Demuyser, Liesbeth; Swinnen, Erwin; Fiori, Alessandro; Herrera-Malaver, Beatriz; Vestrepen, Kevin; Van Dijck, Patrick
2017-07-18
MGE1 encodes a yeast chaperone involved in Fe-S cluster metabolism and protein import into the mitochondria. In this study, we identified MGE1 as a multicopy suppressor of susceptibility to the antifungal fluconazole in the model yeast Saccharomyces cerevisiae We demonstrate that this phenomenon is not exclusively dependent on the integrity of the mitochondrial DNA or on the presence of the drug efflux pump Pdr5. Instead, we show that the increased dosage of Mge1 plays a protective role by retaining increased amounts of ergosterol upon fluconazole treatment. Iron metabolism and, more particularly, Fe-S cluster formation are involved in regulating this process, since the responsible Hsp70 chaperone, Ssq1, is required. Additionally, we show the necessity but, by itself, insufficiency of activating the iron regulon in establishing the Mge1-related effect on drug susceptibility. Finally, we confirm a similar role for Mge1 in fluconazole susceptibility in the pathogenic fungi Candida glabrata and Candida albicans IMPORTANCE Although they are mostly neglected compared to bacterial infections, fungal infections pose a serious threat to the human population. While some of them remain relatively harmless, infections that reach the bloodstream often become lethal. Only a few therapies are available, and resistance of the pathogen to these drugs is a frequently encountered problem. It is thus essential that more research is performed on how these pathogens cope with the treatment and cause recurrent infections. Baker's yeast is often used as a model to study pathogenic fungi. We show here, by using this model, that iron metabolism and the formation of the important iron-sulfur clusters are involved in regulating susceptibility to fluconazole, the most commonly used antifungal drug. We show that the same process likely also occurs in two of the most regularly isolated pathogenic fungi, Candida glabrata and Candida albicans . Copyright © 2017 Demuyser et al.
USDA-ARS?s Scientific Manuscript database
Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to ...
Pasricha, Shivani; MacRae, James I.; Chua, Hwa H.; Chambers, Jenny; Boyce, Kylie J.; McConville, Malcolm J.; Andrianopoulos, Alex
2017-01-01
Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo-inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast. PMID:28861398
Pasricha, Shivani; MacRae, James I; Chua, Hwa H; Chambers, Jenny; Boyce, Kylie J; McConville, Malcolm J; Andrianopoulos, Alex
2017-01-01
Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13 C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo -inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast.
Carvalho, Chris; Yang, Jiaqi; Vogan, Aaron; Maganti, Harinad; Yamamura, Deborah; Xu, Jianping
2014-05-01
Yeast are among the most frequent pathogens in humans. The dominant yeast causing human infections belong to the genus Candida and Candida albicans is the most frequently isolated species. However, several non-C. albicans species are becoming increasingly common in patients worldwide. The relationships between yeast in humans and the natural environments remain poorly understood. Furthermore, it is often difficult to identify or exclude the origins of disease-causing yeast from specific environmental reservoirs. In this study, we compared the yeast isolates from tree hollows and from clinics in Hamilton, Ontario, Canada. Our surveys and analyses showed significant differences in yeast species composition, in their temporal dynamics, and in yeast genotypes between isolates from tree hollows and hospitals. Our results are inconsistent with the hypothesis that yeast from trees constitute a significant source of pathogenic yeast in humans in this region. Similarly, the yeast in humans and clinics do not appear to contribute to yeast in tree hollows. © 2013 Blackwell Verlag GmbH.
Lee, Soo Chan; Li, Alicia; Calo, Silvia; Heitman, Joseph
2013-01-01
Many pathogenic fungi are dimorphic and switch between yeast and filamentous states. This switch alters host-microbe interactions and is critical for pathogenicity. However, in zygomycetes, whether dimorphism contributes to virulence is a central unanswered question. The pathogenic zygomycete Mucor circinelloides exhibits hyphal growth in aerobic conditions but switches to multi-budded yeast growth under anaerobic/high CO₂ conditions. We found that in the presence of the calcineurin inhibitor FK506, Mucor exhibits exclusively multi-budded yeast growth. We also found that M. circinelloides encodes three calcineurin catalytic A subunits (CnaA, CnaB, and CnaC) and one calcineurin regulatory B subunit (CnbR). Mutations in the latch region of CnbR and in the FKBP12-FK506 binding domain of CnaA result in hyphal growth of Mucor in the presence of FK506. Disruption of the cnbR gene encoding the sole calcineurin B subunit necessary for calcineurin activity yielded mutants locked in permanent yeast phase growth. These findings reveal that the calcineurin pathway plays key roles in the dimorphic transition from yeast to hyphae. The cnbR yeast-locked mutants are less virulent than the wild-type strain in a heterologous host system, providing evidence that hyphae or the yeast-hyphal transition are linked to virulence. Protein kinase A activity (PKA) is elevated during yeast growth under anaerobic conditions, in the presence of FK506, or in the yeast-locked cnbR mutants, suggesting a novel connection between PKA and calcineurin. cnaA mutants lacking the CnaA catalytic subunit are hypersensitive to calcineurin inhibitors, display a hyphal polarity defect, and produce a mixture of yeast and hyphae in aerobic culture. The cnaA mutants also produce spores that are larger than wild-type, and spore size is correlated with virulence potential. Our results demonstrate that the calcineurin pathway orchestrates the yeast-hyphal and spore size dimorphic transitions that contribute to virulence of this common zygomycete fungal pathogen.
Opportunistic Pathogenic Yeasts
NASA Astrophysics Data System (ADS)
Banerjee, Uma
Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation
Goldman, Gustavo H.; dos Reis Marques, Everaldo; Custódio Duarte Ribeiro, Diógenes; Ângelo de Souza Bernardes, Luciano; Quiapin, Andréa Carla; Vitorelli, Patrícia Marostica; Savoldi, Marcela; Semighini, Camile P.; de Oliveira, Regina C.; Nunes, Luiz R.; Travassos, Luiz R.; Puccia, Rosana; Batista, Wagner L.; Ferreira, Leslie Ecker; Moreira, Júlio C.; Bogossian, Ana Paula; Tekaia, Fredj; Nobrega, Marina Pasetto; Nobrega, Francisco G.; Goldman, Maria Helena S.
2003-01-01
Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of the prevalent systemic mycosis in Latin America, paracoccidioidomycosis. We present here a survey of expressed genes in the yeast pathogenic phase of P. brasiliensis. We obtained 13,490 expressed sequence tags from both 5′ and 3′ ends. Clustering analysis yielded the partial sequences of 4,692 expressed genes that were functionally classified by similarity to known genes. We have identified several Candida albicans virulence and pathogenicity homologues in P. brasiliensis. Furthermore, we have analyzed the expression of some of these genes during the dimorphic yeast-mycelium-yeast transition by real-time quantitative reverse transcription-PCR. Clustering analysis of the mycelium-yeast transition revealed three groups: (i) RBT, hydrophobin, and isocitrate lyase; (ii) malate dehydrogenase, contigs Pb1067 and Pb1145, GPI, and alternative oxidase; and (iii) ubiquitin, delta-9-desaturase, HSP70, HSP82, and HSP104. The first two groups displayed high mRNA expression in the mycelial phase, whereas the third group showed higher mRNA expression in the yeast phase. Our results suggest the possible conservation of pathogenicity and virulence mechanisms among fungi, expand considerably gene identification in P. brasiliensis, and provide a broader basis for further progress in understanding its biological peculiarities. PMID:12582121
Smith, I M; Baker, A; Arneborg, N; Jespersen, L
2015-11-01
The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.
Kumar, Deepa Anil; Muralidhar, Sumathi; Banerjee, Uma; Basir, Seemi Farhat; Mathur, Purva; Khan, Luqman Ahmad
2015-01-01
Background: Yeasts are important opportunistic pathogens, in individuals infected with human immunodeficiency virus (HIV). Yeast species inhabiting the oral mucosa of HIV-infected persons can act as source of oral lesions, especially as the individual progresses towards immunocompromised state. Present study was conducted to evaluate the diversity of yeasts in oral cavities of asymptomatic HIV-infected persons and their association with CD4+ cell counts. Materials and Methods: 100 HIV seropositive subjects and 100 healthy controls were screened for oral yeast carriage using standard procedures. Results: Of the 100 HIV-seropositive persons screened, 48 were colonized by different yeasts, either alone or in association with another species. Candida albicans was the most common species (56.90%) while non C. albicans Candida (NCAC) accounted for 39.65%. Among NCAC, Candida tropicalis and Candida krusei were most common. One isolate each of rare opportunistic pathogenic yeasts, Geotrichum candidum and Saccharomyces cereviseae, was recovered. The control group had an oral candidal carriage rate of 23%; C. albicans was the predominant species, followed by Candida glabrata, C. tropicalis and Candida parapsilosis. Antifungal susceptibility testing revealed no resistance in C. albicans, to the commonly used antifungal agents, whereas resistance or dose dependent susceptibility to fluconazole was observed in some of the NCAC species. Conclusion: Oral carriage of opportunistic pathogenic yeasts was greater in HIV-seropositive persons heading towards immunocompromised state, as evidenced by their CD4+ cell count. The predominant yeast isolated in this study (C. albicans), was found to be susceptible to commonly used antifungals. PMID:26392655
Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.
Palková, Zdena; Váchová, Libuše
2016-09-01
Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.
The function of yeast CAP family proteins in lipid export, mating, and pathogen defense.
Darwiche, Rabih; El Atab, Ola; Cottier, Stéphanie; Schneiter, Roger
2018-04-01
In their natural habitat, yeast cells are constantly challenged by changing environmental conditions and a fierce competition for limiting resources. To thrive under such conditions, cells need to adapt and divide quickly, and be able to neutralize the toxic compounds secreted by their neighbors. Proteins like the pathogen-related yeast, Pry proteins, which belong to the large CAP/SCP/TAPS superfamily, may have an important role in this function. CAP proteins are conserved from yeast to man and are characterized by a unique αβα sandwich fold. They are mostly secreted glycoproteins and have been implicated in many different physiological processes including pathogen defense, virulence, venom toxicity, and sperm maturation. Yeast members of this family bind and export sterols as well as fatty acids, and they render cells resistant to eugenol, an antimicrobial compound present in clove oil. CAP family members might thus exert their various physiological functions through binding, sequestration, and neutralization of such small hydrophobic compounds. © 2017 Federation of European Biochemical Societies.
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts
Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia
2016-01-01
ABSTRACT Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker’s yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. PMID:27795405
Biotechnological Applications of Dimorphic Yeasts
NASA Astrophysics Data System (ADS)
Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.
The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.
Yeast as a potential vehicle for neglected tropical disease drug discovery.
Denny, P W; Steel, P G
2015-01-01
High-throughput screening (HTS) efforts for neglected tropical disease (NTD) drug discovery have recently received increased attention because several initiatives have begun to attempt to reduce the deficit in new and clinically acceptable therapies for this spectrum of infectious diseases. HTS primarily uses two basic approaches, cell-based and in vitro target-directed screening. Both of these approaches have problems; for example, cell-based screening does not reveal the target or targets that are hit, whereas in vitro methodologies lack a cellular context. Furthermore, both can be technically challenging, expensive, and difficult to miniaturize for ultra-HTS [(u)HTS]. The application of yeast-based systems may overcome some of these problems and offer a cost-effective platform for target-directed screening within a eukaryotic cell context. Here, we review the advantages and limitations of the technologies that may be used in yeast cell-based, target-directed screening protocols, and we discuss how these are beginning to be used in NTD drug discovery. © 2014 Society for Laboratory Automation and Screening.
Boyce, Kylie J; Andrianopoulos, Alex
2013-02-01
Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei.
Martínez-Esparza, M; Sarazin, A; Jouy, N; Poulain, D; Jouault, T
2006-07-31
The yeast Candida albicans is an opportunistic pathogen, part of the normal human microbial flora that causes infections in immunocompromised individuals with a high morbidity and mortality levels. Recognition of yeasts by host cells is based on components of the yeast cell wall, which are considered part of its virulence attributes. Cell wall glycans play an important role in the continuous interchange that regulates the balance between saprophytism and parasitism, and also between resistance and infection. Some of these molecular entities are expressed both by the pathogenic yeast C. albicans and by Saccharomyces cerevisiae, a related non-pathogenic yeast, involving similar molecular mechanisms and receptors for recognition. In this work we have exploited flow cytometry methods for probing surface glycans of the yeasts. We compared glycan expression by C. albicans and by S. cerevisiae, and studied the effect of culture conditions. Our results show that the expression levels of alpha- and beta-linked mannosides as well as beta-glucans can be successfully evaluated by flow cytometry methods using different antibodies independent of agglutination reactions. We also found that the surface expression pattern of beta-mannosides detected by monoclonal or polyclonal antibodies are differently modulated during the growth course. These data indicate that the yeast beta-mannosides exposed on mannoproteins and/or phospholipomannan are increased in stationary phase, whereas those linked to mannan are not affected by the yeast growth phase. The cytometric method described here represents a useful tool to investigate to what extent C. albicans is able to regulate its glycan surface expression and therefore modify its virulence properties.
[Dermatomycoses due to pets and farm animals : neglected infections?].
Nenoff, P; Handrick, W; Krüger, C; Vissiennon, T; Wichmann, K; Gräser, Y; Tchernev, G
2012-11-01
Dermatomycoses due to contact with pets and livestock frequently affect children and young adults. Zoophilic dermatophytes are the main important causative agents. It has long been known that the often high inflammatory dermatophytoses of the skin and the scalp are caused mostly by Microsporum canis. Due to an absence of an obligation for reporting fungal infections of the skin to the Public Health Office in Germany, an unnoticed but significant change in responsible pathogens has occurred. Today an increasing number of infections due to zoophilic strains of Trichophyton interdigitale (formerly Trichophyton mentagrophytes) and Trichophyton species of Arthroderma benhamiae are found. The latter mentioned dermatophyte is the anamorph species of the teleomorph Arthroderma benhamiae, which originally was isolated in the Far East (Japan). Source of infection of these dermatophytes are small rodents, in particular guinea pigs. These animals are bought in pet shops by the parents of those children who later are affected by the fungal infection. The coincidental purchase of the relevant fungal pathogen is not obvious to the parents. As a consequence, highly contagious dermatophytoses occur, often tinea capitis sometimes with kerion formation. Further dermatophytes should be considered as cause of a zoophilic dermatomycosis. Both Trichophyton verrucosum, the cause of the ringworm in cattle, and Trichophyton erinacei following contact to hedgehogs are worthy of note. Yeasts cannot be ignored as cause of dermatomycosis, especially Malassezia pachydermatis, the only non-lipophilic species within the genus Malassezia, which can be transferred from dog to men. Cryptococcus neoformans also comes from animal sources. The mucous yeast occurs in bird's dropping, and it causes both pulmonary and central nervous system infections, but also primary and secondary cutaneous cryptococcosis in immunocompromised patients (HIV/AIDS) as possible consequence after contact to these animals.
Ferraz, Luriany Pompeo; Cunha, Tatiane da; da Silva, Aline Caroline; Kupper, Katia Cristina
2016-01-01
Sour rot is a major postharvest disease of citrus fruit and is caused by the fungal pathogen Geotrichum citri-aurantii. A lack of chemicals certified for the control of this disease has led to the consideration of alternative methods and strategies, such as the use of yeasts as biocontrol agents. The purpose of the present study was to test the ability of yeasts isolated from leaves, flowers, fruit, and soil, and six Saccharomyces cerevisiae isolates to control citrus sour rot, to assess the mechanisms of action of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of G. citri-aurantii. In in vivo assays, three yeast isolates (ACBL-23, ACBL-44, and ACBL-77) showed a potential for controlling sour rot in citrus fruits, both preventatively and curatively. Most of the eight yeast isolates that were assessed for a mechanism of action did not produce antifungal compounds in an amount sufficient to inhibit the growth of the pathogen. Additionally, nutrient competition among the yeast strains was not found to be a biocontrol strategy. Instead, killer activity and hydrolytic enzyme production were identified as the major mechanisms involved in the biocontrol activity of the yeasts. Isolates ACBL-23, ACBL-44, and ACBL-77, which controlled sour rot most effectively, were identified as Rhodotorula minuta, Candida azyma, and Aureobasidium pullulans, respectively. To our knowledge, this is the first report of the potential of C. azyma as a biological control agent against a postharvest pathogen and its ability to produce a killer toxin. Copyright © 2016 Elsevier GmbH. All rights reserved.
Distribution of dimorphic yeast species in commercial extra virgin olive oil.
Zullo, B A; Cioccia, G; Ciafardini, G
2010-12-01
Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient-deficient substrates. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph
2015-09-01
Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.
Synthesis of Melanin-Like Pigments by Sporothrix schenckii In Vitro and during Mammalian Infection
Morris-Jones, Rachael; Youngchim, Sirida; Gomez, Beatriz L.; Aisen, Phil; Hay, Roderick J.; Nosanchuk, Joshua D.; Casadevall, Arturo; Hamilton, Andrew J.
2003-01-01
Melanin has been implicated in the pathogenesis of several important human fungal pathogens. Existing data suggest that the conidia of the dimorphic fungal pathogen Sporothrix schenckii produce melanin or melanin-like compounds; in this study we aimed to confirm this suggestion and to demonstrate in vitro and in vivo production of melanin by yeast cells. S. schenckii grown on Mycosel agar produced visibly pigmented conidia, although yeast cells grown in brain heart infusion and minimal medium broth appeared to be nonpigmented macroscopically. However, treatment of both conidia and yeast cells with proteolytic enzymes, denaturant, and concentrated hot acid yielded dark particles similar in shape and size to the corresponding propagules, which were stable free radicals consistent with identification as melanins. Melanin particles extracted from S. schenckii yeast cells were used to produce a panel of murine monoclonal antibodies (MAbs) which labeled pigmented conidia, yeast cells, and the isolated particles. Tissue from hamster testicles infected with S. schenckii contained fungal cells that were labeled by melanin-binding MAbs, and digestion of infected hamster tissue yielded dark particles that were also reactive. Additionally, sera from humans with sporotrichosis contained antibodies that bound melanin particles. These findings indicate that S. schenckii conidia and yeast cells can produce melanin or melanin-like compounds in vitro and that yeast cells can synthesize pigment in vivo. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may have a similar role in the pathogenesis of sporotrichosis. PMID:12819091
USDA-ARS?s Scientific Manuscript database
A commercial yeast culture feed supplement (Celmanax® SCP, Vi-COR, Mason City, IA, YC)was provided to turkeys throughout a 16 wk grow-out to determine if it would prevent the effects of stress on production and pathogen colonization. YC was provided either continuously at 100g/tonne (YC-CS) or inter...
Terry, Frances E; Moise, Leonard; Martin, Rebecca F; Torres, Melissa; Pilotte, Nils; Williams, Steven A; De Groot, Anne S
2015-01-01
Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world’s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere. PMID:25193104
Hilber-Bodmer, Maja; Schmid, Michael; Ahrens, Christian H; Freimoser, Florian M
2017-01-05
While recent advances in next generation sequencing technologies have enabled researchers to readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order to characterize the plethora of microorganisms that are being identified and to point out species that may be used for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens, antagonists, and saprophytes. Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes, ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima, Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M. pulcherrima were able to grow with N-acetyl-glucosamine as carbon source. The competition assays and physiological experiments described here identified known antagonists that have been implicated in the biological control of plant pathogenic fungi in the past, but also little characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile than yeasts from the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii, which had so far only been described from a clinical sample and not been studied with respect to biocontrol. Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel biocontrol agent against plant pathogenic fungi.
USDA-ARS?s Scientific Manuscript database
Yeast are an ideal organism to express viral antigens because yeast glycosylate proteins are more similar to mammals than bacteria, and expression of proteins in yeast is relatively fast and inexpensive. In addition to the convenience of production, for purposes of vaccination, yeast have been show...
Rodrigues, Andre; Cable, Rachel N; Mueller, Ulrich G; Bacci, Maurício; Pagnocca, Fernando C
2009-10-01
We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.
USDA-ARS?s Scientific Manuscript database
Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard
2016-10-18
Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment. Copyright © 2016 Gerwien et al.
Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers.
Monapathi, M E; Bezuidenhout, C C; Rhode, O H J
2017-03-01
Yeasts from water sources have been associated with diseases ranging from superficial mucosal infections to life threatening diseases. The aim of this study was to determine the water quality as well as diversity and antifungal susceptibility of yeasts from two rivers. Yeast levels and physico-chemical parameter data were analyzed by principal component analysis to determine correlations between physico-chemical data and yeast levels. Yeast morphotypes were identified by biochemical tests and 26S rRNA gene sequencing. Disk diffusion antifungal susceptibility tests were conducted. Physico-chemical parameters of the water were within target water quality range (TWQR) for livestock farming. For irrigational use, total dissolved solids and nitrates were not within the TWQR. Yeast levels ranged between 27 ± 10 and 2,573 ± 306 cfu/L. Only non-pigmented, ascomycetous yeasts were isolated. Saccharomyces cerevisiae and Candida glabrata were most frequently isolated. Several other opportunistic pathogens were also isolated. A large number of isolates were resistant to azoles, especially fluconazole, but also to other antifungal classes. Candida species were resistant to almost all the antifungal classes. These water sources are used for recreation and religious as well as for watering livestock and irrigation. Of particular concern is the direct contact of individuals with opportunistic yeast, especially the immune-compromised. Resistance of these yeast species to antifungal agents is a further health concern.
Siggers, Keri A; Lesser, Cammie F
2008-07-17
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi
2002-01-01
Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346
Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections.
de Souza, Patrícia Canteri; Morey, Alexandre Tadachi; Castanheira, Gabriel Marcondes; Bocate, Karla Paiva; Panagio, Luciano Aparecido; Ito, Fabio Augusto; Furlaneto, Márcia Cristina; Yamada-Ogatta, Sueli Fumie; Costa, Idessânia Nazareth; Mora-Montes, Hector Manuel; Almeida, Ricardo Sergio
2015-11-01
Models of host–pathogen interactions are crucial for the analysis of microbial pathogenesis. In this context, invertebrate hosts, including Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode) and Galleria mellonella (moth), have been used to study the pathogenesis of fungi and bacteria. Each of these organisms offers distinct benefits in elucidating host–pathogen interactions. In this study,we present a newinvertebrate infection model to study fungal infections: the Tenebrio molitor (beetle) larvae. Here we performed T. molitor larvae infection with one of two important fungal human pathogens, Candida albicans or Cryptococcus neoformans, and analyzed survival curves and larva infected tissues.We showed that increasing concentrations of inoculum of both fungi resulted in increased mortality rates, demonstrating the efficiency of the method to evaluate the virulence of pathogenic yeasts. Additionally, following 12 h post-infection, C. albicans formsmycelia, spreading its hyphae through the larva tissue,whilst GMS stain enabled the visualization of C. neoformans yeast and theirmelanin capsule. These larvae are easier to cultivate in the laboratory than G. mellonella larvae, and offer the same benefits. Therefore, this insect model could be a useful alternative tool to screen clinical pathogenic yeast strainswith distinct virulence traits or different mutant strains.
A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases
Chernomoretz, Ariel; Agüero, Fernán
2016-01-01
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature. PMID:26735851
A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.
Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Agüero, Fernán
2016-01-01
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.
Botrytis and native grape yeasts – not all interactions are created equal
USDA-ARS?s Scientific Manuscript database
Native yeasts are of increasing interest to grape growers and winemakers in Washington State because of their potential to contribute to vineyard health and wine quality. In this pilot project, we used eleven strains of native yeasts and nine isolates of the Botrytis bunch rot pathogen, all obtained...
Increased filamentous growth of Candida albicans in simulated microgravity.
Altenburg, Sara D; Nielsen-Preiss, Sheila M; Hyman, Linda E
2008-03-01
Knowledge of simulated microgravity (SMG)-induced changes in the pathogenicity of microorganisms is important for success of long-term spaceflight. In a previous study using the high aspect ratio vessel bioreactor, we showed that the yeast species Saccharomyces cerevisiae underwent a significant phenotypic response when grown in modeled microgravity, which was reflected in the analysis of gene expression profiles. In this study, we establish that Candida albicans responds to SMG in a similar fashion, demonstrating that there is a conserved response among yeast to this environmental stress. We also report that the growth of C. albicans in SMG results in a morphogenic switch that is consistent with enhanced pathogenicity. Specifically, we observed an increase in filamentous forms of the organism and accompanying changes in the expression of two genes associated with the yeast-hyphal transition. The morphological response may have significant implications for astronauts' safety, as the fungal pathogen may become more virulent during spaceflight.
Foligné, Benoît; Dewulf, Joëlle; Vandekerckove, Pascal; Pignède, Georges; Pot, Bruno
2010-01-01
AIM: To evaluate the in vitro immunomodulation capacity of various non-pathogenic yeast strains and to investigate the ability of some of these food grade yeasts to prevent experimental colitis in mice. METHODS: In vitro immunomodulation was assessed by measuring cytokines [interleukin (IL)-12p70, IL-10, tumor necrosis factor and interferon γ] released by human peripheral blood mononuclear cells after 24 h stimulation with 6 live yeast strains (Saccharomyces ssp.) and with bacterial reference strains. A murine model of acute 2-4-6-trinitrobenzene sulfonic acid (TNBS)-colitis was next used to evaluate the distinct prophylactic protective capacities of three yeast strains compared with the performance of prednisolone treatment. RESULTS: The six yeast strains all showed similar non-discriminating anti-inflammatory potential when tested on immunocompetent cells in vitro. However, although they exhibited similar colonization patterns in vivo, some yeast strains showed significant anti-inflammatory activities in the TNBS-induced colitis model, whereas others had weaker or no preventive effect at all, as evidenced by colitis markers (body-weight loss, macroscopic and histological scores, myeloperoxidase activities and blood inflammatory markers). CONCLUSION: A careful selection of strains is required among the biodiversity of yeasts for specific clinical studies, including applications in inflammatory bowel disease and other therapeutic uses. PMID:20440854
Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast.
El Wahidi, M; El Amraoui, B; El Amraoui, M; Bamhaoud, T
2015-05-01
The aim of this work is the screening of the antimicrobial activity of seaweed extracts against pathogenic bacteria and yeasts. The antimicrobial activity of the dichloromethane and ethanol extracts of ten marine macroalgae collected from the Moroccan's Atlantic coast (El-Jadida) was tested against two Gram+ (Bacillus subtilis and Staphylococcus aureus) and two Gram- (Escherichia coli and Pseudomonas aeruginosa) human pathogenic bacteria, and against two pathogenic yeasts (Candida albicans and Cryptococcus neoformans) using the agar disk-diffusion method. Seven algae (70%) of ten seaweeds are active against at least one pathogenic microorganisms studied. Five (50%) are active against the two studied yeast with an inhibition diameter greater than 15 mm for Cystoseira brachycarpa. Six (60%) seaweeds are active against at least one studied bacteria with five (50%) algae exhibiting antibacterial inhibition diameter greater than 15 mm. Cystoseira brachycarpa, Cystoseira compressa, Fucus vesiculosus, and Gelidium sesquipedale have a better antimicrobial activity with a broad spectrum antimicrobial and are a potential source of antimicrobial compounds and can be subject of isolation of the natural antimicrobials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Moustos, Emmanuel; Staphylaki, Dimitra; Christidou, Athanasia; Spandidos, Demetrios A; Neonakis, Ioannis K
2017-12-01
The knowledge of the expected time-to-positivity (TTP) of blood cultures by major pathogens is essential both clinically and economically. To this end, we conducted the present two-year study in our Institution, aiming to assess the TTP of all the major microorganisms including Enterobacteriaceae, Pseudomonas aeruginosa , Acinetoacter baumannii , Enterococcii spp, Staphylococcus aureus and yeasts, to determine whether a 3-day interval is sufficient for their detection. The TTP for each case of strain isolation per patient was determined as the TTP of the first bottle among a set of bottles collected within the same period of time to be flagged as positive per patient. Based on our results, almost all major Gram-negative (99.30%), Gram-positive microbia (99.01%) and yeasts (98.85%) were detected within the first 5-days of incubation, leading to the solid conclusion that a 5-day period of incubation is adequate to detect almost all the major routine pathogens. By contrast, when a 3-day period was examined acceptable results were only found for Gram-negative (98.33%) and Gram-positive (98.51%) microbia. A significant proportion of yeasts (8.05%) could not be detected within this time frame. Therefore, regarding the yeasts, a 3-day incubation period cannot be considered as adequate and is not advocated.
Fiori, Stefano; Urgeghe, Pietro Paolo; Hammami, Walid; Razzu, Salvatorico; Jaoua, Samir; Migheli, Quirico
2014-10-17
Aspergillus spp. infection of grape may lead to ochratoxin A (OTA) contamination in processed beverages such as wine and grape juice. The aim of the current study was to evaluate the biocontrol potential of two non-fermenting (Cyberlindnera jadinii 273 and Candida friedrichii 778) and two low-fermenting (Candida intermedia 235 and Lachancea thermotolerans 751) yeast strains against the pathogenic fungus and OTA-producer Aspergillus carbonarius, and their ability to remove OTA from grape juice. Two strains, 235 and 751, showed a significant ability to inhibit A. carbonarius both on grape berries and in in vitro experiments. Neither their filtrate nor their autoclaved filtrate culture broth was able to prevent consistently pathogen growth. Volatile organic compounds (VOCs) produced by all four selected yeasts were likely able to consistently prevent pathogen sporulation in vitro. VOCs produced by the non-fermenting strain 778 also significantly reduced A. carbonarius vegetative growth. Three yeast strains (235, 751, and 778) efficiently adsorbed artificially spiked OTA from grape juice, while autoclaving treatment improved OTA adsorption capacity by all the four tested strains. Biological control of A. carbonarius and OTA-decontamination using yeast is proposed as an approach to meet the Islamic dietary laws concerning the absence of alcohol in halal beverages. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Typing and virulence factors of food-borne Candida spp. isolates.
Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina
2018-08-20
Food-borne yeasts, excluding yeasts used as starter cultures, are commonly considered as food spoilage microorganisms. However, the incidence of non-C. albicans Candida (NCAC) infections has increased considerably over the past two decades. Although 15 Candida species are frequently identified as pathogens, a threat to human from food-borne Candida is poorly recognized. In the present study food-borne NCAC were characterized for the virulence factors, known to be associated with yeast pathogenicity. All food-borne strains in planktonic forms and 89% in biofilm structures represented biotypes established for C. albicans, and 61% demonstrated hemolytic activity. 56-94% of food-borne isolates formed biofilms on glass and biomaterials at a level comparable to clinical C. albicans. Nine out of eighteen tested food-borne NCAC strains (C. krusei, C. lusitaniae, C. famata, C. colliculosa, C. parapsilosis, C. tropicalis) showed similarity to clinical C. albicans in terms of their biotypes and the tested virulence factors, allocating them in a group of risk of potential pathogens. However, their capacity to grow at 37 °C seems to be the preliminary criterion in the study of potential virulence of food-borne yeasts. Copyright © 2018 Elsevier B.V. All rights reserved.
New staining methods for yeast like fungi under special consideration of human pathogenic fungi
NASA Astrophysics Data System (ADS)
Paulitsch-Fuchs, Astrid; Treiber, Fritz; Grasser, Erik; Buzina, Walter; Rosker, Christian
2010-11-01
A new method for in-cellular staining of yeast like fungi with Oregon Green and SYTOX Green is presented enabling their detection as well as the observation of cellular details via confocal laser scanning microscopy. Fluorochromes play an important role in many scientific disciplines including medicine, cell biology and botany. For the visualisation of fungal cell walls Calcofluor White is the flourochrome of choice. The necessity of an UV laser for its excitation makes it unpracticable for daily use. Safranin O, DAPI, 2NBDG, Ethidium Bromide and Acridin-orange are commonly used stains for nuclei in fugal microscopy. The attention was given to the possibility of using the differences in staining patterns to distinguish certain pathogenic yeast species e.g. Candida albicans and Candida krusei. Our results show that high quality microscopy of yeast like organisms can readily be achieved by the use of two suitable fluorochromes.
Shah, A H; Abdelzaher, A M; Phillips, M; Hernandez, R; Solo-Gabriele, H M; Kish, J; Scorzetti, G; Fell, J W; Diaz, M R; Scott, T M; Lukasik, J; Harwood, V J; McQuaig, S; Sinigalliano, C D; Gidley, M L; Wanless, D; Ager, A; Lui, J; Stewart, J R; Plano, L R W; Fleming, L E
2011-06-01
Research into the relationship between pathogens, faecal indicator microbes and environmental factors in beach sand has been limited, yet vital to the understanding of the microbial relationship between sand and the water column and to the improvement of criteria for better human health protection at beaches. The objectives of this study were to evaluate the presence and distribution of pathogens in various zones of beach sand (subtidal, intertidal and supratidal) and to assess their relationship with environmental parameters and indicator microbes at a non-point source subtropical marine beach. In this exploratory study in subtropical Miami (Florida, USA), beach sand samples were collected and analysed over the course of 6 days for several pathogens, microbial source tracking markers and indicator microbes. An inverse correlation between moisture content and most indicator microbes was found. Significant associations were identified between some indicator microbes and pathogens (such as nematode larvae and yeasts in the genus Candida), which are from classes of microbes that are rarely evaluated in the context of recreational beach use. Results indicate that indicator microbes may predict the presence of some of the pathogens, in particular helminthes, yeasts and the bacterial pathogen Staphylococcus aureus including methicillin-resistant forms. Indicator microbes may thus be useful for monitoring beach sand and water quality at non-point source beaches. The presence of both indicator microbes and pathogens in beach sand provides one possible explanation for human health effects reported at non-point sources beaches. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Single-molecule analysis of the major glycopolymers of pathogenic and non-pathogenic yeast cells
NASA Astrophysics Data System (ADS)
El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Alsteens, David; Sarazin, Aurore; Jouault, Thierry; Dufrêne, Yves F.
2013-05-01
Most microbes are coated with carbohydrates that show remarkable structural variability and play a crucial role in mediating microbial-host interactions. Understanding the functions of cell wall glycoconjugates requires detailed knowledge of their molecular organization, diversity and heterogeneity. Here we use atomic force microscopy (AFM) with tips bearing specific probes (lectins, antibodies) to analyze the major glycopolymers of pathogenic and non-pathogenic yeast cells at molecular resolution. We show that non-ubiquitous β-1,2-mannans are largely exposed on the surface of native cells from pathogenic Candida albicans and C. glabrata, the former species displaying the highest glycopolymer density and extensions. We also find that chitin, a major component of the inner layer of the yeast cell wall, is much more abundant in C. albicans. These differences in molecular properties, further supported by flow cytometry measurements, may play an important role in strengthening cell wall mechanics and immune interactions. This study demonstrates that single-molecule AFM, combined with immunological and fluorescence methods, is a powerful platform in fungal glycobiology for probing the density, distribution and extension of specific cell wall glycoconjugates. In nanomedicine, we anticipate that this new form of AFM-based nanoglycobiology will contribute to the development of sugar-based drugs, immunotherapeutics, vaccines and diagnostics.
Inhibition of Listeria monocytogenes by Food-Borne Yeasts†
Goerges, Stefanie; Aigner, Ulrike; Silakowski, Barbara; Scherer, Siegfried
2006-01-01
Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar. PMID:16391059
Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai
2016-06-29
Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.
Modulation of Morphogenesis in Candida albicans by Various Small Molecules ▿
Shareck, Julie; Belhumeur, Pierre
2011-01-01
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections. PMID:21642508
Yeasts: providing questions and answers for modern biology.
Dickinson, J R
2000-01-01
Yeasts are to be found in virtually every conceivable niche on this planet and are amazingly varied in their shapes ('morphologies'), life cycles, metabolic capabilities, potentials for use in industrial processes, abilities to spoil food and drink or to act as dangerous human pathogens. This review describes four very different species of yeast to illustrate some of the diversity which exists and, in the case of one of them, Saccharomyces cerevisiae (the familiar baker's or brewer's yeast), the extent of both our knowledge and ignorance.
Antimicrobial activity of yeasts against some pathogenic bacteria
Younis, Gamal; Awad, Amal; Dawod, Rehab E.; Yousef, Nehal E.
2017-01-01
Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR) for detection of khs (kievitone hydratase) and pelA (pectate degrading enzyme)genes. Results: The recovery rate of yeasts from sausage was 20% (2/10) followed by kareish cheese, processed cheese, and butter 10% (1/10) each as well as raw milk 9% (9/100), and fruit yoghurt 30% (6/20). Different yeast species were recovered, namely, Candida kefyr (5 isolates), Saccharomyces cerevisiae (4 isolates), Candida intermedia (3 isolates), Candida tropicalis (2 isolates), Candida lusitaniae (2 isolates), and Candida krusei (1 isolate). khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food. PMID:28919693
Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens.
Cordero-Bueso, Gustavo; Mangieri, Nicola; Maghradze, David; Foschino, Roberto; Valdetara, Federica; Cantoral, Jesús M; Vigentini, Ileana
2017-01-01
The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius , and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species ( Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae , and Pichia kluyveri ) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action.
Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens
Cordero-Bueso, Gustavo; Mangieri, Nicola; Maghradze, David; Foschino, Roberto; Valdetara, Federica; Cantoral, Jesús M.; Vigentini, Ileana
2017-01-01
The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species (Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae, and Pichia kluyveri) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action. PMID:29163377
Accoceberry, Isabelle; Rougeron, Amandine; Biteau, Nicolas; Chevrel, Pauline; Fitton-Ouhabi, Valérie; Noël, Thierry
2018-01-01
A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae , allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianus Candida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus , plays a critical role in fluconazole resistance. Copyright © 2017 American Society for Microbiology.
Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.
2007-01-01
Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397
Bellanger, Anne-Pauline; Grenouillet, Frédéric; François, Nadine; Skana, Florence; Millon, Laurence
2013-11-01
With the increasing incidence and diverse etiologies of fungal infections, chromogenic yeast culture media are increasingly used for routine diagnosis. Rhodotorula species, which are characterized by the production of carotenoid pigments, are considered as emerging opportunistic pathogens. We recently diagnosed two fungemia due to Rhodotorula spp. and noticed that in both cases, the yeast failed to grow in subculture on the chromogenic yeast culture medium. This study was thus undertaken to investigate more thoroughly the ability (or inability) of Rhodotorula species to grow on different commercially available chromogenic media for yeast. Eighteen Rhodotorula spp. were checked for their ability to grow on four chromogenic yeast culture media: CHROMagar Candida (BD), Candi 4 Select (Biorad), Brilliance Candida (Oxoid), and Candida ID 2 (BioMerieux). All the Rhodotorula spp. strains grew on Brilliance and Candida ID 2, while only six isolates grew on Candi 4, and seven on CHROMagar. Two chromogenic yeast culture media showed a significant inhibitory effect on the growth of Rhodotorula species. As all Rhodotorula species are resistant to echinocandins and fluconazole, it is essential to isolate and identify these yeast quickly to initiate appropriate amphotericin B antifungal treatment as early as possible. The choice of media for routine use should take into account the ability of different media to allow all emerging fungal pathogens to grow. © 2013 APMIS. Published by John Wiley & Sons Ltd.
Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K
2006-07-06
Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.
Gut yeast communities in Larus michahellis from various breeding colonies.
Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; Piarroux, Renaud; Ranque, Stéphane; Mauffrey, Jean-François
2017-06-01
Yellow-legged gulls have been reported to carry antibiotic-resistant Enterobacteriaceae; however, the gut mycobiota of these birds has not yet been described. In this study, we analyzed the gut yeast communities in five yellow-legged gull breeding colonies along the Mediterranean littoral in southern France. Gull fecal samples were inoculated onto four types of culture media, including one supplemented with itraconazole. Yeast species richness, abundance, and diversity were estimated, and factorial analysis was used to highlight correspondences between breeding colonies. Yeast grew in 113 of 177 cultures, and 17 distinct yeast species were identified. The most frequent species were Candida krusei (53.5%), Galactomyces geotrichum (44.1%), C. glabrata (40.9%), C. albicans (20.5%), and Saccharomyces cerevisiae (18.1%). Gut yeast community structure in the gulls at both Pierre-Blanche Lagoon (PB) and Frioul Archipelago (F) were characterized by greater species richness and diversity than in those at the two cities of La Grande-Motte (GM) and Palavas-les-Flots (PF) as well as Riou Archipelago (R). Gulls in these latter three sites probably share a similar type of anthropogenic diet. Notably, the proportion of anthropic yeast species, including C. albicans and C. glabrata, in the gull mycobiota increased with gull colony synanthropy. Antifungal resistance was found in each of the five most frequent yeast species. We found that the gut yeast communities of these yellow-legged gulls include antifungal-resistant human pathogens. Further studies should assess the public health impact of these common synanthropic seabirds, which represent a reservoir and disseminator of drug-resistant human pathogenic yeast into the environment. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.
Gray, Sean A; Weigel, Kris M; Ali, Ibne K M; Lakey, Annie A; Capalungan, Jeremy; Domingo, Gonzalo J; Cangelosi, Gerard A
2012-01-01
The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv) in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.
Ultraviolet Microscopy of Candida albicans
Balish, Edward; Svihla, George
1966-01-01
Balish, Edward (Argonne National Laboratory, Argonne, Ill.), and George Svihla. Ultraviolet microscopy of Candida albicans. J. Bacteriol. 92:1812–1820. 1966.—Yeast and mycelial strains of Candida albicans were grown in medium supplemented with sulfur amino acids in an effort to determine factors that control the morphology and pathogenicity of the organism. Ultraviolet microscopy revealed a greater concentration of S-adenosylmethionine in the vacuoles of the mycelial phase than in those of yeast phases. Supplementation with amino acids greatly increased the concentration of S-adenosylmethionine in the mycelial phase, and made these cells more sensitive to the lytic action of snail gut enzymes than two yeast phase strains. This indicates a difference in cell wall structure that may be related to the pathogenicity of the mycelial phase. Images PMID:5958110
Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity.
Sterkel, Alana K; Lorenzini, Jenna L; Fites, J Scott; Subramanian Vignesh, Kavitha; Sullivan, Thomas D; Wuthrich, Marcel; Brandhorst, Tristan; Hernandez-Santos, Nydiaris; Deepe, George S; Klein, Bruce S
2016-03-09
Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
[Groups and sources of yeasts in house dust].
Glushakova, A M; Zheltikova, T M; Chernov, I Iu
2004-01-01
House dust contains bacteria, mycelial fungi, microarthropods, and yeasts. The house dust samples collected in 25 apartments in Moscow and the Moscow region were found to contain yeasts belonging to the genera Candida, Cryptococcus, Debaryomyces, Rhodotorula, Sporobolomyces, and Trichosporon. The most frequently encountered microorganisms were typical epiphytic yeasts, such as Cryptococcus diffluens and Rhodotorula mucilaginosa, which are capable of long-term preservation in an inactive state. The direct source of epiphytic yeasts occurring in the house dust might be the indoor plants, which were contaminated with these yeasts, albeit to a lesser degree than outdoor plants. Along with the typical epiphytic yeasts, the house dust contained the opportunistic yeast pathogens Candida catenulata, C. guillermondii, C. haemulonii, C. rugosa, and C. tropicalis, which are known as the causal agents of candidiasis. We failed to reveal any correlation between the abundance of particular yeast species in the house dust, residential characteristics, and the atopic dermatitis of the inhabitants.
Classification of yeast cells from image features to evaluate pathogen conditions
NASA Astrophysics Data System (ADS)
van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.
2007-01-01
Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.
1993-04-01
were Klebsiella terrigena, Cryptosporidium parvum oocysts, Rhodotorula rubra, and 3.7 pm latex beads. Challenge waters were dechlorinated tap water and...The morphological and size characteristics of Rhodotorula rubra (ATCC 36053) made the yeast suitable as a protozoan cyst simulant. The yeast cells...representative enteric bacterium), Cryptosporidium parvum (an enteric protozoan pathogen) oocysts, Rhodotorula rubra (a yeast, used to test prefilters only
Mycological examinations on the fungal flora of the chicken comb.
Gründer, S; Mayser, P; Redmann, T; Kaleta, E F
2005-03-01
A total of 500 combs of adult chickens from two different locations in Germany (Hessen and Schleswig-Holstein) were clinically and mycologically examined. The chickens came from three battery cages (n = 79), one voliere system (n=32), six flocks maintained on deep litter (n = 69) and 12 flocks kept on free outdoor range (n=320). Twenty-two of the 500 chicken combs (4.4%) were found to have clinical signs: only non-specific lesions neither typical of mycosis nor of avian pox such as desquamation with crust formation, yellow to brown or black dyschromic changes, alopecia in the surrounding area and moist inflammation. Only seven of the 22 clinically altered combs showed a positive mycological result; the non-pathogenic and geophilic Trichophyton terrestre in one case and non-pathogenic yeast in six cases. The following fungi were seen in the different housing systems: 13 dermatophytes (2.6% of 500 samples): 12 x T. terrestre, 1 x Trichophyton mentagrophytes, 11 isolates of Chrysosporium georgiae (2.2% of 500 samples) and 149 isolates of yeasts (29.8%): Malassezia sympodialis: n = 52, Kloeckera apiculata: n = 33, Trichosporon capitatum (syn. Geotrichum capitatum): n = 23, Trichosporon cutaneum/Trichosporon mucoides: n = 12, Trichosporon inkin (syn. Sarcinosporon inkin): n = 8 and Candida spp.: n = 21, including pathogenic or possibly pathogenic species: Candida albicans: n = 3, Candida famata: n = 4, Candida guilliermondii: n = 3, Candida lipolytica: n = 3, Candida dattila: n = 2 and one isolate each of Candida glabrata, Candida parapsilosis, Candida aaseri, Candida catenulata sive brumpti, Candida fructus and Candida kefyr sive pseudotropicalis. There is no stringent correlation between the clinical symptoms diagnosed on the chicken combs and the species of yeasts isolated. The causative agent of favus in chickens, Trichophyton gallinae, and the saprophytic yeast in pigeons, Cr. neoformans were not isolated. The most frequently isolated yeasts M. sympodialis and Kloeckera apiculata are suggested to be classified as members of the resident flora of the chicken comb.
Gai, Cláudia Santos; Lacava, Paulo Teixeira; Maccheroni, Walter; Glienke, Chirlei; Araújo, Welington Luiz; Miller, Thomas Albert; Azevedo, João Lúcio
2009-10-01
Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of São Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were re-isolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fungemia due to Lachancea fermentati: a case report.
Leuck, Anne-Marie; Rothenberger, Meghan K; Green, Jaime S
2014-05-10
Lachancea fermentati is an environmental yeast that is also used in the fermentation of alcoholic drinks. It has not previously been described as a human pathogen although the closely related yeast, Saccharomyces boulardii, can cause fungemia. Here we report a case of L. fermentati acting as a pathogen in a septic patient with cultures positive from blood, peritoneal fluid, bile, and sputum. A 36 year-old Caucasian man was hospitalized with acute alcoholic hepatitis complicated by Escherichia coli spontaneous bacterial peritonitis. Three days after admission, he developed new fevers with sepsis requiring mechanical ventilation and vasopressor support. He was found to have a bowel perforation. Cultures from blood, peritoneal fluid, and sputum grew a difficult-to-identify yeast. Micafungin was started empirically. On hospital day 43 the yeast was identified as L. fermentati with low minimum inhibitory concentrations (by Epsilometer test) to all antifungals tested. Micafungin was changed to fluconazole to complete a 3-month course of therapy. Serial peritoneal fluid cultures remained positive for 31 days. One year after his initial hospitalization the patient had ongoing cirrhosis but had recovered from fungemia. This case demonstrates the need for clinicians to consider host factors when interpreting culture results with normally non-pathogenic organisms. In this immunocompromised host L. fermentati caused disseminated disease. We believe his hobby of brewing alcohol led to colonization with L. fermentati, which then resulted in invasive disease when the opportunity arose.
Monteiro, Pedro Tiago; Pais, Pedro; Costa, Catarina; Manna, Sauvagya; Sá-Correia, Isabel; Teixeira, Miguel Cacho
2017-01-04
We present the PATHOgenic YEAst Search for Transcriptional Regulators And Consensus Tracking (PathoYeastract - http://pathoyeastract.org) database, a tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in the pathogenic yeasts Candida albicans and C. glabrata Upon data retrieval from hundreds of publications, followed by curation, the database currently includes 28 000 unique documented regulatory associations between transcription factors (TF) and target genes and 107 DNA binding sites, considering 134 TFs in both species. Following the structure used for the YEASTRACT database, PathoYeastract makes available bioinformatics tools that enable the user to exploit the existing information to predict the TFs involved in the regulation of a gene or genome-wide transcriptional response, while ranking those TFs in order of their relative importance. Each search can be filtered based on the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. Promoter analysis tools and interactive visualization tools for the representation of TF regulatory networks are also provided. The PathoYeastract database further provides simple tools for the prediction of gene and genomic regulation based on orthologous regulatory associations described for other yeast species, a comparative genomics setup for the study of cross-species evolution of regulatory networks. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cuadrat, Rafael R C; da Serra Cruz, Sérgio Manuel; Tschoeke, Diogo Antônio; Silva, Edno; Tosta, Frederico; Jucá, Henrique; Jardim, Rodrigo; Campos, Maria Luiza M; Mattoso, Marta; Dávila, Alberto M R
2014-08-01
A key focus in 21(st) century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools.
Cuadrat, Rafael R. C.; da Serra Cruz, Sérgio Manuel; Tschoeke, Diogo Antônio; Silva, Edno; Tosta, Frederico; Jucá, Henrique; Jardim, Rodrigo; Campos, Maria Luiza M.; Mattoso, Marta
2014-01-01
Abstract A key focus in 21st century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools. PMID:24960463
Boyce, Kylie J; Andrianopoulos, Alex
2015-11-01
The ability of pathogenic fungi to switch between a multicellular hyphal and unicellular yeast growth form is a tightly regulated process known as dimorphic switching. Dimorphic switching requires the fungus to sense and respond to the host environment and is essential for pathogenicity. This review will focus on the role of dimorphism in fungi commonly called thermally dimorphic fungi, which switch to a yeast growth form during infection. This group of phylogenetically diverse ascomycetes includes Talaromyces marneffei (recently renamed from Penicillium marneffei), Blastomyces dermatitidis (teleomorph Ajellomyces dermatitidis), Coccidioides species (C. immitis and C. posadasii), Histoplasma capsulatum (teleomorph Ajellomyces capsulatum), Paracoccidioides species (P. brasiliensis and P. lutzii) and Sporothrix schenckii (teleomorph Ophiostoma schenckii). This review will explore both the signalling pathways regulating the morphological transition and the transcriptional responses necessary for intracellular growth. The physiological requirements of yeast cells during infection will also be discussed, highlighting recent advances in the understanding of the role of iron and calcium acquisition during infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Morera, Neus; Hagen, Ferry; Juan-Sallés, Carles; Artigas, Carlos; Patricio, Rui; Serra, Juan Ignacio; Colom, Ma Francisca
2014-08-01
Cryptococcus gattii is a pathogenic environmental yeast that is considered to be emerging in different areas of the world including the Mediterranean Basin. Exposure to infection might be more likely in animals than in human beings, given their closer relationship with the natural habitat of the yeast, vegetation and soil. Thus, animals, and especially pets, can act as indicators of the presence of this yeast in a determined area. Domestic ferrets (Mustela putorius furo) have become common pets in the past 10-20 years. Their natural behavior of sniffing around and going inside narrow spaces makes them prone to contact with decaying organic matter and soil, the substrate for Cryptococcus species. This study describes two cases of cryptococcosis in ferrets in the Iberian Peninsula and Balearic Islands and documents a relationship of ferret cryptococcosis with environmental isolates in the same locations. Here, we emphasize the importance of how an adequate identification and environmental search of the yeast leads to a better understanding of the epidemiology of cryptococcosis and suggests ferrets may act as sentinels for this fungal disease.
Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao
2018-03-15
Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Araujo, Glauber de S; Fonseca, Fernanda L; Pontes, Bruno; Torres, Andre; Cordero, Radames J B; Zancopé-Oliveira, Rosely M; Casadevall, Arturo; Viana, Nathan B; Nimrichter, Leonardo; Rodrigues, Marcio L; Garcia, Eloi S; Souza, Wanderley de; Frases, Susana
2012-01-01
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.
Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor
Rappleye, Chad A.; Eissenberg, Linda Groppe; Goldman, William E.
2007-01-01
Successful infection by fungal pathogens depends on subversion of host immune mechanisms that detect conserved cell wall components such as β-glucans. A less common polysaccharide, α-(1,3)-glucan, is a cell wall constituent of most fungal respiratory pathogens and has been correlated with pathogenicity or linked directly to virulence. However, the precise mechanism by which α-(1,3)-glucan promotes fungal virulence is unknown. Here, we show that α-(1,3)-glucan is present in the outermost layer of the Histoplasma capsulatum yeast cell wall and contributes to pathogenesis by concealing immunostimulatory β-glucans from detection by host phagocytic cells. Production of proinflammatory TNFα by phagocytes was suppressed either by the presence of the α-(1,3)-glucan layer on yeast cells or by RNA interference based depletion of the host β-glucan receptor dectin-1. Thus, we have functionally defined key molecular components influencing the initial host–pathogen interaction in histoplasmosis and have revealed an important mechanism by which H. capsulatum thwarts the host immune system. Furthermore, we propose that the degree of this evasion contributes to the difference in pathogenic potential between dimorphic fungal pathogens and opportunistic fungi. PMID:17227865
Farrag, Hala Abdallah; A-Karam El-Din, Alzahraa; Mohamed El-Sayed, Zeinab Galal; Abdel-Latifissa, Soheir; Kamal, Mona Mohamed
2015-06-01
Technological advances such as long-term indwelling catheters have created milieu in which infections are a major complication. Thus it is essential to be able to recognize, diagnose, and treat infections occurring in immunocompromised patients. Adherence assay and quantitation of biofilms was performed by a spectrophotometric method, hydrophobicity was evaluated by adhesion to p-xylene. The minimum inhibitory concentration (MIC) of Nystatin was carried out by a well dilution method. Out of 100 bladder cancer patients, 23 pathogenic yeast isolates were identified. The samples were taken from urinary catheters and urine collected from their attached drainage bags. Pathogenic yeast identified were species of Candida, Cryptococcus, Saccharomyces, Blastoschizomyces, Trichosporn, Hansenula, Prototheca and Rhodotorula. With the exception of Rhodotorula minuta, the yeast were sensitive to the antimycotic agent (Nystatin) used before and after in vitro gamma irradiation at 24.41 Gy as measured by a disc diffusion method. All tested yeast strains were slime producers and showed positive adherence reactions. There were considerable differences in adherence measurements after irradiation. An increase in adherence measurement values (using a spectrophotometric method) after irradiation were detected in four strains whereas eight other strains showed a reduction in their adherence reaction. The cell surface hydrophobicity (CSH) was evaluated by adhesion to p-xylene. Candida tropicalis showed a hydrophobic reaction with an increase in the cell surface hydrophobicity after irradiation. Scanning electron microscopy of irradiated C. tropicalis showed marked abnormalities in cell shape and size with significant reduction in adherence ability at the MIC level of Nystatin (4 μg/ml). More basic research at the level of pathogenesis and catheter substance is needed to design novel strategies to prevent fungal adherence and to inhibit biofilm formation.
Sierra, Crystal S.; Haase, Steven B.
2016-01-01
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation. PMID:27918582
Bulane, Atang; Hoosen, Anwar
2017-01-01
Rapid and accurate identification of pathogens is of utmost importance for management of patients. Current identification relies on conventional phenotypic methods which are time consuming. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) is based on proteomic profiling and allows for rapid identification of pathogens. We compared MALDI-TOF MS against two commercial systems, MicroScan Walkaway and VITEK 2 MS. Over a three-month period from July 2013 to September 2013, a total of 227 bacteria and yeasts were collected from an academic microbiology laboratory ( N = 121; 87 Gram-negatives, seven Gram-positives, 27 yeasts) and other laboratories ( N = 106; 35 Gram-negatives, 34 Gram-positives, 37 yeasts). Sixty-five positive blood cultures were initially processed with Bruker Sepsityper kit for direct identification. From the 65 blood culture bottles, four grew more than one bacterial pathogen and MALDI-TOF MS identified only one isolate. The blood cultures yielded 21 Gram-negatives, 43 Gram-positives and one Candida . There were 21 Escherirchia coli isolates which were reported by the MALDI-TOF MS as E. coli / Shigella . Of the total 292 isolates, discrepant results were found for one bacterial and three yeast isolates. Discrepant results were resolved by testing with the API system with MALDI-TOF MS showing 100% correlation. The MALDI-TOF MS proved to be very useful for rapid and reliable identification of bacteria and yeasts directly from blood cultures and after culture of other specimens. The difference in time to identification was significant for all isolates. However, for positive blood cultures with minimal sample preparation time there was a massive difference in turn-around time with great appreciation by clinicians.
The Role of L-DOPA on Melanization and Mycelial Production in Malassezia Furfur
Youngchim, Sirida; Nosanchuk, Joshua D.; Pornsuwan, Soraya; Kajiwara, Susumu; Vanittanakom, Nongnuch
2013-01-01
Melanins are synthesized by organisms of all biological kingdoms and comprise a heterogeneous class of natural pigments. Certain of these polymers have been implicated in the pathogenesis of several important human fungal pathogens. This study investigated whether the fungal skin pathogen Malassezia furfur produces melanin or melanin-like compounds. A melanin-binding monoclonal antibody (MAb) labelled in vitro cultivated yeast cells of M. furfur. In addition, melanization of Malassezia yeasts and hyphae was detected by anti-melanin MAb in scrapings from patients with pityriasis versicolor. Treatment of Malassezia yeasts with proteolytic enzymes, denaturant and concentrated hot acid yielded dark particles and electron spin resonance spectroscopy revealed that these particles contained a stable free radical compound, consistent with their identification as melanins. Malassezia yeasts required phenolic compounds, such as L-DOPA, in order to synthesize melanin. L-DOPA also triggered hyphal formation in vitro when combined with kojic acid, a tyrosinase inhibitor, in a dose-dependent manner. In this respect, L-DOPA is thought to be an essential substance that is linked to both melanization and yeast-mycelial transformation in M. furfur. In summary, M. furfur can produce melanin or melanin-like compounds in vitro and in vivo, and the DOPA melanin pathway is involved in cell wall melanization. PMID:23762233
The role of L-DOPA on melanization and mycelial production in Malassezia furfur.
Youngchim, Sirida; Nosanchuk, Joshua D; Pornsuwan, Soraya; Kajiwara, Susumu; Vanittanakom, Nongnuch
2013-01-01
Melanins are synthesized by organisms of all biological kingdoms and comprise a heterogeneous class of natural pigments. Certain of these polymers have been implicated in the pathogenesis of several important human fungal pathogens. This study investigated whether the fungal skin pathogen Malassezia furfur produces melanin or melanin-like compounds. A melanin-binding monoclonal antibody (MAb) labelled in vitro cultivated yeast cells of M. furfur. In addition, melanization of Malassezia yeasts and hyphae was detected by anti-melanin MAb in scrapings from patients with pityriasis versicolor. Treatment of Malassezia yeasts with proteolytic enzymes, denaturant and concentrated hot acid yielded dark particles and electron spin resonance spectroscopy revealed that these particles contained a stable free radical compound, consistent with their identification as melanins. Malassezia yeasts required phenolic compounds, such as L-DOPA, in order to synthesize melanin. L-DOPA also triggered hyphal formation in vitro when combined with kojic acid, a tyrosinase inhibitor, in a dose-dependent manner. In this respect, L-DOPA is thought to be an essential substance that is linked to both melanization and yeast-mycelial transformation in M. furfur. In summary, M. furfur can produce melanin or melanin-like compounds in vitro and in vivo, and the DOPA melanin pathway is involved in cell wall melanization.
Gymnemic Acids Inhibit Hyphal Growth and Virulence in Candida albicans
Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d’Enfert, Christophe
2013-01-01
Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201
Shohdy, Nadim; Efe, Jem A; Emr, Scott D; Shuman, Howard A
2005-03-29
Legionella pneumophila invades and replicates intracellularly in human and protozoan hosts. The bacteria use the Icm/Dot type IVB secretion system to translocate effectors that inhibit phagosome maturation and modulate host vesicle trafficking pathways. To understand how L. pneumophila modulates organelle trafficking in host cells, we carried out pathogen effector protein screening in yeast, identifying L. pneumophila genes that produced membrane trafficking [vacuole protein sorting (VPS)] defects in yeast. We identified four L. pneumophila DNA fragments that perturb sorting of vacuolar proteins. Three encode ORFs of unknown function that are translocated via the Icm/Dot transporter from Legionella into macrophages. VPS inhibitor protein (Vip) A is a coiled-coil protein, VipD is a patatin domain-containing protein, and VipF contains an acetyltransferase domain. Processing studies in yeast indicate that VipA, VipD, and VipF inhibit lysosomal protein trafficking by different mechanisms; overexpressing VipA has an effect on carboxypeptidase Y trafficking, whereas VipD interferes with multivesicular body formation at the late endosome and endoplasmic reticulum-to-Golgi body transport. Such differences highlight the multiple strategies L. pneumophila effectors use to subvert host trafficking processes. Using yeast as an effector gene discovery tool allows for a powerful, genetic approach to both the identification of virulence factors and the study of their function.
Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E
2018-01-01
The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.
Lim, Sung H.; Wilson, Deborah A.; SalasVargas, Ana Victoria; Churi, Yair S.; Rhodes, Paul A.; Mazzone, Peter J.; Procop, Gary W.
2017-01-01
Background A colorimetric sensor array (CSA) has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific “fingerprint” of the volatile organic compounds (VOCs) produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture. Methods Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system. Results One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis), Clavispora (synonym Candida) lusitaniae, Pichia kudriavzevii (synonym Candida krusei) and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast) were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17%) less than with the BacT/Alert platform. Conclusion The CSA combined rapid detection of pathogenic yeasts in blood culture with accurate species-level identification. PMID:28296967
Shrestha, Nabin K; Lim, Sung H; Wilson, Deborah A; SalasVargas, Ana Victoria; Churi, Yair S; Rhodes, Paul A; Mazzone, Peter J; Procop, Gary W
2017-01-01
A colorimetric sensor array (CSA) has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs) produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture. Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system. One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis), Clavispora (synonym Candida) lusitaniae, Pichia kudriavzevii (synonym Candida krusei) and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast) were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17%) less than with the BacT/Alert platform. The CSA combined rapid detection of pathogenic yeasts in blood culture with accurate species-level identification.
The Eng1 β-Glucanase Enhances Histoplasma Virulence by Reducing β-Glucan Exposure
Garfoot, Andrew L.; Shen, Qian; Wüthrich, Marcel; Klein, Bruce S.
2016-01-01
ABSTRACT The fungal pathogen Histoplasma capsulatum parasitizes host phagocytes. To avoid antimicrobial immune responses, Histoplasma yeasts must minimize their detection by host receptors while simultaneously interacting with the phagocyte. Pathogenic Histoplasma yeast cells, but not avirulent mycelial cells, secrete the Eng1 protein, which is a member of the glycosylhydrolase 81 (GH81) family. We show that Histoplasma Eng1 is a glucanase that hydrolyzes β-(1,3)-glycosyl linkages but is not required for Histoplasma growth in vitro or for cell separation. However, Histoplasma yeasts lacking Eng1 function have attenuated virulence in vivo, particularly during the cell-mediated immunity stage. Histoplasma yeasts deficient for Eng1 show increased exposure of cell wall β-glucans, which results in enhanced binding to the Dectin-1 β-glucan receptor. Consistent with this, Eng1-deficient yeasts trigger increased tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) cytokine production from macrophages and dendritic cells. While not responsible for large-scale cell wall structure and function, the secreted Eng1 reduces levels of exposed β-glucans at the yeast cell wall, thereby diminishing potential recognition by Dectin-1 and proinflammatory cytokine production by phagocytes. In α-glucan-producing Histoplasma strains, Eng1 acts in concert with α-glucan to minimize β-glucan exposure: α-glucan provides a masking function by covering the β-glucan-rich cell wall, while Eng1 removes any remaining exposed β-glucans. Thus, Histoplasma Eng1 has evolved a specialized pathogenesis function to remove exposed β-glucans, thereby enhancing the ability of yeasts to escape detection by host phagocytes. PMID:27094334
ER stress response mechanisms in the pathogenic yeast Candida glabrata and their roles in virulence
Miyazaki, Taiga; Kohno, Shigeru
2014-01-01
The maintenance of endoplasmic reticulum (ER) homeostasis is critical for numerous aspects of cell physiology. Eukaryotic cells respond to the accumulation of misfolded proteins in the ER (ER stress) by activating the unfolded protein response (UPR), an intracellular signaling pathway that adjusts the folding capacity of the ER. Recent studies of several pathogenic fungi have revealed that the UPR is important for antifungal resistance and virulence; therefore, the pathway has attracted much attention as a potential therapeutic target. While the UPR is highly conserved among eukaryotes, our group recently discovered that the pathogenic yeast Candida glabrata lacks the typical fungal UPR, but possesses alternative mechanisms to cope with ER stress. This review summarizes how C. glabrata responds to ER stress and discusses the impacts of ER quality control systems on antifungal resistance and virulence. PMID:24335436
Magditch, Denise A.; Liu, Tong-Bao; Xue, Chaoyang; Idnurm, Alexander
2012-01-01
The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease. PMID:23055925
Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936.
Durrens, Pascal; Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J; Noël, Thierry
2017-08-03
Clavispora lusitaniae , an environmental saprophytic yeast belonging to the CTG clade of Candida , can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. Copyright © 2017 Durrens et al.
Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936
Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J.; Noël, Thierry
2017-01-01
ABSTRACT Clavispora lusitaniae, an environmental saprophytic yeast belonging to the CTG clade of Candida, can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. PMID:28774979
The ecology of insect-yeast relationships and its relevance to human industry.
Madden, Anne A; Epps, Mary Jane; Fukami, Tadashi; Irwin, Rebecca E; Sheppard, John; Sorger, D Magdalena; Dunn, Robert R
2018-03-28
Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a 'dispersal-encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry. © 2018 The Author(s).
The ecology of insect–yeast relationships and its relevance to human industry
Epps, Mary Jane; Sheppard, John; Sorger, D. Magdalena; Dunn, Robert R.
2018-01-01
Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a ‘dispersal–encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry. PMID:29563264
Genomics and the making of yeast biodiversity.
Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P
2015-12-01
Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain inhibi...
Mating and Progeny Isolation in The Corn Smut Fungus Ustilago maydis
USDA-ARS?s Scientific Manuscript database
The corn smut pathogen, Ustilago maydis (U. maydis) (DC.) Corda, is a semi-obligate plant pathogenic fungus in the phylum Basidiomycota (Alexopoulos, Mims and Blackwell, 1996). The fungus can be easily cultured in its haploid yeast phase on common laboratory media. However, to complete its sexual cy...
Carbonell, Luis M.; Rodríguez, Joaquín
1965-01-01
Carbonell, Luis M. (Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela), and Joaquín Rodríguez. Transformation of mycelial and yeast forms of Paracoccidioides brasiliensis in cultures and in experimental inoculations. J. Bacteriol. 90:504–510. 1965.—Experimental transformations of mycelial to yeast and yeast to mycelial forms in culture, and mycelial to yeast forms in tissue, were studied. All the transitional forms that appeared in culture were also seen in tissue, but in fewer number. Most of the hyphae in culture were transformed into yeast, but only a few in tissue. Yeast appeared in testicle around the 3rd day after inoculation, but on the 10th day in subcutaneous tissue. Pathogenicity of mycelium was high, since yeast was found in almost all of the organs inoculated with mycelium. Histologically, an acute inflammation occurred first, owing to the inoculation of mycelium, followed by a giant-cell granuloma with abundant hyphae detritus. These giant cells almost disappeared about 10 days after inoculation, giving place to a second giant-cell granuloma with yeast forms. Images PMID:14329466
USDA-ARS?s Scientific Manuscript database
In this study the strategy of isolating psychrotrophic, non-pectinolytic yeasts able to grow in apple juice as potential biocontrol agents was a successful approach. Thirty-four yeasts isolated from Antarctic were able to maintain rot incidence caused by P. expansum and B. cinerea under 25% on appl...
Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.
1981-09-01
Preliminary results provide strong evidence to show that the fungi, Candida and Cryptococcus , can be raoidly differentiated by a lectin test. SFor Oro...SUMMATION LECTIN-YEAST INTERACTIONS Objective: To find a lectin that selectively agglutinates Cryptococcus neoformans (the etiologic agent of...peanut), Conavalia ensiformis (Con A) and mango extract may potentially be utilized to differentiate Cryptococcus from the other yeasts most commonly
Evolutionary genomics of yeast pathogens in the Saccharomycotina
Naranjo-Ortíz, Miguel A.; Marcet-Houben, Marina
2016-01-01
Saccharomycotina comprises a diverse group of yeasts that includes numerous species of industrial or clinical relevance. Opportunistic pathogens within this clade are often assigned to the genus Candida but belong to phylogenetically distant lineages that also comprise non-pathogenic species. This indicates that the ability to infect humans has evolved independently several times among Saccharomycotina. Although the mechanisms of infection of the main groups of Candida pathogens are starting to be unveiled, we still lack sufficient understanding of the evolutionary paths that led to a virulent phenotype in each of the pathogenic lineages. Deciphering what genomic changes underlie the evolutionary emergence of a virulence trait will not only aid the discovery of novel virulence mechanisms but it will also provide valuable information to understand how new pathogens emerge, and what clades may pose a future danger. Here we review recent comparative genomics efforts that have revealed possible evolutionary paths to pathogenesis in different lineages, focusing on the main three agents of candidiasis worldwide: Candida albicans, C. parapsilosis and C. glabrata. We will discuss what genomic traits may facilitate the emergence of virulence, and focus on two different genome evolution mechanisms able to generate drastic phenotypic changes and which have been associated to the emergence of virulence: gene family expansion and interspecies hybridization. PMID:27493146
Kiskó, G; Sharp, R; Roller, S
2005-01-01
To develop new measures for controlling both spoilage and pathogenic micro-organisms in unpasteurized apple juice using chitosan. Micro-organisms were isolated and identified from apple juice treated or untreated with chitosan using enrichment, selective media, microscopy, substrate assimilation patterns and ribosomal DNA profiling. Chitosan (0.05-0.1%) delayed spoilage by yeasts at 25 degrees C for up to 12 days but the effect was species specific: Kloeckera apiculata and Metschnikowia pulcherrima were inactivated but Saccharomyces cerevisiae and Pichia spp. multiplied slowly. In challenge experiments at 25 degrees C, total yeast counts were 3-5 log CFU ml(-1) lower in chitosan-treated juices than in the controls for 4 days but the survival of Escherichia coli O157:H7 was extended from 1 to 2 days; at 4 degrees C, chitosan reduced the yeast counts by 2-3 log CFU ml(-1) for up to 10 days but survival of the pathogen was prolonged from 3 to 5 days. The survival of Salmonella enterica serovar Typhimurium was unaffected by chitosan at either temperature. The addition of chitosan to apple juice delayed spoilage by yeasts but enhanced the survival of E. coli O157:H7. The results suggest that the use of chitosan in the treatment of fruit juices may potentially lead to an increased risk of food poisoning from E. coli O157:H7.
Pfliegler, Walter P; Boros, Enikő; Pázmándi, Kitti; Jakab, Ágnes; Zsuga, Imre; Kovács, Renátó; Urbán, Edit; Antunovics, Zsuzsa; Bácsi, Attila; Sipiczki, Matthias; Majoros, László; Pócsi, István
2017-11-01
Saccharomyces cerevisiae is one of the most important microbes in food industry, but there is growing evidence on its potential pathogenicity as well. Its status as a member of human mycobiome is still not fully understood. In this study, we characterize clinical S. cerevisiae isolates from Hungarian hospitals along with commercial baking and probiotic strains, and determine their phenotypic parameters, virulence factors, interactions with human macrophages, and pathogenicity. Four of the clinical isolates could be traced back to commercial strains based on genetic fingerprinting. Our observations indicate that the commercial-derived clinical isolates have evolved new phenotypes and show similar, or in two cases, significantly decreased pathogenicity. Furthermore, immunological experiments revealed that the variability in human primary macrophage activation after coincubation with yeasts is largely donor and not isolate dependent. Isolates in this study offer an interesting insight into the potential microevolution of probiotic and food strains in human hosts. These commensal yeasts display various changes in their phenotypes, indicating that the colonization of the host does not necessarily impose a selective pressure toward higher virulence/pathogenicity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens
Cieplik, Fabian; Tabenski, Laura; Buchalla, Wolfgang; Maisch, Tim
2014-01-01
With increasing numbers of antibiotic-resistant pathogens all over the world there is a pressing need for strategies that are capable of inactivating biofilm-state pathogens with less potential of developing resistances in pathogens. Antimicrobial strategies of that kind are especially needed in dentistry in order to avoid the usage of antibiotics for treatment of periodontal, endodontic or mucosal topical infections caused by bacterial or yeast biofilms. One possible option could be the antimicrobial photodynamic therapy (aPDT), whereby the lethal effect of aPDT is based on the principle that visible light activates a photosensitizer (PS), leading to the formation of reactive oxygen species, e.g., singlet oxygen, which induce phototoxicity immediately during illumination. Many compounds have been described as potential PS for aPDT against bacterial and yeast biofilms so far, but conflicting results have been reported. Therefore, the aim of the present review is to outline the actual state of the art regarding the potential of aPDT for inactivation of biofilms formed in vitro with a main focus on those formed by oral key pathogens and structured regarding the distinct types of PS. PMID:25161649
Beginnings of microbiology and biochemistry: the contribution of yeast research.
Barnett, James A
2003-03-01
With improvements in microscopes early in the nineteenth century, yeasts were seen to be living organisms, although some famous scientists ridiculed the idea and their influence held back the development of microbiology. In the 1850s and 1860s, yeasts were established as microbes and responsible for alcoholic fermentation, and this led to the study of the rôle of bacteria in lactic and other fermentations, as well as bacterial pathogenicity. At this time, there were difficulties in distinguishing between the activities of microbes and of extracellular enzymes. Between 1884 and 1894, Emil Fischer's study of sugar utilization by yeasts generated an understanding of enzymic specificity and the nature of enzyme-substrate complexes.
Seasonal variation of the upper digestive tract yeast flora of feral pigeons
Kocan, R.M.; Hasenclever, H.F.
1974-01-01
Feral pigeons were sampled over a 16-month period to determine whether their normal yeast flora varied according to season. Candida albicans and Saccharomyces telluris occurred during the entire sampling period, with C. albicans reaching its highest levels between August and January and S. telluris peaking from March through May. Candida krusei was present for 10 months but exhibited no predictable variation in density. Candida tropicalis, C. guilliermondii and Geotrichum were isolated on several occasions while C. lusitaniae, C. pseudotropicalis and Torulopsis glabrata were each isolated once. The high levels of infection and frequency of occurrence of some yeast species make the feral pigeon highly suspect as a carrier and disseminator of potentially pathogenic yeast.
Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L
1997-01-01
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858
Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo
2017-08-01
Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.
Maresca, B; Kobayashi, G S
1989-01-01
Several fungi can assume either a filamentous or a unicellular morphology in response to changes in environmental conditions. This process, known as dimorphism, is a characteristic of several pathogenic fungi, e.g., Histoplasma capsulatum, Blastomyces dermatitidis, and Paracoccidioides brasiliensis, and appears to be directly related to adaptation from a saprobic to a parasitic existence. H. capsulatum is the most extensively studied of the dimorphic fungi, with a parasitic phase consisting of yeast cells and a saprobic mycelial phase. In culture, the transition of H. capsulatum from one phase to the other can be triggered reversibly by shifting the temperature of incubation between 25 degrees C (mycelia) and 37 degrees C (yeast phase). Mycelia are found in soil and never in infected tissue, in contrast to the yeast phase, which is the only form present in patients. The temperature-induced phase transition and the events in establishment of the disease state are very likely to be intimately related. Furthermore, the temperature-induced phase transition implies that each growth phase is an adaptation to two critically different environments. A fundamental question concerning dimorphism is the nature of the signal(s) that responds to temperature shifts. So far, both the responding cell component(s) and the mechanism(s) remain unclear. This review describes the work done in the last several years at the biochemical and molecular levels on the mechanisms involved in the mycelium to yeast phase transition and speculates on possible models of regulation of morphogenesis in dimorphic pathogenic fungi. Images PMID:2666842
A Temperature-Responsive Network Links Cell Shape and Virulence Traits in a Primary Fungal Pathogen
Beyhan, Sinem; Gutierrez, Matias; Voorhies, Mark; Sil, Anita
2013-01-01
Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature. PMID:23935449
An extended set of yeast-based functional assays accurately identifies human disease mutations
Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.
2016-01-01
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778
Draft Genome Sequence of Rhodotorula mucilaginosa, an Emergent Opportunistic Pathogen
Deligios, Massimo; Fraumene, Cristina; Abbondio, Marcello; Mannazzu, Ilaria; Tanca, Alessandro; Addis, Maria Filippa
2015-01-01
Rhodotorula mucilaginosa, a yeast with valuable biotechnological features, has also been recorded as an emergent opportunistic pathogen that might cause disease in both immunocompetent and immunocompromised individuals. Here, we report the draft genome sequence of R. mucilaginosa strain C2.5t1, which was isolated from cacao seeds in Cameroon. PMID:25858834
Pasricha, Shivani; Payne, Michael; Canovas, David; Pase, Luke; Ngaosuwankul, Nathamon; Beard, Sally; Oshlack, Alicia; Smyth, Gordon K.; Chaiyaroj, Sansanee C.; Boyce, Kylie J.; Andrianopoulos, Alex
2013-01-01
Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify “phase or cell-state–specific” gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase–encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity. PMID:24062530
Roto, Stephanie M.; Rubinelli, Peter M.; Ricke, Steven C.
2015-01-01
The poultry industry has been searching for a replacement for antibiotic growth promoters in poultry feed as public concerns over the use of antibiotics and the appearance of antibiotic resistance has become more intense. An ideal replacement would be feed amendments that could eliminate pathogens and disease while retaining economic value via improvements on body weight and feed conversion ratios. Establishing a healthy gut microbiota can have a positive impact on growth and development of both body weight and the immune system of poultry while reducing pathogen invasion and disease. The addition of prebiotics to poultry feed represents one such recognized way to establish a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific types of carbohydrates that are indigestible to the host while serving as substrates to select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca easily ferment commonly studied prebiotics, producing short-chain fatty acids, while pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-like substances are less commonly studied, but show promise in their effects on the prevention of pathogen colonization, improvements on the immune system, and host growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like substances, respectively, in animal feed has demonstrated positive associations with growth performance and modification of gut morphology. This review will aim to link together how such prebiotics and prebiotic-like substances function to influence the native and beneficial microorganisms that result in a diverse and well-developed gut microbiota. PMID:26664957
Irkin, Reyhan; Korukluoglu, Mihriban
2009-04-01
Food safety is a fundamental concern of both consumers and the food industry. The increasing incidence of foodborne diseases increases the demand of using antimicrobials in foods. Spices and plants are rich in essential oils and show inhibition activity against microorganisms, which are composed of many compounds. In this research, effects of garlic, bay, black pepper, origanum, orange, thyme, tea tree, mint, clove, and cumin essential oils on Listeria monocytogenes AUFE 39237, Escherichia coli ATCC 25922, Salmonella enteritidis ATCC 13076, Proteus mirabilis AUFE 43566, Bacillus cereus AUFE 81154, Saccharomyces uvarum UUFE 16732, Kloeckera apiculata UUFE 10628, Candida albicans ATCC 10231, Candida oleophila UUPP 94365, and Metschnikowia fructicola UUPP 23067 and effects of thyme oil at a concentration of 0.5% on L. monocytogenes and C. albicans in apple-carrot juice during +4 degrees C storage (first to fifth day) were investigated. Strong antibacterial and antifungal activities of some essential oils were found. Thyme, origanum, clove, and orange essential oils were the most inhibitory against bacteria and yeasts. Cumin, tea tree, and mint oils inhibited the yeasts actively. It is concluded that some essential oils could be used as potential biopreservatives capable of controlling foodborne pathogens and food spoilage yeasts.
Maldonado-Morales, Génesis; Bayman, Paul
2017-01-01
Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health. PMID:29234354
Yeast fuel cell: Application for desalination
NASA Astrophysics Data System (ADS)
Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo
2016-02-01
Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.
The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors.
Christiaens, Joaquin F; Franco, Luis M; Cools, Tanne L; De Meester, Luc; Michiels, Jan; Wenseleers, Tom; Hassan, Bassem A; Yaksi, Emre; Verstrepen, Kevin J
2014-10-23
Yeast cells produce various volatile metabolites that are key contributors to the pleasing fruity and flowery aroma of fermented beverages. Several of these fruity metabolites, including isoamyl acetate and ethyl acetate, are produced by a dedicated enzyme, the alcohol acetyl transferase Atf1. However, despite much research, the physiological role of acetate ester formation in yeast remains unknown. Using a combination of molecular biology, neurobiology, and behavioral tests, we demonstrate that deletion of ATF1 alters the olfactory response in the antennal lobe of fruit flies that feed on yeast cells. The flies are much less attracted to the mutant yeast cells, and this in turn results in reduced dispersal of the mutant yeast cells by the flies. Together, our results uncover the molecular details of an intriguing aroma-based communication and mutualism between microbes and their insect vectors. Similar mechanisms may exist in other microbes, including microbes on flowering plants and pathogens. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Paulino, Gustavo Vasconcelos Bastos; Félix, Ciro Ramon; Broetto, Leonardo; Landell, Melissa Fontes
2017-10-15
Some of the main threats to coral reefs come from human actions on marine environment, such as tourism, overfishing and pollution from urban development. While several studies have demonstrated an association between bacteria and corals, demonstrating how these communities react to different anthropogenic stressors, yeast communities associated with corals have received far less attention from researchers. The aim of this work was therefore to describe cultivable yeasts associated with three coral species and to evaluate the influence of sewage discharge on yeasts community. We obtained 130 isolates, mostly belonging to phylum Ascomycota and many of them had previously been isolated from human samples or are considered pathogens. The mycobiota was more similar among corals collected from the same reef, indicating that the composition of reef yeast community is more influenced by environmental conditions than host species. We suggest further studies to elucidate which factors are most influential on the composition of the coral-associated yeast community. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil
Oliveira, Helena M.B.; Santos, Cledir; Paterson, R. Russell M.; Gusmão, Norma B.; Lima, Nelson
2016-01-01
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens. PMID:27005653
Younes, Samer S; Khalaf, Roy A
2013-06-01
The opportunistic fungal pathogen Candida albicans is one of the leading agents of life-threatening infections affecting immunocompromised individuals. Many factors make C. albicans a successful pathogen. These include the ability to switch between yeast and invasive hyphal morphologies in addition to an arsenal of cell wall virulence factors such as lipases, proteases, dismutases and adhesins that promote the attachment to the host, a prerequisite for invasive growth. We have previously characterized Hwp2, a C. albicans cell wall protein which we found necessary for proper oxidative stress, biofilm formation and adhesion to host cells. Baker's yeast Saccharomyces cerevisiae also possesses adhesins that promote aggregation and flocculence. Flo11 is one such adhesin that has sequence similarity to Hwp2. Here we determined that transforming an HWP2 cassette can complement the lack of filamentation of an S. cerevisiae flo11 null strain and impart on S. cerevisiae adhesive properties similar to those of a pathogen.
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.
Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson
2016-03-09
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.
Matsuda, Shigeaki; Okada, Natsumi; Kodama, Toshio; Honda, Takeshi; Iida, Tetsuya
2012-01-01
Vibrio parahaemolyticus is one of the human pathogenic vibrios. During the infection of mammalian cells, this pathogen exhibits cytotoxicity that is dependent on its type III secretion system (T3SS1). VepA, an effector protein secreted via the T3SS1, plays a major role in the T3SS1-dependent cytotoxicity of V. parahaemolyticus. However, the mechanism by which VepA is involved in T3SS1-dependent cytotoxicity is unknown. Here, we found that protein transfection of VepA into HeLa cells resulted in cell death, indicating that VepA alone is cytotoxic. The ectopic expression of VepA in yeast Saccharomyces cerevisiae interferes with yeast growth, indicating that VepA is also toxic in yeast. A yeast genome-wide screen identified the yeast gene VMA3 as essential for the growth inhibition of yeast by VepA. Although VMA3 encodes subunit c of the vacuolar H+-ATPase (V-ATPase), the toxicity of VepA was independent of the function of V-ATPases. In HeLa cells, knockdown of V-ATPase subunit c decreased VepA-mediated cytotoxicity. We also demonstrated that VepA interacted with V-ATPase subunit c, whereas a carboxyl-terminally truncated mutant of VepA (VepAΔC), which does not show toxicity, did not. During infection, lysosomal contents leaked into the cytosol, revealing that lysosomal membrane permeabilization occurred prior to cell lysis. In a cell-free system, VepA was sufficient to induce the release of cathepsin D from isolated lysosomes. Therefore, our data suggest that the bacterial effector VepA targets subunit c of V-ATPase and induces the rupture of host cell lysosomes and subsequent cell death. PMID:22829766
Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S
2012-08-01
Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.
Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C
2014-06-01
Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.
Assessing the advantage of morphological changes in Candida albicans: a game theoretical study
Tyc, Katarzyna M.; Kühn, Clemens; Wilson, Duncan; Klipp, Edda
2014-01-01
A range of attributes determines the virulence of human pathogens. During interactions with their hosts, pathogenic microbes often undergo transitions between distinct stages, and the ability to switch between these can be directly related to the disease process. Understanding the mechanisms and dynamics of these transitions is a key factor in understanding and combating infectious diseases. The human fungal pathogen Candida albicans exhibits different morphotypes at different stages during the course of infection (candidiasis). For example, hyphae are considered to be the invasive form, which causes tissue damage, while yeast cells are predominant in the commensal stage. Here, we described interactions of C. albicans with its human host in a game theoretic model. In the game, players are fungal cells. Each fungal cell can adopt one of the two strategies: to exist as a yeast or hyphal cell. We characterized the ranges of model parameters in which the coexistence of both yeast and hyphal forms is plausible. Stability analysis of the system showed that, in theory, a reduced ability of the host to specifically recognize yeast and hyphal cells can result in bi-stability of the microbial populations' profile. Inspired by the model analysis we reasoned that the types of microbial interactions can change during invasive candidiasis. We found that positive cooperation among fungal cells occurs in mild infections and an enhanced tendency to invade the host is associated with negative cooperation. The model can easily be extended to multi-player systems with direct application to identifying individuals that enhance either positive or negative cooperation. Results of the modeling approach have potential application in developing treatment strategies. PMID:24567730
Matsumoto, Haruhito; Nagao, Jun-ichi; Cho, Tamaki; Kodama, Jun
2013-01-01
We previously developed an N-acetyl-D-glucosamine (GlcNAc) medium which induces Candida albicans to undergo a yeast-to-hyphal transition through a cAMP-PKA pathway. Microarray analysis demonstrated that 18 genes, including ALS3 that encodes a cell wall adhesion, were upregulated by 30-min incubation of yeast cells at 37°C in the GlcNAc medium. To investigate the differences between morphological transition and morphotype in C. albicans as a consequence of infection, this study utilized a silkworm infection model as an invertebrate mini-host. We prepared 3 different conditions of C. albicans cells in vitro by changing the incubation times in the GlcNAc medium: yeast-form cells at 0 min (Y0 cells), yeast-form cells in germination-ready state at 60 min (Y60 cells), and hyphal cells at 120 min (H120 cells), and compared their pathogenicities. We performed the infection study at various temperatures to find temperature-dependent virulence factors in vivo. Y60 cells in germination-ready state in the GlcNAc medium showed higher pathogenicity in vivo compared to Y0 and H120 cells at 30°C. Y60 cells proliferated in silkworms 24 h post-injection at 30°C, whereas the other 2 cell types did not. In vitro analysis demonstrated that Y60 cells, but not Y0 cells, germinated in the silkworm hemolymph at 30°C. However, Y0 and Y60 cells showed a similar degree of germination in the silkworm hemolymph at 37°C, although no significant difference in silkworm survival after infection with each cell type was observed at 37°C. These results suggested that the germination-ready state induced by the GlcNAc medium contributed to virulence in the silkworm.
Selection of oleaginous yeasts for fatty acid production.
Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien
2016-05-27
Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.
Yeast as a model for Ras signalling.
Tisi, Renata; Belotti, Fiorella; Martegani, Enzo
2014-01-01
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Physiological and environmental control of yeast prions
Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.
2014-01-01
Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638
Huett, Alan; Ng, Aylwin; Cao, Zhifang; Kuballa, Petric; Komatsu, Masaaki; Daly, Mark J.; Podolsky, Daniel K.; Xavier, Ramnik J.
2009-01-01
Autophagy is a conserved cellular process required for the removal of defective organelles, protein aggregates, and intracellular pathogens. We used a network analysis strategy to identify novel human autophagy components based upon the yeast interactome centered on the core yeast autophagy proteins. This revealed the potential involvement of 14 novel mammalian genes in autophagy, several of which have known or predicted roles in membrane organization or dynamics. We selected one of these membrane interactors, FNBP1L (formin binding protein 1-like), an F-BAR-containing protein (also termed Toca-1), for further study based upon a predicted interaction with ATG3. We confirmed the FNBP1L/ATG3 interaction biochemically and mapped the FNBP1L domains responsible. Using a functional RNA interference approach, we determined that FNBP1L is essential for autophagy of the intracellular pathogen Salmonella enterica serovar Typhimurium and show that the autophagy process serves to restrict the growth of intracellular bacteria. However, FNBP1L appears dispensable for other forms of autophagy induced by serum starvation or rapamycin. We present a model where FNBP1L is essential for autophagy of intracellular pathogens and identify FNBP1L as a differentially used molecule in specific autophagic contexts. By using network biology to derive functional biological information, we demonstrate the utility of integrated genomics to novel molecule discovery in autophagy. PMID:19342671
2013-01-01
Background The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. Results More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). Conclusion This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum. PMID:23496978
Yeasts of the soil – obscure but precious
2018-01-01
Abstract Pioneering studies performed in the nineteenth century demonstrated that yeasts are present in below‐ground sources. Soils were regarded more as a reservoir for yeasts that reside in habitats above it. Later studies showed that yeast communities in soils are taxonomically diverse and different from those above‐ground. Soil yeasts possess extraordinary adaptations that allow them to survive in a wide range of environmental conditions. A few species are promising sources of yeast oils and have been used in agriculture as potential antagonists of soil‐borne plant pathogens or as plant growth promoters. Yeasts have been studied mainly in managed soils such as vineyards, orchards and agricultural fields, and to a lesser extent under forests and grasslands. Our knowledge of soil yeasts is further biased towards temperate and boreal forests, whereas data from Africa, the Americas and Asia are scarce. Although soil yeast communities are often species‐poor in a single sample, they are more diverse on the biotope level. Soil yeasts display pronounced endemism along with a surprisingly high proportion of currently unidentified species. However, like other soil inhabitants, yeasts are threatened by habitat alterations owing to anthropogenic activities such as agriculture, deforestation and urbanization. In view of the rapid decline of many natural habitats, the study of soil yeasts in undisturbed or low‐managed biotopes is extremely valuable. The purpose of this review is to encourage researchers, both biologists and soil scientists, to include soil yeasts in future studies. PMID:29365211
Odell, Anahi V; Tran, Fanny; Foderaro, Jenna E; Poupart, Séverine; Pathak, Ravi; Westwood, Nicholas J; Ward, Gary E
2015-01-01
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.
Pietrzak, Maria; Macioła, Agnieszka; Zdanowski, Konrad; Protas-Klukowska, Anna Maria; Olszewska, Monika; Śmietanka, Krzysztof; Minta, Zenon; Szewczyk, Bogusław; Kopera, Edyta
2016-09-01
Highly pathogenic avian influenza is an on-going problem in poultry and a potential human pandemic threat. Pandemics occur suddenly and vaccine production must be fast and effective to be of value in controlling the spread of the virus. In this study we evaluated the potential of a recombinant protein from the extracellular domain of an H5 hemagglutinin protein produced in a yeast expression system to act as an effective vaccine. Protein production was efficient, with up to 200 mg purified from 1 L of culture medium. We showed that the deletion of the multibasic cleavage site from the protein improves oligomerization and, consequentially, its immunogenicity. We also showed that immunization with this deleted protein protected chickens from challenge with a highly pathogenic avian influenza H5N1 virus. Our results suggest that this recombinant protein produced in yeast may be an effective vaccine against H5N1 virus in poultry. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.
2016-06-01
The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.
Massire, Christian; Buelow, Daelynn R.; Zhang, Sean X.; Lovari, Robert; Matthews, Heather E.; Toleno, Donna M.; Ranken, Raymond R.; Hall, Thomas A.; Metzgar, David; Sampath, Rangarajan; Blyn, Lawrence B.; Ecker, David J.; Gu, Zhengming; Walsh, Thomas J.
2013-01-01
Invasive fungal infections are a significant cause of morbidity and mortality among immunocompromised patients. Early and accurate identification of these pathogens is central to direct therapy and to improve overall outcome. PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was evaluated as a novel means for identification of fungal pathogens. Using a database grounded by 60 ATCC reference strains, a total of 394 clinical fungal isolates (264 molds and 130 yeasts) were analyzed by PCR/ESI-MS; results were compared to phenotypic identification, and discrepant results were sequence confirmed. PCR/ESI-MS identified 81.4% of molds to either the genus or species level, with concordance rates of 89.7% and 87.4%, respectively, to phenotypic identification. Likewise, PCR/ESI-MS was able to identify 98.4% of yeasts to either the genus or species level, agreeing with 100% of phenotypic results at both the genus and species level. PCR/ESI-MS performed best with Aspergillus and Candida isolates, generating species-level identification in 94.4% and 99.2% of isolates, respectively. PCR/ESI-MS is a promising new technology for broad-range detection and identification of medically important fungal pathogens that cause invasive mycoses. PMID:23303501
[Yeast species in vulvovaginitis candidosa].
Nemes-Nikodém, Éva; Tamási, Béla; Mihalik, Noémi; Ostorházi, Eszter
2015-01-04
Vulvovaginal candidiasis is the most common mycosis, however, the available information about antifungal susceptibilities of these yeasts is limited. To compare the gold standard fungal culture with a new molecular identification method and report the incidence of yeast species in vulvovaginitis candidosa. The authors studied 370 yeasts isolated from vulvovaginal candidiasis and identified them by phenotypic and molecular methods. The most common species was Candida albicans (85%), followed by Candida glabrata, and other Candida species. At present there are no recommendations for the evaluation of antifungal susceptibility of pathogenic fungal species occurring in vulvovaginal candidiasis and the natural antifungal resistance of the different species is known only. Matrix Assisted Laser Desorption Ionization Time of Flight identification can be used to differentiate the fluconazole resistant Candida dubliniensis and the sensitive Candida albicans strains.
Public Health Threat of New, Reemerging, and Neglected Zoonoses in the Industrialized World
Cutler, Sally J.; Fooks, Anthony R.
2010-01-01
Microbiologic infections acquired from animals, known as zoonoses, pose a risk to public health. An estimated 60% of emerging human pathogens are zoonotic. Of these pathogens, >71% have wildlife origins. These pathogens can switch hosts by acquiring new genetic combinations that have altered pathogenic potential or by changes in behavior or socioeconomic, environmental, or ecologic characteristics of the hosts. We discuss causal factors that influence the dynamics associated with emergence or reemergence of zoonoses, particularly in the industrialized world, and highlight selected examples to provide a comprehensive view of their range and diversity. PMID:20031035
3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans.
Dyląg, Mariusz; Lis, Paweł; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław
2013-05-03
We have investigated the antifungal activity of the pyruvic acid analogue: 3-bromopyruvate (3-BP). Growth inhibition by 3-BP of 110 strains of yeast-like and filamentous fungi was tested by standard spot tests or microdilution method. The human pathogen Cryptococcus neoformans exhibited a low Minimal Inhibitory Concentration (MIC) of 0.12-0.15 mM 3-BP. The high toxicity of 3-BP toward C. neoformans correlated with high intracellular accumulation of 3-BP and also with low levels of intracellular ATP and glutathione. Weak cytotoxicity towards mammalian cells and lack of resistance conferred by the PDR (Pleiotropic Drug Resistance) network in the yeast Saccharomyces cerevisiae, are other properties of 3-BP that makes it a novel promising anticryptococcal drug. Copyright © 2013 Elsevier Inc. All rights reserved.
González-Fernández, Doris; Koski, Kristine G; Sinisterra, Odalis Teresa; Del Carmen Pons, Emérita; Murillo, Enrique; Scott, Marilyn E
2015-06-01
Interrelationships among bacteria, protozoa, helminths, and ectoparasites were explored in a cross-sectional survey of 213 pregnant and 99 lactating indigenous women. Prevalences in pregnancy and lactation, respectively, were: vaginitis (89.2%; 46.8%), vaginal trichomoniasis (75.3%; 91.1%), bacterial vaginosis (BV; 60.6%; 63.3%), hookworm (56.6%; 47.8%), asymptomatic bacteriuria/urinary tract infection (AB/UTI; 56.2%; 36.2%), cervicitis (33.3%; 6.3%), vaginal yeast (24.9%; 11.4%), Ascaris (32.5%; 17.4%), vaginal diplococci (20.4%; 31.6%), caries (19.7%; 18.2%), scabies (17.4%; 8.1%), and Trichuris (12.5%; 8.7%). Multiple regressions revealed positive associations during pregnancy (trichomoniasis and AB/UTI; diplococci and Ascaris) and lactation (yeast and scabies). Negative associations were detected in pregnancy (BV and trichomoniasis; hookworm and diplococci) and lactation (BV and yeast). Vaginal Lactobacillus reduced odds of diplococci in pregnancy and lactation, but increased Ascaris eggs per gram (epg) and odds of trichomoniasis in pregnancy and yeast in lactation. These associations raised a concern that treatment of one condition may increase the risk of another. © The American Society of Tropical Medicine and Hygiene.
González-Fernández, Doris; Koski, Kristine G.; Sinisterra, Odalis Teresa; del Carmen Pons, Emérita; Murillo, Enrique; Scott, Marilyn E.
2015-01-01
Interrelationships among bacteria, protozoa, helminths, and ectoparasites were explored in a cross-sectional survey of 213 pregnant and 99 lactating indigenous women. Prevalences in pregnancy and lactation, respectively, were: vaginitis (89.2%; 46.8%), vaginal trichomoniasis (75.3%; 91.1%), bacterial vaginosis (BV; 60.6%; 63.3%), hookworm (56.6%; 47.8%), asymptomatic bacteriuria/urinary tract infection (AB/UTI; 56.2%; 36.2%), cervicitis (33.3%; 6.3%), vaginal yeast (24.9%; 11.4%), Ascaris (32.5%; 17.4%), vaginal diplococci (20.4%; 31.6%), caries (19.7%; 18.2%), scabies (17.4%; 8.1%), and Trichuris (12.5%; 8.7%). Multiple regressions revealed positive associations during pregnancy (trichomoniasis and AB/UTI; diplococci and Ascaris) and lactation (yeast and scabies). Negative associations were detected in pregnancy (BV and trichomoniasis; hookworm and diplococci) and lactation (BV and yeast). Vaginal Lactobacillus reduced odds of diplococci in pregnancy and lactation, but increased Ascaris eggs per gram (epg) and odds of trichomoniasis in pregnancy and yeast in lactation. These associations raised a concern that treatment of one condition may increase the risk of another. PMID:25825387
Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.
Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi
2018-01-01
In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.
Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast
Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori
2018-01-01
In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast. PMID:29761062
ERIC Educational Resources Information Center
Hekmat-Scafe, Daria S.; Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim
2017-01-01
The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high…
Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain.
Sundh, Ingvar; Melin, Petter
2011-01-01
Yeasts have been important components of spontaneous fermentations in food and beverage processing for millennia. More recently, the potential of utilising antagonistic yeasts, e.g. Pichia anomala and Candida spp., for post-harvest biological control of spoilage fungi during storage of plant-derived produce ('biopreservation') has been clearly demonstrated. Although some yeast species are among the safest microorganisms known, several have been reported in opportunistic infections in humans, including P. anomala and bakers' yeast, Saccharomyces cerevisiae. More research is needed about the dominant pathogenicity and virulence factors in opportunistic yeasts, and whether increased utilisation of biopreservative yeasts in general could contribute to an increased prevalence of yeast infections. The regulatory situation for yeasts used in post-harvest biocontrol is complex and the few products that have reached the market are mainly registered as biological pesticides. The qualified presumption of safety (QPS) approach to safety assessments of microorganisms intentionally added to food or feed, recently launched by the European Food Safety Authority, can lead to more efficient evaluations of new products containing microbial species with a sufficient body of knowledge or long-term experience on their safety. P. anomala is one of several yeast species that have been given QPS status, although the status is restricted to use of this yeast for enzyme and metabolite production purposes. With regard to authorisation of new biopreservative yeasts, we recommend that the possibility to regulate microorganisms for food biopreservation as food additives be considered.
van de Groep, Kirsten; Bos, Martine P; Savelkoul, Paul H M; Rubenjan, Anna; Gazenbeek, Christel; Melchers, Willem J G; van der Poll, Tom; Juffermans, Nicole P; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L
2018-04-26
Molecular tests may enable early adjustment of antimicrobial therapy and be complementary to blood culture (BC) which has imperfect sensitivity in critically ill patients. We evaluated a novel multiplex real-time PCR assay to diagnose bloodstream pathogens directly in whole blood samples (BSI-PCR). BSI-PCR included 11 species- and four genus-specific PCRs, a molecular Gram-stain PCR, and two antibiotic resistance markers. We collected 5 mL blood from critically ill patients simultaneously with clinically indicated BC. Microbial DNA was isolated using the Polaris method followed by automated DNA extraction. Sensitivity and specificity were calculated using BC as reference. BSI-PCR was evaluated in 347 BC-positive samples (representing up to 50 instances of each pathogen covered by the test) and 200 BC-negative samples. Bacterial species-specific PCR sensitivities ranged from 65 to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0 to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2200 species-specific PCRs in 200 culture-negative samples, and ranged from 0 to 6% for generic PCRs. Sensitivity of BSI-PCR was promising for individual bacterial pathogens, but still insufficient for yeasts and generic PCRs. Further development of BSI-PCR will focus on improving sensitivity by increasing input volumes and on subsequent implementation as a bedside test.
Baruffini, Enrico; Dallabona, Cristina; Invernizzi, Federica; Yarham, John W; Melchionda, Laura; Blakely, Emma L; Lamantea, Eleonora; Donnini, Claudia; Santra, Saikat; Vijayaraghavan, Suresh; Roper, Helen P; Burlina, Alberto; Kopajtich, Robert; Walther, Anett; Strom, Tim M; Haack, Tobias B; Prokisch, Holger; Taylor, Robert W; Ferrero, Ileana; Zeviani, Massimo; Ghezzi, Daniele
2013-11-01
We report three families presenting with hypertrophic cardiomyopathy, lactic acidosis, and multiple defects of mitochondrial respiratory chain (MRC) activities. By direct sequencing of the candidate gene MTO1, encoding the mitochondrial-tRNA modifier 1, or whole exome sequencing analysis, we identified novel missense mutations. All MTO1 mutations were predicted to be deleterious on MTO1 function. Their pathogenic role was experimentally validated in a recombinant yeast model, by assessing oxidative growth, respiratory activity, mitochondrial protein synthesis, and complex IV activity. In one case, we also demonstrated that expression of wt MTO1 could rescue the respiratory defect in mutant fibroblasts. The severity of the yeast respiratory phenotypes partly correlated with the different clinical presentations observed in MTO1 mutant patients, although the clinical outcome was highly variable in patients with the same mutation and seemed also to depend on timely start of pharmacological treatment, centered on the control of lactic acidosis by dichloroacetate. Our results indicate that MTO1 mutations are commonly associated with a presentation of hypertrophic cardiomyopathy, lactic acidosis, and MRC deficiency, and that ad hoc recombinant yeast models represent a useful system to test the pathogenic potential of uncommon variants, and provide insight into their effects on the expression of a biochemical phenotype. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc.
Borman, Andrew M.; Linton, Christopher J.; Oliver, Debra; Palmer, Michael D.; Szekely, Adrien; Johnson, Elizabeth M.
2010-01-01
Rapid identification of yeast species isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. Here, we have evaluated the utility of pyrosequencing analysis of a portion of the internal transcribed spacer 2 region (ITS2) for identification of pathogenic yeasts. A total of 477 clinical isolates encompassing 43 different fungal species were subjected to pyrosequencing analysis in a strictly blinded study. The molecular identifications produced by pyrosequencing were compared with those obtained using conventional biochemical tests (AUXACOLOR2) and following PCR amplification and sequencing of the D1-D2 portion of the nuclear 28S large rRNA gene. More than 98% (469/477) of isolates encompassing 40 of the 43 fungal species tested were correctly identified by pyrosequencing of only 35 bp of ITS2. Moreover, BLAST searches of the public synchronized databases with the ITS2 pyrosequencing signature sequences revealed that there was only minimal sequence redundancy in the ITS2 under analysis. In all cases, the pyrosequencing signature sequences were unique to the yeast species (or species complex) under investigation. Finally, when pyrosequencing was combined with the Whatman FTA paper technology for the rapid extraction of fungal genomic DNA, molecular identification could be accomplished within 6 h from the time of starting from pure cultures. PMID:20702674
Taveira, Gabriel B; Carvalho, André O; Rodrigues, Rosana; Trindade, Fernanda G; Da Cunha, Maura; Gomes, Valdirene M
2016-01-27
Thionins are a family of plant antimicrobial peptides (AMPs), which participate in plant defense system against pathogens. Here we describe some aspects of the CaThi thionin-like action mechanism, previously isolated from Capsicum annuum fruits. Thionin-like peptide was submitted to antimicrobial activity assays against Candida species for IC50 determination and synergism with fluconazole evaluation. Viability and plasma membrane permeabilization assays, induction of intracellular ROS production analysis and CaThi localization in yeast cells were also investigated. CaThi had strong antimicrobial activity against six tested pathogenic Candida species, with IC50 ranging from 10 to 40 μg.mL(-1). CaThi antimicrobial activity on Candida species was candidacidal. Moreover, CaThi caused plasma membrane permeabilization in all yeasts tested and induces oxidative stresses only in Candida tropicalis. CaThi was intracellularly localized in C. albicans and C. tropicalis, however localized in nuclei in C. tropicalis, suggesting a possible nuclear target. CaThi performed synergistically with fluconazole inhibiting all tested yeasts, reaching 100% inhibition in C. parapsilosis. The inhibiting concentrations for the synergic pair ranged from 1.3 to 4.0 times below CaThi IC50 and from zero to 2.0 times below fluconazole IC50. The results reported herein may ultimately contribute to future efforts aiming to employ this plant-derived AMP as a new therapeutic substance against yeasts.
On the kinetics of infection by pathogenic prion protein molecules
NASA Astrophysics Data System (ADS)
Durup, Jean
1997-03-01
Literature data on the transmission of spongiform encephalopathies between mammal species point to the importance of methionine residuies in species barriers. This in turn favours the assumption of an oligomerization of identical metastable pathogenic prion protein molecules as the rate-determining step in those diseases. Published experimental data on the analogous case of yeast prion proteins closely agree with the proposed scheme.
Shenoy, Padmaja Ananth; Vishwanath, Shashidhar; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran
2017-07-01
Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections.
Malassezia virulence determinants.
Hort, Wiebke; Mayser, Peter
2011-04-01
Malassezia yeasts are associated with a number of dermatologic and systemic diseases in humans and animals. Pityriasis versicolor is amongst these diseases and represents one of the most common human skin diseases. Beyond that, the role of Malassezia yeasts in the pathogenesis of other skin diseases such as psoriasis, seborrheic dermatitis and confluent and reticulate papillomatosis is discussed but remains less clear. Clear pathogenetic mechanisms of the above-mentioned diseases are not known so far. The review presents new findings on virulence factors of Malassezia yeasts, shedding light on the pathogenesis of Malassezia-associated diseases. Several virulence factors in Malassezia yeasts are known, based on their enzymatic lipolytic activity resulting in the production of distinct metabolites and special cell wall features. Recently, a secondary metabolic pathway possibly implicated in the pathogenesis of pityriasis versicolor was described. The article presents virulence factors of Malassezia yeasts ranging from irritant metabolic byproducts to highly bioactive indole derivatives and attempts to clarify their pathogenic implications in the different diseases. Special emphasis is given to the pathogenesis of pityriasis versicolor, as it represents the disease wherein the causative relationship with Malassezia yeasts appears the most obvious.
Cellular and molecular effects of yeast probiotics on cancer.
Saber, Amir; Alipour, Beitollah; Faghfoori, Zeinab; Yari Khosroushahi, Ahmad
2017-02-01
The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.
Responses of Yeast Biocontrol Agents to Environmental Stress
Sui, Yuan; Wisniewski, Michael; Droby, Samir
2015-01-01
Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance. PMID:25710368
Vanhove, Mathieu; Beale, Mathew A; Rhodes, Johanna; Chanda, Duncan; Lakhi, Shabir; Kwenda, Geoffrey; Molloy, Sile; Karunaharan, Natasha; Stone, Neil; Harrison, Thomas S; Bicanic, Tihana; Fisher, Matthew C
2017-04-01
Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Efficacy of Yeast' Vacuoles as Antimicrobial Agents to Escherichia coli Bacteremia in Rat.
Yoon, Jihee; Cho, Ho-Seong; Park, Chul; Park, Byoung-Yong; Kim, Yang-Hoon; Min, Jiho
2017-01-01
Yeast vacuoles, lysosomes, are cell organelles that have antimicrobial activity against several bacteria in vitro. Lysosomes have a potential application to the treatment of pathogens such as antibiotics in vivo. Therefore, the in vivo efficacy of lysosomes was examined in a rat infection model against pathogenic Escherichia coli with varying susceptibilities to standard antimicrobial agents. Before in vivo testing, the concentration-dependent safety of lysosomes was confirmed by blood test and histopathology of normal rats. The therapeutic efficacy of lysosomes was examined in terms of the survival of E. coli in infected rat blood. The complete blood count and histopathology results were affected by the lysosomes concentration. In addition, the E. coli growth was inhibited by the initial injection of lysosomes. These results support the use of lysosomes as a bacterial inhibitor of an infected rat model.
Tarifa, M C; Lozano, J E; Brugnoni, L I
2015-02-01
The objective of this study was to determine the interactions between common spoilage yeast, Candida tropicalis, isolated from ultrafiltration membranes, and Escherichia coli O157:H7 and Salmonella sp. on stainless steel surfaces. Single and dual-species attachment assays were performed on stainless steel at 25°C using apple juice as culture medium. The growth of Salmonella sp. rose when it was co-cultivated with C. tropicalis in dual biofilms at 16 and 24 h; the same effect was observed for E. coli O157:H7 at 24 h. The colonization of C. tropicalis on stainless steel surfaces was reduced when it was co-cultivated with both pathogenic bacteria, reducing C. tropicalis population by at least 1.0 log unit. Visualization by SEM demonstrated that E. coli O157:H7 and Salmonella sp. adhere closely to hyphal elements using anchorage structures to attach to the surface and other cells. These results suggest a route for potential increased survival of pathogens in juice processing environments. These support the notion that the species involved interact in mixed yeast-bacteria communities favouring the development of bacteria over yeast. This study support the plausibility that pathogen interactions with strong biofilm forming members of spoilage microbiota, such as C. tropicalis, might play an important role for the survival and dissemination of E. coli O157:H7 and Salmonella sp. in food-processing environments. © 2014 The Society for Applied Microbiology.
Eric Benbow, M; Kimbirauskas, Ryan; McIntosh, Mollie D; Williamson, Heather; Quaye, Charles; Boakye, Daniel; Small, Pamela L C; Merritt, Richard W
2014-06-01
Buruli ulcer (BU) is an emerging, but neglected tropical disease, where there has been a reported association with disturbed aquatic habitats and proposed aquatic macroinvertebrate vectors such as biting Hemiptera. An initial step in understanding the potential role of macroinvertebrates in the ecology of BU is to better understand the entire community, not just one or two taxa, in relation to the pathogen, Mycobacterium ulcerans, at a large spatial scale. For the first time at a country-wide scale this research documents that M. ulcerans was frequently detected from environmental samples taken from BU endemic regions, but was not present in 30 waterbodies of a non-endemic region. There were significant differences in macroinvertebrate community structure and identified potential indicator taxa in relation to pathogen presence. These results suggest that specific macroinvertebrate taxa or functional metrics may potentially be used as aquatic biological indicators of M. ulcerans. Developing ecological indicators of this pathogen is a first step for understanding the disease ecology of BU and should assist future studies of transmission.
Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity
NASA Astrophysics Data System (ADS)
Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.
2013-08-01
The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.
NASA Astrophysics Data System (ADS)
Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.
2016-07-01
The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.
Xu, Jianping; Yan, Zhun; Guo, Hong
2009-06-01
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii. The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii, but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.
Lara-Hidalgo, C E; Dorantes-Álvarez, L; Hernández-Sánchez, H; Santoyo-Tepole, F; Martínez-Torres, A; Villa-Tanaca, L; Hernández-Rodríguez, C
2018-04-25
Three yeast strains were isolated from the spontaneous fermentation of guajillo pepper: Hanseniaspora opuntiae, Pichia kudriavzevii, and Wickerhamomyces anomalus, which were identified by amplification of the ITS/5.8S ribosomal DNA. Some probiotic characteristics of these strains were evaluated and compared with one commercial probiotic yeast (Saccharomyces boulardii). The survival percentage of all the yeasts was similar to that of the commercial product. They showed different hydrophobicity characteristics with hydrocarbons, autoaggregation > 90%, and characteristics of co-aggregation with pathogenic microorganisms. The adhesion capacity to mucin of the three yeast samples was similar to the reference yeast. The antioxidant activity of the yeasts varied between 155 and 178 μM Trolox equivalents. All exhibited cholesterol reduction capacity, and W. anomalus was able to decrease up to 83% of cholesterol after 48 h of incubation. The 7.5-fold concentrated H. opuntiae supernatant had antimicrobial activity against Salmonella enterica ser. Typhimurium ATCC 14028 and Candida albicans ENCBDM2; tests suggest this activity against S. Typhimurium is due to a proteinaceous metabolite with a weight between 10 and 30 kDa. Among the yeasts, P. kudriavzevii exhibited the highest protective effect on the viability of Lactobacillus casei Shirota in gastric and intestinal conditions. These results suggest that yeasts isolated from guajillo pepper may have a probiotic potential.
Sokolow, S. H.; Ngonghala, C. N.; Jocque, M.; Lund, A.; Barry, M.; Mordecai, E. A.; Daily, G. C.; Andrews, J. R.; Bendavid, E.; Luby, S. P.; LaBeaud, A. D.; Seetah, K.; Guégan, J. F.; De Leo, G. A.
2017-01-01
Reducing the burden of neglected tropical diseases (NTDs) is one of the key strategic targets advanced by the Sustainable Development Goals. Despite the unprecedented effort deployed for NTD elimination in the past decade, their control, mainly through drug administration, remains particularly challenging: persistent poverty and repeated exposure to pathogens embedded in the environment limit the efficacy of strategies focused exclusively on human treatment or medical care. Here, we present a simple modelling framework to illustrate the relative role of ecological and socio-economic drivers of environmentally transmitted parasites and pathogens. Through the analysis of system dynamics, we show that periodic drug treatments that lead to the elimination of directly transmitted diseases may fail to do so in the case of human pathogens with an environmental reservoir. Control of environmentally transmitted diseases can be more effective when human treatment is complemented with interventions targeting the environmental reservoir of the pathogen. We present mechanisms through which the environment can influence the dynamics of poverty via disease feedbacks. For illustration, we present the case studies of Buruli ulcer and schistosomiasis, two devastating waterborne NTDs for which control is particularly challenging. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438917
Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions
2013-06-23
Wallqvist‡ Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent ...experimental Burkholderia data to ini- tially select a small number of proteins as putative viru- lence factors. We then used yeast two-hybrid assays...causative agent of glan- ders, a disease primarily affecting horses but transmittable to humans; and Burkholderia pseudomallei, which is responsible for
Vero, Silvana; Garmendia, Gabriela; González, M Belén; Bentancur, Oscar; Wisniewski, Michael
2013-03-01
Psychrotrophic yeasts were isolated from Antarctic soils, selected based on their ability to grow in apple juice at low temperatures, and were evaluated as potential biocontrol agents for the management of postharvest diseases of apple during cold storage. Among the species recovered, an isolate of Leucosporidium scottii, designated At17, was identified as a good biocontrol agent for blue and gray mold of two apple cultivars. The selected isolate produced soluble and volatile antifungal substances that were inhibitory to apple pathogens. Siderophore production was also demonstrated, but it did not appear to play a role in pathogen inhibition. The selected yeast had the capacity to form a biofilm when grown in apple juice, which is considered an important attribute of postharvest antagonists to successfully colonize wounds and intact fruit surfaces. At17 was resistant to commonly used postharvest fungicides, so application of a combination of low-dose fungicide along with the biocontrol agent could be used as an integrated management practice. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Gafni, Aviva; Calderon, Claudia E; Harris, Raviv; Buxdorf, Kobi; Dafa-Berger, Avis; Zeilinger-Reichert, Einat; Levy, Maggie
2015-01-01
Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis as mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.
Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping
2015-01-16
The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Hadwiger, Lee A; Polashock, James
2013-01-01
Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants.
Kim, Jong H; Mahoney, Noreen; Chan, Kathleen L; Molyneux, Russell J; Campbell, Bruce C
2004-10-01
Acetylenic phenols and a chromene isolated from the grapevine fungal pathogen Eutypa lata were examined for mode of toxicity. The compounds included eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl aldehyde), eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), eulatachromene, 2- isoprenyl-5-formyl-benzofuran, siccayne, and eulatinol. A bioassay using the yeast Saccharomyces cerevisiae showed that all compounds were either lethal or inhibited growth. A respiratory assay using 2,3,5-triphenyltetrazolium (TTC) indicated that eutypinol and eulatachromene inhibited mitochondrial respiration in wild-type yeast. Bioassays also showed that 2- isoprenyl-5-formyl-benzofuran and siccayne inhibited mitochondrial respiration in the S. cerevisiae deletion mutant vph2Delta, lacking a vacuolar type H (+) ATPase (V-ATPase) assembly protein. Cell growth of tsa1Delta, a deletion mutant of S. cerevisiae lacking a thioredoxin peroxidase (cTPx I), was greatly reduced when grown on media containing eutypinol or eulatachromene and exposed to hydrogen peroxide (H(2)O(2)) as an oxidative stress. This reduction in growth establishes the toxic mode of action of these compounds through inhibition of mitochondrial respiration.
Yeasts and moulds contaminants of food ice cubes and their survival in different drinks.
Francesca, N; Gaglio, R; Stucchi, C; De Martino, S; Moschetti, G; Settanni, L
2018-01-01
To evaluate the levels of unicellular and filamentous fungi in ice cubes produced at different levels and to determine their survival in alcoholic beverages and soft drinks. Sixty samples of ice cubes collected from home level (HL) productions, bars and pubs (BP) and industrial manufacturing plants (MP) were investigated for the presence and cell density of yeasts and moulds. Moulds were detected in almost all samples, while yeasts developed from the majority of HL and MP samples. Representative colonies of microfungi were subjected to phenotypic and genotypic characterization. The identification was carried out by restriction fragment length polymorphism (RFLP) analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5·8S rRNA gene. The process of yeast identification was concluded by sequencing the D1/D2 region of the 26S rRNA gene. The fungal biodiversity associated with food ice was represented by nine yeast and nine mould species. Strains belonging to Candida parapsilosis and Cryptococcus curvatus, both opportunistic human pathogens, and Penicillium glabrum, an ubiquitous mould in the ice samples analysed, were selected to evaluate the effectiveness of the ice cubes to transfer pathogenic microfungi to consumers, after addition to alcoholic beverages and soft drinks. All strains retained their viability. The survival test indicated that the most common mode of consumption of ice cubes, through its direct addition to drinks and beverages, did not reduce the viability of microfungi. This study evidenced the presence of microfungi in food ice and ascertained their survival in soft drinks and alcoholic beverages. © 2017 The Society for Applied Microbiology.
The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae
Zhang, Weicheng; Bao, Shaopan; Fang, Tao
2016-01-01
Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions. PMID:27094203
Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš
2017-01-01
Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063
The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Zhang, Weicheng; Bao, Shaopan; Fang, Tao
2016-04-01
Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.
The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae.
Zhang, Weicheng; Bao, Shaopan; Fang, Tao
2016-04-20
Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te ((particle)) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs' nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te ((particle)) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te ((ion)) efficiently determined the NPs toxicity associated with released ions.
Prevalence of pathogenic yeasts and humoral antibodies to candida in diabetic patients.
Odds, F C; Evans, E G; Taylor, M A; Wales, J K
1978-01-01
The prevalence of oral yeasts and humoral precipitating antibodies to candida was estimated in 204 unselected diabetic patients (172 outpatients and 32 inpatients). Yeasts, mainly Candida albicans, were isolated from the mouths of 41% of the outpatients and precipitins were found in 17.5% although none of the patients had clinically overt candidiasis. The extent of oral yeast colonisation and incidence of antibodies was not related to their antidiabetic treatment or to the duration of their diabetes. It was, however, related to the blood glucose and urine sugar levels at the time they were sampled, the highest incidence being among the diabetic inpatients with high blood glucose levels at the time of sampling and the lowest among outpatients with normal blood glucose levels at the time of sampling. There was no such correlation when diabetic control over the previous 12-month period was considered. PMID:711913
Food-related applications of Yarrowia lipolytica.
Zinjarde, Smita S
2014-01-01
Yarrowia lipolytica is a non-pathogenic generally regarded as safe yeast. It displays unique physiological as well as biochemical properties that are relevant in food-related applications. Strains naturally associated with meat and dairy products contribute towards specific textures and flavours. On some occasions they cause food spoilage. They produce food-additives such as aroma compounds, organic acids, polyalcohols, emulsifiers and surfactants. The yeast biomass has been projected as single cell oil and single cell protein. Y. lipolytica degrades or upgrades different types of food wastes and in some cases, value-added products have also been obtained. The yeast is thus involved in the manufacture of food stuffs, making of food ingredients, generation of biomass that can be used as food or feed and in the effective treatment of food wastes. On account of all these features, this versatile yeast is of considerable significance in food-related applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina
2016-01-01
We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We conclude that dishwashers represent a reservoir of enriched opportunistic pathogenic species that can spread from the dishwasher into the indoor biome. PMID:26867131
Yeasts from autochthonal cheese starters: technological and functional properties.
Binetti, A; Carrasco, M; Reinheimer, J; Suárez, V
2013-08-01
The aim of this work was to identify 20 yeasts isolated from autochthonal cheese starters and evaluate their technological and functional properties. The capacities of the yeasts to grow at different temperatures, pH, NaCl and lactic acid concentrations as well as the proteolytic and lipolytic activities were studied. Moreover, survival to simulated gastrointestinal digestion, hydrophobicity, antimicrobial activity against pathogens and auto- and co-aggregation abilities were evaluated. The sequentiation of a fragment from the 26S rDNA gene indicated that Kluyveromyces marxianus was the predominant species, followed by Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces lactis and Galactomyces geotrichum. RAPD with primer M13 allowed a good differentiation among strains from the same species. All strains normally grew at pH 4.7-5.5 and temperatures between 15 and 35°C. Most of them tolerated 10% NaCl and 3% lactic acid. Some strains showed proteolytic (eight isolates) and/or lipolytic (four isolates) capacities. All strains evidenced high gastrointestinal resistance, moderate hydrophobicity, intermediate auto-aggregation and variable co-aggregation abilities. No strains inhibited the growth of the pathogens assayed. Some strains from dairy sources showed interesting functional and technological properties. This study has been the first contribution to the identification and characterization of yeasts isolated from autochthonal cheese starters in Argentina. Many strains could be proposed as potential candidates to be used as probiotics and/or as co-starters in cheese productions. © 2013 The Society for Applied Microbiology.
Springer, Deborah J.; Ren, Ping; Raina, Ramesh; Dong, Yimin; Behr, Melissa J.; McEwen, Bruce F.; Bowser, Samuel S.; Samsonoff, William A.; Chaturvedi, Sudha; Chaturvedi, Vishnu
2010-01-01
Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40–100 nm diameter ×500–3000 nm length). Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM) and by high voltage- EM (HVEM). Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12α mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN) in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs). These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN– mediated killing. PMID:20539754
Cell wall of pathogenic yeasts and implications for antimycotic therapy.
Cassone, A
1986-01-01
Yeast cell wall is a complex, multilayered structure where amorphous, granular and fibrillar components interact with each other to confer both the specific cell shape and osmotic protection against lysis. Thus it is widely recognized that as is the case with bacteria, yeast cell wall is a major potential target for selective chemotherapeutic drugs. Despite intensive research, very few such drugs have been discovered and none has found substantial application in human diseases to date. Among the different cell wall components, beta-glucan and chitin are the fibrillar materials playing a fundamental role in the overall rigidity and resistance of the wall. Inhibition of the metabolism of these polymers, therefore, should promptly lead to lysis. This indeed occurs and aculeacin, echinocandin and polyoxins are examples of agents producing such an action. Particular attention should be focused on chitin synthesis. Although quantitatively a minor cell wall component, chitin is important in the mechanism of dimorphic transition, especially in Candida albicans, a major human opportunistic pathogen. This transition is associated with increased invasiveness and general virulence of the fungus. Yeast cell wall may also limit the effect of antifungals which owe their action to disturbance of the cytoplasmic membrane or of cell metabolism. Indeed, the cell wall may hinder access to the cell interior both under growing conditions and, particularly, during cell ageing in the stationary phase, when important structural changes occur in the cell wall due to unbalanced wall growth (phenotypic drug resistance).
Shenoy, Padmaja Ananth; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran
2017-01-01
Introduction Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. Aim To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. Materials and Methods A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Results Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Conclusion Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections. PMID:28892897
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, K.; Wade, M.; Albersheim, P.
1978-01-01
A ..beta..-glucan isolated from the mycelial walls of Phytophthora megasperma var. sojae and a glucan purified from yeast extract stimulate the accumulation of phytoalexins in red kidney bean, Phaseolus vulgaris, and stimulate the accumulation of the phytoalexin, rishitin, in potato tubers, Solanum tuberosum. Treatment of kidney bean cotyledons with the glucan elicitors resulted in the accumulation of at least five fungistatic compounds. These compounds migrate during thin layer chromatography identically to the fungistatic compounds which accumulate in kidney beans which have been inoculated with Colletotrichum lindemuthianum, a fungal pathogen of kidney beans. Potatoes accumulate as much as 29 micrograms ofmore » rishitin per gram fresh weight following exposure to the glucan from Phytophthora megasperma va. sojae and as much as 19.5 micrograms of rishitin per gram fresh weight following exposure to yeast glucan.« less
Occurrence and diversity of Pichia spp. in marine environments
NASA Astrophysics Data System (ADS)
Li, Jing; Chi, Zhenming; Wang, Xianghong; Wang, Lin; Sheng, Jun; Gong, Fang
2008-08-01
A total of 328 yeast strains from seawater, sediments, mud of salterns, the guts of marine fish and marine algae were obtained. The results of routine identification and molecular methods show that five yeast strains obtained in this study belonged to Pichia spp., including Pichia guilliermondii 1uv-small, Pichia ohmeri YF04d, Pichia fermentans YF12b, Pichia burtonii YF11A and Pichia anomala YF07b. Further studies revealed that Pichia anomala YF07b could produce killer toxin against pathogenic yeasts in crabs while Pichia guilliermondii 1uv-small could produce high activity of extracellular inulinase. It is advisable to test if Pichia ohmeri YF04d obtained in this study is related to central-venous-catheter-associated infection.
Identification of salivary components that induce transition of hyphae to yeast in Candida albicans.
Leito, Jelani T D; Ligtenberg, Antoon J M; Nazmi, Kamran; Veerman, Enno C I
2009-10-01
Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 degrees C under aerobic conditions with 5% CO(2). Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.
Histoplasma capsulatum Depends on De Novo Vitamin Biosynthesis for Intraphagosomal Proliferation
Garfoot, Andrew L.; Zemska, Olga
2014-01-01
During infection of the mammalian host, Histoplasma capsulatum yeasts survive and reside within macrophages of the immune system. Whereas some intracellular pathogens escape into the host cytosol, Histoplasma yeasts remain within the macrophage phagosome. This intracellular Histoplasma-containing compartment imposes nutritional challenges for yeast growth and replication. We identified and annotated vitamin synthesis pathways encoded in the Histoplasma genome and confirmed by growth in minimal medium that Histoplasma yeasts can synthesize all essential vitamins with the exception of thiamine. Riboflavin, pantothenate, and biotin auxotrophs of Histoplasma were generated to probe whether these vitamins are available to intracellular yeasts. Disruption of the RIB2 gene (riboflavin biosynthesis) prevented growth and proliferation of yeasts in macrophages and severely attenuated Histoplasma virulence in a murine model of respiratory histoplasmosis. Rib2-deficient yeasts were not cleared from lung tissue but persisted, consistent with functional survival mechanisms but inability to replicate in vivo. In addition, depletion of Pan6 (pantothenate biosynthesis) but not Bio2 function (biotin synthesis) also impaired Histoplasma virulence. These results indicate that the Histoplasma-containing phagosome is limiting for riboflavin and pantothenate and that Histoplasma virulence requires de novo synthesis of these cofactor precursors. Since mammalian hosts do not rely on vitamin synthesis but instead acquire essential vitamins through diet, vitamin synthesis pathways represent druggable targets for therapeutics. PMID:24191299
Maciel, Natália O P; Piló, Fernanda B; Freitas, Larissa F D; Gomes, Fátima C O; Johann, Susana; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A
2013-01-01
The aims of this study were to characterise the yeasts present in the reconstituted fruit juices and coconut water extracted with "coconut machines", both collected from commercial outlets in a Brazilian city, and to investigate the antifungal resistance of isolates from these beverages that were able to grow at 37°C. The yeast population counts in the coconut water samples ranged from 1.7 to >6.5logcfu/ml, and in the reconstituted fruit juices, the counts ranged from 1.5 to >5.5logcfu/ml. Aureobasidium pullulans, Candida boidinii, Candidaintermedia, Candidaoleophila, Candidaparapsilosis, Candidasantamariae, Candidatropicalis, Clavispora lusitaniae, Kloeckera apis, Lachancea fermentati, Pichia fermentans and Rhodotorula mucilaginosa were the most frequent species isolated from these beverages. At least 18 yeast species isolated from these beverages have been reported as opportunistic pathogens. Eight yeast isolates were resistant to fluconazole, seven were resistant to itraconazole, and 26 to amphotericin B. Some yeast species were resistant to more than one of the antifungal drugs tested. Two isolates of C. tropicalis from the reconstituted fruit juices exhibited resistance to all three drugs. The presence of yeast strains that are resistant to commonly used antifungal drugs suggests a potential risk, at least to immunocompromised individuals who consume these beverages. Copyright © 2012 Elsevier B.V. All rights reserved.
The secretory pathway: exploring yeast diversity.
Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte
2013-11-01
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Mukaihara, Takafumi; Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji
2016-04-12
The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation. Copyright © 2016 Mukaihara et al.
Chemical signaling and insect attraction is a conserved trait in yeasts.
Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure
2018-03-01
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.
The lncRNA RZE1 Controls Cryptococcal Morphological Transition
Yang, Ence; Wang, Linqi; Cai, James J.; Lin, Xiaorong
2015-01-01
In the fungal pathogen Cryptococcus neoformans, the switch from yeast to hypha is an important morphological process preceding the meiotic events during sexual development. Morphotype is also known to be associated with cryptococcal virulence potential. Previous studies identified the regulator Znf2 as a key decision maker for hypha formation and as an anti-virulence factor. By a forward genetic screen, we discovered that a long non-coding RNA (lncRNA) RZE1 functions upstream of ZNF2 in regulating yeast-to-hypha transition. We demonstrate that RZE1 functions primarily in cis and less effectively in trans. Interestingly, RZE1’s function is restricted to its native nucleus. Accordingly, RZE1 does not appear to directly affect Znf2 translation or the subcellular localization of Znf2 protein. Transcriptome analysis indicates that the loss of RZE1 reduces the transcript level of ZNF2 and Znf2’s prominent downstream targets. In addition, microscopic examination using single molecule fluorescent in situ hybridization (smFISH) indicates that the loss of RZE1 increases the ratio of ZNF2 transcripts in the nucleus versus those in the cytoplasm. Taken together, this lncRNA controls Cryptococcus yeast-to-hypha transition through regulating the key morphogenesis regulator Znf2. This is the first functional characterization of a lncRNA in a human fungal pathogen. Given the potential large number of lncRNAs in the genomes of Cryptococcus and other fungal pathogens, the findings implicate lncRNAs as an additional layer of genetic regulation during fungal development that may well contribute to the complexity in these “simple” eukaryotes. PMID:26588844
Seghir, A; Boucherit-Otmani, Z; Sari-Belkharroubi, L; Boucherit, K
2017-03-01
The Candida yeasts are the fourth leading cause of death from systemic infections, the risk may increase when the infection also involves bacteria. Yeasts and bacteria can adhere to medical implants, such as peripheral vascular catheters, and form a multicellular structures called "mixed biofilms" more resistant to antimicrobials agents. However, the formation of mixed biofilms on implants leads to long-term persistent infections because they can act as reservoirs of pathogens that have poorly understood interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Janbon, Guilhem
2018-01-01
In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revealed that C. neoformans introns help to prevent transposon dissemination and protect genome integrity. These characteristics of cryptococcal introns are probably not unique to Cryptococcus, and this yeast likely can be considered as a model for intron-related studies in fungi.
Medeiros, Adriana O.; Missagia, Beatriz S.; Brandão, Luciana R.; Callisto, Marcos; Barbosa, Francisco A. R.; Rosa, Carlos A.
2012-01-01
Yeast communities were assessed in 14 rivers and four lakes from the Doce River basin in Brazil, during the rainy and dry seasons of the years 2000 and 2001. Water samples were collected at the subsurface in all sites. The following physical and chemical parameters were measured: temperature, dissolved oxygen, pH, electrical conductivity, total phosphorus, ortho-phosphate, ammonium, nitrate, nitrite and total nitrogen and the counts of faecal coliforms and heterotrophic bacteria were carried out to characterize the aquatic environmental sampled. The yeast counts were higher in aquatic environments with the highest counts of coliform and heterotrophic bacteria. These environments receive a high influx of domestic and industrial waste. A total of 317 isolates identified in forty eight yeast species were recorded in the sites sampled and the specie Aureobasidium pullulans were found in eleven out of eighteen sites sampled and some opportunistic pathogens such as the yeast species Candida krusei were isolated only in the polluted rivers with a positive correlation with the biotic and abiotic parameters that indicate sewage contamination. PMID:24031990
Garchitorena, A; Sokolow, S H; Roche, B; Ngonghala, C N; Jocque, M; Lund, A; Barry, M; Mordecai, E A; Daily, G C; Jones, J H; Andrews, J R; Bendavid, E; Luby, S P; LaBeaud, A D; Seetah, K; Guégan, J F; Bonds, M H; De Leo, G A
2017-06-05
Reducing the burden of neglected tropical diseases (NTDs) is one of the key strategic targets advanced by the Sustainable Development Goals. Despite the unprecedented effort deployed for NTD elimination in the past decade, their control, mainly through drug administration, remains particularly challenging: persistent poverty and repeated exposure to pathogens embedded in the environment limit the efficacy of strategies focused exclusively on human treatment or medical care. Here, we present a simple modelling framework to illustrate the relative role of ecological and socio-economic drivers of environmentally transmitted parasites and pathogens. Through the analysis of system dynamics, we show that periodic drug treatments that lead to the elimination of directly transmitted diseases may fail to do so in the case of human pathogens with an environmental reservoir. Control of environmentally transmitted diseases can be more effective when human treatment is complemented with interventions targeting the environmental reservoir of the pathogen. We present mechanisms through which the environment can influence the dynamics of poverty via disease feedbacks. For illustration, we present the case studies of Buruli ulcer and schistosomiasis, two devastating waterborne NTDs for which control is particularly challenging.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Author(s).
Youngchim, Sirida; Nosanchuk, Joshua D; Chongkae, Siriporn; Vanittanokom, Nongnuch
2017-01-01
Malassezia furfur, a constituent of the normal human skin flora, is an etiological agent of pityriasis versicolor, which represents one of the most common human skin diseases. Under certain conditions, both exogenous and endogenous, the fungus can transition from a yeast form to a pathogenic mycelial form. To develop a standardized medium for reproducible production of the mycelial form of M. furfur to develop and optimize susceptibility testing for this pathogen, we examined and characterized variables, including kojic acid and glycine concentration, agar percentage, and pH, to generate a chemically defined minimal medium on which specific inoculums of M. furfur generated the most robust filamentation. Next, we examined the capacity of ketoconazole to inhibit the formation of M. furfur mycelial form. Both low and high, 0.01, 0.05 and 0.1 µg/ml concentrations of ketoconazole significantly inhibited filamentation at 11.9, 54.5 and 86.7%, respectively. Although ketoconazole can have a direct antifungal effect on both M. furfur yeast and mycelial cells, ketoconazole also has a dramatic impact on suppressing morphogenesis. Since mycelia typified the pathogenic form of Malassezia infection, the capacity of ketoconazole to block morphogenesis may represent an additional important effect of the antifungal.
Giobbe, Sara; Marceddu, Salvatore; Scherm, Barbara; Zara, Giacomo; Mazzarello, Vittorio L; Budroni, Marilena; Migheli, Quirico
2007-12-01
A biofilm-forming strain of Pichia fermentans proved to be most effective in controlling brown rot on apple fruit when coinoculated into artificial wounds with a phytopathogenic isolate of Monilinia fructicola. Culture filtrates and autoclaved cells had no significant influence on the disease. When sprayed onto the apple fruit surface, this yeast formed a thin biofilm but failed to colonize the underlying tissues. When inoculated into wounds artificially inflicted to peach fruit or when sprayed onto the surface of peach fruit, the same strain showed an unexpected pathogenic behaviour, causing rapid decay of fruit tissues even in the absence of M. fructicola. Both optical and scanning electron microscopy were used to evaluate the pattern of fruit tissue colonization by P. fermentans. While on apple surface and within the apple wound the antagonist retained its yeast-like shape, colonization of peach fruit tissue was always characterized by a transition from budding growth to pseudohyphal growth. These results suggest that pseudohyphal growth plays a major role in governing the potential pathogenicity of P. fermentans, further emphasizing the importance of a thorough risk assessment for the safe use of any novel biocontrol agent.
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain.
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a “journey” for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its “virulence suitcase” to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must “open” the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease. PMID:29668825
USDA-ARS?s Scientific Manuscript database
This chapter describes the ascomycetous fungal genus Protomyces and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." Species of the genus Protomyces are plant pathogens that attack asters, wild celery, coriander and certain other plants. Symptoms include disruption of stems, lea...
Malassezia species in healthy skin and in dermatological conditions.
Prohic, Asja; Jovovic Sadikovic, Tamara; Krupalija-Fazlic, Mersiha; Kuskunovic-Vlahovljak, Suada
2016-05-01
The genus Malassezia comprises lipophilic species, the natural habitat of which is the skin of humans and other warm-blooded animals. However, these species have been associated with a diversity of dermatological disorders and even systemic infections. Pityriasis versicolor is the only cutaneous disease etiologically connected to Malassezia yeasts. In the other dermatoses, such as Malassezia folliculitis, seborrheic dermatitis, atopic dermatitis, and psoriasis, these yeasts have been suggested to play pathogenic roles either as direct agents of infection or as trigger factors because there is no evidence that the organisms invade the skin. Malassezia yeasts have been classified into at least 14 species, of which eight have been isolated from human skin, including Malassezia furfur, Malassezia pachydermatis, Malassezia sympodialis, Malassezia slooffiae, Malassezia globosa, Malassezia obtusa, Malassezia restricta, Malassezia dermatis, Malassezia japonica, and Malassezia yamatoensis. Distributions of Malassezia species in the healthy body and in skin diseases have been investigated using culture-based and molecular techniques, and variable results have been reported from different geographical regions. This article reviews and discusses the latest available data on the pathogenicity of Malassezia spp., their distributions in dermatological conditions and in healthy skin, discrepancies in the two methods of identification, and the susceptibility of Malassezia spp. to antifungals. © 2015 The International Society of Dermatology.
Gafni, Aviva; Calderon, Claudia E.; Harris, Raviv; Buxdorf, Kobi; Dafa-Berger, Avis; Zeilinger-Reichert, Einat; Levy, Maggie
2015-01-01
Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis as mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew. PMID:25814995
Grover, Ajay; McLean, Jennifer L; Troudt, JoLynn M; Foster, Chad; Izzo, Linda; Creissen, Elisabeth; MacDonald, Elisabeth; Troy, Amber; Izzo, Angelo A
2016-05-27
The use of novel vaccine delivery systems allows for the manipulation of the adaptive immune systems through the use of molecular adjuvants that target specific innate pathways. Such strategies have been used extensively for vaccines against cancer and multiple pathogens such as Mycobacterium tuberculosis. In the current study we used heat killed non-pathogenic recombinant Saccharomyces cerevisiae expressing M. tuberculosis antigen Rv1886c (fbpB, mpt59, Ag85B) as a delivery system in conjunction with its ability to stimulate innate immunity to determine its ability to induce immunity. We established that the recombinant yeast induced activated antigen specific T cells are capable of reducing the mycobacterial burden. Inoculation of the recombinant yeast after vaccination with BCG resulted in a systemic alteration of the phenotype of the immune response although this was not reflected in an increase in the reduction of the mycobacterial burden. Taken together the data suggest that heat killed yeast can induce multiple cytokines required for induction of protective immunity and can function as a vehicle for delivery of M. tuberculosis antigens in a vaccine formulation. In addition, while it can enhance the effector memory response induced by BCG, it had little effect on central memory responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis.
López-Martín, José M; Salviati, Leonardo; Trevisson, Eva; Montini, Giovanni; DiMauro, Salvatore; Quinzii, Catarina; Hirano, Michio; Rodriguez-Hernandez, Angeles; Cordero, Mario D; Sánchez-Alcázar, José A; Santos-Ocaña, Carlos; Navas, Plácido
2007-05-01
Coenzyme Q(10) (CoQ(10)) deficiency has been associated with an increasing number of clinical phenotypes that respond to CoQ(10) supplementation. In two siblings with encephalomyopathy, nephropathy and severe CoQ(10) deficiency, a homozygous mutation was identified in the CoQ(10) biosynthesis gene COQ2, encoding polyprenyl-pHB transferase. To confirm the pathogenicity of this mutation, we have demonstrated that human wild-type, but not mutant COQ2, functionally complements COQ2 defective yeast. In addition, an equivalent mutation introduced in the yeast COQ2 gene also decreases both CoQ(6) concentration and growth in respiratory-chain dependent medium. Polyprenyl-pHB transferase activity was 33-45% of controls in COQ2 mutant fibroblasts. CoQ-dependent mitochondrial complexes activities were restored in deficient fibroblasts by CoQ(10) supplementation, and growth rate was restored in these cells by either CoQ(10) or uridine supplementation. This work is the first direct demonstration of the pathogenicity of a COQ2 mutation involved in human disease, and establishes yeast as a useful model to study human CoQ(10) deficiency. Moreover, we demonstrate that CoQ(10) deficiency in addition to the bioenergetics defect also impairs de novo pyrimidine synthesis, which may contribute to the pathogenesis of the disease.
NASA Astrophysics Data System (ADS)
Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman
2017-01-01
Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.
Gérecová, Gabriela; Neboháčová, Martina; Zeman, Igor; Pryszcz, Leszek P; Tomáška, Ľubomír; Gabaldón, Toni; Nosek, Jozef
2015-05-01
The pathogenic yeast Candida albicans utilizes hydroxyderivatives of benzene via the catechol and hydroxyhydroquinone branches of the 3-oxoadipate pathway. The genetic basis and evolutionary origin of this catabolic pathway in yeasts are unknown. In this study, we identified C. albicans genes encoding the enzymes involved in the degradation of hydroxybenzenes. We found that the genes coding for core components of the 3-oxoadipate pathway are arranged into two metabolic gene clusters. Our results demonstrate that C. albicans cells cultivated in media containing hydroxybenzene substrates highly induce the transcription of these genes as well as the corresponding enzymatic activities. We also found that C. albicans cells assimilating hydroxybenzenes cope with the oxidative stress by upregulation of cellular antioxidant systems such as alternative oxidase and catalase. Moreover, we investigated the evolution of the enzymes encoded by these clusters and found that most of them share a particularly sparse phylogenetic distribution among Saccharomycotina, which is likely to have been caused by extensive gene loss. We exploited this fact to find co-evolving proteins that are suitable candidates for the missing enzymes of the pathway. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Early changes in shoot transcriptome of rice in response to Rhodotorula mucilaginosa JGTA-S1
Saha, Chinmay; Seal, Anindita
2015-01-01
Yeasts of Rhodotorula genus have been reported to show endophytic colonization in different plants. Some of the Rhodotorula species are found to exhibit plant growth promoting activities and also have been reported to protect plants against invading pathogens. A yeast strain closely related to Rhodotorula mucilaginosa was isolated from the endosphere of Typha angustifolia collected from a Uranium mine. A microarray analysis was performed to investigate the early changes in rice shoot transcripts in response to this yeast (R. mucilaginosa JGTA-S1). Transcriptional changes were monitored in 6 h and 24 h treated rice plant shoots as compared to 0 h control. The microarray data has been submitted to the NCBI GEO repository under the accession number of GSE64321. PMID:26697384
Taveira, Gabriel B; Mathias, Luciana S; da Motta, Olney V; Machado, Olga L T; Rodrigues, Rosana; Carvalho, André O; Teixeira-Ferreira, André; Perales, Jonas; Vasconcelos, Ilka M; Gomes, Valdirene M
2014-01-01
Plants defend themselves against pathogens with production of antimicrobial peptides (AMPs). Herein we describe the discovery of a new antifungal and antibacterial peptide from fruits of Capsicum annuum that showed similarity to an already well characterized family of plant AMPs, thionins. Other fraction composed of two peptides, in which the major peptide also showed similarity to thionins. Among the obtained fractions, fraction 1, which is composed of a single peptide of 7 kDa, was sequenced by Edman method and its comparative sequence analysis in database (nr) showed similarity to thionin-like peptides. Tests against microorganisms, fraction 1 presented inhibitory activity to the cells of yeast Saccharomyces cerevisiae, Candida albicans, and Candida tropicalis and caused growth reduction to the bacteria species Escherichia coli and Pseudomonas aeruginosa. Fraction 3 caused inhibitory activity only for C. albicans and C. tropicalis. This fraction was composed of two peptides of ∼7 and 10 kDa, and the main protein band correspondent to the 7 kDa peptide, also showed similarity to thionins. This plasma membrane permeabilization assay demonstrates that the peptides present in the fractions 1 and 3 induced changes in the membranes of all yeast strains, leading to their permeabilization. Fraction 1 was capable of inhibiting acidification of the medium of glucose-induced S. cerevisiae cells 78% after an incubation time of 30 min, and opposite result was obtained for C. albicans. Experiments demonstrate that the fraction 1 and 3 were toxic and induced changes in the membranes of all yeast strains, leading to their permeabilization. Copyright © 2013 Wiley Periodicals, Inc.
Khosravi, Ali Reza; Shokri, Hojjatollah; Nikaein, Donya; Mansouri, Parvin; Erfanmanesh, Ahmad; Chalangari, Reza; Katalin, Martis
2013-01-01
The purposes of this study were to determine the frequency of the yeast species obtained from patients with clinical features of onychomycosis and the in vitro antifungal susceptibility of the yeast species to propolis. A prospective study was carried out at the Mycology Research Center in Iran from 2010 to 2011. Clinical diagnosis was performed by direct microscopic examination and culture. Different yeast species were identified by morphological and biochemical tests. An antifungal susceptibility test to fluconazole (FLU) and propolis by the broth microdilution method was performed on each isolate. One hundred and twenty-eight fungal isolates were obtained. The most prevalent fungi were yeasts (81, 63.2%), dermatophytes (36, 28.1%), and nondermatophyte fungi (11, 8.6%). Fingernails were more affected than toenails (65.4% vs. 19.8%, respectively). The most frequently found species was Candida albicans (38.5%), followed by Candida spp. (23.1%), C. tropicalis (10.8%), C. kefyr (6.2%), C. krusei (3.1%), Malassezia globosa (4.6%), M. slooffiae (4.6%), and M. pachydermatis (1.5%). Of all yeast isolates (65), seven showed resistance to FLU. The average MIC of propolis for FLU-susceptible isolates was 5.8 μg/mL, whereas this value was 12.25 μg/mL for FLU-resistant isolates. Our results proved that the propolis inhibits the growth of pathogenic yeasts and confirmed the efficiency of propolis as an anti-Candida and anti-Malassezia agent.
Franco, Flávia P.; Santiago, Adelita C.; Henrique-Silva, Flávio; de Castro, Patrícia Alves; Goldman, Gustavo H.; Moura, Daniel S.; Silva-Filho, Marcio C.
2014-01-01
Plants respond to pathogens and insect attacks by inducing and accumulating a large set of defense-related proteins. Two homologues of a barley wound-inducible protein (BARWIN) have been characterized in sugarcane, SUGARWIN1 and SUGARWIN2 (sugarcane wound-inducible proteins). Induction of SUGARWINs occurs in response to Diatraea saccharalis damage but not to pathogen infection. In addition, the protein itself does not show any effect on insect development; instead, it has antimicrobial activities toward Fusarium verticillioides, an opportunistic fungus that usually occurs after D. saccharalis borer attacks on sugarcane. In this study, we sought to evaluate the specificity of SUGARWIN2 to better understand its mechanism of action against phytopathogens and the associations between fungi and insects that affect plants. We used Colletotrichum falcatum, a fungus that causes red rot disease in sugarcane fields infested by D. saccharalis, and Ceratocystis paradoxa, which causes pineapple disease in sugarcane. We also tested whether SUGARWIN2 is able to cause cell death in Aspergillus nidulans, a fungus that does not infect sugarcane, and in the model yeast Saccharomyces cerevisiae, which is used for bioethanol production. Recombinant SUGARWIN2 altered C. falcatum morphology by increasing vacuolization, points of fractures and a leak of intracellular material, leading to germling apoptosis. In C. paradoxa, SUGARWIN2 showed increased vacuolization in hyphae but did not kill the fungi. Neither the non-pathogenic fungus A. nidulans nor the yeast S. cerevisiae was affected by recombinant SUGARWIN2, suggesting that the protein is specific to sugarcane opportunistic fungal pathogens. PMID:24608349
Skin diseases associated with Malassezia yeasts: facts and controversies.
Gaitanis, Georgios; Velegraki, Aristea; Mayser, Peter; Bassukas, Ioannis D
2013-01-01
The implication of the yeast genus Malassezia in skin diseases has been characterized by controversy, since the first description of the fungal nature of pityriasis versicolor in 1846 by Eichstedt. This is underscored by the existence of Malassezia yeasts as commensal but also by their implication in diseases with distinct absence of inflammation despite the heavy fungal load (pityriasis versicolor) or with characteristic inflammation (eg, seborrheic dermatitis, atopic dermatitis, folliculitis, or psoriasis). The description of 14 Malassezia species and subsequent worldwide epidemiologic studies did not reveal pathogenic species but rather disease-associated subtypes within species. Emerging evidence demonstrates that the interaction of Malassezia yeasts with the skin is multifaceted and entails constituents of the fungal wall (melanin, lipid cover), enzymes (lipases, phospholipases), and metabolic products (indoles), as well as the cellular components of the epidermis (keratinocytes, dendritic cells, and melanocytes). Understanding the complexity of their interactions will highlight the controversies on the clinical presentation of Malassezia-associated diseases and unravel the complexity of skin homeostatic mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Alfonso, Claudia; López, Mónica; Arechavala, Alicia; Perrone, María Del Carmen; Guelfand, Liliana; Bianchi, Mario
2010-06-30
Fungal infections caused by yeasts have increased during the last decades and invasive forms represent a serious problem for human health. Candida albicans is the species most frequently isolated from clinical samples. However, other emerging yeast pathogens are increasingly responsible for mycotic infections, and some of them are resistant to some antifungal drugs. Consequently, it is necessary to have methods that can provide a rapid presumptive identification at species level. Numerous chromogenic agar media have been shown to be of value as diagnostic tools. We have compared a chromogenic medium, Brilliance Candida Agar, with CHROMagar Candida, the chromogenic medium most used in our country. A multicentre study was conducted in 16 Hospitals belonging to the Mycology Net of Buenos Aires City Government. A total of 240 yeast isolates were included in this research. The new chromogenic agar showed results very similar to those obtained with CHROMagar Candida. Copyright 2009 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Lowman, Douglas W; Greene, Rachel R; Bearden, Daniel W; Kruppa, Michael D; Pottier, Max; Monteiro, Mario A; Soldatov, Dmitriy V; Ensley, Harry E; Cheng, Shih-Chin; Netea, Mihai G; Williams, David L
2014-02-07
The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. (1)H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or "closed chain" structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae.
Patiño-Vera, M; Jiménez, B; Balderas, K; Ortiz, M; Allende, R; Carrillo, A; Galindo, E
2005-01-01
To develop a pilot-plant fermentation process for the production of the yeast Rhodotorula minuta, to be used as a biocontrol agent of mango anthracnose, using a low-cost culture medium. To develop a stable liquid formulation that preserve high viability of the yeast stored at 4 degrees C. Keeping constant the volumetric power input, a fermentation process was scaled-up from shake flasks to a 100 l bioreactor. Preharvest applications of the yeast resulted in postharvest anthracnose severity equal or lower than that observed with a chemical fungicide. Glycerol was added to the formulation as water activity reducer and xanthan gum as a viscosity-enhancing agent. Yeast initial concentration of 10(10) CFU ml(-1) resulted in 4-5 orders of magnitude decrease after 1 month of storage at 4 degrees C, whereas when it was formulated at 10(9) CFU ml(-1), the decrease was of two orders of magnitude in 6 months. The fermentation process was successfully scaled-up using a low-cost culture medium. Postharvest anthracnose severity could be considerably reduced using this yeast. Formulating the yeast at 10(9) CFU ml(-1) and adding glycerol (20%) and xanthan (5 g l(-1)) avoided both contamination and yeast sedimentation and it was able to preserve up to 10(7) CFU ml(-1) after 6 months at 4 degrees C. The yeast R. minuta is reported as a novel antagonistic micro-organism against the pathogen Colletotrichum gloeosporioides. Pilot plant production of this yeast allowed us to conduct field tests in commercial orchards during three harvest seasons. Yeast suspensions applied to mango trees reduced the fruit anthracnose severity in levels similar or better than chemical fungicides.
The yeast spectrum of the 'tea fungus Kombucha'.
Mayser, P; Fromme, S; Leitzmann, C; Gründer, K
1995-01-01
The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably consume controlled commercial Kombucha beverages.
Lowman, Douglas W.; Greene, Rachel R.; Bearden, Daniel W.; Kruppa, Michael D.; Pottier, Max; Monteiro, Mario A.; Soldatov, Dmitriy V.; Ensley, Harry E.; Cheng, Shih-Chin; Netea, Mihai G.; Williams, David L.
2014-01-01
The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. 1H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or “closed chain” structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae. PMID:24344127
Pande, Anupam; Non, Lemuel R; Romee, Rizwan; Santos, Carlos A Q
2017-04-01
Non-Candida opportunistic yeasts are emerging causes of bloodstream infection (BSI) in immunocompromised hosts. However, their clinical presentation, management, and outcomes in stem cell transplant (SCT) recipients are not well described. We report the first case to our knowledge of Pseudozyma BSI in a SCT recipient. He had evidence of cutaneous involvement, which has not been previously described in the literature. He became infected while neutropenic and receiving empiric micafungin, which is notable because Pseudozyma is reported to be resistant to echinocandins. He was successfully treated with the sequential use of liposomal amphotericin B and voriconazole. A review of the literature revealed nine reported instances of Pseudozyma fungemia. We performed a retrospective review of 3557 SCT recipients at our institution from January 2000 to June 2015 and identified four additional cases of non-Candida yeast BSIs. These include two with Cryptococcus, one with Trichosporon, and one with Saccharomyces. Pseudozyma and other non-Candida yeasts are emerging pathogens that can cause severe and disseminated infections in SCT recipients and other immunocompromised hosts. Clinicians should have a high degree of suspicion for echinocandin-resistant yeasts, if patients develop breakthrough yeast BSIs while receiving echinocandin therapy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts
Dujon, Bernard
2012-01-01
Summary: Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes. PMID:23204364
Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica
2015-04-16
Metschnikowia fructicola strain AP47 is a yeast antagonist against postharvest pathogens of fruits. The yeast was able to produce chitinase enzymes in the presence of pathogen cell wall. A novel chitinase gene MfChi (GenBank accession number HQ113461) was amplified from the genomic DNA of Metschnikowia fructicola AP47. Sequence analysis showed lack of introns, an open reading frame (ORF) of 1098 bp encoding a 365 amino acid protein with a calculated molecular weight of 40.9 kDa and a predicted pI of 5.27. MfChi was highly induced in Metschnikowia fructicola after interaction with Monilinia fructicola cell wall, suggesting a primary role of MfChi chitinase in the antagonistic activity of the yeast. The MfChi gene overexpressed in the heterologous expression system of Pichia pastoris KM71 and the recombinant chitinase showed high endochitinase activity towards 4-Nitrophenyl β-d-N,N',N″-triacetylchitotriose substrate. The antifungal activity of the recombinant chitinase was investigated against Monilinia fructicola and Monilinia laxa in vitro and on peaches. The chitinase significantly controlled the spore germination and the germ tube length of the tested pathogens in PDB medium and the mycelium diameter in PDA. The enzyme, when applied on peaches cv. Redhaven, successfully reduced brown rot severity. This work shows that the chitinase MfChi could be developed as a postharvest treatment with antimicrobial activity for fruit undergoing a short shelf life, and confirms that P. pastoris KM71 is a suitable microorganism for cost-effective large-scale production of recombinant chitinases. Copyright © 2015 Elsevier B.V. All rights reserved.
Peng, Haowen; Feng, Youjun; Zhu, Xiaohui; Lan, Xiuwan; Tang, Mei; Wang, Jinzi; Dong, Haitao; Chen, Baoshan
2011-12-01
Duo1, a major component of the Dam1 complex which has been found in two species of yeast (the budding yeast Saccharomyces cerevisae and the fission yeast Schizosaccharomyces pombe), is involved in mitosis-related chromosome segregation, while its relevance to pathogenicity in filamentous fungi remains unclear. This report elucidated this very fact in the case of the rice blast fungus Magnaporthe oryzae. A gene designated MoDUO1 that encodes a Duo1-like homolog (MoDuo1) was discovered in the M. oryzae genome. Two types of MoDUO1 mutants were obtained using genetic approaches of Agrobacterium-mediated gene disruption and homologous recombination. Both disruption and deletion of MoDUO1 can exert profound effects on the formation pattern of conidiophores and conidial morphology, such as abnormal nucleic numbers in conidia and delayed extension of infectious hyphae. Intriguingly, plant infection assays demonstrated that inactivation of MoDUO1 significantly attenuates the virulence in its natural host rice leaves, and functional complementation can restore it. Subcellular localization assays showed that MoDuo1 is mainly distributed in the cytosol of fungal cells. Proteomics-based investigation revealed that the expression of four mitosis-related proteins is shut down in the MoDUO1 mutant, suggesting that MoDuo1 may have a function in mitosis. In light of the fact that Duo1 orthologs are widespread in plant and human fungal pathogens, our finding may represent a common mechanism underlying fungal virulence. To the best of our knowledge, this is the first example of linking a Duo1-like homolog to the pathogenesis of a pathogenic fungus, which might provide clues to additional studies on the role of Dam1 complex in M. oryzae and its interaction with rice.
Kucharczyk, Roza; Ezkurdia, Nahia; Couplan, Elodie; Procaccio, Vincent; Ackerman, Sharon H.; Blondel, Marc; di Rago, Jean-Paul
2010-01-01
Summary Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). BN-PAGE analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of subcomplexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the mitochondrial inner membrane. PMID:20056103
Childers, Delma S.; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A. R.; Lenardon, Megan D.; Ballou, Elizabeth R.; MacCallum, Donna M.; Brown, Alistair J. P.
2016-01-01
Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is “Crabtree positive”, displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in environmental niches, the more flexible carbon assimilation strategies offered by Crabtree negativity enhance the ability of yeasts to colonize and infect the mammalian host. PMID:27073846
Cold atmospheric pressure air plasma jet for medical applications
NASA Astrophysics Data System (ADS)
Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.
2008-06-01
By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.
Evaluation of melanin production by Sporothrix luriei.
Cruz, Ingrid Ludmilla Rodrigues; Figueiredo-Carvalho, Maria Helena Galdino; Zancopé-Oliveira, Rosely Maria; Almeida-Paes, Rodrigo
2018-01-01
There is a paucity of studies on the cell biology of Sporothrix luriei, the less common of the pathogenic Sporothrix species worldwide. The production of DHN-melanin, eumelanin, and pyomelanin were evaluated on the mycelial and yeast forms of the S. luriei ATCC 18616 strain. The mycelial form of this species produced only pyomelanin, which protected the fungus against environmental stressors such as ultraviolet light, heat, and cold. The yeast form was unable to produce any of the tested melanin types. The lack of melanin in the parasitic form of S. luriei may be an explanation for its low frequency in human infections.
Augmenting the efficacy of fungal and mycotoxin control via chemosensitization
USDA-ARS?s Scientific Manuscript database
Antimycotic chemosensitization could serve as an effective method for control of fungal pathogens. In a chemo-biological platform to enhance antimycotic susceptibility of fungi or to overcome fungal tolerance to conventional antimycotic agents, the model yeast S. cerevisiae could be a functional too...
Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima
2012-07-01
To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7-23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09-93.48)% and (4.90-99.70)% v/v, respectively. This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans.
Takahashi, Hideo; Ueda, Keiichi; Itano, Eiko Nakagawa; Yanagisawa, Makio; Murata, Yoshiteru; Murata, Michiko; Yaguchi, Takashi; Murakami, Masaru; Kamei, Katsuhiko; Inomata, Tomo; Miyahara, Hirokazu; Sano, Ayako; Uchida, Senzo
2010-01-01
Genotypes of Candida spp. isolated from exhalation of 20 dolphins, 11 water samples from captive pools, and 24 oral cavities of staff members in an aquarium using a combination of multiple drug resistance 1 gene (MDR1) and the internal transcribed spacer (ITS) 1 5.8s-ITS 2 regions of ribosomal RNA gene (ITS rDNA) sequences were studied. The holding ratios of the dolphins, captive pools, and staff members were 70, 90, and 29%, respectively. Isolated pathogenic yeast species common to the dolphins and environments were Candida albicans and C. tropicalis. Identical genotypes in both Candida spp. based on the combination of MDR1 and ITSrDNA were found in some dolphins, between a dolphin and a staff, among dolphins and environments, and among environments. The results indicated the diffusion and exchange of pathogenic yeasts at the aquarium among dolphins and environments. The isolates at the aquarium showed higher rates of resistance to azole antifungals compared to reference isolates. PMID:21234394
Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima
2012-01-01
Objective To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. Results The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7–23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09–93.48)% and (4.90–99.70)% v/v, respectively. Conclusions This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans. PMID:23569970
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species
Watkins, Rhys A.; Johnston, Simon A.
2017-01-01
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans. PMID:28974017
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast
Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José M.; Arroyo, Javier
2017-01-01
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies. PMID:29371494
Non-interferometric quantitative phase imaging of yeast cells
NASA Astrophysics Data System (ADS)
Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu
2015-12-01
Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.
[Saccharomyces boulardii CNCM I-745 influences the gut-associated immune system].
Stier, Heike; Bischoff, Stephan C
2017-06-01
The impact of the intestinal microbiome is increasing steadily with regard to the immune function und the defense against pathogens. The medicinal yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) has been used as probiotic for the prevention and treatment of infectious diarrhea since more than 50 years. Meta-analyses confirm the clinical efficacy of S. boulardii to treat diarrhea of various origins in children and adults. This review article summarizes experimental studies on molecular and immunological mechanisms which explain the proven clinical efficacy of S. boulardii. Thereby the focus is on the gut-associated immune system. S. boulardii stimulates the release of immunoglobulins and cytokines and also induces the maturation of immune cells. This suggests that S. boulardii is capable of activating the unspecific immune system. In case of an infection, S. boulardii is able to bind pathogenic bacteria and to neutralize their toxins. Moreover, the medicinal yeast can attenuate the overreacting inflammatory immune response, by interfering with the signaling cascade, which is induced by the infection, and that way influences the innate and adaptive immune system. Thanks to these mechanisms the pathogens' potential of adhesion is lessened. Thus the intestinal epithelial layer is protected and diarrhea-induced fluid loss is reduced. The different molecular and immunological mechanisms investigated in the experimental studies prove the already confirmed very good clinical efficacy of S. boulardii in infectious diarrhea caused by pathogens such as bacteria, viruses, and fungi.
Shi, Meiqing; Li, Shu Shun; Zheng, Chunfu; Jones, Gareth J.; Kim, Kwang Sik; Zhou, Hong; Kubes, Paul; Mody, Christopher H.
2010-01-01
Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection. PMID:20424328
Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence
Brand, Alexandra
2012-01-01
Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo. PMID:22121367
Trckova, M; Faldyna, M; Alexa, P; Sramkova Zajacova, Z; Gopfert, E; Kumprechtova, D; Auclair, E; D'Inca, R
2014-02-01
The effects of live yeast Saccharomyces cerevisiae (strain CNCM I-4407, 10(10) cfu/g; Actisaf; Lesaffre Feed Additives, Marcq-en-Baroeul, France) on the severity of diarrhea, immune response, and growth performance in weaned piglets orally challenged with enterotoxigenic Escherichia coli (ETEC) strain O149:K88 were investigated. Live yeast was fed to sows and their piglets in the late gestation, suckling, and postweaning periods. Sows were fed a basal diet without (Control; n = 2) or with (Supplemented; n = 2) 1 g/kg of live yeast from d 94 of gestation and during lactation until weaning of the piglets (d 28). Suckling piglets of the supplemented sows were orally treated with 1 g of live yeast in porridge carrier 3 times a week until weaning. Weaned piglets were fed a basal starter diet without (Control; n = 19) or with (Supplemented; n = 15) 5 g of live yeast/kg feed for 2 wk. Significantly lower daily diarrhea scores (P < 0.05), duration of diarrhea (P < 0.01), and shedding of pathogenic ETEC bacteria (P < 0.05) in feces was detected in the supplemented piglets. Administration of live yeast significantly increased (P < 0.05) IgA levels in the serum of piglets. Evidence indicates that decreased infection-related stress and severity of diarrhea in yeast-fed weaned piglets positively affected their growth capacity in the postweaning period (P < 0.05). The results suggest that dietary supplementation with live yeast S. cerevisiae to sows and piglets in the late gestation, suckling, and postweaning periods can be useful in the reduction of the duration and severity of postweaning diarrhea caused by ETEC.
NASA Astrophysics Data System (ADS)
Beaussart, Audrey; Herman, Philippe; El-Kirat-Chatel, Sofiane; Lipke, Peter N.; Kucharíková, Soňa; van Dijck, Patrick; Dufrêne, Yves F.
2013-10-01
Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (~5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.
Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki
2017-08-10
The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.
Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Cheng, Jingwei; Xu, Yingchun; Lau, Susanna K P; Woo, Patrick C Y
2015-10-22
Internal transcribed spacer region (ITS) sequencing is the most extensively used technology for accurate molecular identification of fungal pathogens in clinical microbiology laboratories. Intra-genomic ITS sequence heterogeneity, which makes fungal identification based on direct sequencing of PCR products difficult, has rarely been reported in pathogenic fungi. During the process of performing ITS sequencing on 71 yeast strains isolated from various clinical specimens, direct sequencing of the PCR products showed ambiguous sequences in six of them. After cloning the PCR products into plasmids for sequencing, interpretable sequencing electropherograms could be obtained. For each of the six isolates, 10-49 clones were selected for sequencing and two to seven intra-genomic ITS copies were detected. The identities of these six isolates were confirmed to be Candida glabrata (n=2), Pichia (Candida) norvegensis (n=2), Candida tropicalis (n=1) and Saccharomyces cerevisiae (n=1). Multiple sequence alignment revealed that one to four intra-genomic ITS polymorphic sites were present in the six isolates, and all these polymorphic sites were located in the ITS1 and/or ITS2 regions. We report and describe the first evidence of intra-genomic ITS sequence heterogeneity in four different pathogenic yeasts, which occurred exclusively in the ITS1 and ITS2 spacer regions for the six isolates in this study.
Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Cheng, Jingwei; Xu, Yingchun; Lau, Susanna K. P.; Woo, Patrick C. Y.
2015-01-01
Internal transcribed spacer region (ITS) sequencing is the most extensively used technology for accurate molecular identification of fungal pathogens in clinical microbiology laboratories. Intra-genomic ITS sequence heterogeneity, which makes fungal identification based on direct sequencing of PCR products difficult, has rarely been reported in pathogenic fungi. During the process of performing ITS sequencing on 71 yeast strains isolated from various clinical specimens, direct sequencing of the PCR products showed ambiguous sequences in six of them. After cloning the PCR products into plasmids for sequencing, interpretable sequencing electropherograms could be obtained. For each of the six isolates, 10–49 clones were selected for sequencing and two to seven intra-genomic ITS copies were detected. The identities of these six isolates were confirmed to be Candida glabrata (n = 2), Pichia (Candida) norvegensis (n = 2), Candida tropicalis (n = 1) and Saccharomyces cerevisiae (n = 1). Multiple sequence alignment revealed that one to four intra-genomic ITS polymorphic sites were present in the six isolates, and all these polymorphic sites were located in the ITS1 and/or ITS2 regions. We report and describe the first evidence of intra-genomic ITS sequence heterogeneity in four different pathogenic yeasts, which occurred exclusively in the ITS1 and ITS2 spacer regions for the six isolates in this study. PMID:26506340
21 CFR 172.325 - Bakers yeast protein.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional... botulinum, or any other recognized microbial pathogen or any harmful microbial toxin. (d) The ingredient is used in food as a nutrient supplement as defined in § 170.3(o)(20) of this chapter. ...
Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger
2017-01-01
Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570
Hamprecht, Axel; Christ, Sara; Oestreicher, Tanja; Plum, Georg; Kempf, Volkhard A J; Göttig, Stephan
2014-04-01
The rapid and correct identification of pathogens is of paramount importance for the treatment of patients with invasive infections. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can speed up the identification of bacteria and fungi and has quickly been embraced by medical microbiology laboratories worldwide. Different MALDI-TOF systems have been compared in studies focussing on identification rates of different pathogens. Another aspect that has not been systematically assessed is the performance in daily routine and handling, which is important especially for microbiology routine laboratories. We compared two widespread commercial systems, Microflex LT Biotyper (Bruker) and VitekMS (bioMérieux), for the identification of 210 relevant clinical yeasts under routine conditions, using a time-saving direct transfer protocol. We assessed the need for an additional extraction step, the threshold for species identification and the duration of measurements with the two systems. The tested yeasts included 34 Candida albicans isolates, 144 non-albicans Candida spp. and 32 yeasts of different genera. The results of the two MS systems were compared with that of biochemical identification and, in case of discrepancies, DNA sequencing of the internal transcribed spacer or the large subunit of ribosomal DNA. Both systems correctly identified 96.2 % of isolates [202/210, non-significant (n.s.)]. Misidentifications were observed for VitekMS only (n = 5, no major errors, n.s.). VitekMS was the slower system (19.8 vs. 8.0 min for 10 samples, p = 0.002) but had the advantage of a more effective direct transfer protocol with less need for an additional extraction step.
Britz, Erika; Zulu, Thokozile G.; Mpembe, Ruth S.; Naicker, Serisha D.; Schwartz, Ilan S.
2017-01-01
ABSTRACT Disseminated emmonsiosis is an important AIDS-related mycosis in South Africa that is caused by Emergomyces africanus, a newly described and renamed dimorphic fungal pathogen. In vitro antifungal susceptibility data can guide management. Identification of invasive clinical isolates was confirmed phenotypically and by sequencing of the internal transcribed spacer region. Yeast and mold phase MICs of fluconazole, voriconazole, itraconazole, posaconazole, caspofungin, anidulafungin, micafungin, and flucytosine were determined with custom-made frozen broth microdilution (BMD) panels in accordance with Clinical and Laboratory Standards Institute recommendations. MICs of amphotericin B, itraconazole, posaconazole, and voriconazole were determined by Etest. Fifty unique E. africanus isolates were tested. The yeast and mold phase geometric mean (GM) BMD and Etest MICs of itraconazole were 0.01 mg/liter. The voriconazole and posaconazole GM BMD MICs were 0.01 mg/liter for both phases, while the GM Etest MICs were 0.001 and 0.002 mg/liter, respectively. The fluconazole GM BMD MICs were 0.18 mg/liter for both phases. The GM Etest MICs of amphotericin B, for the yeast and mold phases were 0.03 and 0.01 mg/liter. The echinocandins and flucytosine had very limited in vitro activity. Treatment and outcome data were available for 37 patients; in a multivariable model including MIC data, only isolation from blood (odds ratio [OR], 8.6; 95% confidence interval [CI], 1.3 to 54.4; P = 0.02) or bone marrow (OR, 12.1; 95% CI, 1.2 to 120.2; P = 0.03) (versus skin biopsy) was associated with death. In vitro susceptibility data support the management of disseminated emmonsiosis with amphotericin B, followed by itraconazole, voriconazole, or posaconazole. Fluconazole was a relatively less potent agent. PMID:28356416
Antifungal Properties of Cationic Phenylene Ethynylenes and Their Impact on β-Glucan Exposure.
Pappas, Harry C; Sylejmani, Rina; Graus, Matthew S; Donabedian, Patrick L; Whitten, David G; Neumann, Aaron K
2016-08-01
Candida species are the cause of many bloodstream infections through contamination of indwelling medical devices. These infections account for a 40% mortality rate, posing a significant risk to immunocompromised patients. Traditional treatments against Candida infections include amphotericin B and various azole treatments. Unfortunately, these treatments are associated with high toxicity, and resistant strains have become more prevalent. As a new frontier, light-activated phenylene ethynylenes have shown promising biocidal activity against Gram-positive and -negative bacterial pathogens, as well as the environmental yeast Saccharomyces cerevisiae In this study, we monitored the viability of Candida species after treatment with a cationic conjugated polymer [poly(p-phenylene ethynylene); PPE] or oligomer ["end-only" oligo(p-phenylene ethynylene); EO-OPE] by flow cytometry in order to explore the antifungal properties of these compounds. The oligomer was found to disrupt Candida albicans yeast membrane integrity independent of light activation, while PPE is able to do so only in the presence of light, allowing for some control as to the manner in which cytotoxic effects are induced. The contrast in killing efficacy between the two compounds is likely related to their size difference and their intrinsic abilities to penetrate the fungal cell wall. Unlike EO-OPE-DABCO (where DABCO is quaternized diazabicyclo[2,2,2]octane), PPE-DABCO displayed a strong propensity to associate with soluble β-glucan, which is expected to inhibit its ability to access and perturb the inner cell membrane of Candida yeast. Furthermore, treatment with PPE-DABCO unmasked Candida albicans β-glucan and increased phagocytosis by Dectin-1-expressing HEK-293 cells. In summary, cationic phenylene ethynylenes show promising biocidal activity against pathogenic Candida yeast cells while also exhibiting immunostimulatory effects. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Antifungal Properties of Cationic Phenylene Ethynylenes and Their Impact on β-Glucan Exposure
Pappas, Harry C.; Sylejmani, Rina; Graus, Matthew S.; Donabedian, Patrick L.; Whitten, David G.
2016-01-01
Candida species are the cause of many bloodstream infections through contamination of indwelling medical devices. These infections account for a 40% mortality rate, posing a significant risk to immunocompromised patients. Traditional treatments against Candida infections include amphotericin B and various azole treatments. Unfortunately, these treatments are associated with high toxicity, and resistant strains have become more prevalent. As a new frontier, light-activated phenylene ethynylenes have shown promising biocidal activity against Gram-positive and -negative bacterial pathogens, as well as the environmental yeast Saccharomyces cerevisiae. In this study, we monitored the viability of Candida species after treatment with a cationic conjugated polymer [poly(p-phenylene ethynylene); PPE] or oligomer [“end-only” oligo(p-phenylene ethynylene); EO-OPE] by flow cytometry in order to explore the antifungal properties of these compounds. The oligomer was found to disrupt Candida albicans yeast membrane integrity independent of light activation, while PPE is able to do so only in the presence of light, allowing for some control as to the manner in which cytotoxic effects are induced. The contrast in killing efficacy between the two compounds is likely related to their size difference and their intrinsic abilities to penetrate the fungal cell wall. Unlike EO-OPE-DABCO (where DABCO is quaternized diazabicyclo[2,2,2]octane), PPE-DABCO displayed a strong propensity to associate with soluble β-glucan, which is expected to inhibit its ability to access and perturb the inner cell membrane of Candida yeast. Furthermore, treatment with PPE-DABCO unmasked Candida albicans β-glucan and increased phagocytosis by Dectin-1-expressing HEK-293 cells. In summary, cationic phenylene ethynylenes show promising biocidal activity against pathogenic Candida yeast cells while also exhibiting immunostimulatory effects. PMID:27161628
Heintz-Buschart, Anna; Eickhoff, Holger; Hohn, Erwin; Bilitewski, Ursula
2013-03-10
Candida albicans is one of the most common opportunistic fungal pathogens, causing life-threatening disease in immunocompromised patients. As it is not primarily a pathogen, but can exist in a commensal state, we aimed at the identification of new anti-infective compounds which do not eradicate the fungus, but primarily disable a virulence determinant. The yeast–hyphae-dimorphism of C. albicans is considered a major contributor to fungal disease, as mutants locked into either yeast or hyphal state have been shown to be less virulent in the mouse-model. We devised a high-throughput screening procedure which allows us to find inhibitors of the induction of hyphae. Hyphae-formation was induced by nitrogen starvation at 37 °C and neutral pH in a reporter strain, which couples promoter activity of the hyphae-specific HWP1 to β-galactosidase expression. In a pilot screening of 720 novel synthetic compounds, we identified substances which inhibited the outgrowth of germ tubes. They belonged to chemical classes not yet known for antimycotic properties, namely methyl aryl-oxazoline carboxylates, dihydrobenzo[d]isoxazolones and thiazolo[4,5-e]benzoisoxazoles. In conclusion we developed a novel screening assay, which addresses the morphological switch from the yeast form of C. albicans to its hyphal form and identified novel chemical structures with activity against C. albicans. Copyright © 2012 Elsevier B.V. All rights reserved.
Navarro-Arias, María J; Dementhon, Karine; Defosse, Tatiana A; Foureau, Emilien; Courdavault, Vincent; Clastre, Marc; Le Gal, Solène; Nevez, Gilles; Le Govic, Yohann; Bouchara, Jean-Philippe; Giglioli-Guivarc'h, Nathalie; Noël, Thierry; Mora-Montes, Hector M; Papon, Nicolas
2017-09-01
Hybrid histidine kinases (HHKs) progressively emerge as prominent sensing proteins in the fungal kingdom and as ideal targets for future therapeutics. The group X HHK is of major interest, since it was demonstrated to play an important role in stress adaptation, host-pathogen interactions and virulence in some yeast and mold models, and particularly Chk1, that corresponds to the sole group X HHK in Candida albicans. In the present work, we investigated the role of Chk1 in the low-virulence species Candida guilliermondii, in order to gain insight into putative conservation of the role of group X HHK in opportunistic yeasts. We demonstrated that disruption of the corresponding gene CHK1 does not influence growth, stress tolerance, drug susceptibility, protein glycosylation or cell wall composition in C. guilliermondii. In addition, we showed that loss of CHK1 does not affect C. guilliermondii ability to interact with macrophages and to stimulate cytokine production by human peripheral blood mononuclear cells. Finally, the C. guilliermondii chk1 null mutant was found to be as virulent as the wild-type strain in the experimental model Galleria mellonella. Taken together, our results demonstrate that group X HHK function is not conserved in Candida species. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Wang, Long-Chi; Montalvo-Munoz, Fernando; Tsai, Yuan-Chan; Liang, Chung-Yi; Chang, Chun-Chuan; Lo, Wan-Sheng
2015-01-01
Filamentous growth is one of the key features of pathogenic fungi during the early infectious phase. The pseudohyphal development of yeast Saccharomyces cerevisiae shares similar characteristics with hyphae elongation in pathogenic fungi. The expression of FLO11 is essential for adhesive growth and filament formation in yeast and is governed by a multilayered transcriptional network. Here we discovered a role for the histone acetyltransferase general control nonderepressible 5 (Gcn5) in regulating FLO11-mediated pseudohyphal growth. The expression patterns of FLO11 were distinct in haploid and diploid yeast under amino acid starvation induced by 3-amino-1,2,4-triazole (3AT). In diploids, FLO11 expression was substantially induced at a very early stage of pseudohyphal development and decreased quickly, but in haploids, it was gradually induced. Furthermore, the transcription factor Gcn4 was recruited to the Sfl1-Flo8 toggle sites at the FLO11 promoter under 3AT treatment. Moreover, the histone acetylase activity of Gcn5 was required for FLO11 induction. Finally, Gcn5 functioned as a negative regulator of the noncoding RNA ICR1, which is known to suppress FLO11 expression. Gcn5 plays an important role in the regulatory network of FLO11 expression via Gcn4 by downregulating ICR1 expression, which derepresses FLO11 for promoting pseudohyphal development. PMID:25922832
Moscetti, Roberto; Carletti, Letizia; Monarca, Danilo; Cecchini, Massimo; Stella, Elisabetta; Massantini, Riccardo
2013-08-30
Apples are subject to a high degree of fungal diseases, but the use of synthetic fungicides has been questioned because of public safety concerns, social rejection, and the development of resistance in pathogens. Thus, development of new postharvest treatments against apple fungal pathogens is necessary. Most studies have reported their effectiveness, but not all report the effects on the quality and storability of the fruit. In this study, the effects of physical (hot water), chemical (quercetin) and biological (yeast antagonist) microfungal control on the quality of 'Golden Delicious' apple during storage at 2 ± 0.5 °C, and 90 ± 2% of relative humidity, for 2 months were investigated and compared. Heat-treated apples exhibited peel fruit damage (surface browning and internal breakdown disorders) and promoted ripening in the fruit. The quercetin caustic spray caused the development of peel chemical burn in all treated fruit. Both yeast antagonist and quercetin treatments did not affect the apple ripening process but stimulated an increase in ethylene production and in respiratory activity. The data indicated that the effects on quality and storability were dependent on the method of treatment used, and antagonistic yeast was the best microfungal control because of it did not cause any disorders or negative effects on apple quality during storage. © 2013 Society of Chemical Industry.
Phylogenetics of Saccharomycetales, the ascomycete yeasts.
Suh, Sung-Oui; Blackwell, Meredith; Kurtzman, Cletus P; Lachance, Marc-André
2006-01-01
Ascomycete yeasts (phylum Ascomycota: subphylum Saccharomycotina: class Saccharomycetes: order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals and their interfaces. A few species account for most human mycotic infections, and fewer than 10 species are plant pathogens. Yeasts are responsible for important industrial and biotechnological processes, including baking, brewing and synthesis of recombinant proteins. Species such as Saccharomyces cerevisiae are model organisms in research, some of which led to a Nobel Prize. Yeasts usually reproduce asexually by budding, and their sexual states are not enclosed in a fruiting body. The group also is well defined by synapomorphies visible at the ultrastructural level. Yeast identification and classification changed dramatically with the availability of DNA sequencing. Species identification now benefits from a constantly updated sequence database and no longer relies on ambiguous growth tests. A phylogeny based on single gene analyses has shown the order to be remarkably divergent despite morphological similarities among members. The limits of many previously described genera are not supported by sequence comparisons, and multigene phylogenetic studies are under way to provide a stable circumscription of genera, families and orders. One recent multigene study has resolved species of the Saccharomycetaceae into genera that differ markedly from those defined by analysis of morphology and growth responses, and similar changes are likely to occur in other branches of the yeast tree as additional sequences become available.
A Yeast Model of FUS/TLS-Dependent Cytotoxicity
Ju, Shulin; Tardiff, Daniel F.; Han, Haesun; Divya, Kanneganti; Zhong, Quan; Maquat, Lynne E.; Bosco, Daryl A.; Hayward, Lawrence J.; Brown, Robert H.; Lindquist, Susan; Ringe, Dagmar; Petsko, Gregory A.
2011-01-01
FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression. PMID:21541368
In vitro phagocytosis of several Candida berkhout species by murine leukocytes.
Fontenla de Petrino, S E; Bibas Bonet de Jorrat, M E; Sirena, A
1985-03-01
In vitro phagocytosis of thirteen Candida berkhout species by rat leukocytes was studied to assess a possible correlation between pathogenicity and phagocytosis Yeast-leukocyte suspensions were mixed up for 3 h and phagocytic index, germ-tube formation and leukocyte candidacidal activity were evaluated. Highest values for phagocytosis were reached in all cases at the end of the first hour. Leukocyte candidacidal activity was absent. Only C. albicans produced germ-tubes. The various phagocytosis indices were determined depending on the Candida species assayed. Under these conditions, the more pathogenic species presented the lower indices of phagocytosis. It is determined that the in vitro phagocytic index may bear a close relationship with the pathogenicity of the Candida berkhout.
USDA-ARS?s Scientific Manuscript database
Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we ...
NASA Astrophysics Data System (ADS)
Sadyś, M.; Skjøth, C. A.; Kennedy, R.
2014-02-01
We propose here the hypothesis that all of United Kingdom (UK) is likely to be affected by Ganoderma sp. spores, an important plant pathogen. We suggest that the main sources of this pathogen, which acts as a bioaerosol, are the widely scattered woodlands in the country, although remote sources must not be neglected. The hypothesis is based on related studies on bioaerosols and supported by new observations from a non-forest site and model calculations to support our hypothesis.
USDA-ARS?s Scientific Manuscript database
The yeast form (blastospore) of the dimorphic insect-pathogenic fungus Beauveria bassiana can be rapidly produced using liquid fermentation methods but is generally unable to survive rapid dehydration processes or storage under non-refrigerated conditions. In this study, we evaluated the influence o...
1986-11-15
assignment to treatment groups all rats were subjected to physical examination and specimens were examined for pathogenic bacteria, molds , yeasts, M...HISTOPATHOLOGY: >NO OBSFVABLE ABNORMALITIES. NOT APPLICABLE 180 THE EF"FECTS OF SUBCHRONIC EPOSURES TO RED PHOSPHORUS / BUTYL RUBBER (RP/BR) COMBUSTION
USDA-ARS?s Scientific Manuscript database
The yeast Metschnikowia fructicola was reported as an efficient biological control agent of postharvest diseases of fruits and vegetables. Several mechanism of action by which M. fructicola inhibit postharvest pathogens were suggested including iron-binding compounds, induction of defense signaling...
Yeast Surface-Displayed H5N1 Avian Influenza Vaccines
Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey
2016-01-01
Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309
Potential benefits of the application of yeast starters in table olive processing.
Arroyo-López, Francisco N; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio
2012-01-01
Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.
Potential benefits of the application of yeast starters in table olive processing
Arroyo-López, Francisco N.; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio
2012-01-01
Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.
Fernández, Natalia V; Mestre, M Cecilia; Marchelli, Paula; Fontenla, Sonia B
2012-04-01
Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Pfüller, Roland; Gräser, Yvonne; Erhard, Marcel; Groenewald, Marizeth
2011-01-01
Some members of the genus Candida are among the most common human fungal pathogens and cause serious diseases especially in immunocompromised people. A yeast was isolated from a blood culture from an immunocompromised cancer patient who suffered from acute pneumonia. The growth characteristics of the yeast on CHROMagar Candida were similar to those of Candida tropicalis, whereas the API ID 32C system identified the yeast as Candida silvicola. On the basis of the nucleotide divergence in the D1/D2 domain of the 26S nuclear rRNA (nrRNA) gene, as well as the internal transcribed spacer (ITS) domain of the nrRNA gene region, a new species, Candida pseudoaaseri sp. nov. with type strain VK065094 (CBS 11170T), which was found to be closely related to Candida aaseri, is proposed. While C. aaseri strains were susceptible to all tested antifungals, the new species is resistant to flucytosine and may also be distinguished from C. aaseri by its ability to assimilate l-rhamnose, whereas its colony morphology on CHROMagar Candida may be helpful for differentiation. PMID:21976765
Lutz, M Cecilia; Lopes, Christian A; Rodriguez, M Eugenia; Sosa, M Cristina; Sangorrín, Marcela P
2013-06-17
Putative mechanisms of action associated with the biocontrol capacity of four yeast strains (Cryptoccocus albidus NPCC 1248, Pichia membranifaciens NPCC 1250, Cryptoccocus victoriae NPCC 1263 and NPCC 1259) against Penicillium expansum and Botrytis cinerea were studied by means of in vitro and in situ assays. C. albidus(YP), a commercial yeast was also evaluated for comparative purposes. The yeast strains exhibited a variety of different mechanisms including: wound colonization, germination inhibition, biofilm formation, secretion of killer toxins, competition for nutrient and secretion of hydrolytic enzymes (protease, chitinase and glucanase). The relationship between strains (and their associated antagonist mechanisms) and in situ antagonist activity was also evaluated. Results indicate that mechanisms such as production of hydrolytic enzymes, the ability for colonization of wounds, production of killer toxin and inhibition of germination are the most important for biocontrol activity. Our study indicate that multiple modes of action may explain why P. membranifaciens NPCC 1250 and C. victoriae NPCC 1263 provided excellent control of postharvest pears disease. Copyright © 2013 Elsevier B.V. All rights reserved.
McLaughlin, R. J.; Wilson, C. L.; Chalutz, E.; Kurtzman, C. P.; Fett, W. F.; Osman, S. F.
1990-01-01
In previous studies workers have shown that three yeast strains (strains US-7, 82, and 101) have biological control activity against various postharvest fungal pathogens of fruits and vegetables, including Penicillium rots of apples and citrus and Botrytis rot of apples. In these reports the researchers have described these strains as Debaryomyces hansenii (anamorph, Candida famata) or Candida sp. strains. In this study we performed additional physiological, DNA reassociation, and mannan characterization tests that clearly established a new taxonomic classification for these strains, Candida guilliermondii. We also propose amendment of the physiological test profile in the taxonomic description of C. guilliermondii. PMID:16348361
Methodological Issues in Antifungal Susceptibility Testing of Malassezia pachydermatis
Peano, Andrea; Pasquetti, Mario; Tizzani, Paolo; Chiavassa, Elisa; Guillot, Jacques; Johnson, Elizabeth
2017-01-01
Reference methods for antifungal susceptibility testing of yeasts have been developed by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antibiotic Susceptibility Testing (EUCAST). These methods are intended to test the main pathogenic yeasts that cause invasive infections, namely Candida spp. and Cryptococcus neoformans, while testing other yeast species introduces several additional problems in standardization not addressed by these reference procedures. As a consequence, a number of procedures have been employed in the literature to test the antifungal susceptibility of Malassezia pachydermatis. This has resulted in conflicting results. The aim of the present study is to review the procedures and the technical parameters (growth media, inoculum preparation, temperature and length of incubation, method of reading) employed for susceptibility testing of M. pachydermatis, and when possible, to propose recommendations for or against their use. Such information may be useful for the future development of a reference assay. PMID:29371554
Microbial biofilms on facial prostheses.
Ariani, Nina; Vissink, Arjan; van Oort, Robert P; Kusdhany, Lindawati; Djais, Ariadna; Rahardjo, Tri Budi W; van der Mei, Henny C; Krom, Bastiaan P
2012-01-01
The composition of microbial biofilms on silicone rubber facial prostheses was investigated and compared with the microbial flora on healthy and prosthesis-covered skin. Scanning electron microscopy showed the presence of mixed bacterial and yeast biofilms on and deterioration of the surface of the prostheses. Microbial culturing confirmed the presence of yeasts and bacteria. Microbial colonization was significantly increased on prosthesis-covered skin compared to healthy skin. Candida spp. were exclusively isolated from prosthesis-covered skin and from prostheses. Biofilms from prostheses showed the least diverse band-profile in denaturing gradient gel electrophoresis (DGGE) whereas prosthesis-covered skin showed the most diverse band-profile. Bacterial diversity exceeded yeast diversity in all samples. It is concluded that occlusion of the skin by prostheses creates a favorable niche for opportunistic pathogens such as Candida spp. and Staphylococcus aureus. Biofilms on healthy skin, skin underneath the prosthesis and on the prosthesis had a comparable composition, but the numbers present differed according to the microorganism.
Hurtado, Cleofe A. R.; Rachubinski, Richard A.
1999-01-01
The yeast-to-hypha morphological transition (dimorphism) is typical of many pathogenic fungi. Dimorphism has been attributed to changes in temperature and nutritional status and is believed to constitute a mechanism of response to adverse conditions. We have isolated and characterized a gene, MHY1, whose transcription is dramatically increased during the yeast-to-hypha transition in Yarrowia lipolytica. Deletion of MHY1 is viable and has no effect on mating, but it does result in a complete inability of cells to undergo mycelial growth. MHY1 encodes a C2H2-type zinc finger protein, Mhy1p, which can bind putative cis-acting DNA stress response elements, suggesting that Mhy1p may act as a transcription factor. Interestingly, Mhy1p tagged with a hemagglutinin epitope was concentrated in the nuclei of actively growing cells found at the hyphal tip. PMID:10322005
Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*
Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders
2013-01-01
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes. PMID:23800426
Takemoto, Kazuhiro; Aie, Kazuki
2017-05-25
Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.
Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies
Lasserre, Jean-Paul; Dautant, Alain; Aiyar, Raeka S.; Kucharczyk, Roza; Glatigny, Annie; Tribouillard-Tanvier, Déborah; Rytka, Joanna; Blondel, Marc; Skoczen, Natalia; Reynier, Pascal; Pitayu, Laras; Rötig, Agnès; Delahodde, Agnès; Steinmetz, Lars M.; Dujardin, Geneviève; Procaccio, Vincent; di Rago, Jean-Paul
2015-01-01
ABSTRACT Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. PMID:26035862
Uptake of yeast (Saccharomyces boulardii) in normal and rotavirus treated intestine.
Cartwright-Shamoon, J; Dickson, G R; Dodge, J; Carr, K E
1996-01-01
BACKGROUND: There has recently been a growing interest in the use of the non-pathogenic yeast Saccharomyces boulardii, in the treatment of gastrointestinal disorders, including diarrhoea. The full effects of administration of the yeast are not fully understood. AIMS: To investigate the morphological effects of inoculated S boulardii on mouse intestinal villi, both in control animals and those treated with rotavirus. METHODS: Seven day old BALB/c seronegative mice were intubated with either rotavirus (30 microliters orally) or S boulardii (1.5 g/kg) or both rotavirus and S boulardii administered together. Control animals were given saline only. Animals were killed by decapitation 48 hours post-treatment. The middle region of the small intestine was studied using light microscopy and transmission and scanning electron microscopy, including backscattered electron imaging. RESULTS: Animals treated with rotavirus with or without S boulardii developed severe diarrhoea and showed morphological villous changes such as stromal separation and increased epithelial vacuolation. Specimens treated with S boulardii contained yeast particles within the mucosal tissues. CONCLUSION: The administration of S boulardii did not influence the changes produced by rotavirus, but yeast particles appeared to be taken up by the villous mucosa, with the predominant route apparently being uptake between adjacent epithelial cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8991857
Lemos Junior, Wilson José Fernandes; Bovo, Barbara; Nadai, Chiara; Crosato, Giulia; Carlot, Milena; Favaron, Francesco; Giacomini, Alessio; Corich, Viviana
2016-01-01
Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs), tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after 5 days, a concentration of 106 cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glicerol content and a reduction of ethanol and acetic acid concentrations. The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process. This work introduces new possibilities in wine yeast selection programs in order to identify innovative wine yeasts that are simultaneously antifungal agents in vineyards and alternative wine starters for grape must fermentation and open new perspective to a more integrated strategy for increasing wine quality. PMID:27574517
Nenoff, P; Reinel, D; Krüger, C; Grob, H; Mugisha, P; Süß, A; Mayser, P
2015-07-01
Besides dermatophytoses, a broad range of cutaneous infections due to yeasts and moulds may occur in subtropical and tropical countries where they can affect travellers. Not to be forgotten are endemic occurring dimorphic or biphasic fungi in countries with hot climate, which cause systemic and secondary cutaneous infections in immunosuppressed and immunocompetent people. In the tropics, the prevalence of pityriasis versicolor, caused by the lipophilic yeast Malassezia spp., is about 30-40 %, in distinct areas even 50 %. Increased hyperhidrosis under tropical conditions and simultaneously humidity congestion have to be considered as significant disposing factors for pityriasis versicolor. In tropical countries, therefore, an exacerbation of a preexisting pityriasis versicolor in travellers is not rare. Today, mostly genital yeast infections due to the new species Candida africana can be found worldwide. Due to migration from Africa this yeast pathogen has reached Germany and Europe. Eumycetomas due to mould fungi are rarely diagnosed in Europe. These deep cutaneous mould infections are only found in immigrants from African countries. The therapy of eumycetoma is protracted and often not successful. Cutaneous cryptococcoses due to the yeast species Cryptococcus neoformans and Cryptococcus gattii occur worldwide; however, they are found more frequently in the tropics. Immunosuppressed patients, especially those with HIV/AIDS, are affected by cryptococcoses. Furthermore, Cryptococcus gattii also causes infections in immunocompetent hosts in Central Africa, Australia, California, and Central America.Rarely found are infections due to dimorphic fungi after travel to countries where these fungal pathogens are endemic. In individual cases, cutaneous or lymphogenic transferred sporotrichosis due to Sporothrix schenkii can occur. Furthermore, scarcely known is secondary cutaneous coccidioidomycosis due to Coccidioides immitis after travelling to desert-like endemic regions in southwestern states of the United States and in Latin America, where primary respiratory infection due to this biphasic fungus can be acquired. The antifungal agent itraconazole is the treatment of choice for sporotrichosis and coccidioidomycosis. Talaromyces marneffei-until recently known as Penicillium marneffei-is only found in Southeastern Asia. Mycosis due to this dimorphic fungus has to be considered as an AIDS-defining opportunistic infection. After hematogeneous spread, Talaromyces marneffei affects the skin and mucous membranes of the mouth. Amphotericin B and itraconazole can be used for therapy.
Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv
2016-01-01
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548
Kinetoplastids: related protozoan pathogens, different diseases
Stuart, Ken; Brun, Reto; Croft, Simon; Fairlamb, Alan; Gürtler, Ricardo E.; McKerrow, Jim; Reed, Steve; Tarleton, Rick
2008-01-01
Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better. PMID:18382742
Simultaneous detection of multiple lower genital tract pathogens by an impedimetric immunochip.
Chiriacò, Maria Serena; Primiceri, Elisabetta; De Feo, Francesco; Montanaro, Alessandro; Monteduro, Anna Grazia; Tinelli, Andrea; Megha, Marcella; Carati, Davide; Maruccio, Giuseppe
2016-05-15
Lower genital tract infections caused by both sexually and not-sexually transmitted pathogens in women are a key public health priority worldwide, especially in developing countries. Since standard analyses are time-consuming, appropriate therapeutic intervention is often neglected or delayed. Lab-on-chips and biosensors open new perspectives and offer innovative tools to simplify the diagnosis by medical staff, especially in countries with inadequate resources. Here we report a biosensing platform based on Electrochemical Impedance Spectroscopy (EIS) that allows multiplexed detection of Candida albicans, Streptococcus agalactiae and Chlamydia trachomatis with a single biochip, enabling a quick screening thanks to the presence of different immobilized antibodies, each specific for one of the different target pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.
TDR Targets: a chemogenomics resource for neglected diseases.
Magariños, María P; Carmona, Santiago J; Crowther, Gregory J; Ralph, Stuart A; Roos, David S; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C; Agüero, Fernán
2012-01-01
The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context.
TDR Targets: a chemogenomics resource for neglected diseases
Magariños, María P.; Carmona, Santiago J.; Crowther, Gregory J.; Ralph, Stuart A.; Roos, David S.; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C.; Agüero, Fernán
2012-01-01
The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context. PMID:22116064
Hollingsworth, T. Déirdre; Pulliam, Juliet R.C.; Funk, Sebastian; Truscott, James E.; Isham, Valerie; Lloyd, Alun L.
2015-01-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease. PMID:25843376
Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L
2015-03-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Superficial fungal infections.
Schwartz, Robert A
Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.
USDA-ARS?s Scientific Manuscript database
A biofilm-forming strain of Pichia fermentans was found to be a very strong antagonist against brown rot and grey mold in artificially wounded apple fruit when co-inoculated with either Monilinia fructicola or Botrytis cinerea, respectively. The same strain of yeast; however, was an aggressive path...
USDA-ARS?s Scientific Manuscript database
Many yeast pathogens of humans have become resistant to currently available drugs. Certain types of compounds can increase efficacy of antimycotic drugs through a process termed chemosensitization. Chemosensitizing efficacy was determined in Candida albicans, C. krusei, C. tropicalis and Cryptococcu...
Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio
2014-02-01
trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. © 2014 FEBS.
The Cell Wall-Associated Proteins in the Dimorphic Pathogenic Species of Paracoccidioides.
Puccia, Rosana; Vallejo, Milene C; Longo, Larissa V G
2017-01-01
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis (PCM). They are dimorphic ascomycetes that grow as filaments at mild temperatures up to 28oC and as multibudding pathogenic yeast cells at 37oC. Components of the fungal cell wall have an important role in the interaction with the host because they compose the cell outermost layer. The Paracoccidioides cell wall is composed mainly of polysaccharides, but it also contains proportionally smaller rates of proteins, lipids, and melanin. The polysaccharide cell wall composition and structure of Paracoccidioides yeast cells, filamentous and transition phases were studied in detail in the past. Other cell wall components have been better analyzed in the last decades. The present work gives to the readers a detailed updated view of cell wall-associated proteins. Proteins that have been localized at the cell wall compartment using antibodies are individually addressed. We also make an overview about PCM, the Paracoccidioides cell wall structure, secretion mechanisms, and fungal extracellular vesicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Arnold, Benjamin F; van der Laan, Mark J; Hubbard, Alan E; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L; Moss, Delynn M; Nutman, Thomas B; Priest, Jeffrey W; Lammie, Patrick J
2017-05-01
Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman's rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets.
van der Laan, Mark J.; Hubbard, Alan E.; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L.; Moss, Delynn M.; Nutman, Thomas B.; Priest, Jeffrey W.; Lammie, Patrick J.
2017-01-01
Background Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. Methods/Principal findings We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman’s rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. Conclusions/Significance Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets. PMID:28542223
Schröder, Markus S; Martinez de San Vicente, Kontxi; Prandini, Tâmara H R; Hammel, Stephen; Higgins, Desmond G; Bagagli, Eduardo; Wolfe, Kenneth H; Butler, Geraldine
2016-11-01
Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.
Hilty, Jeremy; Smulian, A. George; Newman, Simon L.
2008-01-01
Summary Histoplasma capsulatum is a dimorphic fungal pathogen that survives and replicates within macrophages (Mϕ). To identify specific genes required for intracellular survival, we utilized Agrobacterium tumefaciens-mediated mutagenesis, and screened for H. capsulatum insertional mutants that were unable to survive in human Mϕ. One colony was identified that had an insertion within VMA1, the catalytic subunit A of the vacuolar ATPase (V-ATPase). The vma1 mutant (vma1::HPH) grew normally on iron replete medium, but not on iron deficient media. On iron deficient medium, the growth of the vma1 mutant was restored in the presence of wild type (WT) H. capsulatum yeasts, or the hydroxamate siderophore, rhodotorulic acid. However, the inability to replicate within Mϕ was only partially restored by the addition of exogenous iron. The vma1::HPH mutant also did not grow as a mold at 28°C. Complementation of the mutant (vma/VMA1) restored its ability to replicate in Mϕ, grow on iron poor medium, and grow as a mold at 28°C. The vma1::HPH mutant was avirulent in a mouse model of histoplasmosis, whereas the vma1/VMA1 strain was as pathogenic as WT yeasts. These studies demonstrate the importance of V-ATPase function in the pathogenicity of H. capsulatum, in iron homeostasis, and in fungal dimorphism. PMID:18699866
Fiori, Stefano; Scherm, Barbara; Liu, Jia; Farrell, Robert; Mannazzu, Ilaria; Budroni, Marilena; Maserti, Bianca E; Wisniewski, Michael E; Migheli, Quirico
2012-11-01
Pichia fermentans (strain DISAABA 726) is an effective biocontrol agent against Monilinia fructicola and Botrytis cinerea when inoculated in artificially wounded apple fruit but is an aggressive pathogen when inoculated on wounded peach fruit, causing severe fruit decay. Pichia fermentans grows as budding yeast on apple tissue and exhibits pseudohyphal growth on peach tissue, suggesting that dimorphism may be associated with pathogenicity. Two complementary suppressive subtractive hybridization (SSH) strategies, that is, rapid subtraction hybridization (RaSH) and PCR-based subtraction, were performed to identify genes differentially expressed by P. fermentans after 24-h growth on apple vs. peach fruit. Gene products that were more highly expressed on peach than on apple tissue, or vice versa, were sequenced and compared with available yeast genome sequence databases. Several of the genes more highly expressed, when P. fermentans was grown on peach, were related to stress response, glycolysis, amino acid metabolism, and alcoholic fermentation but surprisingly not to cell wall degrading enzymes such as pectinases or cellulases. The dual activity of P. fermentans as both a biocontrol agent and a pathogen emphasizes the need for a thorough risk analysis of potential antagonists to avoid unpredictable results that could negatively impact the safe use of postharvest biocontrol strategies. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Kingsbury, Joanne M.; Goldstein, Alan L.; McCusker, John H.
2006-01-01
Saccharomyces cerevisiae is both an emerging opportunistic pathogen and a close relative of pathogenic Candida species. To better understand the ecology of fungal infection, we investigated the importance of pathways involved in uptake, metabolism, and biosynthesis of nitrogen and carbon compounds for survival of a clinical S. cerevisiae strain in a murine host. Potential nitrogen sources in vivo include ammonium, urea, and amino acids, while potential carbon sources include glucose, lactate, pyruvate, and fatty acids. Using mutants unable to either transport or utilize these compounds, we demonstrated that no individual nitrogen source was essential, while glucose was the most significant primary carbon source for yeast survival in vivo. Hydrolysis of the storage carbohydrate glycogen made a slight contribution for in vivo survival compared with a substantial requirement for trehalose hydrolysis. The ability to sense and respond to low glucose concentrations was also important for survival. In contrast, there was little or no requirement in vivo in this assay for any of the nitrogen-sensing pathways, nitrogen catabolite repression, the ammonium- or amino acid-sensing pathways, or general control. By using auxotrophic mutants, we found that some nitrogenous compounds (polyamines, methionine, and lysine) can be acquired from the host, while others (threonine, aromatic amino acids, isoleucine, and valine) must be synthesized by the pathogen. Our studies provide insights into the yeast-host environment interaction and identify potential antifungal drug targets. PMID:16682459
Ren, Weichao; Liu, Na; Sang, Chengwei; Shi, Dongya; Zhou, Mingguo; Chen, Changjun; Qin, Qingming; Chen, Wenchan
2018-06-01
Autophagy is a conserved degradation process that maintains intracellular homeostasis to ensure normal cell differentiation and development in eukaryotes. ATG8 is one of the key molecular components of the autophagy pathway. In this study, we identified and characterized BcATG8 , a homologue of Saccharomyces cerevisiae (yeast) ATG8 in the necrotrophic plant pathogen Botrytis cinerea Yeast complementation experiments demonstrated that BcATG8 can functionally complement the defects of the yeast ATG8 null mutant. Direct physical interaction between BcAtg8 and BcAtg4 was detected in the yeast two-hybrid system. Subcellular localization assays showed that green fluorescent protein-tagged BcAtg8 (GFP-BcAtg8) localized in the cytoplasm as preautophagosomal structures (PAS) under general conditions but mainly accumulated in the lumen of vacuoles in the case of autophagy induction. Deletion of BcATG8 (Δ BcAtg8 mutant) blocked autophagy and significantly impaired mycelial growth, conidiation, sclerotial formation, and virulence. In addition, the conidia of the Δ BcAtg8 mutant contained fewer lipid droplets (LDs), and quantitative real-time PCR (qRT-PCR) assays revealed that the basal expression levels of the LD metabolism-related genes in the mutant were significantly different from those in the wild-type (WT) strain. All of these phenotypic defects were restored by gene complementation. These results indicate that BcATG8 is essential for autophagy to regulate fungal development, pathogenesis, and lipid metabolism in B. cinerea IMPORTANCE The gray mold fungus Botrytis cinerea is an economically important plant pathogen with a broad host range. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. Exploring the fundamental biology of B. cinerea can provide the theoretical basis for sustainable and long-term disease management. Autophagy is an intracellular process for degradation and recycling of cytosolic materials in eukaryotes and is now known to be vital for fungal life. Here, we report studies of the biological role of the autophagy gene BcATG8 in B. cinerea The results suggest that autophagy plays a crucial role in vegetative differentiation and virulence of B. cinerea . Copyright © 2018 American Society for Microbiology.
Buchovec, Irina; Lukseviciute, Viktorija; Marsalka, Arunas; Reklaitis, Ignas; Luksiene, Zivile
2016-04-01
This study is focused on the novel approaches to enhance the inactivation of the Gram (-) food pathogen Salmonella enterica and harmful molds in vitro and on the surface of strawberries using the chlorophyllin-chitosan complex. Salmonella enterica (∼1 × 10(7) CFU mL(-1)) was incubated with chlorophyllin 1.5 × 10(-5) M (Chl, food additive), chitosan 0.1% (CHS, food supplement) or the chlorophyllin-chitosan complex (1.5 × 10(-5) M Chl-0.1% CHS) and illuminated with visible light (λ = 405 nm, light dose 38 J cm(-2)) in vitro. Chlorophyllin (Chl)-based photosensitization inactivated Salmonella just by 1.8 log. Chitosan (CHS) alone incubated for 2 h with Salmonella reduced viability 2.15 log, whereas photoactivated Chl-CHS diminished bacterial viability by 7 log. SEM images indicate that the Chl-CHS complex under these experimental conditions covered the entire bacterial surface. Significant cell membrane disintegration was the main lethal injury induced in Gram (-) bacteria by this treatment. Analysis of strawberry decontamination from surface-inoculated Salmonella indicated that photoactivated Chl-CHS (1.5 × 10(-5) M Chl-0.1% CHS, 30 min incubation, light dose 38 J cm(-2)) coatings diminished the pathogen population on the surface of strawberries by 2.2 log. Decontamination of strawberries from naturally distributed yeasts/molds revealed that chitosan alone reduced the population of yeasts/molds just by 0.4 log, Chl-based photosensitization just by 0.9 log, whereas photoactivated Chl-CHS coatings reduced yeasts/molds on the surface of strawberries by 1.4 log. Electron paramagnetic resonance spectroscopy confirmed that no additional photosensitization-induced free radicals have been found in the strawberry matrix. Visual quality (color, texture) of the treated strawberries was not affected either. In conclusion, photoactive Chl-CHS exhibited strong antimicrobial action against more resistant to photosensitization Gram (-) Salmonella enterica in comparison with Gram (+) bacteria in vitro. It reduced significantly the viability of strawberry surface-attached yeasts/molds and inoculated Salmonella without any negative impact on the visual quality of berries. Experimental data support the idea that photoactivated Chl-CHS can be a useful tool for the future development of edible photoactive antimicrobial coatings which can preserve strawberries and prolong their shelf-life according to requirements of "clean green technology".
Gao, Jin-Xin; Jing, Jing; Yu, Chuan-Jin; Chen, Jie
2015-06-01
Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about 6.39 ×10(5) transformants/3 μg pGADT7-Rec. The titer of the primary cDNA library was 2.5×10(8) cfu/mL. The numbers for the cDNA library was 2.46×10(5). Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.
Evaluation of Rhodosporidium fluviale as biocontrol agent against Botrytis cinerea on apple fruit.
Sansone, G; Lambrese, Y; Calvente, V; Fernández, G; Benuzzi, D; Sanz Ferramola, M
2018-05-01
The aim of the present work was to evaluate the ability of the native yeast Rhodosporidium fluviale to control Botrytis cinerea on apple fruit and to study the possible mechanisms of action with the goal of improving the control of gray mold. For this, the influence of application time of the yeast was studied simulating preventive and curative effects. Also, the effect of nonviable cells of the yeast in the biocontrol was assessed. According to the results obtained, the following mechanisms of action of R. fluviale could be proposed: 1- competition for space, 2- direct interaction between antagonist and pathogen, 3- induction of β-1,3-glucanase in apple tissue, 4- Probable production of glucanase in the apple wounds and 5- antifungal action of cellular components, probably chitin, present in the wall of yeast cells that could be the explanation for the activity of nonviable cells. Significance and Impact of the Study: Botrytis cinerea Pers: Fr, which causes gray mold of fruits and vegetables around the world, is difficult to control successfully because it is genetically variable and rapidly develops resistance to the chemicals commonly used for its control. This study is a contribution to the biocontrol of this phytopathogen fungus. The evaluation of the native yeast Rhodosporidium fluviale as biocontrol agent and the elucidation of possible mechanisms of action, including the participation of nonviable cells of this yeast, have not been reported up to date. © 2018 The Society for Applied Microbiology.
Cross, Megan; Klepzig, Emma; Dallaston, Madeleine; Young, Neil D; Bailey, Ulla-Maja; Mason, Lyndel; Jones, Malcolm K; Gasser, Robin B; Hofmann, Andreas
Despite the massive disease burden worldwide caused by parasitic nematodes and other infectious pathogens, the molecular basis of many infectious diseases caused by these pathogens has been unduly neglected for a long time. Therefore, accelerated progress towards novel therapeutics, and ultimately control of such infectious diseases, is of crucial importance. Capitalising on the wealth of data becoming available from proteomic and genomic studies, new protein targets at the pathogen-host interface can be identified and subjected to protein-based explorations of the molecular basis of pathogen-host interactions. By combining the use of systems and structural biology methodologies, insights into the structural and molecular mechanisms of these interactions can assist in the development of therapeutics and/or vaccines. This brief review examines two different proteins from the body wall of blood flukes - annexins and the stress-induced phosphoprotein 1 - both of which are presently interesting targets for the development of therapeutics.
El-Mougy, Nehal S.; Abdel-Kader, Mokhtar M.
2013-01-01
Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. PMID:24307948
Effects of Malassezia yeasts on serum Th1 and Th2 cytokines in patients with guttate psoriasis.
Aydogan, Kenan; Tore, Okan; Akcaglar, Sevim; Oral, Barbaros; Ener, Beyza; Tunalı, Sukran; Saricaoglu, Hayriye
2013-01-01
Systemic and focal infections caused by microorganisms have been known to induce or exacerbate psoriasis. Although the role of yeast species of the genus Malassezia in the pathogenesis of psoriasis is not fully understood, it is thought that these lipophilic yeasts may represent a triggering factor in the exacerbation of psoriatic lesions. This study investigated the effects of Malassezia yeasts on serum Th1 and Th2 cytokines in patients with guttate psoriasis (GP) in order to define their role in the pathogenesis of psoriasis. Fifty patients with GP and 29 clinically healthy individuals were included in the study. All samples consisted of scales and scrapings taken from the scalps, trunks, and upper limbs of both psoriasis patients and healthy subjects. Psoriasis patients and healthy subjects were grouped according to their positivity or negativity for Malassezia yeasts as ascertained by direct microscopy and/or culture. An enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of Th1 and Th2 cytokines in these groups. No significant differences in positivity for Malassezia yeasts were found between psoriatic skin and healthy skin in samples taken from different body sites. Serum interleukin-13 (IL-13) levels were significantly lower in the psoriasis group compared with the control group (P = 0.04). Levels of other cytokines did not differ significantly between the psoriasis and control groups. Mean levels of Th2 cytokines (IL-4, IL-10, IL-13), but not of Th1 cytokines (IL-2 and IFN-γ), were significantly lower in psoriasis patients positive for Malassezia yeasts compared with those negative for Malassezia yeasts and control subjects (P = 0.04, P < 0.001 and P = 0.01, respectively). The isolation of Malassezia yeasts from GP lesions does not necessarily mean that these species are pathogenic, but their downregulating effects on anti-inflammatory Th2 cytokines may contribute to the occurrence of GP. © 2012 The International Society of Dermatology.
USDA-ARS?s Scientific Manuscript database
Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled u...
USDA-ARS?s Scientific Manuscript database
The yeast, Metschnikowia fructicola, is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penic...
Malassezia species and seborrheic dermatitis.
Zisova, Lilia G
2009-01-01
Malassezia spp. are medically important dimorphic, lipophilic yeasts that form part of the normal cutaneous microflora of human. Seborrheic dermatitis is a multifactor disease that needs endogenous and exogenous predisposing factors for its development. Presence of these factors leads to reproduction of the saprophytic opportunistic pathogen Malassezia spp. and development of a disease. The inflammatory reaction against the yeast Malassezia is considered basic in the etiology of the seborrheic dermatitis. The pathogenesis and exact mechanisms via which these yeasts cause inflammation are still not fully elucidated. They are rather complex and subject of controversy in literature. Most probably Malassezia spp. cause seborrheic dermatitis by involving and combining both nonummune and immune mechanisms (nonspecific and specific). Which of these mechanisms will dominate in any single case depends on the number and virulence of the yeasts as well as on the microorganism reactivity. In the recent years a great interest have been aroused by the epidemiological investigations. Depending on the geographical place of the countries different Malassezia species in seborrheic dermatitis dominate in the different countries. In view of the etiology and pathogenesis of the seborrheic dermatitis comprehensive antifungal preparations have been recently introduced and are nowadays the basic therapeutic resource in the treatment of this disease.
Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Isik, Semra; AlOthman, Zeid; Osman, Sameh M; Scozzafava, Andrea; Supuran, Claudiu T
2016-01-01
Dithiocarbamates (DTCs) prepared from primary or secondary amines, which incorporated amino/hydroxyl-alkyl, mono-/bicyclic aliphatic/heterocyclic rings based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, were investigated for the inhibition of α- and β-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, such as the human (h) isoform hCA I and II, as well as the Saccharomyces cerevisiae β-CA, scCA. The yeast and its β-CA were shown earlier to be useful models of pathogenic fungal infections. The DTCs investigated here were medium potency hCA I inhibitors (K(I)s of 66.5-910 nM), were more effective as hCA II inhibitors (K(I)s of 8.9-107 nM) and some of them showed excellent, low nanomolar activity against the yeast enzyme, with inhibition constants ranging between 6.4 and 259 nM. The detailed structure activity relationship for inhibition of the yeast and human enzymes is discussed. Several of the investigated DTCs showed excellent selectivity ratios for inhibiting the yeast over the human cytosolic CA isoforms.
Identification and susceptibility of clinical isolates of Candida spp. to killer toxins.
Robledo-Leal, E; Rivera-Morales, L G; Sangorrín, M P; González, G M; Ramos-Alfano, G; Adame-Rodriguez, J M; Alcocer-Gonzalez, J M; Arechiga-Carvajal, E T; Rodriguez-Padilla, C
2018-02-01
Although invasive infections and mortality caused by Candida species are increasing among compromised patients, resistance to common antifungal agents is also an increasing problem. We analyzed 60 yeasts isolated from patients with invasive candidiasis using a PCR/RFLP strategy based on the internal transcribed spacer (ITS2) region to identify different Candida pathogenic species. PCR analysis was performed from genomic DNA with a primer pair of the ITS2-5.8S rDNA region. PCR-positive samples were characterized by RFLP. Restriction resulted in 23 isolates identified as C. albicans using AlwI, 24 isolates as C. parapsilosis using RsaI, and 13 as C. tropicalis using XmaI. Then, a group of all isolates were evaluated for their susceptibility to a panel of previously described killer yeasts, resulting in 75% being susceptible to at least one killer yeast while the remaining were not inhibited by any strain. C. albicans was the most susceptible group while C. tropicalis had the fewest inhibitions. No species-specific pattern of inhibition was obtained with this panel of killer yeasts. Metschnikowia pulcherrima, Pichia kluyveri and Wickerhamomyces anomalus were the strains that inhibited the most isolates of Candida spp.
Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu
2012-01-01
Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810
Study of budding yeast colony formation and its characterizations by using circular granular cell
NASA Astrophysics Data System (ADS)
Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.
2016-03-01
Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.
Mutant power: using mutant allele collections for yeast functional genomics.
Norman, Kaitlyn L; Kumar, Anuj
2016-03-01
The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings.
Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J; Zia, Mohammadali; Pestechian, Nader
2013-01-01
Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases.
Sidrim, José Júlio Costa; Carvalho, Vitor Luz; Castelo-Branco, Débora de Souza Collares Maia; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Cordeiro, Rossana de Aguiar; Guedes, Gláucia Morgana de Melo; Barbosa, Giovanna Riello; Lazzarini, Stella Maris; Oliveira, Daniella Carvalho Ribeiro; de Meirelles, Ana Carolina Oliveira; Attademo, Fernanda Löffler Niemeyer; Freire, Augusto Carlos da Bôaviagem; Moreira, José Luciano Bezerra; Monteiro, André Jalles; Rocha, Marcos Fábio Gadelha
2015-10-01
The aim of this study was to characterize the yeast microbiota of natural cavities of manatees kept in captivity in Brazil. Sterile swabs from the oral cavity, nostrils, genital opening, and rectum of 50 Trichechus inunguis and 26 Trichechus manatus were collected. The samples were plated on Sabouraud agar with chloramphenicol and incubated at 25 °C for 5 days. The yeasts isolated were phenotypically identified by biochemical and micromorphological tests. Overall, 141 strains were isolated, of which 112 were from T. inunguis (Candida albicans, Candida parapsilosis sensu stricto, Candida orthopsilosis, Candida metapsilosis, Candida guilliermondii, Candida pelliculosa, Candida tropicalis, Candida glabrata, Candida famata, Candida krusei, Candida norvegensis, Candida ciferri, Trichosporon sp., Rhodotorula sp., Cryptococcus laurentii) and 29 were from T. manatus (C. albicans, C. tropicalis, C. famata, C. guilliermondii, C. krusei, Rhodotorula sp., Rhodotorula mucilaginosa, Rhodotorula minuta, Trichosporon sp.). This was the first systematic study to investigate the importance of yeasts as components of the microbiota of sirenians, demonstrating the presence of potentially pathogenic species, which highlights the importance of maintaining adequate artificial conditions for the health of captive manatees.
Presence and distribution of yeasts in the reproductive tract in healthy female horses.
Azarvandi, A; Khosravi, A R; Shokri, H; Talebkhan Garoussi, M; Gharahgouzlou, F; Vahedi, G; Sharifzadeh, A
2017-09-01
Yeasts are commensal organisms found in the reproductive and gastrointestinal tracts, and on the skin and other mucosa in mammals. The purpose of this study was to isolate and identify yeast flora in the caudal reproductive tract in healthy female horses. Longitudinal study. A total of 453 samples were collected using double-guarded swabs from the vestibule, clitoral fossa and vagina in 151 horses. All samples were cultured on Sabouraud 4% dextrose agar and incubated at 35°C for 7-10 days. Isolates were identified according to their morphological characteristics and biochemical profiles. Yeast colonies were isolated from 60 (39.7%) of the 151 horses. The isolated yeasts belonged to nine genera, and included Candida spp. (53.2%), Cryptococcus spp. (12.2%), Saccharomyces spp. (10.5%), Geotrichum spp. (8.0%), Rhodotorula spp. (7.1%), Malassezia spp. (3.7%), Trichosporon spp. (2.6%), Kluyveromyces spp. (2.6%) and Sporothrix spp. (0.2%). Candida krusei (43.1%) was the most frequent Candida species isolated. There was a significant difference in prevalence between C. krusei and other Candida species (P<0.05). The vestibule contained more yeast isolates (48.0%) than the vagina (18.3%). The isolation of yeast colonies from multiparous females (76.8%) was significantly higher than from maiden mares (P<0.05). The study was limited by the difficulty of distinguishing between normal flora and potential pathogens. Candida spp., in particular C. krusei, represent important flora resident in the caudal reproductive tract in healthy female horses. This is particularly important in contexts that require the initiation of empirical treatment prior to the completion of culture results. © 2016 EVJ Ltd.
Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.
2000-01-01
Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993
Sykes, Melissa L.; Jones, Amy J.; Shelper, Todd B.; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E.
2017-01-01
ABSTRACT Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro. Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. PMID:28674055
Duffy, Sandra; Sykes, Melissa L; Jones, Amy J; Shelper, Todd B; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E; Avery, Vicky M
2017-09-01
Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. Copyright © 2017 Duffy et al.
Mandigers, Paul J J; Duijvestijn, Mirjam B H M; Ankringa, Nynke; Maes, Sofie; van Essen, Elise; Schoormans, Anky H W; German, Alexander J; Houwers, Dirk J
2014-08-06
This study surveyed the prevalence of massive numbers of Cyniclomyces guttulatus in faecal samples from healthy dogs (18%) and dogs with chronic diarrhoea (14%) suggesting that this yeast has no clinical significance. Subsequently, a total of 57 referred dogs with chronic diarrhoea were selected because they excreted massive numbers of C. guttulatus and their initial diagnostic work-up yielded no other direct clues explaining their diarrhoea. Treatment with nystatin did not result in any clinical response in 36 out of these 57 dogs (63%), although they no longer shed the yeast. However, a response was noted in the remaining 21 (37%) dogs: 13 were 'responders', in that their diarrhoea subsided for more than two weeks and the faeces were cleared of the yeast. However, three of these dogs relapsed repeatedly, with signs of diarrhoea and massive shedding of the yeast. The other eight dogs were 'incomplete responders', whereby faecal quality initially normalised, but diarrhoea relapsed within two weeks, whilst still not shedding the yeast. In these cases, further diagnostic work up revealed other co-causes of diarrhoea. It was concluded that there was no direct evidence that C. guttulatus is a primary pathogen. However, the results of the prospective treatment study suggest that a possible role in a minority of cases, perhaps as an opportunist, cannot be ruled out. Copyright © 2014 Elsevier B.V. All rights reserved.
Tarifa, María Clara; Lozano, Jorge Enrique; Brugnoni, Lorena Inés
2017-02-01
To clarify the interactions between a common food spoilage yeast and two pathogenic bacteria involved in outbreaks associated with fruit juices, the present paper studies the effect of the interplay of Candida krusei, collected from UF membranes, with Escherichia coli O157:H7 and Salmonella enterica in the overall process of adhesion and colonization of abiotic surfaces. Two different cases were tested: a) co-adhesion by pathogenic bacteria and yeasts, and b) incorporation of bacteria to pre-adhered C. krusei cells. Cultures were made on stainless steel at 25°C using apple juice as culture medium. After 24 h of co-adhesion with C. krusei, both E. coli O157:H7 and S. enterica increased their counts 1.05 and 1.11 log CFU cm 2 , respectively. Similar increases were obtained when incorporating bacteria to pre-adhered cells of Candida. Nevertheless C. krusei counts decreased in both experimental conditions, in a) 0.40 log CFU cm 2 and 0.55 log CFU cm 2 when exposed to E. coli O157:H7 and S. enterica and in b) 0.18 and 0.68 log CFU cm 2 , respectively. This suggests that C. krusei, E. coli O157:H7, and S. enterica have a complex relationship involving physical and chemical interactions on food contact surfaces. This study supports the possibility that pathogen interactions with members of spoilage microbiota, such as C. krusei, might play an important role for the survival and dissemination of E. coli O157:H7 and Salmonella enterica in food-processing environments. Based on the data obtained from the present study, much more attention should be given to prevent the contamination of these pathogens in acidic drinks.
Schmalreck, A F; Tränkle, P; Vanca, E; Blaschke-Hellmessen, R
1998-01-01
Due to the Fourier-Transform Infrared Spectroscopy (FT-IR) of strain specific traits demonstrated to be a suitable and efficient method for diagnostic and epidemiological determinations for the yeasts Candida albicans, Exophiala dermatitidis and the chlorophylless algae of the genus Prototheca. FT-IR leads in a rapid and economical way to reproducible results according to the spectral differences of intact cells (IR-fingerprints). Different genera, species and sub-species respectively, different strains can be recognized and grouped into different clusters and subclusters. The FT-IR analysis of Candida albicans isolates (n = 150) of 22 newborns-at-risk of an intensive care unit showed, that 86% of the children were colonised with several (2-4) different strains in the oral cavities and faeces. Stationary cross-infections could definitely be determined. Exophiala dermatitidis isolates (n = 31), mostly isolated repetitively within a period of 3 years from sputa of patients suffering from cystic fibrosis could be characterized and grouped patient-specifically over the total sampling period. Of 6 from 8 patients (75%) their individual strains remain the same and could be tracked over the three years. Cross-infections during the stationary treatment could be clearly identified by FT-IR. The Prototheca isolate (n = 43) from live-stock and farm environment showed clear distinguishable clusters differentiating the species P. wickerhamii, P. zopfii and P. stagnora. In addition, the biotypes of P. zopfii could be distinguished, especially the subclusters of variants II and III. It could be demonstrated, that FT-IR is suitable for the routine identification and differentiation of yeasts and algae. However, in spite of the gain of knowledge by using FT-IR for the characterization of microorganisms, the conventional phenotyping and/or genetic analysis of yeast or algae strains cannot be replaced completely. For a final taxonomic classification a combination of conventional methods on FT-IR together with more sophisticated molecular genetic procedures is necessary.
Maphanga, Tsidiso G; Britz, Erika; Zulu, Thokozile G; Mpembe, Ruth S; Naicker, Serisha D; Schwartz, Ilan S; Govender, Nelesh P
2017-06-01
Disseminated emmonsiosis is an important AIDS-related mycosis in South Africa that is caused by Emergomyces africanus , a newly described and renamed dimorphic fungal pathogen. In vitro antifungal susceptibility data can guide management. Identification of invasive clinical isolates was confirmed phenotypically and by sequencing of the internal transcribed spacer region. Yeast and mold phase MICs of fluconazole, voriconazole, itraconazole, posaconazole, caspofungin, anidulafungin, micafungin, and flucytosine were determined with custom-made frozen broth microdilution (BMD) panels in accordance with Clinical and Laboratory Standards Institute recommendations. MICs of amphotericin B, itraconazole, posaconazole, and voriconazole were determined by Etest. Fifty unique E. africanus isolates were tested. The yeast and mold phase geometric mean (GM) BMD and Etest MICs of itraconazole were 0.01 mg/liter. The voriconazole and posaconazole GM BMD MICs were 0.01 mg/liter for both phases, while the GM Etest MICs were 0.001 and 0.002 mg/liter, respectively. The fluconazole GM BMD MICs were 0.18 mg/liter for both phases. The GM Etest MICs of amphotericin B, for the yeast and mold phases were 0.03 and 0.01 mg/liter. The echinocandins and flucytosine had very limited in vitro activity. Treatment and outcome data were available for 37 patients; in a multivariable model including MIC data, only isolation from blood (odds ratio [OR], 8.6; 95% confidence interval [CI], 1.3 to 54.4; P = 0.02) or bone marrow (OR, 12.1; 95% CI, 1.2 to 120.2; P = 0.03) (versus skin biopsy) was associated with death. In vitro susceptibility data support the management of disseminated emmonsiosis with amphotericin B, followed by itraconazole, voriconazole, or posaconazole. Fluconazole was a relatively less potent agent. Copyright © 2017 American Society for Microbiology.
Santovito, Elisa; Greco, Donato; Logrieco, Antonio F; Avantaggiato, Giuseppina
2018-06-06
The population increase in the last century was the first cause of the industrialization of animal productions, together with the necessity to satisfy the high food demand and the lack of space and land for the husbandry practices. As a consequence, the farmers moved from extensive to intensive agricultural systems and introduced new practices, such as the administration of antimicrobial drugs. Antibiotics were then used as growth promoters and for disease prevention. The uncontrolled and continuous use of antibiotics contributed to the spread of antibiotic resistance in animals, and this had adverse impacts on human health. This emergence led the European Union, in 2003, to ban the marketing and use of antibiotics as growth promoters, and for prophylaxis purposes from January 2006. This ban caused problems in farms, due to the decrease in animal performances (weight gain, feed conversion ratio, reproduction, etc.), and the rise in the incidence of certain diseases, such as those induced by Clostridium perfringens, Salmonella, Escherichia coli, and Listeria monocytogenes. The economic losses due to the ban increased the interest in researching alternative strategies for the prophylaxis of infectious diseases and for health and growth promotion, such as feed additives. Yeast-based materials, such as cell wall extract, represent promising alternatives to antibiotics, on the base of their prebiotic activity and their claimed capacity to bind enteropathogenic bacteria. Several authors reported examples of the effectiveness of yeast cell wall products in adsorbing bacteria, but there is a lack of knowledge on the mechanisms involved in this interaction. The purpose of this review is to provide an overview of the current approaches used for the control of pathogenic bacteria in feed, with a particular focus on the use of yeast-derived materials proposed to control zoonoses at farm level, and on their effect on animal health.
Suh, S O; Noda, H; Blackwell, M
2001-06-01
Yeast-like endosymbionts (YLSs) of insects often are restricted to specific hosts and are essential to the host's survival. For example, in planthoppers (Homoptera: Delphacidae), endosymbionts function in sterol utilization and nitrogen recycling for the hosts. Our study, designed to investigate evolutionary changes in the YLS lineage involved in the planthopper association, strongly suggests an origin of the YLSs from within the filamentous ascomycetes (Euascomycetes), not the true yeasts (Saccharomycetes), as their morphology might indicate. During divergence of the planthopper YLSs, dramatic changes would have occurred in the insect-fungus interaction and the fungal morphology that have previously been undescribed in filamentous ascomycetes. Phylogenetic trees were based on individual and combined data sets of 2.6 kb of the nuclear small- and large-subunit ribosomal RNA genes for YLSs from three rice planthoppers (Laodelphax striatellus, Nilaparvata lugens, and Sogatella furcifera) compared with 56 other fungi. Parsimony analysis placed the planthopper YLSs within Cordyceps (Euascomycetes: Hypocreales: Clavicipitaceae), a genus of filamentous insects and a few fungal pathogenic ascomycetes. Another YLS species restricted to the aphid Hamiltonaphis styraci (Homoptera: Aphididae) was a sister taxon to the planthopper YLSS: Filamentous insect pathogens (Metarhizium and Beauveria) specific to the same species of insect hosts as the YLSs also formed lineages within the Clavicipitaceae, but these were distinct from the clade comprising YLS species. Trees constrained to include the YLSs in families of the Hypocreales other than the Clavicipitaceae were rejected by the Kishino-Hasegawa test. In addition, the results of this study support a hypothesis of two independent origins of insect-associated YLSs from among filamentous ascomycetes: the planthopper YLSs in the Clavicipitaceae and the YLSs associated with anobiid beetles (Symbiotaphrina species). Several lineages of true yeasts (Saccharomycetes) also formed endosymbiotic associations with beetles, but they were not closely related to either group derived from the filamentous ascomycetes.
Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie
2012-01-01
Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis. PMID:22396644
Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie
2012-01-01
Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis.
Microbiological Spoilage of High-Sugar Products
NASA Astrophysics Data System (ADS)
Thompson, Sterling
The high-sugar products discussed in this chapter are referred to as chocolate, sugar confectionery (non-chocolate), liquid sugars, sugar syrups, and honey. Products grouped in the sugar confectionery category include hard candy, soft/gummy candy, caramel, toffee, licorice, marzipan, creams, jellies, and nougats. A common intrinsic parameter associated with high-sugar products is their low water activity (a w), which is known to inhibit the growth of most spoilage and pathogenic bacteria. However, spoilage can occur as a result of the growth of osmophilic yeasts and xerophilic molds (Von Richter, 1912; Anand & Brown, 1968; Brown, 1976). The a w range for high-sugar products is between 0.20 and 0.80 (Banwart, 1979; Richardson, 1987; Lenovich & Konkel, 1992; ICMSF, 1998; Jay, Loessner, & Golden, 2005). Spoilage of products, such as chocolate-covered cherries, results from the presence of yeasts in the liquid sugar brine or the cherry. Generally, the spoiled product will develop leakers. The chocolate covering the cherry would not likely be a source of yeast contamination.
Yeast infection in a beached southern right whale (Eubalaena australis) neonate.
Mouton, Marnel; Reeb, Desray; Botha, Alfred; Best, Peter
2009-07-01
A female southern right whale (Eubalaena australis) neonate was found stranded on the Western Cape coast of southern Africa. Skin samples were taken the same day from three different locations on the animal's body and stored at -20 C. Isolation through repetitive culture of these skin sections yielded a single yeast species, Candida zeylanoides. Total genomic DNA also was isolated directly from skin samples. Polymerase chain reaction analysis of the internal transcribed spacer region of the fungal ribosomal gene cluster revealed the presence of Filobasidiella neoformans var. neoformans, the teleomorphic state of Cryptococcus neoformans. Fungal infections in cetaceans seem to be limited when compared to infections caused by bacteria, viruses and parasites. However, Candida species appear to be the most common type of fungal infection associated with cetaceans. To our knowledge this is the first report of a C. zeylanoides infection in a mysticete, as well as the first report of a dual infection involving two opportunistic pathogenic yeast species in a cetacean.
[Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].
Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina
2015-01-01
The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications.
Buerth, Christoph; Tielker, Denis; Ernst, Joachim F
2016-08-01
The yeast Candida utilis is used as a food additive and as a host for heterologous gene expression to produce various metabolites and proteins. Reliable protocols for intracellular production of recombinant proteins are available for C. utilis and have now been expanded to secrete proteins into the growth medium or to achieve surface display by linkage to a cell wall protein. A recombinant C. utilis strain was recently shown to induce oral tolerance in a mouse model of multiple sclerosis suggesting future applications in autoimmune therapy. Whole genome sequencing of C. utilis and its presumed parent Cyberlindnera (Pichia) jadinii demonstrated different ploidy but high sequence identity, consistent with identical recombinant technologies for both yeasts. C. jadinii was recently described as an antagonist to the important human fungal pathogen Candida albicans suggesting its use as a probiotic agent. The review summarizes the status of recombinant protein production in C. utilis, as well as current and future biotechnological and medical applications of C. utilis and C. jadinii.
Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner.
Stahlhut, Steen G; Struve, Carsten; Krogfelt, Karen A
2012-03-01
The ability of bacterial pathogens to express different fimbrial adhesins plays a significant role in virulence. Thus, specific detection of fimbrial expression is an important task in virulence characterization and epidemiological studies. Most clinical Klebsiella pneumoniae isolates express type 1 and type 3 fimbriae, which are characterized by mediation of mannose-sensitive agglutination of yeast cells and agglutination of tannic acid-treated ox red blood cells (RBCs), respectively. It has been observed that K. pneumoniae isolates agglutinate yeast cells and commercially available sheep RBCs in a mannose-resistant manner. Thus, this study was initiated to identify the adhesin involved. Screening of a mutant library surprisingly revealed that the mannose-resistant agglutination of yeast and sheep RBCs was mediated by type 3 fimbriae. Specific detection of type 1 fimbriae expression in K. pneumoniae was feasible only by the use of guinea pig RBCs. This was further verified by the use of isogenic fimbriae mutants and by cloning and expressing K. pneumoniae fimbrial gene clusters in Escherichia coli. Yeast agglutination assays are commonly used to detect type 1 fimbriae expression but should not be used for bacterial species able to express type 3 fimbriae. For these species, the use of guinea pig blood for specific type 1 fimbriae detection is essential. The use of commercially available sheep RBCs or yeast is an easy alternative to traditional methods to detect type 3 fimbriae expression. Easy and specific detection of expression of type 1 and type 3 fimbriae is essential in the continuous characterization of these important adhesive virulence factors present in members of the Enterobacteriaceae.
Evaluation of MALDI-TOF-MS for the Identification of Yeast Isolates Causing Bloodstream Infection.
Turhan, Ozge; Ozhak-Baysan, Betil; Zaragoza, Oscar; Er, Halil; Sarıtas, Zubeyde Eres; Ongut, Gozde; Ogunc, Dilara; Colak, Dilek; Cuenca-Estrella, Manuel
2017-04-01
Infections due to Candida species are major causes of morbidity and mortality in humans, causing a diverse spectrum of clinical disease ranging from superficial and mucosal infections to invasive disease. Several authors have demonstrated that mortality is closely linked to both timing of therapy and/or source control. The rapid identification of pathogenic species is helpful to start timely and effective antifungal therapy. The aim of this study was to assess the performance of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) system for the correct and rapid identification of yeast isolates causing bloodstream infection. Between January 2014 and January 2015, a total of 117 yeast like organisms isolated from blood culture samples of 117 episodes from 102 patients who had blood stream infections were included in the study. The isolates were identified by MALDI-TOF MS. The results were compared with those obtained by the standard mycological methods and/or sequence analysis. One hundred and seventeen yeast isolates including 115 Candida spp and two non-Candida yeasts were analysed. The Biotyper correctly identified 115 (98.3%) isolates to the genus level and 102 (87.2%) isolates to the species level using the manufacturer's recommended cutoff scores. The Bruker Biotyper is a rapid, easy, inexpensive, and highly reliable system for the identification of yeast isolates. Early identification with MALDI-TOF MS would save time for determination of antifungal susceptibility and proper treatment strategy. The expansion of the database of the library by addition of less common species will improve the performance of the system.
Bentubo, Henri Donnarumma Levy; Mantovani, Ariane; Yamashita, Jane Tomimori; Gambale, Walderez; Fischman, Olga
2015-01-01
The knowledge of the diversity of yeasts that make up the skin microbiota of human beings is essential for the efficient monitoring of infections to which a person may be predisposed. This study identified yeasts comprising the genital skin microbiota of patients attending the Dermatology Service at the Hospital São Paulo-UNIFESP, Brazil. Samples were collected from the genital region of each patient and cultured on Sabouraud dextrose agar. Individual colonies were carefully transferred to tubes daily. Yeasts were identified based on classical methodologies and confirmed using a commercial kit. Eighty-three patients were included in the study. Approximately 80% were women and 20% were men. The average age was 55 years. Hypertension, diabetes, kidney transplant and AIDS were the main underlying diseases reported by the patients. The most prevalent yeasts were Candida parapsilosis (36.1%), Rhodotorula mucilaginosa (9.2%), Rhodotorula glutinis (8.3%), Candida tropicalis (5.5%) and Trichosporon inkin (1.8%). Approximately 78% of the isolates were obtained in pure cultures. Trichosporon inkin was isolated only from women, in contrast to literature describing a high prevalence in males. Our results suggest that Candida albicans is not the main yeast found on genital skin as previously thought, and opportunistic pathogens such as C. parapsilosis, C. tropicalis, Rhodotorula spp. and T. inkin make up the genital skin microbiota, representing a risk for infection in immunocompromised subjects. These results also indicate that women are carriers of T. inkin, the etiological agent of white piedra and trichosporonosis. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Zheng, Xiangfeng; Yang, Qiya; Zhang, Xiaoyun; Apaliya, Maurice T.; Ianiri, Giuseppe; Zhang, Hongyin; Castoria, Raffaello
2017-01-01
Synthetic fungicides are commonly employed for the control of postharvest diseases of fruits. However, due to health concerns about the use of these chemicals, alternative control methods including biocontrol based on antagonistic yeasts are gaining in popularity. In this study, we investigated the effects of two biocontrol yeasts, Rhodotorula mucilaginosa strain 3617 and Rhodotorula kratochvilovae strain LS11, on blue mold and patulin (PAT) contamination caused by Penicillium expansum strains PY and FS7 in artificially inoculated Fuji apples stored at 20°C for 9 days. To correlate the development of the P. expansum strains in yeast-treated and untreated apples with PAT production, we quantified their biomass in the infected fruits using a recently published quantitative real-time polymerase chain reaction method based on specific primers for patF, a gene from P. expansum that is involved in PAT biosynthesis. Both yeasts significantly reduced the disease incidence caused by the two strains of P. expansum up to 5–7 days of incubation, and lowered their biomass and the progression of symptoms up to 9 days. Interestingly, both yeasts strains increased the rate of PAT production (expressed as ng patulin/μg fungal DNA) by the two pathogenic strains. Nevertheless, both biocontrol agents reduced the total PAT contamination, especially in the case of P. expansum strain FS7, the higher PAT producer of the two tested P. expansum strains. Comparing between the yeast strains, R. kratochvilovae LS11 was more effective than R. mucilaginosa 3617 for the control of P. expansum. PMID:28713362
A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study.
Misner, Bill D
2007-07-13
Athlete's Foot (Tinea pedis) is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment. A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1) after 48-hours feet enclosure, (2) after washing feet, and (3) after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil. Application of this novel compound to the external surfaces of feet completely inhibited both aerobic bacteria and yeast-fungi-mold proliferation for 8-hours in spite of being in an enclosed environment compatible to microbial proliferation. Whether topical application of this compound prevents microbial infections in larger populations is not known. This calls for more research collected from subjects exposed to elements that may increase the risk of microbial-induced foot diseases.
Urán, Martha E.; Nosanchuk, Joshua D.; Restrepo, Angela; Hamilton, Andrew J.; Gómez, Beatriz L.; Cano, Luz E.
2011-01-01
Several cell wall constituents, including melanins or melanin-like compounds, have been implicated in the pathogenesis of a wide variety of microbial diseases caused by diverse species of pathogenic bacteria, fungi, and helminthes. Among these microorganisms, the dimorphic fungal pathogen Paracoccidioides brasiliensis produces melanin in its conidial and yeast forms. In the present study, melanin particles from P. brasiliensis were injected into BALB/c mice in order to produce monoclonal antibodies (MAbs). We identified five immunoglobulin G1 (IgG1) κ-chain and four IgM melanin-binding MAbs. The five IgG1 κ-chain isotypes are the first melanin-binding IgG MAbs ever reported. The nine MAbs labeled P. brasiliensis conidia and yeast cells both in vitro and in pulmonary tissues. The MAbs cross-reacted with melanin-like purified particles from other fungi and also with commercial melanins, such as synthetic and Sepia officinalis melanin. Melanization during paracoccidioidomycosis (PCM) was also further supported by the detection of IgG antibodies reactive to melanin from P. brasiliensis conidia and yeast in sera and bronchoalveolar lavage fluids from P. brasiliensis-infected mice, as well as in sera from human patients with PCM. Serum specimens from patients with other mycoses were also tested for melanin-binding antibodies by enzyme-linked immunosorbent assay, and cross-reactivities were detected for melanin particles from different fungal sources. These results suggest that melanin from P. brasiliensis is an immunologically active fungal structure that activates a strong IgG humoral response in humans and mice. PMID:21813659
Urán, Martha E; Nosanchuk, Joshua D; Restrepo, Angela; Hamilton, Andrew J; Gómez, Beatriz L; Cano, Luz E
2011-10-01
Several cell wall constituents, including melanins or melanin-like compounds, have been implicated in the pathogenesis of a wide variety of microbial diseases caused by diverse species of pathogenic bacteria, fungi, and helminthes. Among these microorganisms, the dimorphic fungal pathogen Paracoccidioides brasiliensis produces melanin in its conidial and yeast forms. In the present study, melanin particles from P. brasiliensis were injected into BALB/c mice in order to produce monoclonal antibodies (MAbs). We identified five immunoglobulin G1 (IgG1) κ-chain and four IgM melanin-binding MAbs. The five IgG1 κ-chain isotypes are the first melanin-binding IgG MAbs ever reported. The nine MAbs labeled P. brasiliensis conidia and yeast cells both in vitro and in pulmonary tissues. The MAbs cross-reacted with melanin-like purified particles from other fungi and also with commercial melanins, such as synthetic and Sepia officinalis melanin. Melanization during paracoccidioidomycosis (PCM) was also further supported by the detection of IgG antibodies reactive to melanin from P. brasiliensis conidia and yeast in sera and bronchoalveolar lavage fluids from P. brasiliensis-infected mice, as well as in sera from human patients with PCM. Serum specimens from patients with other mycoses were also tested for melanin-binding antibodies by enzyme-linked immunosorbent assay, and cross-reactivities were detected for melanin particles from different fungal sources. These results suggest that melanin from P. brasiliensis is an immunologically active fungal structure that activates a strong IgG humoral response in humans and mice.
Diezmann, Stephanie; Dietrich, Fred S
2011-07-01
One of the major challenges in characterizing eukaryotic genetic diversity is the mapping of phenotypes that are the cumulative effect of multiple alleles. We have investigated tolerance of oxidative stress in the yeast Saccharomyces cerevisiae, a trait showing phenotypic variation in the population. Initial crosses identified that this is a quantitative trait. Microorganisms experience oxidative stress in many environments, including during infection of higher eukaryotes. Natural variation in oxidative stress tolerance is an important aspect of response to oxidative stress exerted by the human immune system and an important trait in microbial pathogens. A clinical isolate of the usually benign yeast S. cerevisiae was found to survive oxidative stress significantly better than the laboratory strain. We investigated the genetic basis of increased peroxide survival by crossing those strains, phenotyping 1500 segregants, and genotyping of high-survival segregants by hybridization of bulk and single segregant DNA to microarrays. This effort has led to the identification of an allele of the transcription factor Rds2 as contributing to stress response. Rds2 has not previously been associated with the survival of oxidative stress. The identification of its role in the oxidative stress response here is an example of a specific trait that appears to be beneficial to Saccharomyces cerevisiae when growing as a pathogen. Understanding the role of this fungal-specific transcription factor in pathogenicity will be important in deciphering how fungi infect and colonize the human host and could eventually lead to a novel drug target.
Zhang, Miao; Wang, Xiaojie; Cui, Meiyan; Wang, Yanping; Jiao, Zhen
2018-01-01
Five different species of selected broad-spectrum antibiotic lactic acid bacteria isolated from extremely high–cold areas were used as starters to ferment indigenous forage oats and wheatgrass under rigid alpine climatic conditions. The five isolates were Lactobacillus plantarum QZ227, Enterococcus mundtii QZ251, Pediococcus cellicola QZ311, Leuconostoc mesenteroides QZ1137 and Lactococcus lactis QZ613, and commercial Lactobacillus plantarum FG1 was used as the positive control and sterile water as the negative control. The minimum and maximum temperatures were −22°C and 23°C during the fermentation process, respectively. The pH of wheatgrass silage fermented by the QZ227 and FG1 inocula reached the expected values (≤4.15) although the pathogens detected in the silage should be further investigated. All of the inocula additives used in this study were effective in improving the fermentation quality of oat silage as indicated by the higher content of lactic acid, lower pH values (≤4.17) and significant inhibition of pathogens. QZ227 exhibited a fermentation ability that was comparable with the commercial inoculum FG1 for the whole process, and the deterioration rate was significantly lower than for FG1 after storage for 7 months. The pathogens Escherichia coli, mold and yeast were counted and isolated from the deteriorated silage. E. coli were the main NH3-N producer while F. fungi and yeast produced very little. PMID:29408855
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii, Cryptosporidium spp. and Giardia intestinalis are emerging pathogen parasites in the food domain. However, without standardized method for their detection in food matrices, parasitic foodborne outbreaks remain neglected. In this study, a new immunomagnetic separation assay (IMS To...
Antimicrobial activity of spices.
Arora, D S; Kaur, J
1999-08-01
Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.
Kennedy, W. P. U.; Milne, L. J. R.; Blyth, W.; Crompton, G. K.
1972-01-01
Two male patients with ankylosing spondylitis and upper lobe fibrosis and cavitation are described. A pneumonic disease in one was associated with mycological and serological evidence of infection with Aspergillus terreus but no other aspergillus species. A large pulmonary mycetoma developed in the second patient and among a number of other fungal isolates was found the yeast Metschnikowia pulcherrima. The association of ankylosing spondylitis with bronchopulmonary aspergillosis is considered; A. terreus is described for the first time as a human pulmonary pathogen, and the possible pathogenicity of M. pulcherrima in the debilitated human subject is discussed. Images PMID:4628429
Modeling the molecular basis of atovaquone resistance in parasites and pathogenic fungi.
Kessl, Jacques J; Meshnick, Steven R; Trumpower, Bernard L
2007-10-01
Atovaquone is a substituted hydroxynaphthoquinone that is used therapeutically for treating Plasmodium falciparum malaria, Pneumocystis jirovecii pneumonia and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting parasite and fungal respiration by binding to the cytochrome bc1 complex. The recent, growing failure of atovaquone treatment and increased mortality of patients with malaria or Pneumocystis pneumonia has been linked to the appearance of mutations in the cytochrome b gene. To better understand the molecular basis of drug resistance, we have developed the yeast and bovine bc1 complexes as surrogates to model the molecular interaction of atovaquone with human and resistant pathogen enzymes.
USDA-ARS?s Scientific Manuscript database
Ustilago maydis, causal agent of corn smut, is a model for obligate fungal plant pathogens because, although it can proliferate saprobically in its yeast form, the infectious filamentous form is absolutely dependent on the host to complete its life cycle. Maize responds to U. maydis colonization by...
Fatal Saccharomyces Cerevisiae Aortic Graft Infection
NASA Technical Reports Server (NTRS)
Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua
2002-01-01
Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.
ERIC Educational Resources Information Center
Gammie, Alison E.; Erdeniz, Naz
2004-01-01
This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring…
Review: Pathogenesis of canine atopic dermatitis: skin barrier and host-micro-organism interaction.
Santoro, Domenico; Marsella, Rosanna; Pucheu-Haston, Cherie M; Eisenschenk, Melissa N C; Nuttall, Tim; Bizikova, Petra
2015-04-01
Canine atopic dermatitis (AD) is a common, genetically predisposed, inflammatory and pruritic skin disease. The pathogenesis of canine AD is incompletely understood. The aim of this review is to provide an in-depth update on the involvement of skin barrier and host-microbiome interaction in the pathogenesis of canine AD. Online citation databases and abstracts from international meetings were searched for publications related to skin barrier and host-microbiome interaction (e.g. bacteria, yeast, antimicrobial peptides). A total of 126 publications were identified. This review article focuses on epidermal barrier dysfunction and the interaction between cutaneous microbes (bacteria and yeasts) and the host (antimicrobial peptides). Epidemiological updates on the presence of pathogenic organisms and canine AD are also provided. Major advances have been made in the investigation of skin barrier dysfunction in canine AD, although many questions still remain. Skin barrier dysfunction and host-microbiome interactions are emerging as primary alterations in canine AD. Based on this review, it is clear that future studies focused on the development of drugs able to restore the skin barrier and increase the natural defences against pathogenic organisms are needed. © 2015 ESVD and ACVD.
Genomic and probiotic characterization of SJP-SNU strain of Pichia kudriavzevii.
Hong, Seung-Min; Kwon, Hyuk-Joon; Park, Se-Joon; Seong, Won-Jin; Kim, Ilhwan; Kim, Jae-Hong
2018-05-17
The yeast strain SJP-SNU was investigated as a probiotic and was characterized with respect to growth temperature, bile salt resistance, hydrogen sulfide reducing activity, intestinal survival ability and chicken embryo pathogenicity. In addition, we determined the complete genomic and mitochondrial sequences of SJP-SNU and conducted comparative genomics analyses. SJP-SNU grew rapidly at 37 °C and formed colonies on MacConkey agar containing bile salt. SJP-SNU reduced hydrogen sulfide produced by Salmonella serotype Enteritidis and, after being fed to 4-week-old chickens, could be isolated from cecal feces. SJP-SNU did not cause mortality in 10-day-old chicken embryos. From 13 initial contigs, 11 were finally assembled and represented 10 chromosomal sequences and 1 mitochondrial DNA sequence. Comparative genomic analyses revealed that SJP-SNU was a strain of Pichia kudriavzevii. Although SJP-SNU possesses pathogenicity-related genes, they showed very low amino acid sequence identities to those of Candida albicans. Furthermore, SJP-SNU possessed useful genes, such as phytases and cellulase. Thus, SJP-SNU is a useful yeast possessing the basic traits of a probiotic, and further studies to demonstrate its efficacy as a probiotic in the future may be warranted.
Türkel, Sezai; Korukluoğlu, Mihriban; Yavuz, Mümine
2014-01-01
The strains of the yeast Metschnikowia pulcherrima have strong biocontrol activity against various microorganisms. Biocontrol activity of M. pulcherrima largely depends on its iron immobilizing pigment pulcherrimin. Biocontrol activity of pulcherrimin producing strain, M. pulcherrima UMY15, isolated from local vineyards, was tested on different molds that cause food spoilage. M. pulcherrima UMY15 was a very effective biocontrol agent against Penicillium roqueforti, P. italicum, P. expansum, and Aspergillus oryzae in in-vitro plate tests. However, the inhibitory activity of M. pulcherrima UMY15 was less effective on Fusarium sp. and A. niger species in biocontrol assays. In addition, M. pulcherrima UMY15 strain completely inhibited the germination and mycelia growth of A. oryzae, A. parasiticus, and Fusarium sp. spores on artificial wounds of apples when they coinoculated with M. pulcherrima UMY15. Moreover, when coinoculated, M. pulcherrima UMY15 strain also inhibited the growth of P. roqueforti, P. italicum, P. expansum, A. oryzae, Fusarium sp., and Rhizopus sp. in grape juice, indicating that M. pulcherrima UMY15 can be used as a very effective biocontrol yeast against various species of postharvest pathogens, including Penicillium, Aspergillus, Fusarium, and Rhizopus.
Kaya, Murat; Asan-Ozusaglam, Meltem; Erdogan, Sevil
2016-06-01
In this study the antimicrobial activity of low molecular weight (3.22 kDa) chitosan, obtained for the first time from a species belonging to the Scorpiones, was screened against nine pathogenic microorganisms (seven bacteria and two yeasts) and compared with that of medium molecular weight commercial chitosan (MMWCC). It was observed that the antimicrobial activity of the low molecular weight scorpion chitosan (LMWSC) was specific to bacterial species in general rather than gram-negative or gram-positive bacterial groups. It was also determined that LMWSC had a stronger inhibitory effect than the MMWCC, particularly on the bacterium Listeria monocytogenes and the yeast Candida albicans, which are important pathogens for public health. In addition, it was recorded that the MMWCC had a greater inhibitory effect on Bacillus subtilis than LMWSC. According to the results obtained by the disc diffusion method, the antibacterial activity of both LMWSC and MMWCC against B. subtilis and Salmonella enteritidis was higher than the widely used antibiotic Gentamicin (CN, 10 μg/disc). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans
Song, Yinggai; Laureijssen-van de Sande, Wendy W. J.; Moreno, Leandro F.; Gerrits van den Ende, Bert; Li, Ruoyu; de Hoog, Sybren
2017-01-01
Exophiala spinifera and Exophiala dermatitidis (Fungi: Chaetothyriales) are black yeast agents potentially causing disseminated infection in apparently healthy humans. They are the only Exophiala species producing extracellular polysaccharides around yeast cells. In order to gain understanding of eventual differences in intrinsic virulence of the species, their clinical profiles were compared and found to be different, suggesting pathogenic strategies rather than coincidental opportunism. Ecologically relevant factors were compared in a model set of strains of both species, and significant differences were found in clinical and environmental preferences, but virulence, tested in Galleria mellonella larvae, yielded nearly identical results. Virulence factors, i.e., melanin, capsule and muriform cells responded in opposite direction under hydrogen peroxide and temperature stress and thus were inconsistent with their hypothesized role in survival of phagocytosis. On the basis of physiological profiles, possible natural habitats of both species were extrapolated, which proved to be environmental rather than animal-associated. Using comparative genomic analyses we found differences in gene content related to lipid metabolism, cell wall modification and polysaccharide capsule production. Despite the fact that both species cause disseminated infections in apparently healthy humans, it is concluded that they are opportunists rather than pathogens. PMID:29312215
Functional toxicology: tools to advance the future of toxicity testing
Gaytán, Brandon D.; Vulpe, Chris D.
2014-01-01
The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352
Iraola, Gregorio; Forster, Samuel C; Kumar, Nitin; Lehours, Philippe; Bekal, Sadjia; García-Peña, Francisco J; Paolicchi, Fernando; Morsella, Claudia; Hotzel, Helmut; Hsueh, Po-Ren; Vidal, Ana; Lévesque, Simon; Yamazaki, Wataru; Balzan, Claudia; Vargas, Agueda; Piccirillo, Alessandra; Chaban, Bonnie; Hill, Janet E; Betancor, Laura; Collado, Luis; Truyers, Isabelle; Midwinter, Anne C; Dagi, Hatice T; Mégraud, Francis; Calleros, Lucía; Pérez, Ruben; Naya, Hugo; Lawley, Trevor D
2017-11-08
Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.
The role of hyperparasitism in microbial pathogen ecology and evolution.
Parratt, Steven R; Laine, Anna-Liisa
2016-08-01
Many micro-organisms employ a parasitic lifestyle and, through their antagonistic interactions with host populations, have major impacts on human, agricultural and natural ecosystems. Most pathogens are likely to host parasites of their own, that is, hyperparasites, but how nested chains of parasites impact on disease dynamics is grossly neglected in the ecological and evolutionary literature. In this minireview we argue that the diversity and dynamics of micro-hyperparasites are an important component of natural host-pathogen systems. We use the current literature from a handful of key systems to show that observed patterns of pathogen virulence and disease dynamics may well be influenced by hyperparasites. Exploring these factors will shed light on many aspects of microbial ecology and disease biology, including resistance-virulence evolution, apparent competition, epidemiology and ecosystem stability. Considering the importance of hyperparasites in natural populations will have applied consequences for the field of biological control and therapeutic science, where hyperparastism is employed as a control mechanism but not necessarily ecologically understood.
Vaccines to combat the neglected tropical diseases.
Bethony, Jeffrey M; Cole, Rhea N; Guo, Xiaoti; Kamhawi, Shaden; Lightowlers, Marshall W; Loukas, Alex; Petri, William; Reed, Steven; Valenzuela, Jesus G; Hotez, Peter J
2011-01-01
The neglected tropical diseases (NTDs) represent a group of parasitic and related infectious diseases such as amebiasis, Chagas disease, cysticercosis, echinococcosis, hookworm, leishmaniasis, and schistosomiasis. Together, these conditions are considered the most common infections in low- and middle-income countries, where they produce a level of global disability and human suffering equivalent to better known conditions such as human immunodeficiency virus/acquired immunodeficiency syndrome and malaria. Despite their global public health importance, progress on developing vaccines for NTD pathogens has lagged because of some key technical hurdles and the fact that these infections occur almost exclusively in the world's poorest people living below the World Bank poverty line. In the absence of financial incentives for new products, the multinational pharmaceutical companies have not embarked on substantive research and development programs for the neglected tropical disease vaccines. Here, we review the current status of scientific and technical progress in the development of new neglected tropical disease vaccines, highlighting the successes that have been achieved (cysticercosis and echinococcosis) and identifying the challenges and opportunities for development of new vaccines for NTDs. Also highlighted are the contributions being made by non-profit product development partnerships that are working to overcome some of the economic challenges in vaccine manufacture, clinical testing, and global access. © 2010 John Wiley & Sons A/S.
Liang, Bryan A.; Cuomo, Raphael; Hafen, Ryan; Brouwer, Kimberly C.; Lee, Daniel E.
2014-01-01
SUMMARY In global health, critical challenges have arisen from infectious diseases, including the emergence and reemergence of old and new infectious diseases. Emergence and reemergence are accelerated by rapid human development, including numerous changes in demographics, populations, and the environment. This has also led to zoonoses in the changing human-animal ecosystem, which are impacted by a growing globalized society where pathogens do not recognize geopolitical borders. Within this context, neglected tropical infectious diseases have historically lacked adequate attention in international public health efforts, leading to insufficient prevention and treatment options. This subset of 17 infectious tropical diseases disproportionately impacts the world's poorest, represents a significant and underappreciated global disease burden, and is a major barrier to development efforts to alleviate poverty and improve human health. Neglected tropical diseases that are also categorized as emerging or reemerging infectious diseases are an even more serious threat and have not been adequately examined or discussed in terms of their unique risk characteristics. This review sets out to identify emerging and reemerging neglected tropical diseases and explore the policy and innovation environment that could hamper or enable control efforts. Through this examination, we hope to raise awareness and guide potential approaches to addressing this global health concern. PMID:25278579
Vaccines to combat the neglected tropical diseases
Bethony, Jeffrey M.; Cole, Rhea N.; Guo, Xiaoti; Kamhawi, Shaden; Lightowlers, Marshall W.; Loukas, Alex; Petri, William; Reed, Steven; Valenzuela, Jesus G.; Hotez, Peter J.
2012-01-01
Summary The neglected tropical diseases (NTDs) represent a group of parasitic and related infectious diseases such as amebiasis, Chagas disease, cysticercosis, echinococcosis, hookworm, leishmaniasis, and schistosomiasis. Together, these conditions are considered the most common infections in low- and middle-income countries, where they produce a level of global disability and human suffering equivalent to better known conditions such as human immunodeficiency virus/acquired immunodeficiency syndrome and malaria. Despite their global public health importance, progress on developing vaccines for NTD pathogens has lagged because of some key technical hurdles and the fact that these infections occur almost exclusively in the world’s poorest people living below the World Bank poverty line. In the absence of financial incentives for new products, the multinational pharmaceutical companies have not embarked on substantive research and development programs for the neglected tropical disease vaccines. Here, we review the current status of scientific and technical progress in the development of new neglected tropical disease vaccines, highlighting the successes that have been achieved (cysticercosis and echinococcosis) and identifying the challenges and opportunities for development of new vaccines for NTDs. Also highlighted are the contributions being made by non-profit product development partnerships that are working to overcome some of the economic challenges in vaccine manufacture, clinical testing, and global access. PMID:21198676
Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events
Mumy, Karen L.; Chen, Xinhua; Kelly, Ciarán P.; McCormick, Beth A.
2011-01-01
Saccharomyces boulardii is gaining in popularity as a treatment for a variety of diarrheal diseases as well as inflammatory bowel disease. This study was designed to examine the effect of this yeast on infection by Shigella flexneri, a highly infectious and human host-adapted enteric pathogen. We investigated key interactions between the bacteria and host cells in the presence of the yeast in addition to a number of host responses including proinflammatory events and markers. Although the presence of the yeast during infection did not alter the number of bacteria that was able to attach or invade human colon cancer-derived T-84 cells, it did positively impact the tight junction protein zonula occluden-2 and significantly increase the barrier integrity of model epithelia. The yeast also decreased ERK, JNK, and NF-κB activation in response to S. flexneri, events likely responsible for the observed reductions in IL-8 secretion and the transepithelial migration of polymorphonuclear leukocytes across T-84 monolayers. These results, suggesting that the yeast allowed for a dampened inflammatory response, were confirmed in vivo utilizing a highly relevant model of human fetal colonic tissue transplanted into scid mice. Furthermore, a cell-free S. boulardii culture supernatant was also capable of reducing IL-8 secretion by infected T-84 cells. These data suggest that although the use of S. boulardii during infection with S. flexneri may alleviate symptoms associated with the inflammatory response of the host, it would not prevent infection. PMID:18032477
β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors.
Moraes, D C; Curvelo, J A R; Anjos, C A; Moura, K C G; Pinto, M C F R; Portela, M B; Soares, R M A
2018-03-26
Candida albicans is the most important fungal pathogen that causes infections in humans, and the search for new therapeutic strategies for its treatment is essential. The aim of this study was to evaluate the activity of seven naphthoquinones (β-lapachone, β-nor-lapachone, bromide-β-lapachone, hydroxy-β-lapachone, α-lapachone, α-nor-lapachone and α-xyloidone) on the growth of a fluconazole-resistant C. albicans oral clinical isolate and the effects of these compounds on the viability of mammalian cells, on yeast's morphogenesis, biofilm formation and cell wall mannoproteins availability. All the compounds were able to completely inhibit the yeast growth. β-lapachone and α-nor-lapachone were the less cytotoxic compounds against L929 and RAW 264.7 cells. At IC 50 , β-lapachone inhibited morphogenesis in 92%, while the treatment of yeast cells with α-nor-lapachone decreased yeast-to-hyphae transition in 42%. At 50μg/ml, β-lapachone inhibited biofilm formation by 84%, whereas α-nor-lapachone reduced biofilm formation by 64%. The treatment of yeast cells with β-lapachone decreased cell wall mannoproteins availability in 28.5%, while α-nor-lapachone was not able to interfere on this virulence factor. Taken together, data show that β-lapachone and α-nor-lapachone exhibited in vitro cytotoxicity against a fluconazole-resistant C. albicans strain, thus demonstrating to be promising candidates to be used in the treatment of infections caused by this fungus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hipp, Katharina, E-mail: katharina.hipp@bio.uni-st
Plant infecting geminiviruses encode a small (A)C4 protein within the open reading frame of the replication-initiator protein. In African cassava mosaic virus, two in-frame start codons may be used for the translation of a longer and a shorter AC4 variant. Both were fused to green fluorescent protein or glutathione-S-transferase genes and expressed in fission yeast. The longer variant accumulated in discrete spots in the cytoplasm, whereas the shorter variant localized to the plasma membrane. A similar expression pattern was found in plants. A myristoylation motif may promote a targeting of the shorter variant to the plasma membrane. Mass spectrometry analysismore » of the yeast-expressed shorter variant detected the corresponding myristoylation. The biological relevance of the second start codon was confirmed using mutated infectious clones. Whereas mutating the first start codon had no effect on the infectivity in Nicotiana benthamiana plants, the second start codon proved to be essential. -- Highlights: •The ACMV AC4 may be translated from one or the other in-frame start codon. •Both AC4 variants are translated in fission yeast. •The long AC4 protein localizes to the cytoplasm, the short to the plasma membrane. •The short variant is myristoylated in yeast and may promote membrane localization. •Only the shorter AC4 variant has an impact on viral infections in plants.« less
Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings
Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J.; Zia, Mohammadali; Pestechian, Nader
2013-01-01
Background: Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. Materials and Methods: One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. Results: The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Conclusion: Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases. PMID:23901339
Rühmann, Susanne; Pfeiffer, Judith; Brunner, Philipp; Szankowski, Iris; Fischer, Thilo C; Forkmann, Gert; Treutter, Dieter
2013-11-01
Products containing the epiphytic yeast Aureobasidium pullulans are commercially available and applied by fruit growers to prevent several fungal and bacterial diseases of fruit trees. The proposed beneficial mechanisms relate to limitations of space and nutrients for the pathogens in presence of the rapidly proliferating yeast cells. These explanations ignore the potential of yeasts to elicit the plant's defense. Our experiments aim at clarifying if an autoclaved and centrifuged suspension of A. pullulans may induce defense mechanisms. As a model system, the biosynthesis and accumulation of stilbene phytoalexins in callus and shoots of grapevine Vitis vinifera grown in vitro was used. Yeast application to the plant tissue stimulated stilbene biosynthesis, sometimes at the cost of flavonoids. The expression of the gene encoding stilbene synthase was enhanced and the enzyme showed higher activity while chalcone synthase activity and expression was reduced in some cases. An accumulation of stilbenes was also found in transgenic apple trees (Malus domestica cv. Holsteiner Cox) harboring the stilbene synthase-gene under control of its own promoter. These results clearly show that the application of A. pullulans may induce defense mechanisms of the treated plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Hu, Qing-bi; He, Yu; Zhou, Xun
2015-01-01
Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182
Pungartnik, Cristina; da Silva, Aline Clara; de Melo, Sarah Alves; Gramacho, Karina Peres; de Mattos Cascardo, Júlio Cézar; Brendel, Martin; Micheli, Fabienne; da Silva Gesteira, Abelmon
2009-01-01
A pathogenesis-related (PR) protein from Theobroma cacao (TcPR-10) was identified from a cacao-Moniliophthora perniciosa interaction cDNA library. Nucleotide and amino acid sequences showed homology with other PR-10 proteins having P loop motif and Betv1 domain. Recombinant TcPR-10 showed in vitro and in vivo ribonuclease activity, and antifungal activity against the basidiomycete cacao pathogen M. perniciosa and the yeast Saccharomyces cerevisiae. Fluorescein isothiocyanate-labeled TcPR-10 was internalized by M. perniciosa hyphae and S. cerevisiae cells and inhibited growth of both fungi. Energy and temperature-dependent internalization of the TcPR-10 suggested an active importation into the fungal cells. Chronical exposure to TcPR-10 of 29 yeast mutants with single gene defects in DNA repair, general membrane transport, metal transport, and antioxidant defenses was tested. Two yeast mutants were hyperresistant compared with their respective isogenic wild type: ctr3Delta mutant, lacking the high-affinity plasma membrane copper transporter and mac1Delta, the copper-sensing transcription factor involved in regulation of high-affinity copper transport. Acute exposure of exponentially growing yeast cells revealed that TcPR-10 resistance is also enhanced in the Snq2 export permease-lacking mutant which has reduced intracellular presence of TcPR-10.
Yeast Surface Display Approaches for Engineering Stabilized Viral Fusion Protein Subunit Vaccines
This research proposal focuses on the development of a novel library screening approach to engineering highly stabilized subunit vaccine candidates...for major pathogens within the paramyxovirus family. The research addresses the PRMRP topic areas related to vaccine development for infectious...proposal focuses on four viruses that fall into two subclasses within the broader family, respiratory syncytial virus (RSV), human metapneumovirus (HMPV
Handshake with the Dragon: Engaging China in the Biological Weapons Convention
1998-06-01
modest pharmaceutical or fermentation industry could easily and cheaply produce BTW. Mass-production methods for growing bacterial cultures that are...widely used in the commercial production of yogurt , yeast, and beer are the same used to make pathogens and toxins.45 These technical developments have...Production Although biological agents can be grown in ordinary laboratory flasks, efficient production requires specialized fermenters . Until
The Biology of Pichia membranifaciens Killer Toxins
Belda, Ignacio; Ruiz, Javier; Alonso, Alejandro; Marquina, Domingo; Santos, Antonio
2017-01-01
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.). PMID:28333108
Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations
Rajkowska, Katarzyna; Otlewska, Anna; Kunicka-Styczyńska, Alina; Krajewska, Agnieszka
2017-01-01
Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v/v, which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans, and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N-acetyl-β-glucosaminidase and 14% isolates—α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25–0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity. PMID:28629195
Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations.
Rajkowska, Katarzyna; Otlewska, Anna; Kunicka-Styczyńska, Alina; Krajewska, Agnieszka
2017-06-19
Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v / v , which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans , and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N -acetyl-β-glucosaminidase and 14% isolates-α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25-0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity.
Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun
2016-10-01
Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina.
Wang, Q-M; Begerow, D; Groenewald, M; Liu, X-Z; Theelen, B; Bai, F-Y; Boekhout, T
2015-06-01
The subphylum Ustilaginomycotina (Basidiomycota, Fungi) comprises mainly plant pathogenic fungi (smuts). Some of the lineages possess cultivable unicellular stages that are usually classified as yeast or yeast-like species in a largely artificial taxonomic system which is independent from and largely incompatible with that of the smut fungi. Here we performed phylogenetic analyses based on seven genes including three nuclear ribosomal RNA genes and four protein coding genes to address the molecular phylogeny of the ustilaginomycetous yeast species and their filamentous counterparts. Taxonomic revisions were proposed to reflect this phylogeny and to implement the 'One Fungus = One Name' principle. The results confirmed that the yeast-containing classes Malasseziomycetes, Moniliellomycetes and Ustilaginomycetes are monophyletic, whereas Exobasidiomycetes in the current sense remains paraphyletic. Four new genera, namely Dirkmeia gen. nov., Kalmanozyma gen. nov., Golubevia gen. nov. and Robbauera gen. nov. are proposed to accommodate Pseudozyma and Tilletiopsis species that are distinct from the other smut taxa and belong to clades that are separate from those containing type species of the hitherto described genera. Accordingly, new orders Golubeviales ord. nov. with Golubeviaceae fam. nov. and Robbauerales ord. nov. with Robbaueraceae fam. nov. are proposed to accommodate the sisterhood of Golubevia gen. nov. and Robbauera gen. nov. with other orders of Exobasidiomycetes. The majority of the remaining anamorphic yeast species are transferred to corresponding teleomorphic genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few Pseudozyma species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the single-species lineages that are temporarily maintained.
Szekely, Adrien; Palmer, Michael D.; Johnson, Elizabeth M.
2012-01-01
Rapid, accurate identification of yeast isolates from clinical samples has always been important given their innately variable antifungal susceptibility profiles. Recently, this has become paramount with the proposed introduction of species-specific interpretive breakpoints for MICs obtained in yeast antifungal susceptibility tests (M. A. Pfaller, D. Andes, D. J. Diekema, A. Espinel–Ingroff, D. Sheehan, and CLSI Subcommittee for Antifungal Susceptibility Testing, Drug Resist. Updat. 13:180–195, 2010). Here, we present the results of a 12-month evaluation of the accuracy of identifications that accompany yeast isolates submitted to the Mycology Reference Laboratory (United Kingdom) for either confirmation of identity or susceptibility testing. In total, 1,781 yeast isolates were analyzed, and the robustness of prior identifications obtained in microbiology laboratories throughout the United Kingdom was assessed using a combination of culture on chromogenic agar, morphology on cornmeal agar, and molecular identification by pyrosequencing. Over 40% of isolates (755) were submitted without any suggested identification. Of those isolates with a prior identification, 100 (9.7%) were incorrectly identified. Error rates ranged from 5.2% (for organisms submitted for antifungal susceptibility testing) to 18.2% (for organisms requiring confirmation of identity) and varied in a strictly species-specific manner. At least 50% of identification errors would be likely to affect interpretation of MIC data, with a possible impact on patient management. In addition, 2.3% of submitted cultures were found to contain mixtures of at least two yeast species. The vast majority of mixtures had gone undetected in the referring laboratory and would have impacted the interpretation of antifungal susceptibility profiles and patient management. Some of the more common misidentifications are discussed according to the identification method employed, with suggestions for avoiding such misinterpretations. PMID:22649009
Borman, Andrew M; Szekely, Adrien; Palmer, Michael D; Johnson, Elizabeth M
2012-08-01
Rapid, accurate identification of yeast isolates from clinical samples has always been important given their innately variable antifungal susceptibility profiles. Recently, this has become paramount with the proposed introduction of species-specific interpretive breakpoints for MICs obtained in yeast antifungal susceptibility tests (M. A. Pfaller, D. Andes, D. J. Diekema, A. Espinel-Ingroff, D. Sheehan, and CLSI Subcommittee for Antifungal Susceptibility Testing, Drug Resist. Updat. 13:180-195, 2010). Here, we present the results of a 12-month evaluation of the accuracy of identifications that accompany yeast isolates submitted to the Mycology Reference Laboratory (United Kingdom) for either confirmation of identity or susceptibility testing. In total, 1,781 yeast isolates were analyzed, and the robustness of prior identifications obtained in microbiology laboratories throughout the United Kingdom was assessed using a combination of culture on chromogenic agar, morphology on cornmeal agar, and molecular identification by pyrosequencing. Over 40% of isolates (755) were submitted without any suggested identification. Of those isolates with a prior identification, 100 (9.7%) were incorrectly identified. Error rates ranged from 5.2% (for organisms submitted for antifungal susceptibility testing) to 18.2% (for organisms requiring confirmation of identity) and varied in a strictly species-specific manner. At least 50% of identification errors would be likely to affect interpretation of MIC data, with a possible impact on patient management. In addition, 2.3% of submitted cultures were found to contain mixtures of at least two yeast species. The vast majority of mixtures had gone undetected in the referring laboratory and would have impacted the interpretation of antifungal susceptibility profiles and patient management. Some of the more common misidentifications are discussed according to the identification method employed, with suggestions for avoiding such misinterpretations.
Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species.
Yücesoy, Mine; Marol, Serhat
2003-10-29
The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37 degrees C. The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar.
Menino, João Filipe; Saraiva, Margarida; Gomes-Rezende, Jéssica; Sturme, Mark; Pedrosa, Jorge; Castro, António Gil; Ludovico, Paula; Goldman, Gustavo H.; Rodrigues, Fernando
2013-01-01
Conidia/mycelium-to-yeast transition of Paracoccidioides brasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides , with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis. PMID:24066151
Meulemans, Ann; Seneca, Sara; Pribyl, Thomas; Smet, Joel; Alderweirldt, Valerie; Waeytens, Anouk; Lissens, Willy; Van Coster, Rudy; De Meirleir, Linda; di Rago, Jean-Paul; Gatti, Domenico L; Ackerman, Sharon H
2010-02-05
Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F(1)) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120-124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Deltaatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Deltaatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Deltaatp12 but not in the background of Deltaatp12Deltafmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.
Mercatanti, Alberto; Lodovichi, Samuele; Cervelli, Tiziana; Galli, Alvaro
2017-12-01
Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain localization and functional conservation between yeast and human, the selected variants are ranked by the RS. The RS is assigned by an algorithm that computes functional data, type of mutation, chemistry of amino acid substitution and the degree of mutation transferability between human and yeast protein. Mutations giving a positive RS are highly transferable to yeast and, therefore, yeast functional assays will be more predictable. To validate the web application, we have analyzed 8078 cancer-associated variants located in 31 genes that have a yeast homologue. More than 50% of variants are transferable to yeast. Incidentally, 88% of all transferable mutations have a reliability score >0. Moreover, we analyzed by CTY 72 functionally validated missense variants located in yeast genes at positions corresponding to the human cancer-associated variants. All these variants gave a positive RS. To further validate CTY, we analyzed 3949 protein variants (with positive RS) by the predictive algorithm PROVEAN. This analysis shows that yeast-based functional assays will be more predictable for the variants with positive RS. We believe that CTY could be an important resource for the cancer research community by providing information concerning the functional impact of specific mutations, as well as for the design of functional assays useful for decision support in precision medicine. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges
2017-01-01
Infectious diseases are a significant burden on public health and economic stability of societies all over the world. They have for centuries been among the leading causes of death and disability and presented growing challenges to health security and human progress. The threat posed by infectious diseases is further deepened by the continued emergence of new, unrecognized, and old infectious disease epidemics of global impact. Over the past three and half decades at least 30 new infectious agents affecting humans have emerged, most of which are zoonotic and their origins have been shown to correlate significantly with socioeconomic, environmental, and ecological factors. As these factors continue to increase, putting people in increased contact with the disease causing pathogens, there is concern that infectious diseases may continue to present a formidable challenge. Constant awareness and pursuance of effective strategies for controlling infectious diseases and disease emergence thus remain crucial. This review presents current updates on emerging and neglected infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with particular focus on WHO top priority emerging infectious diseases (EIDs) and neglected tropical infectious diseases. PMID:28286767
Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges.
Nii-Trebi, Nicholas Israel
2017-01-01
Infectious diseases are a significant burden on public health and economic stability of societies all over the world. They have for centuries been among the leading causes of death and disability and presented growing challenges to health security and human progress. The threat posed by infectious diseases is further deepened by the continued emergence of new, unrecognized, and old infectious disease epidemics of global impact. Over the past three and half decades at least 30 new infectious agents affecting humans have emerged, most of which are zoonotic and their origins have been shown to correlate significantly with socioeconomic, environmental, and ecological factors. As these factors continue to increase, putting people in increased contact with the disease causing pathogens, there is concern that infectious diseases may continue to present a formidable challenge. Constant awareness and pursuance of effective strategies for controlling infectious diseases and disease emergence thus remain crucial. This review presents current updates on emerging and neglected infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with particular focus on WHO top priority emerging infectious diseases (EIDs) and neglected tropical infectious diseases.
Queiroz-Telles, Flavio; Fahal, Ahmed Hassan; Falci, Diego R; Caceres, Diego H; Chiller, Tom; Pasqualotto, Alessandro C
2017-11-01
Fungi often infect mammalian hosts via the respiratory route, but traumatic transcutaneous implantation is also an important source of infections. Environmental exposure to spores of pathogenic fungi can result in subclinical and unrecognised syndromes, allergic manifestations, and even overt disease. After traumatic cutaneous inoculation, several fungi can cause neglected mycoses such as sporotrichosis, chromoblastomycosis, mycetoma, entomophthoramycosis, and lacaziosis. Most of these diseases have a subacute to chronic course and they can become recalcitrant to therapy and lead to physical disabilities, including inability to work, physical deformities, and amputations. For many years, paracoccidioidomycosis was considered the most prevalent endemic systemic mycosis in the Americas, but this situation might be changing with recognition of the worldwide presence of Histoplasma capsulatum. Both paracoccidioidomycosis and histoplasmosis can mimic several infectious and non-infectious medical conditions and lead to death if not recognised early and treated. Cutaneous implantation and systemic mycoses are neglected diseases that affect millions of individuals worldwide, especially in low-income countries where their management is suboptimum because challenges in diagnosis and therapeutic options are substantial issues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ghosh, Alok; Trivedi, Prachi P; Timbalia, Shrishiv A; Griffin, Aaron T; Rahn, Jennifer J; Chan, Sherine S L; Gohil, Vishal M
2014-07-01
Mitochondrial respiratory chain biogenesis is orchestrated by hundreds of assembly factors, many of which are yet to be discovered. Using an integrative approach based on clues from evolutionary history, protein localization and human genetics, we have identified a conserved mitochondrial protein, C1orf31/COA6, and shown its requirement for respiratory complex IV biogenesis in yeast, zebrafish and human cells. A recent next-generation sequencing study reported potential pathogenic mutations within the evolutionarily conserved Cx₉CxnCx₁₀C motif of COA6, implicating it in mitochondrial disease biology. Using yeast coa6Δ cells, we show that conserved residues in the motif, including the residue mutated in a patient with mitochondrial disease, are essential for COA6 function, thus confirming the pathogenicity of the patient mutation. Furthermore, we show that zebrafish embryos with zfcoa6 knockdown display reduced heart rate and cardiac developmental defects, recapitulating the observed pathology in the human mitochondrial disease patient who died of neonatal hypertrophic cardiomyopathy. The specific requirement of Coa6 for respiratory complex IV biogenesis, its intramitochondrial localization and the presence of the Cx₉CxnCx₁₀C motif suggested a role in mitochondrial copper metabolism. In support of this, we show that exogenous copper supplementation completely rescues respiratory and complex IV assembly defects in yeast coa6Δ cells. Taken together, our results establish an evolutionarily conserved role of Coa6 in complex IV assembly and support a causal role of the COA6 mutation in the human mitochondrial disease patient. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ryder, Neil S.; Wagner, Sonja; Leitner, Ingrid
1998-01-01
Terbinafine is active in vitro against a wide range of pathogenic fungi, including dermatophytes, molds, dimorphic fungi, and some yeasts, but earlier studies indicated that the drug had little activity against Candida albicans. In contrast, clinical studies have shown topical and oral terbinafine to be active in cutaneous candidiasis and Candida nail infections. In order to define the anti-Candida activity of terbinafine, we tested the drug against 350 fresh clinical isolates and additional strains by using a broth dilution assay standardized according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) M27-A assay. Terbinafine was found to have an MIC of 1 μg/ml for reference C. albicans strains. For 259 clinical isolates, the MIC at which 50% of the isolates are inhibited (MIC50) of terbinafine was 1 μg/ml (fluconazole, 0.5 μg/ml), and the MIC90 was 4 μg/ml (fluconazole, 1 μg/ml). Terbinafine was highly active against Candida parapsilosis (MIC90, 0.125 μg/ml) and showed potentially interesting activity against isolates of Candida dubliniensis, Candida guilliermondii, Candida humicola, and Candida lusitaniae. It was not active against the Candida glabrata, Candida krusei, and Candida tropicalis isolates in this assay. Cryptococcus laurentii and Cryptococcus neoformans were highly susceptible to terbinafine, with MICs of 0.06 to 0.25 μg/ml. The NCCLS macrodilution assay provides reproducible in vitro data for terbinafine against Candida and other yeasts. The MICs for C. albicans and C. parapsilosis are compatible with the known clinical efficacy of terbinafine in cutaneous infections, while the clinical relevance of its activities against the other species has yet to be determined. PMID:9593126
Sagatova, Alia A.; Keniya, Mikhail V.; Negroni, Jacopo; Wilson, Rajni K.; Woods, Matthew A.; Monk, Brian C.
2016-01-01
Azole antifungals, known as demethylase inhibitors (DMIs), target sterol 14α-demethylase (CYP51) in the ergosterol biosynthetic pathway of fungal pathogens of both plants and humans. DMIs remain the treatment of choice in crop protection against a wide range of fungal phytopathogens that have the potential to reduce crop yields and threaten food security. We used a yeast membrane protein expression system to overexpress recombinant hexahistidine-tagged S. cerevisiae lanosterol 14α-demethylase and the Y140F or Y140H mutants of this enzyme as surrogates in order characterize interactions with DMIs. The whole-cell antifungal activity (MIC50 values) of both the R- and S-enantiomers of tebuconazole, prothioconazole (PTZ), prothioconazole-desthio, and oxo-prothioconazole (oxo-PTZ) as well as for fluquinconazole, prochloraz and a racemic mixture of difenoconazole were determined. In vitro binding studies with the affinity purified enzyme were used to show tight type II binding to the yeast enzyme for all compounds tested except PTZ and oxo-PTZ. High resolution X-ray crystal structures of ScErg11p6×His in complex with seven DMIs, including four enantiomers, reveal triazole-mediated coordination of all compounds and the specific orientation of compounds within the relatively hydrophobic binding site. Comparison with CYP51 structures from fungal pathogens including Candida albicans, Candida glabrata and Aspergillus fumigatus provides strong evidence for a highly conserved CYP51 structure including the drug binding site. The structures obtained using S. cerevisiae lanosterol 14α-demethylase in complex with these agrochemicals provide the basis for understanding the impact of mutations on azole susceptibility and a platform for the structure-directed design of the next-generation of DMIs. PMID:27907120
Fan, Yimei; Wang, Wei; Zhu, Ming; Zhou, Jiji; Peng, Jingyuan; Xu, Lizhi; Hua, Zichun; Gao, Xiang; Wang, Yaping
2007-12-15
Germ line mutations in the DNA mismatch repair gene hMLH1 are a frequent cause of hereditary nonpolyposis colorectal cancer and about one-third of these are missense mutations. Several missense mutations in hMLH1 have frequently been detected in East Asian patients with suspected hereditary nonpolyposis colorectal cancer, but their pathogenic role has not been extensively assessed. The aim of this study was to perform functional analyses of these variants and their association with gastrointestinal cancer in East Asians. Altogether, 10 hMLH1 variants were analyzed by yeast two-hybrid and coimmunoprecipitation assays. The carboxyl-terminal replacements Q542L, L549P, L574P, and P581L in hMLH1 resulted in complete loss of activity in both yeast two-hybrid and coimmunoprecipitation tests and thus might be considered as pathogenic. The amino-terminal variants S46I, G65D, G67R, and R217C did not affect complex formation with hPMS2 in coimmunoprecipitation, but partly or fully lost their activity in yeast two-hybrid assay, and we suggested that these variants might reduce the efficiency of the heterodimer to go into the nucleus and thus the mismatch repair function might be blocked or reduced. The V384D and the Q701K variant resulted in the interaction of hMLH1 with hPMS2 at reduced efficiency and might raise the gastrointestinal cancer risk of the mutation carriers. This work availably evaluated the functional consequences of some missense mutations not previously determined in the hMLH1 gene and might be useful for the clinical diagnosis of hereditary gastrointestinal cancer, especially in East Asians.
Leach, Michelle D.; Budge, Susan; Walker, Louise; Munro, Carol; Cowen, Leah E.; Brown, Alistair J. P.
2012-01-01
Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90) interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red), but not osmotic stress (NaCl). We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling. PMID:23300438
The fungus Ustilago maydis, from the aztec cuisine to the research laboratory.
Ruiz-Herrera, J; Martínez-Espinoza, A D
1998-06-01
Ustilago maydis is a plant pathogen fungus responsible for corn smut. It has a complex life cycle. In its saprophitic stage, it grows as haploid yeast cells, while in the invasive stage it grows as a mycelium formed by diploid cells. Thus, a correlation exists between genetic ploidy, pathogenicity and morphogenesis. Dimorphism can be modulated in vitro by changing environmental parameters such as pH. Studies with auxotrophic mutants have shown that polyamines play a central role in regulating dimorphism. Molecular biology approaches are being employed for the analysis of fundamental aspects of the biology of this fungus, such as mating type regulation, dimorphism or cell wall biogenesis.
NASA Astrophysics Data System (ADS)
Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava
2002-03-01
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.
Cryptococcus albidus infection in a California sea lion (Zalophus californianus).
Mcleland, Shannon; Duncan, Colleen; Spraker, Terry; Wheeler, Elizabeth; Lockhart, Shawn R; Gulland, Frances
2012-10-01
Sporadic cases of cryptococcosis have been reported in marine mammals, typically due to Cryptococcus neoformans and, more recently, to Cryptococcus gattii in cetaceans. Cryptococcus albidus, a ubiquitous fungal species not typically considered to be pathogenic, was recovered from a juvenile California sea lion (Zalophus californianus) rescued near San Francisco Bay, California. Yeast morphologically consistent with a Cryptococcus sp. was identified histologically in a lymph node and C. albidus was identified by an rDNA sequence from the lung. Infection with C. albidus was thought to have contributed to mortality in this sea lion, along with concurrent bacterial pneumonia. Cryptococcus albidus should be considered as a potential pathogen with a role in marine mammal morbidity and mortality.
Impact of Quillaja saponaria saponins on grapevine ecosystem organisms.
Fischer, Marc J C; Pensec, Flora; Demangeat, Gérard; Farine, Sibylle; Chong, Julie; Ramírez-Suero, Montserrat; Mazet, Flore; Bertsch, Christophe
2011-08-01
The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture. The ectoparasitic nematode Xiphinema index, the parasitic fungus Botrytis cinerea and various yeast strains representative of the must fermentation population were incubated on synthetic media supplemented with variable concentrations of Quillaja saponaria saponins. Saponins induced reduction in the growth of B. cinerea and showed nematicide effects on X. index. The control of X. index and Botrytis cinerea is discussed in the context of the potential use of these chemicals as environmentally-friendly grapevine treatments. With Saccharomyces cerevisiae and other yeasts, saponins showed higher toxicity against S. cerevisiae strains isolated from wine or palm wine whereas laboratory strains or strains isolated from oak exhibited better resistance. This indicates that Q. saponaria saponins effects against yeast microflora should be assessed in the field before they can be considered an environmentally-safe new molecule against B. cinerea and X. index.
Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects
NASA Astrophysics Data System (ADS)
Kaur, Parvinder; Satyanarayana, T.
The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.
Aronoff-Spencer, Eliah; Venkatesh, A G; Sun, Alex; Brickner, Howard; Looney, David; Hall, Drew A
2016-12-15
Yeast cell lines were genetically engineered to display Hepatitis C virus (HCV) core antigen linked to gold binding peptide (GBP) as a dual-affinity biobrick chimera. These multifunctional yeast cells adhere to the gold sensor surface while simultaneously acting as a "renewable" capture reagent for anti-HCV core antibody. This streamlined functionalization and detection strategy removes the need for traditional purification and immobilization techniques. With this biobrick construct, both optical and electrochemical immunoassays were developed. The optical immunoassays demonstrated detection of anti-HCV core antibody down to 12.3pM concentrations while the electrochemical assay demonstrated higher binding constants and dynamic range. The electrochemical format and a custom, low-cost smartphone-based potentiostat ($20 USD) yielded comparable results to assays performed on a state-of-the-art electrochemical workstation. We propose this combination of synthetic biology and scalable, point-of-care sensing has potential to provide low-cost, cutting edge diagnostic capability for many pathogens in a variety of settings. Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental isolation of black yeast-like fungi involved in human infection
Vicente, V.A.; Attili-Angelis, D.; Pie, M.R.; Queiroz-Telles, F.; Cruz, L.M.; Najafzadeh, M.J.; de Hoog, G.S.; Zhao, J.; Pizzirani-Kleiner, A.
2008-01-01
The present study focuses on potential agents of chromoblastomycosis and other endemic diseases in the state of Paraná, Southern Brazil. Using a highly selective protocol for chaetothyrialean black yeasts and relatives, environmental samples from the living area of symptomatic patients were analysed. Additional strains were isolated from creosote-treated wood and hydrocarbon-polluted environments, as such polluted sites have been supposed to enhance black yeast prevalence. Isolates showed morphologies compatible with the traditional etiological agents of chromoblastomycosis, e.g. Fonsecaea pedrosoi and Phialophora verrucosa, and of agents of subcutaneous or systemic infections like Cladophialophora bantiana and Exophiala jeanselmei. Some agents of mild disease were indeed encountered. However, molecular analysis proved that most environmental strains differed from known etiologic agents of pronounced disease syndromes: they belonged to the same order, but mostly were undescribed species. Agents of chromoblastomycosis and systemic disease thus far are prevalent on the human host. The hydrocarbon-polluted environments yielded yet another spectrum of chaetothyrialean fungi. These observations are of great relevance because they allow us to distinguish between categories of opportunists, indicating possible differences in pathogenicity and virulence. PMID:19287536
Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products.
Asefa, Dereje T; Møretrø, Trond; Gjerde, Ragnhild O; Langsrud, Solveig; Kure, Cathrine F; Sidhu, Maan S; Nesbakken, Truls; Skaar, Ida
2009-07-31
This study investigate the diversity and dynamics of yeasts in the production processes of one unsmoked and two smoked dry-cured meat products of a Norwegian dry-cured meat production facility. A longitudinal observational study was performed to collect 642 samples from the meat, production materials, room installations and indoor and outdoor air of the production facility. Nutrient rich agar media were used to isolate the yeasts. Morphologically different isolates were re-cultivated in their pure culture forms. Both classical and molecular methods were employed for species identification. Totally, 401 yeast isolates belonging to 10 species of the following six genera were identified: Debaryomyces, Candida, Rhodotorula, Rhodosporidium, Cryptococcus and Sporidiobolus. Debaryomyces hansenii and Candida zeylanoides were dominant and contributed by 63.0% and 26.4% respectively to the total isolates recovered from both smoked and unsmoked products. The yeast diversity was higher at the pre-salting production processes with C. zeylanoides being the dominant. Later at the post-salting stages, D. hansenii occurred frequently. Laboratory studies showed that D. hansenii was more tolerant to sodium chloride and nitrite than C. zeylanoides. Smoking seems to have a killing or a temporary growth inhibiting effect on yeasts that extend to the start of the drying process. Yeasts were isolated only from 31.1% of the environmental samples. They belonged to six different species of which five of them were isolated from the meat samples too. Debaryomyces hansenii and Rhodotorula glutinis were dominant with a 62.6% and 22.0% contribution respectively. As none of the air samples contained D. hansenii, the production materials and room installations used in the production processes were believed to be the sources of contamination. The dominance of D. hansenii late in the production process replacing C. zeylanoides should be considered as a positive change both for the quality and safety of the products, as C. zeylanoides has been documented as an emerging pathogen.
Specht, Sandra; Liedgens, Linda; Duarte, Margarida; Stiegler, Alexandra; Wirth, Ulrike; Eberhardt, Maike; Tomás, Ana; Hell, Kai; Deponte, Marcel
2018-05-01
Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErv C17S . Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J; Silva, Matthew; Smith, Douglas R
2016-01-01
Background : The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods : A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results : Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions : These findings have important implications for the Cannabis and food safety testing industries.
Kurnatowski, Piotr; Wójcik, Anna; Błaszkowska, Joanna; Góralska, Katarzyna
2016-10-01
The pathogenicity of fungi depends on, inter alia, the secretion of hydrolytic enzymes. The aim of this study was to determine the enzymatic activity of yeasts and yeast-like fungi isolated from children’s recreation areas, and compare the results with literature data of strains obtained from patients with mycoses. The enzymatic activity of 96 strains was assessed using an API ZYM kit (bioMerieux, France) and their biotypes were established. The fungal species were found to produce from 16 to 19 hydrolases: the most active were: leucine arylamidase (e5), acid phosphatase (e10), alkaline phosphatase (e1), naphthol-AS-BI-phosphohydrolase (e11), esterase – C4 (e2), β-galac - tosidase (e13) and β-glucosidase (e16). In addition, 13 biotypes characteristic of particular species of fungi were defined. Most strains could be categorized as biotypes C2 – 39.5% and A – 26%. The examined fungal strains isolated from recreational areas have selected biochemical characteristics i.e. production of hydrolases, which demonstrate their pathogenicity. They produce a number of enzymes which are also present in strains isolated from patients with mycoses, including: leucine arylamidase (e5), acid phosphatase (e10), naphthol-AS-BI-phosphohydrolase (e11) and alkaline phosphatase (e1). The biotypes identified in the course of this study (A, B3, B4, C1, C6 and D3) have been also reported in cases of fungal infection. Therefore, the fungi present in the sand and soil of recreational have pathogenic properties and are possible factors of fungal infection among children.
McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C.; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J.; Silva, Matthew; Smith, Douglas R.
2016-01-01
Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries. PMID:27853518
Rao, Reeta Prusty; Hunter, Ally; Kashpur, Olga; Normanly, Jennifer
2010-01-01
Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp. PMID:20233857
Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway.
Fuller, Kevin K; Rhodes, Judith C
2012-01-01
Diverse fungal species are the cause of devastating agricultural and human diseases. As successful pathogenesis is dependent upon the ability of the fungus to adapt to the nutritional and chemical environment of the host, the understanding of signaling pathways required for such adaptation will provide insights into the virulence of these pathogens and the potential identification of novel targets for antifungal intervention. The cAMP-PKA signaling pathway is well conserved across eukaryotes. In the nonpathogenic yeast, S. cerevisiae, PKA is activated in response to extracellular nutrients and subsequently regulates metabolism and growth. Importantly, this pathway is also a regulator of pathogenesis, as defects in PKA signaling lead to an attenuation of virulence in diverse plant and human pathogenic fungi. This review will compare and contrast PKA signaling in S. cerevisiae vs. various pathogenic species and provide a framework for the role of this pathway in regulating fungal virulence.
Evolutionary relationships among pathogenic Candida species and relatives.
Barns, S M; Lane, D J; Sogin, M L; Bibeau, C; Weisburg, W G
1991-01-01
Small subunit rRNA sequences have been determined for 10 of the most clinically important pathogenic species of the yeast genus Candida (including Torulopsis [Candida] glabrata and Yarrowia [Candida] lipolytica) and for Hansenula polymorpha. Phylogenetic analyses of these sequences and those of Saccharomyces cerevisiae, Kluyveromyces marxianus var. lactis, and Aspergillus fumigatus indicate that Candida albicans, C. tropicalis, C. parapsilosis, and C. viswanathii form a subgroup within the genus. The remaining significant pathogen, T. glabrata, falls into a second, distinct subgroup and is specifically related to S. cerevisiae and more distantly related to C. kefyr (psuedotropicalis) and K. marxianus var. lactis. The 18S rRNA sequence of Y. lipolytica has evolved rapidly in relation to the other Candida sequences examined and appears to be only distantly related to them. As anticipated, species of several other genera appear to bear specific relationships to members of the genus Candida. PMID:2007550
Bonnet, Sarah I.; Binetruy, Florian; Hernández-Jarguín, Angelica M.; Duron, Olivier
2017-01-01
Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies. PMID:28642842
Bonnet, Sarah I; Binetruy, Florian; Hernández-Jarguín, Angelica M; Duron, Olivier
2017-01-01
Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella , and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella , and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.
Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases
Santana, Filipe; Schober, Daniel; Medeiros, Zulma; Freitas, Fred; Schulz, Stefan
2011-01-01
Motivation: Ontology-like domain knowledge is frequently published in a tabular format embedded in scientific publications. We explore the re-use of such tabular content in the process of building NTDO, an ontology of neglected tropical diseases (NTDs), where the representation of the interdependencies between hosts, pathogens and vectors plays a crucial role. Results: As a proof of concept we analyzed a tabular compilation of knowledge about pathogens, vectors and geographic locations involved in the transmission of NTDs. After a thorough ontological analysis of the domain of interest, we formulated a comprehensive design pattern, rooted in the biomedical domain upper level ontology BioTop. This pattern was implemented in a VBA script which takes cell contents of an Excel spreadsheet and transforms them into OWL-DL. After minor manual post-processing, the correctness and completeness of the ontology was tested using pre-formulated competence questions as description logics (DL) queries. The expected results could be reproduced by the ontology. The proposed approach is recommended for optimizing the acquisition of ontological domain knowledge from tabular representations. Availability and implementation: Domain examples, source code and ontology are freely available on the web at http://www.cin.ufpe.br/~ntdo. Contact: fss3@cin.ufpe.br PMID:21685092
Estimating Burdens of Neglected Tropical Zoonotic Diseases on Islands with Introduced Mammals.
de Wit, Luz A; Croll, Donald A; Tershy, Bernie; Newton, Kelly M; Spatz, Dena R; Holmes, Nick D; Kilpatrick, A Marm
2017-03-01
AbstractMany neglected tropical zoonotic pathogens are maintained by introduced mammals, and on islands the most common introduced species are rodents, cats, and dogs. Management of introduced mammals, including control or eradication of feral populations, which is frequently done for ecological restoration, could also reduce or eliminate the pathogens these animals carry. Understanding the burden of these zoonotic diseases is crucial for quantifying the potential public health benefits of introduced mammal management. However, epidemiological data are only available from a small subset of islands where these introduced mammals co-occur with people. We examined socioeconomic and climatic variables as predictors for disease burdens of angiostrongyliasis, leptospirosis, toxoplasmosis, toxocariasis, and rabies from 57 islands or island countries. We found strong correlates of disease burden for leptospirosis, Toxoplasma gondii infection, angiostrongyliasis, and toxocariasis with more than 50% of the variance explained, and an average of 57% (range = 32-95%) predictive accuracy on out-of-sample data. We used these relationships to provide estimates of leptospirosis incidence and T. gondii seroprevalence infection on islands where nonnative rodents and cats are present. These predicted estimates of disease burden could be used in an initial assessment of whether the costs of managing introduced mammal reservoirs might be less than the costs of perpetual treatment of these diseases on islands.
Treatment of clinical mastitis.
Roberson, Jerry R
2012-07-01
In summary, culture-based therapy and severity levels are key to management of clinical mastitis. Antibiotic therapy should be strongly considered for gram-positive clinical mastitis. Antibiotic therapy is not necessary for mild-to-moderate gram-negative clinical mastitis. Antibiotic therapy is warranted for practically all severe clinical mastitis as well as fluids and anti-inflammatory drugs. Clinical mastitis cases due to yeast and fungal pathogens or no growth isolates do not warrant antibiotic therapy.
Looking into Candida albicans infection, host response, and antifungal strategies.
Wang, Yan
2015-01-01
Candida albicans, a commonly encountered fungal pathogen, causes diseases varying from superficial mucosal complaints to life-threatening systemic disorders. Among the virulence traits of C. albicans, yeast-to-hypha transition is most widely acknowledged. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs), and defence against C. albicans infection is provided by an exquisite interplay between the innate and adaptive arms of the host immune system.
Hayashi, Kengo; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-Ichi
2018-05-14
Nagilactones are norditerpene dilactones isolated from the root bark of Podocarpus nagi. Although nagilactone E has been reported to show antifungal activities, its activity is weaker than that of antifungals on the market. Nagilactone E enhances the antifungal activity of phenylpropanoids such as anethole and isosafrole against nonpathogenic Saccharomyces cerevisiae and pathogenic Candida albicans. However, the detailed mechanisms underlying the antifungal activity of nagilactone E itself have not yet been elucidated. Therefore, we investigated the antifungal mechanisms of nagilactone E using S. cerevisiae. Although nagilactone E induced lethality in vegetatively growing cells, it did not affect cell viability in non-growing cells. Nagilactone E-induced morphological changes in the cells, such as inhomogeneous thickness of the glucan layer and leakage of cytoplasm. Furthermore, a dose-dependent decrease in the amount of newly synthesized (1, 3)-β-glucan was detected in the membrane fractions of the yeast incubated with nagilactone E. These results suggest that nagilactone E exhibits an antifungal activity against S. cerevisiae by depending on cell wall fragility via the inhibition of (1, 3)-β-glucan biosynthesis. Additionally, we confirmed nagilactone E-induced morphological changes of a human pathogenic fungus Aspergillus fumigatus. Therefore, nagilactone E is a potential antifungal drug candidate with fewer adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Encapsulated whey-native yeast Kluyveromyces marxianus as a feed additive for animal production.
Díaz-Vergara, Ladislao; Pereyra, Carina Maricel; Montenegro, Mariana; Pena, Gabriela Alejandra; Aminahuel, Carla Ayelen; Cavaglieri, Lilia R
2017-05-01
Whey is the main byproduct of the cheese industry. While the composition is variable, it retains up to 55% of milk nutrients. The beneficial features of whey indicates a promising source of new potentially probiotic strains for the development of food additives destined for animal production. The aim of this study was to identify Kluyveromyces spp. isolated from whey, to study some probiotic properties and to select the best strain to be encapsulated using derivatised chitosan. Kluyveromyces marxianus strains (VM003, VM004 and VM005) were isolated from whey and identified by phenotypic and molecular techniques. These three yeast strains were able to survive under gastrointestinal conditions. Moreover, they exhibited weak auto-aggregation and co-aggregation with pathogenic bacteria (Salmonella sp., Serratia sp., Escherichia coli and Salmonella typhimurium). In general the K. marxianus strains had a strong antimicrobial activity against pathogenic bacteria. The potential probiotic K. marxianus VM004 strain was selected for derivatised-chitosan encapsulation. Material treated with native chitosan exhibited a strong antimicrobial activity of K. marxianus, showing a total growth inhibition at 10 min exposure. However, derivatised-chitosan encapsulation showed a reduced antimicrobial activity. This is the first study to show some probiotic properties of whey-native K. marxianus, in vitro. An encapsulation strategy was applied using derivatised chitosan.
Li, Z; Wang, W; Lv, Z; Liu, D; Guo, Y
2017-12-01
1. The objective was to investigate the effects of Bacillus subtilis, yeast cell wall (YCW) and their combination on intestinal health of broilers challenged by Clostridium perfringens over a 21-d period. 2. Using a 5 × 2 factorial arrangement of treatments, 800 1-d-old male Cobb 500 broilers were used to study the effects of feed additives (without additive or with zinc bacitracin, B. subtilis, YCW, and the combination of B. subtilis and YCW), pathogen challenge (without or with Clostridium perfringens challenge), and their interactive effects. 3. C. perfringens infection increased intestinal lesions scores, damaged intestinal histomorphology, increased serum endotoxin concentration, cytokine mRNA expression and intestinal population of C. perfringens and Escherichia coli and decreased ileal bifidobacteria numbers. The 4 additives decreased serum endotoxin. Zinc bacitracin tended to decrease cytokine mRNA expression and the intestinal number of C. perfringens and E. coli. B. subtilis, YCW and their combination increased cytokine mRNA expression. B. subtilis and YCW decreased the number of C. perfringens and E. coli in the ileum, and their combination decreased pathogens numbers in the ileum and caecum. 4. In conclusion, B. subtilis, YCW and their combination improved the intestinal health of NE-infected broilers, and could be potential alternatives to antibiotics.
Black Yeasts and Their Filamentous Relatives: Principles of Pathogenesis and Host Defense
Netea, Mihai G.; Mouton, Johan W.; Melchers, Willem J. G.; Verweij, Paul E.; de Hoog, G. Sybren
2014-01-01
SUMMARY Among the melanized fungi, the so-called “black yeasts” and their filamentous relatives are particularly significant as agents of severe phaeohyphomycosis, chromoblastomycosis, and mycetoma in humans and animals. The pathogenicity and virulence of these fungi may differ significantly between closely related species. The factors which probably are of significance for pathogenicity include the presence of melanin and carotene, formation of thick cell walls and meristematic growth, presence of yeast-like phases, thermo- and perhaps also osmotolerance, adhesion, hydrophobicity, assimilation of aromatic hydrocarbons, and production of siderophores. Host defense has been shown to rely mainly on the ingestion and elimination of fungal cells by cells of the innate immune system, especially neutrophils and macrophages. However, there is increasing evidence supporting a role of T-cell-mediated immune responses, with increased interleukin-10 (IL-10) and low levels of gamma interferon (IFN-γ) being deleterious during the infection. There are no standardized therapies for treatment. It is therefore important to obtain in vitro susceptibilities of individual patients' fungal isolates in order to provide useful information for selection of appropriate treatment protocols. This article discusses the pathogenesis and host defense factors for these fungi and their severity, chronicity, and subsequent impact on treatment and prevention of diseases in human or animal hosts. PMID:24982320
Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella
2015-05-01
Strains belonging to the species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans, isolated from different food sources, were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic mold Botrytis cinerea. All yeast strains demonstrated antifungal activity at different levels depending on species and medium. Killer strains of W. anomalus and S. cerevisiae showed the highest biocontrol in vitro activity, as demonstrated by largest inhibition halos. The competition for iron and the ability to form biofilm and to colonize fruit wounds were hypothesized as the main action mechanisms for M. pulcherrima. The production of hydrolytic enzymes and the ability to colonize the wounds were the most important mechanisms for biocontrol activity in A. pullulans and W. anomalus, which also showed high ability to form biofilm. The production of volatile organic compounds (VOCs) with in vitro and in vivo inhibitory effect on pathogen growth was observed for the species W. anomalus, S. cerevisiae and M. pulcherrima. Our study clearly indicates that multiple modes of action may explain as M. pulcherrima provide excellent control of postharvest botrytis bunch rot of grape. Copyright © 2014 Elsevier Ltd. All rights reserved.
Taylor, M L; Duarte-Escalante, E; Reyes-Montes, M R; Elizondo, N; Maldonado, G; Zenteno, E
1998-01-01
The interaction of macrophage-membrane proteins and histoplasmin, a crude antigen of the pathogenic fungus Histoplasma capsulatum, was studied using murine peritoneal macrophages. Membrane proteins were purified via membrane attachment to polycationic beads and solubilized in Tris–HCl/SDS/DTT/glycerol for protein extraction; afterwards they were adsorbed or not with H. capsulatum yeast or lectin binding-enriched by affinity chromatography. Membrane proteins and histoplasmin interactions were detected by ELISA and immunoblotting assays using anti-H. capsulatum human or mouse serum and biotinylated goat anti-human or anti-mouse IgG/streptavidin-peroxidase system to reveal the interaction. Results indicate that macrophage-membrane proteins and histoplasmin components interact in a dose-dependent reaction, and adsorption of macrophage-membrane proteins by yeast cells induces a critical decrease in the interaction. Macrophage-membrane glycoproteins with terminal d-galactosyl residues, purified by chromatography with Abrus precatorius lectin, bound to histoplasmin; and two bands of 68 kD and 180 kD of transferred membrane protein samples interacted with histoplasmin components, as revealed by immunoblot assays. Specificity for β-galactoside residues on the macrophage-membrane was confirmed by galactose inhibition of the interaction between macrophage-membrane proteins and histoplasmin components, in competitive ELISA using sugars, as well as by enzymatic cleavage of the galactoside residues. PMID:9737672
Cogliati, Massimo; Puccianti, Erika; Montagna, Maria T; De Donno, Antonella; Susever, Serdar; Ergin, Cagri; Velegraki, Aristea; Ellabib, Mohamed S; Nardoni, Simona; Macci, Cristina; Trovato, Laura; Dipineto, Ludovico; Rickerts, Volker; Akcaglar, Sevim; Mlinaric-Missoni, Emilija; Bertout, Sebastien; Vencà, Ana C F; Sampaio, Ana C; Criseo, Giuseppe; Ranque, Stéphane; Çerikçioğlu, Nilgün; Marchese, Anna; Vezzulli, Luigi; Ilkit, Macit; Desnos-Ollivier, Marie; Pasquale, Vincenzo; Polacheck, Itzhack; Scopa, Antonio; Meyer, Wieland; Ferreira-Paim, Kennio; Hagen, Ferry; Boekhout, Teun; Dromer, Françoise; Varma, Ashok; Kwon-Chung, Kyung J; Inácio, Joäo; Colom, Maria F
2017-10-01
Fundamental niche prediction of Cryptococcus neoformans and Cryptococcus gattii in Europe is an important tool to understand where these pathogenic yeasts have a high probability to survive in the environment and therefore to identify the areas with high risk of infection. In this study, occurrence data for C. neoformans and C. gattii were compared by MaxEnt software with several bioclimatic conditions as well as with soil characteristics and land use. The results showed that C. gattii distribution can be predicted with high probability along the Mediterranean coast. The analysis of variables showed that its distribution is limited by low temperatures during the coldest season, and by heavy precipitations in the driest season. C. neoformans var. grubii is able to colonize the same areas of C. gattii but is more tolerant to cold winter temperatures and summer precipitations. In contrast, the C. neoformans var. neoformans map was completely different. The best conditions for its survival were displayed in sub-continental areas and not along the Mediterranean coasts. In conclusion, we produced for the first time detailed prediction maps of the species and varieties of the C. neoformans and C. gattii species complex in Europe and Mediterranean area. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ford, Kathryn L.; Baumgartner, Kendra; Henricot, Béatrice; Bailey, Andy M.; Foster, Gary D.
2016-01-01
Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled using yeast-based recombination methods. These have been designed to allow easy exchange of promoters and inclusion of introns. The vectors were first tested by transformation into basidiomycete Clitopilus passeckerianus to ascertain vector functionality then used to transform A. mellea. We show that heterologous promoters from the basidiomycetes Agaricus bisporus and Phanerochaete chrysosporium that were used successfully to control the hygromycin resistance cassette were not able to support expression of mRFP or GFP in A. mellea. The endogenous A. mellea gpd promoter delivered efficient expression, and we show that inclusion of an intron was also required for transgene expression. GFP and mRFP expression was stable in mycelia and fluorescence was visible in transgenic fruiting bodies and GFP was detectable in planta. Use of these vectors has been successful in giving expression of the fluorescent proteins GFP and mRFP in A. mellea, providing an additional molecular tool for this pathogen. PMID:27384974
Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex
2015-01-01
During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137
Gaetti-Jardim Júnior, Elerson; Nakano, Viviane; Wahasugui, Thais C.; Cabral, Fátima C.; Gamba, Rosa; Avila-Campos, Mario Julio
2008-01-01
The purpose of this study was to determine the prevalence of enteric bacteria and yeasts in biofilm of 80 HIV-positive patients with plaque-associated gingivitis or necrotizing periodontitis. Patients were subjected to extra, intra oral and radiographic examinations. The oral hygiene, bleeding on probing, gingival conditions, and attachment loss were evaluated. Clinical specimens were collected from gingival crevices or periodontal pockets, transferred to VMGA III, diluted and transferred to Sabouraud Dextrose agar with 100 μg/ml of chloramphenicol, peptone water, EVA broth, EMB agar, SS agar, Bile esculin agar and Brilliant green agar. Isolation of yeasts was carried out at room temperature, for 3-7 days; and for the isolation of enteric microorganisms plates were incubated at 37°C, for 24-48 h. The yeasts identification was performed according to the carbon and nitrogen assimilation, fermentation of carbohydrates and germ tube formation. Bacteria were identified according to their colonial and cellular morphologies and biochemical tests. Yeasts were identified as Candida albicans and its occurrence was more common in patients with CD4+ below 200/mm3 and was affected by the extension of periodontal involvement (P = 0.0345). Enteric bacteria recovered from clinical specimens were identified as Enterobacter sakazakii, Enterobacter cloacae, Serratia liquefaciens, Klebsiella oxytoca and Enterococcus sp. Enterobacteriaceae and enterococci were detected in 32.5% of clinical samples from patients with necrotizing periodontitis. In conclusion, non-oral pathogenic bacteria and C. albicans were more prevalent in periodontal sites of HIV-positive patients with necrotizing periodontitis and chronic gingivitis. PMID:24031212
An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.
Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B
2008-01-01
The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.
Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B
2016-03-01
The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.
el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M
1996-01-01
Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.
A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study
Misner, Bill D
2007-01-01
Background Athlete's Foot (Tinea pedis) is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment. Methods A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1) after 48-hours feet enclosure, (2) after washing feet, and (3) after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil. Conclusion Application of this novel compound to the external surfaces of feet completely inhibited both aerobic bacteria and yeast-fungi-mold proliferation for 8-hours in spite of being in an enclosed environment compatible to microbial proliferation. Whether topical application of this compound prevents microbial infections in larger populations is not known. This calls for more research collected from subjects exposed to elements that may increase the risk of microbial-induced foot diseases. PMID:17908343
Mackey, Tim K; Liang, Bryan A; Cuomo, Raphael; Hafen, Ryan; Brouwer, Kimberly C; Lee, Daniel E
2014-10-01
In global health, critical challenges have arisen from infectious diseases, including the emergence and reemergence of old and new infectious diseases. Emergence and reemergence are accelerated by rapid human development, including numerous changes in demographics, populations, and the environment. This has also led to zoonoses in the changing human-animal ecosystem, which are impacted by a growing globalized society where pathogens do not recognize geopolitical borders. Within this context, neglected tropical infectious diseases have historically lacked adequate attention in international public health efforts, leading to insufficient prevention and treatment options. This subset of 17 infectious tropical diseases disproportionately impacts the world's poorest, represents a significant and underappreciated global disease burden, and is a major barrier to development efforts to alleviate poverty and improve human health. Neglected tropical diseases that are also categorized as emerging or reemerging infectious diseases are an even more serious threat and have not been adequately examined or discussed in terms of their unique risk characteristics. This review sets out to identify emerging and reemerging neglected tropical diseases and explore the policy and innovation environment that could hamper or enable control efforts. Through this examination, we hope to raise awareness and guide potential approaches to addressing this global health concern. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Magiatis, Prokopios; Pappas, Periklis; Gaitanis, George; Mexia, Nikitia; Melliou, Eleni; Galanou, Maria; Vlachos, Christophoros; Stathopoulou, Konstantina; Skaltsounis, Alexios Leandros; Marselos, Marios; Velegraki, Aristea; Denison, Michael S.; Bassukas, Ioannis D.
2013-01-01
Malassezia yeasts are commensal microorganisms which under insufficiently understood conditions can become pathogenic. We have previously shown that specific strains isolated from diseased human skin can preferentially produce agonists of the aryl hydrocarbon receptor (AhR), whose activation has been linked to certain skin diseases. Investigation of skin scale extracts from patients with Malassezia associated diseases demonstrated 10–1000 fold higher AhR activating capacity than control skin extracts. LC/MS/MS analysis of the patients’ extracts revealed the presence of indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), indolo[3,2-b]carbazole (ICZ), malassezin, and pityriacitrin. The same compounds were also identified in 9/12 Malassezia species culture extracts tested, connecting their presence in skin scales with this yeast. Studying the activity of the Malassezia culture-extracts and pure metabolites in HaCaT cells by Reverse Transcriptase Real-Time PCR revealed significant alterations in mRNA levels of the endogenous AhR-responsive genes Cyp1A1, Cyp1B1 and AhRR. Indirubin and FICZ activated AhR in HaCaT and human HepG2 cells with significantly higher, yet transient, potency as compared to the prototypical AhR ligand, dioxin. In loco synthesis of these highly potent AhR inducers by Malassezia yeasts could have a significant impact on skin homeostatic mechanisms and disease development. PMID:23448877
Pao, Steven; Kim, Chyer; Jordan, Larry; Long, Wilbert; Inserra, Paula; Sayre, Brian
2011-02-01
A convenient bread making method involving prolonged fermentation of no-knead (nonkneaded) dough has become popular in recent years. In the present study, the microbial safety of no-knead dough made with a 375:325:5:1 weight ratio of flour, water, salt, and bread yeast was investigated. Three brands of dehydrated yeast were used for this study. The growth of inoculated Salmonella enterica and Staphylococcus aureus in no-knead dough during fermentation was significant (P<0.05), regardless of yeast brand. The multiplication rates of S. enterica in the initial 12 h and S. aureus over the entire 24 h of fermentation were positively correlated with fermentation temperatures of 21 to 38°C (P<0.005; r≥0.996). Mean counts of S. enterica increased by 0.5, 1.5, 1.9, and 2.4 log CFU/g, respectively, after 6, 12, 18, and 24 h of fermentation at 21 °C. The level of S. aureus increased by 0.4, 1.1, 1.7, and 2.2 CFU/g, respectively, after 18 h of fermentation at 21, 27, 32, and 38 °C. Because prolonged fermentation permits substantial growth of infectious and/or toxin-producing foodborne pathogens, the making of slow-rise, no-knead bread may compromise consumer kitchen sanitation and food safety. Copyright ©, International Association for Food Protection
Relapsing Fevers: Neglected Tick-Borne Diseases
Talagrand-Reboul, Emilie; Boyer, Pierre H.; Bergström, Sven; Vial, Laurence; Boulanger, Nathalie
2018-01-01
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi. PMID:29670860
Pacheco, P A F; Dantas, L P; Ferreira, L G B; Faria, Robson Xavier
2018-06-07
Purinergic receptors are widespread in the human organism and are involved in several physiological functions like neurotransmission, nociception, platelet aggregation, etc. In the immune system, they may regulate the expression and release of pro-inflammatory factors as well as the activation and death of several cell types. It is already described the participation of some purinergic receptors in the inflammation and pathological processes, such as a few neglected tropical diseases (NTDs) which affect more than 1 billion people in the world. Although the high social influence those diseases represent endemic countries, most of them do not have an efficient, safe or affordable drug treatment. In that way, this review aims to discuss the current literature involving purinergic receptor and immune response to NTDs pathogens, which may contribute in the search for new therapeutic possibilities.
Spatial evolutionary epidemiology of spreading epidemics
2016-01-01
Most spatial models of host–parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. PMID:27798295
Spatial evolutionary epidemiology of spreading epidemics.
Lion, S; Gandon, S
2016-10-26
Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).
Joshua, Ifeoluwapo Matthew; Höfken, Thomas
2017-04-05
Zinc cluster proteins are a large family of transcriptional regulators with a wide range of biological functions. The zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2 have initially been identified as regulators of sterol import in the budding yeast Saccharomyces cerevisiae . These proteins also control adaptations to anaerobic growth, sterol biosynthesis as well as filamentation and mating. Orthologs of these zinc cluster proteins have been identified in several species of Candida . Upc2 plays a critical role in antifungal resistance in these important human fungal pathogens. Upc2 is therefore an interesting potential target for novel antifungals. In this review we discuss the functions, mode of actions and regulation of Ecm22, Upc2, Sut1 and Sut2 in budding yeast and Candida .
Double-stranded RNA virus in the human pathogenic fungus Blastomyces dermatitidis.
Kohno, S; Fujimura, T; Rulong, S; Kwon-Chung, K J
1994-01-01
Double-stranded RNA viruses were detected in a strain of Blastomyces dermatitidis isolated from a patient in Uganda. The viral particles are spherical (mostly 44 to 50 nm in diameter) and consist of about 25% double-stranded RNA (5 kb) and 75% protein (90 kDa). The virus contains transcriptional RNA polymerase activity; it synthesized single-stranded RNA in vitro in a conservative manner. The newly synthesized single-stranded RNA was a full-length strand, and the rate of chain elongation was approximately 170 nucleotides per min. The virus-containing strain shows no morphological difference from virus-free strains in the mycelial phase. Although the association with the presence of the virus is unclear, the virus-infected strain converts to the yeast form at 37 degrees C, but the yeast cells fail to multiply at that temperature. Images PMID:7933142
Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent
NASA Astrophysics Data System (ADS)
Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André
2018-04-01
One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast ( Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.
Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent.
Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André
2018-04-23
One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast (Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.
Titan cells in Cryptococcus neoformans: Cells with a giant impact
Zaragoza, Oscar; Nielsen, Kirsten
2013-01-01
Cryptococcus neoformans is a pathogenic yeast that commonly infects immunocompromised individuals, yet has developed multiple adaptation mechanisms to the host. Several virulence factors (capsule and melanin) have been known for many years. However, this yeast also possesses a morphogenetic program that is still not well characterized. Cryptococcus neoformans has the ability to dramatically enlarge its size during infection to form “titan cells” that can reach up to 100 microns in cell body diameter, in contrast to typical size cells of 5-7 microns. These titan cells pose a problem for the host because they contribute to fungal survival, dissemination to the central nervous system, and possibly even latency. In this review, we will provide an overview of these cells, covering current knowledge about their phenotypic features, mechanism of formation, and their significance during infection. PMID:23588027
Shwab, Elliot K; Juvvadi, Praveen R; Waitt, Greg; Soderblom, Erik J; Moseley, Martin A; Nicely, Nathan I; Steinbach, William J
2017-11-01
Protein kinase A (PKA) signaling is essential for growth and virulence of the fungal pathogen Aspergillus fumigatus. Little is known concerning the regulation of this pathway in filamentous fungi. Employing liquid chromatography-tandem mass spectroscopy, we identified novel phosphorylation sites on the regulatory subunit PkaR, distinct from those previously identified in mammals and yeasts, and demonstrated the importance of two phosphorylation clusters for hyphal growth and cell wall-stress response. We also identified key differences in the regulation of PKA subcellular localization in A. fumigatus compared with other species. This is the first analysis of the phosphoregulation of a PKA regulatory subunit in a filamentous fungus and uncovers critical mechanistic differences between PKA regulation in filamentous fungi compared with mammals and yeast species, suggesting divergent targeting opportunities. © 2017 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun
2010-06-01
The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens ( Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.
Profiling a killer, the development of Cryptococcus neoformans
Kozubowski, Lukasz; Heitman, Joseph
2012-01-01
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity. PMID:21658085
An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease.
Urban, M; Bhargava, T; Hamer, J E
1999-01-01
Cells tolerate exposure to cytotoxic compounds through the action of ATP-driven efflux pumps belonging to the ATP-binding cassette (ABC) superfamily of membrane transporters. Phytopathogenic fungi encounter toxic environments during plant invasion as a result of the plant defense response. Here we demonstrate the requirement for an ABC transporter during host infection by the fungal plant pathogen Magnaporthe grisea. The ABC1 gene was identified in an insertional mutagenesis screen for pathogenicity mutants. The ABC1 insertional mutant and a gene-replacement mutant arrest growth and die shortly after penetrating either rice or barley epidermal cells. The ABC1-encoded protein is similar to yeast ABC transporters implicated in multidrug resistance, and ABC1 gene transcripts are inducible by toxic drugs and a rice phytoalexin. However, abc1 mutants are not hypersensitive to antifungal compounds. The non-pathogenic, insertional mutation in ABC1 occurs in the promoter region and dramatically reduces transcript induction by metabolic poisons. These data strongly suggest that M.grisea requires the up-regulation of specific ABC transporters for pathogenesis; most likely to protect itself against plant defense mechanisms. PMID:9927411
Controlled Microbial Cenoses in Closed Spaces
NASA Astrophysics Data System (ADS)
Somova, Lydia; Mikheeva, Galina
Controlled microbial cenoses have good prospects in closed spaces: for air treatment in LSS and cellars industrial premises; for sewage treatment in LSS; for increase of productivity and protect of plants from infections in LSS. Possible methods of formation of microbiocenoses are: selection, autoselection, artificial formation taking into account their biochemical properties and metabolic interactions. Experimental microbiocenoses, has been produced on the basis of natural association of microorganisms by long cultivation on specially developed medium. Dominating groups are bacteria of genera: Lactobacillus, Streptococcus, Leuconostoc, Bidobac-terium, Rhodopseudomonas and yeast of genera: Kluyveromyces, Saccharomyces and Torulop-sis. Microbiocenoses do not contain pathogenic and conditionally pathogenic microorganisms, they possess opposing and probiotic properties. Different examples of microbial cenoses actions are to be presented in the paper.
Trimming Surface Sugars Protects Histoplasma from Immune Attack.
Brown, Gordon D
2016-04-26
Dectin-1 is an essential innate immune receptor that recognizes β-glucans in fungal cell walls. Its importance is underscored by the mechanisms that fungal pathogens have evolved to avoid detection by this receptor. One such pathogen is Histoplasma capsulatum, and in a recent article in mBio, Rappleye's group presented data showing that yeasts of this organism secrete a β-glucanase, Eng1, which acts to prune β-glucans that are exposed on the fungal cell surface [A. L. Garfoot et al., mBio 7(2):e01388-15, 2016, http://dx.doi.org/10.1128/mBio.01388-15]. The trimming of these sugars reduces immune recognition through Dectin-1 and subsequent inflammatory responses, enhancing the pathogenesis of H. capsulatum. Copyright © 2016 Brown.
Mech, Franziska; Wilson, Duncan; Lehnert, Teresa; Hube, Bernhard; Thilo Figge, Marc
2014-02-01
Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium. © 2013 International Society for Advancement of Cytometry.
Hertel, Moritz; Schmidt-Westhausen, Andrea Maria; Strietzel, Frank-Peter
2016-09-01
In order to identify oral candidiasis patients being at risk of carrying potentially drug-resistant Candida, the aim of the study was to detect local, systemic, demographic, and health-related factors influencing (I) yeast spectrum composition and (II) antifungal administration frequency. Additionally, the aim was to investigate (III) species shift occurrence. Data from 798 patients (496 females, 302 males; mean age 59.7) with oral candidiasis diagnosed based on positive clinical and microbial findings (species identification and CFU count) between 2006 and 2011 were retrospectively analyzed using Pearson's chi(2) test and regression analysis. Among 958 isolates, Candida albicans was the most frequently detected (76.8 %). Also, species intrinsically resistant to azoles were frequently isolated (15.8 and 17.7 % of isolates and patients). (I) Infections only caused by C. albicans were significantly associated with the use of inhalation steroids (p = 0.001) and antibiotics (p = 0.04), super-infection of lichen planus (p = 0.002), and the absence of removable dentures (p < 0.001). (II) Anti-mycotics were significantly more frequently administered in patients using inhalation steroids (p = 0.001), suffering from asthma/COPD, or smoking heavily (p = 0.003) and if C. albicans and non-albicans species were detected together (p = 0.001). (III) Pathogen composition did not change over time within the examined period (p = 0.239). Different variables enhance the presence of certain Candida and the antifungal prescription frequency. No species shift was evident. The major pathogen in oral candidiasis remains C. albicans. Nevertheless, therapeutic problems may be caused by the frequent presence of species intrinsically resistant to azoles, especially in patients wearing dentures.
Marianelli, Cinzia; Petrucci, Paola; Comelli, Maria Cristina; Calderini, Gabriella
2014-01-01
This in vitro study assessed the antimicrobial properties of a novel octasilver salt of Sucrose Octasulfate (IASOS) as well as of an innovative vaginal gel containing IASOS (SilSOS Femme), against bacterial and yeast pathogens isolated from human clinical cases of symptomatic vaginal infections. In BHI and LAPT culture media, different ionic silver concentrations and different pHs were tested. IASOS exerted a strong antimicrobial activity towards all the pathogens tested in both culture media. The results demonstrated that salts and organic compounds present in the culture media influenced IASOS efficacy only to a moderate extent. Whereas comparable MBCs (Minimal Bactericidal Concentrations) were observed for G. vaginalis (10 mg/L Ag+), E. coli and E. aerogenes (25 mg/L Ag+) in both media, higher MBCs were found for S. aureus and S. agalactiae in LAPT cultures (50 mg/L Ag+ versus 25 mg/L Ag+). No minimal concentration totally inhibiting the growth of C. albicans was found. Nevertheless, in both media at the highest ionic silver concentrations (50–200 mg/L Ag+), a significant 34–52% drop in Candida growth was observed. pH differently affected the antimicrobial properties of IASOS against bacteria or yeasts; however, a stronger antimicrobial activity at pH higher than the physiological pH was generally observed. It can be therefore concluded that IASOS exerts a bactericidal action against all the tested bacteria and a clear fungistatic action against C. albicans. The antimicrobial activity of the whole vaginal gel SilSOS Femme further confirmed the antimicrobial activity of IASOS. Overall, our findings support IASOS as a valid active ingredient into a vaginal gel. PMID:24897299
NASA Astrophysics Data System (ADS)
Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad
2010-10-01
Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.
Jacxsens, L; Devlieghere, F; Van der Steen, C; Debevere, J
2001-12-30
The application of High Oxygen Atmospheres (HOA) (i.e. > 70% O2) for packaging ready-to-eat vegetables was evaluated as an alternative technique for low O2 Equilibrium Modified Atmosphere (EMA) packaging (3% O2-5% CO2-balance N2) for respiring products. Comparative experiments between both techniques were performed in-vitro and in-vivo. Typical spoilage causing microorganisms (Pseudomonas fluorescens, Candida lambica), the moulds Botrytis cinerea, Aspergillus flavus and the opportunistic psychrotrophic human pathogenic microorganism associated with refrigerated minimally processed vegetables. Aeromonas caviae (HG4), showed a retarded growth during the conducted in-vitro studies at 4 degrees C in 70%, 80% and 95% O2 as examples of HOA compared to the in-vitro experiments in 5% O2 (as example of EMA packaging) and the effect was more pronounced in 95% O2. The effect of the high O2-concentrations on the human pathogen Listeria monocytogenes resulted in an extended lag phase (95% O2). The plant pathogen Erwinia carotovora was increasingly stimulated by increasing high O2-concentrations. During a storage experiment of three types of ready-to-eat vegetables (mushroom slices, grated celeriac and shredded chicory endive), which are sensitive to enzymatic browning and microbial spoilage, the effect of EMA and HOA (95% O2-5% N2) on their quality and shelf life was compared. High O2 atmospheres were found to be particularly effective in inhibiting enzymatic browning of the tested vegetables. Also, the microbial quality was better as a reduction in yeast growth was observed. The HOA can be applied as an alternative for low O2 modified atmospheres for some specific types of ready-to-eat vegetables, sensitive to enzymatic browning and spoilage by yeasts.
NASA Astrophysics Data System (ADS)
Kato, Ilka T.; Santos, Camila C.; Benetti, Endi; Tenório, Denise P. L. A.; Cabral Filho, Paulo E.; Sabino, Caetano P.; Fontes, Adriana; Santos, Beate S.; Prates, Renato A.; Ribeiro, Martha S.
2012-03-01
Candida albicans is the most frequent human opportunistic pathogenic fungus and one of the most important causes of nosocomial infections. In fact, diagnosis of invasive candidiasis presents unique problems. The aim of this work was to evaluate, by fluorescence image analysis, cellular labeling of C. albicans with CdTe/CdS quantum dots conjugated or not to concanavalin A (ConA). Yeast cells were incubated with CdTe/CdS quantum dots (QD) stabilized with mercaptopropionic acid (MPA) (emission peak at 530 nm) for 1 hour. In the overall study we observed no morphological alterations. The fluorescence microscopic analysis of the yeast cells showed that the non-functionalized QDs do not label C. albicans cells, while for the QD conjugated to ConA the cells showed a fluorescence profile indicating that the membrane was preferentially marked. This profile was expected since Concanavalin A is a protein that binds specifically to terminal carbohydrate residues at the membrane cell surface. The results suggest that the QD-labeled Candida cells represent a promising tool to open new possibilities for a precise evaluation of fungal infections in pathological conditions.
Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2011-05-01
Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans. The antimicrobial activities were studied by using disc diffusion method and broth dilution method. The effect of the extract on the growth profile of the yeast was also examined via time-kill assay. In addition to the fungicidal effects study, microscopic observations using Scanning (SEM) electron microscopy, Transmission (TEM) electron microscopy and light microscopy (LM) were done to determine the major alterations in the microstructure of Candida (C) albicans. The extract showed a favorable antimicrobial activity against C. albicans with a minimum inhibitory concentration (MIC) value of 1.56 mg/mL. Time-kill assay suggested that Vernonia cinerea extract had completely inhibited Candida albicans growth and also exhibited prolonged antiyeast activity. The main abnormalities notes from these microscopic observations were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The extract of Vernonia cinerea may be an effective agent to treat the Candida albicans infection.
The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression.
Delorme-Axford, Elizabeth; Guimaraes, Rodrigo Soares; Reggiori, Fulvio; Klionsky, Daniel J
2015-03-01
Macroautophagy (hereafter autophagy) is a highly evolutionarily conserved process essential for sustaining cellular integrity, homeostasis, and survival. Most eukaryotic cells constitutively undergo autophagy at a low basal level. However, various stimuli, including starvation, organelle deterioration, stress, and pathogen infection, potently upregulate autophagy. The hallmark morphological feature of autophagy is the formation of the double-membrane vesicle known as the autophagosome. In yeast, flux through the pathway culminates in autophagosome-vacuole fusion, and the subsequent degradation of the resulting autophagic bodies and cargo by vacuolar hydrolases, followed by efflux of the breakdown products. Importantly, aberrant autophagy is associated with diverse human pathologies. Thus, there is a need for ongoing work in this area to further understand the cellular factors regulating this process. The field of autophagy research has grown exponentially in recent years, and although numerous model organisms are being used to investigate autophagy, the baker's yeast Saccharomyces cerevisiae remains highly relevant, as there are significant and unique benefits to working with this organism. In this review, we will focus on the current methods available to evaluate and monitor autophagy in S. cerevisiae, which in several cases have also been subsequently exploited in higher eukaryotes. Copyright © 2014 Elsevier Inc. All rights reserved.
[Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].
Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M
2017-06-01
Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Sheehan, Jared; Marasco, Wayne A
2015-02-01
Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases.
de Almeida, João N; Sztajnbok, Jaques; da Silva, Afonso Rafael; Vieira, Vinicius Adriano; Galastri, Anne Layze; Bissoli, Leandro; Litvinov, Nadia; Del Negro, Gilda Maria Barbaro; Motta, Adriana Lopes; Rossi, Flávia; Benard, Gil
2016-11-01
Moulds and arthroconidial yeasts are potential life-threatening agents of fungemia in immunocompromised patients. Fast and accurate identification (ID) of these pathogens hastens initiation of targeted antifungal therapy, thereby improving the patients' prognosis. We describe a new strategy that enabled the identification of moulds and arthroconidial yeasts directly from positive blood cultures by MALDI-TOF mass spectrometry (MS). Positive blood cultures (BCs) with Gram staining showing hyphae and/or arthroconidia were prospectively selected and submitted to an in-house protein extraction protocol. Mass spectra were obtained by Vitek MS™ system, and identifications were carried out with in the research use only (RUO) mode with an extended database (SARAMIS™ [v.4.12] plus in-house database). Fusarium solani, Fusarium verticillioides, Exophiala dermatitidis, Saprochaete clavata, and Trichosporon asahii had correct species ID by MALDI-TOF MS analysis of positive BCs. All cases were related to critically ill patients with high mortality fungemia and direct ID from positive BCs was helpful for rapid administration of targeted antifungal therapy. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Seven functional classes of Barth syndrome mutation.
Whited, Kevin; Baile, Matthew G; Currier, Pamela; Claypool, Steven M
2013-02-01
Patients with Barth syndrome (BTHS), a rare X-linked disease, suffer from skeletal and cardiomyopathy and bouts of cyclic neutropenia. The causative gene encodes tafazzin, a transacylase, which is the major determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, CL. In addition to numerous frame shift and splice-site mutations, 36 missense mutations have been associated with BTHS. Previously, we established a BTHS-mutant panel in the yeast Saccharomyces cerevisiae that successfully models 18/21 conserved pathogenic missense mutations and defined the loss-of-function mechanism associated with a subset of the mutant tafazzins. Here, we report the biochemical and cell biological characterization of the rest of the yeast BTHS-mutant panel and in so doing identify three additional modes of tafazzin dysfunction. The largest group of mutant tafazzins is catalytically null, two mutants encode hypomorphic alleles, and another two mutants are temperature sensitive. Additionally, we have expanded the defects associated with previously characterized matrix-mislocalized-mutant tafazzins to include the rapid degradation of aggregation-prone polypeptides that correctly localize to the mitochondrial IMS. In sum, our in-depth characterization of the yeast BTHS-mutant panel has identified seven functional classes of BTHS mutation.
Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian
2013-12-01
Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.
Ilyas, Sidra; Rehman, Abdul
2015-01-01
In this study, we explored the multiple heavy metal-resistant yeast isolated from heavy metal-polluted environment. The isolated yeast showed maximum growth at 30 °C, pH 7.0, and the strain was identified as Candida tropicalis through 18S ribosomal RNA (rRNA) gene sequence analysis. Yeast cells grew well in medium containing different concentrations of heavy metal ions [CdCl₂, Pb(NO₃)₂, NaAsO₂, CuSO₄ and K₂Cr₂O₇]. Minimum inhibitory concentration (MIC) against different metal ions was ranged from 5 to 19 mM, and the metal resistance value against each metal observed by yeast cells was 5 mM (Cr), 10 mM (Cd), 15 mM (As), 14 mM (Cu) and 19 mM (Pb) and increased in the following order: Pb > Cu > As ≥ Cd > Cr. The total cellular glutathione, GSH/GSSG redox couple and metallothioneins like protein (MT) were assayed by growing cultures for 24 h and exposed to 100 mg/L of each heavy metal ion. Remarkable increase in γ-glutamylcysteinylglycine (GSH) level was determined in arsenic and cadmium treatment followed by chromium, lead and copper. Stressed cells had much more oxidized GSH than unstressed cells. GSH/GSSG ratio was significantly increased in cadmium and copper treatment in contrast to chromium, arsenic and lead. Statistical analysis revealed significantly higher cysteine level in all metal-treated samples as compared to control. Antioxidant glutathione transferase activity was not detected in metal-treated and untreated yeast samples. One-dimensional electrophoresis of proteins revealed marked differences in banding pattern of heavy metal-exposed yeast samples. A prominent 20 kDa band was observed in all treated samples suggesting that some differential proteins could be over-expressed during heavy metal treatment and might be involved in cell resistance mechanisms.
Mendes, J F; Gonçalves, C L; Ferreira, G F; Esteves, I A; Freitas, C H; Villarreal, J P V; Mello, J R B; Meireles, M C A; Nascente, P S
2018-02-01
Yeast infections have acquired great importance due to increasing frequency in immunocompromised patients or patients undergoing invasive diagnostic and therapeutic techniques, and also because of its high morbidity and mortality. At the same time, it has been seen an increase in the emergence of new pathogenic species difficult to diagnose and treat. The aim of this study was to determine the in vitro susceptibility of 89 yeasts from different sources against the antifungals amphotericin B, voriconazole, fluconazole and flucytosine, using the VITEK® 2 Compact system. The antifungal susceptibility was performed automatically by the Vitek® 2 Compact system. The origin of the yeasts was: Group 1 - microbiota of wild animals (W) (26/89), 2 - cow's milk with subclinical mastitis (M) (27/89) and 3 - hospital enviorment (H) (36/89). Of the 89 yeasts submitted to the Vitek® 2 test, 25 (20.9%) were resistant to fluconazole, 11 (12.36%) to amphotericin B, 3 (3.37%) to voriconazole, and no sample was resistant to flucytosine. Regarding the minimum inhibitory concentration (MIC), fluconazole showed an MIC between 1 and 64 mg/mL for the three groups, voriconazole had an MIC between 0.12 and 8 mg/mL, amphotericin B had an MIC between 0.25 and 4 mg/mL for group H and group W respectively, between 0.25 and 16 mg/mL for group M and flucytosine had an MIC equal to 1μg/mL for all groups. The yeasts isolated from the H group showed the highest resistance to fluconazole 12/89 (13.49%), followed by group W (7.87%) and group M (5.62%). The more resistant group to voriconazole was followed by the M and H groups, the W group showed no resistance to this antifungal. Group H was the least resistant (2.25%) to amphotericin.
Peighamy-Ashnaei, S; Sharifi-Tehrani, A; Ahmadzadeh, M; Behboudi, K
2008-01-01
The medium has a profound effect on biocontrol agents, including ability to grow and effectiveness in disease control. In this study, growth and antagonistic efficacy of strains P-5 and P-35 (P. fluorescens), B-3 and B-16 (B. subtilis) were evaluated in combinations of two carbon (sucrose and molasses) and two nitrogen (urea and yeast extract) sources to optimize control of Botrytis cinerea on apple. All of the strains were grown in different liquid media (pH = 6.9) including: sucrose + yeast extract, molasses of sugar beet + yeast extract in 2:1 and 1:1 w/w ratios, molasses of sugar beet + urea, molasses, malt extract and nutrient broth. Apples (Golden Delicious) were inoculated by a 25-microl suspension of 10(6) spores of B. cinerea per ml, wounding each fruit (in two sites separately). Then a 25-microl suspension of each strain, containing 2 x 10(8) cfu ml(-1) grown in each of the above culture media, was applied to each wound. Results indicated that Molasses + Yeast extract (1:1 w/w) medium supported rapid growth in all of the strains. The final growth of B. subtilis B-16 in Molasses + Yeast extract (1:1 w/w) medium was 5 x 10(9) cfu ml(-1). After ten days, all of the strains significantly inhibited pathogenicity of B. cinerea on apples. The biocontrol efficacy of B. subtilis B-3 in Molasses + Yeast extract (1:1 w/w) medium reduced the severity of grey mould from 100% (inoculated control) to less than 26.9%. After 20 days, Strain B-3 showed a considerable biocontrol efficacy in Molasses medium and reduced the severity of grey mould from 100% (inoculated control) to less than 38.2%. The results obtained in this study could be used to provide a reliable basis for the increase of population of biocontrol agents in fermentation process.
Martins, Flariano S; Nardi, Regina M D; Arantes, Rosa M E; Rosa, Carlos A; Neves, Maria J; Nicoli, Jacques R
2005-04-01
Probiotics are defined as viable microorganisms that exhibit a beneficial effect on the host's health when they are ingested. Two important criteria are used for selection of probiotic microorganisms: they must be able to survive in the gastrointestinal environment and to present at least one beneficial function (colonization resistance, immunomodulation or nutritional contribution). Generally, in vitro assays demonstrating these properties were used to select probiotics but it is unclear if the data can be extrapolated to in vivo conditions. In the present work, twelve Saccharomyces cerevisiae strains isolated from different environments (insect association, tropical fruit, cheese and "aguardente" production) and pre-selected for in vitro resistance to simulated gastrointestinal conditions were inoculated in germ-free mice to evaluate their real capacity to colonize the mammal digestive tract. Using these data, one of the yeasts (S. cerevisiae 905) was selected and tested in gnotobiotic (GN) and conventional (CV) mice for its capacity to protect against oral challenge with two enteropathogenic bacteria (Salmonella Typhimurium and Clostridium difficile). The yeast reached populational levels potentially functional in the gastrointestinal portions where the enteropathogens tested act. No antagonism against either pathogenic bacterium by the yeast was observed in the digestive tract of GN mice but, after challenge with S. Typhimurium, mortality was lower and liver tissue was better preserved in CV animals treated with the yeast when compared with a control group (p<0.05). Histopathological results of intestines showed that the yeast also presented a good protective effect against oral challenge with C. difficile in GN mice (p<0.05). In conclusion, among the 12 S. cerevisiae tested, strain 905 showed the best characteristics to be used as a probiotic as demonstrated by survival capacity in the gastrointestinal tract and protective effect of animals during experimental infections.
Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species
Yücesoy, Mine; Marol, Serhat
2003-01-01
Background The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. Methods A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37°C. Results The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. Conclusions It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar. PMID:14613587
Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel
2011-01-01
Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30°C made MIC determinations easier without an overestimation of MIC values. PMID:21245438
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira
Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.
2016-01-01
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts. PMID:26890609
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.
Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M
2016-02-01
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Karabıçak, Nilgün; Karatuna, Onur; Akyar, Işın
2016-06-01
Serious mycological work requires a reliable source of cultures that are maintained under safe long-term storage. In this study, 1186 clinical fungal isolates consisting of molds (20 species in 11 genera) and yeasts (21 species in seven genera) maintained in water, under mineral oil at room temperature and cryopreserved at -80 °C for periods ranging from 1 to 12 years, were evaluated for their viabilities and stabilities. The strains were subcultured onto either Sabouraud dextrose agar or potato dextrose agar to determine the viabilities and purities. The stabilities of the dermatophytes were investigated using urease test medium, the Trichophyton agar test and morphological examination. The stabilities of yeasts were evaluated by microscopic morphology and by determining the antifungal susceptibilities of random samples of yeasts (n = 120). Additionally, 365 strains (dermatophytes, n = 115; yeasts, n = 250) were further characterized by "matrix-assisted laser desorption/ionization time-of-flight mass spectrometry." After 12 years of preservation, the survival rates with the three different preservation techniques, i.e., in water, under mineral oil and by freezing, were assessed as 94.7, 82.0 and 97.4 %, respectively. Viability was generally unrelated to the duration of storage. More stable and consistent growth was achieved after storage in water and freezing compared with mineral oil preservation. Our results demonstrate that the procedure for maintaining fungal cultures in water is a simple and inexpensive method, next to cryopreservation, and that both can be reliably used for the long-term preservation of most fungal isolates.
Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta
2017-01-01
Candida spp. cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. As a result of the increasing antibiotic resistance among pathogenic yeasts, the interest in alternative agents of antifungal activity is growing. This study evaluated the antimicrobial activity of selected essential oils (EOs) against Candida clinical and food-borne strains, including antibiotic-resistant isolates, in relation to yeast cell surface hydrophobicity (CSH). Candida strains showed different range of susceptibility to tea tree, thyme, peppermint, and clove oils, and peppermint oil demonstrated the lowest anticandidal activity with minimal inhibitory concentrations (MICs) of 0.03-8.0% v/v. MIC values for thyme and clove oils ranged from 0.03% to 0.25% v/v, and for tea tree oil-from 0.12% to 2.0% v/v. The exception was Candida tropicalis food-borne strain, the growth of which was inhibited after application of EOs at concentration of 8% v/v. Due to diverse yeast susceptibility to EOs, isolates were divided into five clusters in a principal component analysis model, each containing both clinical and food-borne strains. Hydrophobic properties of yeast were also diversified, and 37% of clinical and 50% of food-borne strains exhibited high hydrophobicity. The study indicates high homology of clinical and food-borne Candida isolates in relation to their susceptibility to anticandidal agents and hydrophobic properties. The susceptibility of yeasts to EOs could be partially related to their CSH. High antifungal activity of examined EOs, also against antibiotic-resistant isolates, indicates their usefulness as agents preventing the development of Candida strains of different origin.
Panozzo, C; Laleve, A; Tribouillard-Tanvier, D; Ostojić, J; Sellem, C H; Friocourt, G; Bourand-Plantefol, A; Burg, A; Delahodde, A; Blondel, M; Dujardin, G
2017-12-01
Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III 2 /IV in yeast or I/III 2 /IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes. Copyright © 2017. Published by Elsevier B.V.
Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques
2017-01-01
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Identification and characterization of LysM effectors in Penicillium expansum.
Levin, Elena; Ballester, Ana Rosa; Raphael, Ginat; Feigenberg, Oleg; Liu, Yongsheng; Norelli, John; Gonzalez-Candelas, Luis; Ma, Jing; Dardick, Christopher; Wisniewski, Michael; Droby, Samir
2017-01-01
P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4) were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.
Muccilli, Serena; Restuccia, Cristina
2015-01-01
The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance. PMID:27682107
Kozyra, Małgorzata; Biernasiuk, Anna; Malm, Anna; Chowaniec, Marcin
2015-01-01
The aim of this study was to investigate phenolic acids and flavonoids in methanolic, dichloromethane, acetone and ethyl acetate extracts and fractions from inflorescences of Cirsium canum (L.). RP-HPLC analysis enabled identification of the following: chlorogenic acid, caffeic acid, p-coumaric acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, trans-cinnamic acid, luteolin-7-glucoside, apigenin-7-glucoside, kaempferol-3-glucoside, linarin, apigenin, rutoside, luteolin and kaempferol. The antimicrobial activity of tested extracts was determined in vitro against reference microorganisms, including bacteria or fungi, belonging to yeasts. Our data showed that the tested extracts had no influence on the growth of the reference strains of Gram-negative bacteria and yeasts belonging to Candida spp. Among them, the fractions possessed the highest activity against Gram-positive bacteria, especially Streptococcus aureus and Streptococcus pneumoniae belonging to pathogens and Streptococcus epidermidis, Bacilluscereus and Bacillus subtilis belonging to opportunistic microorganisms.
Mulero, Rafael; Lee, Dong Heun; Kutzler, Michele A; Jacobson, Jeffrey M; Kim, Min Jun
2009-01-01
Although Candida species are the fourth most common cause of nosocomial blood stream infections in the United States, early diagnostic tools for invasive candidemia are lacking. Due to an increasing rate of candidemia, a new screening system is needed to detect the Candida species in a timely manner. Here we describe a novel method of detection using a solid-state micro-scale pore similar to the operational principles of a Coulter counter. With a steady electrolyte current flowing through the pore, measurements are taken of changes in the current corresponding to the shape of individual yeasts as they translocate or travel through the pore. The direct ultra-fast low concentration electrical addressing of C. albicans has established criteria for distinguishing individual yeast based on their structural properties, which may reduce the currently used methods' complexity for both identification and quantification capabilities in mixed blood samples.
Mulero, Rafael; Lee, Dong Heun; Kutzler, Michele A.; Jacobson, Jeffrey M.; Kim, Min Jun
2009-01-01
Although Candida species are the fourth most common cause of nosocomial blood stream infections in the United States, early diagnostic tools for invasive candidemia are lacking. Due to an increasing rate of candidemia, a new screening system is needed to detect the Candida species in a timely manner. Here we describe a novel method of detection using a solid-state micro-scale pore similar to the operational principles of a Coulter counter. With a steady electrolyte current flowing through the pore, measurements are taken of changes in the current corresponding to the shape of individual yeasts as they translocate or travel through the pore. The direct ultra-fast low concentration electrical addressing of C. albicans has established criteria for distinguishing individual yeast based on their structural properties, which may reduce the currently used methods’ complexity for both identification and quantification capabilities in mixed blood samples. PMID:22573974
Rhodotorula fungemia of an intensive care unit patient and review of published cases.
Spiliopoulou, Anastasia; Anastassiou, Evangelos D; Christofidou, Myrto
2012-10-01
Rhodotorula species are commensal yeasts that have emerged as a cause of life-threatening fungemia in severely immunocompromised patients. A case of Rhodotorula mucilaginosa fungemia in a 48-year-old woman that had undergone consecutive abdominal surgeries due to ovarian cancer and bowel necrosis while she was receiving fluconazole prophylaxis is presented. Several risk factors were identified such as presence of central venous catheters, solid organ neoplasm, abdominal surgery and administration of antibiotics. Identification was performed using commercial systems. The yeast was resistant to fluconazole, posaconazole and voriconazole and to echinocandins, whereas MIC to amphotericin B was 1.5 mg/L. Furthermore, published cases of Rhodotorula spp fungemia during the last decade are reviewed. In conclusion, Rhodotorula spp must be considered a potential pathogen in patients with immunosupression and central venous catheters. Correct identification is mandatory for appropriate management, as Rhodotorula spp are resistant to antifungal agents, such as fluconazole and echinocandins.
Pemán, Javier; Zaragoza, Rafael; Salavert, Miguel
2013-12-01
Knowledge of the epidemiology of invasive fungal diseases caused by yeasts (Candida spp., especially) in health care settings allows the establishment of the levels necessary for its prevention. A first step is to identify groups of patients at high risk of nosocomial invasive fungal infections, establish accurate risk factors, observing the periods of greatest risk, and analyze the epidemiological profile in genera and species as well as the patterns of antifungal resistance. Secondly, mechanisms to avoid persistent exposure to potential fungal pathogens must be programed, protecting areas and recommending measures such as the control of the quality of the air and water, inside and outside the hospital, and other products or substances able to cause outbreaks. Finally, apart from the correct implementation of these measures, in selected patients at very high risk, the use of antifungal prophylaxis should be considered following the guidelines published.
Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis
Kwon-Chung, Kyung J.; Fraser, James A.; Doering, Tamara L.; Wang, Zhou; Janbon, Guilhem; Idnurm, Alexander; Bahn, Yong-Sun
2014-01-01
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually. PMID:24985132
Exophiala angulospora Causes Systemic Mycosis in Atlantic Halibut: a Case Report.
Overy, David P; Groman, David; Giles, Jan; Duffy, Stephanie; Rommens, Mellisa; Johnson, Gerald
2015-03-01
Filamentous black yeasts from the genus Exophiala are ubiquitous, opportunistic pathogens causing both superficial and systemic mycoses in warm- and cold-blooded animals. Infections by black yeasts have been reported relatively frequently in a variety of captive and farmed freshwater and marine fishes. In November 2012, moribund and recently dead, farm-raised Atlantic Halibut Hippoglossus hippoglossus were necropsied to determine the cause of death. Histopathology revealed that three of seven fish were affected by a combination of an ascending trans-ductual granulomatous mycotic nephritis, necrotizing histiocytic encephalitis, and in one fish the addition of a fibrogranulomatous submucosal branchitis. Microbial cultures of kidney using selective mycotic media revealed pure growth of a black-pigmenting septated agent. Application of molecular and phenotypic taxonomy methodologies determined that all three isolates were genetically consistent with Exophiala angulospora. This is the first report of E. angulospora as the causal agent of systemic mycosis in Atlantic Halibut.
Lee, Jung-Eun; Rayyan, Morsi; Liao, Allison; Edery, Isaac; Pletcher, Scott D
2017-07-11
Dietary restriction promotes health and longevity across taxa through mechanisms that are largely unknown. Here, we show that acute yeast restriction significantly improves the ability of adult female Drosophila melanogaster to resist pathogenic bacterial infections through an immune pathway involving downregulation of target of rapamycin (TOR) signaling, which stabilizes the transcription factor Myc by increasing the steady-state level of its phosphorylated forms through decreased activity of protein phosphatase 2A. Upregulation of Myc through genetic and pharmacological means mimicked the effects of yeast restriction in fully fed flies, identifying Myc as a pro-immune molecule. Short-term dietary or pharmacological interventions that modulate TOR-PP2A-Myc signaling may provide an effective method to enhance immunity in vulnerable human populations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Isolation of an Amoeba Naturally Harboring a Distinctive Legionella Species
Newsome, Anthony L.; Scott, Tammy M.; Benson, Robert F.; Fields, Barry S.
1998-01-01
There are numerous in vitro studies documenting the multiplication of Legionella species in free-living amoebae and other protozoa. It is believed that protozoa serve as host cells for the intracellular replication of certain Legionella species in a variety of environmental settings. This study describes the isolation and characterization of a bacterium initially observed within an amoeba taken from a soil sample. In the laboratory, the bacterium multiplied within and was highly pathogenic for Acanthamoeba polyphaga. Extracellular multiplication was observed on buffered charcoal yeast extract agar but not on a variety of conventional laboratory media. A 16S rRNA gene analysis placed the bacterium within the genus Legionella. Serological studies indicate that it is distinct from previously described species of the genus. This report also describes methods that should prove useful for the isolation and characterization of additional Legionella-like bacteria from free-living amoebae. In addition, the characterization of bacterial pathogens of amoebae has significant implications for understanding the ecology and identification of other unrecognized bacterial pathogens. PMID:9572937
Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know?
DUBREUIL, Jean Daniel
2017-01-01
The concept of certain microorganisms conferring direct benefits to the host relates to the term “probiotic”. Probiotics are microorganisms, bacteria, or yeast that when administered orally in sufficient quantity can counteract the effect of pathogenic microorganisms. The gastrointestinal (GI) tract is the site where probiotics are believed to play the most important role. The proposed effects of probiotics include antagonism of pathogens, interference with adherence, competition for nutrients, enterotoxin inactivation, modulation of the immune response, and strengthening of the intestinal barrier. From birth to postweaning, piglets are very sensitive to gut colonisation by pathogens. Enterotoxigenic Escherichia coli represents one of the most common agents of swine diarrhoea. The enterotoxins produced by this E. coli virotype are responsible for the loss of electrolytes and water observed following infection. This review addresses more specifically the studies done during the last 10 years deciphering the molecular mechanisms at play between host cell and probiotic interactions in the swine GI tract. PMID:28785529
Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant
2009-06-02
Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.
Gilmore, Sarah A.; Voorhies, Mark; Gebhart, Dana; Sil, Anita
2015-01-01
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature. PMID:26177267
Morais, Janne Keila S; Gomes, Valdirene M; Oliveira, José Tadeu A; Santos, Izabela S; Da Cunha, Maura; Oliveira, Hermogenes D; Oliveira, Henrique P; Sousa, Daniele O B; Vasconcelos, Ilka M
2010-10-13
Soybean toxin (SBTX) is a 44 kDa glycoprotein that is lethal to mice (LD(50) = 5.6 mg/kg). This study reports the toxicity of SBTX on pathogenic fungi and yeasts and the mechanism of its action. SBTX inhibited spore germination of Aspergillus niger and Penicillium herguei and was toxic to Candida albicans, Candida parapsilosis, Kluyveromyces marxiannus , Pichia membranifaciens, and Saccharomyces cerevisiae. In addition, SBTX hampered the growth of C. albicans and K. marxiannus and inhibited the glucose-stimulated acidification of the incubation medium by S. cerevisiae, suggesting that SBTX interferes with intracellular proton transport to the external medium. Moreover, SBTX caused cell-wall disruption, condensation/shrinkage of cytosol, pseudohyphae formation, and P. membranifaciens and C. parapsilosis cell death. SBTX is toxic to fungi at concentrations far below the dose lethal to mice and has potential in the design of new antifungal drugs or in the development of transgenic crops resistant to pathogens.
Gilmore, Sarah A; Voorhies, Mark; Gebhart, Dana; Sil, Anita
2015-07-01
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5' leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.
A case of cutaneous Rhodotorula infection mimicking cryptococcosis.
George, S M C; Quante, M; Cubbon, M D; MacDiarmaid-Gordon, A R; Topham, E J
2016-12-01
Rhodotorula is a ubiquitous environmental and commensal yeast, and an emerging opportunistic pathogen, particularly in immunocompromised individuals. Clinical infections with Rhodotorula have been increasingly recognized over the past 30 years; however, infections in solid-organ transplant recipients are uncommon, and cutaneous manifestations have rarely been reported. We describe a 59-year-old male renal transplant recipient, who developed cutaneous infection with Rhodotorula upon failure of his graft and commencement of haemodialysis. © 2016 British Association of Dermatologists.
[Enzymatic activity, slime production and antifungal agent sensitivity of Candida sp].
Silva, Jaqueline Otero; Ferreira, Joseane Cristina; Candido, Regina Célia
2007-01-01
Abilith of Candida spp to secrete extracellular enzymes and slime has been associated as pathogenicity factors. Out of a total of 37 strains of Candida sp, 100% were proteinase producers, 83.8% were phospholipase producers, 64.9% were slime producers and 100% were sensitive to fluconazole and itraconazole. Seventeen typings (enzymes/slime) were found. This methodology presented a good discrimination rate (D=0.93) and could be used for phenotypic characterization of yeasts.
Pathogenomic Inference of Virulence-Associated Genes in Leptospira interrogans
Lehmann, Jason S.; Fouts, Derrick E.; Haft, Daniel H.; Cannella, Anthony P.; Ricaldi, Jessica N.; Brinkac, Lauren; Harkins, Derek; Durkin, Scott; Sanka, Ravi; Sutton, Granger; Moreno, Angelo; Vinetz, Joseph M.; Matthias, Michael A.
2013-01-01
Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens. PMID:24098822
Pathogenomic inference of virulence-associated genes in Leptospira interrogans.
Lehmann, Jason S; Fouts, Derrick E; Haft, Daniel H; Cannella, Anthony P; Ricaldi, Jessica N; Brinkac, Lauren; Harkins, Derek; Durkin, Scott; Sanka, Ravi; Sutton, Granger; Moreno, Angelo; Vinetz, Joseph M; Matthias, Michael A
2013-01-01
Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.
NASA Astrophysics Data System (ADS)
Bogdan, Janusz; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna
2015-08-01
Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.
Del Prete, Sonia; De Luca, Viviana; Vullo, Daniela; Osman, Sameh M; AlOthman, Zeid; Carginale, Vincenzo; Supuran, Claudiu T; Capasso, Clemente
2016-12-01
Malassezia yeasts are almost exclusively the single eukaryotic members of the fungal flora of the skin. Malassezia globosa and Malassezia restricta are found on the skin of practically all humans. Malassezia globosa is highly implicated in the pathogenesis of dandruff and its genome encodes for only one carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the β-class (MgCA). It has been indeed demonstrated that in many pathogenic microorganisms, CAs are essential for their life cycle and their inhibition can lead to growth impairment and defects. In the previous work, the recombinant MgCA was investigated for its inhibition profile with sulfonamides, which in models of dandruff infection were able to protect animals from the fungal infection, allowing us to propose this enzyme as a new antidandruff target. MgCA was cloned as GST-fusion protein, but the yield was rather low and the protein was often found in inclusion bodies. Here, we propose an alternative procedure consisting in cloning the recombinant MgCA as His-Tag fusion protein. This procedure resulted in a good method to express and purify the active recombinant MgCA, and the protein recovery was better with respect to that used for preparing MG-CA (β-CA cloned as GST-fusion protein).
Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies.
Dessinioti, Clio; Katsambas, Andreas
2013-01-01
Seborrheic dermatitis (SD) is a common skin condition seen frequently in clinical practice. The use of varying terms such as sebopsoriasis, seborrheic dermatitis, seborrheic eczema, dandruff, and pityriasis capitis reflects the complex nature of this condition. Despite its frequency, much controversy remains regarding the pathogenesis of SD. This controversy extends to its classification in the spectrum of cutaneous diseases, having being classified as a form of dermatitis, a fungal disease, or an inflammatory disease, closely related with psoriasis. Some have postulated that SD is caused by Malassezia yeasts, based on the observation of their presence in affected skin and the therapeutic response to antifungal agents. Others have proposed that Malassezia is incidental to a primary inflammatory dermatosis that resulted in increased cell turnover, scaling, and inflammation in the epidermis, similar to psoriasis. The presence of host susceptibility factors, permitting the transition of M furfur to its pathogenic form, may be associated with immune response and inflammation. Metabolites produced by Malassezia species, including oleic acid, malssezin, and indole-3-carbaldehyde, have been implicated. SD also has been traditionally considered to be a form of dermatitis based on the presence of Malassezia in healthy skin, the absence the pathogenic mycelial form of Malassezia yeasts in SD, and its chronic course. As a result, proposed treatments vary, ranging from topical corticosteroids to topical antifungals and antimicrobial peptides. Copyright © 2013 Elsevier Inc. All rights reserved.
Garcia-Hermoso, Dea; Alanio, Alexandre; Cabaret, Odile; Olivi, Martine; Foulet, Françoise; Cordonnier, Catherine; Costa, Jean-Marc; Bretagne, Stéphane
2015-09-01
Non-sporulating moulds (NSMs) isolated from respiratory specimens are usually discarded without further testing although they may have pathogenic effects in immunocompromised patients. The objective of this study was to determine the identity and frequency of NSMs in patients with haematological malignancies. We analysed the mycological results of 251 consecutive respiratory samples from 104 haematology patients. Yeast and sporulating moulds were identified at the genus/species level according to their phenotypic features. NSMs were identified by internal transcribed spacer (ITS) sequencing. We detected 179 positive samples, of which 10.1% (18/179) were mixtures of moulds and 26.3% (47/179) were mixtures of moulds and yeast. We identified 142 moulds belonging to 11 different genera/species or groups, with Aspergillus fumigatus (n = 50), Penicillium spp. (n = 31) and NSM (n = 24) being the most frequently isolated species. Twenty-two NSMs were successfully sequenced: 18 were basidiomycetes and six were ascomycetes, corresponding to 16 different genera/species. NSMs were isolated with A. fumigatus in the same sample or in a subsequent sample in five patients with probable invasive aspergillosis. The conclusion is that the respiratory specimens of immunocompromised patients frequently contain very diverse mould species that may increase the virulence of pathogenic species. Reporting all mould species isolated when diagnosing invasive fungal infection could test this hypothesis. © 2015 Blackwell Verlag GmbH.
Schäfer, Holger; Wink, Michael
2009-12-01
Plants produce a high diversity of natural products or secondary metabolites which are important for the communication of plants with other organisms. A prominent function is the protection against herbivores and/or microbial pathogens. Some natural products are also involved in defence against abiotic stress, e.g. UV-B exposure. Many of the secondary metabolites have interesting biological properties and quite a number are of medicinal importance. Because the production of the valuable natural products, such as the anticancer drugs paclitaxel, vinblastine or camptothecin in plants is a costly process, biotechnological alternatives to produce these alkaloids more economically become increasingly important. This review provides an overview of the state of art to produce alkaloids in recombinant microorganisms, such as bacteria or yeast. Some progress has been made in metabolic engineering usually employing a single recombinant alkaloid gene. More importantly, for benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as well as some terpenoids and phenolics the proof of concept for production of complex alkaloids in recombinant Escherichia coli and yeast has already been achieved. In a long-term perspective, it will probably be possible to generate gene cassettes for complete pathways, which could then be used for production of valuable natural products in bioreactors or for metabolic engineering of crop plants. This will improve their resistance against herbivores and/or microbial pathogens.
Thévenot, J; Cordonnier, C; Rougeron, A; Le Goff, O; Nguyen, H T T; Denis, S; Alric, M; Livrelli, V; Blanquet-Diot, S
2015-11-01
Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens responsible for serious infections ranging from mild diarrhea to hemorrhagic colitis and life-threatening complications. Shiga toxins (Stxs) are the main virulence factor of EHEC. The antagonistic effect of a prophylactic treatment with the probiotic strain Saccharomyces cerevisiae against EHEC O157:H7 was investigated using complementary in vitro human colonic model and in vivo murine ileal loop assays. In vitro, the probiotic treatment had no effect on O157:H7 survival but favorably influenced gut microbiota activity through modulation of short-chain fatty acid production, increasing acetate production and decreasing that of butyrate. Both pathogen and probiotic strains had individual-dependent effects on human gut microbiota. For the first time, stx expression was followed in human colonic environment: at 9 and 12 h post EHEC infection, probiotic treatment significantly decreased stx mRNA levels. Besides, in murine ileal loops, the probiotic yeast specifically exerted a trophic effect on intestinal mucosa and inhibited O157:H7 interactions with Peyer's patches and subsequent hemorrhagic lesions. Taken together, the results suggest that S. cerevisiae may be useful in the fight against EHEC infection and that host associated factors such as microbiota could influence clinical evolution of EHEC infection and the effectiveness of probiotics.
Thati, Bhumika; Noble, Andy; Rowan, Raymond; Creaven, Bernadette S; Walsh, Maureen; McCann, Malachy; Egan, Denise; Kavanagh, Kevin
2007-08-01
The anti-fungal activity and mode of action of a range of silver(I)-coumarin complexes was examined. The most potent silver(I)-coumarin complexes, namely 7-hydroxycoumarin-3-carboxylatosilver(I), 6-hydroxycoumarin-3-carboxylatosilver(I) and 4-oxy-3-nitrocoumarinbis(1,10-phenanthroline)silver(I), had MIC80 values of between 69.1 and 4.6 microM against the pathogenic yeast Candida albicans. These compounds also reduced respiration, lowered the ergosterol content of cells and increased the trans-membrane leakage of amino acids. A number of the complexes disrupted cytochrome synthesis in the cell and induced the appearance of morphological features consistent with cell death by apoptosis. These compounds appear to act by disrupting the synthesis of cytochromes which directly affects the cell's ability to respire. A reduction in respiration leads to a depletion in ergosterol biosynthesis and a consequent disruption of the integrity of the cell membrane. Disruption of cytochrome biosynthesis may induce the onset of apoptosis which has been shown previously to be triggered by alteration in the location of cytochrome c. Silver(I)-coumarin complexes demonstrate good anti-fungal activity and manifest a mode of action distinct to that of the conventional azole and polyene drugs thus raising the possibility of their use when resistance to conventional drug has emerged or in combination with such drugs.
Signaling through protein kinases and transcriptional regulators in Candida albicans.
Dhillon, Navneet K; Sharma, Sadhna; Khuller, G K
2003-01-01
The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. Several signaling pathways that regulate morphogenesis have been identified, including various transcription factors that either activate or repress hypha-specific genes. Two well-characterized pathways include the MAP kinase cascade and cAMP-dependent protein kinase pathway that regulate the transcription factors Cph1p and Efg1p, respectively. cAMP also appears to interplay with other second messengers: Ca2+, inositol tri-phosphates in regulating yeast-hyphal transition. Other, less-characterized pathways include two component histidine kinases, cyclin-dependent kinase pathway, and condition specific pathways such as pH and embedded growth conditions. Nrg1 and Rfg1 function as transcriptional repressors of hyphal genes via recruitment of Tup1 co-repressor complex. Different upstream signals converge into a common downstream output during hyphal switch. The levels of expression of several genes have been shown to be associated with hyphal morphogenesis rather than with a specific hypha-inducing condition. Hyphal development is also linked to the expression of a range of other virulence factors. This review explains the relative contribution of multiple pathways that could be used by Candida albican cells to sense subtle differences in the growth conditions of its native host environment.
Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng
2015-01-01
Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921
Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum.
Vitale, Stefania; Partida-Hanon, Angélica; Serrano, Soraya; Martínez-Del-Pozo, Álvaro; Di Pietro, Antonio; Turrà, David; Bruix, Marta
2017-03-03
During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae , a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly 6 -Gln 7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp 1 -Cys 2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kastora, Stavroula L.; Herrero‐de‐Dios, Carmen; Avelar, Gabriela M.; Munro, Carol A.
2017-01-01
Summary The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host‐imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these ‘non‐standard’ growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source‐conditional manner. SFP1 is induced in stressed glucose‐grown cells, whereas RTG3 is upregulated in stressed lactate‐grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source‐dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation. PMID:28574606
Screening of microbial contamination and antimicrobial activity of sea cucumber Holothuria polii.
Omran, Nahla E E; Allam, Nanis G
2013-11-01
Microbiological studies were carried out on microbial contamination and antimicrobial activity of sea cucumber Holothuria polii collected from Mediterranean Sea at Abu-kir shore of Alexandria, Egypt. The obtained results revealed the presence of isolates of five human Gram-negative pathogenic bacteria, representing five genera were identified to species level, including, Esherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella sp. and Shigella sp. In addition, an yeast Candida albicans was isolated. The pathogenic bacteria were identified using API 20E strip system (BioMereux). All collected H. polii specimens were healthy with no external signs of infection. Histopathological study of the tegument, intestine and gonads showed no abnormal changes. The antimicrobial activity of two tegumental ethanol extracts (A and B, differ in the method of dehydration) were tested against wide range of pathogenic bacteria and fungi, including intestinal, skin and nosocomial pathogens and one plant fungal pathogen. The results revealed a remarkable antifungal activity of the extract B at 2.5 mg/ml MIC90, especially on Aspergillus niger, Scloretium sp, C. albicans, Aspergillus flavus and Malassezia furfur, and limited antibacterial activity against Gram-negative bacteria (Salmonella choleraesuis ATCC 14028 and Aeromonas hydrophila). The domain of bacterial and limited fungal contamination confirms the results that showed strong antifungal activity of investigated extract.
Timmermans, R A H; Nederhoff, A L; Nierop Groot, M N; van Boekel, M A J S; Mastwijk, H C
2016-08-02
Pulsed electrical field (PEF) technology offers an alternative to thermal pasteurisation of high-acid fruit juices, by extending the shelf life of food products, while retaining its fresh taste and nutritional value. Substantial research has been performed on the effect of electrical field strength on the inactivation kinetics of spoilage and pathogenic micro-organisms and on the outgrowth of spoilage micro-organisms during shelf life. However, studies on the effect of electrical field strength on the inactivation and outgrowth of surviving populations during shelf life are missing. In this study, we assessed the influence of electrical field strength applied by PEF processing and storage temperature on the outgrowth of surviving yeast and mould populations naturally present in fresh fruit smoothie in time. Therefore, an apple-strawberry-banana smoothie was treated in a continuous-flow PEF system (130L/h), using similar inlet and outlet conditions (preheating temperature 41°C, maximum temperature 58°C) to assure that the amount of energy across the different conditions was kept constant. Smoothies treated with variable electrical field strengths (13.5, 17.0, 20.0 and 24.0kV/cm) were compared to smoothies without treatment for outgrowth of yeasts and moulds. Outgrowth of yeasts and moulds stored at 4°C and 7°C was analysed by plating and visual observation and yeast growth was modelled using the modified logistic growth model (Zwietering model). Results showed that the intensity of the electrical field strength had an influence on the degree of inactivation of yeast cells, resulting in a faster outgrowth over time at lower electrical field strength. Outgrowth of moulds over time was not affected by the intensity of the electrical field strength used. Application of PEF introduces a trade-off between type of spoilage: in untreated smoothie yeasts lead to spoilage after 8days when stored at 4 or 7°C, whereas in PEF treated smoothie yeasts were (partly) inactivated and provided outgrowth opportunities for moulds, which led to spoilage by moulds after 14days (7°C) or 18days (4°C). Copyright © 2016 Elsevier B.V. All rights reserved.
Tarazooie, Bita; Kordbacheh, Parivash; Zaini, Farideh; Zomorodian, Kamiar; Saadat, Farshid; Zeraati, Hojjat; Hallaji, Zahra; Rezaie, Sassan
2004-01-01
Background Pityriasis versicolor is a superficial infection of the stratum corneum which caused by a group of yeasts formerly named pityrosporium. The taxonomy of these lipophilic yeasts has recently been modified and includes seven species referred as Malassezia. The aim of this study is to compare the distribution of Malassezia species isolated from pityriasis versicolor lesions and those isolated from healthy skins. Methods Differentiation of all malassezia species performed using morphological features and physiological test including catalase reaction, Tween assimilation test and splitting of esculin. Results In pityriasis versicolor lesions, the most frequently isolated species was M. globosa (53.3%), followed by M. furfur (25.3%), M. sympodialis(9.3%), M. obtusa (8.1%) and M. slooffiae (4.0%). The most frequently isolated species in the skin of healthy individuals were M. globosa, M. sympodialis, M. furfur, M. sloofiae and M. restricta which respectively made up 41.7%, 25.0%, 23.3%, 6.7% and 3.3% of the isolated species. Conclusions According to our data, M. globosa was the most prevalent species in the skin of healthy individuals which recovered only in the yeast form. However, the Mycelial form of M. globosa was isolated as the dominant species from pityriasis versicolor lesions. Therefore, the role of predisposing factors in the conversion of this yeast to mycelium and its subsequent involvement in pityriasis versicolor pathogenicity should be considered. PMID:15119958
Magiatis, Prokopios; Pappas, Periklis; Gaitanis, George; Mexia, Nikitia; Melliou, Eleni; Galanou, Maria; Vlachos, Christophoros; Stathopoulou, Konstantina; Skaltsounis, Alexios Leandros; Marselos, Marios; Velegraki, Aristea; Denison, Michael S; Bassukas, Ioannis D
2013-08-01
Malassezia yeasts are commensal microorganisms, which under insufficiently understood conditions can become pathogenic. We have previously shown that specific strains isolated from diseased human skin can preferentially produce agonists of the aryl hydrocarbon receptor (AhR), whose activation has been linked to certain skin diseases. Investigation of skin scale extracts from patients with Malassezia-associated diseases demonstrated 10- to 1,000-fold higher AhR-activating capacity than control skin extracts. Liquid chromatography-tandem mass spectrometry analysis of the patients' extracts revealed the presence of indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), indolo[3,2-b]carbazole (ICZ), malassezin, and pityriacitrin. The same compounds were also identified in 9 out of 12 Malassezia species culture extracts tested, connecting their presence in skin scales with this yeast. Studying the activity of the Malassezia culture extracts and pure metabolites in HaCaT cells by reverse transcriptase real-time PCR revealed significant alterations in mRNA levels of the endogenous AhR-responsive genes Cyp1A1, Cyp1B1, and AhRR. Indirubin- and FICZ-activated AhR in HaCaT and human HepG2 cells with significantly higher, yet transient, potency as compared with the prototypical AhR ligand, dioxin. In loco synthesis of these highly potent AhR inducers by Malassezia yeasts could have a significant impact on skin homeostatic mechanisms and disease development.
Wang, Yifei; Bao, Yihong; Shen, Danhong; Feng, Wu; Yu, Ting; Zhang, Jia; Zheng, Xiao Dong
2008-04-30
The basidiomycetous yeast Rhodosporidium paludigenum Fell & Tallman isolated from the south of East China Sea was evaluated for its activity in reducing postharvest decay of cherry tomatoes caused by Alternaria alternata in vitro and in vivo tests. The results showed that washed cell suspension of R. paludigenum provided better control of A. alternata than any other treatment, while the autoclaved cell culture failed to provide protection against the pathogen. The concentration of antagonist had significant effect on biocontrol effectiveness in vivo: when the concentration of the washed yeast cell suspension was used at 1 x 10(9)cells/ml, the percentage rate of black rot of cherry tomato fruit was only 37%, which was remarkably lower than that treated with water (the control) after 5days of incubation at 25 degrees C. Furthermore, a great biocontrol efficacy of R. paludigenum was observed when it was applied prior to inoculation with A. alternata: the longer the incubation time of R. paludigenum, the lower disease incidence would be. However, there was little efficacy when R. paludigenum was applied after A. alternata inoculation. In addition, on the wounds of cherry tomato, it was observed that R. paludigenum grew rapidly increasing 50-fold during the first 12h at 25 degrees C. To the best of our knowledge, this is a first report concerning that the marine yeast R. paludigenum could be used as a biocontrol agent of postharvest fungal disease.
Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons.
Perez, María Florencia; Contreras, Luciana; Garnica, Nydia Mercedes; Fernández-Zenoff, María Verónica; Farías, María Eugenia; Sepulveda, Milena; Ramallo, Jacqueline; Dib, Julián Rafael
2016-01-01
Economic losses caused by postharvest diseases represent one of the main problems of the citrus industry worldwide. The major diseases affecting citrus are the "green mold" and "blue mold", caused by Penicillium digitatum and P. italicum, respectively. To control them, synthetic fungicides are the most commonly used method. However, often the emergence of resistant strains occurs and their use is becoming more restricted because of toxic effects and environmental pollution they generate, combined with trade barriers to international markets. The aim of this work was to isolate indigenous killer yeasts with antagonistic activity against fungal postharvest diseases in lemons, and to determine their control efficiency in in vitro and in vivo assays. Among 437 yeast isolates, 8.5% show to have a killer phenotype. According to molecular identification, based on the 26S rDNA D1/D2 domain sequences analysis, strains were identified belonging to the genera Saccharomyces, Wickerhamomyces, Kazachstania, Pichia, Candida and Clavispora. Killers were challenged with pathogenic molds and strains that caused the maximum in vitro inhibition of P. digitatum were selected for in vivo assays. Two strains of Pichia and one strain of Wickerhamomyces depicted a significant protection (p <0.05) from decay by P. digitatum in assays using wounded lemons. Thus, the native killer yeasts studied in this work showed to be an effective alternative for the biocontrol of postharvest fungal infections of lemons and could be promising agents for the development of commercial products for the biological control industry.
Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons
Garnica, Nydia Mercedes; Fernández-Zenoff, María Verónica; Farías, María Eugenia; Sepulveda, Milena; Ramallo, Jacqueline; Dib, Julián Rafael
2016-01-01
Economic losses caused by postharvest diseases represent one of the main problems of the citrus industry worldwide. The major diseases affecting citrus are the "green mold" and "blue mold", caused by Penicillium digitatum and P. italicum, respectively. To control them, synthetic fungicides are the most commonly used method. However, often the emergence of resistant strains occurs and their use is becoming more restricted because of toxic effects and environmental pollution they generate, combined with trade barriers to international markets. The aim of this work was to isolate indigenous killer yeasts with antagonistic activity against fungal postharvest diseases in lemons, and to determine their control efficiency in in vitro and in vivo assays. Among 437 yeast isolates, 8.5% show to have a killer phenotype. According to molecular identification, based on the 26S rDNA D1/D2 domain sequences analysis, strains were identified belonging to the genera Saccharomyces, Wickerhamomyces, Kazachstania, Pichia, Candida and Clavispora. Killers were challenged with pathogenic molds and strains that caused the maximum in vitro inhibition of P. digitatum were selected for in vivo assays. Two strains of Pichia and one strain of Wickerhamomyces depicted a significant protection (p <0.05) from decay by P. digitatum in assays using wounded lemons. Thus, the native killer yeasts studied in this work showed to be an effective alternative for the biocontrol of postharvest fungal infections of lemons and could be promising agents for the development of commercial products for the biological control industry. PMID:27792761
Antifungal Activity of Propolis Against Yeasts Isolated From Blood Culture: In Vitro Evaluation.
Mutlu Sariguzel, Fatma; Berk, Elife; Koc, Ayes Nedret; Sav, Hafize; Demir, Gonca
2016-09-01
Due to the failure of available antifungal agents in the treatment of candidemia and the toxic activities of these drugs, a lot of researches are being conducted to develop new nontoxic and effective antifungal agents for optimal control of fungal pathogens. The aim of this study is to evaluate the in vitro antifungal activity of propolis against yeasts isolated from the blood cultures of intensive care unit patients. Seventy-six strains were included in this study. The in vitro antifungal activity of propolis, fluconazole (FLU), and itraconazole (ITR) was investigated by the microdilution broth methods (CLSI guidelines M27-A3 for yeast). The propolis sample was collected from Kayseri, Turkey. Of the 76 isolates, 33 were identified as Candida albicans while 37 were C. parapsilosis, three were C. tropicalis, and three were identified as C. glabrata. The geometric mean range for MIC (μg/ml) with regard to all isolates was 0.077 to 3 μg/ml for FLU and ITR, and 0.375 to 0.70 μg/ml for propolis. It was shown that propolis had significant antifungal activity against all Candida strains and the MIC range of propolis was determined as 0185 to 3 μg/ml. This study demonstrated that propolis had significant antifungal activity against yeasts isolated from blood culture compared with FLU and ITR. The propolis MIC in azole-resistant strains such as C. glabrata was found lower than the FLU MIC. © 2015 Wiley Periodicals, Inc.
Clotrimazole is highly effective in vitro against feline Sporothrix brasiliensis isolates.
Gagini, Thalita; Borba-Santos, Luana Pereira; Messias Rodrigues, Anderson; Pires de Camargo, Zoilo; Rozental, Sonia
2017-11-01
Sporothrix brasiliensis, the most virulent species in the Sporothrix schenckii complex, is responsible for the ongoing epidemics of human and animal sporotrichosis in Brazil. Feline outbreaks are usually driven by S. brasiliensis and followed by extensive transmission to humans. Itraconazole is the first-line treatment for both feline and human sporotrichosis; however, reduced sensitivity is an emerging issue. Thus, we investigated the effect of the widely used antifungal clotrimazole - alone or in combination with itraconazole - against the pathogenic (yeast) form of feline and human S. brasiliensis isolates, in vitro. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were determined for treatment with clotrimazole and itraconazole, as monotherapy or in combination. In addition, the effect of the drugs on neutral lipid levels and the yeast ultrastructure were evaluated by flow cytometry and transmission electron microscopy (TEM), respectively. The MIC and MFC values show that clotrimazole was more effective than itraconazole against feline S. brasiliensis isolates, while human isolates were more sensitive to itraconazole. Similarly to itraconazole, treatment with clotrimazole induced statistically significant neutral lipid accumulation in S. brasiliensis yeasts, and treated yeasts displayed irregularities in the cell membrane and a thicker cell wall when observed by TEM. Clotrimazole increased the antifungal activity of itraconazole in combination assays, with a synergistic effect for two feline isolates. The strong activity of clotrimazole against feline S. brasiliensis isolates suggests that this drug is potentially a new alternative for the treatment of feline sporotrichosis, alone or in combination with itraconazole.
Bessoule, Jean-Jacques; Salin, Bénédicte; Lucas-Guérin, Marine; Manon, Stephen; Dementhon, Karine; Noël, Thierry
2014-01-01
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner. PMID:25486052
Gabriel, Frédéric; Accoceberry, Isabelle; Bessoule, Jean-Jacques; Salin, Bénédicte; Lucas-Guérin, Marine; Manon, Stephen; Dementhon, Karine; Noël, Thierry
2014-01-01
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.
Chessa, Rossella; Landolfo, Sara; Ciani, Maurizio; Budroni, Marilena; Zara, Severino; Ustun, Murat; Cakar, Zeynep Petek; Mannazzu, Ilaria
2017-04-01
The use of natural antimicrobials from plants, animals and microorganisms to inhibit the growth of pathogenic and spoilage microorganisms is becoming more frequent. This parallels the increased consumer interest towards consumption of minimally processed food and 'greener' food and beverage additives. Among the natural antimicrobials of microbial origin, the killer toxin produced by the yeast Tetrapisispora phaffii, known as Kpkt, appears to be a promising natural antimicrobial agent. Kpkt is a glycoprotein with β-1,3-glucanase and killer activity, which induces ultrastructural modifications to the cell wall of yeast of the genera Kloeckera/Hanseniaspora and Zygosaccharomyces. Moreover, Kpkt maintains its killer activity in grape must for at least 14 days under winemaking conditions, thus suggesting its use against spoilage yeast in wine making and the sweet beverage industry. Here, the aim was to explore the possibility of high production of Kpkt for biotechnological exploitation. Molecular tools for heterologous production of Kpkt in Komagataella phaffii GS115 were developed, and two recombinant clones that produce up to 23 mg/L recombinant Kpkt (rKpkt) were obtained. Similar to native Kpkt, rKpkt has β-glucanase and killer activities. Moreover, it shows a wider spectrum of action with respect to native Kpkt. This includes effects on Dekkera bruxellensis, a spoilage yeast of interest not only in wine making, but also for the biofuel industry, thus widening the potential applications of this rKpkt.
Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage
Fong, Wing-Ping; Samaranayake, Lakshman Perera
2017-01-01
Candida albicans is a clinically important human fungal pathogen. We previously identified the presence of cell-associated phytase activity in C. albicans. Here, we reveal for the first time, that orf19.3727 contributes to phytase activity in C. albicans and ultimately to its virulence potency. Compared with its wild type counterpart, disruption of C. albicans orf19.3727 led to decreased phytase activity, reduced ability to form hyphae, attenuated in vitro adhesion, and reduced ability to penetrate human epithelium, which are the major virulence attributes of this yeast. Thus, orf19.3727 of C. albicans plays a key role in fungal pathogenesis. Further, our data uncover a putative novel strategy for anti-Candidal drug design through inhibition of phytase activity of this common pathogen. PMID:29216308
Viral and vector zoonotic exploitation of a homo-sociome memetic complex.
Rupprecht, C E; Burgess, G W
2015-05-01
As most newly characterized emerging infectious diseases are considered to be zoonotic, a modern pre-eminence ascribed within this classification lies clearly within the viral taxonomic realm. In particular, RNA viruses deserve special concern given their documented impact on conservation biology, veterinary medicine and public health, with an unprecedented ability to promote an evolutionary host-pathogen arms race from the ultimate infection and immunity perspective. However, besides the requisite molecular/gross anatomical and physiological bases for infectious diseases to transmit from one host to another, both viral pathogens and their reservoirs/vectors exploit a complex anthropological, cultural, historical, psychological and social suite that specifically defines the phylodynamics within Homo sapiens, unlike any other species. Some of these variables include the ecological benefits of living in groups, decisions on hunting and foraging behaviours and dietary preferences, myths and religious doctrines, health economics, travel destinations, population planning, political decisions on agricultural product bans and many others, in a homo-sociome memetic complex. Taken to an extreme, such complexities elucidate the underpinnings of explanations as to why certain viral zoonoses reside in neglected people, places and things, whereas others are chosen selectively and prioritized for active mitigation. Canine-transmitted rabies serves as one prime example of how a neglected viral zoonosis may transition to greater attention on the basis of renewed advocacy, social media, local champions and vested international community engagement. In contrast, certain bat-associated and arboviral diseases suffer from basic ignorance and perpetuated misunderstanding of fundamental reservoir and vector ecology tenets, translated into failed control policies that only exacerbate the underlying environmental conditions of concern. Beyond applied biomedical knowledge, epidemiological skills and biotechnical abilities alone, if a homo-sociome memetic complex approach is also entertained in a modern transdisciplinary context, neglected viral zoonosis may be better understood, controlled, prevented and possibly eliminated, in a more holistic One Health context. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Dixit, Rashmi; Herz, Jenny; Dalton, Richard; Booy, Robert
2016-02-24
Passive immunotherapy using polyclonal antibodies (immunoglobulins) has been used for over a century in the treatment and post-exposure prophylaxis of various infections and toxins. Heterologous polyclonal antibodies are obtained from animals hyperimmunised with a pathogen or toxin. The aims of this review are to examine the history of animal polyclonal antibody therapy use, their development into safe and effective products and the potential application to humans for emerging and neglected infectious diseases. A literature search of OVID Medline and OVID Embase databases was undertaken to identify articles on the safety, efficacy and ongoing development of polyclonal antibodies. The search contained database-specific MeSH and EMTREE terms in combination with pertinent text-words: polyclonal antibodies and rare/neglected diseases, antivenins, immunoglobulins, serum sickness, anaphylaxis, drug safety, post marketing surveillance, rabies, human influenza, Dengue, West Nile, Nipah, Hendra, Marburg, MERS, Hemorrhagic Fever Virus, and Crimean-Congo. No language limits were applied. The final search was completed on 20.06.2015. Of 1960 articles, title searches excluded many irrelevant articles, yielding 303 articles read in full. Of these, 179 are referenced in this study. Serum therapy was first used in the 1890s against diphtheria. Early preparation techniques yielded products contaminated with reactogenic animal proteins. The introduction of enzymatic digestion, and purification techniques substantially improved their safety profile. The removal of the Fc fragment of antibodies further reduces hypersensitivity reactions. Clinical studies have demonstrated the efficacy of polyclonal antibodies against various infections, toxins and venoms. Products are being developed against infections for which prophylactic and therapeutic options are currently limited, such as avian influenza, Ebola and other zoonotic viruses. Polyclonal antibodies have been successfully applied to rabies, envenomation and intoxication. Polyclonal production provides an exciting opportunity to revolutionise the prognosis of both longstanding neglected tropical diseases as well as emerging infectious threats to humans. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.