Sample records for yellow carbazole emitter

  1. Synthesis, photophysical and electrochemical properties of a blue emitter with binaphthalene and carbazole units.

    PubMed

    Guo, Lixia; Wang, Xiaoju; Feng, Liheng

    2018-08-05

    A blue emitter, 3,3'-(2,2'-dimethoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(9-benzyl-9H-carbazole), was synthesized by Suzuki coupling reaction. The photophysical properties of the emitter in solution were firstly investigated by UV-Vis absorption and fluorescence emission techniques. The results indicate that the emitter has excellent optical and electron transfer properties. The maximum absorption and emission peaks of the emitter are 302 nm and 406 nm with 67.4% fluorescence quantum yield in chloroform, respectively. Thermal stability study reveals that the emitter has a good thermal stability (Td > 330 °C, Tg > 160 °C). Electrochemical Redox properties of the emitters were measured by cyclic voltammetry, and the energy gaps of highest occupied molecular orbital and the lowest unoccupied molecular orbital levels are in good agreement with the results of theoretical calculation. Furthermore, the multilayer electrochemcial device with the emitter was fabricated and its properties were explored. The wavelength of electroluminescence for the device with this emitter locates at 428 nm. These results indicate the emitter as a deep blue-emitting material has promising application in organic light-emitting diode devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    NASA Astrophysics Data System (ADS)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  3. Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun

    2015-10-01

    We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-μm-wide microchannels. Single-μm-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l’Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting.

  4. Polymers containing isolated phenylvinyl substituted carbazole rings as electroactive materials for OLEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griniene, Raimonda; Tavgeniene, Daiva, E-mail: daiva.tavgen@gmail.com; Grigalevičius, Saulius

    2016-05-18

    Polymers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic route. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the rage of 56–65 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq 3 as the green emitter. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometricmore » efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m{sup 2}.« less

  5. Method for metabolizing carbazole in petroleum

    DOEpatents

    Kayser, Kevin J.; Kilbane, II, John J.

    2005-09-13

    A method for selective cleavage of C--N bonds genes that encode for at least one enzyme suitable for conversion of carbazole to 2-aminobiphenyl-2,3-diol are combined with a gene encoding an amidase suitable for selectively cleaving a C--N bond in 2-aminobiphenyl-2,3-diol, forming an operon that encodes for cleavage of both C--N bonds of said carbazole. The operon is inserted into a host culture which, in turn, is contacted with the carbazole, resulting in selective cleavage of both C--N bonds of the carbazole. Also disclosed is a new microorganism that expresses a carbazole degradation trait constitutively and a method for degrading carbazole employing this microorganism.

  6. Synthesis of Benzo[a]carbazoles and an Indolo[2,3-a]carbazole from 3-Aryltetramic Acids.

    PubMed

    Truax, Nathanyal J; Banales Mejia, Fernando; Kwansare, Deborah O; Lafferty, Megan M; Kean, Maeve H; Pelkey, Erin T

    2016-08-05

    A simple and flexible approach to 3-pyrrolin-2-one fused carbazoles is disclosed. The key step involves the BF3-mediated electrophilic substitution of indoles with N-alkyl-substituted 3-aryltetramic acids, which provides access to indole-substituted 3-pyrrolin-2-ones. Scholl-type oxidative cyclizations of these materials led to the formation of the corresponding 3-pyrrolin-2-one-fused benzo[a]carbazoles and indolo[2,3-a]carbazoles. This work represents the first synthesis of the benzo[a]pyrrolo[3,4-c]carbazol-3(8H)-one ring system, while the indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one ring system is found in a number of biologically active compounds including the protein kinase C (PKC) inhibitor, staurosporine.

  7. Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs

    NASA Astrophysics Data System (ADS)

    Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.

    2016-01-01

    Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.

  8. Synthesis and Spectroscopic Properties of Carbazole-Oxadiazoles.

    PubMed

    Gündoğdu, Leyla; Şen, Nihan; Hızlıateş, Cevher Gündoğdu; Ergün, Mustafa Yavuz

    2017-11-01

    Four new carbazole-oxadiazole derivatives (3a-b, 6a-b) were prepared from the reaction of aromatic aldehydes and carbohydrazides which were synthesized from carbazole aldehydes namely 9-hexyl-9H-carbazole-3-carbaldehyde 1 and 4-(9H-carbazole-9-yl)benzaldehyde 4 and acid hydrazides. The structures of the new derivatives were confirmed by 1 H-NMR and FT-IR. The optical properties such as maximum absorption and emission wavelengths (λ; nm), molar extinction coefficients (ε; cm -1 M -1 ), Stoke's shifts (ΔλST; nm) and quantum yields (ϕF), of the carbazole-oxadiazole derivatives were declared in dichloromethane, toluene and tetrahydrofuran solutions.

  9. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    PubMed

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and optical characterization of novel carbazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Çiçek, Baki; Çalışır, Ümit; Tavaslı, Mustafa; Tülek, Remziye; Teke, Ali

    2018-02-01

    In this study, newly substituted carbazole derivatives of S1; (Z)-4-((9-isobutyl-9H-carbazol-3-ylimino)methyl)phenol, S2; (Z)-9-butyl- N-(2,3,4-trimethoxybenzylidine)-9H-carbazol-3-amine, S3; (Z)-4-((9-octyl-9H-carbazol-3-ylimino)methyl)benzene-1,2-diol and S4; (Z)-3-((9-octyl-9H-carbazol-3-ylimino)methyl)benzene-1,2-diol compounds are synthesized by using condensation reaction between carbazole amines and aromatic aldehydes. All synthesized carbazole Schiff bases are purified by crystallizing from chloroform. The structural and optical characterizations of synthesized compounds are investigated by FT-IR (Fourier Transform-Infrared Spectroscopy), 1H NMR (Proton Nuclear Magnetic Resonance), 13C NMR (Carbon Nuclear Magnetic Resonance), LC-MS (Liquid Chromatography-Mass Spectrometry) and temperature dependent PL (Photoluminescence) measurements. The formations of synthesized Schiff bases were confirmed by FT-IR, NMR and microanalysis. Due to stronger π-conjugation and efficient charge transfer from host material, the broad and complex bands centered at about ∼2.16 and ∼1.76 eV are observed in PL spectra for all samples. Their relative intensities depend on functional groups associated with the carbazole. These newly synthesized Schiff bases could be considered as an active emissive layer for organic light emitting diodes.

  11. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  12. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  13. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  14. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  15. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3107 Carbazole violet. (a) Identity. The color...

  16. Photonic emitters and circuits based on colloidal quantum dot composites

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  17. Photophysical and electrical properties of polyphenylquinolines containing carbazole or indolo[3,2-b]carbazole fragments as new optoelectronic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetlichnyi, V. M., E-mail: valsvet@hq.macro.ru; Aleksandrova, E. L.; Myagkova, L. A.

    2011-10-15

    Photophysical and electrical properties of new synthesized 2,6-polyphenylquinolines (PPQs) containing an oxygen or phenylamine bridging group between quinoline cycles and, as an arylene radical, alkylated derivatives of carbazole or indolo[3,2-b]carbazole are studied. It is shown that the photosensitivity for new PPQs is 10{sup 4}-10{sup 5} cm{sup 2}/J and the photogeneration quantum yield of free carriers is as high as 0.15. Photophysical parameters increase with the phenylamine bridging group in place of the oxygen one and when using indolocarbazole instead of carbazole. It is found that a film of polyphenylquinoline containing an oxygen bridging group and an alkylcarbazole fragment in themore » polymer repeat unit exhibits 'white' luminescence. Both electron and hole transport with a mobility of {approx}10{sup -6} cm{sup 2}/(V s) are detected in films of all studied polymers. The conductivity value and type can be controlled by varying the chemical structure of the (oxygen or phenylamine) bridging group between PPQ cycles and by choosing carbazole or indolo[3,2-b]carbazole derivatives as an arylene radical.« less

  18. 75 FR 27815 - Carbazole Violet Pigment 23 From China and India; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ...) Carbazole Violet Pigment 23 From China and India; Determinations On the basis of the record \\1\\ developed in... countervailing duty order on carbazole violet pigment 23 from India would be likely to lead to continuation or... that revocation of the antidumping duty orders on carbazole violet pigment 23 from China and India...

  19. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    PubMed

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-03

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  20. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  1. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    PubMed

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  2. Preparation, one- and two-photon properties of carbazole derivatives containing nitrogen heterocyclic ring

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Wang, Ping; Li, Liang; Chen, Zhimin; He, Chunying; Wu, Yiqun

    Preparation of recording materials with high two-photon absorption activities is one of the important issues to superhigh- density two-photon absorption (TPA) three-dimensional (3D) optical data storage. In this paper, three new carbazole derivatives containing nitrogen heterocyclic ring with symmetric and asymmetric structures are prepared using ethylene as the π bridge between the carbazole unit and nitrogen heterocyclic ring, namely, 9-butyl-3-(2-(1,8- naphthyridin)vinyl)-carbazole (material 1), 9-butyl-3,6-bis(2-(1,8-naphthyl)vinyl)-carbazole (material 2) and 9-butyl-3,6- bis(2-(quinolin)vinyl)-carbazole (material 3). Their one photon properties including linear absorption spectra, fluorescence emission spectra, and fluorescence quantum yields are studied. The fluorescence excited by 120 fs pulse at 800 nm Ti: sapphire laser operating at 1 kHz repetition rate with different incident powers of 9-butyl-3-(2-(quinolin) vinyl)-carbazole (material 3) was investigated, and two-photon absorption cross-sections has been obtained. It is shown that material 3 containing quinoline rings as electron acceptor with symmetric structure exhibit high two-photon absorption activity. The result implies that material 3 (9-butyl-3-(2-(quinolin) vinyl)-carbazole) is a good candidate as a promising recording material for super-high-density two-photon absorption (TPA) three-dimensional (3D) optical data storage. The influence of chemical structure of the materials on the optical properties is discussed.

  3. Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission

    NASA Astrophysics Data System (ADS)

    Luo, Dongxiang; Xiao, Ye; Hao, Mingming; Zhao, Yu; Yang, Yibin; Gao, Yuan; Liu, Baiquan

    2017-02-01

    Doping-free white organic light-emitting diodes (DF-WOLEDs) are promising for the low-cost commercialization because of their simplified device structures. However, DF-WOLEDs reported thus far in the literature are based on the use of blue single molecular emitters, whose processing can represent a crucial point in device manufacture. Herein, DF-WOLEDs without the blue single molecular emitter have been demonstrated by managing a blue exciplex system. For the single-molecular-emitter (orange or yellow emitter) DF-WOLEDs, (i) a color rendering index (CRI) of 81 at 1000 cd/m2 can be obtained, which is one of the highest for the single-molecular-emitter WOLEDs, or (ii) a high efficiency of 35.4 lm/W can be yielded. For the dual-molecular-emitter (yellow/red emitters) DF-WOLED, a high CRI of 85 and low correlated color temperature of 2376 K at 1000 cd/m2 have been simultaneously achieved, which has not been reported by previous DF-WOLEDs. Such presented findings may unlock an alternative avenue to the simplified but high-performance WOLEDs.

  4. 75 FR 14468 - Carbazole Violet Pigment 23 From China and India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ...)] Carbazole Violet Pigment 23 From China and India AGENCY: United States International Trade Commission... violet pigment 23 from India and the antidumping duty orders on carbazole violet pigment 23 from China and India. SUMMARY: The Commission hereby gives notice of the scheduling of expedited reviews pursuant...

  5. Persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil.

    PubMed

    Mumbo, John; Henkelmann, Bernhard; Abdelaziz, Ahmed; Pfister, Gerd; Nguyen, Nghia; Schroll, Reiner; Munch, Jean Charles; Schramm, Karl-Werner

    2015-01-01

    Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying-rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to -15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure-activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.

  6. Microbial Degradation of Alkyl Carbazoles in Norman Wells Crude Oil

    PubMed Central

    Fedorak, Phillip M.; Westlake, Donald W. S.

    1984-01-01

    Norman Wells crude oil was fractionated by sequential alumina and silicic acid column chromatography methods. The resulting nitrogen-rich fraction was analyzed by gas chromatography-mass spectrometry and showed 26 alkyl (C1 to C5) carbazoles to be the predominant compounds. An oil-degrading mixed bacterial culture was enriched on carbazole to enhance its ability to degrade nitrogen heterocycles. This culture was used to inoculate a series of flasks of mineral medium and Norman Wells crude oil. Residual oil was recovered from these cultures after incubation at 25°C for various times. The nitrogen-rich fraction was analyzed by capillary gas chromatography, using a nitrogen-specific detector. Most of the C1-, C2-, and C3- carbazoles and one of the C4-isomers were degraded within 8 days. No further degradation occurred when incubation was extended to 28 days. The general order of susceptibility of the isomers to biodegradation was C1 > C2 > C3 > C4. The carbazole-enriched culture was still able to degrade n-alkanes, isoprenoids, aromatic hydrocarbons, and sulfur heterocycles in the crude soil. PMID:16346524

  7. The application of high efficient yellow phosphorescent material to white OLEDs

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Sheng; Ku, Chun-Neng; Huang, Pang-Chi; Wu, Cheng-An; Chang, Meng-Hao; Liou, Jia-Lun; Tseng, Mei-Rurng

    2014-10-01

    A new type of thiopyridinyl-based iridium molecule (POT) was used as the yellow phosphorescent material in our research. On fabricating a yellow PHOLED by doping POT-02 with host as the emitter, the device achieved a high power efficiency of 66.0 lm/W and an external quantum efficiency of 23.2%. On the other hand, a white organic lightemitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in-between double blue phosphorescent emitters. In this study, we introduce a simple process for generating yellow emission of a WOLED by using the B/Y/B EML configuration. The B/Y/B EML configuration can achieve a higher efficiency and a smaller color shift with various operational brightness values. Based on the concept of this device, the molecular engineering of the blue phosphorescent host material as well as the light-extraction film, a WOLED with a power efficiency of 103 lm/W and an external quantum efficiency of 38.2% at a practical brightness of 1000 cd/m2 with CIE coordinates (CIEx, y) of (0.36, 0.48) can be achieved.

  8. Microbial degradation of alkyl carbazoles in Norman Wells crude oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorak, P.M.; Westlake, D.W.S.

    Norman Wells crude oil was fractionated by sequential alumina and silicic acid column chromatography methods. The resulting nitrogen-rich fraction was analyzed by gas chromatography-mass spectrometry and showed 26 alkyl (C/sub 1/ to C/sub 5/) carbazoles to be the predominant compounds. An oil-degrading mixed bacterial culture was enriched on carbazole to enhance its ability to degrade nitrogen heterocycles. This culture was used to inoculate a series of flasks of mineral medium and Norman Wells crude oil. Residual oil was recovered from these cultures after incubation at 25/sup 0/C for various times. The nitrogen-rich fraction was analyzed by capillary gas chromatography, usingmore » a nitrogen-specific detector. Most of the C/sub 1/-, C/sub 2/-, and C/sub 3/- carbazoles and one of the C/sub 4/-isomers were degraded within 8 days. No further degradation occurred when incubation was extended to 28 days. The general order of susceptibility of the isomers to biodegradation was C/sub 1/ > C/sub 2/ > C/sub 3/ > C/sub 4/. The carbazole-enriched culture was still able to degrade n-alkanes, isoprenoids, aromatic hydrocarbons, and sulfur heterocycles in the crude soil. 26 references.« less

  9. The binding modes of carbazole derivatives with telomere G-quadruplex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-feng; Zhang, Hui-juan; Xiang, Jun-feng; Li, Qian; Yang, Qian-fan; Shang, Qian; Zhang, Yan-xia; Tang, Ya-lin

    2010-10-01

    It is reported that carbazole derivatives can stabilize G-quadruplex DNA structure formed by human telomeric sequence, and therefore, they have the potential to serve as anti-cancer agents. In this present study, in order to further explore the binding mode between carbazole derivatives and G-quadruplex formed by human telomeric sequence, two carbazole iodides (BMVEC, MVEC) molecules were synthesized and used to investigate the interaction with the human telomeric parallel and antiparallel G-quadruplex structures by NMR, CD and molecular modeling study. Interestingly, it is the pivotal the cationic charge pendant groups of pyridinium rings of carbazole that plays an essential role in the stabilizing and binding mode of the human telomeric sequences G-quadruplex structure. It was found that BMVEC with two cationic charge pendant groups of pyridinium rings of 9-ethylcarbazole cannot only stabilize parallel G-quadruple of Hum6 by groove binding and G-tetrad stacking modes and antiparallel G-quadruplex of Hum22 by groove binding, but also induce the formation of mixed G-quadruplex of Hum22. While MVEC with one cationic charge pendant groups of pyridinium ring only can bind with the parallel G-quadruplex of Hum6 by the stacking onto the G4 G-tetrad and could not interact with the G-quadruplex of Hum22.

  10. FAST TRACK COMMUNICATION Host-free, yellow phosphorescent material in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng

    2010-11-01

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W-1 at a practical brightness of 1000 cd m-2 with Commission Internationale d'Echariage coordinates (CIEx,y) of (0.37, 0.47) was achieved.

  11. 75 FR 25209 - Carbazole Violet Pigment 23 from India: Rescission of Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... from India: Rescission of Administrative Review AGENCY: Import Administration, International Trade... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP 23) from India for the...-circumstances review. See Carbazole Violet Pigment 23 from India: Initiation of Antidumping Duty Changed...

  12. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack L. Arbiser; Baskaran Govindarajan; Traci E. Battle

    2006-06-15

    Coal tar is one of the oldest and an effective treatment for psoriasis. Coal tar has been directly applied to the skin, or used in combination with UV light as part of the Goeckerman treatment. The use of coal tar has caused long-term remissions in psoriasis, but has fallen out of favor because the treatment requires hospitalization and coal tar is poorly acceptable aesthetically to patients. Thus, determining the active antipsoriatic component of coal tar is of considerable therapeutic interest. We fractionated coal tar into its components, and tested them using the SVR angiogenesis inhibitor assay. Treatment of SVR endothelialmore » cells with coal tar fractions resulted in the isolation of a single fraction with antiangiogenic activity. The active antiangiogenic compound in coal tar is carbazole. In addition to antiangiogenic activity, carbazole inhibited the production of inflammatory IL-15 by human mononuclear cells. IL-15 is elevated in psoriasis and is thought to contribute to psoriatic inflammation. Carbazole treatment also reduced activity of inducible nitric oxide synthase (iNOS), which is proinflammatory and elevated in psoriasis. The effect of carbazole on upstream pathways in human psoriasis was determined, and carbazole was shown to inhibit signal transducer and activator of transcription (stat)3-mediated transcription, which has been shown to be relevant in human psoriasis. IL-15, iNOS, and stat3 activation require the activation of the small GTPase rac for optimal activity. Carbazole was found to inhibit rac activation as a mechanism for its inhibition of downstream inflammatory and angiogenic pathways. Given its antiangiogenic and anti-inflammatory activities, carbazole is likely a major component of the antipsoriatic activity of coal tar. Carbazole and derivatives may be useful in the therapy of human psoriasis.« less

  13. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  14. Dispersive charge transport due to strong charge dipole interactions of cyano-group in the cyano-carbazole based molecular glass

    NASA Astrophysics Data System (ADS)

    Oh, Dong Keun; Hong, Sung Mok; Lee, Cheol Eui; Kim, B.-S.; Jin, J.-I.

    2005-12-01

    Using the time of flight (ToF) method, we investigated the bipolar charge transport for two glass-forming molecules containing carbazole and cyano-carbazole moiety. The enhanced electron mobility was observed in the cyano-carbazole compound. From the numerical method based the Laplace formalism, the distribution of hole trapping energy was obtained for the carbazole compound. This result was compared with the exponential distribution extracted from dispersion parameter for the cyano-carbazole material. Considering charge-dipole interactions as a reason for the disordered trapping mechanism, we discussed dispersive charge transport induced by a strong dipolar (i.e. cyano) group by comparing the distributions of hole trapping sites for two compounds.

  15. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    PubMed

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  16. Chemiluminescence involving acidic and ambient ion light emitters. The chemiluminescence of the 9-acridinepercarboxylate anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Roswell, D.F.; Dupont, A.C.

    The reaction of phenyl 9-acridinecarboxylate with an excess of peroxide ion in THF/water (67/33 mol %) leads to the emission of either bright yellow-green light or bright blue light, depending on the reaction conditions. The blue emission is favored by high concentrations of hydrogen peroxide and water, for example. 9-Acridinepercarboxylic acid is a common intermediate in the reactions. The light emitter responsible for the blue chemiluminescence is acridone, whereas that responsible for the yellow-green chemiluminescence is the anion of acridone. The effects of base concentration and solvent composition on the relative proportions of these two emitters have produced evidence that,more » contrary to the expectation of simple theory, a dioxetanone is not an intermediate in the reaction. Other cases where chemiluminescence may involve percarboxylate and peroxide ions are discussed.« less

  17. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.

    PubMed

    Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro

    2016-10-01

    In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. White light-emitting nanocomposites based on an oxadiazole-carbazole copolymer (POC) and InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Nenna, Giuseppe; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2013-11-01

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  19. Carbazole ligands as c-myc G-quadruplex binders.

    PubMed

    Głuszyńska, Agata; Juskowiak, Bernard; Kuta-Siejkowska, Martyna; Hoffmann, Marcin; Haider, Shozeb

    2018-07-15

    The interactions of c-myc G-quadruplex with three carbazole derivatives were investigated by UV-Vis spectrophotometry, fluorescence, CD spectroscopy, and molecular modeling. The results showed that a combination of carbazole scaffold functionalized with ethyl, triazole and imidazole groups resulted in stabilization of the intramolecular G-quadruplex formed by the DNA sequence derived from the NHE III 1 region of c-myc oncogene (Pu22). Binding to the G-quadruplex Pu22 resulted in the significant increase in fluorescence intensity of complexed ligands 1-3. All ligands were capable of interacting with G4 DNA with binding stoichiometry indicating that two ligand molecules bind to G-quadruplex with comparable affinity, which agrees with binding model of end-stacking on terminal G-tetrads. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Benzimidazobenzothiazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes: A quantum-chemical TD-DFT study

    NASA Astrophysics Data System (ADS)

    Zhu, Qiuling; Wen, Keke; Feng, Songyan; Guo, Xugeng; Zhang, Jinglai

    2018-03-01

    Based upon two thermally activated delayed fluorescence (TADF) emitters 1 and 2, compounds 3-6 have been designed by replacing the carbazol group with the bis(4-biphenyl)amine one (3 and 4) and introducing the electron-withdrawing CF3 group into the acceptor unit of 3 and 4 (5 and 6). It is found that the present calculations predict comparable but relatively large energy differences (approximate 0.5 eV) between the lowest singlet S1 and triplet T1 states (Δ EST) for the six targeted compounds. In order to explain the highly-efficient TADF behavior observed in compounds 1 and 2, the"triplet reservoir" mechanism has been proposed. In addition, the fluorescence rates of all six compounds are very large, in 107-108 orders of magnitude. According to the present calculations, it is a reasonable assumption that the newly designed compounds 3-6 could be considered as the potential TADF emitters, which needs to be further verified by experimental techniques.

  1. 75 FR 52930 - Carbazole Violet Pigment 23 From India: Preliminary Results of Antidumping Duty Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... From India: Preliminary Results of Antidumping Duty Changed-Circumstances Review AGENCY: Import... order on carbazole violet pigment 23 from India to determine whether Meghmani Pigments (Meghmani) is the... initiation of an antidumping duty changed- circumstances review. See Carbazole Violet Pigment 23 from India...

  2. Synthesis of novel carbazole derived substances using some organoboron compounds by palladium catalyzed and investigation of its semiconductor device characteristics

    NASA Astrophysics Data System (ADS)

    Gorgun, Kamuran; Caglar, Yasemin

    2018-04-01

    Carbazole compounds in particular represent one of the most intensely used and studied class of semiconducting materials. In this study, considering the information given in the literature the Ullman and Suzuki-Miyaura coupling reaction were carried out using carbazole, 1,4-dibromobenzene and pyrene-1-boronic acid. The synthesized carbazole derivatives are characterized by 1H NMR and elemental analysis. The spectroscopic and thermal properties of the synthesized novel carbazole derivative 9-(4-(pyren-4-yl)phenyl)-9H-carbazole (Cz-py) were investigated. And also, the n-Si/p-Cz:py heterojunction diode was fabricated. The electrical properties of this diode were characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements.

  3. High-efficiency emitting materials based on phenylquinoline/carbazole-based compounds for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Jin, Sung-Ho

    2009-08-01

    Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.

  4. 75 FR 62765 - Carbazole Violet Pigment 23 From India: Final Results of Antidumping Duty Changed-Circumstances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... From India: Final Results of Antidumping Duty Changed-Circumstances Review AGENCY: Import...-in-interest to Alpanil Industries. See Carbazole Violet Pigment 23 From India: Preliminary Results of... Carbazole Violet Pigment 23 From India: Final Results of Antidumping Duty Administrative Review, 75 FR 38076...

  5. 75 FR 10759 - Carbazole Violet Pigment 23 from India: Initiation of Antidumping Duty Changed-Circumstances Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... dispersions in any form (e.g., pigment dispersed in oleoresins, flammable solvents, water) are not included... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23... changed-circumstances review of the antidumping duty order on carbazole violet pigment 23 from India with...

  6. Synthesis of hetero annulated isoxazolo-, pyrido- and pyrimido carbazoles: Screened for in vitro antitumor activity and structure activity relationships, a novel 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido[4,5-a]carbazole as an antitumor agent.

    PubMed

    Murali, Karunanidhi; Sparkes, Hazel A; Rajendra Prasad, Karnam Jayarampillai

    2017-03-10

    Claisen-Schmidt condensation of 2,3,4,9-tetrahydro-1H-carbazol-1-one with 3-bromo-4-methoxy benzaldehyde afforded the 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one 3. Compound 3 was allowed to react with different organic reactants, hydroxylamine hydrochloride, malononitrile and guanidine nitrate through condensation cum cycloaddition reactions to afford a series of the respective novel hetero annulated carbazoles such as isoxazolo-, pyrido- and pyrimido carbazoles. The structures of the compounds were established by FT-IR, 1 H NMR, 13 C NMR, X-ray diffraction and elemental analysis. The compounds have been screened for in vitro anti-tumor activity by MTT assay and displayed enviable selective growth inhibition on MCF-7 cell line compared to A-549 cell line. Apoptotic morphological changes in MCF-7 and A-549 cells were visualized using fluorescent microscopic technique. The preliminary structure activity relationships were also carried out. Data pointed out that among pyrimido carbazole compounds, 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido [4,5-a]carbazole could be exploited as an excellent therapeutic drug against cancer cell proliferation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Organic nanofibrils based on linear carbazole trimer for explosive sensing.

    PubMed

    Zhang, Chengyi; Che, Yanke; Yang, Xiaomei; Bunes, Benjamin R; Zang, Ling

    2010-08-14

    Organic fluorescent nanofibrils were fabricated from a linear carbazole trimer and employed for expedient detection of nitroaromatic explosives (DNT and TNT) and highly volatile nitroaliphatic explosives (nitromethane).

  8. 75 FR 26716 - Carbazole Violet Pigment 23 from India: Extension of Time Limit for Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23 from India: Extension of Time Limit for Final Results of Countervailing Duty Administrative Review... the preliminary results of the administrative review of the countervailing duty order on carbazole...

  9. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingjie; Batt, Douglas G.; Lippy, Jonathan S.

    Four series of disubstituted carbazole-1-carboxamides were designed and synthesised as inhibitors of Bruton’s tyrosine kinase (BTK). 4,7- and 4,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of BTK, while 3,7- and 3,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of Janus kinase 2 (JAK2).

  10. 77 FR 1463 - Carbazole Violet Pigment 23 From the People's Republic of China: Final Rescission of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g., pigments... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP-23) from the People's...

  11. 76 FR 55003 - Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary Intent To Rescind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g., pigments... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... antidumping duty order on carbazole violet pigment 23 (CVP 23) from the People's Republic of China (PRC). This...

  12. 75 FR 13257 - Carbazole Violet Pigment 23 from India: Final Results of the Expedited Five-year (Sunset) Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...) and finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23... countervailing duty (CVD) order on Carbazole Violet Pigment 23 (CVP-23) [[Page 13258

  13. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.

  14. Design and synthesis of novel carbazole tethered pyrrole derivatives as potent inhibitors of Mycobacterium tuberculosis.

    PubMed

    Surineni, Goverdhan; Yogeeswari, Perumal; Sriram, Dharmarajan; Kantevari, Srinivas

    2015-02-01

    A series of novel carbazole tethered pyrrole derivatives were designed by coupling core fragments of antitubercular agents, carbazole and substituted pyrrole in single molecular architecture. The synthesis of new analogues was achieved by FeCl3 mediated one pot three component condensation of 2-nitrovinylcarbazoles with aryl or alkyl amines and dimethylacetylene dicarboxylate (DMAD). All the new analogues 5a-l and 6a-l were fully characterized by their NMR and mass spectral data. Among the twenty four new compounds screened for in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv, dimethyl 1-(4-fluorophenyl)-4-(9-methyl-9H-carbazol-3-yl)-1H-pyrrole-2,3-dicarboxylate (5b) was found to be most active with MIC 3.13μg/mL and has shown low cytotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives.

    PubMed

    Ku, Sae-Kwang; Lee, Jee-Hyun; O, Yuseok; Lee, Wonhwa; Song, Gyu-Yong; Bae, Jong-Sup

    2015-10-01

    In this Letter, we investigated the barrier protective effects of 3-N-(MeO)n-cinnamoyl carbazoles (BS 1; n=1, BS 2; n=2, BS 3; n=3) and 3-O-(MeO)3-cinnamoyl carbazole (BS 4) against high-mobility group box 1 (HMGB1)-mediated vascular disruptive responses in human umbilical vein endothelial cells (HUVECs) and in mice for the first time. Data showed that BS 2, BS 3, and BS 4, but not BS 1, inhibited HMGB1-mediated vascular disruptive responses and transendothelial migration of human neutrophils to HUVECs. BS 2, BS3, and BS 4 also suppressed HMGB1-induced hyperpermeability and leukocyte migration in mice. Interestingly, the barrier protective effects of BS 3 and BS 4 were better than those of BS 2. These results suggest that the number of methoxy groups substituted on the cinnamamide or cinnamate moiety of the 9H-3-carbazole derivative is an important pharmacophore for the barrier protective effects of these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Modulation of π-spacer of carbazole-carbazole based organic dyes toward high efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chitpakdee, Chirawat; Jungsuttiwong, Siriporn; Sudyoadsuk, Taweesak; Promarak, Vinich; Kungwan, Nawee; Namuangruk, Supawadee

    2017-03-01

    The effects of type and position of π-linker in carbazole-carbazole based dyes on their performance in dye-sensitized solar cells (DSSCs) were investigated by DFT and TDDFT methods. The calculated electronic energy level, electron density composition, charge injection and charge recombination properties were compared with those of the high performance CCT3A dye synthesized recently. It is found that that mixing a benzothiadizole (B) unit with two thiophene (T) units in the π-spacer can greatly shift absorption wavelength to near infrared region and enhance the light harvesting efficiency (LHE) resulting in increasing of short-circuit current density (Jsc), whereas a thienothiophene unit does not affect those properties. However, a B should be not directly connected to the anchoring group of the dye because it brings electrolyte to the TiO2 surface which may increase charge recombination rate and consequently decrease open circuit voltage (Voc). This work shows how type and position of the π-linker affect the performance of DSSCs, and how to modulate those properties. We predicted that the designed dye derived from insertion of the B unit in between the two T units would have higher performance than CCT3A dye. The insight understanding from this study is useful for further design of higher performance dyes by molecular engineering.

  17. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  18. Degradation of Carbazole by Microbial Cells Immobilized in Magnetic Gellan Gum Gel Beads▿

    PubMed Central

    Wang, Xia; Gai, Zhonghui; Yu, Bo; Feng, Jinhui; Xu, Changyong; Yuan, Yong; Lin, Zhixin; Xu, Ping

    2007-01-01

    Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds. PMID:17827304

  19. Effects of Phenobarbital and Carbazole on Carcinogenesis of the Lung, Thyroid, Kidney, and Bladder of Rats Pretreated with N‐Bis(2‐hydroxypropyl)nitrosamine

    PubMed Central

    Masuda, Atsuko; Imaida, Katsumi; Ogiso, Tadashi; Ito, Nobuyuki

    1988-01-01

    Studies were made on potential modifying effects of phenobarbital (PB) and carbazole on tumor development induced by N‐bis(2‐hydroxypropyl)nitrosamine (DHPN), a wide‐spectrum carcinogen in rats. Effects on the lung, thyroid, kidney, bladder and liver were investigated. Male F344 rats were given 0.2% DHPN in their drinking water for 1 week and then 0.05% PB or 0.6% carbazole in their diet for 50 weeks. Control animals were treated with either DHPN or PB or carbazole only. Neither PB nor carbazole affected the incidence or histology of lung tumors. However, PB promoted the development of thyroid tumors and preneoplastic lesions of the liver, while carbazole promoted the induction of renal pelvic tumors. PMID:3133336

  20. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.

  1. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  2. Yellow emitting Iridium (III) phenyl-benzothiazole complexes with different β-diketone ancillary ligands as dopants in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ivanov, P.; Petrova, P.; Tomova, R.

    2018-03-01

    We discuss the influence of the type of β-diketone ancillary ligand in Iridium (III) bis phenyl-benzothiazole complexes ((bt)2Ir(β-diketone)) on their photophysical and electroluminescent properties when they are used as dopants in white organic light-emitting diodes (WOLED). For this purpose, we investigated four novel yellow cyclometalated complexes: (bt)2Ir(dbm), (bt)2Ir(fmtdbm), (bt)2Ir(tta) and (bt)2Ir(bsm), where dbm = 1,3-diphenylpropane-1,3-dionate; fmtdbm = 1-(4-fluorophenyl)-3-(4-methoxyphenyl)propane-1,3-dionate; tta = 4,4,4-trifluoro-1-(thiophene-2-yl)butane-1,3-dionate; and bsm = 1-phenylicosane-1,3-dionate). To obtain white light by mixing emissions of two complementary colors (yellow emitted by the dopant and blue, by another emitter), we chose the following OLED structure: ITO/doped HTL/ElL/ETL/M, where ITO was a transparent anode of In2O3:SnO2; M, a metallic Al cathode; HTL, 4,4’-Bis(9H-carbazol-9-yl)biphenyl (CBP) involved in a poly(N-vinylcarbazole) (PVK) matrix; ElL, an electroluminescent layer of aluminum(III)bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq); and ETL, an electron-transporting layer of zinc(II)bis(2-2-hydroxyphenyl)benzothiazole. We found that all complexes are suitable candidates for fabrication of WOLED. The best results were demonstrated by the device doped with 2 wt % of (bt)2Ir(bsm), which had twice as high luminescence (1100 cd/m2) and one-and-a-half as high current efficiency (5 cd/A) as the device doped with 1.25 wt % of the known (bt)2Ir(acac), with its 580 cd/m2 and 3.4 cd/A at approximately the same CIE (Commission Internationale de L’Eclairage) (x/y) coordinates of the warm white light emitted by the two devices.

  3. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands.

    PubMed

    Kaulage, Mangesh H; Maji, Basudeb; Pasadi, Sanjeev; Ali, Asfa; Bhattacharya, Santanu; Muniyappa, K

    2018-03-25

    Recent studies support the idea that G-quadruplex structures in the promoter regions of oncogenes and telomere DNA can serve as potential therapeutic targets in the treatment of cancer. Accordingly, several different types of organic small molecules that stabilize G-quadruplex structures and inhibit telomerase activity have been discerned. Here, we describe the binding of benzimidazole-carbazole ligands to G-quadruplex structures formed in G-rich DNA sequences containing the promoter regions of human c-MYC, c-KIT1, c-KIT2, VEGF and BCL2 proto-oncogenes. The fluorescence spectroscopic data indicate that benzimidazole-carbazole ligands bind and stabilize the G-quadruplexes in the promoter region of oncogenes. The molecular docking studies provide insights into the mode and extent of binding of this class of ligands to the G-quadruplexes formed in oncogene promoters. The high stability of these G-quadruplex structures was validated by thermal denaturation and telomerase-catalyzed extension of the 3' end. Notably, benzimidazole-carbazole ligands suppress the expression of oncogenes in cancer cells in a dose-dependent manner. We anticipate that benzimidazole-carbazole ligands, by virtue of their ability to stabilize G-quadruplex structures in the promoter regions of oncogenes, might reduce the risk of cancer through the loss of function in the proteins encoded by these genes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Carbazole Scaffold in Medicinal Chemistry and Natural Products: A Review from 2010-2015.

    PubMed

    Tsutsumi, Lissa S; Gündisch, Daniela; Sun, Dianqing

    2016-01-01

    9H-carbazole is an aromatic molecule that is tricyclic in nature, with two benzene rings fused onto a 5-membered pyrrole ring. Obtained from natural sources or by synthetic routes, this scaffold has gained much interest due to its wide range of biological activity upon modifications, including antibacterial, antimalarial, anticancer, and anti-Alzheimer properties. This review reports a survey of the literature on carbazole-containing molecules and their medicinal activities from 2010 through 2015. In particular, we focus on their in vitro and in vivo activities and summarize structure-activity relationships (SAR), mechanisms of action, and/or cytotoxicity/selectivity findings when available to provide future guidance for the development of clinically useful agents from this template.

  5. Photophysical properties and computational investigation on substituent effects on the structural and electronic properties of 3,6-di(thiophene-2-yl)-carbazole-based derivatives

    NASA Astrophysics Data System (ADS)

    Sriyab, Suwannee; Gleeson, Matthew Paul; Hannongbua, Supa; Suramitr, Songwut

    2016-12-01

    A series of 3,6-carbazole-based derivatives, 3,6-CzTh-(1), 3,6-CzTh-(2), 3,6-CzTh-(3) and 3,6-CzTh-(4), were synthesized to investigate the influence of structural distortion on intramolecular charge transfer (ICT) complexation between the conjugation components and carbazole core unit of the 3,6-carbazole-based derivatives. The 3,6-carbazole-based derivatives were synthesized and analysed using UV-Visible, photoluminescence spectroscopy and DFT calculations. The electron-donating substituents on the carbazole core unit, which was linked by formyl and acetyl at the 3,6-positions of the carbazole core so as to directly involve the electron-donating edge substituents in backbone, exhibited conjugation breaks in the middle of the carbazole core units. The break lead to a planar structure with an extraordinary ability to stabilize on the excited state resulting in a strong fluorescence quantum yield (Фfluo ≈ 0.6-0.7). The results of the Time-dependent density functional theory (TD-DFT) calculations were in agreement with the experimental results, and indicated that the low fluorescence of 3,6-CzTh-(1) and 3,6-CzTh-(2) is derived not only from intersystem crossing but also from internal conversion due to the proximity effect; this inference was also supported by the measurements of the photoluminescence spectra at low temperatures. In addition, factors leading efficiently to non-radiative processes were shown to be absent in 3,6-CzTh-(3) and 3,6-CzTh-(4). This work deepens our understanding of 3,6-di(thiophen-2-yl)-carbazole-based derivatives and provides insight into the future design of novel materials for improved fluorescence efficiencies and optoelectronic devices.

  6. Photochemical Synthesis of Carbazoles Using an [Fe(phen)3](NTf2)2/O2 Catalyst System: Catalysis toward Sustainability.

    PubMed

    Parisien-Collette, Shawn; Hernandez-Perez, Augusto C; Collins, Shawn K

    2016-10-07

    An increasingly sustainable photochemical synthesis of carbazoles was developed using a catalytic system of Fe(phen) 3 (NTf 2 ) 2 /O 2 under continuous flow conditions and was demonstrated on gram-scale using a numbering-up strategy. Photocyclization of triaryl and diarylamines into the corresponding carbazoles occurs in general in higher yields than with previously developed photocatalysts.

  7. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    NASA Astrophysics Data System (ADS)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  8. Synthesis and biological activities of new furo[3,4-b]carbazoles: potential topoisomerase II inhibitors.

    PubMed

    Hajbi, Youssef; Neagoie, Cléopatra; Biannic, Bérenger; Chilloux, Aurélie; Vedrenne, Emeline; Baldeyrou, Brigitte; Bailly, Christian; Mérour, Jean-Yves; Rosca, Sorin; Routier, Sylvain; Lansiaux, Amélie

    2010-11-01

    New 1,5-dihydro-4-(substituted phenyl)-3H-furo[3,4-b]carbazol-3-ones were synthesised via a key step Diels-Alder reaction under microwave irradiation. 3-Formylindole was successfully used in a 6-step synthesis to obtain those complex heterocycles. The Diels-Alder reaction generating the carbazole ring was optimised under thermal conditions or microwave irradiation. After cleavage of functional groups, DNA binding, topoisomerase inhibition and cytotoxic properties of the new-formed furocarbazoles were investigated. These carbazoles do not present a strong interaction with the DNA, and do not modify the relaxation of the DNA in the presence of topoisomerase I or II except for one promising compound. This compound is a potent topoisomerase II inhibitor, and its cellular activity is not moderated compared to etoposide. The synthesis of these molecules allowed the generalisation of the method using indole and 5-OBn indole and several benzaldehydes. The synthesis of these molecules produced chemical structures endowed with promising cytotoxic and topoisomerase II inhibition activities. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. Electrical memory characteristics of a nondoped pi-conjugated polymer bearing carbazole moieties.

    PubMed

    Park, Samdae; Lee, Taek Joon; Kim, Dong Min; Kim, Jin Chul; Kim, Kyungtae; Kwon, Wonsang; Ko, Yong-Gi; Choi, Heungyeal; Chang, Taihyun; Ree, Moonhor

    2010-08-19

    Poly[bis(9H-carbazole-9-ethyl)dipropargylmalonate] (PCzDPM) is a novel pi-conjugated polymer bearing carbazole moieties that has been synthesized by polymerization of bis(9H-carbazole-9-ethyl)dipropargylmalonate with the aid of molybdenum chloride solution as the catalyst. This polymer is thermally stable up to 255 degrees C under a nitrogen atmosphere and 230 degrees C in air ambient; its glass-transition temperature is 147 or 128 degrees C, depending on the polymer chain conformation (helical or planar structure). The charge-transport characteristics of PCzDPM in nanometer-scaled thin films were studied as a function of temperature and film thickness. PCzDPM films with a thickness of 15-30 nm were found to exhibit very stable dynamic random access memory (DRAM) characteristics without polarity. Furthermore, the polymer films retain DRAM characteristics up to 180 degrees C. The ON-state current is dominated by Ohmic conduction, and the OFF-state current appears to undergo a transition from Ohmic to space-charge-limited conduction with a shallow-trap distribution. The ON/OFF switching of the devices is mainly governed by filament formation. The filament formation mechanism for the switching process is supported by the metallic properties of the PCzDPM film, which result in the temperature dependence of the ON-state current. In addition, the structure of this pi-conjugated polymer was found to vary with its thermal history; this change in structure can affect filament formation in the polymer film.

  10. Bromomethylthioindole Inspired Carbazole Hybrids as Promising Class of Anti-MRSA Agents.

    PubMed

    Cheng, Chia-Yi; Chang, Chun-Ping; Lauderdale, Tsai-Ling Yang; Yu, Guann-Yi; Lee, Jinq-Chyi; Jhang, Yi-Wun; Wu, Chien-Huang; Ke, Yi-Yu; Sadani, Amit A; Yeh, Ching-Fang; Huang, I-Wen; Kuo, Yi-Ping; Tsai, De-Jiun; Yeh, Teng-Kuang; Tseng, Chen-Tso; Song, Jen-Shin; Liu, Yu-Wei; Tsou, Lun K; Shia, Kak-Shan

    2016-12-08

    Series of N -substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 μg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 μg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N -substituted carbazoles as potential anti-MRSA agents.

  11. Bromomethylthioindole Inspired Carbazole Hybrids as Promising Class of Anti-MRSA Agents

    PubMed Central

    2016-01-01

    Series of N-substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 μg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 μg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N-substituted carbazoles as potential anti-MRSA agents. PMID:27994762

  12. Pd-catalyzed intramolecular oxidative C-H amination: synthesis of carbazoles.

    PubMed

    Youn, So Won; Bihn, Joon Hyung; Kim, Byung Seok

    2011-07-15

    A Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines under ambient temperature using Oxone as an inexpensive, safe, and easy-to-handle oxidant has been developed. This process represents a green and practical method for the facile construction of carbazoles with a broad substrate scope and wide functional group tolerance. © 2011 American Chemical Society

  13. Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  14. Efficient OLEDs Fabricated by Solution Process Based on Carbazole and Thienopyrrolediones Derivatives.

    PubMed

    Lozano-Hernández, Luis-Abraham; Maldonado, José-Luis; Garcias-Morales, Cesar; Espinosa Roa, Arian; Barbosa-García, Oracio; Rodríguez, Mario; Pérez-Gutiérrez, Enrique

    2018-01-30

    Four low molecular weight compounds-three of them new, two of them with carbazole (Cz) as functional group and the other two with thienopyrroledione (TPD) group-were used as emitting materials in organic light emitting diodes (OLEDs). Devices were fabricated with the configuration ITO/PEDOT:PSS/emitting material/LiF/Al. The hole injector layer (HIL) and the emitting sheet were deposited by spin coating; LiF and Al were thermally evaporated. OLEDs based on carbazole derivatives show luminances up to 4130 cd/m², large current efficiencies about 20 cd/A and, cautiously, a very impressive External Quantum Efficiency (EQE) up to 9.5%, with electroluminescence peaks located around 490 nm (greenish blue region). Whereas, devices manufactured with TPD derivatives, present luminance up to 1729 cd/m², current efficiencies about 4.5 cd/A and EQE of 1.5%. These results are very competitive regarding previous reported materials/devices.

  15. Photoluminescence of epoxy resin modified by carbazole and its halogen derivative at 82 K

    NASA Astrophysics Data System (ADS)

    Mandowska, E.; Mandowski, A.; Tsvirko, M.

    2009-10-01

    The spectra and relative quantum yield of fluorescence and phosphorescence were measured for 9-(2,3-epoxypropyl)carbazole (EPK) added to epoxy resin (R) (R 5EPK - 5% weight content of the carbazole group in a polymer) and its mono and dihalogen derivative (Cl and Br). The materials under study have excellent mechanical properties. At 82 K photoluminescence (PL) spectra of these materials are composed of fluorescence (FL) and phosphorescence (PH) components while at 280 K, PH component is not observed. The vibrational frequencies of fluorescence and phosphorescence for R 5EPK were determined using Gaussian deconvolution. A decrease in the fluorescence and an increase in the phosphorescence quantum efficiency were observed after chemical bonding of heavy atoms Cl and Br.

  16. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  17. Reappraisal of solid selective emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1990-01-01

    New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.

  18. Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots.

    PubMed

    Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun

    2015-03-12

    Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.

  19. Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun

    2015-03-01

    Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu

  20. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  1. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  2. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  3. 76 FR 24855 - Carbazole Violet Pigment 23 From India: Rescission of Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... From India: Rescission of Administrative Review AGENCY: Import Administration, International Trade... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP 23) from India for the... Federal Register the antidumping duty order on CVP 23 from India. See Notice of Amended Final...

  4. Novel carbazole derivatives with quinoline ring: synthesis, electronic transition, and two-photon absorption three-dimensional optical data storage.

    PubMed

    Li, Liang; Wang, Ping; Hu, Yanlei; Lin, Geng; Wu, Yiqun; Huang, Wenhao; Zhao, Quanzhong

    2015-03-15

    We designed carbazole unit with an extended π conjugation by employing Vilsmeier formylation reaction and Knoevenagel condensation to facilitate the functional groups of quinoline from 3- or 3,6-position of carbazole. Two compounds doped with poly(methyl methacrylate) (PMMA) films were prepared. To explore the electronic transition properties of these compounds, one-photon absorption properties were experimentally measured and theoretically calculated by using the time-dependent density functional theory. We surveyed these films by using an 800 nm Ti:sapphire 120-fs laser with two-photon absorption (TPA) fluorescence emission properties and TPA coefficients to obtain the TPA cross sections. A three-dimensional optical data storage experiment was conducted by using a TPA photoreaction with an 800 nm-fs laser on the film to obtain a seven-layer optical data storage. The experiment proves that these carbazole derivatives are well suited for two-photon 3D optical storage, thus laying the foundation for the research of multilayer high-density and ultra-high-density optical information storage materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  6. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.

  7. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    PubMed Central

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%. PMID:28139768

  8. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  9. Photochemical Synthesis of Complex Carbazoles: Evaluation of Electronic Effects in Both UV- and Visible-Light Methods in Continuous Flow.

    PubMed

    Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K

    2015-11-09

    An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nonlinear optical effects in semi-polar GaN micro-cavity emitter

    NASA Astrophysics Data System (ADS)

    Butler, Sween; Jiang, Hongxing; Lin, Jingyu; Neogi, Arup

    Nonlinear optical (NLO) response of low dimensional emitters is of current interest because of the need for active elements in photonic applications. NLO effects in a selectively grown array of semi-polar GaN microcavity structures offer a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. Localized spatial excitation of a single hexagonal GaN microcavity with semipolar facets formed by selective area growth was optimized for nonlinear optical light generation due to second harmonic generation (SHG) and multi-photon luminescence(MPL). Multi-photon transition induced by tightly focused femtosecond NIR incident field results in ultra-violet and yellow luminescence for excitations above and below half bandgap energy, whereas SHG was observed for below half bandgap energy. We show that color and coherence of the light generation from the emitter can be controlled by selective onset of the nonlinear process which depends not only on the incident laser energy and intensity but also on the geometry of the microcavity. Quasi-WGM like modes were observed for off-resonant excitations from the GaN microcavity resulting in enhanced SHG. The directionality of MPL and SHG will be presented as a function of the pump polarization.

  11. Hydroxyalkylation with cyclic sulfates: synthesis of carbazole derived CB(2) ligands with increased polarity.

    PubMed

    Lueg, Corinna; Galla, Fabian; Frehland, Bastian; Schepmann, Dirk; Daniliuc, Constantin G; Deuther-Conrad, Winnie; Brust, Peter; Wünsch, Bernhard

    2014-01-01

    In order to increase the polarity of the potent CB2 ligand 1a, the homologous hydroxyalkyl carbazoles 2a-c were prepared and pharmacologically evaluated. An important step in the synthesis is the hydroxyalkylation of carbazole with cyclic sulfates providing the 2-hydroxyethyl and 3-hydroxypropyl derivatives 5a and 5b in a one-step reaction. The final propionamides 2a-c were prepared using the recently reported coupling reagent COMU®. The X-ray crystal structure of 2c displays an almost coplanar arrangement of the 3-phenyl-1,2,4-oxadiazole biaryl system. The increased polarity of 2a is associated with an almost 100-fold reduced CB2 affinity. The 3-hydroxypropyl derivative 2b represents the best compromise between lipophilicity and CB2 affinity (Ki  = 33 nM). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    DOE PAGES

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; ...

    2015-08-20

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less

  13. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less

  14. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  15. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  16. Shielding in ungated field emitter arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less

  17. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  18. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  19. Calix[3]carbazole: A C3-symmetrical receptor for barium ion

    NASA Astrophysics Data System (ADS)

    Yang, Zhaozheng; Tian, Zhangmin; Yang, Peng; Deng, Tuo; Li, Gang; Zhou, Xue; Chen, Yan; Zhao, Liang; Shen, Hongyan

    2017-03-01

    The binding ability of calix[3]carbazole (1) to metal ions has been investigated. It is found that 1 could serve as a non crown ether based, C3-symmetrical receptor for Ba2 + via the marriage of cation-π and cation-dipole interactions. FID assay further illustrates that 1 could selectively interact with Ba2 + over Pd2 +. A possible binding mechanism for [1-Ba2 +] complex is proposed.

  20. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  2. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  3. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  4. Conformationally-restricted bicarbazoles with phenylene bridges displaying deep-blue emission and high triplet energies: systematic structure-property relationships.

    PubMed

    Wright, Iain A; Al-Attar, Hameed A; Batsanov, Andrei S; Monkman, Andrew P; Bryce, Martin R

    2018-05-07

    The synthesis is reported of twelve new symmetrical carbazole dimers in which the carbazole units are linked via 1,4-phenylene spacers. There are two distinct series of compounds based on the position on the carbazole ring where the phenylene spacer is attached: this is either at carbazole C(3) (series 1a-1f) or at C(2) (series 2a-2f). The central phenylene ring is substituted with either two methyl, two methoxy or two cyano substituents which impart an intramolecular torsional angle between the phenylene and carbazole rings, thereby limiting the extent of π-conjugation between the carbazole units, and raising the triplet energies of the molecules to E T 2.6-3.0 eV, as determined from their phosphorescence spectra at 80 K. Structure-property relationships were studied by UV-vis and fluorescence spectroscopy, cyclic voltammetry and theoretical calculations. A notable observation is that substitution at the 2-position of carbazole (linear conjugation) exerts control over the position of the HOMO, while substitution at the 3-position of carbazole (meta conjugation) allows greater control over the LUMO. X-ray crystal structures are reported for two of the bicarbazoles. Compound 2d is shown to be a suitable host for the sky-blue emitter FIrpic in PhOLEDs, with improved device performance compared to CBP as host.

  5. 75 FR 34699 - Carbazole Violet Pigment 23 from India: Rescission of Countervailing Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... from India: Rescission of Countervailing Duty Administrative Review AGENCY: Import Administration... review of the countervailing duty order on Carbazole Violet Pigment 23(CVP-23) from India. See... Pigments requesting an administrative review of the countervailing duty order on CVP-23 from India for the...

  6. Bis(carbazol-9-ylphenyl)aniline end-capped oligoarylenes as solution-processed nondoped emitters for full-emission color tuning organic light-emitting diodes.

    PubMed

    Khanasa, Tanika; Prachumrak, Narid; Rattanawan, Rattanawaree; Jungsuttiwong, Siriporn; Keawin, Tinnagon; Sudyoadsuk, Taweesak; Tuntulani, Thawatchai; Promarak, Vinich

    2013-07-05

    A series of bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline end-capped oligoarylenes, BCPA-Ars, are synthesized by double palladium-catalyzed cross-coupling reactions. By using this bis(carbazol-9-yl)triphenylamine moiety as an end-cap, we are able to reduce the crystallization and retain the high-emission ability of these planar fluorescent oligoarylene cores in the solid state, as well as improve the amorphous stability and solubility of the materials. The results of optical and electrochemical studies show that their HOMOs, LUMOs, and energy gaps can be easily modified or fine-tuned by either varying the degree of π-conjugation or using electron affinities of the aryl cores which include fluorene, oligothiophenes, 2,1,3-benzothiadiazole, 4,7-diphenyl-4-yl-2,1,3-benzothiadiazole, and 4,7-dithien-2-yl-2,1,3-benzothiadiazole. As a result, their emission spectra measured in solution and thin films can cover the full UV-vis spectrum (426-644 nm). Remarkably, solution-processed nondoped BCPA-Ars-based OLEDs could show moderate to excellent device performance with emission colors spanning the whole visible spectrum (deep blue to red). Particularly, the RGB (red, green, blue) OLEDs exhibit good color purity close to the pure RGB colors. This report offers a practical approach for both decorating the highly efficient but planar fluorophores and tuning their emission colors to be suitable for applications in nondoped and solution-processable full-color emission OLEDs.

  7. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  8. A light-up probe targeting for Bcl-2 2345 G-quadruplex DNA with carbazole TO

    NASA Astrophysics Data System (ADS)

    Gu, Yingchun; Lin, Dayong; Tang, Yalin; Fei, Xuening; Wang, Cuihong; Zhang, Baolian; Zhou, Jianguo

    2018-02-01

    As its significant role, the selective recognition of G-quadruplex with specific structures and functions is important in biological and medicinal chemistry. Carbazole derivatives have been reported as a kind of fluorescent probe with many excellent optical properties. In the present study, the fluorescence of the dye (carbazole TO) increased almost 70 fold in the presence of bcl-2 2345 G4 compared to that alone in aqueous buffer condition with almost no fluorescence and 10-30 fold than those in the presence of other DNAs. The binding study results by activity inhibition of G4/Hemin peroxidase experiment, NMR titration and molecular docking simulation showed the high affinity and selectivity to bcl-2 2345 G4 arises from its end-stacking interaction with G-quartet. It is said that a facile approach with excellent sensitive, good selectivity and quick response for bcl-2 2345 G-quadruplex was developed and may be used for antitumor recognition or antitumor agents.

  9. Yellow Fever

    MedlinePlus

    ... Testing Vaccine Information Testing for Vaccine Adverse Events Yellow fever Vaccine Continuing Education Course Yellow Fever Home Prevention Vaccine Vaccine Recommendations Reactions to Yellow Fever Vacine Yellow Fever Vaccine, Pregnancy, & ... Transmission Symptoms, Diagnosis, & Treatment Maps Africa ...

  10. NLO properties of ester containing fluorescent carbazole based styryl dyes - Consolidated spectroscopic and DFT approach

    NASA Astrophysics Data System (ADS)

    Rajeshirke, Manali; Sekar, Nagaiyan

    2018-02-01

    The linear and nonlinear optical (NLO) properties of new fluorescent styryl dyes based on anchoring ester containing carbazole as donor appended to different acceptor groups to have a conjugated π-system with push-pull geometry are studied. The NLO properties have been determined using solvatochromic and computational methods. Three different TD-DFT functional are used namely, B3LYP, BHandHLYP, and CAM-B3LYP, with aim of elucidating better functional for NLOphores. Further, the two photon properties (σ2PA) have been described theoretically by two level model considering the dipole moment difference between the ground and the final electronic states and bypassing the intermediated resonance state. The compounds with a high charge transfer from the acceptor group to the carbazole ring have relatively high two-photon absorption cross-sections (60-317 GM). The linear polarizability (αCT), first order hyperpolarizability (β) and second order hyperpolarizability (ɣ) for 4c dye was the highest among the studied dyes which is attributed to the lesser energy gap evident by both the methods. But in contrary, the σ2PA cross-section value was low for dye 4c which is due to the presence of freely rotatable twisted phenyl ring in the conjugation path, pulling the electron density towards itself and thus lead to decrease in σ2PA cross-section. Structure-property relationship is better understood by the correlation of bond length alternation/bond order alternation (BLA/BOA) with NLO properties of dyes. Thus by simple solvatochromic method and computational method, we have screened the carbazole styryls as NLO candidates with good first order hyperpolarizability and good two photon cross-section.

  11. Phase I metabolism of the carbazole derived synthetic cannabinoids EG-018, EG-2201 and MDMB-CHMCZCA and detection in human urine samples.

    PubMed

    Mogler, Lukas; Franz, Florian; Wilde, Maurice; Huppertz, Laura M; Halter, Sebastian; Angerer, Verena; Moosmann, Bjoern; Auwärter, Volker

    2018-05-04

    Synthetic cannabinoids (SCs) are a structurally diverse class of new psychoactive substances. Most SCs used for recreational purposes are based on indole or indazole core structures. EG-018 (naphthalen-1-yl(9-pentyl-9H-carbazol-3-yl)methanone), EG-2201 ((9-(5-fluoropentyl)-9H-carbazol-3-yl)(naphthalen-1-yl)methanone) and MDMB-CHMCZCA (methyl 2-(9-(cyclohexylmethyl)-9H-carbazole-3-carboxamido)-3,3-dimethylbutanoate) are three representatives of a structural subclass of SCs, characterized by a carbazole core system. In vitro and in vivo phase I metabolism studies were conducted to identify the most suitable metabolites for the detection of these substances in urine screening. Detection and characterization of metabolites were performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-QToF-MS). Eleven in vivo metabolites were detected in urine samples positive for metabolites of EG-018 (n=8). A hydroxypentyl metabolite, most probably the 4-hydroxypentyl isomer, and an N-dealkylated metabolite mono-hydroxylated at the carbazole core system were most abundant. In vitro studies of EG-018 and EG-2201 indicated that oxidative defluorination of the 5-fluoropentyl side chain of EG-2201 as well as dealkylation led to common metabolites with EG-018. This has to be taken into account for interpretation of analytical findings. A differentiation between EG-018 and EG-2201 (n=1) uptake is possible by the detection of compound-specific in vivo phase I metabolites evaluated in this study. Out of 30 metabolites detected in urine samples of MDMB-CHMCZCA users (n=20), one metabolite mono-hydroxylated at the cyclohexyl methyl tail is considered the most suitable compound-specific consumption marker while a biotransformation product of mono-hydroxylation in combination with hydrolysis of the terminal methyl ester function provides best sensitivity

  12. Emitter location errors in electronic recognition system

    NASA Astrophysics Data System (ADS)

    Matuszewski, Jan; Dikta, Anna

    2017-04-01

    The paper describes some of the problems associated with emitter location calculations. This aspect is the most important part of the series of tasks in the electronic recognition systems. The basic tasks include: detection of emission of electromagnetic signals, tracking (determining the direction of emitter sources), signal analysis in order to classify different emitter types and the identification of the sources of emission of the same type. The paper presents a brief description of the main methods of emitter localization and the basic mathematical formulae for calculating their location. The errors' estimation has been made to determine the emitter location for three different methods and different scenarios of emitters and direction finding (DF) sensors deployment in the electromagnetic environment. The emitter has been established using a special computer program. On the basis of extensive numerical calculations, the evaluation of precise emitter location in the recognition systems for different configuration alignment of bearing devices and emitter was conducted. The calculations which have been made based on the simulated data for different methods of location are presented in the figures and respective tables. The obtained results demonstrate that calculation of the precise emitter location depends on: the number of DF sensors, the distances between emitter and DF sensors, their mutual location in the reconnaissance area and bearing errors. The precise emitter location varies depending on the number of obtained bearings. The higher the number of bearings, the better the accuracy of calculated emitter location in spite of relatively high bearing errors for each DF sensor.

  13. Emitter utilization in heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Quach, T.; Jenkins, T.; Barrette, J.; Bozada, C.; Cerny, C.; Desalvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Havasy, C.; Ito, C.; Nakano, K.; Pettiford, C.; Sewell, J.; Via, D.; Anholt, R.

    1997-09-01

    We compare measured collector current densities, cutoff frequencies ( ft), and transducer gains for thermally shunted heterojunction bipolar transistors with 2-16 μm emitter dot diameters or 2-8 μm emitter bar widths with models of the emitter utilization factors. Models that do not take emitter resistance into account predict that the d.c. utilization factors are below 0.7 for collector current densities greater than 6 × 10 4 A cm -2 and emitter diameters or widths greater than 8 μm. However, because the current gains are compressed by the emitter resistances at those current densities, the measured utilization factors are close to 1, which agrees with models that include emitter resistance. A.c. utilization factors are evident in the transistor Y parameters. For example, Re|Y 21z.sfnc drops off at high frequencies more steeply in HBTs with large emitter diameters or widths than in small ones. However, measured data shows that the HBT a.c. current gains h21 or ft values are not influenced by the a.c. utilization factor. A.c. utilization effects on HBT performance parameters such as small signal and power gains, output power, and power added efficiency are also examined.

  14. Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.

    1995-08-01

    Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.

  15. Portable emittance measurement device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakin, D.; Seleznev, D.; Orlov, A.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  16. Charge transport properties of carbazole dendrimers in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mutkins, Karyn; Chen, Simon S. Y.; Aljada, Muhsen; Powell, Ben J.; Olsen, Seth; Burn, Paul L.; Meredith, Paul

    2011-10-01

    We report three generations of p-type dendrimer semiconductors comprised of spirobifluorene cores, carbazole branching units and fluorene surface groups for use in organic field-effect transistors (OFETs). The group of dendrimers are defined by their generation and noted as SBF-(Gx)2, where x is the generation. Top contact-bottom gate OFETs were fabricated by spin-coating the dendrimers onto an n-octyltrichlorosilane (OTS) passivated silicon dioxide surface. The dendrimer films were found to be amorphous. The highest mobility was measured for the first generation dendrimer (SBF-(G1)2), which had an average mobility of (6.6 +/- 0.2) × 10-5 cm2/V s and an ON/OFF ratio of 3.0 × 104. As the generation of the dendrimer was increased there was only a slight decrease in the measured mobility in spite of the significantly different molecular sizes of the dendrimers. The mobility of SBF-(G3)2, which had a hydrodynamic radius almost twice of SBF-(G1)2, still had an average mobility of (4.7 +/- 0.6) × 10-5 cm2/V s and an ON/OFF ratio of 2.7 × 103. Density functional theory calculations showed that the highest occupied molecular orbital was distributed over the core and carbazole units meaning that both intra- and intermolecular charge transfer could occur enabling the hole mobility to remain essentially constant even though the dendrimers would pack differently in the solid-state.

  17. ALMA deep field in SSA22: Blindly detected CO emitters and [C II] emitter candidates

    NASA Astrophysics Data System (ADS)

    Hayatsu, Natsuki H.; Matsuda, Yuichi; Umehata, Hideki; Yoshida, Naoki; Smail, Ian; Swinbank, A. Mark; Ivison, Rob; Kohno, Kotaro; Tamura, Yoichi; Kubo, Mariko; Iono, Daisuke; Hatsukade, Bunyo; Nakanishi, Kouichiro; Kawabe, Ryohei; Nagao, Tohru; Inoue, Akio K.; Takeuchi, Tsutomu T.; Lee, Minju; Ao, Yiping; Fujimoto, Seiji; Izumi, Takuma; Yamaguchi, Yuki; Ikarashi, Soh; Yamada, Toru

    2017-06-01

    We report the identification of four millimeter line-emitting galaxies with the Atacama Large Milli/submillimeter Array (ALMA) in SSA22 Field (ADF22). We analyze the ALMA 1.1-mm survey data, with an effective survey area of 5 arcmin2, frequency ranges of 253.1-256.8 and 269.1-272.8 GHz, angular resolution of 0{^''.}7 and rms noise of 0.8 mJy beam-1 at 36 km s-1 velocity resolution. We detect four line-emitter candidates with significance levels above 6σ. We identify one of the four sources as a CO(9-8) emitter at z = 3.1 in a member of the proto-cluster known in this field. Another line emitter with an optical counterpart is likely a CO(4-3) emitter at z = 0.7. The other two sources without any millimeter continuum or optical/near-infrared counterpart are likely to be [C II] emitter candidates at z = 6.0 and 6.5. The equivalent widths of the [C II] candidates are consistent with those of confirmed high-redshift [C II] emitters and candidates, and are a factor of 10 times larger than that of the CO(9-8) emitter detected in this search. The [C II] luminosity of the candidates are 4-7 × 108 L⊙. The star formation rates (SFRs) of these sources are estimated to be 10-20 M⊙ yr-1 if we adopt an empirical [C II] luminosity-SFR relation. One of them has a relatively low S/N ratio, but shows features characteristic of emission lines. Assuming that at least one of the two candidates is a [C II] emitter, we derive a lower limit of [C II]-based star formation rate density (SFRD) at z ˜ 6. The resulting value of >10-2 M⊙ yr-1 Mpc-3 is consistent with the dust-uncorrected UV-based SFRD. Future millimeter/submillimeter surveys can be used to detect a number of high-redshift line emitters, with which to study the star formation history in the early universe.

  18. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  19. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells.

    PubMed

    Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung

    2015-07-01

    P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

  20. Determination and error analysis of emittance and spectral emittance measurements by remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kumar, R.

    1977-01-01

    The author has identified the following significant results. From the theory of remote sensing of surface temperatures, an equation of the upper bound of absolute error of emittance was determined. It showed that the absolute error decreased with an increase in contact temperature, whereas, it increased with an increase in environmental integrated radiant flux density. Change in emittance had little effect on the absolute error. A plot of the difference between temperature and band radiance temperature vs. emittance was provided for the wavelength intervals: 4.5 to 5.5 microns, 8 to 13.5 microns, and 10.2 to 12.5 microns.

  1. Low emittance electron storage rings

    NASA Astrophysics Data System (ADS)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  2. Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties.

    PubMed

    Li, Hong-Yan; Wu, Jing; Zhou, Xin-Hui; Kang, Ling-Chen; Li, Dong-Ping; Sui, Yan; Zhou, Yong-Hui; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng

    2009-12-21

    Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

  3. Aminopropyl carbazole analogues as potent enhancers of neurogenesis.

    PubMed

    Yoon, Hye Jin; Kong, Sun-Young; Park, Min-Hye; Cho, Yongsung; Kim, Sung-Eun; Shin, Jae-Yeon; Jung, Sunghye; Lee, Jiyoun; Farhanullah; Kim, Hyun-Jung; Lee, Jeewoo

    2013-11-15

    Neural stem cells are multipotent and self-renewing cells that can differentiate into new neurons and hold great promise for treating various neurological disorders including multiple sclerosis, Parkinson's disease, and Alzheimer's disease. Small molecules that can trigger neurogenesis and neuroprotection are particularly useful not only because of their therapeutic implications but also because they can provide an invaluable tool to study the mechanisms of neurogenesis. In this report, we have developed and screened 25 aminopropyl carbazole derivatives that can enhance neurogenesis of cultured neural stem cells. Among these analogues, compound 9 demonstrated an excellent proneurogenic and neuroprotective activity with no apparent toxicity. We believe that compound 9 can serve as an excellent lead to develop various analogues and to study the underlying mechanisms of neurogenesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 75 FR 36630 - Carbazole Violet Pigment 23 from the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... from the People's Republic of China: Final Results of Antidumping Duty Administrative Review AGENCY... the People's Republic of China (PRC). See Carbazole Violet Pigment 23 From the People's Republic of... (December 29, 2009) (Preliminary Results). This administrative review covers one exporter of the subject...

  5. Use of probabilistic neural networks for emitter correlation

    NASA Astrophysics Data System (ADS)

    Maloney, P. S.

    1990-08-01

    The Probabilistic Neural Network (PNN) as described by Specht''3 has been successfully applied to a number of emitter correlation problems involving operational data for training and testing of the neural net work. The PNN has been found to be a reliable classification tool for determining emitter type or even identifying specific emitter platforms given appropriate representative data sets for training con sisting only of parametric data from electronic intelligence (ELINT) reports. Four separate feasibility studies have been conducted to prove the usefulness of PNN in this application area: . Hull-to-emitter correlation (HULTEC) for identification of seagoing emitter platforms . Identification of landbased emitters from airborne sensors . Pulse sorting according to emitter of origin . Emitter typing based on a dynamically learning neural network. 1 .

  6. Efficient CO 2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiang; Mahurin, Shannon M.; An, Shu-Hao

    2014-05-02

    We synthesized a porous triazine and carbazole bifunctionalized task-specific polymer using a facile Friedel–Crafts reaction. We found that the resultant porous framework exhibited excellent CO 2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO 2 over N 2.

  7. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  8. Crystallization and preliminary X-ray diffraction studies of the ferredoxin reductase component in the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashikawa, Yuji; Uchimura, Hiromasa; Fujimoto, Zui

    2007-06-01

    The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution. Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P4{sub 2}2{sub 1}2, with unit-cell parameters amore » = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.« less

  9. Diamond-based single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Su, C.-H.; Greentree, A. D.; Prawer, S.

    2011-07-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information—thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  10. [Yellow fever].

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio

    2007-06-01

    After the discovery of the New World, yellow fever proved to be an important risk factor of morbidity and mortality for Caribbean populations. In the following centuries epidemic risk, expanded by sea trade and travel, progressively reached the settlements in North America and Brazil as well as the Atlantic seaboard of tropical and equatorial Africa. In the eighteenth century and the first half of the nineteenth century epidemics of yellow fever were reported in some coastal towns in the Iberian peninsula, French coast, Great Britain and Italy, where, in 1804 at Leghorn, only one epidemic was documented. Prevention and control programs against yellow fever, developed at the beginning of the twentieth century in Cuba and in Panama, were a major breakthrough in understanding definitively its aetiology and pathogenesis. Subsequently, further advances in knowledge of yellow fever epidemiology were obtained when French scientists, working in West and Central Africa, showed that monkeys were major hosts of the yellow fever virus (the wild yellow fever virus), besides man. In addition, advances in research, contributing to the development of vaccines against the yellow fever virus in the first half of the nineteenth century, are reported in this paper.

  11. Two competing ionization processes in electrospray mass spectrometry of indolyl benzo[b]carbazoles: formation of M⁺• versus [M + H]⁺.

    PubMed

    Zhang, Xiaoping; Jiang, Kezhi; Zou, Jingfeng; Li, Zuguang

    2015-02-15

    Ionization in electrospray ionization mass spectrometry (ESI-MS) mainly occurs as a result of acid-base reactions or coordination with metal cations. Formation of the radical cation M(+•) in the ESI process has attracted our interest to perform further investigation. A series of indolyl benzo[b]carbazoles were investigated using a quadrupole ion trap mass spectrometer equipped with an ESI source or an atmospheric pressure chemical ionization (APCI) source in the positive-ion mode. Theoretical calculations were performed using the density functional theory (DFT) method at the B3LYP/6-31G(d) level. Both the radical ion M(+•) and the protonated molecule [M + H](+) were obtained by ESI-MS analysis of indolyl benzo[b]carbazoles, while only [M + H](+) was observed in the APCI-MS analysis. The relative intensities of M(+•) and [M + H](+) were significantly affected by several ESI operating parameters and the nature of the substituents. Formation of M(+•) and [M + H](+) was rationalized as two competing ionization processes in the ESI-MS analysis of indolyl benzo[b]carbazoles. Copyright © 2014 John Wiley & Sons, Ltd.

  12. 75 FR 23239 - Carbazole Violet Pigment 23 From India: Extension of Time Limit for Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... Register the preliminary results of the administrative review of the antidumping duty order on CVP 23 from... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23 From India: Extension of Time Limit for Final Results of Antidumping Duty Administrative Review AGENCY...

  13. 75 FR 25840 - Carbazole Violet Pigment 23 from the People's Republic of China: Extension of Time Limit for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce... Department) published the preliminary results of the administrative review of the antidumping duty order on...

  14. Crystal structure of 10-ethyl-7-(9-ethyl-9H-carbazol-3-yl)-10H-pheno-thia-zine-3-carbaldehyde.

    PubMed

    Mahalakshmi, Vairavan; Gouthaman, Siddan; Sugunalakshmi, Madurai; Bargavi, Srinivasan; Lakshmi, Srinivasakannan

    2017-05-01

    The title compound, C 29 H 24 N 2 OS, contains a pheno-thia-zine moiety linked to a planar carbazole unit (r.m.s. deviation = 0.029 Å) by a C-C single bond. The pheno-thia-zine moiety possesses a typical non-planar butterfly structure with a fold angle of 27.36 (9)° between the two benzene rings. The dihedral angle between the mean planes of the carbazole and pheno-thia-zine units is 27.28 (5)°. In the crystal, mol-ecules stack in pairs along the c -axis direction, linked by offset π-π inter-actions [inter-centroid distance = 3.797 (1) Å]. There are C-H⋯π inter-actions present linking these dimers to form a three-dimensional structure.

  15. Crystallization and preliminary X-ray diffraction studies of a novel ferredoxin involved in the dioxygenation of carbazole by Novosphingobium sp. KA1

    PubMed Central

    Umeda, Takashi; Katsuki, Junichi; Usami, Yusuke; Inoue, Kengo; Noguchi, Haruko; Fujimoto, Zui; Ashikawa, Yuji; Yamane, Hisakazu; Nojiri, Hideaki

    2008-01-01

    Novosphingobium sp. KA1 uses carbazole 1,9a-dioxygenase (CARDO) as the first dioxygenase in its carbazole-degradation pathway. The CARDO of KA1 contains a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. In contrast to the CARDO systems of other species, the ferredoxin component of KA1 is a putidaredoxin-type protein. This novel ferredoxin was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals belong to space group C2221 and diffraction data were collected to a resolution of 1.9 Å (the diffraction limit was 1.6 Å). PMID:18607094

  16. Observations on Mildew Susceptibility of Painted Surfaces in Tropical Chamber Exposure

    DTIC Science & Technology

    1983-12-01

    resins of iron oxide, red iron urea formaldehyde or oxide. blends of urea / melamine + modifiers, stabili- zers, wetting and sus- pension agents. MIL-E...type, modified or chromate yellow, molyb- with not less than 20% date orange, carbazole di- butylated melamine oxazine violet, yellow formaldehyde ...com- Pure short oil length Enamel, Modified Alkyd posed of cobalt, zinc, phthalic alkyd resin Camouflage, Lusterless and chromium oxides, and/ baking

  17. Chemical regeneration of emitter surface increases thermionic diode life

    NASA Technical Reports Server (NTRS)

    Breiteieser, R.

    1966-01-01

    Chemical regeneration of sublimated emitter electrode increases the operating efficiency and life of thermionic diodes. A gas which forms chemical compounds with the sublimated emitter material is introduced into the space between the emitter and the collector. The compounds migrate to the emitter where they decompose and redeposit the emitter material.

  18. Emitters of N-photon bundles

    PubMed Central

    Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.

    2014-01-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  19. Hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  20. Emittance measurements of the CLIO electron beam

    NASA Astrophysics Data System (ADS)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  1. Multinozzle emitter arrays for ultrahigh-throughput nanoelectrospray mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Mao, Pan; Wang, Hung-Ta

    The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a siliconmore » chip before the electrospray mass spectrometry analysis.« less

  2. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  3. Yellow fever.

    PubMed

    Monath, Thomas P; Vasconcelos, Pedro F C

    2015-03-01

    Yellow fever, a mosquito-borne flavivirus disease occurs in tropical areas of South America and Africa. It is a disease of major historical importance, but remains a threat to travelers to and residents of endemic areas despite the availability of an effective vaccine for nearly 70 years. An important aspect is the receptivity of many non-endemic areas to introduction and spread of yellow fever. This paper reviews the clinical aspects, pathogenesis, and epidemiology of yellow fever, with an emphasis on recent changes in the distribution and incidence of the disease. Recent knowledge about yellow fever 17D vaccine mechanism of action and safety are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Exciton-Induced Degradation of Carbazole-Based Host Materials and Its Role in the Electroluminescence Spectral Changes in Phosphorescent Organic Light Emitting Devices with Electrical Aging.

    PubMed

    Yu, Hyeonghwa; Zhang, Yingjie; Cho, Yong Joo; Aziz, Hany

    2017-04-26

    We investigate the origins of the long-wavelength bands that appear in the emission spectra of carbazole-based host materials and play a role in the electroluminescence (EL) spectral changes of phosphorescent organic light emitting devices (PhOLEDs) with electrical aging. 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) is used as a model carbazole host material and is studied using photoluminescence, EL, and atomic force microscopy measurements under various stress scenarios in both single and bilayer devices and in combination with various electron transport layer (ETL) materials. Results show that exciton-induced morphological aggregation of CBP is behind the appearance of those long-wavelength bands and that complexation between the aggregated CBP molecules and ETL molecules plays a role in this phenomenon. Comparisons between the effects of exciton and thermal stress suggest that exciton-induced aggregation may be limited to short-range molecular ordering or pairing (e.g., dimer or trimer species formation) versus longer-range ordering (crystallization) in the case of thermal stress. The findings provide new insights into exciton-induced degradation in wide band gap host materials and its role in limiting the stability of PhOLEDs.

  5. NSAID-derived γ-secretase modulation requires an acidic moiety on the carbazole scaffold.

    PubMed

    Zall, Andrea; Kieser, Daniel; Höttecke, Nicole; Naumann, Eva C; Thomaszewski, Binia; Schneider, Katrin; Steinbacher, Dirk T; Schubenel, Robert; Masur, Stefan; Baumann, Karlheinz; Schmidt, Boris

    2011-08-15

    Modulation of γ-secretase activity holds potential for the treatment of Alzheimer's disease. Most NSAID-derived γ-secretase modulators feature a carboxylic acid, which may impair blood-brain barrier permeation. The structure activity relationship of 33 carbazoles featuring diverse carboxylic acid isosteres or metabolic precursors thereof was established in a cellular amyloid secretion assay. The modulatory activity was observed for acidic moieties and metabolically labile esters only, which supports our hypothesis of an acid-lysine interaction to be relevant for this type of γ-secretase modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Crystallization and preliminary X-ray diffraction analyses of the redox-controlled complex of terminal oxygenase and ferredoxin components in the Rieske nonhaem iron oxygenase carbazole 1,9a-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuzawa, Jun; Aikawa, Hiroki; Umeda, Takashi

    2014-09-25

    A crystal was obtained of the complex between reduced terminal oxygenase and oxidized ferredoxin components of carbazole 1,9a-dioxygenase. The crystal belonged to space group P2{sub 1} and diffracted to 2.25 Å resolution. The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Å and belonged to space group P2{submore » 1}, with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å, α = γ = 90, β = 100.1°. The V{sub M} value is 2.85 Å{sup 3} Da{sup −1}, indicating a solvent content of 56.8%.« less

  7. Synthesis, photophysical, and electrochemical properties of wide band gap tetraphenylsilane-carbazole derivatives: Effect of the substitution position and naphthalene side chain

    NASA Astrophysics Data System (ADS)

    Ho, Kar Wei; Ariffin, A.

    2016-12-01

    Four tetraphenylsilane-carbazole derivatives with wide bandgaps (3.38-3.55 eV) were synthesized. The effects of the substitution position and of the presence of naphthalene groups on the photophysical, electrochemical and thermal properties were investigated. The derivatives exhibited maximum absorption peaks ranging from 293 to 304 nm and maximum emission peaks ranging from 347 to 386 nm. Changing the carbazole substitution position on the tetraphenylsilane did not significantly change the photophysical and electrochemical properties. However, p-substituted compounds exhibited higher glass transition temperatures than m-substituted compounds. Naphthalene groups with bulky structures had extended the conjugation lengths that red-shifted both the absorption and emission spectra. The LUMO level was decreased, which reduced the optical bandgap and triplet energy level. However, the naphthalene groups significantly improved the thermal stability by increasing the glass transition temperature of the compounds.

  8. Close proximity electrostatic effect from small clusters of emitters

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Fernando F.; de Assis, Thiago A.

    2017-10-01

    Using a numerical simulation based on the finite-element technique, this work investigates the field emission properties from clusters of a few emitters at close proximity, by analyzing the properties of the maximum local field enhancement factor (γm ) and the corresponding emission current. At short distances between the emitters, we show the existence of a nonintuitive behavior, which consists of the increasing of γm as the distance c between the emitters decreases. Here we investigate this phenomenon for clusters with 2, 3, 4 and 7 identical emitters and study the influence of the proximity effect in the emission current, considering the role of the aspect ratio of the individual emitters. Importantly, our results show that peripheral emitters with high aspect-ratios in large clusters can, in principle, significantly increase the emitted current as a consequence only of the close proximity electrostatic effect (CPEE). This phenomenon can be seen as a physical mechanism to produce self-oscillations of individual emitters. We discuss new insights for understanding the nature of self-oscillations in emitters based on the CPEE, including applications to nanometric oscillators.

  9. Sharpening of field emitter tips using high-energy ions

    DOEpatents

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  10. A comparative study of DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds

    NASA Astrophysics Data System (ADS)

    Zara, Zeenat; Iqbal, Javed; Ayub, Khurshid; Irfan, Muhammad; Mahmood, Athar; Khera, Rasheed Ahmad; Eliasson, Bertil

    2017-12-01

    A comparative study of UV/Visible spectra of carboline and carbazole derivatives was conducted by employing the Density Functional Theory (DFT) approach. In this study, the geometries of ground and excited states, excitation energy and absorption spectra were estimated by using seven different DFT functional; CAM-B3LYP, B3LYP, MPW1PW91, PBE, B3PW91, WB97XD and HSE06 with 6-31G basis set. Moreover, five different basis sets 3-21G, 6-31G, DGDZVP, DGTZVP and SDD were also investigated with the CAM-B3LYP and WB97XD functional to take out the best combination of functional and basis set. CAM-B3LYP/6-31G and WB97XD/DGDZVP combination were found to have closest agreement with the experimental values of β-carboline derivatives and carbazole derivatives, respectively. This study provided an insight about the electronic characteristics of the selected compounds and provided an effective tool for developing and designing the better UV absorber compounds.

  11. Emittance measurements of Space Shuttle orbiter reinforced carbon-carbon

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Bouslog, Stanley A.; Cunnington, George R., Jr.

    1992-01-01

    The spectral and total normal emittance of the Reinforced Carbon-Carbon (RCC) used on Space Shuttle nose cap and wing leading edges has been measured at room temperature and at surface temperatures of 1200 to 2100 K. These measurements were made on virgin and two flown RCC samples. Room temperature directional emittance data were also obtained and were used to determine the total hemispherical emittance of RCC as a function of temperature. Results of the total normal emittance for the virgin samples showed good agreement with the current RCC emittance design curve; however, the data from the flown samples showed an increase in the emittance at high temperature possibly due to exposure from flight environments.

  12. Generalized superradiant assembly for nanophotonic thermal emitters

    NASA Astrophysics Data System (ADS)

    Mallawaarachchi, Sudaraka; Gunapala, Sarath D.; Stockman, Mark I.; Premaratne, Malin

    2018-03-01

    Superradiance explains the collective enhancement of emission, observed when nanophotonic emitters are arranged within subwavelength proximity and perfect symmetry. Thermal superradiant emitter assemblies with variable photon far-field coupling rates are known to be capable of outperforming their conventional, nonsuperradiant counterparts. However, due to the inability to account for assemblies comprising emitters with various materials and dimensional configurations, existing thermal superradiant models are inadequate and incongruent. In this paper, a generalized thermal superradiant assembly for nanophotonic emitters is developed from first principles. Spectral analysis shows that not only does the proposed model outperform existing models in power delivery, but also portrays unforeseen and startling characteristics during emission. These electromagnetically induced transparency like (EIT-like) and superscattering-like characteristics are reported here for a superradiant assembly, and the effects escalate as the emitters become increasingly disparate. The fact that the EIT-like characteristics are in close agreement with a recent experimental observation involving the superradiant decay of qubits strongly bolsters the validity of the proposed model.

  13. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  14. Thermal emittance from ionization-induced trapping in plasma accelerators

    DOE PAGES

    Schroeder, C.  B.; Vay, J. -L.; Esarey, E.; ...

    2014-10-03

    The minimum obtainable transverse emittance (thermal emittance) of electron beams generated and trapped in plasma-based accelerators using laser ionization injection is examined. The initial transverse phase space distribution following ionization and passage through the laser is derived, and expressions for the normalized transverse beam emittance, both along and orthogonal to the laser polarization, are presented. Results are compared to particle-in-cell simulations. Ultralow emittance beams can be generated using laser ionization injection into plasma accelerators, and examples are presented showing normalized emittances on the order of tens of nm.

  15. A robust yellow-emitting metallophosphor with electron-injection/-transporting traits for highly efficient white organic light-emitting diodes.

    PubMed

    Zhou, Guijiang; Yang, Xiaolong; Wong, Wai-Yeung; Wang, Qi; Suo, Si; Ma, Dongge; Feng, Jikang; Wang, Lixiang

    2011-10-24

    With the aim of endowing triplet emitters in the development of organic light-emitting devices (OLEDs) with electron-injection/-transporting (EI/ET) features, the phenylsulfonyl moiety was introduced into the phenyl ring of a 2-phenylpyridine (Hppy) ligand and the yellow phosphorescent heteroleptic iridium(III) complex 1 was developed. It was shown that the SO(2)Ph unit could provide EI/ET character to 1, as indicated from both electrochemical and computational data. Complex 1 is a promising yellow-emitting material for both monochromatic OLEDs and white OLEDs (WOLEDs). The outstanding electronic traits associated with 1, coupled with careful device design, afforded very attractive electroluminescent performances for two-element WOLEDs, including a low turn-on voltage of less than 3.7 V, a maximum brightness of 48,000 cd m(-2), an external quantum efficiency of 13.0%, a luminance efficiency of 34.7 cd A(-1), and a power efficiency of 24.3 Lm W(-1). In addition, a good color rendering index (CRI) of about 74, a stable white color with a Commission Internationale de L'Eclairage (CIE(x,y)) variation of Δ(x, y) < ±(0.02, 0.02), and a correlated color temperature higher than 5130 K were obtained. These encouraging results indicate the potential of these WOLEDs as good candidates for warm indoor lighting sources, as well as the critical contribution of such key EI/ET properties to triplet emitters to advance new OLED research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  17. A benzindole substituted carbazole cyanine dye: a novel targeting fluorescent probe for parallel c-myc G-quadruplexes.

    PubMed

    Lin, Dayong; Fei, Xuening; Gu, Yingchun; Wang, Cuihong; Tang, Yalin; Li, Ran; Zhou, Jianguo

    2015-08-21

    Many organic ligands were synthesized to recognize G-quadruplexes. However, different kinds of G-quadruplexes (G4s) possess different structures and functions. Therefore, selective recognition of certain types of G4s is important for the study of G4s. In this paper, a novel cyanine dye, 3-(2-(4-vinylpyridine))-6-(2-((1-(4-sulfobutyl))-3,3-dimethyl-2-vinylbenz[e]indole)-9-ethyl-carbazole (9E PBIC), composed of benzindole and carbazole was designed and synthesised. The studies on UV-vis and fluorescence properties of the dye with different DNA forms showed that the dye exhibits almost no fluorescence under aqueous buffer conditions, but it increased over 100 fold in the presence of c-myc G4 and 10-30 fold in the presence of other G4s, while little in the presence of single/double-stranded DNA, indicating that it has excellent selectivity to c-myc 2345 G4. For the binding studies the dye is interacted with the c-myc 2345 G-quadruplex by using the end-stack binding model. It can be said that the dye is an excellent targeting fluorescent probe for c-myc G-quadruplexes.

  18. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  19. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes.

    PubMed Central

    Han, Qian; Fang, Jianmin; Ding, Haizhen; Johnson, Jody K; Christensen, Bruce M; Li, Jianyong

    2002-01-01

    This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway. Drosophila yellow -y gene and yellow -b, -c, -f and -f2 genes were expressed in an insect cell/baculovirus expression system and their corresponding recombinant proteins were screened for dopachrome-conversion enzyme activity. Among the yellow and yellow -related genes, the yellow -f and yellow -f2 genes were identified as the genes coding for Drosophila dopachrome-conversion enzyme based on the high activity of their recombinant proteins in catalysing the production of 5,6-dihydroxyindole from dopachrome. Both yellow-f and yellow-f2 are capable of mediating a decarboxylative structural rearrangement of dopachrome, as well as an isomerization/tautomerization of dopamine chrome and dopa methyl ester chrome. Northern hybridization revealed the transcription of yellow -f in larvae and pupae, but a high abundance of mRNA was observed in later larval and early pupal stages. In contrast, yellow-f2 transcripts were present at all stages, but high abundance of its mRNA was observed in later-stage pupae and adults. These data indicate that yellow-f and yellow-f2 complement each other during Drosophila development and that the yellow-f is involved in larval and pupal melanization, and yellow-f2 plays a major role in melanization reactions in Drosophila during later pupal and adult development. Results from this study provide the groundwork towards a better understanding of the physiological roles of the Drosophila yellow gene family. PMID:12164780

  20. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-01

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.

  1. A combined emitter threat assessment method based on ICW-RCM

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wang, Hongwei; Guo, Xiaotao; Wang, Yubing

    2017-08-01

    Considering that the tradition al emitter threat assessment methods are difficult to intuitively reflect the degree of target threaten and the deficiency of real-time and complexity, on the basis of radar chart method(RCM), an algorithm of emitter combined threat assessment based on ICW-RCM (improved combination weighting method, ICW) is proposed. The coarse sorting is integrated with fine sorting in emitter combined threat assessment, sequencing the emitter threat level roughly accordance to radar operation mode, and reducing task priority of the low-threat emitter; On the basis of ICW-RCM, sequencing the same radar operation mode emitter roughly, finally, obtain the results of emitter threat assessment through coarse and fine sorting. Simulation analyses show the correctness and effectiveness of this algorithm. Comparing with classical method of emitter threat assessment based on CW-RCM, the algorithm is visual in image and can work quickly with lower complexity.

  2. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  3. Fibrous selective emitter structures from sol-gel process

    NASA Astrophysics Data System (ADS)

    Chen, K. C.

    1999-03-01

    Selective emitters have the potential benefit of high efficiency due to the matching of emission spectra to the response of photovoltaic (PV) cells. Continuous uniform rare-earth oxide selective emitter fibers were successfully fabricated using a viscous solution made from metal organic precursors. Cylindrical- and planar configuration emitter structures were made by direct cross-winding or stacking of precursor fiber layers. The combustion and optical performance of the planar emitter structures were tested. The results indicates that both the designing of the fiber packing density and the thickness is critical for high photon and power output.

  4. Emittance Effects on Gain in $W$ -Band TWTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce Eric; Nichols, Kimberley E.; Shchegolkov, Dmitry Yu.

    We consider the main effects of beam emittance on W-band traveling-wave tube (TWT) performance and gain. Specifically, we consider a representative dielectric TWT structure with ~5 dB/cm of gain driven by a 5-A, 20-keV, sheet electron beam that is focused by a wiggler magnetic field. The normalized beam transverse emittance must be about 1 μm or lower to ensure that both the transport is stable and the gain is not degraded by the effective energy spread arising from the emittance. This emittance limit scales roughly inversely with frequency.

  5. Emittance Effects on Gain in $W$ -Band TWTs

    DOE PAGES

    Carlsten, Bruce Eric; Nichols, Kimberley E.; Shchegolkov, Dmitry Yu.; ...

    2016-10-20

    We consider the main effects of beam emittance on W-band traveling-wave tube (TWT) performance and gain. Specifically, we consider a representative dielectric TWT structure with ~5 dB/cm of gain driven by a 5-A, 20-keV, sheet electron beam that is focused by a wiggler magnetic field. The normalized beam transverse emittance must be about 1 μm or lower to ensure that both the transport is stable and the gain is not degraded by the effective energy spread arising from the emittance. This emittance limit scales roughly inversely with frequency.

  6. Polyethers containing 4-(carbazol-2-yl)-7-arylbenzo[c]-1,2,5-thiadiazole chromophores as solution processed materials for hole transporting layers of OLEDs

    NASA Astrophysics Data System (ADS)

    Krucaite, G.; Tavgeniene, D.; Xie, Z.; Lin, X.; Zhang, B.; Grigalevicius, S.

    2018-02-01

    Two polyethers containing electroactive pendent 4-(carbazol-2-yl)-7-arylbenzo[c]-1,2,5-thiadiazole moieties have been synthesized by the multi-step synthetic route. Full characterization of their structures is presented. The polymers represent derivatives of very high thermal stability with initial thermal degradation temperatures of 425 °C and 431 °C. Glass transition temperatures of the amorphous materials were also very high and reached values of 154 °C and 163 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of 5.84 eV and 5.93 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting material. An electroluminescent device containing hole-transporting layer (HTL) of the polymer with electroactive 4-carbazolyl-7-phenylbenzo[c]-1,2,5-thiadiazole moieties exhibited turn on voltage of 6.2 V, maximum photometric efficiency of 2.5 cd/A and maximum brightness exceeding 300 cd/m2. The device containing HTL of the polymer with 4-carbazolyl-7-(1-naphtyl)benzo[c]-1,2,5-thiadiazole moieties demonstrated turn on voltage of 5.2 V, maximum photometric efficiency of 1.6 cd/A and maximum brightness exceeding 1500 cd/m2. The efficiencies were about 30-90% higher than that of the device containing widely used hole transporting layers of poly(9-vinylcarbazole).

  7. Photon scattering from a system of multilevel quantum emitters. II. Application to emitters coupled to a one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.

    2018-04-01

    In a preceding paper we introduced a formalism to study the scattering of low-intensity fields from a system of multilevel emitters embedded in a three-dimensional (3 D ) dielectric medium. Here we show how this photon-scattering relation can be used to analyze the scattering of single photons and weak coherent states from any generic multilevel quantum emitter coupled to a one-dimensional (1 D ) waveguide. The reduction of the photon-scattering relation to 1 D waveguides provides a direct solution of the scattering problem involving low-intensity fields in the waveguide QED regime. To show how our formalism works, we consider examples of multilevel emitters and evaluate the transmitted and reflected field amplitude. Furthermore, we extend our study to include the dynamical response of the emitters for scattering of a weak coherent photon pulse. As our photon-scattering relation is based on the Heisenberg picture, it is quite useful for problems involving photodetection in the waveguide architecture. We show this by considering a specific problem of state generation by photodetection in a multilevel emitter, where our formalism exhibits its full potential. Since the considered emitters are generic, the 1 D results apply to a plethora of physical systems such as atoms, ions, quantum dots, superconducting qubits, and nitrogen-vacancy centers coupled to a 1 D waveguide or transmission line.

  8. All Solution-processed Stable White Quantum Dot Light-emitting Diodes with Hybrid ZnO@TiO2 as Blue Emitters

    PubMed Central

    Chen, Jing; Zhao, Dewei; Li, Chi; Xu, Feng; Lei, Wei; Sun, Litao; Nathan, Arokia; Sun, Xiao Wei

    2014-01-01

    White quantum dot light-emitting diodes (QD-LEDs) have been a promising candidate for high-efficiency and color-saturated displays. However, it is challenging to integrate various QD emitters into one device and also to obtain efficient blue QDs. Here, we report a simply solution-processed white QD-LED using a hybrid ZnO@TiO2 as electron injection layer and ZnCdSeS QD emitters. The white emission is obtained by integrating the yellow emission from QD emitters and the blue emission generated from hybrid ZnO@TiO2 layer. We show that the performance of white QD-LEDs can be adjusted by controlling the driving force for hole transport and electroluminescence recombination region via varying the thickness of hole transport layer. The device is demonstrated with a maximum luminance of 730 cd/m2 and power efficiency of 1.7 lm/W, exhibiting the Commission Internationale de l'Enclairage (CIE) coordinates of (0.33, 0.33). The unencapsulated white QD-LED has a long lifetime of 96 h at its initial luminance of 730 cd/m2, primarily due to the fact that the device with hybrid ZnO@TiO2 has low leakage current and is insensitive to the oxygen and the moisture. These results indicate that hybrid ZnO@TiO2 provides an alternate and effective approach to achieve high-performance white QD-LEDs and also other optoelectronic devices. PMID:24522341

  9. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  10. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  11. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  12. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  13. Non-blinking single-photon emitters in silica

    DOE PAGES

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; ...

    2016-02-19

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters,more » do not blink, and have photoluminescence lifetimes of a few nanoseconds. Furthermore, photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.« less

  14. Parallel nanomanufacturing via electrohydrodynamic jetting from microfabricated externally-fed emitter arrays

    NASA Astrophysics Data System (ADS)

    Ponce de Leon, Philip J.; Hill, Frances A.; Heubel, Eric V.; Velásquez-García, Luis F.

    2015-06-01

    We report the design, fabrication, and characterization of planar arrays of externally-fed silicon electrospinning emitters for high-throughput generation of polymer nanofibers. Arrays with as many as 225 emitters and with emitter density as large as 100 emitters cm-2 were characterized using a solution of dissolved PEO in water and ethanol. Devices with emitter density as high as 25 emitters cm-2 deposit uniform imprints comprising fibers with diameters on the order of a few hundred nanometers. Mass flux rates as high as 417 g hr-1 m-2 were measured, i.e., four times the reported production rate of the leading commercial free-surface electrospinning sources. Throughput increases with increasing array size at constant emitter density, suggesting the design can be scaled up with no loss of productivity. Devices with emitter density equal to 100 emitters cm-2 fail to generate fibers but uniformly generate electrosprayed droplets. For the arrays tested, the largest measured mass flux resulted from arrays with larger emitter separation operating at larger bias voltages, indicating the strong influence of electrical field enhancement on the performance of the devices. Incorporation of a ground electrode surrounding the array tips helps equalize the emitter field enhancement across the array as well as control the spread of the imprints over larger distances.

  15. Emittance measurements in low energy ion storage rings

    NASA Astrophysics Data System (ADS)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  16. Yellow fever: epidemiology and prevention.

    PubMed

    Barnett, Elizabeth D

    2007-03-15

    Yellow fever continues to occur in regions of Africa and South America, despite the availability of effective vaccines. Recently, some cases of severe neurologic disease and multiorgan system disease have been described in individuals who received yellow fever vaccine. These events have focused attention on the need to define criteria for judicious use of yellow fever vaccine and to describe the spectrum of adverse events that may be associated with yellow fever vaccine. Describing host factors that would increase risk of these events and identifying potential treatment modalities for yellow fever and yellow fever vaccine-associated adverse events are subjects of intense investigation.

  17. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.

    PubMed

    Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu

    2016-09-01

    NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.

  18. Field emission characteristics of a small number of carbon fiber emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim

    2016-09-01

    This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  19. Four new carbazole alkaloids from Murraya koenigii that display anti-inflammatory and anti-microbial activities.

    PubMed

    Nalli, Yedukondalu; Khajuria, Vidushi; Gupta, Shilpa; Arora, Palak; Riyaz-Ul-Hassan, Syed; Ahmed, Zabeer; Ali, Asif

    2016-03-28

    In our present study, four new, designated as murrayakonine A-D (), along with 18 known carbazole alkaloids were isolated from CHCl3 : MeOH (1 : 1) crude extracts of the stems and leaves of Murraya koenigii (Linn.) Spreng. The structures of the all isolated compounds were characterized by analysis of HR-ESI-MS and NMR (1D and 2D spectroscopy) results, and comparison of their data with the literature data. For the first time, all the isolates were evaluated for their anti-inflammatory activities, using both in vitro and in vivo experiments, against the key inflammatory mediators TNF-α and IL-6. The new compound murrayakonine A (), O-methylmurrayamine A () and mukolidine () were proven to be the most active, efficiently inhibiting TNF-α and IL-6 release in a dose-dependent manner and showing decreased LPS induced TNF-α and IL-6 production in human PBMCs. Furthermore, all the isolates were screened for their antimicrobial potential, and the compounds girinimbine () (IC50 3.4 μM) and 1-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-9H-carbazole-3-carbaldehyde () (IC50 10.9 μM) displayed potent inhibitory effects against Bacillus cereus. Furthermore, compounds murrayamine J () (IC50 11.7 μM) and koenimbine () (IC50 17.0 μM) were active against Staphylococcus aureus. However, none of the compounds were found to be active against Escherichia coli or Candida albicans.

  20. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity.

    PubMed

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-15

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    PubMed

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  2. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1998-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  3. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1999-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (.alpha.) and a high infrared emittance (.epsilon.), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an .alpha./.epsilon. ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  4. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  5. Examination of the Mechanism of Rh2(II)-Catalyzed Carbazole Formation Using Intramolecular Competition Experiments

    PubMed Central

    Stokes, Benjamin J.; Richert, Kathleen J.; Driver, Tom G.

    2009-01-01

    The use of a rhodium(II) carboxylate catalyst enables the mild and stereoselective formation of carbazoles from biaryl azides. Intramolecular competition experiments of triaryl azides suggested the source of the selectivity. A primary intramolecular kinetic isotope effect was not observed and correlation of the product ratios with Hammett σ+-values produced a plot with two intersecting lines with opposite ρ-values. These data suggest that electronic donation by the biaryl π-system accelerates the formation of rhodium nitrenoid and that C–N bond formation occurs through a 4π-electron-5-atom electrocyclization. PMID:19663433

  6. Emittance of TD-NiCr after simulated reentry

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Dicus, D. L.; Lisagor, W. B.

    1978-01-01

    The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides.

  7. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  8. Single-Photon Emitters in Boron Nitride Nanococoons.

    PubMed

    Ziegler, Joshua; Blaikie, Andrew; Fathalizadeh, Aidin; Miller, David; Yasin, Fehmi S; Williams, Kerisha; Mohrhardt, Jordan; McMorran, Benjamin J; Zettl, Alex; Alemán, Benjamín

    2018-04-11

    Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are attractive for a variety of quantum and photonic technologies because they combine ultra-bright, room-temperature single-photon emission with an atomically thin crystal. However, the emitter's prominence is hindered by large, strain-induced wavelength shifts. We report the discovery of a visible-wavelength, single-photon emitter (SPE) in a zero-dimensional boron nitride allotrope (the boron nitride nanococoon, BNNC) that retains the excellent optical characteristics of few-layer hBN while possessing an emission line variation that is lower by a factor of 5 than the hBN emitter. We determined the emission source to be the nanometer-size BNNC through the cross-correlation of optical confocal microscopy with high-resolution scanning and transmission electron microscopy. Altogether, this discovery enlivens color centers in BN materials and, because of the BN nanococoon's size, opens new and exciting opportunities in nanophotonics, quantum information, biological imaging, and nanoscale sensing.

  9. Theory and measurements of emittance preservation in plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederico, Joel

    2016-12-01

    In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditionsmore » necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.« less

  10. Emittance measurements in Grumman 1 MeV beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debiak, T.; Gammel, G.; Melnychuk, S.

    1992-12-01

    The emittance of a 30 keV H{sup {minus}} beam has been measured with an Allison type electrostatic analyser at two positions separated by 85 cm along the Grumman 1 MeV beamline LEBT at low currents (about 4 mA, no Cs{sub 2}O additive in the source) and at higher currents (10-15 mA, with Cs{sub 2}O additive in the source). No emittance growth was observed between the two positions, but, at the higher current level, the emittance was about 60% higher than at the low current level ({Sigma}{sub n},rms = .0045 {pi} cm-mrad vs. 0070 {pi} cm-mrad). Argon was then introduced upmore » to a partial pressure of 4x10{sup {minus}5} torr, and the emittance decreased back to a range corresponding to that found at the lower currents. However, beam noise was observed at the downstream position, and there is evidence for a small amount of emittance growth (<20%) between the two positions.« less

  11. Benchmarking of measurement and simulation of transverse rms-emittance growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Dong-O

    2008-01-01

    Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the measured 100%-rmsemittances behind themore » DTL exceed the simulated values. Comparing measured 90%-rms-emittances to the simulated 95%-rms-emittances gives fair to good agreement instead. The sum of horizontal and vertical emittances is even described well by the codes as long as experimental 90%-rmsemittances are compared to simulated 95%-rms-emittances. Finally, the successful reduction of transverse emittance growth by systematic beam matching is reported.« less

  12. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives.

    PubMed

    Beaupré, Serge; Boudreault, Pierre-Luc T; Leclerc, Mario

    2010-02-23

    World energy needs grow each year. To address global warming and climate changes the search for renewable energy sources with limited greenhouse gas emissions and the development of energy-efficient lighting devices are underway. This Review reports recent progress made in the synthesis and characterization of conjugated polymers based on bridged phenylenes, namely, poly(2,7-fluorene)s, poly(2,7-carbazole)s, and poly(2,7-dibenzosilole)s, for applications in solar cells and white-light-emitting diodes. The main strategies and remaining challenges in the development of reliable and low-cost renewable sources of energy and energy-saving lighting devices are discussed.

  13. Electromagnetic compatibility of implantable neurostimulators to RFID emitters.

    PubMed

    Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W; Witters, Donald M; Sponberg, Curt L

    2011-06-09

    The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters. Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz. The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters.

  14. Emitter/absorber interface of CdTe solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tao; Kanevce, Ana; Sites, James R.

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and leadmore » to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.« less

  15. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  16. Determination of the efficiency of commercially available dose calibrators for beta-emitters.

    PubMed

    Valley, Jean-François; Bulling, Shelley; Leresche, Michel; Wastiel, Claude

    2003-03-01

    The goals of this investigation are to determine whether commercially available dose calibrators can be used to measure the activity of beta-emitting radionuclides used in pain palliation and to establish whether manufacturer-supplied calibration factors are appropriate for this purpose. Six types of commercially available dose calibrators were studied. Dose calibrator response was controlled for 5 gamma-emitters used for calibration or typically encountered in routine use. For the 4 most commonly used beta-emitters ((32)P, (90)Sr, (90)Y, and (169)Er) dose calibrator efficiency was determined in the syringe geometry used for clinical applications. Efficiency of the calibrators was also measured for (153)Sm and (186)Re, 2 beta-emitters with significant gamma-contributions. Source activities were traceable to national standards. All calibrators measured gamma-emitters with a precision of +/-10%, in compliance with Swiss regulatory requirements. For beta-emitters, dose calibrator intrinsic efficiency depends strongly on the maximal energy of the beta-spectrum and is notably low for (169)Er. Manufacturer-supplied calibration factors give accurate results for beta-emitters with maximal beta-energy in the middle-energy range (1 MeV) but are not appropriate for use with low-energy ((169)Er) or high-energy ((90)Y) beta-emitters. beta-emitters with significant gamma-contributions behave like gamma-emitters. Commercially available dose calibrators have an intrinsic efficiency that is sufficient for the measurement of beta-emitters, including beta-emitters with a low maximum beta-energy. Manufacturer-supplied calibration factors are reliable for gamma-emitters and beta-emitters in the middle-energy range. For low- and high-energy beta-emitters, the use of manufacturer-supplied calibration factors introduces significant measurement inaccuracy.

  17. Peripheral halo-functionalization in [Cu(N^N)(P^P)]+ emitters: influence on the performances of light-emitting electrochemical cells.

    PubMed

    Brunner, Fabian; Martínez-Sarti, Laura; Keller, Sarah; Pertegás, Antonio; Prescimone, Alessandro; Constable, Edwin C; Bolink, Henk J; Housecroft, Catherine E

    2016-09-27

    A series of heteroleptic [Cu(N^N)(P^P)][PF 6 ] complexes is described in which P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyridine substituted in the 4-position of the phenyl groups with atom X (N^N = 1 has X = F, 2 has X = Cl, 3 has X = Br, 4 has X = I; the benchmark N^N ligand with X = H is 5). These complexes have been characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses and cyclic voltammetry; representative single crystal structures are also reported. The solution absorption spectra are characterized by high energy bands (arising from ligand-centred transitions) which are red-shifted on going from X = H to X = I, and a broad metal-to-ligand charge transfer band with λ max in the range 387-395 nm. The ten complexes are yellow emitters in solution and yellow or yellow-orange emitters in the solid-state. For a given N^N ligand, the solution photoluminescence (PL) spectra show no significant change on going from [Cu(N^N)(POP)] + to [Cu(N^N)(xantphos)] + ; introducing the iodo-functionality into the N^N domain leads to a red-shift in λ compared to the complexes with the benchmark N^N ligand 5. In the solid state, [Cu(1)(POP)][PF 6 ] and [Cu(1)(xantphos)][PF 6 ] (fluoro-substituent) exhibit the highest PL quantum yields (74 and 25%, respectively) with values of τ 1/2 = 11.1 and 5.8 μs, respectively. Light-emitting electrochemical cells (LECs) with [Cu(N^N)(P^P)][PF 6 ] complexes in the emissive layer have been tested. Using a block-wave pulsed current driving mode, the best performing device employed [Cu(1)(xantphos)] + and this showed a maximum luminance (Lum max ) of 129 cd m -2 and a device lifetime (t 1/2 ) of 54 h; however, the turn-on time (time to reach Lum max ) was 4.1 h. Trends in performance data reveal that the introduction of fluoro-groups is beneficial, but that the incorporation of heavier halo

  18. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    PubMed

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  19. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    PubMed

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar

  20. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  1. Electromagnetic compatibility of implantable neurostimulators to RFID emitters

    PubMed Central

    2011-01-01

    Background The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters. Methods Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz Results The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. Conclusions The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters. PMID:21658266

  2. Emittance of positron beams produced in intense laser plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Hui; Hazi, A.; Link, A.

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be usefulmore » as an alternative positron source for future accelerators.« less

  3. The yellow x paper birch hybrid--a potential substitute for yellow birch on problem sites

    Treesearch

    Knud E. Clausen

    1977-01-01

    Yellow x paper birch hybrids and yellow birches with common female parents were compared after 5 growing seasons in an open field. Survival of the hybrids was 91 percent compared with 64 percent for the yellow birch trees. The hybrids were from 25 to 32 percent taller than the yellow birches and had 19-40 percent greater diameter. Because this hybrid not only grows...

  4. High performance incandescent lighting using a selective emitter and nanophotonic filters

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-09-01

    Previous approaches for improving the efficiency of incandescent light bulbs (ILBs) have relied on tailoring the emitted spectrum using cold-side interference filters that reflect the infrared energy back to the emitter while transmitting the visible light. While this approach has, in theory, potential to surpass light-emitting diodes (LEDs) in terms of luminous efficiency while conserving the excellent color rendering index (CRI) inherent to ILBs, challenges such as low view factor between the emitter and filter, high emitter (>2800 K) and filter temperatures and emitter evaporation have significantly limited the maximum efficiency. In this work, we first analyze the effect of non-idealities in the cold-side filter, the emitter and the view factor on the luminous efficiency. Second, we theoretically and experimentally demonstrate that the loss in efficiency associated with low view factors can be minimized by using a selective emitter (e.g., high emissivity in the visible and low emissivity in the infrared) with a filter. Finally, we discuss the challenges in achieving a high performance and long-lasting incandescent light source including the emitter and filter thermal stability as well as emitter evaporation.

  5. Emittance formula for slits and pepper-pot measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.

  6. Indolo[3,2-a]carbazoles from a deep-water sponge of the genus Asteropus.

    PubMed

    Russell, Floyd; Harmody, Dedra; McCarthy, Peter J; Pomponi, Shirley A; Wright, Amy E

    2013-10-25

    Two new indolo[3,2-a]carbazoles (1, 2) were isolated from a deep-water collection of a sponge of the genus Asteropus. The structures of 1 and 2 were determined through the analysis of spectroscopic data including mass spectrometry and 2D-NMR. Compound 1 showed minimum inhibitory concentrations of 25 μg/mL against the fungal pathogen Candida albicans and 50 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 2 showed no cytotoxicity against the PANC1 human pancreatic carcinoma and NCI/ADR-RES ovarian adenocarcinoma cell lines at our standard test concentration of 5 μg/mL.

  7. Indolo[3,2-a]carbazoles from a Deep-Water Sponge of the Genus Asteropus

    PubMed Central

    2013-01-01

    Two new indolo[3,2-a]carbazoles (1, 2) were isolated from a deep-water collection of a sponge of the genus Asteropus. The structures of 1 and 2 were determined through the analysis of spectroscopic data including mass spectrometry and 2D-NMR. Compound 1 showed minimum inhibitory concentrations of 25 μg/mL against the fungal pathogen Candida albicans and 50 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 2 showed no cytotoxicity against the PANC1 human pancreatic carcinoma and NCI/ADR-RES ovarian adenocarcinoma cell lines at our standard test concentration of 5 μg/mL. PMID:24063539

  8. Bandgap narrowing and emitter efficiency in heavily doped emitter structures revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vliet, C.M.

    The developments of heavy doping effects and of bandgap narrowing concepts (BGN) during the last two decades are critically discussed. The differences between the real bandgap reduction [Delta]E[sub g] and the apparent electrical bandgap reduction [Delta]G are once more set forth, showing the precise meaning of the density-of-states and degeneracy contributions to [Delta]G. From these concepts, previously elaborated by Marshak and Van Vilet and by Lundstrom et al., the authors indicated before that for negligible recombination the minority-carrier emitter current (J[sub pe]) is given by a Merten-type result. In this paper they show that in the presence of surface andmore » (or) bulk recombination (Auger and SRH) the result of Selvakumar and Roulston is recovered; however, the electrical field in the emitter and the effective intrinsic density of carriers are not those used by these authors but, on the contrary, these quantities are given by the detailed expressions of their previous work.« less

  9. A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells.

    PubMed

    Gratia, Paul; Magomedov, Artiom; Malinauskas, Tadas; Daskeviciene, Maryte; Abate, Antonio; Ahmad, Shahzada; Grätzel, Michael; Getautis, Vytautas; Nazeeruddin, Mohammad Khaja

    2015-09-21

    The small-molecule-based hole-transporting material methoxydiphenylamine-substituted carbazole was synthesized and incorporated into a CH3NH3PbI3 perovskite solar cell, which displayed a power conversion efficiency of 16.91%, the second highest conversion efficiency after that of Spiro-OMeTAD. The investigated hole-transporting material was synthesized in two steps from commercially available and relatively inexpensive starting reagents. Various electro-optical measurements (UV/Vis, IV, thin-film conductivity, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole-transporting material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A.

    Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surfacemore » that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.« less

  11. Flesh color inheritance and gene interactions among canary yellow, pale yellow and red watermelon

    USDA-ARS?s Scientific Manuscript database

    Two loci, C and i-C were previously reported to determine flesh color between canary yellow and red watermelon. Recently LCYB was found as a color determinant gene for canary yellow (C) and co-dominant CAPS marker was developed to identify canary yellow and red alleles. Another report suggested th...

  12. Beet yellow stunt

    USDA-ARS?s Scientific Manuscript database

    Beet yellow stunt virus (BYSV) is a potentially destructive yellows-type virus affecting plants in the family Asteraceae. The virus is a member of the genus Closterovirus, family Closteroviridae, and has been found in California and England. Initial symptoms consist of chlorosis of the older leaves,...

  13. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  14. Determining Directional Emittance With An Infrared Imager

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E., Jr.; Puram, Chith K.

    1994-01-01

    Directional emittances of flat specimen of smooth-surfaced, electrically nonconductive material at various temperatures computed from measurements taken by infrared radiometric imager operating in conjunction with simple ancillary equipment. Directional emittances useful in extracting detailed variations of surface temperatures from infrared images of curved, complexly shaped other specimens of same material. Advantages: simplification of measurement procedure and reduction of cost.

  15. Remote detection of single emitters via optical waveguides

    NASA Astrophysics Data System (ADS)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  16. Emittance and lifetime measurement with damping wigglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less

  17. Selective solar absorber emittance measurement at elevated temperature

    NASA Astrophysics Data System (ADS)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  18. Strong coupling of collection of emitters on hyperbolic meta-material

    NASA Astrophysics Data System (ADS)

    Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.

    2018-04-01

    Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.

  19. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  20. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  1. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    NASA Astrophysics Data System (ADS)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material

  2. Emission Testing Results of Thermally Stable, Metamaterial, Selective-Emitters for Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Levinson, Katherine; Naka, Norihito; Pfiester, Nicole; Licht, Abigail; Vandervelde, Tom

    2015-03-01

    In thermophotovoltaics, the energy from a heated emitter is converted to electricity by a photovoltaic diode. A selective emitter can be used to emit a narrow band of wavelengths tailored to the bandgap of the photovoltaic diode. This spectral shaping improves the conversion efficiency of the diode and reduces undesirable diode heating. In our research, we study selective emitters based on metamaterials composed of repeating nanoscale structures. The emission characteristics of these materials vary based on the compositional structure, allowing the emitted spectrum to be tunable. Simulations were performed with CST Microwave Studio to design emitters with peak wavelengths ranging from 1-10 microns. The structures were then fabricated using physical vapor deposition and electron beam lithography on a sapphire substrate. Emitter materials studied include gold, platinum, and iridium. Here we report on the emission spectra of the selective emitters and the post-heating structural integrity.

  3. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  4. Plasmonic thermal IR emitters based on nanoamorphous carbon

    NASA Astrophysics Data System (ADS)

    Tay, Savaş; Kropachev, Aleksandr; Araci, Ismail Emre; Skotheim, Terje; Norwood, Robert A.; Peyghambarian, N.

    2009-02-01

    The development of plasmonic narrow-band thermal mid-IR emitters made from a conducting amorphous carbon composite is shown. These IR emitters have greatly improved thermal and mechanical stability compared to metallic emitters as they can be operated at 600 °C in air without any degradation in performance. The emitted thermal radiation has a bandwidth of 0.5 μm and can be set to the desired wavelength from 3 to 15 μm by changing the surface periodicity. The periodically patterned devices have in-band emissivities significantly exceeding that of the non-patterned devices, constituting simple yet efficient radiation sources at this important wavelength range.

  5. Measured emittance dependence on injection method in laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Barber, Samuel; van Tilborg, Jeroen; Schroeder, Carl; Lehe, Remi; Tsai, Hai-En; Swanson, Kelly; Steinke, Sven; Nakamura, Kei; Geddes, Cameron; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    The success of many laser plasma accelerator (LPA) based applications relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot transverse emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock induced density down-ramp injection. Notably, the measurements reveal that ionization injection results in significantly higher emittance. With the down-ramp injection configuration, emittances less than 1 micron at spectral charge densities up to 2 pC/MeV were measured. This work was supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the NSF under Grant No. PHY-1415596, by the U.S. DOE NNSA, DNN R&D (NA22), and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.

  6. Emission current formation in plasma electron emitters

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. A.; Zalesski, V. G.

    2010-12-01

    A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.

  7. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  8. A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Ren, Bao-Yi; Guo, Run-Da; Zhong, Dao-Kun; Ou, Chang-Jin; Xiong, Gang; Zhao, Xiang-Hua; Sun, Ya-Guang; Jurow, Matthew; Kang, Jun; Zhao, Yi; Li, Sheng-Biao; You, Li-Xin; Wang, Lin-Wang; Liu, Yi; Huang, Wei

    2017-07-17

    To suppress concentration quenching and to improve charge-carrier injection/transport in the emission layer (EML) of phosphorescent organic light-emitting diodes (PhOLEDs), a facial homoleptic iridium(III) complex emitter with amorphous characteristics was designed and prepared in one step from a multifunctional spiro ligand containing spiro[fluorene-9,9'-xanthene] (SFX) unit. Single-crystal X-ray analysis of the resulting fac-Ir(SFXpy) 3 complex revealed an enlarged Ir···Ir distance and negligible intermolecular π-π interactions between the spiro ligands. The emitter exhibits yellow emission and almost equal energy levels compared to the commercial phosphor iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C 2 ')acetylacetonate (PO-01). Dry-processed devices using a common host, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, and the fac-Ir(SFXpy) 3 emitter at a doping concentration of 15 wt % exhibited a peak performance of 46.2 cd A -1 , 36.3 lm W -1 , and 12.1% for the current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. Compared to control devices using PO-01 as the dopant, the fac-Ir(SFXpy) 3 -based devices remained superior in the doping range between 8 and 15 wt %. The current densities went up with increasing doping concentration at the same driving voltage, while the roll-offs remain relatively low even at high doping levels. The superior performance of the new emitter-based devices was ascribed to key roles of the spiro ligand for suppressing aggregation and assisting charge-carrier injection/transport. Benefiting from the amorphous stability of the emitter, the wet-processed device also exhibited respectful CE, PE, and EQE of 32.2 cd A -1 , 22.1 lm W -1 , and 11.3%, respectively, while the EQE roll-off was as low as 1.7% at the luminance of 1000 cd m -2 . The three-dimensional geometry and binary-conjugation features render SFX the ideal multifunctional module for suppressing concentration quenching

  9. Insect enemies of yellow-poplar

    Treesearch

    Denver P. Burns; Denver P. Burns

    1970-01-01

    Yellow-poplar, like the other desirable hardwoods, is attacked by a variety of insects. However, only four species of insects are considered economically important: the tuliptree scale, the yellow-poplar weevil, the root-collar borer, and the Columbian timber beetle. These are native enemies of yellow-poplar (Liriodendvon tzllipifera L.) wherever the tree grows.

  10. A New Star-shaped Carbazole Derivative with Polyhedral Oligomeric Silsesquioxane Core: Crystal Structure and Unique Photoluminescence Property.

    PubMed

    Xu, Zixuan; Yu, Tianzhi; Zhao, Yuling; Zhang, Hui; Zhao, Guoyun; Li, Jianfeng; Chai, Lanqin

    2016-01-01

    A new inorganic–organic hybrid material based on polyhedral oligomeric silsesquioxane (POSS) capped with carbazolyl substituents, octakis[3-(carbazol-9-yl)propyldimethylsiloxy]-silsesquioxane (POSS-8Cz), was successfully synthesized and characterized. The X-ray crystal structure of POSS-8Cz were described. The photophysical properties of POSS-8Cz were investigated by using UV–vis,photoluminescence spectroscopic analysis. The hybrid material exhibits blue emission in the solution and the solid film.The morphology and thermal stablity properties were measured by X-ray diffraction (XRD) and TG-DTA analysis.

  11. Nanobubble induced formation of quantum emitters in monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Shepard, Gabriella D.; Ajayi, Obafunso A.; Li, Xiangzhi; Zhu, X.-Y.; Hone, James; Strauf, Stefan

    2017-06-01

    The recent discovery of exciton quantum emitters in transition metal dichalcogenides (TMDCs) has triggered renewed interest of localized excitons in low-dimensional systems. Open questions remain about the microscopic origin previously attributed to dopants and/or defects as well as strain potentials. Here we show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures. Correlations of atomic-force microscope and hyperspectral photoluminescence images reveal that the origin of quantum emitters and trion disorder is extrinsic and related to 10 nm tall nanobubbles and 70 nm tall wrinkles, respectively. We further demonstrate that ‘hot stamping’ results in the absence of 0D quantum emitters and trion disorder. The demonstrated technique is useful for advances in nanolasers and deterministic formation of cavity-QED systems in monolayer materials.

  12. Emittance Growth in the DARHT-II Linear Induction Accelerator

    DOE PAGES

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; ...

    2017-10-03

    The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less

  13. Emittance Growth in the DARHT-II Linear Induction Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.

    The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less

  14. Low Emittance Tuning Studies for SuperB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liuzzo, Simone; /INFN, Pisa; Biagini, Maria

    2012-07-06

    SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specifymore » the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.« less

  15. Field emitter displays for future avionics applications

    NASA Astrophysics Data System (ADS)

    Jones, Susan K.; Jones, Gary W.; Zimmerman, Steven M.; Blazejewski, Edward R.

    1995-06-01

    Field emitter array-based display technology offers CRT-like characteristics in a thin flat-panel display with many potential applications for vehicle-mounted, crew workstation, and helmet-mounted displays, as well as many other military and commercial applications. In addition to thinness, high brightness, wide viewing angle, wide temperature range, and low weight, field emitter array displays also offer potential advantages such as row-at-a-time matrix addressability and the ability to be segmented.

  16. Method of manufacturing a hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2017-02-07

    A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.

  17. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Qin; Gao, Zhi-Xiang; Zhang, Ai-Qin; Li, Yuan-Hao; Wang, Hua; Jia, Hu-Sheng; Liu, Xu-Guang; Tsuboi, Taijuf

    2015-05-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0927), the International Science & Technology Cooperation Program of China (Grant No. 2012DFR50460), the National Natural Science Foundation of China (Grant Nos. 21101111 and 61274056), and the Shanxi Provincial Key Innovative Research Team in Science and Technology, China (Grant No. 2012041011).

  18. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    NASA Astrophysics Data System (ADS)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  19. Long-term, correlated emittance decrease in intense, high-brightness induction linacs

    NASA Astrophysics Data System (ADS)

    Carlsten, Bruce E.

    1999-09-01

    Simulations of high-brightness induction linacs often show a slow, long-term emittance decrease as the beam is matched from the electron gun into the linac. Superimposed on this long-term decrease are rapid emittance oscillations. These effects can be described in terms of correlations in the beam's radial phase space. The rapid emittance oscillations are due to transverse plasma oscillations, which stay nearly in phase for different radial positions within the beam. The initial emittance, just after the electron gun, is dominated by nonlinear focusing within the gun introduced by the anode exit hole. Due to the large space-charge force of an intense electron beam, the focusing of the beam through the matching section introduces an effective nonlinear force (from the change in the particles' potential energies) which counteracts the nonlinearities from the electron gun, leading to an average, long-term emittance decrease. Not all of the initial nonlinearity is removed by the matching procedure, and there are important consequences both for emittance measurements using solenoid focal length scans and for focusing the electron beam to a target.

  20. Theoretical and experimental emittance measurements for a thin liquid sheet flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; Mcconley, Marc W.; Chubb, Donald L.

    1995-01-01

    Surface tension forces at the edges of a thin liquid (approximately 200 microns) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. Since the fluid must have very low vapor pressure, Dow Corning 705 silicone oil was used and the emittance of a flowing sheet of oil was determined by two methods. The emittance was derived as a function of the temperature drop between the top of the sheet and the coalescence point of the sheet, the sink temperature, the volumetric flow and the length of the sheet. the emittance for the oil was also calculated using an extinction coefficient determined from spectral transmittance data of the oil. The oil's emittance ranges from .67 to .87 depending on the sheet thickness and sheet temperature. The emittance derived from the temperature drop was slightly less than the emittance calculated from transmittance data. An investigation of temperature fluctuation upstream of the slit plate was also done. The fluctuations were determined to be negligible, not affecting the temperature drop which was due to radiation.

  1. Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields.

    PubMed

    An, Weiming; Lu, Wei; Huang, Chengkun; Xu, Xinlu; Hogan, Mark J; Joshi, Chan; Mori, Warren B

    2017-06-16

    Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of less than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. The underlying physics that leads to the lower than expected emittance growth is elucidated.

  2. Method and apparatus for multispray emitter for mass spectrometry

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Lin, Yuehe

    2004-12-14

    A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.

  3. Yellow fever: an update.

    PubMed

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  4. Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Weiming; Lu, Wei; Huang, Chengkun

    2017-06-14

    Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of lessmore » than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. In conclusion, the underlying physics that leads to the lower than expected emittance growth is elucidated.« less

  5. Design and testing a high fuel volume fraction, externally finned, thermionic emitter.

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Ernst, D. M.

    1971-01-01

    A prototypical, high fuel volume fraction, thermionic emitter body was designed and tested. The emitter body is all tungsten, with a 1.40-cm ID, a 3.23-cm OD, and eight full-length axial fins. The emitter thickness is 0.15 cm while the fins and outer clad are 0.075 cm thick. Different methods of fabrication were used in making the test samples. Stress analysis was performed with a three-dimensional elastic code. Thermal testing of the samples, duplicating calculated radial temperature gradients, heatup and cooldown rates, and emitter body temperatures in operation, was performed with no structural failures noted (six heatup and cooldown cycles per sample). Further emitter analysis and testing is planned.

  6. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  7. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    PubMed

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  8. Emitter/absorber interface of CdTe solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tao, E-mail: tsong241@gmail.com; Sites, James R.; Kanevce, Ana

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interfacemore » defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C

  9. Emittance Growth in the DARHT-II Linear Induction Accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.

    2017-11-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  10. Yellow-poplar seedfall pattern

    Treesearch

    LaMont G. Engle

    1960-01-01

    Knowing the pattern of seedfall can be helpful when trying to regenerate yellow-poplar. This is especially true if the stand contains only scattered yellow-poplar seed trees. Information obtained from seed collections in Indiana shows that most of the seed falls north and northeast of seed trees.

  11. Ion concentration in micro and nanoscale electrospray emitters.

    PubMed

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  12. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  13. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    PubMed Central

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-01-01

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter enables highly stable electrosprays at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography. PMID:21657269

  14. Rare-Earth Oxide (Yb2O3) Selective Emitter Fabrication and Evaluation

    NASA Technical Reports Server (NTRS)

    Jennette, Bryan; Gregory, Don A.; Herren, Kenneth; Tucker, Dennis; Smith, W. Scott (Technical Monitor)

    2001-01-01

    This investigation involved the fabrication and evaluation of rare-earth oxide selective emitters. The first goal of this study was to successfully fabricate the selective emitter samples using paper and ceramic materials processing techniques. The resulting microstructure was also analyzed using a Scanning Electron Microscope. All selective emitter samples fabricated for this study were made with ytterbium oxide (Yb2O3). The second goal of this study involved the measurement of the spectral emission and the radiated power of all the selective emitter samples. The final goal of this study involved the direct comparison of the radiated power emitted by the selective emitter samples to that of a standard blackbody at the same temperature and within the same wavelength range.

  15. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  16. 21 CFR 137.215 - Yellow corn flour.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  17. 21 CFR 137.275 - Yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...

  18. 21 CFR 137.215 - Yellow corn flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  19. 21 CFR 137.275 - Yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...

  20. Prototype of a subsurface drip irrigation emitter: Manufacturing, hydraulic evaluation and experimental analyses

    NASA Astrophysics Data System (ADS)

    Souza, Wanderley De Jesus; Rodrigues Sinobas, Leonor; Sánchez, Raúl; Arriel Botrel, Tarlei; Duarte Coelho, Rubens

    2013-04-01

    Root and soil intrusion into the conventional emitters is one of the major disadvantages to obtain a good uniformity of water application in subsurface drip irrigation (SDI). In the last years, there have been different approaches to reduce these problems such as the impregnation of emitters with herbicide, and the search for an emitter geometry impairing the intrusion of small roots. Within the last this study, has developed and evaluated an emitter model which geometry shows specific physical features to prevent emitter clogging. This work was developed at the Biosystems Engineering Department at ESALQ-USP/Brazil, and it is a part of a research in which an innovated emitteŕs model for SDI has been developed to prevent root and soil particles intrusion. An emitter with a mechanical-hydraulic mechanism (opening and closing the water outlet) for SDI was developed and manufactured using a mechanical lathe process. It was composed by a silicon elastic membrane a polyethylene tube and a Vnyl Polychloride membrane protector system. In this study the performance of the developed prototype was assessed in the laboratory and in the field conditions. In the laboratory, uniformity of water application was calculated by the water emission uniformity coefficient (CUE), and the manufacturer's coefficient of variation (CVm). In addition, variation in the membrane diameter submitted to internal pressures; head losses along the membrane, using the energy equation; and, precision and accuracy of the equation model, analyzed by Pearson's correlation coefficient (r), and by Willmott's concordance index (d) were also calculated with samples of the developed emitters. In the field, the emitters were installed in pots with and without sugar cane culture from October 2010 to January 2012. During this time, flow rate in 20 emitters were measured periodically, and the aspects of them about clogging at the end of the experiment. Emitters flow rates were measured quarterly to calculate

  1. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    NASA Astrophysics Data System (ADS)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  2. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  3. Quantum Emitters in Two-Dimensional Structured Reservoirs in the Nonperturbative Regime

    NASA Astrophysics Data System (ADS)

    González-Tudela, A.; Cirac, J. I.

    2017-10-01

    We show that the coupling of quantum emitters to a two-dimensional reservoir with a simple band structure gives rise to exotic quantum dynamics with no analogue in other scenarios and which cannot be captured by standard perturbative treatments. In particular, for a single quantum emitter with its transition frequency in the middle of the band, we predict an exponential relaxation at a rate different from that predicted by Fermi's golden rule, followed by overdamped oscillations and slow relaxation decay dynamics. This is accompanied by directional emission into the reservoir. This directionality leads to a modification of the emission rate for few emitters and even perfect subradiance, i.e., suppression of spontaneous emission, for four quantum emitters.

  4. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S.

    2018-02-01

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color ( 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  5. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer.

    PubMed

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; Ng, Tien Khee; Ooi, Boon S

    2018-02-06

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  6. Emittance of a finite scattering medium with refractive index greater than unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosbie, A.L.

    1980-01-01

    Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directionalmore » emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed.« less

  7. Thermal emittance enhancement of graphite-copper composites for high temperature space based radiators

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Forkapa, Mark J.; Cooper, Jill M.

    1991-01-01

    Graphite-copper composites are candidate materials for space based radiators. The thermal emittance of this material, however, is a factor of two lower than the desired emittance for these systems of greater than or equal to 0.85. Arc texturing was investigated as a surface modification technique for enhancing the emittance of the composite. Since the outer surface of the composite is copper, and samples of the composite could not be readily obtained for testing, copper was used for optimization testing. Samples were exposed to various frequencies and currents of arcs during texturing. Emittances near the desired goal were achieved at frequencies less than 500 Hz. Arc current did not appear to play a major role under 15 amps. Particulate carbon was observed on the surface, and was easily removed by vibration and handling. In order to determine morphology adherence, ultrasonic cleaning was used to remove the loosely adherent material. This reduced the emittance significantly. Emittance was found to increase with increasing frequency for the cleaned samples up to 500 Hz. The highest emittance achieved on these samples over the temperature range of interest was 0.5 to 0.6, which is approximately a factor of 25 increase over the untextured copper emittance.

  8. Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters.

    PubMed

    Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin

    2015-03-12

    Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.

  9. Emissivity Tuned Emitter for RTPV Power Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heatmore » to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation

  10. Emittance preservation in plasma-based accelerators with ion motion

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; ...

    2017-11-01

    In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittancemore » preservation with ion motion.« less

  11. Field emission from optimized structure of carbon nanotube field emitter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com; Noguchi, T.; Kato, S.

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to bemore » 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.« less

  12. Development of chemically vapor deposited rhenium emitters of (0001) preferred crystal orientation

    NASA Technical Reports Server (NTRS)

    Yang, L.; Hudson, R. G.

    1973-01-01

    Rhenium thermionic emitters were prepared by the pyrolysis of rhenium chlorides formed by the chlorination of rhenium pellets. The impurity contents, microstructures, degrees of (0001) preferred crystal orientation, and vacuum electron work functions of these emitters were determined as a function of deposition parameters, such as substrate temperature, rhenium pellet temperature and chlorine flow rate. A correlation between vacuum electron work function and degree of (0001) preferred crystal orientation was established. Conditions for depositing porosity-free rhenium emitters of high vacuum electron work functions were defined. Finally, three cylindrical rhenium emitters were prepared under the optimum deposition conditions.

  13. Coupling Correction and Beam Dynamics at Ultralow Vertical Emittance in the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steier, Christoph; Robin, D.; Wolski, A.

    2008-03-17

    For synchrotron light sources and for damping rings of linear colliders it is important to be able to minimize the vertical emittance and to correct the spurious vertical dispersion. This allows one to maximize the brightness and/or the luminosity. A commonly used tool to measure the skew error distribution is the analysis of orbit response matrices using codes like LOCO. Using the new Matlab version of LOCO and 18 newly installed power supplies for individual skew quadrupoles at the ALS the emittance ratio could be reduced below 0.1% at 1.9 GeV yielding a vertical emittance of about 5 pm. Atmore » those very low emittances, additional effects like intra beam scattering become more important, potentially limiting the minimum emittance for machine like the damping rings of linear colliders.« less

  14. Cooperative Effects in Closely Packed Quantum Emitters with Collective Dephasing

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Juan, M. L.; Romero-Isart, O.

    2018-01-01

    In a closely packed ensemble of quantum emitters, cooperative effects are typically suppressed due to the dephasing induced by the dipole-dipole interactions. Here, we show that by adding sufficiently strong collective dephasing, cooperative effects can be restored. Specifically, we show that the dipole force on a closely packed ensemble of strongly driven two-level quantum emitters, which collectively dephase, is enhanced in comparison to the dipole force on an independent noninteracting ensemble. Our results are relevant to solid-state systems with embedded quantum emitters such as color centers in diamond and superconducting qubits in microwave cavities and waveguides.

  15. Reliability study of high-brightness multiple single emitter diode lasers

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yang, Thomas; Zhang, Cuipeng; Lang, Chao; Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Guo, Weirong; Jiang, Yuhua; Liu, Yang; Zhang, Luyan; Chen, Louisa

    2015-03-01

    In this study the chip bonding processes for various chips from various chip suppliers around the world have been optimized to achieve reliable chip on sub-mount for high performance. These chip on sub-mounts, for examples, includes three types of bonding, 8xx nm-1.2W/10.0W Indium bonded lasers, 9xx nm 10W-20W AuSn bonded lasers and 1470 nm 6W Indium bonded lasers will be reported below. The MTTF@25 of 9xx nm chip on sub-mount (COS) is calculated to be more than 203,896 hours. These chips from various chip suppliers are packaged into many multiple single emitter laser modules, using similar packaging techniques from 2 emitters per module to up to 7 emitters per module. A reliability study including aging test is performed on those multiple single emitter laser modules. With research team's 12 years' experienced packaging design and techniques, precise optical and fiber alignment processes and superior chip bonding capability, we have achieved a total MTTF exceeding 177,710 hours of life time with 60% confidence level for those multiple single emitter laser modules. Furthermore, a separated reliability study on wavelength stabilized laser modules have shown this wavelength stabilized module packaging process is reliable as well.

  16. MIRAGE: developments in IRSP systems, RIIC design, emitter fabrication, and performance

    NASA Astrophysics Data System (ADS)

    Bryant, Paul; Oleson, Jim; James, Jay; McHugh, Steve; Lannon, John; Vellenga, David; Goodwin, Scott; Huffman, Alan; Solomon, Steve; Goldsmith, George C., II

    2005-05-01

    SBIR's family of MIRAGE infrared scene projection systems is undergoing significant growth and expansion. The first two lots of production IR emitters have completed fabrication at Microelectronics Center of North Carolina/Research and Development Institute (MCNC-RDI), and the next round(s) of emitter production has begun. These latest emitter arrays support programs such as Large Format Resistive Array (LFRA), Optimized Array for Space-based Infrared Simulation (OASIS), MIRAGE 1.5, and MIRAGE II. We present the latest performance data on emitters fabricated at MCNC-RDI, plus integrated system performance on recently completed IRSP systems. Teamed with FLIR Systems/Indigo Operations, SBIR and the Tri-Services IRSP Working Group have completed development of the CMOS Read-In Integrated Circuit (RIIC) portion of the Wide Format Resistive Array (WFRA) program-to extend LFRA performance to a 768 x 1536 "wide screen" projection configuration. WFRA RIIC architecture and performance is presented. Finally, we summarize development of the LFRA Digital Emitter Engine (DEE) and OASIS cryogenic package assemblies, the next-generation Command & Control Electronics (C&CE).

  17. Cytotoxicity of yellow sand in lung epithelial cells.

    PubMed

    Kim, Y H; Kim, K S; Kwak, N J; Lee, K H; Kweon, S A; Lim, Y

    2003-02-01

    The present study was carried out to observe the cytotoxicity of yellow sand in comparison with silica and titanium dioxide in a rat alveolar type II cell line (RLE-6TN). Yellow sand (China Loess) was obtained from the loess layer in the Gunsu Province of China. The mean particle diameter of yellow sand was about 0.003 +/- 0.001 mm. Major elements of yellow sand were Si(27.7 +/- 0.6%), Al(6.01 +/- 0.17%), and Ca(5.83 +/- 0.23%) in that order. Silica and yellow sand significantly decreased cell viability and increased [Ca2+]i. All three particles increased the generation of H2O2. TiO2 did not change Fenton activity, while silica induced a slight increase of Fenton activity. In contrast, yellow sand induced a significant increase of Fenton activity. Silica, yellow sand and TiO2 induced significant nitrite formations in RLE-6TN cells. Silica showed the highest increase in nitrite formation, while yellow sand induced the least formation of nitrite. Silica and yellow sand increased the release of TNF-a. Based on these results, we suggest that yellow sand can induce cytotoxicity in RLE-6TN cells and reactive oxygen species, Fenton activity and reactive nitrogen species might be involved in this toxicity.

  18. Yellow phosphorus-induced Brugada phenocopy.

    PubMed

    Dharanipradab, Mayakrishnan; Viswanathan, Stalin; Kumar, Gokula Raman; Krishnamurthy, Vijayalatchumy; Stanley, Daphene Divya

    Metallic phosphides (of aluminum and phosphide) and yellow phosphorus are commonly used rodenticide compounds in developing countries. Toxicity of yellow phosphorus mostly pertains to the liver, kidney, heart, pancreas and the brain. Cardiotoxicity with associated Brugada ECG pattern has been reported only in poisoning with metallic phosphides. Brugada phenocopy and hepatic dysfunction were observed in a 29-year-old male following yellow phosphorus consumption. He had both type 1 (day1) and type 2 (day2) Brugada patterns in the electrocardiogram, which resolved spontaneously by the third day without hemodynamic compromise. Toxins such as aluminum and zinc phosphide have been reported to induce Brugada ECG patterns due to the generation of phosphine. We report the first case of yellow phosphorus-related Brugada phenocopy, without hemodynamic compromise or malignant arrhythmia. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modulation characteristics of graphene-based thermal emitters

    NASA Astrophysics Data System (ADS)

    Mahlmeister, Nathan Howard; Lawton, Lorreta Maria; Luxmoore, Isaac John; Nash, Geoffrey Richard

    2016-01-01

    We have investigated the modulation characteristics of the emission from a graphene-based thermal emitter both experimentally and through simulations using finite element method modelling. Measurements were performed on devices containing square multilayer graphene emitting areas, with the devices driven by a pulsed DC drive current over a range of frequencies. Simulations show that the dominant heat path is from the emitter to the underlying substrate, and that the thermal resistance between the graphene and the substrate determines the modulation characteristics. This is confirmed by measurements made on devices in which the emitting area is encapsulated by hexagonal boron nitride.

  20. Facility for assessing spectral normal emittance of solid materials at high temperature.

    PubMed

    Mercatelli, Luca; Meucci, Marco; Sani, Elisa

    2015-10-10

    Spectral emittance is a key topic in the study of new compositions, depositions, and mechanical machining of materials for solar absorption and for renewable energies in general. The present work reports on the realization and testing of a new experimental facility for the measurement of directional spectral emittance in the range of 2.5-20 μm. Our setup provides emittance spectral information in a completely controlled environment at medium-high temperatures up to 1200 K. We describe the layout and first tests on the device, comparing the results obtained for hafnium carbide and tantalum diboride ultrarefractory ceramic samples to previous quasi-monochromatic measurements carried out in the PROMES-CNRS (PROcedes, Materiaux et Energie Solaire- Centre National de la Recherche Scientifique, France) solar furnace, obtaining a good agreement. Finally, to assess the reliability of the widely used approach of estimating the spectral emittance from room-temperature reflectance spectrum, we compared the calculation in the 2.5-17 μm spectral range to the experimental high-temperature spectral emittance, obtaining that the spectral trend of calculated and measured curves is similar but the calculated emittance underestimates the measured value.

  1. Perinatal Yellow Fever: A Case Report.

    PubMed

    Diniz, Lilian Martins Oliveira; Romanelli, Roberta Maia Castro; de Carvalho, Andréa Lucchesi; Teixeira, Daniela Caldas; de Carvalho, Luis Fernando Andrade; Cury, Verônica Ferreira; Filho, Marcelo Pereira Lima; Perígolo, Graciele; Heringer, Tiago Pires

    2018-04-09

    An outbreak of yellow fever in Brazil made it possible to assess different presentations of disease such as perinatal transmission. A pregnant woman was admitted to hospital with yellow fever symptoms. She was submitted to cesarean section and died due to fulminant hepatitis. On the 6th day the newborn developed liver failure and died 13 days later. Yellow fever PCR was positive for both.

  2. COMPARISON OF BLOOD PROTEIN AND TARGET ORGAN DNA AND PROTEIN BINDING FOLLOWING TOPICAL APPLICATION OF BENZO[A]PYRENE AND 7H-DIBENZO[C,G]CARBAZOLE TO MICE

    EPA Science Inventory

    7H-Dibenzo[c,g]carbazole (DBC) induces skin and liver tumors in mice following topical application, whereas benzo[a]pyrene (BP) induces only skin tumors. DBC also binds to liver DNA to a much greater extent than does BP. The present study examined factors that might account for t...

  3. An evaluation of yellow-flowering magnolias and magnolia rootstocks

    USDA-ARS?s Scientific Manuscript database

    Yellow-flowering magnolias were evaluated for flower color, bloom duration and growth rate in USDA Hardiness Zone 6b. Of the thirty selections evaluated, all were reported to have yellow blooms; however, tepal color ranged from light pink with some yellow coloration, to creamy yellow to dark yellow....

  4. THE MONITORING OF EFFLUENT FOR ALPHA EMITTERS. PART II. METHODS FOR THE DETERMINATION OF URANIUM, POLONIUM AND OTHER ALPHA EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smales, A.A.; Airey, L.; Woodward, J.

    1950-06-01

    Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less

  5. A novel synthesis of octahydropyrido[3,2-c]carbazole framework of aspidospermidine alkaloids and a combined computational, FT-IR, NMR, NBO, NLO, FMO, MEP study of the cis-4a-Ethyl-1-(2hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole

    NASA Astrophysics Data System (ADS)

    Uludağ, Nesimi; Serdaroğlu, Goncagul; Yinanc, Abdullah

    2018-06-01

    In this study, we performed a novel synthesis of the octahydropyrido[3,2-c]carbazole derivative 6 from 1 in five steps with a 34% overall yield. We also developed a unique compound 2 by a cyclization reaction from the cyanoethylation of compound 1, which is an intermediate step in the synthesis of Aspidospermidine. The parent compound of Aspidospermidine alkaloids, comprise a large family of diverse structures. As a result, we obtained octahydropyrido[3,2-c]carbazole (6)and the proposed method may be applicable to other alkaloids. All quantum chemical calculations of the cis-4a-Ethyl-1-(2-hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole have been performed with the DFT/B3LYP and HF methods by using the Gaussian 09W software package. The most stable conformer obtained from the Potential Energy Surface (PES) scan analysis at the B3LYP/6-31G** level of theory in the gas phase was used as the starting structure of the title compound to further computational analysis. The Natural Bond Orbital (NBO) and NLO analyses were performed to evaluate the intra-molecular interactions contributing to the molecular stability and to predict the optical properties of the title compound, respectively. Gauge-Independent Atomic Orbital (GIAO) approach was used to determine the 1H and 1C NMR chemical shifts of the title compound by subtracting the shielding constants of TMS at both methods. The calculated vibrational frequencies of the title compound were assigned by using the VEDA program and were scaled down by using the scaling factor 0.9668 for B3LYP/6-311++G(d, p) and 0.9050 for HF/6-311++G(d, p) to improve the calculated vibrational frequencies. The FMO (frontier molecular orbital) analysis was evaluated to predict the chemical and physical properties of the title compound and the HOMO, LUMO, and MEP diagrams were visualized by GaussView 4.1 program to present the reactive site of the title compound.

  6. New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies.

    PubMed

    Rajamalli, P; Senthilkumar, N; Huang, P-Y; Ren-Wu, C-C; Lin, H-W; Cheng, C-H

    2017-08-16

    Simultaneous enhancement of out-coupling efficiency, internal quantum efficiency, and color purity in thermally activated delayed fluorescence (TADF) emitters is highly desired for the practical application of these materials. We designed and synthesized two isomeric TADF emitters, 2DPyM-mDTC and 3DPyM-pDTC, based on di(pyridinyl)methanone (DPyM) cores as the new electron-accepting units and di(tert-butyl)carbazole (DTC) as the electron-donating units. 3DPyM-pDTC, which is structurally nearly planar with a very small ΔE ST , shows higher color purity, horizontal ratio, and quantum yield than 2DPyM-mDTC, which has a more flexible structure. An electroluminescence device based on 3DPyM-pDTC as the dopant emitter can reach an extremely high external quantum efficiency of 31.9% with a pure blue emission. This work also demonstrates a way to design materials with a high portion of horizontal molecular orientation to realize a highly efficient pure-blue device based on TADF emitters.

  7. Porous Emitter Colloid Thruster Performance Characterization Using Optical Techniques

    DTIC Science & Technology

    2013-03-01

    spacecraft. Liquid propellant has received a renewed interest as a viable propellant with the creation and proliferation of new ionic liquid compounds ...electrostatic gate) and collector (metallic plate) is unknown. Two factors cause this ambiguity, first, the gate needs to close fast enough to...simultaneously block all of the emitters and second, it is not directly known which emitter released the last particle hitting the collector plate

  8. Probing the emitter site of Renilla luciferase using small organic molecules; an attempt to understand the molecular architecture of the emitter site.

    PubMed

    Salehi, Farajollah; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi

    2016-12-01

    Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the K m changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhanced photon indistinguishability in pulse-driven quantum emitters

    NASA Astrophysics Data System (ADS)

    Fotso, Herbert F.

    2017-04-01

    Photon indistinguishability is an essential ingredient for the realization of scalable quantum networks. For quantum bits in the solid state, this is hindered by spectral diffusion, the uncontrolled random drift of the emission/absorption spectrum as a result of fluctuations in the emitter's environment. We study optical properties of a quantum emitter in the solid state when it is driven by a periodic sequence of optical pulses with finite detuning with respect to the emitter. We find that a pulse sequence can effectively mitigate spectral diffusion and enhance photon indistinguishability. The bulk of the emission occurs at a set target frequency; Photon indistinguishability is enhanced and is restored to its optimal value after every even pulse. Also, for moderate values of the sequence period and of the detuning, both the emission spectrum and the absorption spectrum have lineshapes with little dependence on the detuning. We describe the solution and the evolution of the emission/absorption spectrum as a function time.

  10. HIGH RESOLUTION EMITTANCE MEASUREMENTS AT SNS FRONT END

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, Alexander V; Zhukov, Alexander P

    2013-01-01

    The Spallation Neutron Source (SNS) linac accelerates an H- beam from 2.5MeV up to 1GeV. Recently the emittance scanner in the MEBT (2.5 MeV) was upgraded. In addition to the slit - harp measurement, we now can use a slit installed on the same actuator as the harp. In combination with a faraday cup located downstream in DTL part of the linac, it represents a classical slit-slit emittance measurement device. While a slit slit scan takes much longer, it is immune to harp related problems such as wire cross talk, and thus looks promising for accurate halo measurements. Time resolutionmore » of the new device seems to be sufficient to estimate the amount of beam in the chopper gap (the scanner is downstream of the chopper), and probably to measure its emittance. This paper describes the initial measurements with the new device and some model validation data.« less

  11. Performance of a thermionic converter module utilizing emitter and collector heat pipes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Morris, J. F.; Miskolczy, G.; Lieb, D. P.; Goodale, D. B.

    1978-01-01

    A thermionic converter module simulating a configuration for an out-of-core thermionic nuclear reactor was designed, fabricated, and tested. The module consists of three cylindrical thermionic converters. The tungsten emitter of the converter is heated by a tungsten, lithium heat pipe. The emitter heat pipes are immersed in a furnace, insulated by MULTI-FOIL thermal insulation, and heated by tungsten radiation filaments. The performance of each thermionic converter was characterized before assembly into the module. Dynamic voltage, current curves were taken using a 60 Hz sweep and computerized data acquisition over a range of emitter, collector, and cesium-reservoir temperatures. An output power of 215 W was observed at an emitter temperature of 1750 K and a collector temperature of 855 K for a two diode module. With a three diode module, an output power of 270 W was observed at an average emitter temperature of 1800 K and a Collector temperature of 875 K.

  12. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    PubMed Central

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  13. 21 CFR 137.285 - Degerminated yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...

  14. 21 CFR 137.285 - Degerminated yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...

  15. 17DD yellow fever vaccine

    PubMed Central

    Martins, Reinaldo M.; Maia, Maria de Lourdes S.; Farias, Roberto Henrique G.; Camacho, Luiz Antonio B.; Freire, Marcos S.; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C.; Lima, Sheila Maria B.; Nogueira, Rita Maria R.; Sá, Gloria Regina S.; Hokama, Darcy A.; de Carvalho, Ricardo; Freire, Ricardo Aguiar V.; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-01-01

    Objective: To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Results: Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Methods: Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. Conclusion: In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. International Register ISRCTN 38082350. PMID:23364472

  16. Brownian Emitters

    NASA Astrophysics Data System (ADS)

    Tsekov, Roumen

    2016-06-01

    A Brownian harmonic oscillator, which dissipates energy either by friction or via emission of electromagnetic radiation, is considered. This Brownian emitter is driven by the surrounding thermo-quantum fluctuations, which are theoretically described by the fluctuation-dissipation theorem. It is shown how the Abraham-Lorentz force leads to dependence of the half-width on the peak frequency of the oscillator amplitude spectral density. It is found that for the case of a charged particle moving in vacuum at zero temperature, its root-mean-square velocity fluctuation is a universal constant, equal to roughly 1/18 of the speed of light. The relevant Fokker-Planck and Smoluchowski equations are also derived.

  17. Field emission properties of SiO2-wrapped CNT field emitter.

    PubMed

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-05

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO 2 -wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO 2 -wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO 2 -wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm -1 to achieve FE current density of 22 mA cm -2 ; whereas SiO 2 -wrapped field emitter requires 8.5 V μm -1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO 2 , as obtained from the electric field simulation. Nevertheless, SiO 2 -wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO 2 -wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO 2 -wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  18. Field emission properties of SiO2-wrapped CNT field emitter

    NASA Astrophysics Data System (ADS)

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-01

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm-1 to achieve FE current density of 22 mA cm-2 whereas SiO2-wrapped field emitter requires 8.5 V μm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  19. Electrospray performance of interacting multi-capillary emitters in a linear array

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Srivastava, A.; Shanbhogue, K. M.; Ingersol, S.; Sen, A. K.

    2018-03-01

    Here, we report electrospray performance of multiple emitters (of internal diameter 200 µm) arranged in a linear (inline) array. For a fixed flow rate Q , at higher voltages {{V}a} , multi-jet mode is observed, which leads to a rapid increase in the spray current (I∼ {{V}a} ) as compared to the single cone-jet case (I∼ Va0.8 ). A theoretical model is presented that predicts (within 10% of experimental data) the divergence of sprays g(x) issued from a pair of interacting emitters due to the mutual Columbic interaction of space charges. The variation of onset voltage {{V}o} and spray current I with spacing between the emitters p is studied and it is found that {{V}o}∼ {{p}-0.2} and I∼ {{p}0.8} . The effect of the flow rate Q , voltage V and number of emitters ~n~ on the spray current I is investigated and it is found that I∼ {{Q}0.5} , I∼ Va0.8 and I∼ \\sqrt{n} . The present work provides insight regarding the behavior of interacting sprays in an inline configuration and could be significant in the design of multiple emitter systems for electrospray applications.

  20. Calculation of day and night emittance values

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.

    1986-01-01

    In July 1983, the Thermal Infrared Multispectral Scanner (TIMS) was flown over Death Valley, California on both a midday and predawn flight within a two-day period. The availability of calibrated digital data permitted the calculation of day and night surface temperature and surface spectral emittance. Image processing of the data included panorama correction and calibration to radiance using the on-board black bodies and the measured spectral response of each channel. Scene-dependent isolated-point noise due to bit drops, was located by its relatively discontinuous values and replaced by the average of the surrounding data values. A method was developed in order to separate the spectral and temperature information contained in the TIMS data. Night and day data sets were processed. The TIMS is unique in allowing collection of both spectral emittance and thermal information in digital format with the same airborne scanner. For the first time it was possible to produce day and night emittance images of the same area, coregistered. These data add to an understanding of the physical basis for the discrimination of difference in surface materials afforded by TIMS.

  1. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.

    PubMed

    Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo

    2017-10-02

    GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.

  2. Study of ultra-low emittance design for SPEAR3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  3. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  4. Yellow-Poplar Site Index Curves

    Treesearch

    Donald E. Beck

    1962-01-01

    Yellow-poplar (Liriodendron tulipifera L.) occurs naturally throughout the eastern and central United States from southern New England west to Michigan and south to Florida and Louisiana. Because of its wide occurrence, yellow-poplar grows under a variety of climatic, edaphic, and biotic conditions. Combinations of these different environmental...

  5. Work functions of hafnium nitride thin films as emitter material for field emitter arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotoh, Yasuhito, E-mail: gotoh.yasuhito.5w@kyoto-u.ac.jp; Fujiwara, Sho; Tsuji, Hiroshi

    The work functions of hafnium nitride thin films prepared by radio-frequency magnetron sputtering were investigated in vacuum, before and after surface cleaning processes, with a view of improving the properties of as-fabricated field emitter arrays comprising hafnium nitride emitters. The measurement of the work function was first performed for the as-deposited films and then for films subjected to surface cleaning process, either thermal treatment or ion bombardment. Thermal treatment at a maximum temperature of 300 °C reduced the work function by 0.7 eV. Once the film was heated, the work function maintained the reduced value, even after cooling to room temperature. Amore » little change in the work function was observed for the second and third thermal treatments. The ion bombardment was conducted by exposing the sample to a thin plasma for different sample bias conditions and processing times. When the sample was biased at −10 V, the work function decreased by 0.6 eV. The work function reduction became saturated in the early stage of the ion bombardment. When the sample was biased at −50 V, the work function exhibited different behaviors, that is, first it decreased rapidly and then increased in response to the increase in processing time. The lowest attainable work function was found to be 4.00 eV. It should be noted that none of the work function values reported in this paper were obtained using surfaces that were demonstrated to be free from oxygen contamination. The present results suggest that the current–voltage characteristics of a field emitter array can be improved by a factor of 25–50 by the examined postprocesses.« less

  6. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  7. Brightness-enhanced high-efficiency single emitters for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe

    2013-02-01

    Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.

  8. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  9. One- and Two-Photon Uncaging: Carbazole Fused o-Hydroxycinnamate Platform for Dual Release of Alcohols (Same or Different) with Real-Time Monitoring.

    PubMed

    Venkatesh, Yarra; Srivastava, Hemant Kumar; Bhattacharya, S; Mehra, Muneshwar; Datta, P K; Bandyopadhyay, S; Singh, N D Pradeep

    2018-04-20

    A one- and two-photon activated photoremovable protecting group (PRPG) was designed based on a carbazole fused o-hydroxycinnamate platform for the dual (same or different) release of alcohols. The mechanism for the dual release proceeds through a stepwise pathway and also monitors the first and second photorelease in real time by an increase in fluorescence intensity and color change, respectively. Further, its application in staining live neurons and ex vivo imaging with two-photon excitation is shown.

  10. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  11. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  12. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  13. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  14. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  15. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.

    PubMed

    Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor

    2017-04-12

    Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

  16. Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.

    PubMed

    Elleaume, P; Fortgang, C; Penel, C; Tarazona, E

    1995-09-01

    A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.

  17. Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211.

    PubMed

    Jensen, Anne-Mette; Finster, Kai Waldemar; Karlson, Ulrich

    2003-04-01

    Pseudomonas sp. strain C3211 was isolated from a temperate climate soil contaminated with creosote. This strain was able to degrade carbazole, dibenzothiophene and dibenzofuran at 10 degrees C with acetone as a co-substrate. When dibenzothiophene was degraded by strain C3211, an orange compound, which absorbed at 472 nm, accumulated in the medium. Degradation of dibenzofuran was followed by accumulation of a yellowish compound, absorbing at 462 nm. The temperature optimum of strain C3211 for degradation of dibenzothiophene and dibenzofuran was at 20 to 21 degrees C, while the maximum temperature for degradation was at 27 degrees C. Both compounds were degraded at 4 degrees C. Degradation at 10 degrees C was faster than degradation at 25 degrees C. This indicates that strain C3211 is adapted to life at low temperatures.

  18. Fatal Yellow Fever in Travelers to Brazil, 2018.

    PubMed

    Hamer, Davidson H; Angelo, Kristina; Caumes, Eric; van Genderen, Perry J J; Florescu, Simin A; Popescu, Corneliu P; Perret, Cecilia; McBride, Angela; Checkley, Anna; Ryan, Jenny; Cetron, Martin; Schlagenhauf, Patricia

    2018-03-23

    Yellow fever virus is a mosquito-borne flavivirus that causes yellow fever, an acute infectious disease that occurs in South America and sub-Saharan Africa. Most patients with yellow fever are asymptomatic, but among the 15% who develop severe illness, the case fatality rate is 20%-60%. Effective live-attenuated virus vaccines are available that protect against yellow fever (1). An outbreak of yellow fever began in Brazil in December 2016; since July 2017, cases in both humans and nonhuman primates have been reported from the states of São Paulo, Minas Gerais, and Rio de Janeiro, including cases occurring near large urban centers in these states (2). On January 16, 2018, the World Health Organization updated yellow fever vaccination recommendations for Brazil to include all persons traveling to or living in Espírito Santo, São Paulo, and Rio de Janeiro states, and certain cities in Bahia state, in addition to areas where vaccination had been recommended before the recent outbreak (3). Since January 2018, 10 travel-related cases of yellow fever, including four deaths, have been reported in international travelers returning from Brazil. None of the 10 travelers had received yellow fever vaccination.

  19. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters

    NASA Astrophysics Data System (ADS)

    Tran, Toan Trong; Kianinia, Mehran; Bray, Kerem; Kim, Sejeong; Xu, Zai-Quan; Gentle, Angus; Sontheimer, Bernd; Bradac, Carlo; Aharonovich, Igor

    2017-11-01

    Single-photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub-GHz optical linewidth at 10 K. The observed zero-phonon line at ˜780 nm is optically stable under low power excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.

  20. Emittance Measurements Relevant to a 250 W(sub t) Class RTPV Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Wolford, Dave; Chubb, Donald; Clark, Eric; Pal, Anna Maria; Scheiman, Dave; Colon, Jack

    2009-01-01

    A proposed 250 Wt Radioisotope Thermophotovoltaic (RTPV) power system for utilization in lunar exploration and the subsequent exploration of Mars is described. Details of emitter selection are outlined for use in a maintenance free power supply that is productive over a 14-year mission life. Thorough knowledge of a material s spectral emittance is essential for accurate modeling of the RTPV system. While sometimes treated as a surface effect, emittance involves radiation from within a material. This creates a complex thermal gradient which is a combination of conductive and radiative heat transfer mechanisms. Emittance data available in the literature is a valuable resource but it is particular to the test sample s physical characteristics and the test environment. Considerations for making spectral emittance measurements relevant to RTPV development are discussed. Measured spectral emittance data of refractory emitter materials is given. Planned measurement system modifications to improve relevance to the current project are presented.

  1. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.

    PubMed

    Neuman, Tomáš; Esteban, Ruben; Casanova, David; García-Vidal, Francisco J; Aizpurua, Javier

    2018-04-11

    As the size of a molecular emitter becomes comparable to the dimensions of a nearby optical resonator, the standard approach that considers the emitter to be a point-like dipole breaks down. By adoption of a quantum description of the electronic transitions of organic molecular emitters, coupled to a plasmonic electromagnetic field, we are able to accurately calculate the position-dependent coupling strength between a plasmon and an emitter. The spatial distribution of excitonic and photonic quantum states is found to be a key aspect in determining the dynamics of molecular emission in ultrasmall cavities both in the weak and strong coupling regimes. Moreover, we show that the extreme localization of plasmonic fields leads to the selection rule breaking of molecular excitations.

  2. Optical properties of hybrid spherical nanoclusters containing quantum emitters and metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yannopapas, V.; Paspalakis, E.

    2018-05-01

    We study theoretically the optical response of a hybrid spherical cluster containing quantum emitters and metallic nanoparticles. The quantum emitters are modeled as two-level quantum systems whose dielectric function is obtained via a density matrix approach wherein the modified spontaneous emission decay rate at the position of each quantum emitter is calculated via the electromagnetic Green's tensor. The problem of light scattering off the hybrid cluster is solved by employing the coupled-dipole method. We find, in particular, that the presence of the quantum emitters in the cluster, even in small fractions, can significantly alter the absorption and extinction spectra of the sole cluster of the metallic nanoparticles, where the corresponding electromagnetic modes can have a weak plexcitonic character under suitable conditions.

  3. A retractable electron emitter for the creation of unperturbed pure electron plasmas.

    PubMed

    Berkery, John W; Pedersen, Thomas Sunn; Sampedro, Luis

    2007-01-01

    A retractable electron emitter has been constructed for the creation of unperturbed pure electron plasmas on magnetic surfaces in the Columbia Non-neutral Torus stellarator. The previous method of electron emission using emitters mounted on stationary rods limited the confinement time to 20 ms. A pneumatically driven system that can retract from the magnetic axis to the last closed flux surface in less than 20 ms while filling the surfaces with electrons was designed. The motion of the retractable emitter was modeled with a system of dynamical equations. The measured position versus time of the emitter agrees well with the model and the fastest axis-to-edge retraction was measured to be 20 ms with 40 psig helium gas driving the pneumatic piston.

  4. Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetti, E.; Shanks, R. P.; Manahan, G. G.

    2010-11-19

    Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUVmore » FELs.« less

  5. RF emittance in a low energy electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  6. Tuning the Magnetic Transport of an Induction LINAC using Emittance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, T L; Brown, C G; Ong, M M

    2006-08-11

    The Lawrence Livermore National Laboratory Flash X-Ray (FXR) machine is a linear induction accelerator used to produce a nominal 18 MeV, 3 kA, 65 ns pulse width electron beam for hydrodynamic radiographs. A common figure of merit for this type of radiographic machine is the x-ray dose divided by the spot area on the bremsstrahlung converter where a higher FOM is desired. Several characteristics of the beam affect the minimum attainable x-ray spot size. The most significant are emittance (chaotic transverse energy), chromatic aberration (energy variation), and beam motion (transverse instabilities and corkscrew motion). FXR is in the midst ofmore » a multi-year optimization project to reduce the spot size. This paper describes the effort to reduce beam emittance by adjusting the fields of the transport solenoids and position of the cathode. If the magnetic transport is not correct, the beam will be mismatched and undergo envelope oscillations increasing the emittance. We measure the divergence and radius of the beam in a drift section after the accelerator by imaging the optical transition radiation (OTR) and beam envelope on a foil. These measurements are used to determine an emittance. Relative changes in the emittance can be quickly estimated from the foil measurements allowing for an efficient, real-time study. Once an optimized transport field is determined, the final focus can be adjusted and the new x-ray spot measured. A description of the diagnostics and analysis is presented.« less

  7. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

    NASA Astrophysics Data System (ADS)

    Choi, Jongwan; Kim, Felix Sunjoo

    2018-03-01

    We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

  8. Yield of Unthinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1970-01-01

    Cubic-foot and board-foot yields of unthinned yellow-poplar (Liriodendron Tulipiferi L.) stands are described in relation to stand age, site index, and number of trees per acre. The yield tables are based on analysis of diameter distributions and height-diameter relationships obtained from 141 natural, unthinned yellow-poplar stands in the...

  9. Preparation of Benzo[c]carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Oxidative Cyclization.

    PubMed

    Zhou, Xiaorong; Li, Zhenmin; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2018-03-02

    Manganese-catalyzed C 2 -H enaminylation of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. A migration of the directing group pyrimidinyl occurred during this process. The synthesized 2-enaminyl indoles could be conveniently converted into 5-aryl-7H-benzo[c]carbazol-6-amines.

  10. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  11. Small Molecule Reversible Inhibitors of Bruton’s Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9 H -carbazole-1-carboxamide (BMS-935177)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lucca, George V.; Shi, Qing; Liu, Qingjie

    Bruton’s tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure–activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.

  12. Color transitions in coral's fluorescent proteins by site-directed mutagenesis

    PubMed Central

    Gurskaya, Nadya G; Savitsky, Alexander P; Yanushevich, Yurii G; Lukyanov, Sergey A; Lukyanov, Konstantin A

    2001-01-01

    Background Green Fluorescent Protein (GFP) cloned from jellyfish Aequorea victoria and its homologs from corals Anthozoa have a great practical significance as in vivo markers of gene expression. Also, they are an interesting puzzle of protein science due to an unusual mechanism of chromophore formation and diversity of fluorescent colors. Fluorescent proteins can be subdivided into cyan (~ 485 nm), green (~ 505 nm), yellow (~ 540 nm), and red (>580 nm) emitters. Results Here we applied site-directed mutagenesis in order to investigate the structural background of color variety and possibility of shifting between different types of fluorescence. First, a blue-shifted mutant of cyan amFP486 was generated. Second, it was established that cyan and green emitters can be modified so as to produce an intermediate spectrum of fluorescence. Third, the relationship between green and yellow fluorescence was inspected on closely homologous green zFP506 and yellow zFP538 proteins. The following transitions of colors were performed: yellow to green; yellow to dual color (green and yellow); and green to yellow. Fourth, we generated a mutant of cyan emitter dsFP483 that demonstrated dual color (cyan and red) fluorescence. Conclusions Several amino acid substitutions were found to strongly affect fluorescence maxima. Some positions primarily found by sequence comparison were proved to be crucial for fluorescence of particular color. These results are the first step towards predicting the color of natural GFP-like proteins corresponding to newly identified cDNAs from corals. PMID:11459517

  13. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.

    2000-01-01

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  14. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  15. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  16. High efficiency and stable white OLED using a single emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-basedmore » white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.« less

  17. Plant Guide: Yellow beeplant (Cleome lutea Hook)

    Treesearch

    Derek Tilley; Jim Cane; Loren St. John; Dan Ogle; Nancy Shaw

    2012-01-01

    Yellow beeplant is a valuable native forage species for bees wasps and butterflies. Over 140 species of native bees have been observed foraging for nectar or pollen on yellow beeplant in southern Utah (Cane, 2008). Yellow beeplant is an annual forb which could provide food to insects in the first growing season of a range seeding (Ogle and others, 2011a). This...

  18. Spring structure for a thermionic converter emitter support arrangement

    DOEpatents

    Allen, D.T.

    1992-03-17

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  19. Spring structure for a thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1992-01-01

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  20. Low Emittance Guns for the ILC Polarized Electron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressedmore » by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {>=}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {>=}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.« less

  1. Low Emittance Guns for the ILC Polarized Electron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressedmore » by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {ge}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {ge}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.« less

  2. Group-III Nitride Field Emitters

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak; Berishev, Igor

    2008-01-01

    Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude

  3. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer.

    PubMed

    Miyoshi, Yusuke; Fukazawa, Yusuke; Amasaka, Yuya; Reckmann, Robin; Yokoi, Tomoya; Ishida, Kazuki; Kawahara, Kenji; Ago, Hiroki; Maki, Hideyuki

    2018-03-29

    High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics, such as on-chip optical interconnects, and silicon photonics. However, conventional light sources based on compound semiconductors face major challenges for their integration with a silicon-based platform because of their difficulty of direct growth on a silicon substrate. Here we report ultra-high-speed (100-ps response time), highly integrated graphene-based on-silicon-chip blackbody emitters in the near-infrared region including telecommunication wavelength. Their emission responses are strongly affected by the graphene contact with the substrate depending on the number of graphene layers. The ultra-high-speed emission can be understood by remote quantum thermal transport via surface polar phonons of the substrates. We demonstrated real-time optical communications, integrated two-dimensional array emitters, capped emitters operable in air, and the direct coupling of optical fibers to the emitters. These emitters can open new routes to on-Si-chip, small footprint, and high-speed emitters for highly integrated optoelectronics and silicon photonics.

  4. Why is my alfalfa yellow?

    USDA-ARS?s Scientific Manuscript database

    In 2016, many parts of the Midwest experienced far wetter than normal summer weather and by August or September, many growers were asking, “Why is my alfalfa yellow?” When all or part of an alfalfa field is yellow, it is a certain sign that something has gone wrong. In this case the problem in most ...

  5. Financial maturity of yellow birch

    Treesearch

    William B. Leak

    1969-01-01

    The methods used to compute financial maturity of yellow birch sawtimber are similar to those used for paper birch sawtimber, except for minor differences in detail. The procedure followed for yellow-birch veneer-log trees was also similar, except that local veneer grades and local veneer-log prices were used as the basis for the financial maturity computations.

  6. Ultrafast Graphene Light Emitters.

    PubMed

    Kim, Young Duck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Bae, Myung-Ho; Kim, Hyungsik; Seo, Dongjea; Choi, Heon-Jin; Kim, Suk Hyun; Nemilentsau, Andrei; Low, Tony; Tan, Cheng; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Shepard, Kenneth L; Heinz, Tony F; Englund, Dirk; Hone, James

    2018-02-14

    Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.

  7. Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.

    1994-07-01

    Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.

  8. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning

    PubMed Central

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111

  9. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning.

    PubMed

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-02-25

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches.

  10. Compact Rare Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  11. Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Forrest, Stephen R.

    2013-12-01

    In organic materials, triplet-triplet annihilation (TTA) can be dominated by triplet diffusion or triplet-to-triplet energy transfer. Here, we discuss the diffusion and transfer dominated mechanisms in the context of photoluminescence (PL) transient measurements from thin films of archetype phosphorescent organic light emitters based on Ir and Pt complexes. We find that TTA in these emitters is controlled by diffusion due to a Dexter-type exchange interaction, suggesting triplet radiative decay and TTA are independent processes. Minimizing the PL and absorption spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at high brightness.

  12. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NASA Astrophysics Data System (ADS)

    Kruit, P.; Bezuijen, M.; Barth, J. E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.

  13. Viscerotropic disease following yellow fever vaccination in Peru.

    PubMed

    Whittembury, Alvaro; Ramirez, Gladys; Hernández, Herminio; Ropero, Alba Maria; Waterman, Steve; Ticona, María; Brinton, Margo; Uchuya, Jorge; Gershman, Mark; Toledo, Washington; Staples, Erin; Campos, Clarense; Martínez, Mario; Chang, Gwong-Jen J; Cabezas, Cesar; Lanciotti, Robert; Zaki, Sherif; Montgomery, Joel M; Monath, Thomas; Hayes, Edward

    2009-10-09

    Five suspected cases of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) clustered in space and time following a vaccination campaign in Ica, Peru in 2007. All five people received the same lot of 17DD live attenuated yellow fever vaccine before their illness; four of the five died of confirmed YEL-AVD. The surviving case was classified as probable YEL-AVD. Intensive investigation yielded no abnormalities of the implicated vaccine lot and no common risk factors. This is the first described space-time cluster of yellow fever viscerotropic disease involving more than two cases. Mass yellow fever vaccination should be avoided in areas that present extremely low risk of yellow fever.

  14. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    NASA Astrophysics Data System (ADS)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  15. [Effect of transparent yellow and orange colored contact lenses on color discrimination in the yellow color range].

    PubMed

    Schürer, M; Walter, A; Brünner, H; Langenbucher, A

    2015-08-01

    Colored transparent filters cause a change in color perception and have an impact on the perceptible amount of different colors and especially on the ability to discriminate between them. Yellow or orange tinted contact lenses worn to enhance contrast vision by reducing or blocking short wavelengths also have an effect on color perception. The impact of the yellow and orange tinted contact lenses Wöhlk SPORT CONTRAST on color discrimination was investigated with the Erlangen colour measurement system in a study with 14 and 16 subjects, respectively. In relation to a yellow reference color located at u' = 0.2487/v' = 0.5433, measurements of color discrimination thresholds were taken in up to 6 different color coordinate axes. Based on these thresholds, color discrimination ellipses were calculated. These results are given in the Derrington, Krauskopf and Lennie (DKL) color system. Both contact lenses caused a shift of the reference color towards higher saturated colors. Color discrimination ability with the yellow and orange colored lenses was significantly enhanced along the blue-yellow axis in comparison to the reference measurements without a tinted filter. Along the red-green axis only the orange lens caused a significant reduction of color discrimination threshold distance to the reference color. Yellow and orange tinted contact lenses enhance the ability of color discrimination. If the transmission spectra and the induced changes are taken into account, these results can also be applied to other filter media, such as blue filter intraocular lenses.

  16. Polarization measurements made on LFRA and OASIS emitter arrays

    NASA Astrophysics Data System (ADS)

    Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James

    2008-04-01

    Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.

  17. Emittance studies of the 2.45 GHz permanent magnet ECR ion source

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.

    2004-05-01

    During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.

  18. Minimizing yellow-bellied sapsucker damage

    Treesearch

    Gayne G. Erdmann; Ralph M., Jr. Peterson

    1992-01-01

    The yellow-bellied sapsucker is a migratory woodpecker that feeds on a wide variety of orchard, shade, and forest trees. Instead of drilling holes to find insects like other woodpeckers, sapsuckers drill holes in living trees to feed on sap and phloem tissues. Yellow and paper birches are their favorite summer food sources on their nesting grounds in Upper Michigan and...

  19. Silvical Characteristics of Yellow-Poplar

    Treesearch

    David F. Olson

    1969-01-01

    Yellow-poplar (Liriorlentlron tulipifera L.) is also commonly known as tulip poplar, tulip tree, white-poplar, whitewood, and "poplar" (60). It gets its name from the tulip-like flowers which it bears in the late spring. Because of the excellent form and rapid growth of the tree, plus the fine working qualities of the wood, yellow-poplar is one of the most...

  20. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  1. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  2. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John [Menlo Park, CA

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  3. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less

  4. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    DOE PAGES

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; ...

    2014-03-28

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less

  5. Decoupling Intensity Radiated by the Emitter in Distance Estimation from Camera to IR Emitter

    PubMed Central

    Cano-García, Angel E.; Galilea, José Luis Lázaro; Fernández, Pedro; Infante, Arturo Luis; Pompa-Chacón, Yamilet; Vázquez, Carlos Andrés Luna

    2013-01-01

    Various models using radiometric approach have been proposed to solve the problem of estimating the distance between a camera and an infrared emitter diode (IRED). They depend directly on the radiant intensity of the emitter, set by the IRED bias current. As is known, this current presents a drift with temperature, which will be transferred to the distance estimation method. This paper proposes an alternative approach to remove temperature drift in the distance estimation method by eliminating the dependence on radiant intensity. The main aim was to use the relative accumulated energy together with other defined models, such as the zeroth-frequency component of the FFT of the IRED image and the standard deviation of pixel gray level intensities in the region of interest containing the IRED image. By using the abovementioned models, an expression free of IRED radiant intensity was obtained. Furthermore, the final model permitted simultaneous estimation of the distance between the IRED and the camera and the IRED orientation angle. The alternative presented in this paper gave a 3% maximum relative error over a range of distances up to 3 m. PMID:23727954

  6. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  7. Crystal structure of 9-butyl-6-[2-(pyridin-4-yl)ethen­yl]carbazol-3-amine

    PubMed Central

    Zhang, Ping; Bai, Xiang-Yang; Zhang, Ting

    2015-01-01

    The asymmetric unit of the title compound, C23H23N3, consists of two mol­ecules, A and B, with different conformations. In mol­ecule A, the dihedral angle between the carbazole ring system (r.m.s. deviation = 0.028 Å) and the pyridine ring is 20.28 (9)° and the N—C—C—C torsion angle of the butyl side chain is −63.4 (3)°. The equivalent data for mol­ecule B are 0.065 Å, 48.28 (11)° and 61.0 (3)°, respectively. In the crystal, the components are connected by weak N—H⋯N hydrogen bonds, generating [030] C(14) chains of alternating A and B mol­ecules. PMID:25995940

  8. Simple-to-prepare multipoint field emitter

    NASA Astrophysics Data System (ADS)

    Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.

    2015-07-01

    We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.

  9. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.

    PubMed

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-11-07

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300  μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.

  10. Spectral Emittance of Uncoated and Ceramic-Coated Inconel and Type 321 Stainless Steel

    NASA Technical Reports Server (NTRS)

    Richmond, Joseph C.; Stewart, James E.

    1959-01-01

    The normal spectral emittance of Inconel and type 321 stainless steel with different surface treatments was measured at temperatures of 900, 1,200, 1,500, and 1,800 F over a wavelength range of 1.5 to 15 microns. The measurements involved comparison of the radiant energy emitted by the heated specimen with that emitted by a comparison standard at the same temperature by means of a recording double-beam infrared spectrophotometer. The silicon carbide comparison standard had previously been calibrated against a laboratory black-body furnace. Surface treatments included electropolishing, sandblasting, electro-polishing followed by oxidation in air for 1/2 hour at 1,800 F, sandblasting followed by oxidation in air for 1/2 hour at 1,800 F, application of National Bureau of Standards coating A-418, and application of NBS ceramic coating N-143. The normal spectral emittance of both alloys in the electropolished condition was low and decreased very slightly with increasing wavelength while in the sandblasted condition it was somewhat higher and did not vary appreciably with wavelength. The oxidation treatment greatly increased the normal spectral emittance of both the electropolished and sandblasted type 321 stainless steel specimens and of the electropolished Inconel specimens and introduced some spectral selectivity into the curves. The oxidation increased the normal spectral emittance of the sandblasted Inconel specimens only moderately. Of the specimens to which a coating about 0.002 inch thick was applied, those coated with A-418 had higher emittance at all wavelengths than did those coated with N-143, and the coated specimens of Inconel had higher spectral emittance at all wavelengths than did the corresponding specimens of type 321 stainless steel. Both coatings were found to be partially transparent to the emitted energy at this thickness but essentially opaque at a thickness of 0.005 inch. Coated specimens with 0.005 inch or more of coating did not show the effect

  11. Dermatology Internet Yellow Page advertising.

    PubMed

    Francis, Shayla; Kozak, Katarzyna Z; Heilig, Lauren; Lundahl, Kristy; Bowland, Terri; Hester, Eric; Best, Arthur; Dellavalle, Robert P

    2006-07-01

    Patients may use Internet Yellow Pages to help select a physician. We sought to describe dermatology Internet Yellow Page advertising. Dermatology advertisements in Colorado, California, New York, and Texas at 3 Yellow Page World Wide Web sites were systematically examined. Most advertisements (76%; 223/292) listed only one provider, 56 listed more than one provider, and 13 listed no practitioner names. Five advertisements listed provider names without any credentialing letters, 265 listed at least one doctor of medicine or osteopathy, and 9 listed only providers with other credentials (6 doctors of podiatric medicine and 3 registered nurses). Most advertisements (61%; 179/292) listed a doctor of medicine or osteopathy claiming board certification, 78% (139/179) in dermatology and 22% (40/179) in other medical specialties. Four (1%; 4/292) claims of board certification could not be verified (one each in dermatology, family practice, dermatologic/cosmetologic surgery, and laser surgery). Board certification could be verified for most doctors of medicine and osteopathy not advertising claims of board certification (68%; 41/60; 32 dermatology, 9 other specialties). A total of 50 advertisements (17%) contained unverifiable or no board certification information, and 47 (16%) listed a physician with verifiable board certification in a field other than dermatology. All Internet Yellow Page World Wide Web sites and all US states were not examined. Nonphysicians, physicians board certified in medical specialties other than dermatology, and individuals without verifiable board certification in any medical specialty are advertising in dermatology Internet Yellow Pages. Many board-certified dermatologists are not advertising this certification.

  12. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  13. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  14. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  15. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  16. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  17. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.

    1998-10-20

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.

  18. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.

    1998-01-01

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.

  19. Yellow fever: the recurring plague.

    PubMed

    Tomori, Oyewale

    2004-01-01

    Despite the availability of a safe and efficacious vaccine, yellow fever (YF) remains a disease of significant public health importance, with an estimated 200,000 cases and 30,000 deaths annually. The disease is endemic in tropical regions of Africa and South America; nearly 90% of YF cases and deaths occur in Africa. It is a significant hazard to unvaccinated travelers to these endemic areas. Virus transmission occurs between humans, mosquitoes, and monkeys. The mosquito, the true reservoir of YF, is infected throughout its life, and can transmit the virus transovarially through infected eggs. Man and monkeys, on the other hand, play the role of temporary amplifiers of the virus available for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean, the Middle East, Asia, Australia, and Oceania. It is an acute infectious disease characterized by sudden onset with a two-phase development, separated by a short period of remission. The clinical spectrum of yellow fever varies from very mild, nonspecific, febrile illness to a fulminating, sometimes fatal disease with pathognomic features. In severe cases, jaundice, bleeding diathesis, with hepatorenal involvement are common. The case fatality rate of severe yellow fever is 50% or higher. The pathogenesis and pathophysiology of the disease are poorly understood and have not been the subject of modern clinical research. There is no specific treatment for YF, making the management of YF patients extremely problematic. YF is a zoonotic disease that cannot be eradicated, therefore instituting preventive vaccination through routine childhood vaccination in endemic countries, can significantly reduce the burden of the disease. The distinctive properties of lifelong immunity after a single dose of yellow fever vaccination are the

  20. Mirrorless lasing from light emitters in percolating clusters

    NASA Astrophysics Data System (ADS)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  1. Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters.

    PubMed

    Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona

    2013-07-08

    In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).

  2. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  3. Rec.2100 color gamut revelation using spectrally ultranarrow emitters

    NASA Astrophysics Data System (ADS)

    Genc, Sinan; Uguz, Mustafa; Yilmaz, Osman; Mutlugun, Evren

    2017-11-01

    We theoretically simulate the performance of ultranarrow emitters for the first time to achieve record high coverage for the International Telecommunication Union Radiocommunication Sector BT.2100 (Rec.2100) and National Television System Committee (NTSC) color gamut. Our results, employing more than 130-m parameter sets, include the investigation into peak emission wavelength and full width at half maximum (FWHM) values for three primaries that show ultranarrow emitters, i.e., nanoplatelets are potentially promising materials to fully cover the Rec.2100 color gamut. Using ultranarrow emitters having FWHM as low as 6 nm can provide the ability to attain 99.7% coverage area of the Rec.2100 color gamut as well as increasing the NTSC triangle to 133.7% with full coverage. The parameter set that provides possibility to fully reach Rec.2100 also has been shown to match with D65 white light by making use of the correct combination of those three primaries. Furthermore, we investigate the effect of the fourth color component on the CIE 1931 color space without sacrificing the achieved coverage percentages. The investigation into the fourth color component, cyan, is shown for the first time to enhance the Rec.2100 gamut area to 127.7% with 99.9% coverage. The fourth color component also provides an NTSC coverage ratio of 171.5%. The investigation into the potential of emitters with ultranarrow emission bandwidth holds great promise for future display applications.

  4. N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator.

    PubMed

    Montbarbon, Eva; Sguerra, Fabien; Bertrand, Guillaume H V; Magnier, Élodie; Coulon, Romain; Pansu, Robert B; Hamel, Matthieu

    2016-08-16

    The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New-type planar field emission display with superaligned carbon nanotube yarn emitter.

    PubMed

    Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.

  6. Influence of the Yellow Sea Warm Current on phytoplankton community in the central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Chiang, Kuo-Ping; Liu, Su-Mei; Wei, Hao; Zhao, Yuan; Huang, Bang-Qin

    2015-12-01

    In early spring, a hydrological front emerges in the central Yellow Sea, resulting from the intrusion of the high temperature and salinity Yellow Sea Warm Current (YSWC). The present study, applying phytoplankton pigments and flow cytometry measurements in March of 2007 and 2009, focuses on the biogeochemical effects of the YSWC. The nutrients fronts were coincident with the hydrological front, and a positive linear relationship between nitrate and salinity was found in the frontal area. This contrast with the common situation of coastal waters where high salinity values usually correlate with poor nutrients. We suggested nutrient concentrations of the YSWC waters might have been enhanced by mixing with the local nutrient-rich waters when it invaded the Yellow Sea from the north of the Changjiang estuary. In addition, our results indicate that the relative abundance of diatoms ranged from 26% to 90%, showing a higher value in the YSCC than in YSWC waters. Similar distributions were found between diatoms and dinoflagellates, however the cyanobacteria and prasinophytes showed an opposite distribution pattern. Good correlations were found between the pigments and flow cytometry observations on the picophytoplankton groups. Prasinophytes might be the major contributor to pico-eukaryotes in the central Yellow Sea as similar distributional patterns and significant correlations between them. It seems that the front separates the YSWC from the coastal water, and different phytoplankton groups are transported in these water masses and follow their movement. These results imply that the YSWC plays important roles in the distribution of nutrients, phytoplankton biomass and also in the community structure of the central Yellow Sea.

  7. Long-lived and highly efficient green and blue phosphorescent emitters and device architectures for OLED displays

    NASA Astrophysics Data System (ADS)

    Eickhoff, Christian; Murer, Peter; Geßner, Thomas; Birnstock, Jan; Kröger, Michael; Choi, Zungsun; Watanabe, Soichi; May, Falk; Lennartz, Christian; Stengel, Ilona; Münster, Ingo; Kahle, Klaus; Wagenblast, Gerhard; Mangold, Hannah

    2015-09-01

    In this paper, two OLED device concepts are introduced. First, classical phosphorescent green carbene emitters with unsurpassed lifetime, combined with low voltage and high efficiency are presented and the associated optimized OLED stacks are explained. Second, a path towards highly efficient, long-lived deep blue systems is shown. The high efficiencies can be reached by having the charge-recombination on the phosphorescent carbene emitter while at the same time short emissive lifetimes are realized by fast energy transfer to the fluorescent emitter, which eventually allows for higher OLED stability in the deep blue. Device architectures, materials and performance data are presented showing that carbene type emitters have the potential to outperform established phosphorescent green emitters both in terms of lifetime and efficiency. The specific class of green emitters under investigation shows distinctly larger electron affinities (2.1 to 2.5 eV) and ionization potentials (5.6 to 5.8 eV) as compared to the "standard" emitter Ir(ppy)3 (5.0/1.6 eV). This difference in energy levels requires an adopted OLED design, in particular with respect to emitter hosts and blocking layers. Consequently, in the diode setup presented here, the emitter species is electron transporting or electron trapping. For said green carbene emitters, the typical peak wavelength is 525 nm yielding CIE color coordinates of (x = 0.33, y = 0.62). Device data of green OLEDs are shown with EQEs of 26 %. Driving voltage at 1000 cd/m2 is below 3 V. In an optimized stack, a device lifetime of LT95 > 15,000 h (1000 cd/m2) has been reached, thus fulfilling AMOLED display requirements.

  8. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66 gallons...

  9. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66 gallons...

  10. Quantum memory and gates using a Λ -type quantum emitter coupled to a chiral waveguide

    NASA Astrophysics Data System (ADS)

    Li, Tao; Miranowicz, Adam; Hu, Xuedong; Xia, Keyu; Nori, Franco

    2018-06-01

    By coupling a Λ -type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the swap gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.

  11. The Effect of Temperature on the Radiative Performance of Ho-Yag Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1995-01-01

    We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.

  12. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  13. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays

    PubMed Central

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-01-01

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1–5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths. PMID:27916999

  14. Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation

    DOEpatents

    Ormesher, Richard C.; Bickel, Douglas L

    2012-10-23

    The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.

  15. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator - presentation slides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, Kent

    2015-09-17

    Direct emittance measurement based on vertical undulator is discussed. Emittance was evaluated from peak ratios, the smallest measured being =0.9 ±0.3 pm rad. The angular distribution of undulator radiation departs from Gaussian approximations, a fact of which diffraction-limited light sources should be aware.

  16. Evidence of low injection efficiency for implanted p-emitters in bipolar 4H-SiC high-voltage diodes

    NASA Astrophysics Data System (ADS)

    Matthus, Christian D.; Huerner, Andreas; Erlbacher, Tobias; Bauer, Anton J.; Frey, Lothar

    2018-06-01

    In this study, the influence of the emitter efficiency on the forward current-voltage characteristics, especially the conductivity modulation of bipolar SiC-diodes was analyzed. It was determined that the emitter efficiency of p-emitters formed by ion implantation is significantly lower compared to p-emitters formed by epitaxy. In contrast to comparable studies, experimental approach was arranged that the influence of the quality of the drift-layer or the thickness of the emitter on the conductivity modulation could be excluded for the fabricated bipolar SiC-diodes of this work. Thus, it can be established that the lower emitter injection efficiency is mainly caused by the reduced electron lifetime in p-emitters formed by ion implantation. Therefore, a significant enhancement of the electron lifetime in implanted p-emitters is mandatory for e.g. SiC-MPS-diodes where the functionality of the devices depends significantly on the injection efficiency.

  17. Optical and Photophysical Investigation of (2E)-1-(2,5-Dimethylfuran-3-Yl)-3-(9-Ethyl-9H-Carbazol-3-Yl)Prop-2-en-1-One (DEPO) by Spectrofluorometer in Organized Medium.

    PubMed

    Asiri, Abdullah M; Al-Dies, Al-Anood M; Khan, Salman A

    2017-07-01

    (2E)-1-(2,5-dimethylfuran-3-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (DEPO) was prepared by the reaction of 9-ethyl-9H-carbazole-3-carbaldehyde with 1-(2,5-dimethylfuran-3-yl)ethanone under microwave irradiation. The structure of DEPO was established experimentally by EI-MS, FT-IR, 1 H and 13 C NMR spectral studies. Electronic absorption and emission spectra of DEPO were studied in different solvents on the basis of polarities, and the obtain data were used to determine the solvatochromic properties such as extinction coefficient, oscillator strength, transition dipole moment, stokes shift, fluorescence quantum yield and photochemical quantum yield. Photochemical quantum yield (Φ c ) of DEPO dye was determined in different solvent. The dye comparatively photostable in DMSO but undergoes photodecomposition in chloro methane solvents. The DEPO dye may be use as probe or quencher to determine critical micelle concentration (CMC) of cetyltri methyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS).

  18. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...

  19. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...

  20. Fowler Nordheim theory of carbon nanotube based field emitters

    NASA Astrophysics Data System (ADS)

    Parveen, Shama; Kumar, Avshish; Husain, Samina; Husain, Mushahid

    2017-01-01

    Field emission (FE) phenomena are generally explained in the frame-work of Fowler Nordheim (FN) theory which was given for flat metal surfaces. In this work, an effort has been made to present the field emission mechanism in carbon nanotubes (CNTs) which have tip type geometry at nanoscale. High aspect ratio of CNTs leads to large field enhancement factor and lower operating voltages because the electric field strength in the vicinity of the nanotubes tip can be enhanced by thousand times. The work function of nanostructure by using FN plot has been calculated with reverse engineering. With the help of modified FN equation, an important formula for effective emitting area (active area for emission of electrons) has been derived and employed to calculate the active emitting area for CNT field emitters. Therefore, it is of great interest to present a state of art study on the complete solution of FN equation for CNTs based field emitter displays. This manuscript will also provide a better understanding of calculation of different FE parameters of CNTs field emitters using FN equation.

  1. Yellow Fever Outbreak, Southern Sudan, 2003

    PubMed Central

    Onyango, Clayton O.; Grobbelaar, Antoinette A.; Gibson, Georgina V.F.; Sang, Rosemary C.; Sow, Abdourahmane; Swanepoel, Robert

    2004-01-01

    In May 2003, an outbreak of fatal hemorrhagic fever, caused by yellow fever virus, occurred in southern Sudan. Phylogenetic analysis showed that the virus belonged to the East African genotype, which supports the contention that yellow fever is endemic in East Africa with the potential to cause large outbreaks in humans. PMID:15498174

  2. The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Gonzalez-Perez, V.; Comparat, J.; Norberg, P.; Baugh, C. M.; Contreras, S.; Lacey, C.; McCullagh, N.; Orsi, A.; Helly, J.; Humphries, J.

    2018-03-01

    Emission line galaxies (ELGs) are used in several ongoing and upcoming surveys (SDSS-IV/eBOSS, DESI) as tracers of the dark matter distribution. Using a new galaxy formation model, we explore the characteristics of [O II] emitters, which dominate optical ELG selections at z ≃ 1. Model [O II] emitters at 0.5 < z < 1.5 are selected to mimic the DEEP2, VVDS, eBOSS and DESI surveys. The luminosity functions of model [O II] emitters are in reasonable agreement with observations. The selected [O II] emitters are hosted by haloes with Mhalo ≥ 1010.3h-1M⊙, with ˜90 per cent of them being central star-forming galaxies. The predicted mean halo occupation distributions of [O II] emitters have a shape typical of that inferred for star-forming galaxies, with the contribution from central galaxies, < N > _{[O II] cen}, being far from the canonical step function. The < N > _{[O II] cen}} can be described as the sum of an asymmetric Gaussian for discs and a step function for spheroids, which plateau below unity. The model [O II] emitters have a clustering bias close to unity, which is below the expectations for eBOSS and DESI ELGs. At z ˜ 1, a comparison with observed g-band-selected galaxy, which is expected to be dominated by [O II] emitters, indicates that our model produces too few [O II] emitters that are satellite galaxies. This suggests the need to revise our modelling of hot gas stripping in satellite galaxies.

  3. Various Measures of the Effectiveness of Yellow Goggles

    DTIC Science & Technology

    1980-10-08

    technique which is widely used r.o improve vision under these conditions is the use of yellow goggles. Skiers commonly don yellow goggles...different laboratory studies are presented. Two of the studies were of depth perception, since skiers believe that yellow goggles help them...selected for measurement because of practical considerations and theoretical implications. EXPERIMENTS ON DEPTH PERCEPTION Background Since skiers

  4. Atmospheric corrections for TIMS estimated emittance

    NASA Technical Reports Server (NTRS)

    Warner, T. A.; Levandowski, D. W.

    1992-01-01

    The estimated temperature of the average of 500 lines of Thermal Infrared Multispectral Scanner (TIMS) data of the Pacific Ocean, from flight line 94, collected on 30 Sep. 1988, at 1931 GMT is shown. With no atmospheric corrections, estimated temperature decreases away from nadir (the center of the scan line). A LOWTRAN modeled correction, using local radiosonde data and instrument scan angle information, results in reversed limb darkening effects for most bands, and does not adequately correct all bands to the same temperature. The atmosphere tends to re-radiate energy at the wavelengths at which it most absorbs, and thus the overall difference between corrected and uncorrected temperatures is approximately 40 C, despite the average LOWTRAN calculated transmittance of only 60 percent between 8.1 and 11.6 microns. An alternative approach to atmospheric correction is a black body normalization. This is done by calculating a normalization factor for each pixel position and wavelength, which when applied results in a single calculated temperature, as would be expected for a gray body with near uniform emittance. The black body adjustment is based on the atmospheric conditions over the sea. The ground elevation profile along the remaining 3520 scan lines (approximately 10 km) of flight line 94, up the slopes of Kilauea, determined from aircraft pressure and laser altimeter data is shown. This flight line includes a large amount of vegetation that is clearly discernible on the radiance image, being much cooler than the surrounding rocks. For each of the 3520 scan lines, pixels were classified as vegetation or 'other'. A moving average of 51 lines was applied to the composite vegetation emittance for each scan line, to reduce noise. Assuming vegetation to be like water, and to act as gray body with an emittance of 0.986 across the spectrum, it is shown that that the LOWTRAN induced artifacts are severe, and other than for the 0.9.9 micron channel, not significantly

  5. Variable Emittance Electrochromic Devices for Satellite Thermal Control

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C.

    2007-01-01

    An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.

  6. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  7. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  8. Dusty Lyman-alpha Emitters As Seen By Spitzer

    NASA Astrophysics Data System (ADS)

    Dolan, Kyle; Scarlata, C.; Colbert, J. W.; Teplitz, H. I.; Hayes, M.

    2013-01-01

    We have used the IRAC and MIPS Spitzer archive to derive the full mid-IR SED for the largest sample of local Lyman-alpha emitters, probing the internal activities of these sources as well as analyzing the role that dust properties play in the Lyman-alpha escape fraction. We utilized all available IRAC and MIPS data for a sample of about 100 local Lyman-alpha emitters at redshift 0.2≤z≤0.4 , originally discovered by Deharveng et al. (2008) and Cowie et al. (2011), to quantify the level of star formation (SF) and AGN activity in these sources, probing into dust-enshrouded regions that block UV and optical photons from escaping. In order to derive the total bolometric IR luminosity from 8μm to 1000μm, we fit the IR data to the template SEDs derived by Chary and Elbaz (2001). Using this information, we quantified the total star formation rate (SFR) of these galaxies and how much SF is missed by optical and UV surveys. We also identified any AGN activity and produced new estimates for AGN contamination within the population of Lyman-alpha emitters. This work has been supported by NASA's Astrophysics Data Analysis Program, Award # NNX11AH84G.

  9. A system for online beam emittance measurements and proton beam characterization

    NASA Astrophysics Data System (ADS)

    Nesteruk, K. P.; Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Scampoli, P.

    2018-01-01

    A system for online measurement of the transverse beam emittance was developed. It is named 4PrOBεaM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multiple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The 4PrOBεaM system was deployed for characterization studies of the 18 MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.

  10. Effect of electron beam cooling on transversal and longitudinal emittance of an external proton beam

    NASA Astrophysics Data System (ADS)

    Kilian, K.; Machner, H.; Magiera, A.; Prasuhn, D.; von Rossen, P.; Siudak, R.; Stein, H. J.; Stockhorst, H.

    2018-02-01

    Benefits of electron cooling to the quality of extracted ion beams from storage rings are discussed. The transversal emittances of an external proton beam with and without electron cooling at injection energy are measured with the GEM detector assembly. While the horizontal emittance remains the vertical emittance shrinks by the cooling process. The longitudinal momentum variance is also reduced by cooling.

  11. Dimension yields from yellow-poplar lumber

    Treesearch

    R. C. Gilmore; J. D. Danielson

    1984-01-01

    The available supply of yellow poplar (Liriodendron tulipifera L.), its potential for new uses, and its continuing importance to the furniture industry have created a need to accumulate additional information about this species. As an aid to better utilization of this species, charts for determining cutting stock yields from yellow poplar lumber are presented for each...

  12. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    PubMed Central

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  13. The complete nucleotide sequence of the Barley yellow dwarf virus-RMV genome reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    USDA-ARS?s Scientific Manuscript database

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All ...

  14. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    PubMed Central

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902

  15. Boric acid solution concentration influencing p-type emitter formation in n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-09-01

    Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.

  16. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  17. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  18. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  19. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  20. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  1. Development of a pepper pot emittance probe and its application for ECR ion beam studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondrashev, S.; Barcikowski, A.; Mustapha, B.

    2009-07-21

    A pepper pot-scintillator screen system has been developed and used to measure the emittance of DC ion beams extracted from a high-intensity permanent magnet ECR ion source. The system includes a fast beam shutter with a minimum dwell time of 18 ms to reduce the degradation of the CsI(Tl) scintillator by DC ion beam irradiation and a CCD camera with a variable shutter speed in the range of 1 {micro}s-65 s. On-line emittance measurements are performed by an application code developed on a LabVIEW platform. The sensitivity of the device is sufficient to measure the emittance of DC ion beamsmore » with current densities down to about 100 nA/cm{sup 2}. The emittance of all ion species extracted from the ECR ion source and post-accelerated to an energy of 75-90 keV/charge have been measured downstream of the LEBT. As the mass-to-charge ratio of ion species increases, the normalized RMS emittances in both transverse phase planes decrease from 0.5-1.0 {pi} mm mrad for light ions to 0.05-0.09 {pi} mm mrad for highly charged {sup 209}Bi ions. The dependence of the emittance on ion's mass-to-charge ratio follows very well the dependence expected from beam rotation induced by decreasing ECR axial magnetic field. The measured emittance values cannot be explained by only ion beam rotation for all ion species and the contribution to emittance of ion temperature in plasma, non-linear electric fields and non-linear space charge is comparable or even higher than the contribution of ion beam rotation.« less

  2. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm.

    PubMed

    Yuill, Elizabeth M; Sa, Niya; Ray, Steven J; Hieftje, Gary M; Baker, Lane A

    2013-09-17

    Work presented here demonstrates application of nanopipettes pulled to orifice diameters of less than 100 nm as electrospray ionization emitters for mass spectrometry. Mass spectrometric analysis of a series of peptides and proteins electrosprayed from pulled-quartz capillary nanopipette emitters with internal diameters ranging from 37 to 70 nm is detailed. Overall, the use of nanopipette emitters causes a shift toward the production of ions of higher charge states and leads to a reduction in width of charge-state distribution as compared to typical nanospray conditions. Further, nanopipettes show improved S/N and the same signal precision as typical nanospray, despite the much smaller dimensions. As characterized by SEM images acquired before and after spray, nanopipettes are shown to be robust under conditions employed. Analytical calculations and numerical simulations are used to calculate the electric field at the emitter tip, which can be significant for the small diameter tips used.

  3. THE TRANSMISSION OF YELLOW FEVER

    PubMed Central

    Davis, Nelson C.

    1930-01-01

    1. Saimiri sciureus has been infected with yellow fever virus, both by the inoculation of infectious blood and by the bites of infective mosquitoes. Some of the monkeys have died, showing lesions, including hepatic necrosis, suggesting yellow fever as seen in human beings and in rhesus monkeys. Virus has been transferred back to M. rhesus from infected Saimiri both by blood inoculation and by mosquito bites. The virus undoubtedly has been maintained through four direct passages in Saimiri. Reinoculations of infectious material into recovered monkeys have not given rise to invasion of the blood stream by virus. Sera from recovered animals have protected M. rhesus against the inoculation of virus. 2. It has been possible to pass the virus to and from Ateleus ater by the injection of blood or liver and by the bites of mosquitoes. The livers from two infected animals have shown no necrosis. The serum from one recovered monkey proved to be protective for M. rhesus. 3. Only three out of twelve Lagothrix lagotricha have reacted to yellow fever virus by a rise in temperature. Probably none have died as a result of the infection. In only one instance has the virus been transferred back to M. rhesus. The sera of recovered animals have had a protective action against yellow fever virus. PMID:19869721

  4. Infrared spectral normal emittance/emissivity comparison

    NASA Astrophysics Data System (ADS)

    Hanssen, L.; Wilthan, B.; Filtz, J.-R.; Hameury, J.; Girard, F.; Battuello, M.; Ishii, J.; Hollandt, J.; Monte, C.

    2016-01-01

    The National Measurement Institutes (NMIs) of the United States, Germany, France, Italy and Japan, have joined in an inter-laboratory comparison of their infrared spectral emittance scales. This action is part of a series of supplementary inter-laboratory comparisons (including thermal conductivity and thermal diffusivity) sponsored by the Consultative Committee on Thermometry (CCT) Task Group on Thermophysical Quantities (TG-ThQ). The objective of this collaborative work is to strengthen the major operative National Measurement Institutes' infrared spectral emittance scales and consequently the consistency of radiative properties measurements carried out worldwide. The comparison has been performed over a spectral range of 2 μm to 14 μm, and a temperature range from 23 °C to 800 °C. Artefacts included in the comparison are potential standards: oxidized Inconel, boron nitride, and silicon carbide. The measurement instrumentation and techniques used for emittance scales are unique for each NMI, including the temperature ranges covered as well as the artefact sizes required. For example, all three common types of spectral instruments are represented: dispersive grating monochromator, Fourier transform and filter-based spectrometers. More than 2000 data points (combinations of material, wavelength and temperature) were compared. Ninety-eight percent (98%) of the data points were in agreement, with differences to weighted mean values less than the expanded uncertainties calculated from the individual NMI uncertainties and uncertainties related to the comparison process. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Protein-Glass Surface Interactions and Ion Desalting in Electrospray Ionization with Submicron Emitters

    NASA Astrophysics Data System (ADS)

    Xia, Zije; Williams, Evan R.

    2018-01-01

    Theta glass electrospray emitters can rapidly mix solutions to investigate fast reactions that occur as quickly as 1 μs, but emitters with submicron tips have the unusual properties of desalting protein ions and affecting the observed abundances of some proteins as a result of protein-surface interactions. The role of protein physical properties on ion signal was investigated using 1.7 ± 0.1 μm and 269 ± 7 nm emitters and 100 mM aqueous ammonium acetate or ammonium bicarbonate solutions. Protein ion desalting occurs for both positive and negative ions. The signal of a mixture of proteins with the 269 nm tips is time-dependent and the order in which ions of each protein is observed is related to the expected strengths of the protein-surface interactions. These results indicate that it is not just the high surface-to-volume ratio that plays a role in protein adsorption and reduction or absence of initial ion signal, but the small diffusion distance and extremely low flow rates of the smaller emitters can lead to complete adsorption of some proteins and loss of signal until the adsorption sites are filled and the zeta potential is significantly reduced. After about 30 min, signals for a protein mixture from the two different size capillaries are similar. These results show the advantages of submicron emitters but also indicate that surface effects must be taken into account in experiments using such small tips or that coating the emitter surface to prevent adsorption should be considered. [Figure not available: see fulltext.

  6. Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array

    NASA Astrophysics Data System (ADS)

    Kintz, Andrew L.

    This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering

  7. Yellow Fever Vaccine

    MedlinePlus

    ... way to prevent yellow fever is to avoid mosquito bites by:staying in well-screened or air-conditioned areas, wearing clothes that cover most of your body, using an effective insect repellent, such as those containing DEET.

  8. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2015-01-01

    We demonstrate a high-efficiency solar-thermophotovoltaic system (STPV) using a monolithic, planar, and spectrally selective absorber/emitter. A complete STPV system using gallium antimonide (GaSb) cells was designed and fabricated to conduct power generation tests. To produce a high-efficiency STPV, it is important to match the thermal radiation spectrum with the sensitive region of the GaSb cells. Therefore, to reach high temperatures with low incident power, a planar absorber/emitter is incorporated for controlling the thermal radiation spectrum. This multilayer coating consists of thin-film tungsten sandwiched by yttria-stabilized zirconia. The system efficiency is estimated to be 16% when accounting for the optical properties of the fabricated absorber/emitter. Power generation tests using a high-concentration solar simulator show that the absorber/emitter temperature peaks at 1640 K with an incident power density of 45 W/cm2, which can be easily obtained by low-cost optics such as Fresnel lenses. The conversion efficiency became 23%, exceeding the Shockley-Queisser limit for GaSb, with a bandgap of 0.67 eV. Furthermore, a total system efficiency of 8% was obtained with the view factor between the emitter and the cell assumed to be 1.

  9. Fabrication of a Cryogenic Terahertz Emitter for Bolometer Focal Plane Calibrations

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Brown, Ari; Wollack, Edward

    2012-01-01

    A fabrication process is reported for prototype emitters of THz radiation, which operate cryogenically, and should provide a fast, stable blackbody source suitable for characterization of THz devices. The fabrication has been demonstrated and, at the time of this reporting, testing was underway. The emitter is similar to a monolithic silicon bolometer in design, using both a low-noise thermometer and a heater element on a thermally isolated stage. An impedance-matched, high-emissivity coat ing is also integrated to tune the blackbody properties. This emitter is designed to emit a precise amount of power as a blackbody spectrum centered on terahertz frequencies. The emission is a function of the blackbody temperature. An integrated resistive heater and thermometer system can control the temperature of the blackbody with greater precision than previous incarnations of calibration sources that relied on blackbody emission. The emitter is fabricated using a silicon- on-insulator substrate wafer. The buried oxide is chosen to be less than 1 micron thick, and the silicon device thickness is 1-2 microns. Layers of phosphorus compensated with boron are implanted into and diffused throughout the full thickness of the silicon device layer to create the thermometer and heater components. Degenerately doped wiring is implanted to connect the devices to wire-bondable contact pads at the edge of the emitter chip. Then the device is micromachined to remove the thick-handle silicon behind the thermometer and heater components, and to thermally isolate it on a silicon membrane. An impedance- matched emissive coating (ion assisted evaporated Bi) is applied to the back of the membrane to enable high-efficiency emission of the blackbody spectrum.

  10. Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings

    NASA Technical Reports Server (NTRS)

    Chandrasekhar, Prasanna

    2011-01-01

    One of the last remaining technical hurdles with variable emittance devices or skins based on conducting polymer electrochromics is the high solar absorptance of their top surfaces. This high solar absorptance causes overheating of the skin when facing the Sun in space. Existing technologies such as mechanical louvers or loop heat pipes are virtually inapplicable to micro (< 20 kg) and nano (< 5 kg) spacecraft. Novel coatings lower the solar absorption to Alpha(s) of between 0.30 and 0.46. Coupled with the emittance properties of the variable emittance skins, this lowers the surface temperature of the skins facing the Sun to between 30 and 60 C, which is much lower than previous results of 100 C, and is well within acceptable satellite operations ranges. The performance of this technology is better than that of current new technologies such as microelectromechanical systems (MEMS), electrostatics, and electrophoretics, especially in applications involving micro and nano spacecraft. The coatings are deposited inside a high vacuum, layering multiple coatings onto the top surfaces of variable emittance skins. They are completely transparent in the entire relevant infrared region (about 2 to 45 microns), but highly reflective in the visible-NIR (near infrared) region of relevance to solar absorptance.

  11. Yellow fever cases in Asia: primed for an epidemic.

    PubMed

    Wasserman, Sean; Tambyah, Paul Anantharajah; Lim, Poh Lian

    2016-07-01

    There is currently an emerging outbreak of yellow fever in Angola. Cases in infected travellers have been reported in a number of other African countries, as well as in China, representing the first ever documented cases of yellow fever in Asia. There is a large Chinese workforce in Angola, many of whom may be unvaccinated, increasing the risk of ongoing importation of yellow fever into Asia via busy commercial airline routes. Large parts of the region are hyperendemic for the related Flavivirus dengue and are widely infested by Aedes aegypti, the primary mosquito vector of urban yellow fever transmission. The combination of sustained introduction of viraemic travellers, an ecology conducive to local transmission, and an unimmunized population raises the possibility of a yellow fever epidemic in Asia. This represents a major global health threat, particularly in the context of a depleted emergency vaccine stockpile and untested surveillance systems in the region. In this review, the potential for a yellow fever outbreak in Asia is discussed with reference to the ecological and historical forces that have shaped global yellow fever epidemiology. The limitations of surveillance and vector control in the region are highlighted, and priorities for outbreak preparedness and response are suggested. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Biology and biological control of Dalmatian and yellow toadflax

    Treesearch

    Sharlene E. Sing; Rosemarie De Clerck-Floate; Richard W. Hansen; Hal Pearce; Carol Bell Randall; Ivo Tosevski; Sarah M. Ward

    2016-01-01

    Dalmatian toadflax, Linaria dalmatica (L.) Mill., and yellow toadflax, Linaria vulgaris Mill., are exotic weeds of rangeland, grassland, forests, and cropland. Both Dalmatian and yellow toadflax are short-lived perennial forbs that are easily recognized by their yellow snapdragon- like flowers (Figure 1a, 1b). Both species propagate by seed and vegetatively...

  13. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.

    PubMed

    Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe

    2017-05-05

    Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.

  14. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures

    NASA Astrophysics Data System (ADS)

    Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe

    2017-05-01

    Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.

  15. Photon scattering from a system of multilevel quantum emitters. I. Formalism

    NASA Astrophysics Data System (ADS)

    Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.

    2018-04-01

    We introduce a formalism to solve the problem of photon scattering from a system of multilevel quantum emitters. Our approach provides a direct solution of the scattering dynamics. As such the formalism gives the scattered fields' amplitudes in the limit of a weak incident intensity. Our formalism is equipped to treat both multiemitter and multilevel emitter systems, and is applicable to a plethora of photon-scattering problems, including conditional state preparation by photodetection. In this paper, we develop the general formalism for an arbitrary geometry. In the following paper (part II) S. Das et al. [Phys. Rev. A 97, 043838 (2018), 10.1103/PhysRevA.97.043838], we reduce the general photon-scattering formalism to a form that is applicable to one-dimensional waveguides and show its applicability by considering explicit examples with various emitter configurations.

  16. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  17. 33 CFR 117.225 - Yellow Mill Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Yellow Mill Channel. 117.225 Section 117.225 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.225 Yellow Mill Channel. The...

  18. The anodic emitter effect and its inversion demonstrated by temperature measurements at doped and undoped tungsten electrodes

    NASA Astrophysics Data System (ADS)

    Hoebing, T.; Bergner, A.; Hermanns, P.; Mentel, J.; Awakowicz, P.

    2016-04-01

    The admixture of a small amount of emitter oxides, e.g. \\text{Th}{{\\text{O}}2} , \\text{L}{{\\text{a}}2}{{\\text{O}}3} or \\text{C}{{\\text{e}}2}{{\\text{O}}3} to tungsten generates the so-called emitter effect. It reduces the work function of tungsten cathodes, that are applied in high intensity discharge (HID) lamps. After leaving the electrode bulk and moving to the surface, a monolayer of Th, La, or Ce atoms is formed on the surface, which reduces the effective work function ϕ. Depending on the coverage of the electrode, the effective reduction in ϕ is subjected to the thermal desorption of the monolayer from the hot electrode surface. The thermal desorption of emitter atoms from the cathode is compensated not only by the supply from the interior of the electrode and by surface diffusion of the emitter material to its tip, but also to a large extent by a repatriation of the emitter ions from the plasma by the strong electric field in front of the cathode. Yet, an emitter ion current from the arc discharge to the anode may only be present, if the anode is cold enough to refrain from thermionic emission. Therefore, the ability of emitter oxides to reduce the temperature of tungsten anodes is only given for a moderate temperature so that the thermal desorption is low and an additional ion current is present in front of the anode. A higher electrode temperature leads to their evaporation and to an inversion of the emitter effect, which increases the temperature of the respective anodes in comparison with pure tungsten anodes. Within this article, the emitter effect of doped tungsten anodes and the transition to its inversion is investigated for thoriated, lanthanated, and ceriated tungsten electrodes by measurements of the electrode temperature in dependence on the discharge current. It is shown for a lanthanated and a ceriated anode that the emitter effect is sustained by an ion current at anode temperatures at which the thermal evaporation of emitter material

  19. International travel between global urban centres vulnerable to yellow fever transmission.

    PubMed

    Brent, Shannon E; Watts, Alexander; Cetron, Martin; German, Matthew; Kraemer, Moritz Ug; Bogoch, Isaac I; Brady, Oliver J; Hay, Simon I; Creatore, Maria I; Khan, Kamran

    2018-05-01

    To examine the potential for international travel to spread yellow fever virus to cities around the world. We obtained data on the international flight itineraries of travellers who departed yellow fever-endemic areas of the world in 2016 for cities either where yellow fever was endemic or which were suitable for viral transmission. Using a global ecological model of dengue virus transmission, we predicted the suitability of cities in non-endemic areas for yellow fever transmission. We obtained information on national entry requirements for yellow fever vaccination at travellers' destination cities. In 2016, 45.2 million international air travellers departed from yellow fever-endemic areas of the world. Of 11.7 million travellers with destinations in 472 cities where yellow fever was not endemic but which were suitable for virus transmission, 7.7 million (65.7%) were not required to provide proof of vaccination upon arrival. Brazil, China, India, Mexico, Peru and the United States of America had the highest volumes of travellers arriving from yellow fever-endemic areas and the largest populations living in cities suitable for yellow fever transmission. Each year millions of travellers depart from yellow fever-endemic areas of the world for cities in non-endemic areas that appear suitable for viral transmission without having to provide proof of vaccination. Rapid global changes in human mobility and urbanization make it vital for countries to re-examine their vaccination policies and practices to prevent urban yellow fever epidemics.

  20. Distributed proximity sensor system having embedded light emitters and detectors

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1990-01-01

    A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.

  1. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  2. Lost trust: a yellow fever patient response.

    PubMed

    Runge, John S

    2013-12-13

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care.

  3. Lost Trust: A Yellow Fever Patient Response

    PubMed Central

    Runge, John S.

    2013-01-01

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care. PMID:24348220

  4. Efficient triplet harvesting of hybrid white organic light-emitting diodes using thermally activated delayed fluorescence green emitter

    NASA Astrophysics Data System (ADS)

    Lee, Song Eun; Lee, Ho Won; Baek, Hyun Jung; Yun, Tae Jun; Yun, Geum Jae; Kim, Woo Young; Kim, Young Kwan

    2016-10-01

    Hybrid white organic light-emitting diodes (WOLEDs) were fabricated by applying triplet harvesting (TH) using a green thermally activated delayed fluorescence (TADF) emitter. The triplet exciton of the green TADF emitter can be upconverted to its singlet state. The TH involved energy transfer of triplet exciton from a blue fluorescent emitter to a green TADF and red phosphorescent emitters, where they can decay radiatively. In addition, the triplet exciton of the green TADF emitter was energy transferred to its singlet state for a reverse intersystem crossing by green emission. Enhanced hybrid WOLEDs were demonstrated using an efficient green TADF emitter combined with red phosphorescent and blue fluorescent emitters. Hybrid WOLEDs were fabricated with various hole-electron recombination zones as changing blue emitting layer thicknesses. Among these, hybrid WOLEDs showed a maximum external quantum efficiency of 11.23%, luminous efficiency of 29.20 cd/A, and a power efficiency of 26.21 lm/W. Moreover, the WOLED exhibited electroluminescence spectra with Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1000 cd/m2 and a color rendering index of 82 at a practical brightness of 20,000 cd/m2.

  5. Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Nha, Hyunchul; Zubairy, M. Suhail

    2016-11-01

    We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon frequency comb generator.

  6. 21 CFR 137.290 - Self-rising yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Self-rising yellow corn meal. 137.290 Section 137... Cereal Flours and Related Products § 137.290 Self-rising yellow corn meal. Self-rising yellow corn meal conforms to the definition and standard of identity prescribed by § 137.270 for self-rising white corn meal...

  7. 21 CFR 137.290 - Self-rising yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Self-rising yellow corn meal. 137.290 Section 137... Cereal Flours and Related Products § 137.290 Self-rising yellow corn meal. Self-rising yellow corn meal conforms to the definition and standard of identity prescribed by § 137.270 for self-rising white corn meal...

  8. Competition between nonindigenous ruffe and native yellow perch in laboratory studies

    USGS Publications Warehouse

    Savino, Jacqueline F.; Kolar, Cynthia S.

    1996-01-01

    The ruffe Gymnocephalus cernuus is a European percid that was accidently introduced in Duluth Harbor, Lake Superior. This nonindigenous species is closely related to yellow perch Perca flavescens, and because the two species have similar diets and habitat requirements, they are potential competitors. Laboratory studies in aquaria and pools were conducted to determine whether ruffe can compete with yellow perch for food. Ruffe had capture rates similar to those of yellow perch when food was unlimited. Ruffe spent more time than yellow perch over a feeding container before leaving it and searching again, and they also required less time to ingest (or handle) prey. However, the presence of yellow perch shortened the time ruffe spent over foraging areas when food was more limited. In addition, yellow perch were more active than ruffe, as indicated by their more frequent visits to a feeding container. Hence, the outcome of exploitative competition was not conclusive; ruffe appear to have the advantage in some behaviors, yellow perch in others. Ruffe were much more aggressive than yellow perch, and interference competition may be important in the interactions between these species. Our results indicate that ruffe might compete with native yellow perch.

  9. Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.

    2017-03-01

    We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.

  10. Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.

    1994-01-01

    Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.

  11. Influence of Background Genome on Enzymatic Characteristics of Yellow (Ay/-, Avy/-) Mice

    PubMed Central

    Wolff, George L.; Pitot, Henry C.

    1973-01-01

    Identification of the fundamental polypeptide difference between yellow (Ay/-, Avy/-) and non-yellow mice is important for biomedical research because of the influence of the yellow genotype on normal and neoplastic growth and obesity. The complexity of the "yellow mouse syndrome" makes attainment of this objective dependent on the separation of those pleiotropic enzyme differences which are secondary, and depend on the background genome, from those which are primary, and depend primarily on the agouti locus genotype.—Four of nine hepatic enzyme activities assayed simultaneously differed between eight-week-old yellow (Ay/-, Avy/-) and non-yellow (A/-, a/a) male inbred and F1 hybrid mice. Among these four, only cytoplasmic malic enzyme activity was elevated in all yellow mice, as compared with the non-yellow sibs, regardless of background genome. Glucokinase, serine dehydratase, and tyrosine α-ketoglutarate transaminase activities were also changed in yellow mice, but these alterations depended on the background genome.—The ratio of malic enzyme activity to citrate-cleavage enzyme activity, possibly related to the altered fat metabolism of yellow mice, was influenced by background genome as well as by the yellow genotype.——Significant deviations of enzyme activities from mid-parent values among F1 hybrids were associated with particular background genomes; the number of such deviations was larger among yellow mice than among non-yellows and this difference was greater among C3H F1 hybrids than among C57BL/6 F1 hybrids. PMID:4405752

  12. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.

    PubMed

    Song, Jinlin; Si, Mengting; Cheng, Qiang; Luo, Zixue

    2016-02-20

    A thermophotovoltaic system that converts thermal energy into electricity has considerable potential for applications in energy utilization fields. However, intensive emission in a wide spectral and angular range remains a challenge in improving system efficiency. This study proposes the use of a 2D trilayer grating with a tungsten/silica/tungsten (W/SiO2/W) structure on a tungsten substrate as a thermophotovoltaic emitter. The finite-difference time-domain method is employed to simulate the radiative properties of the proposed structure. A broadband high emittance with an average spectral emittance of 0.953 between 600 and 1800 nm can be obtained for both transverse magnetic and transverse electric polarized waves. On the basis of the inductance-capacitance circuit model and dispersion relation analyses, this phenomenon is mainly considered as the combined contribution of surface plasmon polaritons and magnetic polaritons. A parametric study is also conducted on the emittance spectrum of the proposed structure, considering geometric parameters, polar angles, and azimuthal angles for both TM and TE waves. The study demonstrates that the emitter has good wavelength selectivity and polarization insensitivity in a wide geometric and angular range.

  13. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  14. Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond

    DOEpatents

    Sumant, Anirudha V.; Baryshev, Sergey V.; Antipov, Sergey P.

    2016-08-16

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  15. Planar Field Emitters and High Efficiency Photocathodes Based on Ultrananocrystalline Diamond

    NASA Technical Reports Server (NTRS)

    Sumant, Anirudha V. (Inventor); Baryshev, Sergey V. (Inventor); Antipov, Sergey P. (Inventor)

    2016-01-01

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  16. New dendritic gelator bearing carbazole in each branching unit: selected response to fluoride ion in gel phase.

    PubMed

    Xu, Defang; Liu, Xingliang; Lu, Ran; Xue, Pengchong; Zhang, Xiaofei; Zhou, Huipeng; Jia, Junhui

    2011-03-07

    A new dendritic gelator with carbazole as the building block (HBCD) was synthesized. It was found that H-bonding between the amide groups and π-π interaction between the aromatic rings played predominant roles in the gel formation. Meanwhile, significant aggregation-induced emission enhancement was observed in the gel state due to the formation of J-aggregates and the restricted molecular motion. Notably, the gel state of HBCD can be destroyed upon addition of F(-), accompanied by fluorescence enhancement on account of the formation of N-HF(-), which could further lead to the increased coplanarity of HBCD. The sensory capability of HBCD exhibited a high selectivity towards F(-) instead of the Cl(-), Br(-), I(-) and AcO(-) anions, which could be explained by the fact that the steric hindrance of the dendrimer would go against the interactions between the larger anions and HBCD.

  17. International travel between global urban centres vulnerable to yellow fever transmission

    PubMed Central

    Brent, Shannon E; Watts, Alexander; Cetron, Martin; German, Matthew; Kraemer, Moritz UG; Bogoch, Isaac I; Brady, Oliver J; Hay, Simon I; Creatore, Maria I

    2018-01-01

    Abstract Objective To examine the potential for international travel to spread yellow fever virus to cities around the world. Methods We obtained data on the international flight itineraries of travellers who departed yellow fever-endemic areas of the world in 2016 for cities either where yellow fever was endemic or which were suitable for viral transmission. Using a global ecological model of dengue virus transmission, we predicted the suitability of cities in non-endemic areas for yellow fever transmission. We obtained information on national entry requirements for yellow fever vaccination at travellers’ destination cities. Findings In 2016, 45.2 million international air travellers departed from yellow fever-endemic areas of the world. Of 11.7 million travellers with destinations in 472 cities where yellow fever was not endemic but which were suitable for virus transmission, 7.7 million (65.7%) were not required to provide proof of vaccination upon arrival. Brazil, China, India, Mexico, Peru and the United States of America had the highest volumes of travellers arriving from yellow fever-endemic areas and the largest populations living in cities suitable for yellow fever transmission. Conclusion Each year millions of travellers depart from yellow fever-endemic areas of the world for cities in non-endemic areas that appear suitable for viral transmission without having to provide proof of vaccination. Rapid global changes in human mobility and urbanization make it vital for countries to re-examine their vaccination policies and practices to prevent urban yellow fever epidemics. PMID:29875519

  18. Calculated photonic structures for infrared emittance control

    NASA Astrophysics Data System (ADS)

    Rung, Andreas; Ribbing, Carl G.

    2002-06-01

    Using an available program package based on the transfer-matrix method, we calculated the photonic band structure for two different structures: a quasi-three-dimensional crystal of square air rods in a high-index matrix and an opal structure of high-index spheres in a matrix of low index, epsilon = 1.5. The high index used is representative of gallium arsenide in the thermal infrared range. The geometric parameters of the rod dimension, sphere radius, and lattice constants were chosen to give total reflectance for normal incidence, i.e., minimum thermal emittance, in either one of the two infrared atmospheric windows. For these four photonic crystals, the bulk reflectance spectra and the wavelength-averaged thermal emittance as a function of crystal thickness were calculated. The results reveal that potentially useful thermal signature suppression is obtained for crystals as thin as 20-50 mum, i.e., comparable with that of a paint layer.

  19. YELLOW SUPERGIANTS IN THE ANDROMEDA GALAXY (M31)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drout, Maria R.; Massey, Philip; Meynet, Georges

    2009-09-20

    The yellow supergiant content of nearby galaxies can provide a critical test of stellar evolution theory, bridging the gap between the hot, massive stars and the cool red supergiants. But, this region of the color-magnitude diagram is dominated by foreground contamination, requiring membership to somehow be determined. Fortunately, the large negative systemic velocity of M31, coupled to its high rotation rate, provides the means for separating the contaminating foreground dwarfs from the bona fide yellow supergiants within M31. We obtained radial velocities of {approx}2900 individual targets within the correct color-magnitude range corresponding to masses of 12 M{sub sun} and higher.more » A comparison of these velocities to those expected from M31's rotation curve reveals 54 rank-1 (near certain) and 66 rank-2 (probable) yellow supergiant members, indicating a foreground contamination >= 96%. We expect some modest contamination from Milky Way halo giants among the remainder, particularly for the rank-2 candidates, and indeed follow-up spectroscopy of a small sample eliminates four rank 2's while confirming five others. We find excellent agreement between the location of yellow supergiants in the H-R diagram and that predicted by the latest Geneva evolutionary tracks that include rotation. However, the relative number of yellow supergiants seen as a function of mass varies from that predicted by the models by a factor of >10, in the sense that more high-mass yellow supergiants are predicted than those are actually observed. Comparing the total number (16) of >20 M{sub sun} yellow supergiants with the estimated number (24,800) of unevolved O stars indicates that the duration of the yellow supergiant phase is {approx}3000 years. This is consistent with what the 12 M{sub sun} and 15 M{sub sun} evolutionary tracks predict, but disagrees with the 20,000-80,000 year timescales predicted by the models for higher masses.« less

  20. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  1. Interband Tunneling for Hole Injection in III-Nitride Ultraviolet Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Johnson, Jared M.

    Low p-type conductivity and high contact resistance remain a critical problem in wide band gap AlGaN-based ultraviolet light emitters due to the high acceptor ionization energy. In this work, interband tunneling is demonstrated for non-equilibrium injection of holes through the use of ultra-thin polarization-engineered layers that enhance tunneling probability by several orders of magnitude over a PN homojunction. Al 0.3Ga 0.7N interband tunnel junctions with a lowresistance of 5.6 × 10 -4 Ω cm 2 were obtained and integrated on ultraviolet light emitting diodes.Tunnel injection of holes was used to realize GaN-free ultraviolet light emitters with bottom and top n-typemore » Al 0.3Ga 0.7N contacts. At an emission wavelength of 327 nm, stable output power of 6 W/cm 2 at a current density of 120 A/cm 2 with a forward voltage of 5.9 V was achieved. Our demonstration of efficient interband tunneling could enable device designs for higher efficiency ultraviolet emitters.« less

  2. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells

    PubMed Central

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M. Melvin David; Yi, Junsin; Anderson, Wayne A.; Kim, Dong-Wook

    2015-01-01

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell. PMID:25787933

  3. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells.

    PubMed

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M Melvin David; Yi, Junsin; Anderson, Wayne A; Kim, Dong-Wook

    2015-03-19

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.

  4. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.

    PubMed

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-14

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  5. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  6. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  7. Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Saravanabhavan, Munusamy; Sathya, Krishnan; Puranik, Vedavati G.; Sekar, Marimuthu

    2014-01-01

    Carbazole picrate (CP), a new organic compound has been synthesized, characterized by various analytical and spectroscopic technique such as FT-IR, UV-Vis, 1H and 13C NMR spectroscopy. An orthorhombic geometry was proposed based on single crystal XRD study. The thermal stability of the crystal was studied by using thermo-gravimetric and differential thermal analyses and found that it was stable up to 170 °C. Further, the newly synthesized title compound was tested for its in vitro antibacterial and antifungal activity against various bacterial and fungal species. Also, the compound was tested for its binding activity with Calf thymus (CT) DNA and the results show a considerable interaction between CP and CT-DNA.

  8. Analytical and numerical study of New field emitter processing for superconducting cavities

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir; Petrov, Victor

    2018-02-01

    In this article a scientific prove for a new technology to maximize the accelerating gradient in superconducting cavities by processing on higher order mode frequencies is presented. As dominant energy source the heating of field emitters by an induced rf current (rf-heating) is considered. The field emitter structure is assumed to be a chain of conductive particles, which are formed by attractive forces.

  9. Carbazole-based BODIPYs with ethynyl substituents at the boron center: solid-state excimer fluorescence in the VIS/NIR region.

    PubMed

    Maeda, Chihiro; Nagahata, Keiji; Ema, Tadashi

    2017-09-26

    Carbazole-based BODIPYs 1-6 with several different substituents at the boron atom site were synthesized. These dyes fluoresced in the solid state, and 3a with phenylethynyl groups exhibited a red-shifted and broad fluorescence spectrum, which suggested an excimer emission. Its derivatives 3b-n were synthesized, and the relationship between the solid-state emission and crystal packing was investigated. The X-ray crystal structures revealed cofacial dimers that might form excimers. From the structural optimization results, we found that the introduction of mesityl groups hindered intermolecular access and led to reduced interactions between the dimers. In addition, the red-shifted excimer fluorescence suppressed self-absorption, and dyes with ethynyl groups showed solid-state fluorescence in the vis/NIR region.

  10. The developing stages of the Martian yellow storm of 1971

    NASA Technical Reports Server (NTRS)

    Capen, C. F.; Martin, L. J.

    1971-01-01

    A history of the yellow storm on Mars which occurred in 1971 is presented. It is compared to the Great 1956 Yellow Cloud, and possible yellow storms are predicted for 1973. Photographs of the stages of evolution and the path of the storm are included.

  11. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    NASA Astrophysics Data System (ADS)

    Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.

    2017-03-01

    We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  12. A method of treating the non-grey error in total emittance measurements

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.; Henninger, J. H.

    1971-01-01

    In techniques for the rapid determination of total emittance, the sample is generally exposed to surroundings that are at a different temperature than the sample's surface. When the infrared spectral reflectance of the surface is spectrally selective, these techniques introduce an error into the total emittance values. Surfaces of aluminum overcoated with oxides of various thicknesses fall into this class. Because they are often used as temperature control coatings on satellites, their emittances must be accurately known. The magnitude of the error was calculated for Alzak and silicon oxide-coated aluminum and was shown to be dependent on the thickness of the oxide coating. The results demonstrate that, because the magnitude of the error is thickness-dependent, it is generally impossible or impractical to eliminate it by calibrating the measuring device.

  13. Characterization of NiSi nanowires as field emitters and limitations of Fowler-Nordheim model at the nanoscale

    NASA Astrophysics Data System (ADS)

    Belkadi, Amina B.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Nanoscale field emitters are of technological interest because of the anticipated faster turn-on time, better sustainability and compactness. This report focuses on NiSi nanowires as field emitters for two reasons: (a) possible enhancement of field emission in nanoscale field emitters over bulk, and (b) achieving the same field emission properties as in bulk, but at a lower energy cost. To this end, we have grown, fabricated and characterized NiSi nanowires as field emitters. Depending on the geometry of the NiSi nanowires (aspect ratio, shape etc.), the relevant major field emission parameters, such as (1) the turn-on field, (2) the work function, and (3) the field enhancement factor, can be comparable or even superior to other recently explored nanoscale field emitters, such as CdS and ZnO. We also report on a comparative performance of various nanoscale field emitters and on the difficulties in the performance comparison in the light of relatively poor applicability of the standard Folwer-Nordheim model for field emission analysis for the case of the nanoscale field emitters. Proposed modifications are discussed. This work is supported through SRC-ATIC Grant 2011-KJ-2190. We also acknoweldge BNL-CFN and Cornell CNF facilities and staff.

  14. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  15. Ceres' Yellow Spots - Observations with Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Schäfer, Michael; Schäfer, Tanja; Cloutis, Edward A.; Izawa, Matthew R. M.; Platz, Thomas; Castillo-Rogez, Julie C.; Hoffmann, Martin; Thangjam, Guneshwar S.; Kneissl, Thomas; Nathues, Andreas; Mengel, Kurt; Williams, David A.; Kallisch, Jan; Ripken, Joachim; Russell, Christopher T.

    2016-04-01

    The Framing Camera (FC) onboard the Dawn spacecraft acquired several spectral data sets of (1) Ceres with increasing spatial resolution (up to 135 m/pixel with nearly global coverage). The FC is equipped with seven color filters (0.4-1.0 μm) plus one panchromatic ('clear') filter [1]. We produced spectral mosaics using photometrically corrected FC color filter images as described in [2]. Even early FC color mosaics obtained during Dawn's approach unexpectedly exhibited quite a diversity of surface materials on Ceres. Besides the ordinary cerean surface material, potentially composed of ammoniated phyllosilicates [3] or some other alteration product of carbonaceous chondrites [4], a large number of bright spots were found on Ceres [5]. These spots are substantially brighter than the average surface (exceeding its triple standard deviation), with the spots within Occator crater being the brightest and most prominent examples (reflectance more than 10 times the average of Ceres). We observed bright spots which are different by their obvious yellow color. This yellow color appears both in a 'true color' RGB display (R=0.65, G=0.55, B=0.44 μm) as well as in a false color display (R=0.97, G=0.75, B=0.44 μm) using a linear 2% stretch. Their spectra show a steep red slope between 0.44 and 0.55 μm (UV drop-off). On the contrary to these yellow spots, the vast majority of bright spots appears white in the aforementioned color displays and exhibit blue sloped spectra, except for a shallow UV drop-off. Thus, yellow spots are easily distinguishable from white spots and the remaining cerean surface by their high values in the ratio 0.55/0.44 μm. We found 8 occurrences of yellow spots on Ceres. Most of them (>70 individual spots) occur both inside and outside crater Dantu, where white spots are also found in the immediate vicinity. Besides Dantu, further occurrences with only a few yellow spots were found at craters Ikapati and Gaue. Less definite occurrences are found at 97

  16. The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Hotes, Deborah L.; Paulsen, Phillip E.

    1989-01-01

    Radiator surfaces on high temperature space power systems such as SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. One of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less than approximately 600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.

  17. All-optical control and super-resolution imaging of quantum emitters in layered materials.

    PubMed

    Kianinia, Mehran; Bradac, Carlo; Sontheimer, Bernd; Wang, Fan; Tran, Toan Trong; Nguyen, Minh; Kim, Sejeong; Xu, Zai-Quan; Jin, Dayong; Schell, Andreas W; Lobo, Charlene J; Aharonovich, Igor; Toth, Milos

    2018-02-28

    Layered van der Waals materials are emerging as compelling two-dimensional platforms for nanophotonics, polaritonics, valleytronics and spintronics, and have the potential to transform applications in sensing, imaging and quantum information processing. Among these, hexagonal boron nitride (hBN) is known to host ultra-bright, room-temperature quantum emitters, whose nature is yet to be fully understood. Here we present a set of measurements that give unique insight into the photophysical properties and level structure of hBN quantum emitters. Specifically, we report the existence of a class of hBN quantum emitters with a fast-decaying intermediate and a long-lived metastable state accessible from the first excited electronic state. Furthermore, by means of a two-laser repumping scheme, we show an enhanced photoluminescence and emission intensity, which can be utilized to realize a new modality of far-field super-resolution imaging. Our findings expand current understanding of quantum emitters in hBN and show new potential ways of harnessing their nonlinear optical properties in sub-diffraction nanoscopy.

  18. Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique

    NASA Astrophysics Data System (ADS)

    Pakluea, S.; Rimjaem, S.

    2017-09-01

    Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.

  19. Simultaneous fabrication of a microcavity absorber-emitter on a Ni-W alloy film

    NASA Astrophysics Data System (ADS)

    Nashun; Kagimoto, Masahiro; Iwami, Kentaro; Umeda, Norihiro

    2017-10-01

    A process for the simultaneous fabrication of microcavity structures on both sides of a film was proposed and demonstrated to develop a free-standing-type integrated absorber-emitter for use in solar thermophotovoltaic power generation systems. The absorber-emitter-integrated film comprised a heat-resistant Ni-W alloy deposited by electroplating. A two-step silicon mould was fabricated using deep reactive-ion etching and electron beam lithography. Cavity arrays with different unit sizes were successfully fabricated on both sides of the film; these arrays are suitable for use as a solar spectrum absorber and an infrared-selective emitter. Their emissivity spectra were characterised through UV-vis-NIR and Fourier transform infrared spectroscopy.

  20. Availability of yellow pine sawtimber in Alabama

    Treesearch

    William H. McWilliams

    1991-01-01

    Alabama's timberland supports 76.2 billion board feet of sawtimber (International 1/4-inch Rule), of which 55 percent is contributed by yellow pine species. Currently, yellow pine sawtimber volume totals 41.8 billion board feet. The recent inventory conducted by the USDA-Forest Service, Southern Forest Experiment Station, Forest Inventory and Analysis Unit (SO-...

  1. Emittance matching of a slow extracted beam for a rotating gantry

    NASA Astrophysics Data System (ADS)

    Fujimoto, T.; Iwata, Y.; Matsuba, S.; Fujita, T.; Sato, S.; Shirai, T.; Noda, K.

    2017-09-01

    The introduction of a heavy-ion rotating gantry is in progress at the Heavy Ion Medical Accelerator in Chiba (HIMAC) for realizing high-precision cancer therapy using heavy ions. A scanning irradiation method will be applied to this gantry course with 48-430 MeV/u beam energy. In the rotating gantry, the horizontal and vertical beam parameters are coupled by its rotation. To maintain a circular spot shape at the isocenter irrespective of the gantry angle, achieving symmetric phase space distribution of the horizontal and vertical beam at the entrance of the rotating gantry is necessary. Therefore, compensating the horizontal and vertical emittance is necessary. We consider using a thin scatterer method to compensate the emittance. After considering the optical design for emittance matching, the scatterer device is located in the high-energy beam transport line. In the beam commissioning, we confirm that the symmetrical spot shape is obtained at the isocenter without depending on the gantry angle.

  2. Yellowing reaction in encapsulant of photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigekuni, T.; Kumano, M.

    1997-12-31

    To clarify the mechanism of the yellowing reaction in encapsulant used for photovoltaic (PV) modules, a low molecular weight substance in EVA (Ethylene vinyl acetate) under accelerated weathering test (Dew cycle test, 1000 hours) with yellow change and virgin EVA were extracted with methanol. Extracts were chemically analyzed by GCIR (Gas Chromatography Infrared-Ray spectroscopic analysis), GC-AED (Gas Chromatography Atomic Emission Detector), and FDMS (Field Desorption Mass Spectroscopy). The conditions of this accelerated test were based on JIS-K9117. The analysis results showed that 2,6-di-t-butyl-4-methyl phenol of antioxidant and 2-hydroxy-4-octoxy-benzophenone of UV absorbent were consumed after the weathering test and that 3,5-di-t-butyl-4-hydroxy-benzaldehydemore » having yellow color was newly produced. A mechanism of the yellowing reaction in encapsulant was presented here that 2,6-di-t-N-O radical from Bis-2,2,6,6-tetramethyl-4-piperidinyl sebacate to produce 3,5 di-t-butyl-4-hydroxy benzaldehyde.« less

  3. Simultaneous determination of specific alpha and beta emitters by LSC-PLS in water samples.

    PubMed

    Fons-Castells, J; Tent-Petrus, J; Llauradó, M

    2017-01-01

    Liquid scintillation counting (LSC) is a commonly used technique for the determination of alpha and beta emitters. However, LSC has poor resolution and the continuous spectra for beta emitters hinder the simultaneous determination of several alpha and beta emitters from the same spectrum. In this paper, the feasibility of multivariate calibration by partial least squares (PLS) models for the determination of several alpha ( nat U, 241 Am and 226 Ra) and beta emitters ( 40 K, 60 Co, 90 Sr/ 90 Y, 134 Cs and 137 Cs) in water samples is reported. A set of alpha and beta spectra from radionuclide calibration standards were used to construct three PLS models. Experimentally mixed radionuclides and intercomparision materials were used to validate the models. The results had a maximum relative bias of 25% when all the radionuclides in the sample were included in the calibration set; otherwise the relative bias was over 100% for some radionuclides. The results obtained show that LSC-PLS is a useful approach for the simultaneous determination of alpha and beta emitters in multi-radionuclide samples. However, to obtain useful results, it is important to include all the radionuclides expected in the studied scenario in the calibration set. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. MINIMAL ENDOILLUMINATION LEVELS AND DISPLAY LUMINOUS EMITTANCE DURING THREE-DIMENSIONAL HEADS-UP VITREORETINAL SURGERY.

    PubMed

    Adam, Murtaza K; Thornton, Sarah; Regillo, Carl D; Park, Carl; Ho, Allen C; Hsu, Jason

    2017-09-01

    To determine minimal endoillumination levels required to perform 3-dimensional heads-up vitreoretinal surgery and to correlate endoillumination levels used for measurements of heads-up display (HUD) luminous emittance. Prospective, observational surgical case series of 10 patients undergoing vitreoretinal surgery. Endoillumination levels were set to 40% of maximum output and were decreased at set intervals until the illumination level was 0%. Corresponding luminous emittance (lux) of the HUD was measured 40 cm from the display using a luxmeter (Dr. Meter, Model #LX1010BS). In 9 of 10 cases, the surgeon felt that they could operate comfortably at an endoillumination level of 10% of maximum output with corresponding HUD emittance of 14.3 ± 9.5 lux. In the remaining case, the surgeon felt comfortable at a 3% endoillumination level with corresponding HUD emittance of 15 lux. Below this threshold, subjective image dimness and digital noise limited visibility. Endoillumination levels were correlated with luminous emittance from the 3-dimensional HUD (P < 0.01). The average coefficient of variation of HUD luminance was 0.546. There were no intraoperative complications. With real-time digital processing and automated brightness control, 3-dimensional HUD platforms may allow for reduced intraoperative endoillumination levels and a theoretically reduced risk of retinal phototoxicity during vitreoretinal surgery.

  5. Low emittance chromated chemical conversion coatings for spacecraft thermal control in low earth orbit

    NASA Astrophysics Data System (ADS)

    LeVesque, R. J.; DeJesus, R. R.; Jones, C. A.; Babel, H. W.

    1996-03-01

    Low emittance coatings were required on the inner side of micro-meteoroid shielding and other structures to minimize heat transfer from the sun illuminated side to the underlying structure. A program was undertaken to evaluate conversion coatings for long term use in space. The conversion coatings evaluated were Alodine 1200 with three different bath chemistries, Iridite 14-2, and Alodine 600. Although the primary emphasis was on evaluating how processing conditions influenced the infrared emittance, corrosion resistance and electrical bonding characteristics were also evaluated. All of the conversion coatings were able to provide the target emittance value of less than 0.10, although baths with ferricyanide accelerators required shorter immersion times than typical of standard shop practices. The balance between emittance, corrosion resistance, and electrical bonding were defined. Space environmental stability tests were conducted on conversion coated 2219 and 7075 aluminum. The emittance and the electrical bonding characteristics were not affected by the space exposure even though the coating dehydrated and mud cracking is evident under a microscope. The dehydration resulted in a loss of corrosion resistance which is a consideration for hardware returned to Earth. It was concluded that conversion coatings are acceptable thermal control coatings for long life spacecraft although additional work is recommended for solar exposed surfaces.

  6. Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Nikos; Thanopulos, Ioannis; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-03-01

    We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters with longer decay times, the Markov approximation proves to be adequate for distances larger than half the nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian character when counter-rotating effects are included. Interesting effects such as entanglement sudden death, periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.

  7. A novel emaravirus is associated with redbud yellow ringspot disease

    USDA-ARS?s Scientific Manuscript database

    Yellow ringspot is the only virus-like disease reported in redbud (Cercis spp.) with symptoms including vein clearing, chlorotic ringspots and oak-leaf pattern. A putative new emaravirus was present in 48 of 48l trees displaying typical yellow ringspot symptoms and the name redbud yellow ringspot as...

  8. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  9. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter

    PubMed Central

    Fukagawa, Hirohiko; Shimizu, Takahisa; Kamada, Taisuke; Yui, Shota; Hasegawa, Munehiro; Morii, Katsuyuki; Yamamoto, Toshihiro

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been intensively studied as a key technology for next-generation displays and lighting. The efficiency of OLEDs has improved markedly in the last 15 years by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime and the relatively high cost owing to the costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent materials, which have been developed in the past few years, as the host material for the phosphorescent emitter. Our newly developed PHOLED employing only 1 wt% phosphorescent emitter exhibits an external quantum efficiency of over 20% and a long operational lifetime of about 20 times that of an OLED consisting of a conventional host material and 1 wt% phosphorescent emitter. PMID:25985084

  10. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio molitor L.) for Frankfurters

    PubMed Central

    Paik, Hyun-Dong

    2017-01-01

    The effects of replacing pork meat with yellow mealworms on the physicochemical properties and sensory characteristics of frankfurters were investigated in this study. The control (50% pork ham), T1 (45% pork ham + 5% yellow mealworm), T2 (40% pork ham + 10% yellow mealworm), T3 (35% pork ham + 15% yellow mealworm), T4 (30% pork ham + 20% yellow mealworm), T5 (25% pork ham + 25% yellow mealworm), and T6 (20% pork ham + 30% yellow mealworm) were prepared, replacing lean pork meat with yellow mealworm. The moisture content, lightness, sarcoplasmic protein solubility, hardness, gumminess, chewiness, and apparent viscosity of frankfurters with yellow mealworm were lower than those of the control (p<0.05), whereas the content of protein and ash, pH, and yellowness of frankfurters with yellow mealworm were higher than those of the control (p<0.05). The fat content of frankfurters in T1 (p<0.05) was the highest, and the fat content of treatments decreased with increasing yellow mealworm concentrations (p<0.05). Frankfurters with increasing yellow mealworm concentrations had lower color, flavor, off-flavor, and juiciness scores. The overall acceptability was not significantly different in the control, T1, and T2 (p>0.05). Thus, the results of this study showed that replacing lean pork meat with up to 10% yellow mealworm successfully maintained the quality of frankfurters at a level similar to that of the regular control frankfurters. PMID:29147084

  11. New format presentation for infrared spectral emittance data. Infrared spectrometry studies, phase 5

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.; Green, A. A.

    1972-01-01

    Methods for infrared radiance measurements from geological materials were studied for airborne use over terrains with minimal vegetation. The tasks of the investigation were: (1) calculation of emittance ratios, (2) comparison of IR spectral emittance data with K-band scatterometer data over Pisgah Crater, and (3) standard infrared spectral file. Published papers reporting the research are included.

  12. [The use of white and yellow turpentine baths with diabetic patients].

    PubMed

    Davydova, O B; Turova, E A; Golovach, A V

    1998-01-01

    In patients with insulin-dependent diabetes mellitus while and yellow turpentine baths produced a positive effect on carbohydrate metabolism. White baths were more effective in respect to lipid metabolism, blood viscosity, produced a good effect on plasmic hemocoagulation factors. Both while and yellow turpentine baths were beneficial for capillary blood flow: initially high distal blood flow in patients with prevailing distal polyneuropathy decreased while in patients with macroangiopathy initially subnormal blood flow increased. Both white and yellow turpentine baths promoted better pulse blood filling of the lower limbs and weaker peripheral resistance of large vessels. In patients with non-insulin-dependent diabetes mellitus white and yellow turpentine baths contributed to normalization of carbohydrate metabolism. Yellow baths were more effective in lowering lipids. White baths induced inhibition of platelet aggregation but had no effect on coagulation, yellow baths promoted a reduction of fibrinogen but had no effect on platelet aggregation. Yellow baths produced more pronounced effect than white ones on blood viscosity and microcirculation. Both yellow and white baths stimulated pulse blood filling, corrected peripheral resistance of large and small vessels of the lower limbs.

  13. Yellow Fever outbreaks in unvaccinated populations, Brazil, 2008-2009.

    PubMed

    Romano, Alessandro Pecego Martins; Costa, Zouraide Guerra Antunes; Ramos, Daniel Garkauskas; Andrade, Maria Auxiliadora; Jayme, Valéria de Sá; Almeida, Marco Antônio Barreto de; Vettorello, Kátia Campomar; Mascheretti, Melissa; Flannery, Brendan

    2014-03-01

    Due to the risk of severe vaccine-associated adverse events, yellow fever vaccination in Brazil is only recommended in areas considered at risk for disease. From September 2008 through June 2009, two outbreaks of yellow fever in previously unvaccinated populations resulted in 21 confirmed cases with 9 deaths (case-fatality, 43%) in the southern state of Rio Grande do Sul and 28 cases with 11 deaths (39%) in Sao Paulo state. Epizootic deaths of non-human primates were reported before and during the outbreak. Over 5.5 million doses of yellow fever vaccine were administered in the two most affected states. Vaccine-associated adverse events were associated with six deaths due to acute viscerotropic disease (0.8 deaths per million doses administered) and 45 cases of acute neurotropic disease (5.6 per million doses administered). Yellow fever vaccine recommendations were revised to include areas in Brazil previously not considered at risk for yellow fever.

  14. Dengue-yellow fever sera cross-reactivity; challenges for diagnosis.

    PubMed

    Houghton-Triviño, Natalia; Montaña, Diana; Castellanos, Jaime

    2008-01-01

    The Flavivirus genera share epitopes inducing cross-reactive antibodies leading to great difficulty in differentially diagnosing flaviviral infections. This work was aimed at evaluating the complexity of dengue and yellow fever serological differential diagnosis. Dengue antibody capture ELISA and a yellow fever neutralisation test were carried out on 13 serum samples obtained from yellow fever patients, 20 acute serum samples from dengue patients and 19 voluntary serum samples pre- and post-vaccination with YF vaccine. Dengue ELISA revealed IgM reactivity in 46,2 % of yellow fever patients and 42 % of vaccinees. Sixteen out of 20 dengue patients (80 %) had high YF virus neutralisation titres. Such very high cross-reactivity data challenged differential laboratory diagnosis of dengue and yellow fever in areas where both flaviviruses co-circulate. New laboratory strategies are thus needed for improving the tests and providing a specific laboratory diagnosis. Cross-reactivity between Flaviviruses represents a great difficulty for epidemiological surveillance and preventing dengue, both of which demand urgent attention.

  15. Improved Photoresist Coating for Making CNT Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Manohara, Harish

    2009-01-01

    An improved photoresist-coating technique has been developed for use in the fabrication of carbon-nanotube- (CNT) based field emitters is described. The improved photoresist coating technique overcomes what, heretofore, has been a major difficulty in the fabrication process.

  16. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald

    2015-02-01

    The (3)He nuclear magnetic shieldings were calculated for free helium atom and He-pyrrole, He-indole, and He-carbazole complexes. Several levels of theory, including Hartree-Fock (HF), Second-order Møller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated (3)He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. (3)He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indole, and carbazole were tested. It was observed that (3)He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He-pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable (3)He NMR chemical shift (about -1.5 ppm). The changes of calculated nucleus-independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium-3 NMR chemical shift. The ring currents above the five-membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  18. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of low temperature oxidation (LTO) in reducing boron skin in boron spin on dopant diffused emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Bandana; Solanki, Chetan Singh

    Formation of boron skin is an unavoidable phenomenon in p-type emitter formation with boron dopant source. The boron skin thickness is generally less than 100 nm and difficult to remove by chemical and physical means. Low temperature oxidation (LTO) used in this work is useful in removing boron skin thickness up to 30 nm and improves the emitter performance. The effective minority carrier lifetime gets improved by more than 30% after using LTO and leakage current of the emitter gets lowered by 100 times thereby showing the importance of low temperature oxidation in boron spin on dopant diffused emitters.

  20. Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine

    PubMed Central

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380