saccharomyces isolates to identify strains that, with limited aeration and in sequential inoculation regimes with S. cerevisiae, could be used for the production of wine with lower ethanol concentration. Two of these, Torulaspora delbrueckii AWRI1152 and Zygosaccharomyces bailii AWRI1578, enabled the production of wine with reduced ethanol concentration under limited aerobic conditions. Depending on the aeration regime T. delbrueckii AWRI1152 and Z. bailii AWRI1578 showed a reduction in ethanol concentration of 1.5% (v/v) and 2.0% (v/v) respectively, compared to the S. cerevisiae anaerobic control. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Zhou, Qian; Liu, Z. Lewis; Ning, Kang; Wang, Anhui; Zeng, Xiaowei; Xu, Jian

    2014-01-01

    The industrial yeast Saccharomyces cerevisiae is a traditional ethanologenic agent and a promising biocatalyst for advanced biofuels production using lignocellulose mateials. Here we present the genomic background of type strain NRRL Y-12632 and its transcriptomic response to 5-hydroxymethyl-2-furaldehyde (HMF), a commonly encountered toxic compound liberated from lignocellulosic-biomass pretreatment, in dissecting the genomic mechanisms of yeast tolerance. Compared with the genome of laboratory model strain S288C, we identified more than 32,000 SNPs in Y-12632 with 23,000 missense and nonsense SNPs. Enriched sequence mutations occurred for genes involved in MAPK- and phosphatidylinositol (PI)- signaling pathways in strain Y-12632, with 41 and 13 genes containing non-synonymous SNPs, respectively. Many of these mutated genes displayed consistent up-regulated signature expressions in response to challenges of 30 mM HMF. Analogous single-gene deletion mutations of these genes showed significantly sensitive growth response on a synthetic medium containing 20 mM HMF. Our results suggest at least three MAPK-signaling pathways, especially for the cell-wall integrity pathway, and PI-signaling pathways to be involved in mediation of yeast tolerance against HMF in industrial yeast Saccharomyces cerevisiae. Higher levels of sequence variations were also observed for genes involved in purine and pyrimidine metabolism pathways. PMID:25296911

  18. Generation of Tioman virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae.

    PubMed

    Petraityte, Rasa; Tamosiunas, Paulius L; Juozapaitis, Mindaugas; Zvirbliene, Aurelija; Sasnauskas, Kestutis; Shiell, Brian; Russell, Gail; Bingham, John; Michalski, Wojtek P

    2009-10-01

    Tioman virus (TioV) was isolated from a number of pooled urine samples of Tioman Island flying foxes (Pteropus hypomelanus) during the search for the reservoir host of Nipah virus. Studies have established TioV as a new virus in the family Paramyxoviridae. This novel paramyxovirus is antigenically related to Menangle virus that was isolated in Australia in 1997 during disease outbreak in pigs. TioV causes mild disease in pigs and has a predilection for lymphoid tissues. Recent serosurvey showed that 1.8% of Tioman Islanders had neutralizing antibodies against TioV, indicating probable past infection. For the development of convenient serological tests for this virus, recombinant TioV nucleocapsid (N) protein was expressed in the yeast Saccharomyces cerevisiae. High yields of recombinant TioV N protein were obtained. Electron microscopy demonstrated that purified recombinant N protein self-assembled into nucleocapsid-like particles which were identical in density and morphology to authentic nucleocapsids from paramyxovirus-infected cells. Different size nucleocapsid-like particles were stable and readily purified by CsCl gradient ultracentrifugation. Polyclonal sera raised in rabbits after immunization with recombinant TioV N protein reacted reliably with TioV infected tissues in immunohistochemistry tests. It confirmed that the antigenic properties of yeast derived TioV N protein are identical to authentic viral protein.

  19. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  20. Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae.

    PubMed

    Robertson, Aaron; Schaltz, Kyle; Neimanis, Karina; Staples, James F; McDonald, Allison E

    2016-10-01

    Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.

  1. Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae.

    PubMed

    Sen, Arpita; Acosta-Sampson, Ligia; Alvaro, Christopher G; Ahn, Jonathan S; Cate, Jamie H D; Thorner, Jeremy

    2016-12-15

    When expressed in Saccharomyces cerevisiae using either of two constitutive yeast promoters (PGK1 prom and CCW12 prom ), the transporters CDT-1 and CDT-2 from the filamentous fungus Neurospora crassa are able to catalyze, respectively, active transport and facilitated diffusion of cellobiose (and, for CDT-2, also xylan and its derivatives). In S. cerevisiae, endogenous permeases are removed from the plasma membrane by clathrin-mediated endocytosis and are marked for internalization through ubiquitinylation catalyzed by Rsp5, a HECT class ubiquitin:protein ligase (E3). Recruitment of Rsp5 to specific targets is mediated by a 14-member family of endocytic adaptor proteins, termed α-arrestins. Here we demonstrate that CDT-1 and CDT-2 are subject to α-arrestin-mediated endocytosis, that four α-arrestins (Rod1, Rog3, Aly1, and Aly2) are primarily responsible for this internalization, that the presence of the transport substrate promotes transporter endocytosis, and that, at least for CDT-2, residues located in its C-terminal cytosolic domain are necessary for its efficient endocytosis. Both α-arrestin-deficient cells expressing CDT-2 and otherwise wild-type cells expressing CDT-2 mutants unresponsive to α-arrestin-driven internalization exhibit an increased level of plasma membrane-localized transporter compared to that of wild-type cells, and they grow, utilize the transport substrate, and generate ethanol anaerobically better than control cells. Ethanolic fermentation of the breakdown products of plant biomass by budding yeast Saccharomyces cerevisiae remains an attractive biofuel source. To achieve this end, genes for heterologous sugar transporters and the requisite enzyme(s) for subsequent metabolism have been successfully expressed in this yeast. For one of the heterologous transporters examined in this study, we found that the amount of this protein residing in the plasma membrane was the rate-limiting factor for utilization of the cognate carbon source

  2. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    PubMed

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Tributyltin induces Yca1p-dependent cell death of yeast Saccharomyces cerevisiae.

    PubMed

    Chahomchuen, Thippayarat; Akiyama, Koichi; Sekito, Takayuki; Sugimoto, Naoko; Okabe, Masaaki; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi

    2009-10-01

    Tributyltin chloride (TBT), an environmental pollutant, is toxic to a variety of eukaryotic and prokaryotic organisms. Although it has been reported that TBT induces apoptotic cell death in mammalian, the action of TBT on eukaryotic microorganisms has not yet been fully investigated. In this study we examined the mechanism involved in cell death caused by TBT exposure in Saccharomyces cerevisiae. The median lethal concentration of TBT was 10 microM for the parent strain BY4741 and 3 microM for the pdr5Delta mutant defective in a major multidrug transporter, respectively. Fluorescence microscopic observations revealed nuclear condensation and chromatin fragmentation in cells treated with TBT indicating that cells underwent an apoptosis-like cell dearth. TBT-induced cell death was suppressed by deletion of the yca1 gene encoding a homologue of the mammalian caspase. In parallel, reactive oxygen species (ROS) were produced by TBT. These results suggest that TBT induces apoptosis-like cell death in yeast via an Yca1p-dependent pathway possibly downstream of the ROS production. This is the first report on TBT-induced apoptotic cell death in yeast.

  4. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    PubMed Central

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  5. Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species.

    PubMed

    de Barros Lopes, Miguel; Bellon, Jennifer R; Shirley, Neil J; Ganter, Philip F

    2002-01-01

    Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastorianus. The genome structure of CBS 380(T), the type strain of Saccharomyces bayanus, is also consistent with S. pastorianus gene transfer. The results indicate that the cider yeast, CID1, possesses nuclear DNA from three separate species. Mating experiments show that there are no barriers to interspecific conjugation of haploid cells. Furthermore, the allopolyploid strains were able to undergo further hybridizations with other Saccharomyces sensu stricto yeasts. These results demonstrate that introgression between the Saccharomyces sensu stricto species is likely.

  6. Nanoscale Effects of Caspofungin against Two Yeast Species, Saccharomyces cerevisiae and Candida albicans

    PubMed Central

    Formosa, C.; Schiavone, M.; Martin-Yken, H.; François, J. M.; Duval, R. E.

    2013-01-01

    Saccharomyces cerevisiae and Candida albicans are model yeasts for biotechnology and human health, respectively. We used atomic force microscopy (AFM) to explore the effects of caspofungin, an antifungal drug used in hospitals, on these two species. Our nanoscale investigation revealed similar, but also different, behaviors of the two yeasts in response to treatment with the drug. While administration of caspofungin induced deep cell wall remodeling in both yeast species, as evidenced by a dramatic increase in chitin and decrease in β-glucan content, changes in cell wall composition were more pronounced with C. albicans cells. Notably, the increase of chitin was proportional to the increase in the caspofungin dose. In addition, the Young modulus of the cell was three times lower for C. albicans cells than for S. cerevisiae cells and increased proportionally with the increase of chitin, suggesting differences in the molecular organization of the cell wall between the two yeast species. Also, at a low dose of caspofungin (i.e., 0.5× MIC), the cell surface of C. albicans exhibited a morphology that was reminiscent of cells expressing adhesion proteins. Interestingly, this morphology was lost at high doses of the drug (i.e., 4× MIC). However, the treatment of S. cerevisiae cells with high doses of caspofungin resulted in impairment of cytokinesis. Altogether, the use of AFM for investigating the effects of antifungal drugs is relevant in nanomedicine, as it should help in understanding their mechanisms of action on fungal cells, as well as unraveling unexpected effects on cell division and fungal adhesion. PMID:23669379

  7. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    PubMed

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  8. Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid

    PubMed Central

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-01-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production. PMID:19261625

  9. Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from Oxidative and Apoptotic Stress and Extends Chronological Lifespan.

    PubMed

    Alugoju, Phaniendra; Janardhanshetty, Sudharshan Setra; Subaramanian, Subasri; Periyasamy, Latha; Dyavaiah, Madhu

    2018-05-01

    The yeast Saccharomyces cerevisiae PEP4 gene encodes vacuolar endopeptidase proteinase A (Pep4p), which is a homolog of the human CTSD gene that encodes cathepsin D. Mutation of CTSD gene in human resulted in a number of neurodegenerative diseases. In this study, we have shown that yeast pep4 mutant cells are highly sensitive to oxidative and apoptotic stress induced by hydrogen peroxide and acetic acid, respectively. pep4∆ cells also showed accumulation of reactive oxygen species (ROS), apoptotic markers, and reduced chronological lifespan. In contrast, quercetin pretreatment protected the pep4 mutant from oxidative and apoptotic stress-induced sensitivity by scavenging ROS and reducing apoptotic markers. The percentage viability of quercetin-treated pep4∆ cells was more pronounced and increased stress resistance against oxidant, apoptotic, and heat stress during chronological aging. From our experimental results, we concluded that quercetin protects yeast pep4 mutant cells from oxidative stress and apoptosis, thereby increasing viability during chronological aging.

  10. Yeasts isolated from Algerian infants's feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae.

    PubMed

    Seddik, Hamza Ait; Ceugniez, Alexandre; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2016-01-01

    This study aimed at showing the yeast diversity in feces of Algerian infants, aged between 1 and 24 months, hospitalized at Bejaia hospital (northeast side of the country). Thus, 20 colonies with yeast characteristics were isolated and identified using biochemical (ID32C Api system) and molecular (sequencing of ITS1-5.8S-ITS2 region) methods. Almost all colonies isolated (19 strains) were identified as Candida spp., with predominance of Candida albicans species, and one strain was identified as Saccharomyces cerevisiae. Screening of strains with inhibitory activities unveiled the potential of Candida parapsilosis P48L1 and Candida albicans P51L1 to inhibit the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Further studies performed with these two Candida strains revealed their susceptibility to clinically used antifungal compounds and were then characterized for their cytotoxicity and hemolytic properties. On the other hand, Saccharomyces cerevisiae P9L1 isolated as well in this study was shown to be devoid of antagonism but resulted safe and overall usable as probiotic.

  11. Saccharomyces cerevisiae populations and other yeasts associated with indigenous beers (chicha) of Ecuador.

    PubMed

    Piló, Fernanda Barbosa; Carvajal-Barriga, Enrique Javier; Guamán-Burneo, Maria Cristina; Portero-Barahona, Patricia; Dias, Arthur Matoso Morato; Freitas, Larissa Falabella Daher de; Gomes, Fátima de Cássia Oliveira; Rosa, Carlos Augusto

    2018-03-01

    Chicha, a type of beer made mainly with maize or cassava, is a traditional fermented beverage of the Andean region. There have only been a few studies on yeasts associated with chicha fermentation, and the species diversity occurring during the production of this beverage is not known. The objective of this study was to determine the biodiversity of yeasts in chicha, and to characterize the Saccharomyces cerevisiae populations associated with the production of chicha de jora, seven-grain chicha, chicha de yuca, and chicha de morocho in Ecuador. The molecular diversity of S. cerevisiae populations was determined by restriction polymorphism mitochondrial profiles. The beverages were characterized based on their physicochemical parameters. Twenty-six species were identified, and the most prevalent species were S. cerevisiae and Torulaspora delbrueckii. Other yeast species were isolated at low frequencies. Among 121 isolates of S. cerevisiae, 68 different mtDNA molecular profiles were identified. These results showed that chichas are fermented by a high number of different strains of S. cerevisiae. Some other species provided a minor contribution to the fermentation process. The chicha presented generally similar physicochemical parameters to those observed for other traditional fermented beverages, and can be considered as an acid fermented beverage. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Bioethanol production from sweet potato using Saccharomyces diastaticus

    NASA Astrophysics Data System (ADS)

    Abdullah, Suryani, Irma; Pradia Paundradewa, J.

    2015-12-01

    Sweet potato contains about 16 to 40% dry matter and about 70-90% of the dry matter is a carbohydrate made up of starch, sugar, cellulose, hemicellulose and pectin so suitable for used as raw material for bioethanol. In this study focused on the manufacture of bioethanol with changes in temperature and concentration variations of yeast with sweet potato raw materials used yeast Saccharomyces diastaticus. Operating variables used are at a temperature of 30°C; 31,475°C; 35°C; 38,525°C; and 40°C with a yeast concentration of 25.9%; 30%; 40%; 50% and 54.1%. The experimental results obtained, the optimum conditions of ethanol fermentation with yeast Saccharomyces diastaticus on 36,67 °C temperature and yeast concentration of 43,43 % v / v.

  13. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    PubMed Central

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-01-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions. PMID:27094203

  14. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.

  15. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-20

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te ((particle)) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs' nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te ((particle)) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te ((ion)) efficiently determined the NPs toxicity associated with released ions.

  16. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.

    PubMed

    Nambu-Nishida, Yumiko; Sakihama, Yuri; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2018-01-01

    To efficiently utilize xylose, a major sugar component of hemicelluloses, in Saccharomyces cerevisiae requires the proper expression of varied exogenous and endogenous genes. To expand the repertoire of promoters in engineered xylose-utilizing yeast strains, we selected promoters in S. cerevisiae during cultivation and fermentation using xylose as a carbon source. To select candidate promoters that function in the presence of xylose, we performed comprehensive gene expression analyses using xylose-utilizing yeast strains both during xylose and glucose fermentation. Based on microarray data, we chose 29 genes that showed strong, moderate, and weak expression in xylose rather than glucose fermentation. The activities of these promoters in a xylose-utilizing yeast strain were measured by lacZ reporter gene assays over time during aerobic cultivation and microaerobic fermentation, both in xylose and glucose media. In xylose media, P TDH3 , P FBA1 , and P TDH1 were favorable for high expression, and P SED1 , P HXT7 , P PDC1 , P TEF1 , P TPI1 , and P PGK1 were acceptable for medium-high expression in aerobic cultivation, and moderate expression in microaerobic fermentation. P TEF2 allowed moderate expression in aerobic culture and weak expression in microaerobic fermentation, although it showed medium-high expression in glucose media. P ZWF1 and P SOL4 allowed moderate expression in aerobic cultivation, while showing weak but clear expression in microaerobic fermentation. P ALD3 and P TKL2 showed moderate promoter activity in aerobic cultivation, but showed almost no activity in microaerobic fermentation. The knowledge of promoter activities in xylose cultivation obtained in this study will permit the control of gene expression in engineered xylose-utilizing yeast strains that are used for hemicellulose fermentation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. New lager yeast strains generated by interspecific hybridization.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  18. Synthesis of recombinant human parainfluenza virus 1 and 3 nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Zvirbliene, Aurelija; Kucinskaite, Indre; Sezaite, Indre; Slibinskas, Rimantas; Coiras, Mayte; de Ory Manchon, Fernando; López-Huertas, María Rosa; Pérez-Breña, Pilar; Staniulis, Juozas; Narkeviciute, Irena; Sasnauskas, Kestutis

    2008-05-01

    Human parainfluenza virus types 1 and 3 (HPIV1 and HPIV3, respectively), members of the virus family Paramyxoviridae, are common causes of lower respiratory tract infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. In order to synthesize recombinant HPIV1 and HPIV3 nucleocapsid proteins, the coding sequences were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of recombinant virus nucleocapsid proteins expression (20-24 mg l(-1) of yeast culture) was obtained. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. These structures contained host RNA, which was resistant to RNase treatment. The nucleocapsid proteins were stable in yeast and were easily purified by caesium chloride gradient ultracentrifugation. Therefore, this system proved to be simple, efficient and cost-effective, suitable for high-level production of parainfluenza virus nucleocapsids as nucleocapsid-like particles. When used as coating antigens in an indirect ELISA, the recombinant N proteins reacted with sera of patients infected with HPIV1 or 3. Serological assays to detect HPIV-specific antibodies could be designed on this basis.

  19. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    PubMed Central

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  20. Novel brewing yeast hybrids: creation and application.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  1. Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grohmann, K.; Baldwin, E.A.; Buslig, B.S.

    The authors extended their previous investigations of enzymatic hydrolysis of polysaccharides in orange peel by commercial cellulase and pectinase enzymes to higher, more practical concentrations of orange peel solids. High yields of saccharification could be maintained even at substrate concentrations as high as 22-23%, but the rates of solubilization and saccarification decreased 2-3-fold. They also tested the fermentability of these hydrolysates by the yeast Saccharomyces cerevisiae, which revealed the presence of inhibitory compounds. These compounds could be removed by the filtration of hydrolyzed peel. Successful fermentations of filtered hydrolysates were achieved after pH adjustment with calcium carbonate. 27 refs., 6more » figs., 1 tab.« less

  2. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    PubMed

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  3. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae.

    PubMed

    Englezos, Vasileios; Cravero, Francesco; Torchio, Fabrizio; Rantsiou, Kalliopi; Ortiz-Julien, Anne; Lambri, Milena; Gerbi, Vincenzo; Rolle, Luca; Cocolin, Luca

    2018-02-01

    Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast that has been proposed as a co-inoculant of selected Saccharomyces cerevisiae strains in mixed culture fermentations to enhance the analytical composition of the wines. In order to acquire further knowledge on the metabolic interactions between these two species, in this study we investigated the impact of oxygen addition and combination of Starm. bacillaris with S. cerevisiae strains on the microbial growth and metabolite production. Fermentations were carried out under two different conditions of oxygen availability. Oxygen availability and strain combination clearly influenced the population dynamics throughout the fermentation. Oxygen concentration increased the survival time of Starm. bacillaris and decreased the growth rate of S. cerevisiae strains in mixed culture fermentations, whereas it did not affect the growth of the latter in pure culture fermentations. This study reveals new knowledge about the influence of oxygen availability on the successional evolution of yeast species during wine fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    PubMed

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Fructose as a factor of Carbonyl and oxidative stress development and accelerated aging in the yeast Saccharomyces].

    PubMed

    Lozins'ka, L M; Semchyshyn, G M

    2011-01-01

    Excessive and prolonged consumption of fructose may lead to the development of metabolic disorders. However, the mechanisms of disturbances are still discussed. In the present work, the budding yeast Saccharomyces cerevisiae has been used as a model to compare the effects of prolonged consumption of different concentrations of glucose and fructose on certain physiology-biochemical parameters of eukaryotes. It has been shown that the yeast growth, their metabolic activity, intracellular level of glycogen and oxidized proteins were higher in cells grown on fructose. The observation is consistent with the data on a higher in vitro ability of fructose than glucose to initiate glycation which products of which are highly reactive a-dicarbonyl compounds and activated oxygen forms. Thus the intensity of carbonyl and oxidative stress is higher in cells grown on fructose. This can explain a higher rate of aging of yeast consuming fructose as a source of carbon and energy as compared to cells growing on glucose. However, carbohydrate restriction used in this study ham- pered the accumulation of glycogen and oxidized proteins and did not reveal any difference between markers of aging and carbonyl and oxidative stress in yeast grown on glucose and fructose.

  6. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    PubMed

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  7. Review of Saccharomyces boulardii as a treatment option in IBD.

    PubMed

    Sivananthan, Kavitha; Petersen, Andreas Munk

    2018-05-17

    Review of the yeast Saccharomyces boulardii as a treatment option for the inflammatory bowel diseases (IBD) ulcerative colitis and Crohn's disease. IBD is caused by an inappropriate immune response to gut microbiota. Treatment options could therefore be prebiotics, probiotics, antibiotics and/or fecal transplant. In this review, we have looked at the evidence for the yeast S. boulardii as a treatment option. Searches in PubMed and the Cochrane Library with the MeSH words 'Saccharomyces boulardii AND IBD', 'Saccharomyces boulardii AND Inflammatory Bowel Disease', 'Saccharomyces boulardii AND ulcerative colitis' and 'Saccharomyces boulardii AND Crohn's disease' gave total a total of 80 articles. After exclusions because of irrelevance, articles in other languages and some articles that were not available, 16 articles were included in this review. Three of the clinical trials showed a positive effect of S. boulardii in IBD patients (two Crohn's disease, one ulcerative colitis), while there was one trial that didn't prove any effect (Crohn's disease). Included Animal trials and cell assays describes different anti-inflammatory mechanisms of S. boulardii supporting a possible effect when treating IBD patients. The number of studies of S. boulardii as treatment for IBD is limited. Furthermore, the existing trials have small populations and short duration. We do not have enough evidence to prove the effect of S. boulardii in IBD. Saccharomyces boulardii is, however, a plausible treatment option in the future, but more placebo-controlled clinical studies on both patients with ulcerative colitis and Crohn's disease are needed.

  8. Growth rates of Dekkera/Brettanomyces yeasts hinder their ability to compete with Saccharomyces cerevisiae in batch corn mash fermentations.

    PubMed

    Abbott, D A; Hynes, S H; Ingledew, W M

    2005-03-01

    Growth rates determined by linear regression analysis revealed that Saccharomyces cerevisiae consistently grew more rapidly than Brettanomyces yeasts under a wide array of batch fermentative conditions, including acetic acid stress, in normal gravity (ca. 20 degrees Plato) mashes made from ground corn. Brettanomyces yeasts only grew more rapidly than S. cerevisiae when acetic acid concentrations were elevated to industrially irrelevant levels (>0.45%, w/v). Furthermore, the three Brettanomyces isolates used in this study failed to produce significant quantities of acetic acid under pure culture fermentative conditions. In fact, the small amounts of acetic acid which accumulated in pure culture fermentations of whole corn mash were below the concentration required to inhibit the growth and metabolism of S. cerevisiae. Acetic acid concentrations in pure culture Brettanomyces fermentations exceeded 0.05% (w/v) only in media containing low levels of glucose (<4%, w/v) or when aeration rates were elevated to at least 0.03 vol. air vol.-1 mash min-1. Consequently, it was concluded that Brettanomyces yeasts would not be capable of competing with S. cerevisiae in industrial batch fermentations of whole corn mash based solely on growth rates, nor would they be capable of producing inhibitory concentrations of acetic acid in such fermentations.

  9. Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae.

    PubMed

    Wagner, A; Daum, G

    2005-11-01

    Since energy storage is a basic metabolic process, the synthesis of neutral lipids occurs in all kingdoms of life. The yeast Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely STEs (steryl esters) and TAGs (triacylglycerols). TAGs are synthesized through two pathways governed by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p. STEs are formed by two STE synthases Are1p and Are2p, two enzymes with overlapping function, which also catalyse TAG formation, although to a minor extent. Neutral lipids are stored in the so-called lipid particles and can be utilized for membrane formation under conditions of lipid depletion. For this purpose, storage lipids have to be mobilized by TAG lipases and STE hydrolases. A TAG lipase named Tgl3p was identified as a major yeast TAG hydrolytic enzyme in lipid particles. Recently, a new family of hydrolases was detected which is required for STE mobilization in S. cerevisiae. These enzymes, named Yeh1p, Yeh2p and Tgl1p, are paralogues of the mammalian acid lipase family. The role of these proteins in biosynthesis and mobilization of TAG and STE, and the regulation of these processes will be discussed in this minireview.

  10. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias.

    PubMed

    Pando Bedriñana, R; Querol Simón, A; Suárez Valles, B

    2010-06-01

    This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22' and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of beta-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3' and 19') to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with beta-glucosidase activity are reported for the first time in autochthonous cider yeasts. 2009 Elsevier Ltd. All rights reserved.

  11. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1.

    PubMed

    Elsztein, Carolina; de Lucena, Rodrigo M; de Morais, Marcos A

    2011-08-19

    Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  12. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    PubMed Central

    2011-01-01

    Background Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes. PMID:21854579

  13. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    PubMed Central

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  14. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    PubMed

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Complete genome sequence and comparative genomics of the probiotic yeast Saccharomyces boulardii.

    PubMed

    Khatri, Indu; Tomar, Rajul; Ganesan, K; Prasad, G S; Subramanian, Srikrishna

    2017-03-23

    The probiotic yeast, Saccharomyces boulardii (Sb) is known to be effective against many gastrointestinal disorders and antibiotic-associated diarrhea. To understand molecular basis of probiotic-properties ascribed to Sb we determined the complete genomes of two strains of Sb i.e. Biocodex and unique28 and the draft genomes for three other Sb strains that are marketed as probiotics in India. We compared these genomes with 145 strains of S. cerevisiae (Sc) to understand genome-level similarities and differences between these yeasts. A distinctive feature of Sb from other Sc is absence of Ty elements Ty1, Ty3, Ty4 and associated LTR. However, we could identify complete Ty2 and Ty5 elements in Sb. The genes for hexose transporters HXT11 and HXT9, and asparagine-utilization are absent in all Sb strains. We find differences in repeat periods and copy numbers of repeats in flocculin genes that are likely related to the differential adhesion of Sb as compared to Sc. Core-proteome based taxonomy places Sb strains along with wine strains of Sc. We find the introgression of five genes from Z. bailii into the chromosome IV of Sb and wine strains of Sc. Intriguingly, genes involved in conferring known probiotic properties to Sb are conserved in most Sc strains.

  16. Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae.

    PubMed

    Wagner, Andrea; Grillitsch, Karlheinz; Leitner, Erich; Daum, Günther

    2009-02-01

    In the yeast as in other eukaryotes, formation and hydrolysis of steryl esters (SE) are processes linked to lipid storage. In Saccharomyces cerevisiae, the three SE hydrolases Tgl1p, Yeh1p and Yeh2p contribute to SE mobilization from their site of storage, the lipid particles/droplets. Here, we provide evidence for enzymatic and cellular properties of these three hydrolytic enzymes. Using the respective single, double and triple deletion mutants and strains overexpressing the three enzymes, we demonstrate that each SE hydrolase exhibits certain substrate specificity. Interestingly, disturbance in SE mobilization also affects sterol biosynthesis in a type of feedback regulation. Sterol intermediates stored in SE and set free by SE hydrolases are recycled to the sterol biosynthetic pathway and converted to the final product, ergosterol. This recycling implies that the vast majority of sterol precursors are transported from lipid particles to the endoplasmic reticulum, where sterol biosynthesis is completed. Ergosterol formed through this route is then supplied to its subcellular destinations, especially the plasma membrane. Only a minor amount of sterol precursors are randomly distributed within the cell after cleavage from SE. Conclusively, SE storage and mobilization although being dispensable for yeast viability contribute markedly to sterol homeostasis and distribution.

  17. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.

    PubMed

    Kumari, Rajni; Pramanik, K

    2012-06-01

    The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose-xylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8 ± 0.31 g L(-1)), ethanol productivity (1.06 g L(-1) h(-1)) and ethanol yield (0.458 g g(-1)) by fermentation of glucose-xylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08 ± 0.142 g L(-1), ethanol yield of 0.44 g g(-1), productivity of 0.45 g L(-1) h(-1) and biomass yield of 0.40 g g(-1).

  18. Organoleptic Analysis of Doughs Fermented with Yeasts From A Nigerian Palm Wine (Elaeis guineensis) and Certain Commercial Yeasts

    PubMed Central

    B, Boboye; I, Dayo-Owoyemi; F. A, Akinyosoye

    2008-01-01

    Yeasts isolated from a freshly tapped palm wine obtained from Akure, Nigeria were identified as Schizosaccharomyces pombe, Saccharomyces cerevisiae, Debaryomyces hansenii, Geotrichum lactis and Zygosaccharomyces rouxii. Each of the isolates was used to ferment wheat flour dough and baked. Sensory analysis of the doughs was carried out on leavening, texture, aroma, taste and appearance. Saccharomyces cerevisiae performed best in leavening the dough while Debaryomyces hansenii produced doughs with the best taste and aroma. Appearances of the doughs made with all the isolated yeasts did not differ significantly (P<0.05) from that of the dough that lacked yeast. PMID:19088921

  19. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  20. A fluorescence resonance energy transfer (FRET)-based redox sensor reveals physiological role of thioredoxin in the yeast Saccharomyces cerevisiae.

    PubMed

    Oku, Masahide; Hoseki, Jun; Ichiki, Yayoi; Sakai, Yasuyoshi

    2013-03-18

    The physiological roles of the thioredoxin isozymes in the yeast Saccharomyces cerevisiae were investigated using a novel FRET-based redox probe, Redoxfluor. After establishing responsiveness of the probe toward thioredoxin, we followed the fluorescence signal of Redoxfluor expressed in the yeast and found that one of the thioredoxin isozymes, Trx2, was required for maintaining the redox status when stationary culture of the organism was exposed to starvation and mild-heat stresses. The failure to maintain redox balance under the tested condition preceded decreased viability of the trx2 mutants, indicating the functional importance of the cytoplasmic thioredoxin in adaptation to environmental changes. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  2. Saccharomyces genome database informs human biology

    PubMed Central

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Karra, Kalpana; Binkley, Gail; Simison, Matt; Miyasato, Stuart R

    2018-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and to provide this wealth of information to advance, in many ways, research on other organisms, even those as evolutionarily distant as humans. To build such a bridge between biological kingdoms, SGD is curating data regarding yeast-human complementation, in which a human gene can successfully replace the function of a yeast gene, and/or vice versa. These data are manually curated from published literature, made available for download, and incorporated into a variety of analysis tools provided by SGD. PMID:29140510

  3. Saccharomyces genome database informs human biology.

    PubMed

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2018-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and to provide this wealth of information to advance, in many ways, research on other organisms, even those as evolutionarily distant as humans. To build such a bridge between biological kingdoms, SGD is curating data regarding yeast-human complementation, in which a human gene can successfully replace the function of a yeast gene, and/or vice versa. These data are manually curated from published literature, made available for download, and incorporated into a variety of analysis tools provided by SGD. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Yeast species associated with the spontaneous fermentation of cider.

    PubMed

    Valles, Belén Suárez; Bedriñana, Rosa Pando; Tascón, Norman Fernández; Simón, Amparo Querol; Madrera, Roberto Rodríguez

    2007-02-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by pneumatic pressing were dominated by non-Saccharomyces yeasts (Hanseniaspora genus and Metschnikowia pulcherrima) whereas in the apple juices obtained by traditional pressing Saccharomyces together with non-Saccharomyces, were always present. The species Saccharomyces present were S. cerevisiae and S. bayanus. Apparently S. bayanus, was the predominant species at the beginning and the middle fermentation steps of the fermentation process, reaching a percentage of isolation between 33% and 41%, whereas S. cerevisiae took over the process in the final stages of fermentation. During the 2001 harvest, with independence of cider-making technology, the species Hanseniaspora valbyensis was always isolated at the end of fermentations.

  5. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodiummore » dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.« less

  6. Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Henry, Susan A.; Kohlwein, Sepp D.; Carman, George M.

    2012-01-01

    Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways. PMID:22345606

  7. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    PubMed

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  8. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    PubMed Central

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  9. From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Okazaki, Fumiyoshi; Djohan, Apridah Cameliawati; Hara, Kiyotaka Y; Asai-Nakashima, Nanami; Teramura, Hiroshi; Andriani, Ade; Tominaga, Masahiro; Wakai, Satoshi; Kahar, Prihardi; Yopi; Prasetya, Bambang; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.

  10. Comparative analysis of cell wall surface glycan expression in Candida albicans and Saccharomyces cerevisiae yeasts by flow cytometry.

    PubMed

    Martínez-Esparza, M; Sarazin, A; Jouy, N; Poulain, D; Jouault, T

    2006-07-31

    The yeast Candida albicans is an opportunistic pathogen, part of the normal human microbial flora that causes infections in immunocompromised individuals with a high morbidity and mortality levels. Recognition of yeasts by host cells is based on components of the yeast cell wall, which are considered part of its virulence attributes. Cell wall glycans play an important role in the continuous interchange that regulates the balance between saprophytism and parasitism, and also between resistance and infection. Some of these molecular entities are expressed both by the pathogenic yeast C. albicans and by Saccharomyces cerevisiae, a related non-pathogenic yeast, involving similar molecular mechanisms and receptors for recognition. In this work we have exploited flow cytometry methods for probing surface glycans of the yeasts. We compared glycan expression by C. albicans and by S. cerevisiae, and studied the effect of culture conditions. Our results show that the expression levels of alpha- and beta-linked mannosides as well as beta-glucans can be successfully evaluated by flow cytometry methods using different antibodies independent of agglutination reactions. We also found that the surface expression pattern of beta-mannosides detected by monoclonal or polyclonal antibodies are differently modulated during the growth course. These data indicate that the yeast beta-mannosides exposed on mannoproteins and/or phospholipomannan are increased in stationary phase, whereas those linked to mannan are not affected by the yeast growth phase. The cytometric method described here represents a useful tool to investigate to what extent C. albicans is able to regulate its glycan surface expression and therefore modify its virulence properties.

  11. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-05-01

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  13. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    PubMed

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  14. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae.

    PubMed

    Yang, Dong-Dong; de Billerbeck, Gustavo M; Zhang, Jin-Jing; Rosenzweig, Frank; Francois, Jean-Marie

    2018-01-01

    Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14 , encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5' sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr 73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two

  15. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae

    PubMed Central

    de Billerbeck, Gustavo M.; Zhang, Jin-jing; Rosenzweig, Frank

    2017-01-01

    ABSTRACT Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5′ sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded

  16. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol

    PubMed Central

    2014-01-01

    Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion. All these factors are important to maximise industrial efficiency, productivity and profit margins in order to make second-generation bioethanol an economically viable alternative to fossil fuels for future transport needs. Results The aim of the current study was to assess Saccharomyces yeasts for their capacity to tolerate osmotic, temperature and ethanol stresses and inhibitors that might typically be released during steam explosion of wheat straw. Phenotypic microarray analysis was used to measure tolerance as a function of growth and metabolic activity. Saccharomyces strains analysed in this study displayed natural variation to each stress condition common in bioethanol fermentations. In addition, many strains displayed tolerance to more than one stress, such as inhibitor tolerance combined with fermentation stresses. Conclusions Our results suggest that this study could identify a potential candidate strain or strains for efficient second generation bioethanol production. Knowledge of the Saccharomyces spp. strains grown in these conditions will aid the development of breeding programmes in order to generate more efficient strains for industrial fermentations. PMID:24670111

  17. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    PubMed

    De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie

    2014-01-01

    The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  18. Engineering industrial yeast for renewable advanced biofuels applications

    USDA-ARS?s Scientific Manuscript database

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  19. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast, Saccharomyces...

  20. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  1. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  2. Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains. PMID:22057870

  3. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

  4. New yeasts-new brews: modern approaches to brewing yeast design and development.

    PubMed

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts.

    PubMed

    Náhlík, Jan; Hrnčiřík, Pavel; Mareš, Jan; Rychtera, Mojmír; Kent, Christopher A

    2017-05-01

    The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity-defined as percentage of ergosterol in the total sterols in the yeast-is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on-line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative-fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10 -6 g L -1 h -1 , more than three times higher than with standard baker's yeast fed-batch cultivations, which attained in average 32.14 × 10 -6 g L -1 h -1 . At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down-stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838-848, 2017. © 2017 American Institute of Chemical Engineers.

  6. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier.

    PubMed Central

    Cameron, D R; Cooper, D G; Neufeld, R J

    1988-01-01

    The mannoprotein which is a major component of the cell wall of Saccharomyces cerevisiae is an effective bioemulsifier. Mannoprotein emulsifier was extracted in a high yield from whole cells of fresh bakers' yeast by two methods, by autoclaving in neutral citrate buffer and by digestion with Zymolase (Miles Laboratories; Toronto, Ontario, Canada), a beta-1,3-glucanase. Heat-extracted emulsifier was purified by ultrafiltration and contained approximately 44% carbohydrate (mannose) and 17% protein. Treatment of the emulsifier with protease eliminated emulsification. Kerosene-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 5% sodium chloride or up to 50% ethanol in the aqueous phase. In the presence of a low concentration of various solutes, emulsions were stable to three cycles of freezing and thawing. An emulsifying agent was extracted from each species or strain of yeast tested, including 13 species of genera other than Saccharomyces. Spent yeast from the manufacture of beer and wine was demonstrated to be a possible source for the large-scale production of this bioemulsifier. PMID:3046488

  7. Microbial terroir and food innovation: The case of yeast biodiversity in wine.

    PubMed

    Capozzi, Vittorio; Garofalo, Carmela; Chiriatti, Maria Assunta; Grieco, Francesco; Spano, Giuseppe

    2015-12-01

    Saccharomyces and non-Saccharomyces represents a heterogeneous class in the grape/must/wine environments including several yeast genera (e.g., Saccharomyces, Hanseniaspora, Pichia, Candida, Metschnikowia, Kluyveromyces, Zygosaccharomyces, Torulaspora, Dekkera and Schizosaccharomyces) and species. Since, each species may differently contribute to the improvement/depreciation of wine qualities, it appears clear the reason why species belong to non-Saccharomyces are also considered a biotechnological resource in wine fermentation. Here, we briefly review the oenological significance of this specific part of microbiota associated with grapes/musts/wine. Moreover, the diversity of cultivable non-Saccharomyces genera and their contribute to typical wines fermentations will be discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts

    PubMed Central

    Hein, Eva-Maria; Hayen, Heiko

    2012-01-01

    Glycerophospholipids (GP) are the building blocks of cellular membranes and play essential roles in cell compartmentation, membrane fluidity or apoptosis. In addition, GPs are sources for multifunctional second messengers. Whereas the genome and proteome of the most intensively studied eukaryotic model organism, the baker’s yeast (Saccharomyces cerevisiae), are well characterized, the analysis of its lipid composition is still at the beginning. Moreover, different yeast species can be distinguished on the DNA, RNA and protein level, but it is currently unknown if they can also be differentiated by determination of their GP pattern. Therefore, the GP compositions of five different yeast strains, grown under identical environmental conditions, were elucidated using high performance liquid chromatography coupled to negative electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry in single and multistage mode. Using this approach, relative quantification of more than 100 molecular species belonging to nine GP classes was achieved. The comparative lipidomic profiling of Saccharomyces cerevisiae, Saccharomyces bayanus, Kluyveromyces thermotolerans, Pichia angusta, and Yarrowia lipolytica revealed characteristic GP profiles for each strain. However, genetically related yeast strains show similarities in their GP compositions, e.g., Saccharomyces cerevisiae and Saccharomyces bayanus. PMID:24957378

  9. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20.

    PubMed

    Zha, Musu; Sun, Baoguo; Yin, Sheng; Mehmood, Arshad; Cheng, Lei; Wang, Chengtao

    2018-03-07

    2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.

  10. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets.

    PubMed

    Trckova, M; Faldyna, M; Alexa, P; Sramkova Zajacova, Z; Gopfert, E; Kumprechtova, D; Auclair, E; D'Inca, R

    2014-02-01

    The effects of live yeast Saccharomyces cerevisiae (strain CNCM I-4407, 10(10) cfu/g; Actisaf; Lesaffre Feed Additives, Marcq-en-Baroeul, France) on the severity of diarrhea, immune response, and growth performance in weaned piglets orally challenged with enterotoxigenic Escherichia coli (ETEC) strain O149:K88 were investigated. Live yeast was fed to sows and their piglets in the late gestation, suckling, and postweaning periods. Sows were fed a basal diet without (Control; n = 2) or with (Supplemented; n = 2) 1 g/kg of live yeast from d 94 of gestation and during lactation until weaning of the piglets (d 28). Suckling piglets of the supplemented sows were orally treated with 1 g of live yeast in porridge carrier 3 times a week until weaning. Weaned piglets were fed a basal starter diet without (Control; n = 19) or with (Supplemented; n = 15) 5 g of live yeast/kg feed for 2 wk. Significantly lower daily diarrhea scores (P < 0.05), duration of diarrhea (P < 0.01), and shedding of pathogenic ETEC bacteria (P < 0.05) in feces was detected in the supplemented piglets. Administration of live yeast significantly increased (P < 0.05) IgA levels in the serum of piglets. Evidence indicates that decreased infection-related stress and severity of diarrhea in yeast-fed weaned piglets positively affected their growth capacity in the postweaning period (P < 0.05). The results suggest that dietary supplementation with live yeast S. cerevisiae to sows and piglets in the late gestation, suckling, and postweaning periods can be useful in the reduction of the duration and severity of postweaning diarrhea caused by ETEC.

  11. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  12. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Hrynkiv, Olha V; Knyhynytska, Roksolana V; Lushchak, Volodymyr I

    2018-01-01

    Stress resistance and fermentative capability are important quality characteristics of baker's yeast. In the present study, we examined protective effects of exogenous alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle and amino acid metabolism, against freeze-thaw and carbohydrate-induced stresses in the yeast Saccharomyces cerevisiae. Growth on AKG-supplemented medium prevented a loss of viability and improved fermentative capacity of yeast cells after freeze-thaw treatment. The cells grown in the presence of AKG had higher levels of amino acids (e.g., proline), higher metabolic activity and total antioxidant capacity, and higher activities of catalase, NADP-dependent glutamate dehydrogenase and glutamine synthase compared to control ones. Both synthesis of amino acids and enhancement of antioxidant system capacity could be involved in AKG-improved freeze-thaw tolerance in S. cerevisiae. Cell viability dramatically decreased under incubation of stationary-phase yeast cells in 2% glucose or fructose solutions (in the absence of the other nutrients) as compared with incubation in distilled water or in 10 mM AKG solution. The decrease in cell viability was accompanied by acidification of the medium, and decrease in cellular respiration, aconitase activity, and levels of total protein and free amino acids. The supplementation with 10 mM AKG effectively prevented carbohydrate-induced yeast death. Protective mechanisms of AKG could be associated with the intensification of respiration and prevention of decreasing protein level as well as with direct antioxidant AKG action.

  13. SEM study of the effects of bacteria and yeasts on wood decay by brown and white-rot fungi. [Enterobacter, Cryptococcus Pichia, and Saccharomyces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, R.A.; Shaw, C.G.; Cohen, A.L.

    The scanning electron microscope was used to 1) examine the associations among microorganisms during wood decay and 2) observe the effect of these organisms on degradation of cell wall components. Bacteria (Enterobacter) and yeasts (Cryptococcus Pichia, and Saccharomyces) were found to have a mutualistic association with a white-rot fungus during decay of coniferous wood. Coriolus (Polyporus versicolar) degraded cell wall components in a typical ''erosion trough'' manner (i.e., by lysing zones around fungal hyphae). Bacteria and yeasts were seen only in these lysed zones. Typical gross decay patterns caused by the white-rot fungus were unaltered by bacteria and yeasts. Themore » SEM study suggests that the decay process is enhanced when these organisms are associated. In contrast, the same bacteria and yeasts were inhibitory when combined with a brown-rot fungus.« less

  14. Scanning electrochemical microscopy based evaluation of influence of pH on bioelectrochemical activity of yeast cells - Saccharomyces cerevisiae.

    PubMed

    Ramanavicius, A; Morkvenaite-Vilkonciene, I; Kisieliute, A; Petroniene, J; Ramanaviciene, A

    2017-01-01

    In this research scanning electrochemical microscopy was applied for the investigation of immobilized yeast Saccharomyces cerevisiae cells. Two redox mediators based system was applied in order to increase the efficiency of charge transfer from yeast cells. 9,10-phenanthrenequinone (PQ) was applied as a lipophilic redox mediator, which has the ability to cross the cell's membrane; another redox mediator was ferricyanide, which acted as a hydrophylic electron acceptor able to transfer electrons from the PQ to the working electrode of SECM. Hill's function was applied to determine the optimal pH for this described SECM-based system. The influence of pH on cell viability could be well described by Hill's function. It was determined that at pH 6.5 the PQ has a minimal toxic influence on yeast cells, and the kinetics of metabolic processes in cells as well as electron transfer rate achieved in consecutive action of both redox mediators were appropriate to achieve optimal current signals. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Does fingerprinting truly represent the diversity of wine yeasts? A case study with interdelta genotyping of Saccharomyces cerevisiae strains.

    PubMed

    Pfliegler, W P; Sipiczki, M

    2016-12-01

    Simple and efficient genotyping methods are widely used to assess the diversity of a large number of microbial strains, e.g. wine yeasts isolated from a specific geographical area or a vintage. Such methods are often also the first to be applied, to decrease the number of strains deemed interesting for a more time-consuming physiological characterization. Here, we aimed to use a physiologically characterized strain collection of 69 Saccharomyces cerevisiae strains from Hungarian wine regions to determine whether geographical origin or physiological similarity can be recovered by clustering the strains with one or two simultaneously used variations of interdelta genotyping. Our results indicate that although a detailed clustering with high resolution can be achieved with this method, the clustering of strains is largely contrasting when different primer sets are used and it does not recover geographical or physiological groups. Genotyping is routinely used for assessing the diversity of a large number of isolates/strains of a single species, e.g. a collection of wine yeasts. We tested the efficiency of interdelta genotyping on a collection of Saccharomyces wine yeasts from four wine regions of Hungary that was previously characterized physiologically. Interdelta fingerprinting recovered neither physiological nor geographical similarities, and in addition, the two different primer pairs widely used for this method showed conflicting and barely comparable results. Thus, this method does not necessarily represent the true diversity of a strain collection, but detailed clustering may be achieved by the combined use of primer sets. © 2016 The Society for Applied Microbiology.

  16. Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wilmes, Anja; Hanna, Reem; Heathcott, Rosemary W; Northcote, Peter T; Atkinson, Paul H; Bellows, David S; Miller, John H

    2012-04-15

    Peloruside A, a microtubule-stabilising agent from a New Zealand marine sponge, inhibits mammalian cell division by a similar mechanism to that of the anticancer drug paclitaxel. Wild type budding yeast Saccharomyces cerevisiae (haploid strain BY4741) showed growth sensitivity to peloruside A with an IC(50) of 35μM. Sensitivity was increased in a mad2Δ (Mitotic Arrest Deficient 2) deletion mutant (IC(50)=19μM). Mad2 is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. Haploid mad2Δ cells were much less sensitive to paclitaxel than to peloruside A, possibly because the peloruside binding site on yeast tubulin is more similar to mammalian tubulin than the taxoid site where paclitaxel binds. In order to obtain information on the primary and secondary targets of peloruside A in yeast, a microarray analysis of yeast heterozygous and homozygous deletion mutant sets was carried out. Haploinsufficiency profiling (HIP) failed to provide hits that could be validated, but homozygous profiling (HOP) generated twelve validated genes that interact with peloruside A in cells. Five of these were particularly significant: RTS1, SAC1, MAD1, MAD2, and LSM1. In addition to its known target tubulin, based on these microarray 'hits', peloruside A was seen to interact genetically with other cell proteins involved in the cell cycle, mitosis, RNA splicing, and membrane trafficking. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.

    PubMed

    García-Ríos, Estéfani; Querol, Amparo; Guillamón, José Manuel

    2016-09-02

    Temperature is one of the most important parameters to affect the duration and rate of alcoholic fermentation and final wine quality. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae, which was the case of cryotolerant yeasts Saccharomyces uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the proteomic landscape of these cryotolerant species grown at 12°C and 28°C, which we compared with the proteome of S. cerevisiae (poorly adapted at low temperature). Our results showed that the main differences among the proteomic profiling of the three Saccharomyces strains grown at 12°C and 28°C lay in translation, glycolysis and amino acid metabolism. Our data corroborate previous transcriptomic results, which suggest that S. kudriavzevii is better adapted to grow at low temperature as a result of enhanced more efficient translation. Fitter amino acid biosynthetic pathways can also be mechanisms that better explain biomass yield in cryotolerant strains. Yet even at low temperature, S. cerevisiae is the most fermentative competitive species. A higher concentration of glycolytic and alcoholic fermentation enzymes in the S. cerevisiae strain might explain such greater fermentation activity. Temperature is one of the main relevant environmental variables that microorganisms have to cope with and it is also a key factor in some industrial processes that involve microorganisms. However, we are still far from understanding the molecular and physiological mechanisms of adaptation at low temperatures. The results obtained in this study provided a global atlas of the proteome changes triggered by temperature in three different species of the genus Saccharomyces with different degree of cryotolerance. These results would facilitate a better understanding of mechanisms for how yeast could adapt at the low temperature of growth. Copyright © 2016

  18. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

    PubMed

    Gimble, F S; Thorner, J

    1993-10-15

    The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).

  19. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Butanol is an attractive alternative energy fuel owing to several advantages over ethanol. Among the microbial hosts for biobutanol production, yeast Saccharomyces cerevisiae has a great potential as a microbial host due to its powerful genetic tools, a history of successful industrial use, and its inherent tolerance to higher alcohols. Butanol production by S. cerevisiae was first attempted by transferring the 1-butanol-producing metabolic pathway from native microorganisms or using the endogenous Ehrlich pathway for isobutanol synthesis. Utilizing alternative enzymes with higher activity, eliminating competitive pathways, and maintaining cofactor balance achieved significant improvements in butanol production. Meeting future challenges, such as enhancing butanol tolerance and implementing a comprehensive strategy by high-throughput screening, would further elevate the biobutanol-producing ability of S. cerevisiae toward an ideal microbial cell factory exhibiting high productivity of biobutanol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    PubMed

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    PubMed

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Yeast diversity isolated from grape musts during spontaneous fermentation from a Brazilian winery.

    PubMed

    Bezerra-Bussoli, Carolina; Baffi, Milla Alves; Gomes, Eleni; Da-Silva, Roberto

    2013-09-01

    Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR-RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality.

  3. Isolation and characterization of ethanol tolerant yeast strains

    PubMed Central

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha

    2013-01-01

    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  4. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.

    PubMed

    Garaiová, Martina; Zambojová, Veronika; Simová, Zuzana; Griač, Peter; Hapala, Ivan

    2014-03-01

    Squalene is a valuable natural substance with several biotechnological applications. In the yeast Saccharomyces cerevisiae, it is produced in the isoprenoid pathway as the first precursor dedicated to ergosterol biosynthesis. The aim of this study was to explore the potential of squalene epoxidase encoded by the ERG1 gene as the target for manipulating squalene levels in yeast. Highest squalene levels (over 1000 μg squalene per 10(9)  cells) were induced by specific point mutations in ERG1 gene that reduced activity of squalene epoxidase and caused hypersensitivity to terbinafine. This accumulation of squalene in erg1 mutants did not significantly disturb their growth. Treatment with squalene epoxidase inhibitor terbinafine revealed a limit in squalene accumulation at 700 μg squalene per 10(9)  cells which was associated with pronounced growth defects. Inhibition of squalene epoxidase activity by anaerobiosis or heme deficiency resulted in relatively low squalene levels. These levels were significantly increased by ergosterol depletion in anaerobic cells which indicated feedback inhibition of squalene production by ergosterol. Accumulation of squalene in erg1 mutants and terbinafine-treated cells were associated with increased cellular content and aggregation of lipid droplets. Our results prove that targeted genetic manipulation of the ERG1 gene is a promising tool for increasing squalene production in yeast. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd.

  5. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype.

    PubMed

    Seif, Michelle; Philippi, Anja; Breinig, Frank; Kiemer, Alexandra K; Hoppstädter, Jessica

    2016-10-01

    Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.

  6. Saccharomyces eubayanus and Saccharomyces arboricola reside in North Island native New Zealand forests.

    PubMed

    Gayevskiy, Velimir; Goddard, Matthew R

    2016-04-01

    Saccharomyces is one of the best-studied microbial genera, but our understanding of the global distributions and evolutionary histories of its members is relatively poor. Recent studies have altered our view of Saccharomyces' origin, but a lack of sampling from the vast majority of the world precludes a holistic perspective. We evaluate alternate Gondwanan and Far East Asian hypotheses concerning the origin of these yeasts. Being part of Gondwana, and only colonized by humans in the last ∼1000 years, New Zealand represents a unique environment for testing these ideas. Genotyping and ribosomal sequencing of samples from North Island native forest parks identified a widespread population of Saccharomyces. Whole genome sequencing identified the presence of S. arboricola and S. eubayanus in New Zealand, which is the first report of S. arboricola outside Far East Asia, and also expands S. eubayanus' known distribution to include the Oceanic region. Phylogenomic approaches place the S. arboricola population as significantly diverged from the only other sequenced Chinese isolate but indicate that S. eubayanus might be a recent migrant from South America. These data tend to support the Far East Asian origin of the Saccharomyces, but the history of this group is still far from clear. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Intracellular Signal Triggered by Cholera Toxin in Saccharomyces boulardii and Saccharomyces cerevisiae

    PubMed Central

    Brandão, Rogelio L.; Castro, Ieso M.; Bambirra, Eduardo A.; Amaral, Sheila C.; Fietto, Luciano G.; Tropia, Maria José M.; Neves, Maria José; Dos Santos, Raquel G.; Gomes, Newton C. M.; Nicoli, Jacques R.

    1998-01-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S. cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts. PMID:9464394

  8. Circulating antibodies to Saccharomyces cerevisiae (bakers'/brewers' yeast) in gastrointestinal disease.

    PubMed Central

    Darroch, C J; Barnes, R M; Dawson, J

    1999-01-01

    AIM: To measure circulating antibodies to yeast organisms that could be used to characterise the yeast specific immune response in gastrointestinal disease. METHODS: A quantitative, isotype specific enzyme linked immunosorbent assay was developed to measure circulating antibodies to an aqueous extract of Saccharomyces cerevisiae (sacc). Comparisons of specific antibody concentrations were made between 224 healthy controls and 51 patients with Crohn's disease, 41 with ulcerative colitis, 24 with indeterminate colitis, 23 with chronic liver disease, 17 with coeliac disease, and seven with irritable bowel syndrome. Additional comparisons were made between Crohn's disease and ulcerative colitis patients. Within the Crohn's disease group, the dependence of antibody levels on several clinical variables was assessed. RESULTS: IgG and IgA anti-sacc antibodies were significantly raised in Crohn's disease. IgG antibodies were also raised in patients with chronic liver disease. Among patients with Crohn's disease, IgG antibody concentrations were higher in those with serum alpha 1 acid glycoprotein (AAG) above the normal range and there was a strong trend towards increased IgG anti-sacc in the presence of small bowel disease, whereas IgA anti-sacc correlated positively with disease duration. No differences were detected according to whether patients were taking steroids. Neither the Crohn's disease nor the chronic liver disease group differed from normal subjects in respect of IgG antibodies to bovine milk casein. On linear regression analysis of complete data from 39 Crohn's disease patients, AAG was found to be a significant predictor of both IgG and IgA antibodies, and male sex and disease duration to be additional predictors of IgA antibodies. There was a significant difference in IgG antibodies between Crohn's disease and ulcerative colitis. CONCLUSIONS: Raised antibodies to yeast, although not completely specific for Crohn's disease, may have a future role in diagnosis

  9. Effect of the use of commercial Saccharomyces strains in a newly established winery in Ronda (Málaga, Spain).

    PubMed

    Clavijo, Almudena; Calderón, Isabel L; Paneque, Patricia

    2011-03-01

    An ecological study of the yeasts present in a spontaneous and an inoculated fermentation in red wine was carried out in 2005 vintage in a winery located in the Denomination of Origin "Sierras de Málaga" (Málaga, southern of Spain). The winery operated by the first time with the 2003 vintage and since then, has used commercial yeast inocula to start alcoholic fermentation. Yeast isolates were identified by PCR-RFLP analysis of the 5.8S-ITS region from the ribosomal DNA and by mitochondrial DNA RFLP analysis. Except for non-Saccharomyces yeasts found in the fresh must before fermentation, all the isolates were found to be commercial Saccharomyces cerevisiae strains employed by the winery during the successive vintages; thus, no indigenous Saccharomyces yeasts were isolated during fermentation. The same four restriction patterns were found in non inoculated and inoculated vats, although with different frequencies. The use of commercial yeast starter in a new established winery seems to have prevented the development of a resident indigenous Saccharomyces flora.

  10. Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences.

    PubMed

    Rollero, Stéphanie; Bloem, Audrey; Ortiz-Julien, Anne; Camarasa, Carole; Divol, Benoit

    2018-05-07

    Saccharomyces cerevisiae is currently the most important yeast involved in food fermentations, particularly in oenology. However, several other yeast species occur naturally in grape must that are highly promising for diversifying and improving the aromatic profile of wines. If the nitrogen requirement of S. cerevisiae has been described in detail, those of non-Saccharomyces yeasts remain poorly studied despite their increasingly widespread use in winemaking. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we explored the fermentation performances, the utilization of nitrogen sources and the volatile compound production of ten strains of non-conventional yeasts in pure culture. Two different conditions were tested: one mimicking the grape juice's nitrogen composition and one with all the nitrogen sources at the same level. We highlighted the diversity in terms of nitrogen preference and amount consumed among the yeast strains. Some nitrogen sources (arginine, glutamate, glycine, tryptophan and GABA) displayed the largest variations between strains throughout the fermentation. Several non-Saccharomyces strains produced important aroma compounds such as higher alcohols, acetate and ethyl esters in significantly higher quantities than S. cerevisiae.

  11. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  12. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    PubMed

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae, is used in the vast majority of the world’s bioprocesses, and its economic significance is unchallenged. It, however, represents only a small slice of yeast physiological diversity. Many other yeasts, are used in lesser known, but commercially important processes that take ...

  15. Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material.

    PubMed

    Cappello, M S; Poltronieri, P; Blaiotta, G; Zacheo, G

    2010-11-15

    The knowledge about wine yeasts remains largely dominated by the extensive studies on Saccharomyces (S.) cerevisiae. Molecular methods, allowing discrimination of both species and strains in winemaking, can profitably be applied for characterization of the microflora occurring in winemaking and for monitoring the fermentation process. Recently, some novel yeast isolates have been described as hybrid between S. cerevisiae and Saccharomyces species, leaving the Saccharomyces strains containing non-Saccharomyces hybrids essentially unexplored. In this study, we have analyzed a yeast strain isolated from "Primitivo" grape (http://www.ispa.cnr.it/index.php?page=collezioni&lang=en accession number 12998) and we found that, in addition to the S. cerevisiae genome, it has acquired genetic material from a non-Saccharomyces species. The study was focused on the analysis of chromosomal and mitochondrial gene sequences (ITS and 26S rRNA, SSU and COXII, ACTIN-1 and TEF), 2D-PAGE mitochondrial proteins, and spore viability. The results allowed us to formulate the hypothesis that in the MSH199 isolate a DNA containing an rDNA sequence from Hanseniaspora vineae, a non-Saccharomyces yeast, was incorporated through homologous recombination in the grape environment where yeast species are propagated. Moreover, physiological characterization showed that the MSH199 isolate possesses high technological quality traits (fermentation performance) and glycerol production, resistance to ethanol, SO₂ and temperature) useful for industrial application. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations.

    PubMed

    Moore, John P; Zhang, Song-Lei; Nieuwoudt, Hélène; Divol, Benoit; Trygg, Johan; Bauer, Florian F

    2015-11-18

    Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum. PCA of the fingerprint spectral region showed distinct separation of Saccharomyces strains from non-Saccharomyces species; furthermore, industrial wine yeast strains separated from laboratory strains. PCA loading plots and the use of OPLS-DA to the data sets suggested that industrial strains were enriched with cell wall proteins (e.g., mannoproteins), whereas laboratory strains were composed mainly of mannan and glucan polymers.

  17. Inorganic polyphosphate in the yeast Saccharomyces cerevisiae with a mutation disturbing the function of vacuolar ATPase.

    PubMed

    Tomaschevsky, A A; Ryasanova, L P; Kulakovskaya, T V; Kulaev, I S

    2010-08-01

    A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.

  18. Effects of Temperature on the Meiotic Recombination Landscape of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Zhang, Ke; Wu, Xue-Chang

    2017-01-01

    ABSTRACT Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae, regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures. PMID:29259092

  19. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A resource for functional profiling of noncoding RNA in the yeast Saccharomyces cerevisiae.

    PubMed

    Parker, Steven; Fraczek, Marcin G; Wu, Jian; Shamsah, Sara; Manousaki, Alkisti; Dungrattanalert, Kobchai; de Almeida, Rogerio Alves; Estrada-Rivadeneyra, Diego; Omara, Walid; Delneri, Daniela; O'Keefe, Raymond T

    2017-08-01

    Eukaryotic genomes are extensively transcribed, generating many different RNAs with no known function. We have constructed 1502 molecular barcoded ncRNA gene deletion strains encompassing 443 ncRNAs in the yeast Saccharomyces cerevisiae as tools for ncRNA functional analysis. This resource includes deletions of small nuclear RNAs (snRNAs), transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and other annotated ncRNAs as well as the more recently identified stable unannotated transcripts (SUTs) and cryptic unstable transcripts (CUTs) whose functions are largely unknown. Specifically, deletions have been constructed for ncRNAs found in the intergenic regions, not overlapping genes or their promoters (i.e., at least 200 bp minimum distance from the closest gene start codon). The deletion strains carry molecular barcodes designed to be complementary with the protein gene deletion collection enabling parallel analysis experiments. These strains will be useful for the numerous genomic and molecular techniques that utilize deletion strains, including genome-wide phenotypic screens under different growth conditions, pooled chemogenomic screens with drugs or chemicals, synthetic genetic array analysis to uncover novel genetic interactions, and synthetic dosage lethality screens to analyze gene dosage. Overall, we created a valuable resource for the RNA community and for future ncRNA research. © 2017 Parker et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    PubMed

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  2. Social wasps promote social behavior in Saccharomyces spp.

    USDA-ARS?s Scientific Manuscript database

    This commentary provides background and an evaluation of a paper to be published in the Proceedings of the National Academy of Sciences in which social wasps were found to harbor significant populations of two species of the yeast genus Saccharomyces. Apparently, the yeasts were acquired during feed...

  3. Brewer's Yeast, Saccharomyces cerevisiae, Enhances Attraction of Two Invasive Yellowjackets (Hymenoptera: Vespidae) to Dried Fruit and Fruit Powder.

    PubMed

    Babcock, Tamara; Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard

    2017-09-01

    The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer's yeast, Saccharomyces cerevisiae, using gas chromatography-mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  4. Brewer’s Yeast, Saccharomyces cerevisiae, Enhances Attraction of Two Invasive Yellowjackets (Hymenoptera: Vespidae) to Dried Fruit and Fruit Powder

    PubMed Central

    Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard

    2017-01-01

    Abstract The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer’s yeast, Saccharomyces cerevisiae, using gas chromatography–mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. PMID:28922898

  5. A Mutation in PGM2 Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Kong, In Iok; Yun, Eun Ju; Zheng, Jia-Qi; Kweon, Dae-Hyuk; Jin, Yong-Su

    2018-05-15

    The probiotic yeast Saccharomyces boulardii has been extensively studied for the prevention and treatment of diarrheal diseases, and it is now commercially available in some countries. S. boulardii displays notable phenotypic characteristics, such as a high optimal growth temperature, high tolerance against acidic conditions, and the inability to form ascospores, which differentiate S. boulardii from Saccharomyces cerevisiae The majority of prior studies stated that S. boulardii exhibits sluggish or halted galactose utilization. Nonetheless, the molecular mechanisms underlying inefficient galactose uptake have yet to be elucidated. When the galactose utilization of a widely used S. boulardii strain, ATCC MYA-796, was examined under various culture conditions, the S. boulardii strain could consume galactose, but at a much lower rate than that of S. cerevisiae While all GAL genes were present in the S. boulardii genome, according to analysis of genomic sequencing data in a previous study, a point mutation (G1278A) in PGM2 , which codes for phosphoglucomutase, was identified in the genome of the S. boulardii strain. As the point mutation resulted in the truncation of the Pgm2 protein, which is known to play a pivotal role in galactose utilization, we hypothesized that the truncated Pgm2 might be associated with inefficient galactose metabolism. Indeed, complementation of S. cerevisiae PGM2 in S. boulardii restored galactose utilization. After reverting the point mutation to a full-length PGM2 in S. boulardii by Cas9-based genome editing, the growth rates of wild-type (with a truncated PGM2 gene) and mutant (with a full-length PGM2 ) strains with glucose or galactose as the carbon source were examined. As expected, the mutant (with a full-length PGM2 ) was able to ferment galactose faster than the wild-type strain. Interestingly, the mutant showed a lower growth rate than that of the wild-type strain on glucose at 37°C. Also, the wild-type strain was enriched in the

  6. Effects of the type III secreted pseudomonal toxin ExoS in the yeast Saccharomyces cerevisiae.

    PubMed

    Stirling, Fiona R; Evans, Tom J

    2006-08-01

    Pseudomonas aeruginosa secretes a number of toxins by a type III system, and these are important in virulence. One of them, ExoS, is a bifunctional toxin, with a GTPase-activating protein domain, as well as ADP ribosyltransferase (ADPRT) activity. These two domains have numerous potential cellular targets, but the overall mechanism of ExoS action remains unclear. The effects of ExoS in a simple eukaryotic system, the yeast Saccharomyces cerevisiae, using a tetracycline-regulated expression system were studied. This system allowed controlled expression of ExoS in yeast, which was not possible using a galactose-induced system. ExoS was found to be an extremely potent inhibitor of yeast growth, and to be largely dependent on the activity of its ADPRT domain. ExoS produced a dramatic alteration in actin distribution, with the appearance of large aggregates of cortical actin, and thickened disorganized cables, entirely dependent on the ADPRT domain. This phenotype is suggestive of actin stabilization, which was verified by showing that the cortical aggregates of actin induced by ExoS were resistant to treatment with latrunculin A, an agent that prevents actin polymerization. ExoS increased the numbers of mating projections produced following growth arrest with mating pheromone, and prevented subsequent DNA replication, an effect that is again dependent on the ADPRT domain. Following pheromone removal, ExoS produced altered development of the mating projections, which became elongated with a swollen bud-like tip. These results suggest alternative pathways for ExoS action in eukaryotic cells that may result from activation of small GTPases, and this yeast expression system is well suited to explore these pathways.

  7. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae.

    PubMed

    Moss, M O; Long, M T

    2002-04-01

    Patulin is known to become analytically non-detectable during the production of cider from contaminated apple juice. The fate of [14C]-labelled patulin during the alcoholic fermentation of apple juice was studied. Three commercial cider strains of Saccharomyces cerevisiae degraded patulin during active fermentative growth, but not when growing aerobically. The products of patulin degradation were more polar than patulin itself and remained in the clarified fermented cider. Patulin did not appear to bind to yeast cells or apple juice sediment in these model experiments. HPLC analysis of patulin-spiked fermentations showed the appearance of two major metabolites, one of which corresponded by both TLC and HPLC to E-ascladiol prepared by the chemical reduction of patulin using sodium borohydride. Using a diode array detector, both metabolites had a lambda(max) = 271 nm, identical to that of ascladiol. The nmr spectrum of a crude preparation of these metabolites showed signals corresponding to those of the E-ascladiol prepared chemically and a weaker set of signals corresponding to those reported in the literature for Z-ascladiol.

  8. Evolutionary biology through the lens of budding yeast comparative genomics.

    PubMed

    Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R

    2017-10-01

    The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.

  9. Yeast β-1,6-Glucan Is a Primary Target for the Saccharomyces cerevisiae K2 Toxin

    PubMed Central

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius

    2015-01-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. PMID:25710965

  10. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    PubMed

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  11. Identification and Characterization of Major Lipid Particle Proteins of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Athenstaedt, Karin; Zweytick, Dagmar; Jandrositz, Anita; Kohlwein, Sepp Dieter; Daum, Günther

    1999-01-01

    Lipid particles of the yeast Saccharomyces cerevisiae were isolated at high purity, and their proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major lipid particle proteins were identified by mass spectrometric analysis, and the corresponding open reading frames (ORFs) were deduced. In silicio analysis revealed that all lipid particle proteins contain several hydrophobic domains but none or only few (hypothetical) transmembrane spanning regions. All lipid particle proteins identified by function so far, such as Erg1p, Erg6p, and Erg7p (ergosterol biosynthesis) and Faa1p, Faa4p, and Fat1p (fatty acid metabolism), are involved in lipid metabolism. Based on sequence homology, another group of three lipid particle proteins may be involved in lipid degradation. To examine whether lipid particle proteins of unknown function are also involved in lipid synthesis, mutants with deletions of the respective ORFs were constructed and subjected to systematic lipid analysis. Deletion of YDL193w resulted in a lethal phenotype which could not be suppressed by supplementation with ergosterol or fatty acids. Other deletion mutants were viable under standard conditions. Strains with YBR177c, YMR313c, and YKL140w deleted exhibited phospholipid and/or neutral lipid patterns that were different from the wild-type strain and thus may be further candidate ORFs involved in yeast lipid metabolism. PMID:10515935

  12. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    PubMed

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  13. Effects of metal salt catalysts on yeast cell growth in ethanol conversion

    Treesearch

    Chung-Yun Hse; Yin Lin

    2009-01-01

    The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...

  14. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia.

    PubMed

    Rodríguez, M Eugenia; Pérez-Través, Laura; Sangorrín, Marcela P; Barrio, Eladio; Lopes, Christian A

    2014-09-01

    Mudai is a traditional fermented beverage, made from the seeds of the Araucaria araucana tree by Mapuche communities. The main goal of the present study was to identify and characterize the yeast microbiota responsible of Mudai fermentation as well as from A. araucana seeds and bark from different locations in Northern Patagonia. Only Hanseniaspora uvarum and a commercial bakery strain of Saccharomyces cerevisiae were isolated from Mudai and all Saccharomyces isolates recovered from A. araucana seed and bark samples belonged to the cryotolerant species Saccharomyces eubayanus and Saccharomyces uvarum. These two species were already reported in Nothofagus trees from Patagonia; however, this is the first time that they were isolated from A. araucana, which extends their ecological distribution. The presence of these species in A. araucana seeds and bark samples, led us to postulate a potential role for them as the original yeasts responsible for the elaboration of Mudai before the introduction of commercial S. cerevisiae cultures. The molecular and genetic characterization of the S. uvarum and S. eubayanus isolates and their comparison with European S. uvarum strains and S. eubayanus hybrids (S. bayanus and S. pastorianus), allowed their ecology and evolution us to be examined. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    PubMed

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    PubMed

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae

    PubMed Central

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-01-01

    Summary The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W. saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W. saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W. saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. PMID:23171032

  18. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae.

    PubMed

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-07-01

    The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W.saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W.saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W.saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. © 2012 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.

    PubMed

    Koch, Barbara; Schmidt, Claudia; Daum, Günther

    2014-09-01

    Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  1. Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes.

    PubMed

    Bellon, Jennifer R; Yang, Fei; Day, Martin P; Inglis, Debra L; Chambers, Paul J

    2015-10-01

    To remain competitive in increasingly overcrowded markets, yeast strain development programmes are crucial for fermentation-based food and beverage industries. In a winemaking context, there are many yeast phenotypes that stand to be improved. For example, winemakers endeavouring to produce sweet dessert wines wrestle with fermentation challenges particular to fermenting high-sugar juices, which can lead to elevated volatile acidity levels and extended fermentation times. In the current study, we used natural yeast breeding techniques to generate Saccharomyces spp. interspecific hybrids as a non-genetically modified (GM) strategy to introduce targeted improvements in important, wine-relevant traits. The hybrids were generated by mating a robust wine strain of Saccharomyces cerevisiae with a wine isolate of Saccharomyces bayanus, a species previously reported to produce wines with low concentrations of acetic acid. Two hybrids generated from the cross showed robust fermentation properties in high-sugar grape juice and produced botrytised Riesling wines with much lower concentrations of acetic acid relative to the industrial wine yeast parent. The hybrids also displayed suitability for icewine production when bench-marked against an industry standard icewine yeast, by delivering icewines with lower levels of acetic acid. Additionally, the hybrid yeast produced wines with novel aroma and flavour profiles and established that choice of yeast strain impacts on wine colour. These new hybrid yeasts display the desired targeted fermentation phenotypes from both parents, robust fermentation in high-sugar juice and the production of wines with low volatile acidity, thus establishing their suitability for wine styles that are traditionally troubled by excessive volatile acidity levels.

  2. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now

    PubMed Central

    Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael

    2014-01-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  3. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    PubMed

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  4. The yeast Saccharomyces cerevisiae- the main character in beer brewing.

    PubMed

    Lodolo, Elizabeth J; Kock, Johan L F; Axcell, Barry C; Brooks, Martin

    2008-11-01

    Historically, mankind and yeast developed a relationship that led to the discovery of fermented beverages. Numerous inventions have led to improved technologies and capabilities to optimize fermentation technology on an industrial scale. The role of brewing yeast in the beer-making process is reviewed and its importance as the main character is highlighted. On considering the various outcomes of functions in a brewery, it has been found that these functions are focused on supporting the supply of yeast requirements for fermentation and ultimately to maintain the integrity of the product. The functions/processes include: nutrient supply to the yeast (raw material supply for brewhouse wort production); utilities (supply of water, heat and cooling); quality assurance practices (hygiene practices, microbiological integrity measures and other specifications); plant automation (vessels, pipes, pumps, valves, sensors, stirrers and centrifuges); filtration and packaging (product preservation until consumption); distribution (consumer supply); and marketing (consumer awareness). Considering this value chain of beer production and the 'bottle neck' during production, the spotlight falls on fermentation, the age-old process where yeast transforms wort into beer.

  5. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  6. Revealing of Saccharomyces cerevisiae yeast cell wall proteins capable of binding thioflavin T, a fluorescent dye specifically interacting with amyloid fibrils.

    PubMed

    Gorkovskii, A A; Bezsonov, E E; Plotnikova, T A; Kalebina, T S; Kulaev, I S

    2009-11-01

    Proteins binding thioflavin T leading to its specific fluorescence were discovered in a fraction of noncovalently bound Saccharomyces cerevisiae yeast cell wall mannoproteins. Thioflavin-binding proteins display high resistance to trypsin digestion in solution. These data are the first experimental evidence for the presence of proteins whose properties are characteristic of amyloids in yeast cell wall, except for data on glucanotransferase Bgl2p that has amyloid properties. Our data suggest the anchoring of these proteins in the cell wall by a trypsin-sensitive part of the protein molecule. Experiments with a mutant strain devoid of the BGL2 gene suggest the compensation of absent amyloid-like protein Bgl2p by increase in contents of thioflavin-binding proteins in the cell wall.

  7. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  8. Induction of energy metabolism related enzymes in yeast Saccharomyces cerevisiae exposed to ibogaine is adaptation to acute decrease in ATP energy pool.

    PubMed

    Paskulin, Roman; Jamnik, Polona; Obermajer, Natasa; Slavić, Marija; Strukelj, Borut

    2010-02-10

    Ibogaine has been extensively studied in the last decades in relation to its anti-addictive properties that have been repeatedly reported as being addiction interruptive and craving eliminative. In our previous study we have already demonstrated induction of energy related enzymes in rat brains treated with ibogaine at a dose of 20mg/kg i.p. 24 and 72 h prior to proteomic analysis. In this study a model organism yeast Saccharomyces cerevisiae was cultivated with ibogaine in a concentration of 1mg/l. Energy metabolism cluster enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, enolase and alcohol dehydrogenase were induced after 5h of exposure. This is a compensation of demonstrated ATP pool decrease after ibogaine. Yeast in a stationary growth phase is an accepted model for studies of housekeeping metabolism of eukaryotes, including humans. Study showed that ibogaine's influence on metabolism is neither species nor tissue specific. Effect is not mediated by binding of ibogaine to receptors, as previously described in literature since they are lacking in this model. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. Glucose repression in Saccharomyces cerevisiae.

    PubMed

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. © FEMS 2015.

  10. How did Saccharomyces evolve to become a good brewer?

    PubMed

    Piskur, Jure; Rozpedowska, Elzbieta; Polakova, Silvia; Merico, Annamaria; Compagno, Concetta

    2006-04-01

    Brewing and wine production are among the oldest technologies and their products are almost indispensable in our lives. The central biological agents of beer and wine fermentation are yeasts belonging to the genus Saccharomyces, which can accumulate ethanol. Recent advances in comparative genomics and bioinformatics have made it possible to elucidate when and why yeasts produce ethanol in high concentrations, and how this remarkable trait originated and developed during their evolutionary history. Two research groups have shed light on the origin of the genes encoding alcohol dehydrogenase and the process of ethanol accumulation in Saccharomyces cerevisiae.

  11. The alpha subunit of the Saccharomyces cerevisiae oligosaccharyltransferase complex is essential for vegetative growth of yeast and is homologous to mammalian ribophorin I

    PubMed Central

    1995-01-01

    Oligosaccharyltransferase mediates the transfer of a preassembled high mannose oligosaccharide from a lipid-linked oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six nonidentical subunits (alpha-zeta), two of which are glycoproteins (alpha and beta). The beta and delta subunits of the oligosaccharyltransferase are encoded by the WBP1 and SWP1 genes. Here we describe the functional characterization of the OST1 gene that encodes the alpha subunit of the oligosaccharyltransferase. Protein sequence analysis revealed a significant sequence identity between the Saccharomyces cerevisiae Ost1 protein and ribophorin I, a previously identified subunit of the mammalian oligosaccharyltransferase. A disruption of the OST1 locus was not tolerated in haploid yeast showing that expression of the Ost1 protein is essential for vegetative growth of yeast. An analysis of a series of conditional ost1 mutants demonstrated that defects in the Ost1 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins at both the permissive and restrictive growth temperatures. Microsomal membranes isolated from ost1 mutant yeast showed marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Microsomal membranes isolated from the ost1 mutants contained elevated amounts of the Kar2 stress-response protein. PMID:7860628

  12. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.

    PubMed

    Oda, Y; Tonomura, K

    1996-10-01

    The presence of any one of the five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 and MAL6) confers the ability to ferment maltose on the yeast Saccharomyces cerevisiae. Each locus is composed of three genes encoding maltose permease, alpha-glucosidase and MAL activator. Chromosomal DNA of seven representative baking strains has been separated by pulse-field gel electrophoresis and probed with three genes in MAL6 locus. The DNA bands to which all of the three MAL-derived probes simultaneously hybridized were chromosome VII carrying MAL1 in all of the strains tested, chromosome XI carrying MAL4 in six strains, chromosome III carrying MAL2 in three strains and chromosomes II and VIII carrying MAL3 and MAL6, respectively, in the one strain. The number of MAL loci in baking strains was comparable to those of brewing strains.

  13. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    PubMed

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    NASA Astrophysics Data System (ADS)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  15. An N-terminal fragment of yeast ribosomal protein L3 inhibits the cytotoxicity of pokeweed antiviral protein in Saccharomyces cerevisiae.

    PubMed

    Di, Rong; Tumer, Nilgun E

    2014-04-11

    We have previously shown that ribosomal protein L3 is required for pokeweed antiviral protein (PAP), a type I ribosome inactivating protein, to bind to ribosomes and depurinate the α-sarcin/ricin loop (SRL) in yeast. Co-expression of the N-terminal 99 amino acids of yeast L3 (L3Δ99) with PAP in transgenic tobacco plants completely abolished the toxicity of PAP. In this study, we investigated the interaction between PAP and L3Δ99 in Saccharomyces cerevisiae. Yeast cells co-transformed with PAP and L3Δ99 showed markedly reduced growth inhibition and reduced rRNA depurination by PAP, compared to cells transformed with PAP alone. Co-transformation of yeast with PAP and L3Δ21 corresponding to the highly conserved N-terminal 21 amino acids of L3Δ99, reduced the cytotoxicity of PAP. PAP mRNA and protein levels were elevated and L3Δ99 or L3Δ21 mRNA and protein levels were reduced in yeast co-transformed with PAP and L3Δ99 or with PAP and L3Δ21, respectively. PAP interacted with L3Δ21 in yeast cells in vivo and by Biacore analysis in vitro, suggesting that the interaction between L3Δ21 and PAP may inhibit PAP-mediated depurination of the SRL, leading to a reduction in the cytotoxicity of PAP.

  16. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum.

    PubMed

    Varela, C; Sengler, F; Solomon, M; Curtin, C

    2016-10-15

    Production of quality wines with decreased alcohol concentration continues to be one of the major challenges facing wine producers. Therefore, there is considerable interest in the isolation or generation of wine yeasts less efficient at transforming grape sugars into ethanol. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 and Saccharomyces uvarum AWRI2846 were both able to produce reduced alcohol wine when used in sequential inoculation with Saccharomyces cerevisiae. This effect is additive when both strains are co-inoculated in grape must. Here we describe the volatile flavour profile of Chardonnay and Shiraz wines produced with these two strains. Wines fermented with M. pulcherrima showed concentrations of ethyl acetate likely to affect negatively wine aroma. Wines fermented with S. uvarum and with a combination of M. pulcherrima and S. uvarum were characterised by increased concentrations of 2-phenyl ethanol and 2-phenylethyl acetate, both associated with positive sensory attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    PubMed

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  18. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation?

    PubMed

    Zadrag-Tecza, Renata; Skoneczna, Adrianna

    2016-11-01

    The yeast Saccharomyces cerevisiae is a unicellular organism commonly used as a model to explain mechanisms of aging in multicellular organisms. It is used as a model organism for both replicative and chronological aging. Replicative aging is defined as the number of daughter cells produced by an individual cell during its life. A widely accepted hypothesis assumes that replicative aging of yeast is related to the existence of a so called "senescence factor" that gradually accumulates in the mother cell, which consequently leads to its death. One of the earliest proposed "senescence factors" were extrachromosomal rDNA circles (ERCs). However, their role in the regulation of the replicative lifespan is somewhat controversial and subject to discussion. In this paper, we propose a more comprehensive approach to this problem by analysing the length of life and the correlation between the cell size and the replicative lifespan of yeast cells with different level of ERCs, i.e. Δrad52 and Δsgs1 mutants. This analysis shows that it is not the accumulation of ERCs but genomic instability and hypertrophy that play an important role in the regulation of reproductive potential and total lifespan of the S. cerevisiae yeast. However, these two factors have a different impact on various phases of the yeast cell life, i.e. reproductive and post-reproductive phases. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation.

    PubMed

    Amaya-Delgado, L; Herrera-López, E J; Arrizon, Javier; Arellano-Plaza, M; Gschaedler, A

    2013-05-01

    Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.

  20. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

    PubMed

    Rodríguez-Escudero, María; Cid, Víctor J; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

  1. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation

    PubMed Central

    Rodríguez-Escudero, María; Cid, Víctor J.; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors

  2. Outreach and online training services at the Saccharomyces Genome Database.

    PubMed

    MacPherson, Kevin A; Starr, Barry; Wong, Edith D; Dalusag, Kyla S; Hellerstedt, Sage T; Lang, Olivia W; Nash, Robert S; Skrzypek, Marek S; Engel, Stacia R; Cherry, J Michael

    2017-01-01

    The Saccharomyces Genome Database (SGD; www.yeastgenome.org ), the primary genetics and genomics resource for the budding yeast S. cerevisiae , provides free public access to expertly curated information about the yeast genome and its gene products. As the central hub for the yeast research community, SGD engages in a variety of social outreach efforts to inform our users about new developments, promote collaboration, increase public awareness of the importance of yeast to biomedical research, and facilitate scientific discovery. Here we describe these various outreach methods, from networking at scientific conferences to the use of online media such as blog posts and webinars, and include our perspectives on the benefits provided by outreach activities for model organism databases. http://www.yeastgenome.org. © The Author(s) 2017. Published by Oxford University Press.

  3. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    PubMed

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Tolerance to winemaking stress conditions of Patagonian strains of Saccharomyces eubayanus and Saccharomyces uvarum.

    PubMed

    Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A

    2017-08-01

    Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.

  5. Secondary metabolites of the grapevine pathogen Eutypa lata inhibit mitochondrial respiration, based on a model bioassay using the yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Jong H; Mahoney, Noreen; Chan, Kathleen L; Molyneux, Russell J; Campbell, Bruce C

    2004-10-01

    Acetylenic phenols and a chromene isolated from the grapevine fungal pathogen Eutypa lata were examined for mode of toxicity. The compounds included eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl aldehyde), eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), eulatachromene, 2- isoprenyl-5-formyl-benzofuran, siccayne, and eulatinol. A bioassay using the yeast Saccharomyces cerevisiae showed that all compounds were either lethal or inhibited growth. A respiratory assay using 2,3,5-triphenyltetrazolium (TTC) indicated that eutypinol and eulatachromene inhibited mitochondrial respiration in wild-type yeast. Bioassays also showed that 2- isoprenyl-5-formyl-benzofuran and siccayne inhibited mitochondrial respiration in the S. cerevisiae deletion mutant vph2Delta, lacking a vacuolar type H (+) ATPase (V-ATPase) assembly protein. Cell growth of tsa1Delta, a deletion mutant of S. cerevisiae lacking a thioredoxin peroxidase (cTPx I), was greatly reduced when grown on media containing eutypinol or eulatachromene and exposed to hydrogen peroxide (H(2)O(2)) as an oxidative stress. This reduction in growth establishes the toxic mode of action of these compounds through inhibition of mitochondrial respiration.

  6. Assessing the Mechanisms Responsible for Differences between Nitrogen Requirements of Saccharomyces cerevisiae Wine Yeasts in Alcoholic Fermentation

    PubMed Central

    Brice, Claire; Sanchez, Isabelle; Tesnière, Catherine

    2014-01-01

    Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation. PMID:24334661

  7. Production of a yeast artificial chromosome for stable expression of a synthetic xylose isomerase-xylulokinase polyprotein in a fuel ethanol yeast strain

    USDA-ARS?s Scientific Manuscript database

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. A yeast artificial chromosome (YAC) was engineered to contain a polyprotein gene construct expressing xylos...

  8. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations

    PubMed Central

    Mills, David A.; Johannsen, Eric A.; Cocolin, Luca

    2002-01-01

    Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (∼30°C) and ambient (∼20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations. PMID:12324335

  9. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  10. Genomics and the making of yeast biodiversity.

    PubMed

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Substrate-Limited Saccharomyces cerevisiae Yeast Strains Allow Control of Fermentation during Bread Making.

    PubMed

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-04-26

    Identification and use of yeast strains that are unable to consume one or more otherwise fermentable substrate types could allow a more controlled fermentation process with more flexibility regarding fermentation times. In this study, Saccharomyces cerevisiae strains with different capacities to consume substrates present in wheat were selected to investigate the impact of substrate limitation on dough fermentation and final bread volume. Results show that fermentation of dough with maltose-negative strains relies on the presence of fructan and sucrose as fermentable substrates and can be used for regular bread making. Levels of fructan and sucrose, endogenously present or added, hence determine the extent of fermentation and timing at the proofing stage. Whole meal is inherently more suitable for substrate-limited fermentation than white flour due to the presence of higher native levels of these substrates. Bread making protocols with long fermentation times are accommodated by addition of substrates such as sucrose.

  12. The PGM3 gene encodes the major phosphoribomutase in the yeast Saccharomyces cerevisiae.

    PubMed

    Walther, Thomas; Baylac, Audrey; Alkim, Ceren; Vax, Amélie; Cordier, Hélène; François, Jean Marie

    2012-11-30

    The phosphoglucomutases (PGM) Pgm1, Pgm2, and Pgm3 of the yeast Saccharomyces cerevisiae were tested for their ability to interconvert ribose-1-phosphate and ribose-5-phosphate. The purified proteins were studied in vitro with regard to their kinetic properties on glucose-1-phosphate and ribose-1-phosphate. All tested enzymes were active on both substrates with Pgm1 exhibiting only residual activity on ribose-1-phosphate. The Pgm2 and Pgm3 proteins had almost equal kinetic properties on ribose-1-phosphate, but Pgm2 had a 2000 times higher preference for glucose-1-phosphate when compared to Pgm3. The in vivo function of the PGMs was characterized by monitoring ribose-1-phosphate kinetics following a perturbation of the purine nucleotide balance. Only mutants with a deletion of PGM3 hyper-accumulated ribose-1-phosphate. We conclude that Pgm3 functions as the major phosphoribomutase in vivo. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    USDA-ARS?s Scientific Manuscript database

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  15. A Review of Fluorescent Proteins for Use in Yeast.

    PubMed

    Bialecka-Fornal, Maja; Makushok, Tatyana; Rafelski, Susanne M

    2016-01-01

    The field of fluorescent proteins (FPs) is constantly developing. The use of FPs changed the field of life sciences completely, starting a new era of direct observation and quantification of cellular processes. The broad spectrum of FPs (see Fig. 1) with a wide range of characteristics allows their use in many different experiments. This review discusses the use of FPs for imaging in budding yeast (Saccharomyces cerevisiae) and fission yeast Schizosaccharomyces pombe). The information included in this review is relevant for both species unless stated otherwise.

  16. Updated regulation curation model at the Saccharomyces Genome Database

    PubMed Central

    Engel, Stacia R; Skrzypek, Marek S; Hellerstedt, Sage T; Wong, Edith D; Nash, Robert S; Weng, Shuai; Binkley, Gail; Sheppard, Travis K; Karra, Kalpana; Cherry, J Michael

    2018-01-01

    Abstract The Saccharomyces Genome Database (SGD) provides comprehensive, integrated biological information for the budding yeast Saccharomyces cerevisiae, along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms. We have recently expanded our data model for regulation curation to address regulation at the protein level in addition to transcription, and are presenting the expanded data on the ‘Regulation’ pages at SGD. These pages include a summary describing the context under which the regulator acts, manually curated and high-throughput annotations showing the regulatory relationships for that gene and a graphical visualization of its regulatory network and connected networks. For genes whose products regulate other genes or proteins, the Regulation page includes Gene Ontology enrichment analysis of the biological processes in which those targets participate. For DNA-binding transcription factors, we also provide other information relevant to their regulatory function, such as DNA binding site motifs and protein domains. As with other data types at SGD, all regulatory relationships and accompanying data are available through YeastMine, SGD’s data warehouse based on InterMine. Database URL: http://www.yeastgenome.org PMID:29688362

  17. High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome

    PubMed Central

    2013-01-01

    Background Comparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate. Results Here, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny. Conclusions We suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts. PMID:23368932

  18. Adaptation of yeasts Saccharomyces cerevisiae and Brettanomyces bruxellensis to winemaking conditions: a comparative study of stress genes expression.

    PubMed

    Nardi, Tiziana; Remize, Fabienne; Alexandre, Hervé

    2010-10-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. Like Saccharomyces cerevisiae, it is well adapted to winemaking, but molecular pathways involved in this acclimatization are still unknown. In this work, we report a time-scale comparison between the two yeasts coping with alcoholic fermentation. Orthologs of some well-characterized stress genes of S. cerevisiae were searched by sequence alignment in the Dekkera/Brettanomyces partial genome; nine genes were finally selected on the basis on their similarity and involvement in adaptation to wine. Transcript analysis during a model grape juice fermentation indicates that a subset of genes (i.e., ATP1, ERG6, VPS34) shows peculiar expression patterns in Brettanomyces bruxellensis but also that some common regulations of stress response exist between the two yeasts, although with different timing (i.e., for MSN4, SNF1, HSP82, NTH1). This suggests that B. bruxellensis efficient survival in such challenging conditions is due to mechanisms unique to it, together with a conserved yeast stress response. This study, although limited by the poor genetic data available on B. bruxellensis, provides first insights into its gene expression remodeling in winemaking and opens new frames for further investigations.

  19. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae.

    PubMed

    Klein, Mathias; Islam, Zia-Ul; Knudsen, Peter Boldsen; Carrillo, Martina; Swinnen, Steve; Workman, Mhairi; Nevoigt, Elke

    2016-12-01

    Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae . This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues) from superior glycerol-utilizing yeast species such as Pachysolen tannophilus , Komagataella pastoris , Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A). The maximum specific growth rate increased from 0.13 up to 0.18 h -1 and a biomass yield coefficient of 0.56 g DW /g glycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast.

  20. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    PubMed

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  1. [Use of diet containing yeast protein (Saccharomyces cerevisiae): effects upon pregnancy, lactation and development in rats].

    PubMed

    de Oliveira, S R; Bion, F M; Lopes, S M; Metri, A C

    2001-03-01

    The nutritive value of manioc flour (Manihot esculenta) enriched with yeast protein (Saccharomyces cerevisiae) added to a food mixture most frequently consumed by low-income populations was assessed in female Wistar rats (n = 30; 100-120 days old). Animals were divided into three groups, mated and had free access to diets and water. Diets were as follows: beans, rice, yeast-enriched manioc flour (BRYMF17); beans, rice, manioc flour (BRMF13); casein (17% protein) (CAS17). Body weight gains and food consumption were recorded during pregnancy and lactation. At the parturition, the number of pups per litter was recorded and offspring were uniformly distributed (7 pups per litter). Weight gains were determined until weaning (21 days). At weaning two youngs were selected from each litter and individually housed. Weight gains, food consumption and the length of the tail were measured until rats were 70 days old. Rats had their liver and brain removed for protein determination and wet and relative weights. Liver samples were histologically examined. Blood hemoglobin, hematocrit and proteins, as well as the Food Efficiency Ratio (FER), were determined. ANOVA and Tukey's test were used. The experimental diet had not significant effect on pregnant and lactating dams. Values for the investigated parameters were higher in experimental youngs than in their controls and lower than in the standard group. This yeast protein-enriched manioc flour proved to be valid in terms of dietary supplementation.

  2. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae.

    PubMed

    Schoeman, H; Vivier, M A; Du Toit, M; Dicks, L M; Pretorius, I S

    1999-06-15

    The excessive use of sulphur dioxide and other chemical preservatives in wine, beer and other fermented food and beverage products to prevent the growth of unwanted microbes holds various disadvantages for the quality of the end-products and is confronted by mounting consumer resistance. The objective of this study was to investigate the feasibility of controlling spoilage bacteria during yeast-based fermentations by engineering bactericidal strains of Saccharomyces cerevisiae. To test this novel concept, we have successfully expressed a bacteriocin gene in yeast. The pediocin operon of Pediococcus acidilactici PAC1.0 consists of four clustered genes, namely pedA (encoding a 62 amino acid precursor of the PA-1 pediocin), pedB (encoding an immunity factor), pedC (encoding a PA-1 transport protein) and pedD (encoding a protein involved in the transport and processing of PA-1). The pedA gene was inserted into a yeast expression/secretion cassette and introduced as a multicopy episomal plasmid into a laboratory strain (Y294) of S. cerevisiae. Northern blot analysis confirmed that the pedA structural gene in this construct (ADH1P-MFa1S-pedA-ADH1T, designated PED1), was efficiently expressed under the control of the yeast alcohol dehydrogenase I gene promoter (ADH1P) and terminator (ADH1T). Secretion of the PED1-encoded pediocin PA-1 was directed by the yeast mating pheromone alpha-factor's secretion signal (MFa1S). The presence of biologically active antimicrobial peptides produced by the yeast transformants was indicated by agar diffusion assays against sensitive indicator bacteria (e.g. Listeria monocytogenes B73). Protein analysis indicated the secreted heterologous peptide to be approximately 4.6 kDa, which conforms to the expected size. The heterologous peptide was present at relatively low levels in the yeast supernatant but pediocin activity was readily detected when intact yeast colonies were used in sensitive strain overlays. This study could lead to the

  3. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature.

    PubMed

    Zakhartsev, Maksim; Reuss, Matthias

    2018-04-26

    Cell volume is an important parameter for modelling cellular processes. Temperature-induced variability of cellular size, volume, intracellular granularity, a fraction of budding cells of yeast Saccharomyces cerevisiae CEN.PK 113-7D (in anaerobic glucose unlimited batch cultures) were measured by flow cytometry and matched with the performance of the biomass growth (maximal specific growth rate (μ_max), specific rate of glucose consumption, the rate of maintenance, biomass yield on glucose). The critical diameter of single cells was 7.94 μm and it is invariant at growth temperatures above 18.5°C. Below 18.5°C, it exponentially increases up to 10.2 μm. The size of the bud linearly depends on μ_max, and it is between 50% at 5°C and 90% at 31°C of the averaged single cell. The intracellular granularity (SSC-index) negatively depends on μ_max. There are two temperature regions (5-31°C vs. 33-40°C) where the relationship between SSC-index and various cellular parameters differ significantly. In supraoptimal temperature range (33-40°C), cells are less granulated perhaps due to a higher rate of the maintenance. There is temperature dependent passage through the checkpoints in the cell cycle which influences the μ_max. The results point to the existence of two different morphological states of yeasts in these different temperature regions.

  4. Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system.

    PubMed

    Souffriau, Ben; den Abt, Tom; Thevelein, Johan M

    2012-07-30

    D-Galacturonic acid is a major component of pectins but cannot be metabolized by Saccharomyces cerevisiae. It is assumed not to be taken up. We show that yeast displays surprisingly rapid low-affinity uptake of D-galacturonic acid, strongly increasing with decreasing extracellular pH and without saturation up to 1.5 M. There was no intracellular concentration above the extracellular level and transport was reversible. Among more than 160 single and multiple deletion mutants in channels and transporters, no strain was affected in D-galacturonic acid uptake. The uptake was not inhibited by any compound tested as candidate competitive inhibitor, including D-glucuronic acid, which was also transported. The characteristics of D-galacturonic acid uptake are consistent with involvement of a channel-type system, probably encoded by multiple genes. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae.

    PubMed

    Wilkinson, Derek; Ramsdale, Mark

    2011-10-01

    A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.

  7. Investigation of the Best Saccharomyces cerevisiae Growth Condition.

    PubMed

    Salari, Roshanak; Salari, Rosita

    2017-01-01

    Saccharomyces cerevisiae is known as one of the useful yeasts which are utilized in baking and other industries. It can be easily cultured at an economic price. Today the introduction of safe and efficient carriers is being considered. Due to its generally round shape, and the volume that is enclosed by its membrane and cell wall, it is used to encapsulate active materials to protect them from degradation or to introduce a sustained release drug delivery system. Providing the best conditions in order to achieve the best morphological properties of Saccharomyces cerevisiae as a carrier. In this research, the most suitable growth condition of yeast cells which provides the best size for use as drug carriers was found by a bioreactor in a synthetic culture medium. Yeast cell reproduction and growth curves were obtained, based on pour plate colony counting data and UV/Visible sample absorption at 600 nm. Yeast cell growth patterns and growth rates were determined by Matlab mathematical software. Results showed that pH=4 and dissolving oxygen (DO) 5% was the best condition for yeast cells to grow and reproduce. This condition also provided the largest size (2 × 3 μ) yeast cells. Owing to the yeast cells' low-cost production and their structural characteristics, they could be used as potent drug carriers. This work was supported by a grant from the Vice Chancellor of Research of Mashhad University of Medical Sciences.

  8. Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae.

    PubMed

    Stříbný, Jiří; Kinclová-Zimmermannová, Olga; Sychrová, Hana

    2012-12-01

    Three different transport systems exist to accumulate a sufficient amount of potassium cations in yeasts. The most common of these are Trk-type transporters, which are used by all yeast species. Though most yeast species employ two different types of transporters, we only identified one gene encoding a potassium uptake system (Trk-type) in the genome of the highly osmotolerant yeast Zygosaccharomyces rouxii, and our results showed that ZrTrk1 is its major (and probably only) specific potassium uptake system. When expressed in Saccharomyces cerevisiae, the product of the ZrTRK1 gene is localized to the plasma membrane and its presence efficiently complements the phenotypes of S. cerevisiae trk1∆ trk2∆ cells. Deletion of the ZrTRK1 gene resulted in Z. rouxii cells being almost incapable of growth at low K(+) concentrations and it changed some cell physiological parameters in a way that differs from S. cerevisiae. In contrast to S. cerevisiae, Z. rouxii cells without the TRK1 gene contained less potassium than the control cells and their plasma membrane was significantly hyperpolarized compared with those of the parental strain when grown in the presence of 100 mM KCl. On the other hand, subsequent potassium starvation led to a substantial depolarization which is again different from S. cerevisiae. Plasma-membrane hyperpolarization did not prevent the efflux of potassium from Z. rouxii trk1Δ cells during potassium starvation, and the activity of ZrPma1 is less affected by the absence of ZrTRK1 than in S. cerevisiae. The use of a newly constructed Z. rouxii-specific plasmid for the expression of pHluorin showed that the intracellular pH of the Z. rouxii wild type and the trk1∆ mutant is not significantly different. Together with the fact that Z. rouxii cells contain a significantly lower amount of intracellular potassium than identically grown S. cerevisiae cells, our results suggest that this highly osmotolerant yeast species maintain its intracellular pH and

  9. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  10. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility.

    PubMed

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-12-28

    To investigate the capacity of Saccharomyces cerevisiae ( S. cerevisiae ) and Saccharomyces boulardii ( S. boulardii ) yeasts to reverse or to treat acute stress-related intestinal dysmotility. Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae , S. boulardii , or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency (Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity (mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity

  11. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility

    PubMed Central

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-01-01

    AIM To investigate the capacity of Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardii (S. boulardii) yeasts to reverse or to treat acute stress-related intestinal dysmotility. METHODS Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae, S. boulardii, or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. RESULTS S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency (Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity (mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar

  12. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Scheffersomyces stipitis is a Crabtree negative yeast, commonly known for its capacity to ferment pentose sugars. Differently from Crabtree positive yeasts such as Saccharomyces cerevisiae, the onset of fermentation in S. stipitis is not dependent on the sugar concentration, but is regulated by a decrease in oxygen levels. Even though S. stipitis has been extensively studied due to its potential application in pentoses fermentation, a limited amount of information is available about its metabolism during aerobic growth on glucose. Here, we provide a systems biology based comparison between the two yeasts, uncovering the metabolism of S. stipitis during aerobic growth on glucose under batch and chemostat cultivations. Results Starting from the analysis of physiological data, we confirmed through 13C-based flux analysis the fully respiratory metabolism of S. stipitis when growing both under glucose limited or glucose excess conditions. The patterns observed showed similarity to the fully respiratory metabolism observed for S. cerevisiae under chemostat cultivations however, intracellular metabolome analysis uncovered the presence of several differences in metabolite patterns. To describe gene expression levels under the two conditions, we performed RNA sequencing and the results were used to quantify transcript abundances of genes from the central carbon metabolism and compared with those obtained with S. cerevisiae. Interestingly, genes involved in central pathways showed different patterns of expression, suggesting different regulatory networks between the two yeasts. Efforts were focused on identifying shared and unique families of transcription factors between the two yeasts through in silico transcription factors analysis, suggesting a different regulation of glycolytic and glucoenogenic pathways. Conclusions The work presented addresses the impact of high-throughput methods in describing and comparing the physiology of Crabtree positive and Crabtree

  13. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  14. Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland.

    PubMed

    Xia, Wenjing; Nielly-Thibault, Lou; Charron, Guillaume; Landry, Christian R; Kasimer, Dahlia; Anderson, James B; Kohn, Linda M

    2017-02-01

    Genetic diversity in experimental, domesticated and wild populations of the related yeasts, Saccharomyces cerevisiae and Saccharomyces paradoxus, has been well described at the global scale. We investigated the population genomics of a local population on a small spatial scale to address two main questions. First, is there genomic variation in a S. paradoxus population at a spatial scale spanning centimetres (microsites) to tens of metres? Second, does the distribution of genomic variants persist over time? Our sample consisted of 42 S. paradoxus strains from 2014 and 43 strains from 2015 collected from the same 72 microsites around four host trees (Quercus rubra and Quercus alba) within 1 km 2 in a mixed hardwood forest in southern Ontario. Six additional S. paradoxus strains recovered from adjacent maple and beech trees in 2015 are also included in the sample. Whole-genome sequencing and genomic SNP analysis revealed five differentiated groups (clades) within the sampled area. The signal of persistence of genotypes in their microsites from 2014 to 2015 was highly significant. Isolates from the same tree tended to be more related than strains from different trees, with limited evidence of dispersal between trees. In growth assays, one genotype had a significantly longer lag phase than the other strains. Our results indicate that different clades coexist at fine spatial scale and that population structure persists over at least a one-year interval in these wild yeasts, suggesting the efficacy of yearly sampling to follow longer term genetic dynamics in future studies. © 2016 John Wiley & Sons Ltd.

  15. A Large Set of Newly Created Interspecific Saccharomyces Hybrids Increases Aromatic Diversity in Lager Beers

    PubMed Central

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido

    2015-01-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, “Saaz” and “Frohberg.” This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. PMID:26407881

  16. TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.

    PubMed

    Nakazawa, Nobushige; Sato, Aya; Hosaka, Masahiro

    2016-03-01

    Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. A protein interaction network analysis for yeast integral membrane protein.

    PubMed

    Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling

    2008-01-01

    Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.

  18. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    PubMed

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  19. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins

    PubMed Central

    Bayliak, Maria M.; Burdyliuk, Nadia I.; Izers’ka, Lilia I.; Lushchak, Volodymyr I.

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed. PMID:24659935

  20. Septin Organization and Functions in Budding Yeast

    PubMed Central

    Glomb, Oliver; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins. PMID:27857941

  1. Phylogenetic relationship and Fourier-transform infrared spectroscopy-derived lipid determinants of lifespan parameters in the Saccharomyces cerevisiae yeast.

    PubMed

    Molon, Mateusz; Zebrowski, Jacek

    2017-06-01

    Yeast ageing has been gaining much attention in gerontology research, yet the process itself is still not entirely clear. One of the constraints related to the use of the Saccharomyces cerevisiae yeast in studies is the ambiguity of the results concerning ageing determinants for different genetic backgrounds. In this paper, we compare reproductive potentials and lifespans of seven widely used haploid laboratory strains differing in daughter cells production capabilities and highlight the importance of choosing an appropriate genotype for the studies on ageing. Moreover, we show here links between post-reproductive lifespan and lipid metabolism, as well as between reproductive potential, reproductive lifespan and phylogenetic relationship. Using FTIR spectroscopy that generated a biochemical fingerprint of cells, coupled with chemometrics, we found that the band of carbonyl (C = O) stretching vibration discriminates the strains according to post-reproductive lifespan. The results indicated that prolonged post-reproductive lifespan was associated with relatively lower amount of fatty acids esterified to phospholipids compared to a free acid pool, thus implying phospholipid metabolism for the post-reproductive lifespan of yeast. In addition, phylogenetic analysis showed a correlation between nucleotide similarity and the reproductive potential or reproductive lifespan, but not to the longevity expressed in time units. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions.

    PubMed

    Heux, Stéphanie; Sablayrolles, Jean-Marie; Cachon, Rémy; Dequin, Sylvie

    2006-09-01

    We recently showed that expressing an H(2)O-NADH oxidase in Saccharomyces cerevisiae drastically reduces the intracellular NADH concentration and substantially alters the distribution of metabolic fluxes in the cell. Although the engineered strain produces a reduced amount of ethanol, a high level of acetaldehyde accumulates early in the process (1 g/liter), impairing growth and fermentation performance. To overcome these undesirable effects, we carried out a comprehensive analysis of the impact of oxygen on the metabolic network of the same NADH oxidase-expressing strain. While reducing the oxygen transfer rate led to a gradual recovery of the growth and fermentation performance, its impact on the ethanol yield was negligible. In contrast, supplying oxygen only during the stationary phase resulted in a 7% reduction in the ethanol yield, but without affecting growth and fermentation. This approach thus represents an effective strategy for producing wine with reduced levels of alcohol. Importantly, our data also point to a significant role for NAD(+) reoxidation in controlling the glycolytic flux, indicating that engineered yeast strains expressing an NADH oxidase can be used as a powerful tool for gaining insight into redox metabolism in yeast.

  3. A mitochondrial locus is necessary for the synthesis of mitochondrial tRNA in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Martin, N C; Underbrink-Lyon, K

    1981-01-01

    We have used a cloned yeast mitochondrial tRNAUCNSer gene as a probe to detect RNA species that are transcripts from this gene in wild-type Saccharomyces cerevisiae and in petite deletion mutants. In RNA from wild-type cells, the tRNA is the most prominent transcript of the gene. In RNA from deletion mutants that retain this gene but have lost other regions of mtDNA, high molecular weight transcripts containing the tRNAUCNSer sequences accumulate but tRNAUCNSer is not made. tRNAUCNSer synthesis can be restored in these mutants when they are mated to other deletion mutants that retain a different portion of the mitochondrial genome. Protein synthesis is not necessary for the restoration, and the restoration is not due to a nuclear effect or to an effect of mating alone, because strains without mtDNA are not able to restore tRNA synthesis. These results definitively demonstrate the existence of a yeast mitochondrial locus that is necessary for tRNA synthesis and, because the restoration of tRNAUCNSer synthesis appears to result from intergenic complementation, not recombination, indicate that this locus acts in trans. Images PMID:6795621

  4. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    PubMed

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.

  5. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase.

    PubMed

    Tani, Motohiro; Toume, Moeko

    2015-12-01

    In the yeast Saccharomyces cerevisiae, complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H+-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)2C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of SCS7 and SUR2. In addition, supersensitivities to Ca2+, Zn2+ and H2O2, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.

  6. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations

    PubMed Central

    de Llanos, Rosa; Martínez-Garay, Carlos Andrés; Fita-Torró, Josep; Romero, Antonia María; Martínez-Pastor, María Teresa

    2016-01-01

    ABSTRACT Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption. PMID:26969708

  7. Global investigation of protein-protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences.

    PubMed

    Pitre, S; North, C; Alamgir, M; Jessulat, M; Chan, A; Luo, X; Green, J R; Dumontier, M; Dehne, F; Golshani, A

    2008-08-01

    Protein-protein interaction (PPI) maps provide insight into cellular biology and have received considerable attention in the post-genomic era. While large-scale experimental approaches have generated large collections of experimentally determined PPIs, technical limitations preclude certain PPIs from detection. Recently, we demonstrated that yeast PPIs can be computationally predicted using re-occurring short polypeptide sequences between known interacting protein pairs. However, the computational requirements and low specificity made this method unsuitable for large-scale investigations. Here, we report an improved approach, which exhibits a specificity of approximately 99.95% and executes 16,000 times faster. Importantly, we report the first all-to-all sequence-based computational screen of PPIs in yeast, Saccharomyces cerevisiae in which we identify 29,589 high confidence interactions of approximately 2 x 10(7) possible pairs. Of these, 14,438 PPIs have not been previously reported and may represent novel interactions. In particular, these results reveal a richer set of membrane protein interactions, not readily amenable to experimental investigations. From the novel PPIs, a novel putative protein complex comprised largely of membrane proteins was revealed. In addition, two novel gene functions were predicted and experimentally confirmed to affect the efficiency of non-homologous end-joining, providing further support for the usefulness of the identified PPIs in biological investigations.

  8. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    PubMed

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  9. Construction of Novel Saccharomyces cerevisiae Strains for Bioethanol Active Dry Yeast (ADY) Production

    PubMed Central

    Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes. PMID:24376860

  10. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  11. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  12. [Distiller Yeasts Producing Antibacterial Peptides].

    PubMed

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  13. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    PubMed

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.

  14. Wine yeasts for the future.

    PubMed

    Fleet, Graham H

    2008-11-01

    International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.

  15. A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers.

    PubMed

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido; Verstrepen, Kevin J

    2015-12-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Fission yeast Csk1 is a CAK-activating kinase (CAKAK).

    PubMed Central

    Hermand, D; Pihlak, A; Westerling, T; Damagnez, V; Vandenhaute, J; Cottarel, G; Mäkelä, T P

    1998-01-01

    Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK). PMID:9857180

  17. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae.

    PubMed

    Zyrina, Anna N; Smirnova, Ekaterina A; Markova, Olga V; Severin, Fedor F; Knorre, Dmitry A

    2017-02-01

    There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria. Copyright © 2017 American Society for Microbiology.

  18. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Zyrina, Anna N.; Smirnova, Ekaterina A.; Markova, Olga V.; Severin, Fedor F.

    2016-01-01

    ABSTRACT There are two superoxide dismutases in the yeast Saccharomyces cerevisiae—cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2. Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria. PMID:27864171

  19. Outlining the influence of non-conventional yeasts in wine ageing over lees.

    PubMed

    Belda, Ignacio; Navascués, Eva; Marquina, Domingo; Santos, Antonio; Calderón, Fernando; Benito, Santiago

    2016-07-01

    During the last decade, the use of innovative yeast cultures of both Saccharomyces cerevisiae and non-Saccharomyces yeasts as alternative tools to manage the winemaking process have turned the oenology industry. Although the contribution of different yeast species to wine quality during fermentation is increasingly understood, information about their role in wine ageing over lees is really scarce. This work aims to analyse the incidence of three non-Saccharomyces yeast species of oenological interest (Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima) and of a commercial mannoprotein-overproducer S. cerevisiae strain compared with a conventional industrial yeast strain during wine ageing over lees. To evaluate their incidence in mouthfeel properties of wine after 4 months of ageing, the mannoprotein content of wines was evaluated, together with other wine analytic parameters, such as colour and aroma, biogenic amines and amino acids profile. Some differences among the studied parameters were observed during the study, especially regarding the mannoprotein concentration of wines. Our results suggest that the use of T. delbrueckii lees in wine ageing is a useful tool for the improvement of overall wine quality by notably increasing mannoproteins, reaching values higher than obtained using a S. cerevisiae overproducer strain. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Dicholesteroyl diselenide: cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts.

    PubMed

    de Oliveira, Iuri Marques; Degrandi, Tiago Hoerbe; Jorge, Patrícia Mendes; Saffi, Jenifer; Rosa, Renato Moreira; Guecheva, Temenouga Nikolova; Henriques, João Antonio Pêgas

    2014-03-15

    The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  2. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    PubMed

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  3. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  4. Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment

    PubMed Central

    Erny, C.; Raoult, P.; Alais, A.; Butterlin, G.; Delobel, P.; Matei-Radoi, F.; Casaregola, S.

    2012-01-01

    The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)2 genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates. PMID:22344648

  5. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae.

    PubMed

    Bakkali, F; Averbeck, S; Averbeck, D; Zhiri, A; Idaomar, M

    2005-08-01

    In order to get an insight into the possible genotoxicity of essential oils (EOs) used in traditional pharmacological applications we tested five different oils extracted from the medicinal plants Origanum compactum, Coriandrum sativum, Artemisia herba alba, Cinnamomum camphora (Ravintsara aromatica) and Helichrysum italicum (Calendula officinalis) for genotoxic effects using the yeast Saccharomyces cerevisiae. Clear cytotoxic effects were observed in the diploid yeast strain D7, with the cells being more sensitive to EOs in exponential than in stationary growth phase. The cytotoxicity decreased in the following order: Origanum compactum>Coriandrum sativum>Artemisia herba alba>Cinnamomum camphora>Helichrysum italicum. In the same order, all EOs, except that derived from Helichrysum italicum, clearly induced cytoplasmic petite mutations indicating damage to mitochondrial DNA. However, no nuclear genetic events such as point mutations or mitotic intragenic or intergenic recombination were induced. The capacity of EOs to induce nuclear DNA damage-responsive genes was tested using suitable Lac-Z fusion strains for RNR3 and RAD51, which are genes involved in DNA metabolism and DNA repair, respectively. At equitoxic doses, all EOs demonstrated significant gene induction, approximately the same as that caused by hydrogen peroxide, but much lower than that caused by methyl methanesulfonate (MMS). EOs affect mitochondrial structure and function and can stimulate the transcriptional expression of DNA damage-responsive genes. The induction of mitochondrial damage by EOs appears to be closely linked to overall cellular cytotoxicity and appears to mask the occurrence of nuclear genetic events. EO-induced cytotoxicity involves oxidative stress, as is evident from the protection observed in the presence of ROS inhibitors such as glutathione, catalase or the iron-chelating agent deferoxamine.

  6. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  7. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation.

    PubMed

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-12-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52"--rough and "PE-02"--smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  8. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Lewinska, Anna; Miedziak, Beata; Kulak, Klaudia; Molon, Mateusz; Wnuk, Maciej

    2014-06-01

    The nucleolus is speculated to be a regulator of cellular senescence in numerous biological systems (Guarente, Genes Dev 11(19):2449-2455, 1997; Johnson et al., Curr Opin Cell Biol 10(3):332-338, 1998). In the budding yeast Saccharomyces cerevisiae, alterations in nucleolar architecture, the redistribution of nucleolar protein and the accumulation of extrachromosomal ribosomal DNA circles (ERCs) during replicative aging have been reported. However, little is known regarding rDNA stability and changes in nucleolar activity during chronological aging (CA), which is another yeast aging model used. In the present study, the impact of aberrant cell cycle checkpoint control (knock-out of BUB1, BUB2, MAD1 and TEL1 genes in haploid and diploid hemizygous states) on CA-mediated changes in the nucleolus was studied. Nucleolus fragmentation, changes in the nucleolus size and the nucleolus/nucleus ratio, ERC accumulation, expression pattern changes and the relocation of protein involved in transcriptional silencing during CA were revealed. All strains examined were affected by oxidative stress, aneuploidy (numerical rather than structural aberrations) and DNA damage. However, the bub1 cells were the most prone to aneuploidy events, which may contribute to observed decrease in chronological lifespan. We postulate that chronological aging may be affected by redox imbalance-mediated chromosome XII instability leading to both rDNA instability and whole chromosome aneuploidy. CA-mediated nucleolus fragmentation may be a consequence of nucleolus enlargement and/or Nop2p upregulation. Moreover, the rDNA content of chronologically aging cells may be a factor determining the subsequent replicative lifespan. Taken together, we demonstrated that the nucleolus state is also affected during CA in yeast.

  9. Efficient Sporulation of Saccharomyces cerevisiae in a 96 Multiwell Format.

    PubMed

    Paulissen, Scott M; Huang, Linda S

    2016-09-17

    During times of nutritional stress, Saccharomyces cerevisiae undergoes gametogenesis, known as sporulation. Diploid yeast cells that are starved for nitrogen and carbon will initiate the sporulation process. The process of sporulation includes meiosis followed by spore formation, where the haploid nuclei are packaged into environmentally resistant spores. We have developed methods for the efficient sporulation of budding yeast in 96 multiwell plates, to increase the throughput of screening yeast cells for sporulation phenotypes. These methods are compatible with screening with yeast containing plasmids requiring nutritional selection, when appropriate minimal media is used, or with screening yeast with genomic alterations, when a rich presporulation regimen is used. We find that for this method, aeration during sporulation is critical for spore formation, and have devised techniques to ensure sufficient aeration that are compatible with the 96 multiwell plate format. Although these methods do not achieve the typical ~80% level of sporulation that can be achieved in large-volume flask based experiments, these methods will reliably achieve about 50-60% level of sporulation in small-volume multiwell plates.

  10. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    NASA Astrophysics Data System (ADS)

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as β -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  11. Cellodextrin transport in yeast for improved biofuel production.

    PubMed

    Galazka, Jonathan M; Tian, Chaoguang; Beeson, William T; Martinez, Bruno; Glass, N Louise; Cate, Jamie H D

    2010-10-01

    Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.

  12. A recombinant 63-kDa form of Bacillus anthracis protective antigen produced in the yeast Saccharomyces cerevisiae provides protection in rabbit and primate inhalational challenge models of anthrax infection.

    PubMed

    Hepler, Robert W; Kelly, Rosemarie; McNeely, Tessie B; Fan, Hongxia; Losada, Maria C; George, Hugh A; Woods, Andrea; Cope, Leslie D; Bansal, Alka; Cook, James C; Zang, Gina; Cohen, Steven L; Wei, Xiaorong; Keller, Paul M; Leffel, Elizabeth; Joyce, Joseph G; Pitt, Louise; Schultz, Loren D; Jansen, Kathrin U; Kurtz, Myra

    2006-03-06

    Infection by Bacillus anthracis is preventable by prophylactic vaccination with several naturally derived and recombinant vaccine preparations. Existing data suggests that protection is mediated by antibodies directed against the protective antigen (PA) component of the anthrax toxin complex. PA is an 83-kDa protein cleaved in vivo to yield a biologically active 63-kDa protein. In an effort to evaluate the potential of yeast as an expression system for the production of recombinant PA, and to determine if the yeast-purified rPA63 can protect from a lethal inhalational challenge, the sequence of the 63-kDa form of PA was codon-optimized and expressed in the yeast Saccharomyces cerevisiae. Highly purified rPA63 isolated from Saccharomyces under denaturing conditions demonstrated reduced biological activity in a macrophage-killing assay compared to non-denatured rPA83 purified from Escherichia coli. Rabbits and non-human primates (NHP) immunized with rPA63 and later challenged with a lethal dose of B. anthracis spores were generally protected from infection. These results indicate that epitopes present in the 63-kDa from of PA can protect rabbits and non-human primates from a lethal spore challenge, and further suggest that a fully functional rPA63 is not required in order to provide these epitopes.

  13. The YPR153W gene is essential for the pressure tolerance of tryptophan permease Tat2 in the yeast Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Kurosaka, Goyu; Abe, Fumiyoshi

    2018-01-01

    In the yeast Saccharomyces cerevisiae, hydrostatic pressure at 25 MPa is known to be nonlethal but significantly impairs the uptake of tryptophan by the permease Tat2, thereby inhibiting the growth of strains that require tryptophan from the medium. Here, we found that the lack of the YPR153W gene, so far poorly characterized for its role in yeast, caused a serious adverse effect on the growth at 10-25 MPa in the strain that required tryptophan. Deletion for YPR153W resulted in an increased rate of pressure-induced degradation of Tat2, suggesting that Tat2 is destabilized in the YPR153W deletion mutant at 25 MPa. Overexpression of the TAT2 gene enabled the deletion mutant to grow at 25 MPa. These results suggest that Ypr153w is essential for the stability and proper transport function of Tat2 under pressure at 10-25 MPa.

  14. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru.

    PubMed

    Vallejo, Juan Andrés; Miranda, Patricia; Flores-Félix, José David; Sánchez-Juanes, Fernando; Ageitos, José M; González-Buitrago, José Manuel; Velázquez, Encarna; Villa, Tomás G

    2013-12-01

    Chicha is a drink prepared in several Andean countries from Inca's times by maize fermentation. Currently this fermentation is carried out in familiar artesanal "chicherías" that make one of the most known types of chicha, the "chicha de jora". In this study we isolate and identify the yeasts mainly responsible of the fermentation process in this type of chicha in 10 traditional "chicherías" in Cusco region in Peru. We applied by first time MALDI-TOF MS analysis for the identification of yeast of non-clinic origin and the results showed that all of yeast strains isolated belong to the species Saccharomyces cerevisiae. These results agree with those obtained after the analysis of the D1/D2 and 5.8S-ITS regions. However the chicha strains have a phenotypic profile that differed in more than 40% as compared to that of current S. cerevisiae strains. To the best of our knowledge this is the first report concerning the yeasts involved in chicha fermentation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Application of genetics to the development of starch-fermenting yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattoon, J.R.; Kim, K.; Laluce, C.

    1987-01-01

    Yeast strains capable of direct fermentation of manioc starch were developed by hybridizing strains of Saccharomyces diastaticus and Saccharomyces cerevisiae. Hybrids were evaluated for speed of alcohol production, and yields and speed of formation of glycoamylase. Up to 6% solutions of Lintner starch could be fermented directly with about 80% conversion to alcohol. Pretreatment of crude 40% manioc starch suspensions with alpha-amylase, followed by fermentations with a starch-fermenting yeast strain, permitted accumulation of 12% ethanol within three days. Starch conversion was almost 100%. A fragment of DNA was cloned from S. diastaticus using the yeast-E. coli shuttle vector, YEp13, andmore » was used to transform a strain of S. cerevisiae to a starch-fermenting state. Supported by National Science Foundation grant INT 7927328 and National Institutes of Health grant GM 27860. Dr. Laluce was supported by a grant from Fundacao de Amparo a Pesquisa do Estado do Sao Paulo and by her university. (Refs. 5).« less

  16. Detection and identification of wild yeasts in Champús, a fermented Colombian maize beverage.

    PubMed

    Osorio-Cadavid, Esteban; Chaves-López, Clemencia; Tofalo, Rosanna; Paparella, Antonello; Suzzi, Giovanna

    2008-09-01

    The aim of this study was to identify and characterise the predominant yeasts in Champús, a traditional Colombian cereal-based beverage with a low alcoholic content. Samples of Champús from 20 production sites in the Cauca Valley region were analysed. A total of 235 yeast isolates were identified by conventional microbiological analyses and by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of ITS1-5.8S rDNA-ITS2. The dominant species were: Saccharomyces cerevisiae, Issatchenkia orientalis, Pichia fermentans, Pichia kluyveri var. kluyveri, Zygosaccharomyces fermentati, Torulospora delbruekii, Galactomyces geotrichum and Hanseniaspora spp. Model Champús systems were inoculated with single strains of some isolated sporogenus species and the aromatic profiles were analysed by SPME. Analysis of data showed that Champús strains produced high amounts of esters. The aromatic compounds produced by Saccharomyces and non-Saccharomyces yeasts from Champús can exert a relevant influence on the sensory characteristics of the fermented beverage. The Champús strains could thus represent an important source for new yeast biotypes with potential industrial applications.

  17. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper

  18. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    PubMed Central

    Viel, Alessia; Legras, Jean-Luc; Nadai, Chiara; Carlot, Milena; Lombardi, Angiolella; Crespan, Manna; Migliaro, Daniele; Giacomini, Alessio; Corich, Viviana

    2017-01-01

    In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota. PMID:28883812

  19. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance.

    PubMed

    Yazawa, Hisashi; Iwahashi, Hitoshi; Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi

    2009-03-01

    Saccharomyces cerevisiae produces saturated and monounsaturated fatty acids of 16- and 18-carbon atoms and no polyunsaturated fatty acids (PUFAs) with more than two double bonds. To study the biological significance of PUFAs in yeast, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase (KlFAD2) and omega3 fatty acid desaturase (KlFAD3) genes into S. cerevisiae to produce linoleic and alpha-linolenic acids in S. cerevisiae. The strain producing linoleic and alpha-linolenic acids showed an alkaline pH-tolerant phenotype. DNA microarray analyses showed that the transcription of a set of genes whose expressions are under the repression of Rim101p were downregulated in this strain, suggesting that Rim101p, a transcriptional repressor which governs the ion tolerance, was activated. In line with this activation, the strain also showed elevated resistance to Li(+) and Na(+) ions and to zymolyase, a yeast lytic enzyme preparation containing mainly beta-1,3-glucanase, indicating that the cell wall integrity was also strengthened in this strain. Our findings demonstrate a novel influence of PUFA production on transcriptional control that is likely to play an important role in the early stage of alkaline stress response. The Accession No. for microarray data in the Center for Information Biology Gene Expression database is CBX68.

  1. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae.

    PubMed

    Morimoto, Yuji; Tani, Motohiro

    2015-02-01

    Complex sphingolipids play important roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened yeast mutant strains showing a synthetic lethal interaction with loss of mannosylinositol phosphorylceramide (MIPC) synthesis and found that a specific group of glycosyltransferases involved in the synthesis of mannan-type N-glycans is essential for the growth of cells lacking MIPC synthases (Sur1 and Csh1). The genetic interaction was also confirmed by repression of MNN2, which encodes alpha-1,2-mannosyltransferase that synthesizes mannan-type N-glycans, by a tetracycline-regulatable system. MNN2-repressed sur1Δ csh1Δ cells exhibited high sensitivity to zymolyase treatment, and caffeine and sodium dodecyl sulfate (SDS) strongly inhibited the growth of sur1Δ csh1Δ cells, suggesting impairment of cell integrity due to the loss of MIPC synthesis. The phosphorylated form of Slt2, a mitogen-activated protein (MAP) kinase activated by impaired cell integrity, increased in sur1Δ csh1Δ cells, and this increase was dramatically enhanced by the repression of Mnn2. Moreover, the growth defect of MNN2-repressed sur1Δ csh1Δ cells was enhanced by the deletion of SLT2 or RLM1 encoding a downstream target of Slt2. These results indicated that loss of MIPC synthesis causes impairment of cell integrity, and this effect is enhanced by impaired synthesis of mannan-type N-glycans. © 2014 John Wiley & Sons Ltd.

  2. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  3. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species

    PubMed Central

    González, Beatriz; Vázquez, Jennifer; Cullen, Paul J.; Mas, Albert; Beltran, Gemma; Torija, María-Jesús

    2018-01-01

    Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes. PMID:29696002

  4. Osmoadaptation of wine yeast (Saccharomyces cerevisiae) during Icewine fermentation leads to high levels of acetic acid.

    PubMed

    Heit, C; Martin, S J; Yang, F; Inglis, D L

    2018-06-01

    Volatile acidity (VA) production along with gene expression patterns, encoding enzymes involved in both acetic acid production and utilization, were investigated to relate gene expression patterns to the production of undesired VA during Icewine fermentation. Icewine juice and diluted Icewine juice were fermented using the Saccharomyces cerevisiae wine yeast K1-V1116. Acetic acid production increased sixfold during the Icewine fermentation vs the diluted juice condition, while ethyl acetate production increased 2·4-fold in the diluted fermentation relative to the Icewine. Microarray analysis profiled the transcriptional response of K1-V1116 under both conditions. ACS1 and ACS2 were downregulated 19·0-fold and 11·2-fold, respectively, in cells fermenting Icewine juice compared to diluted juice. ALD3 expression was upregulated 14·6-fold, and gene expressions involved in lipid and ergosterol synthesis decreased during Icewine fermentation. Decreased expression of ACS1 and ACS2 together with increased ALD3 expression contributes to the higher acetic acid and lower ethyl acetate levels generated by K1-V1116 fermenting under hyperosmotic stress. This work represents a more comprehensive understanding of how and why commercial wine yeast respond at the transcriptional and metabolic level during fermentation of Icewine juice, and how these responses contribute to increased acetic acid and decreased ethyl acetate production. © 2018 The Society for Applied Microbiology.

  5. Genetic and phenotypic characterization of Saccharomyces spp. strains isolated in distillery plants.

    PubMed

    Úbeda, Juan F; Chacón-Ocaña, Maria; Díaz-Hellín, Patricia; Ramírez-Pérez, Hector; Briones, Ana

    2016-06-01

    In this study, the biodiversity and some interesting phenotypic properties of Saccharomyces wild yeasts isolated in distilleries, at least 100 years old, located in La Mancha (Spain), were determined. Strains were genetically characterized by RFLP-mtDNA, which confirmed a great genetic biodiversity with 73% of strains with different mtDNA profiles, highlighting the large variability found in sweet and fermented piquette substrata. The predominant species identified was S. cerevisiae, followed by S. paradoxus and S. bayanus Due to the residual sugar-alcohol extraction process using warm water, a great number of thermophilic Saccharomyces strains with a great cell vitality were found to have potential use as starters in distillery plants. Interesting technological properties such as cell vitality and growth rate at different temperatures were studied. The thermal washing process for the extraction of alcohol and reducing sugars of some raw materials contributes to the presence of Saccharomyces strains with technologically interesting properties, especially in terms of vitality and resistance to high temperatures. Due to the fact that fermentation is spontaneous, the yeast biota of these environments, Saccharomyces and non-Saccharomyces, is very varied so these ecological niches are microbial reserves of undoubted biotechnological interest. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Brewing characteristics of piezosensitive sake yeasts

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  7. Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    PubMed Central

    Gonçalves, Paula; Valério, Elisabete; Correia, Cláudia; de Almeida, João M. G. C. F.; Sampaio, José Paulo

    2011-01-01

    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces. PMID:21674061

  8. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    PubMed

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Feasibility of brewing makgeolli using Pichia anomala Y197-13, a non-Saccharomyces cerevisiae.

    PubMed

    Kim, Hye Ryun; Kim, Jae-Ho; Bai, Dong-Hoon; Ahn, ByungHak

    2012-12-01

    Makgeolli is a traditional rice wine favored by the general public in Korea. This study investigated the fermentation and sensory characteristics of using wild yeast strains for brewing makgeolli. A non-Saccharomyces cerevisiae strain was isolated from nuruk and termed Y197-13. It showed 98% similarity to Pichia anomala and had an optimal growth temperature of 25 degrees C. Makgeolli was manufactured using koji, jinju nuruk, and improved nuruk as fermentation agents. Y197-13 makgeolli brewed with koji had alcohol and solids contents of 11.1% and 13.9%, respectively. Sweet sensory characteristics were attributed to residual sugars in makgeolli with 6% alcohol. The makgeolli had a fresh sour taste and carbonated taste. Volatile component analysis showed the isoamyl alcohol, phenylethyl alcohol, isoamyl acetate, and fatty acid, including ethyl oleate and ethyl linoleate, relative peak area was higher in Y197-13 makgeolli than in makgeolli with Saccharomyces cerevisiae. These results suggest the wild yeast, Y197-13, as a candidate for brewing makgeolli.

  10. The importance of aeration strategy in fuel alcohol fermentations contaminated with Dekkera/Brettanomyces yeasts.

    PubMed

    Abbott, D A; Ingledew, W M

    2005-11-01

    Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of > or =20 ml air l(-1) mash min(-1) showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts.

  11. The Saccharomyces cerevisiae enolase-related regions encode proteins that are active enolases.

    PubMed

    Kornblatt, M J; Richard Albert, J; Mattie, S; Zakaib, J; Dayanandan, S; Hanic-Joyce, P J; Joyce, P B M

    2013-02-01

    In addition to two genes (ENO1 and ENO2) known to code for enolase (EC4.2.1.11), the Saccharomyces cerevisiae genome contains three enolase-related regions (ERR1, ERR2 and ERR3) which could potentially encode proteins with enolase function. Here, we show that products of these genes (Err2p and Err3p) have secondary and quaternary structures similar to those of yeast enolase (Eno1p). In addition, Err2p and Err3p can convert 2-phosphoglycerate to phosphoenolpyruvate, with kinetic parameters similar to those of Eno1p, suggesting that these proteins could function as enolases in vivo. To address this possibility, we overexpressed the ERR2 and ERR3 genes individually in a double-null yeast strain lacking ENO1 and ENO2, and showed that either ERR2 or ERR3 could complement the growth defect in this strain when cells are grown in medium with glucose as the carbon source. Taken together, these data suggest that the ERR genes in Saccharomyces cerevisiae encode a protein that could function in glycolysis as enolase. The presence of these enolase-related regions in Saccharomyces cerevisiae and their absence in other related yeasts suggests that these genes may play some unique role in Saccharomyces cerevisiae. Further experiments will be required to determine whether these functions are related to glycolysis or other cellular processes. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Yeasts in sustainable bioethanol production: A review.

    PubMed

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  13. From drug to protein: using yeast genetics for high-throughput target discovery.

    PubMed

    Armour, Christopher D; Lum, Pek Yee

    2005-02-01

    The budding yeast Saccharomyces cerevisiae has long been an effective eukaryotic model system for understanding basic cellular processes. The genetic tractability and ease of manipulation in the laboratory make yeast well suited for large-scale chemical and genetic screens. Several recent studies describing the use of yeast genetics for high-throughput drug target identification are discussed in this review.

  14. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  15. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  16. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae.

    PubMed

    Kolaríková, Katerina; Galuszka, Petr; Sedlárová, Iva; Sebela, Marek; Frébort, Ivo

    2009-01-01

    The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.

  17. Biocuration at the Saccharomyces Genome Database

    PubMed Central

    Skrzypek, Marek S.; Nash, Robert S.

    2015-01-01

    Saccharomyces Genome Database is an online resource dedicated to managing information about the biology and genetics of the model organism, yeast (Saccharomyces cerevisiae). This information is derived primarily from scientific publications through a process of human curation that involves manual extraction of data and their organization into a comprehensive system of knowledge. This system provides a foundation for further analysis of experimental data coming from research on yeast as well as other organisms. In this review we will demonstrate how biocuration and biocurators add a key component, the biological context, to our understanding of how genes, proteins, genomes and cells function and interact. We will explain the role biocurators play in sifting through the wealth of biological data to incorporate and connect key information. We will also discuss the many ways we assist researchers with their various research needs. We hope to convince the reader that manual curation is vital in converting the flood of data into organized and interconnected knowledge, and that biocurators play an essential role in the integration of scientific information into a coherent model of the cell. PMID:25997651

  18. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation

    PubMed Central

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-01-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains (“52” - rough and “PE-02” - smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone. PMID:24688501

  19. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders.

    PubMed

    Laaksonen, Oskar; Kuldjärv, Rain; Paalme, Toomas; Virkki, Mira; Yang, Baoru

    2017-10-15

    Hydroxycinnamic acids and flavonoids in apple juices and ciders were studied using liquid chromatography. Samples were produced from four different Estonian apple cultivars using unripe, ripe and overripe apples, and six different commercial yeasts including Saccharomyces cerevisiae, Saccharomyces bayanus, and Torulaspora delbrueckii strains. Part of the samples was additionally inoculated with malolactic bacteria, Oenococcus oeni. The most notable difference among the samples was the appearance of phloretin in malolactic ciders in comparison to conventional ciders and the juices. Furthermore, the apple cultivars were significantly different in their phenolic contents and compositions. Additionally, ciders and juices made from unripe apples contained more phenolic compounds than the ripe or overripe, but the effect was dependent on cultivar. The commercial yeast strains differed in the release of free HCAs, especially p-coumaric acid, during the yeast fermentation. In ciders inoculated with S. bayanus, the content was higher than in ciders fermented with S. cerevisiae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage.

    PubMed

    Duniere, L; Jin, L; Smiley, B; Qi, M; Rutherford, W; Wang, Y; McAllister, T

    2015-05-01

    Bacterial inoculants can improve the conservation and nutritional quality of silages. Inclusion of the yeast Saccharomyces in the diet of dairy cattle has also been reported to be beneficial. The present study assessed the ability of silage to be used as a means of delivering Saccharomyces strains to ruminants. Two strains of Saccharomyces cerevisiae (strain 1 and 3)and 1 strain of Saccharomyces paradoxus (strain 2) were inoculated (10(3) cfu/g) individually onto corn forage that was ensiled in mini silos for 90 d. Fermentation characteristics, aerobic stability, and nutritive value of silages were determined and real-time quantitative PCR (RT-qPCR) was used to quantify S. cerevisiae, S.paradoxus, total Saccharomyces, fungal, and bacterial populations. Fermentation characteristics of silage inoculated with S1 were similar to control silage. Although strain 3 inoculation increased ash and decreased OM contents of silage (P = 0.017), no differences were observed in nutrient composition or fermentation profiles after 90 d of ensiling. Inoculation with Saccharomyces had no detrimental effect on the aerobic stability of silage. In vitro DM disappearance, gas production, and microbial protein synthesis were not affected by yeast inoculation.Saccharomyces strain 1 was quantified throughout ensiling, whereas strain 2 was detected only immediately after inoculation. Saccharomyces cerevisiae strain 3 was quantified until d 7 and detectable 90 d after ensiling. All inoculants were detected and quantified during aerobic exposure. Inoculation with Saccharomyces did not alter lactobacilli populations. Saccharomycetales were detected by RT-qPCR throughout ensiling in all silages. Both S. cerevisiae and S. paradoxus populations increased during aerobic exposure, demonstrating that the density of these yeast strains would increase between the time that silage was removed from storage and the time it was fed.

  1. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.

    PubMed

    Zhang, Yiming; Nielsen, Jens; Liu, Zihe

    2018-06-05

    Fatty acid-derived hydrocarbons attract increasing attention as biofuels due to their immiscibility with water, high-energy content, low freezing point, and high compatibility with existing refineries and end-user infrastructures. Yeast Saccharomyces cerevisiae has advantages for production of fatty acid-derived hydrocarbons as its native routes toward fatty acid synthesis involve only a few reactions that allow more efficient conversion of carbon substrates. Here we describe major biosynthetic pathways of fatty acid-derived hydrocarbons in yeast, and summarize key metabolic engineering strategies, including enhancing precursor supply, eliminating competing pathways, and expressing heterologous pathways. With recent advances in yeast production of fatty acid-derived hydrocarbons, our review identifies key research challenges and opportunities for future optimization, and concludes with perspectives and outlooks for further research directions. © 2018 Wiley Periodicals, Inc.

  2. Yeasts: providing questions and answers for modern biology.

    PubMed

    Dickinson, J R

    2000-01-01

    Yeasts are to be found in virtually every conceivable niche on this planet and are amazingly varied in their shapes ('morphologies'), life cycles, metabolic capabilities, potentials for use in industrial processes, abilities to spoil food and drink or to act as dangerous human pathogens. This review describes four very different species of yeast to illustrate some of the diversity which exists and, in the case of one of them, Saccharomyces cerevisiae (the familiar baker's or brewer's yeast), the extent of both our knowledge and ignorance.

  3. Miso. III. Pure culture fermentation with Saccharomyces rouxii.

    PubMed

    HESSELTINE, C W; SHIBASAKI, K

    1961-11-01

    Excellent miso has been prepared with soybean grits inoculated with a pure culture of Saccharomyces rouxii strain NRRL Y-2547. Pure culture inoculum of this osmophilic yeast was prepared by growing the culture in aerated flasks on a yeast extract medium with a salt concentration equal to that used in the manufacture of miso. It has also been found possible to make miso from whole beans with the above culture. The advantages of pure culture fermentation in producing miso are discussed.

  4. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    PubMed

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    PubMed

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    PubMed Central

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  7. Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.

    PubMed

    Picazo, C; Gamero-Sandemetrio, E; Orozco, H; Albertin, W; Marullo, P; Matallana, E; Aranda, A

    2015-03-01

    Mitochondria are the cell's powerhouse when organisms are grown in the presence of oxygen. They are also the source of reactive oxygen species that cause damage to the biochemical components of the cell and lead to cellular ageing and death. Under winemaking conditions, Saccharomyces yeasts exclusively have a fermentative metabolism due to the high sugar content of grape must. However, their production as an active dry yeast (ADY) form required aerobic propagation and a dehydration process. In these industrial steps, oxidative stress is particularly harmful for the cell. In this work, we analysed the impact of the mitochondrial genome on oxidative stress response, longevity and dehydration tolerance using the synthetic interspecific hybrids obtained between two S. cerevisiae and S. uvarum strains. The isogenic nature of nuclear DNA of such hybrids allowed us to analyse the impact of mitochondrial DNA for fermentative and oxidative stress conditions. Under grape must conditions, the inheritance of mitochondrial DNA poorly impacted the fermentative performance of interspecific hybrids, unlike the hybrids with S. cerevisiae mitochondrial inheritance, which displayed increased tolerance to oxidative stress and dehydration, and showed an extended chronological longevity when cells were grown with aeration. In modern oenology, yeast starters are employed to inoculate grape juice, usually in the form of active dry yeast (ADY). The dehydration process implies stressful conditions that lead to oxidative damage. Other yeast species and interspecific hybrids other than Saccharomyces cerevisiae may be used to confer novel properties to the final product. However, these yeasts are usually more sensitive to drying. Understanding the causes of oxidative stress tolerance is therefore necessary for developing the use of these organisms in industry. This study indicates the impact of mitochondrial DNA inheritance for oxidative stress resistance in an interspecific context using

  8. Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae.

    PubMed

    Horvath, Susanne E; Wagner, Andrea; Steyrer, Ernst; Daum, Günther

    2011-12-01

    In the yeast Saccharomyces cerevisiae triacylglycerols (TAG) are synthesized by the acyl-CoA dependent acyltransferases Dga1p, Are1p, Are2p and the acyl-CoA independent phospholipid:diacylglycerol acyltransferase (PDAT) Lro1p which uses phosphatidylethanolamine (PE) as a preferred acyl donor. In the present study we investigated a possible link between TAG and PE metabolism by analyzing the contribution of the four different PE biosynthetic pathways to TAG formation, namely de novo PE synthesis via Psd1p and Psd2p, the CDP-ethanolamine (CDP-Etn) pathway and lyso-PE acylation by Ale1p. In cells grown on the non-fermentable carbon source lactate supplemented with 5mM ethanolamine (Etn) the CDP-Etn pathway contributed most to the cellular TAG level, whereas mutations in the other pathways displayed only minor effects. In cki1∆dpl1∆eki1∆ mutants bearing defects in the CDP-Etn pathway both the cellular and the microsomal levels of PE were markedly decreased, whereas in other mutants of PE biosynthetic routes depletion of this aminoglycerophospholipid was less pronounced in microsomes. This observation is important because Lro1p similar to the enzymes of the CDP-Etn pathway is a component of the ER. We conclude from these results that in cki1∆dpl1∆eki1∆ insufficient supply of PE to the PDAT Lro1p was a major reason for the strongly reduced TAG level. Moreover, we found that Lro1p activity was markedly decreased in cki1∆dpl1∆eki1∆, although transcription of LRO1 was not affected. Our findings imply that (i) TAG and PE syntheses in the yeast are tightly linked; and (ii) TAG formation by the PDAT Lro1p strongly depends on PE synthesis through the CDP-Etn pathway. Moreover, it is very likely that local availability of PE in microsomes is crucial for TAG synthesis through the Lro1p reaction. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    PubMed

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  10. Cell Surface Display of Four Types of Solanum nigrum Metallothionein on Saccharomyces cerevisiae for Biosorption of Cadmium.

    PubMed

    Wei, Qinguo; Zhang, Honghai; Guo, Dongge; Ma, Shisheng

    2016-05-28

    We displayed four types of Solanum nigrum metallothionein (SMT) for the first time on the surface of Saccharomyces cerevisiae using an α-agglutinin-based display system. The SMT genes were amplified by RT-PCR. The plasmid pYES2 was used to construct the expression vector. Transformed yeast strains were confirmed by PCR amplification and custom sequencing. Surface-expressed metallothioneins were indirectly indicated by the enhanced cadmium sorption capacity. Flame atomic absorption spectrophotometry was used to examine the concentration of Cd(2+) in this study. The transformed yeast strains showed much higher resistance ability to Cd(2+) compared with the control. Strikingly, their Cd(2+) accumulation was almost twice as much as that of the wild-type yeast cells. Furthermore, surface-engineered yeast strains could effectively adsorb ultra-trace cadmium and accumulate Cd(2+) under a wide range of pH levels, from 3 to 7, without disturbing the Cu(2+) and Hg(2+). Four types of surfaceengineered Saccharomyces cerevisiae strains were constructed and they could be used to purify Cd(2+)-contaminated water and adsorb ultra-trace cadmium effectively. The surface-engineered Saccharomyces cerevisiae strains would be useful tools for the bioremediation and biosorption of environmental cadmium contaminants.

  11. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.

    PubMed

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-04-26

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging.

  12. Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines.

    PubMed

    Bellon, Jennifer R; Eglinton, Jeffery M; Siebert, Tracey E; Pollnitz, Alan P; Rose, Louisa; de Barros Lopes, Miguel; Chambers, Paul J

    2011-08-01

    Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.

  13. Identification and assessment of kefir yeast potential for sugar/ethanol-resistance

    PubMed Central

    Miguel, M.G.C.P.; Cardoso, P.G.; Magalhães-Guedes, K.T.; Schwan, R.F.

    2013-01-01

    Biochemical and molecular analysis was used for identification of different kefir yeasts species from Brazil, Canada and the United States of America. The sugar/ethanol-resistant activity of the yeasts was evaluated. Saccharomyces cerevisiae and Kluyveromyces marxianus had the highest growth rates, suggesting biotechnological applications possible for these strains. PMID:24159292

  14. Efforts to make and apply humanized yeast

    PubMed Central

    Laurent, Jon M.; Young, Jonathan H.; Kachroo, Aashiq H.

    2016-01-01

    Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  15. A pathogenesis assay using Saccharomyces cerevisiae and Caenorhabditis elegans reveals novel roles for yeast AP-1, Yap1, and host dual oxidase BLI-3 in fungal pathogenesis.

    PubMed

    Jain, Charu; Yun, Meijiang; Politz, Samuel M; Rao, Reeta Prusty

    2009-08-01

    Treatment of systemic fungal infections is difficult because of the limited number of antimycotic drugs available. Thus, there is an immediate need for simple and innovative systems to assay the contribution of individual genes to fungal pathogenesis. We have developed a pathogenesis assay using Caenorhabditis elegans, an established model host, with Saccharomyces cerevisiae as the invading fungus. We have found that yeast infects nematodes, causing disease and death. Our data indicate that the host produces reactive oxygen species (ROS) in response to fungal infection. Yeast mutants sod1Delta and yap1Delta, which cannot withstand ROS, fail to cause disease, except in bli-3 worms, which carry a mutation in a dual oxidase gene. Chemical inhibition of the NADPH oxidase activity abolishes ROS production in worms exposed to yeast. This pathogenesis assay is useful for conducting systematic, whole-genome screens to identify fungal virulence factors as alternative targets for drug development and exploration of host responses to fungal infections.

  16. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde.

    PubMed

    Liu, Z Lewis; Wang, Xu; Weber, Scott A

    2018-06-20

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We examined gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challenges of furfural and HMF through comparative quantitative gene expression analysis using pathway-based qRT-PCR array assays. All tested genes from Y-50049, except for MLP2, demonstrated more resistant and significantly increased gene expression than that from a laboratory strain BY4741. While all five sensor encoding genes WSC1, WSC2, WSC3, MID2 and MTL1 from both strains were activated in response to the furfural-HMF treatment, WSC3 from Y-50049 demonstrated the most increased expression over time compared with any other sensor genes. These results suggested the industrial yeast poses more robust cell wall integrity pathway, and gene WSC3 could have the special capability for signal transmission against furfural and HMF. Among five single nucleotide variations discovered in WSC3 from Y-50049, three were found to be non-synonymous mutations resulting in amino acid alterations of Ser 158  → Tyr 158 , Val 186  → Ile 186 , and Glu 430  → Asp 430 . Our results suggest the industrial yeast as a more desirable delivery vehicle for the next-generation biocatalyst development. Published by Elsevier B.V.

  17. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles.

  18. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen.

    PubMed

    Santiago, Ednalise; Akamine, Pearl; Snider, Jamie; Wong, Victoria; Jessulat, Matthew; Deineko, Viktor; Gagarinova, Alla; Aoki, Hiroyuki; Minic, Zoran; Phanse, Sadhna; San Antonio, Andrea; Cubano, Luis A; Rymond, Brian C; Babu, Mohan; Stagljar, Igor; Rodriguez-Medina, Jose R

    2016-05-03

    Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis. Copyright © 2016 Santiago et al.

  19. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal

    PubMed Central

    Timilsina, Parash Mani; Yadav, Archana; Joshi, Yogesh; Bhujel, Sahansila; Adhikari, Rojina; Neupane, Katyayanee

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker's yeast and compare them with the commercial baker's yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree “Dar” were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker's yeast. PMID:29387490

  20. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal.

    PubMed

    Karki, Tika B; Timilsina, Parash Mani; Yadav, Archana; Pandey, Gyanu Raj; Joshi, Yogesh; Bhujel, Sahansila; Adhikari, Rojina; Neupane, Katyayanee

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker's yeast and compare them with the commercial baker's yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree "Dar" were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker's yeast.