Sample records for yellow dye coupling

  1. Chemical Analysis of the Dyes Used in Navy Green and Yellow Colored Smokes .

    DTIC Science & Technology

    1986-01-31

    RD-RI69 478 CHEMICAL ANALYSIS OF THE DYES USED IN NAVY OREEN AND 11 YELLOW COLORED SNOKES(U) NAVAL WEAPONS SUP POR T CENTER CRANE IN APPLIED SCIENCES...NWSC/CR/RDTR-271 00 CHEMICAL ANALYSIS OF THE DYES USED IN NAVY GREEN AND YELLOW COLORED SMOKES Anton Chin Naval Weapons Support Center Applied Sciences...62765 SF65-559 559-691 20392 TITLE (Iint/ude Sec uritE C/assitication) CHEMICAL ANALYSIS OF THE DYES USED IN NAVY GREEN AND YELLOW COLORED SMOKES 1.1

  2. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions.

    PubMed

    Zhang, Yagang; Zimmerman, Steven C

    2012-01-01

    The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN) and 7-deazaguanine urea (DeUG) is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylamino)pyridine (DMAP)-catalyzed peptide synthesis with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) as activating agent, affording the respective amide products 5, 8, and 10 in 60-71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide-alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange-red in color, and azobenzene coupled DeUG modules 12 and 18 are orange-yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN-DeUG and DAN-UPy (2-ureido-4(1H)-pyrimidone) quadruply hydrogen-bonding interactions.

  3. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    PubMed Central

    Zhang, Yagang

    2012-01-01

    Summary The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN) and 7-deazaguanine urea (DeUG) is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylamino)pyridine (DMAP)-catalyzed peptide synthesis with N-(3-dimethylaminopropyl)-N’-ethyl carbodiimide hydrochloride (EDC) as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H)-pyrimidone) quadruply hydrogen-bonding interactions. PMID:22509220

  4. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2.

    PubMed

    Anjaneya, O; Souche, S Yogesh; Santoshkumar, M; Karegoudar, T B

    2011-06-15

    Two different bacterial strains capable of decolorizing a highly water soluble azo dye Metanil Yellow were isolated from dye contaminated soil sample collected from Atul Dyeing Industry, Bellary, India. The individual bacterial strains Bacillus sp. AK1 and Lysinibacillus sp. AK2 decolorized Metanil Yellow (200 mg L(-1)) completely within 27 and 12h respectively. Various parameters like pH, temperature, NaCl and initial dye concentrations were optimized to develop an economically feasible decolorization process. The maximum concentration of Metanil Yellow (1000 mg L(-1)) was decolorized by strains AK2 and AK1 within 78 and 84 h respectively. These strains could decolorize Metanil Yellow over a broad pH range 5.5-9.0; the optimum pH was 7.2. The decolorization of Metanil Yellow was most efficient at 40°C and confirmed by UV-visible spectroscopy, TLC, HPLC and GC/MS analysis. Further, both the strains showed the involvement of azoreductase in the decolorization process. Phytotoxicity studies of catabolic products of Metanil Yellow on the seeds of chick pea and pigeon pea revealed much reduction in the toxicity of metabolites as compared to the parent dye. These results indicating the effectiveness of strains AK1 and AK2 for the treatment of textile effluents containing azo dyes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye.

    PubMed

    Nouren, Shazia; Bhatti, Haq Nawaz; Iqbal, Munawar; Bibi, Ismat; Kamal, Shagufta; Sadaf, Sana; Sultan, Misbah; Kausar, Abida; Safa, Yusra

    2017-02-01

    Citrus limon peroxidase mediated decolourization of Direct Yellow 4 (DY4) was investigated. The process variables (pH, temperature, incubation time, enzyme dose, H 2 O 2 amount, dye concentration, co-metal ions and surfactants) were optimized for maximum degradation of dye. Maximum dye decolourization of 89.47% was achieved at pH 5.0, temperature 50 °C, enzyme dose 24 U/mL, H 2 O 2 concentration 0.25 mM and DY4 concentration 18.75 mg/L and incubation time 10 min. The co-metal ions and surfactants did not affect the dye decolourization significantly. Response surface analysis revealed that predicted values were in agreement with experimentally determined responses. The degradation products were identified by UPLC/MS analysis and degradation pathway was proposed. Besides, phytotoxicity assay revealed a considerable detoxification in response of biodegradation of DY4 dye. C. limon showed promising efficiency for DY4 degradation and could possibly be used for the remediation of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Electrochemical Sunset Yellow Biosensor Based on Photocured Polyacrylamide Membrane for Food Dye Monitoring

    PubMed Central

    Rozi, Normazida; Ahmad, Amalina; Yook Heng, Lee; Shyuan, Loh Kee; Hanifah, Sharina Abu

    2018-01-01

    An enzyme-based electrochemical biosensor was investigated for the analysis of Sunset Yellow synthetic food dye. A glassy carbon electrode was coated with a poly(acrylamide-co-ethyl methacrylate) membrane to immobilize laccase using a single-step photopolymerization procedure. Poly(acrylamide-co-ethyl methacrylate) membrane was demonstrated to have acceptable water absorption and suitable for biosensor application. Sunset Yellow biosensor exhibited a linear response range from 0.08 to 10.00 µM with a detection limit of 0.02 µM. This biosensor was successfully used to determine Sunset Yellow in soft drinks with recoveries of 99.0–101.6%. The method was validated using high-performance liquid chromatography, indicating the biosensor can be as a promising alternative method for Sunset Yellow detection. PMID:29301262

  7. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    PubMed Central

    Buscio, Valentina; García-Jiménez, María; Vilaseca, Mercè; López-Grimau, Victor; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2016-01-01

    The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates). Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range. PMID:28773614

  8. Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant.

    PubMed

    Espinoza, Carolina; Romero, Julio; Villegas, Loreto; Cornejo-Ponce, Lorena; Salazar, Ricardo

    2016-12-05

    A complete mineralization of a textile dye widely used in the Chilean textile industry, acid yellow 42 (AY42), was studied. Degradation was carried out in an aqueous solution containing 100mgL(-1) of total organic carbon (TOC) of dye using the advanced solar photoelectro-Fenton (SPEF) process in a lab-scale pilot plant consisting of a filter press cell, which contains a boron doped diamond electrode and an air diffusion cathode (BDD/air-diffusion cell), coupled with a solar photoreactor for treat 8L of wastewater during 270min of electrolysis. The main results obtained during the degradation of the textile dye were that a complete transformation to CO2 depends directly on the applied current density, the concentration of Fe(2+) used as catalyst, and the solar radiation intensity. The elimination of AY42 and its organic intermediates was due to hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between electrogenerated H2O2 and added Fe(2+). The application of solar radiation in the process (SPEF) yield higher current efficiencies and lower energy consumptions than electro-Fenton (EF) and electro-oxidation with electrogenerated H2O2 (E OH2O2) by the additional production of hydroxyl radicals from the photolysis of Fe(III) hydrated species and the photodecomposition of Fe(III) complexes with organic intermediates. Moreover, some products and intermediates formed during mineralization of dye, such as inorganic ions, carboxylic acids and aromatic compounds were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells.

    PubMed

    Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng

    2015-11-16

    In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    PubMed Central

    Lv, Dongjun; Zhang, Mingjie; Cui, Jin; Li, Weixue; Zhu, Guohua

    2017-01-01

    A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS) and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY) and allura red (AR), was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity. PMID:28772583

  11. Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium.

    PubMed Central

    Haug, W; Schmidt, A; Nörtemann, B; Hempel, D C; Stolz, A; Knackmuss, H J

    1991-01-01

    Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases. PMID:1781678

  12. Kinetics of proton uptake and dye binding by photoactive yellow protein in wild type and in the E46Q and E46A mutants.

    PubMed

    Borucki, Berthold; Devanathan, Savitha; Otto, Harald; Cusanovich, Michael A; Tollin, Gordon; Heyn, Maarten P

    2002-08-06

    We studied the kinetics of proton uptake and release by photoactive yellow protein (PYP) from Ectothiorhodospira halophila in wild type and the E46Q and E46A mutants by transient absorption spectroscopy with the pH-indicator dyes bromocresol purple or cresol red in unbuffered solution. In parallel, we investigated the kinetics of chromophore protonation as monitored by the rise and decay of the blue-shifted state I(2) (lambda(max) = 355 nm). For wild type the proton uptake kinetics is synchronized with the fast phase of I(2) formation (tau = 500 micros at pH 6.2). The transient absorption signal from the dye also contains a slower component which is not due to dye deprotonation but is caused by dye binding to a hydrophobic patch that is transiently exposed in the structurally changed and partially unfolded I(2) intermediate. This conclusion is based on the wavelength, pH, and concentration dependence of the dye signal and on dye measurements in the presence of buffer. SVD analysis, moreover, indicates the presence of two components in the dye signal: protonation and dye binding. The dye binding has a rise time of about 4 ms and is coupled kinetically with a transition between two I(2) intermediates. In the mutant E46Q, which lacks the putative internal proton donor E46, the formation of I(2) is accelerated, but the proton uptake kinetics remains kinetically coupled to the fast phase of I(2) formation (tau = 100 micros at pH 6.3). For this mutant the protein conformational change, as monitored by the dye binding, occurs with about the same time constant as in wild type but with reduced amplitude. In the alkaline form of the mutant E46A the formation of the I(2)-like intermediate is even faster as is the proton uptake (tau = 20 micros at pH 8.3). No dye binding occurred in E46A, suggesting the absence of a conformational change. In all of the systems proton release is synchronized with the decay of I(2). Our results support mechanisms in which the chromophore of PYP

  13. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice.

    PubMed

    Poul, Martine; Jarry, Gérard; Elhkim, Mostafa Ould; Poul, Jean-Michel

    2009-02-01

    The food dyes amaranth, sunset yellow and tartrazine were administered twice, at 24h intervals, by oral gavage to mice and assessed in the in vivo gut micronucleus test for genotoxic effects (frequency of micronucleated cells) and toxicity (apoptotic and mitotic cells). The concentrations of each compound and their main metabolites (sulfanilic acid and naphthionic acid) were measured in faeces during a 24-h period after single oral administrations of the food dyes to mice. Parent dye compounds and their main aromatic amine metabolites were detected in significant amounts in the environment of colonic cells. Acute oral exposure to food dye additives amaranth, sunset yellow and tartrazine did not induce genotoxic effect in the micronucleus gut assay in mice at doses up to 2000 mg/kg b.w. Food dyes administration increased the mitotic cells at all dose levels when compared to controls. These results suggest that the transient DNA damages previously observed in the colon of mice treated by amaranth and tartrazine by the in vivo comet assay [Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., Tsuda, S., 2002. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103-119] are unable to be fixed in stable genotoxic lesions and might be partly explained by local cytotoxicity of the dyes.

  14. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  15. Genetic damage induced by a food coloring dye (sunset yellow) on meristematic cells of Brassica campestris L.

    PubMed

    Dwivedi, Kshama; Kumar, Girjesh

    2015-01-01

    We have performed the present piece of work to evaluate the effect of synthetic food coloring azo dye (sunset yellow) on actively dividing root tip cells of Brassica campestris L. Three doses of azo dye were administered for the treatment of actively dividing root tip cells, namely, 1%, 3%, and 5%, for 6-hour duration along with control. Mitotic analysis clearly revealed the azo dye induced endpoint deviation like reduction in the frequency of normal divisions in a dose dependent manner. Mitotic divisions in the control sets were found to be perfectly normal while dose based reduction in MI was registered in the treated sets. Azo dye has induced several chromosomal aberrations (genotoxic effect) at various stages of cell cycle such as stickiness of chromosomes, micronuclei formation, precocious migration of chromosome, unorientation, forward movement of chromosome, laggards, and chromatin bridge. Among all, stickiness of chromosomes was present in the highest frequency followed by partial genome elimination as micronuclei. The present study suggests that extensive use of synthetic dye should be forbidden due to genotoxic and cytotoxic impacts on living cells. Thus, there is an urgent need to assess potential hazardous effects of these dyes on other test systems like human and nonhuman biota for better scrutiny.

  16. Genetic Damage Induced by a Food Coloring Dye (Sunset Yellow) on Meristematic Cells of Brassica campestris L.

    PubMed Central

    Dwivedi, Kshama; Kumar, Girjesh

    2015-01-01

    We have performed the present piece of work to evaluate the effect of synthetic food coloring azo dye (sunset yellow) on actively dividing root tip cells of Brassica campestris L. Three doses of azo dye were administered for the treatment of actively dividing root tip cells, namely, 1%, 3%, and 5%, for 6-hour duration along with control. Mitotic analysis clearly revealed the azo dye induced endpoint deviation like reduction in the frequency of normal divisions in a dose dependent manner. Mitotic divisions in the control sets were found to be perfectly normal while dose based reduction in MI was registered in the treated sets. Azo dye has induced several chromosomal aberrations (genotoxic effect) at various stages of cell cycle such as stickiness of chromosomes, micronuclei formation, precocious migration of chromosome, unorientation, forward movement of chromosome, laggards, and chromatin bridge. Among all, stickiness of chromosomes was present in the highest frequency followed by partial genome elimination as micronuclei. The present study suggests that extensive use of synthetic dye should be forbidden due to genotoxic and cytotoxic impacts on living cells. Thus, there is an urgent need to assess potential hazardous effects of these dyes on other test systems like human and nonhuman biota for better scrutiny. PMID:25954313

  17. Photovoltaic performance of TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent in dye-sensitized solar cells.

    PubMed

    Kwon, Oh Oun; Kim, Eui Jin; Lee, Jae Hyeok; Kim, Tae Young; Park, Kyung Hee; Kim, Sang Yook; Suh, Hwa Jin; Lee, Hyo Jung; Lee, Jae Wook

    2015-02-05

    To improve the photovoltaic conversion efficiency in dye-sensitized solar cells (DSSCs), TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent was successfully formulated on nanoporous TiO2 surface. Adsorption and desorption properties of crude gardenia yellow solution on a macroporous resin, XAD-1600, were investigated to purify gardenia yellow because of its strong adsorption and desorption abilities as well as high selectivity. To this end, adsorption equilibrium and kinetic data were measured and fitted using adsorption isotherms and kinetic models. Adsorption and desorption breakthrough curves in a column packed with XAD-1600 resin was obtained to optimize the separation process of gardenia yellow. The photovoltaic performance of the photo-electrode adsorbed with the crude and purified gardenia yellow in DSSCs was compared from current-voltage measurements. The results showed that the photovoltaic conversion efficiency was highly dependent on how to separate and purify gardenia yellow as a photosensitizer. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Magnetic activated carbon-Fe3O4 nanocomposites--synthesis and applications in the removal of acid yellow dye 17 from water.

    PubMed

    Ranjithkumar, V; Hazeen, A Nizarul; Thamilselvan, M; Vairam, S

    2014-07-01

    In this work, synthesis of activated carbon-Fe3O4 composites using activated carbon and iron benzoate/oxalate precursors by simple pyrolytic method and its utility for the removal of acid yellow dye from water are presented. Iron carboxylates held up into the pores of carbon dissociate at their decomposition temperatures form dispersed Fe3O4 nanoparticles in carbon matrix. The composites were characterized by FTIR, PXRD, SEM, TEM, EDX and magnetization measurements. The size of the nano iron oxides are in the range of 21-33 nm formed from iron benzoate precursor and 6-11 nm from iron oxalate precursor. The oxides are magnetic and their saturation magnetization in the range of 0.08-0.16 emu/g and Coercivity (H(c)) 474-600, being lower and higher than that of bare bulk Fe3O4 are due to the nano size of oxides. Composites find application in the removal of acid yellow dye 17 from the synthetic aqueous solution at pH 5. The adsorption data are found to fit well for Langmuir adsorption isotherm. Kinetics data of adsorption of dyes indicate that the adsorption follows pseudo-second order kinetic model.

  19. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling.

    PubMed

    Ni, Weihai; Chen, Huanjun; Su, Jing; Sun, Zhenhua; Wang, Jianfang; Wu, Hongkai

    2010-04-07

    The effects of various factors on the resonance coupling between elongated Au nanocrystals and organic dyes have been systematically investigated through the preparation of hybrid nanostructures between Au nanocrystals and the electrostatically adsorbed dye molecules. A nanocrystal sample is chosen for each dye to match the longitudinal plasmon resonance wavelength with the absorption peak wavelength of the dye as close as possible so that the resonance coupling strength can be maximized. The resonance coupling strength is found to approximately increase as the molecular volume-normalized absorptivity is increased. It is mainly determined by the plasmon resonance energy of the Au nanocrystals instead of their shapes and sizes. Moreover, the resonance coupling can be reversibly controlled if the dye in the hybrid nanostructures is pH-sensitive. The coupling can also be weakened in the presence of metal ions. These results will be highly useful for designing resonance coupling-based sensing devices and for plasmon-enhanced spectroscopy.

  20. Strong coupling between surface plasmon polariton and laser dye rhodamine 800

    NASA Astrophysics Data System (ADS)

    Valmorra, Federico; Bröll, Markus; Schwaiger, Stephan; Welzel, Nadine; Heitmann, Detlef; Mendach, Stefan

    2011-08-01

    We report on strong coupling between surface plasmon polaritons on a thin silver film and laser dye Rhodamine 800. Attenuated total reflection measurements reveal that the pure surface plasmon polaritons interact with the Rhodamine 800 absorption lines exhibiting pronounced anticrossings in the dispersion relation. We show that the corresponding energy gap can be tailored by the concentration of dye molecules in the dielectric matrix between 50 meV and 70 meV. We can well model our data by a classical transfer matrix approach as well as by a quantum mechanical coupled oscillator ansatz.

  1. Enhancement of the photoproperties of solid-state TiO2|dye|CuI cells by coupling of two dyes

    NASA Astrophysics Data System (ADS)

    Sirimanne, P. M.; Senevirathna, M. K. I.; Premalal, E. V. A.; Pitigala, P. K. D. D. P.

    2006-06-01

    The electronic coupling of a natural pigment extracted from pomegranate fruits (rich with cyanin and exist as flavylium at natural PH) with an organic dye mercurochrome enhanced the performance of solid-state TiO2|dye|CuI-type photovoltaic cells sensitized from pomegranate pigments or mercurochrome individually.

  2. Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions.

    PubMed

    Hubenova, Yolina; Bakalska, Rumyana; Mitov, Mario

    2018-05-10

    Modification of carbonaceous materials with different conductive coatings is a successful approach to enhance their electrocatalytic activity and thus to increase the electrical outputs when used as electrodes in biofuel cells. In this study, a methodology for electrodeposition of styrylquinolinium dye on carbon felt was developed. The produced dye electrodeposits were characterized by means of AFM, ESI-MS/MS and NMR spectroscopy. The obtained data reveal that the dye forms overlaid layers consisting of monomer molecules most likely with an antiparallel orientation. The UV-VIS spectroscopy, CV and EIS analyses show that the dye molecules preserve their redox activity within the coating and a charge transfer between NADH/NAD + and electrodeposit is possible as a coupled redox reaction. The fabricated nano-modified electrodes were also tested as anodes in batch-mode operating yeast-based biofuel cell. The results indicate that the electrodeposited dye acts as an immobilized exogenous mediator, contributing to enhanced extracellular electron transfer. Copyright © 2018. Published by Elsevier B.V.

  3. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.

    PubMed

    Narayanan, Remya; Das, Amrita; Deepa, Melepurath; Srivastava, Avanish Kumar

    2013-12-02

    A new design for a quasi-solid-state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2 ) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor-acceptor architecture (TiO2 /CdS/CdSe/ZnS-LY/S(2-)-multi-walled carbon nanotubes) show a maximum incident photon-to-current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru-dye free FRET-enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor-only cells. The FRET-enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation and Characterisation of a Molybdenum-reducing and Metanil Yellow Dye-decolourising Bacillus sp. strain Neni-10 in Soils from West Sumatera, Indonesia

    PubMed Central

    Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus

    2017-01-01

    A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation. PMID:28228917

  5. Isolation and Characterisation of a Molybdenum-reducing and Metanil Yellow Dye-decolourising Bacillus sp. strain Neni-10 in Soils from West Sumatera, Indonesia.

    PubMed

    Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus

    2017-01-01

    A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation.

  6. Rapid Synthesis of Thiophene-Based, Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) by a One-Pot, Four-Component Coupling Approach.

    PubMed

    Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi

    2015-06-26

    This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study.

    PubMed

    Maghsoudi, M; Ghaedi, M; Zinali, A; Ghaedi, A M; Habibi, M H

    2015-01-05

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R(2)) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    NASA Astrophysics Data System (ADS)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  9. Cooperative bi-exponential decay of dye emission coupled via plasmons.

    PubMed

    Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P

    2018-06-22

    Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.

  10. Thiolate/disulfide organic redox couples for efficient organic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Yan; Zheng, Hai-Kuo; Wang, Jian-Wen; Zhang, Le-Le; Han, Hui-Min; Wu, Ming-Xing

    2017-08-01

    A series of organic thiolate/disulfide redox couples based on benz-imidazole/othiazole/oxazole have been synthesized and applied to dye-sensitized solar cells (DSCs). Platinum (Pt) and carbon material are introduced as counter electrode (CE) catalysts towards this kind of organic redox couples regeneration and the photovoltaic performance of the DSCs using this organic redox couples has been investigated. The carbon CE shows high catalytic activity than Pt for the organic redox couples and the DSCs using carbon CE exhibit much higher efficiencies than those of the Pt CE-based devices.

  11. Corncob as an effective, eco-friendly, and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions.

    PubMed

    Berber-Villamar, Nayda Karina; Netzahuatl-Muñoz, Alma Rosa; Morales-Barrera, Liliana; Chávez-Camarillo, Griselda Ma; Flores-Ortiz, César Mateo; Cristiani-Urbina, Eliseo

    2018-01-01

    The corncob is an agricultural waste generated in huge quantities during corn processing. In this paper, we tested the capacity of corncob particles for water purification by removing the azo dye Direct Yellow 27 (DY27) via biosorption. The biosorption process was investigated in terms of the kinetics, equilibria, and thermodynamics. Batch biosorption studies showed that the biosorption performance has strong inverse correlations to the solution pH and the corncob particle size, and it increases quickly with increasing contact time and initial dye concentration. The pseudo-second-order kinetic model provides the best fit to the experimental data, whereas the Redlich-Peterson isotherm model is most suitable for describing the observed equilibrium biosorption. The biosorption process is exothermic, spontaneous, and physisorption in character. Fourier transform infrared (FTIR) spectroscopy and confocal scanning laser microscopy (CSLM) studies suggest that lignocellulose and proteins play key roles in the biosorption of DY27 from aqueous solutions by corncob. Furthermore, after biosorption onto the corncob, the dye can be effectively desorbed using 0.1 M NaOH solution. Therefore, the corncob can be used as a promising biosorbent to remediate DY27-contaminated water and wastewater.

  12. Corncob as an effective, eco-friendly, and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions

    PubMed Central

    Berber-Villamar, Nayda Karina; Netzahuatl-Muñoz, Alma Rosa; Morales-Barrera, Liliana; Chávez-Camarillo, Griselda Ma.; Flores-Ortiz, César Mateo

    2018-01-01

    The corncob is an agricultural waste generated in huge quantities during corn processing. In this paper, we tested the capacity of corncob particles for water purification by removing the azo dye Direct Yellow 27 (DY27) via biosorption. The biosorption process was investigated in terms of the kinetics, equilibria, and thermodynamics. Batch biosorption studies showed that the biosorption performance has strong inverse correlations to the solution pH and the corncob particle size, and it increases quickly with increasing contact time and initial dye concentration. The pseudo-second-order kinetic model provides the best fit to the experimental data, whereas the Redlich-Peterson isotherm model is most suitable for describing the observed equilibrium biosorption. The biosorption process is exothermic, spontaneous, and physisorption in character. Fourier transform infrared (FTIR) spectroscopy and confocal scanning laser microscopy (CSLM) studies suggest that lignocellulose and proteins play key roles in the biosorption of DY27 from aqueous solutions by corncob. Furthermore, after biosorption onto the corncob, the dye can be effectively desorbed using 0.1 M NaOH solution. Therefore, the corncob can be used as a promising biosorbent to remediate DY27-contaminated water and wastewater. PMID:29698442

  13. Fe0 catalyzed photo-Fenton process to detoxify the biodegraded products of azo dye Mordant Yellow 10.

    PubMed

    Brindha, R; Muthuselvam, P; Senthilkumar, S; Rajaguru, P

    2018-06-01

    Inspired by the efficiency of the photo-Fenton process on oxidation of organic pollutants, we herein present the feasibility of visible light driven photo-Fenton process as a post treatment of biological method for the effective degradation and detoxification of monoazo dye Mordant Yellow 10 (MY10). Anaerobic degradation of MY10 by Pseudomonas aeroginosa formed aromatic amines which were further degraded in the subsequent Fe catalyzed photo-Fenton process carried out at pH 3.0, with iron shavings and H 2 O 2 under blue LED light illumination. LC-MS and stoichiometric analysis confirmed that reductive azo bond cleavage was the major reaction in anaerobic bacterial degradation of MY10 producing 4-amino benzene sulfonic acid (4-ABS) and 5-amino salicylic acid (5-ASA) which were further degraded into hydroxyl amines, nitroso and di/tri carboxylic acids by the photo-Fenton process. Toxicity studies with human small cell lung cancer A549 cells provide evidence that incorporation of Fe 0 catalyzed photo-Fenton step after anaerobic bacterial treatment improved the mineralization and detoxification of MY10 dye. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste.

    PubMed

    Abdelmalek, F; Gharbi, S; Benstaali, B; Addou, A; Brisset, J L

    2004-05-01

    A recent non-thermal plasma technique (i.e., a gliding arc discharge which generates reactive species at atmospheric pressure) is tested for pollution abatement of dyes dispersed in synthetic solutions and industrial effluents. Yellow Supranol 4 GL (YS) and Scarlet Red Nylosan F3 GL (SRN) are toxic synthetic dyes widely used in the Algerian textile industry and frequently present in liquid wastes of manufacture plants. Classical removal treatment processes are not efficient enough, so that the presence of dyes in liquid effluents may cause serious environmental problems, in connection with reusing waste waters for irrigation. The degradation processes achieved by the oxidising species formed in the plasma are followed by UV/VIS spectroscopy and by chemical oxygen demand measurements. They are almost complete (i.e., 92.5% for YS and 90% for dilute SRN) and rapidly follow pseudo-first-order laws, with overall estimated rate constants 3 x 10(-4) and 4 x 10(-4)s-1 for YS and SRN, respectively. The degradation rate constant for the industrial mixture (i.e., k = 1.45 x 10(-3)s-1) is a mean value for two consecutive steps (210(-3) and 6 x 10(-5)s-1) measured at the absorption peaks of the major constituent dyes, YS and SRN.

  15. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    PubMed

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Synthesis of magnetic activated carbon/α-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water.

    PubMed

    Ranjithkumar, V; Sangeetha, S; Vairam, S

    2014-05-30

    The adsorption of acid yellow 17 dye on activated carbon/α-Fe2O3 nanocomposite prepared by simple pyrolytic method using iron(II) gluconate was investigated by batch technique. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The size of iron oxide nanoparticles formed from iron(II) gluconate precursor is in the range 5-17nm. The saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) of the magnetic carbon nanocomposite is 5.6emu/g, 1.14emu/g and 448Oe, respectively. The adsorption data are found to fit well with Langmuir and, fairly well with Freundlich and Tempkin isotherms at higher concentration of dye (40-100mg/L). Kinetics data indicate that the adsorption of dye follows pseudo-second order kinetics model. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.

    PubMed

    Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng

    2017-03-01

    As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO 2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO 2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO 2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO 2 dyeing technique.

  18. Simultaneous Preconcentration and Determination of Brilliant Blue and Sunset Yellow in Foodstuffs by Solid-Phase Extraction Combined UV-Vis Spectrophotometry.

    PubMed

    Bişgin, Abdullah Taner

    2018-05-29

    Background: Brilliant Blue and Sunset Yellow, two highly water-soluble synthetic food dyes, are the most popular food dyes used and consumed. Although they are not highly toxic, some health problems can be observed when excessive amounts of food products containing these dyes are consumed. Objectives: The aim of the study was to develop a simultaneous UV-Vis combined solid-phase extraction method, based on the adsorption onto Amberlite XAD-8 resin, for determination of Brilliant Blue and Sunset Yellow dyes. Methods: Sample solution was poured into the reservoir of the column and permitted to gravitationally pass through the column at 2 mL/min flow rate. Adsorbed dyes were eluted to 5 mL of final volume with 1 mol/L HNO₃ in ethanol solution by applying a 2 mL/min flow rate. Dye concentrations of the solution were determined at 483 and 630 nm for Sunset Yellow and Brilliant Blue, respectively. Results: The detection limits of the method for Brilliant Blue and Sunset Yellow were determined as 0.13 and 0.66 ng/mL, respectively. Preconcentration factor was 80. Brilliant Blue contents of real food samples were found to be between 11 and 240 μg/g. Sunset Yellow concentrations of foodstuffs were determined to be between 19 and 331 μg/g. Conclusions: Economical, effective, and simple simultaneous determination of Brilliant Blue and Sunset Yellow was achieved by using a solid-phase extraction combined UV-Vis spectrometry method. Highlights: The method is applicable and suitable for routine analysis in quality control laboratories without the need for expert personnel and high operational costs because the instrumentation is simple and inexpensive.

  19. Ecology and management of yellow toadflax [Linaria vulgaris (L.) Mill.

    Treesearch

    Jim Jacobs; Sharlene Sing

    2006-01-01

    Yellow toadflax is a short-lived perennial herb native to the steppes of southeastern Europe and southwestern Asia (Eurasia). This species spreads by both seeds and vegetative buds on its roots and creeping rhizomes (see Figure 1). Yellow toadflax was intentionally introduced in North America but has escaped cultivation as an ornamental, a source of fabric dye, and as...

  20. Development of a Direct Spectrophotometric and Chemometric Method for Determining Food Dye Concentrations.

    PubMed

    Arroz, Erin; Jordan, Michael; Dumancas, Gerard G

    2017-07-01

    An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10 -7 for blue, 4.59 × 10 -7 for red, and 1.13 × 10 -6 for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.

  1. Prototype Scale Development of an Environmentally Benign Yellow Smoke Hand-Held Signal Formulation Based on Solvent Yellow 33

    DTIC Science & Technology

    2013-04-15

    VAAR) was purchased from McGean. Hydrated basic magnesium carbonate was obtained from Pine Bluff Arsenal (Pine Bluff, AR) and was confirmed to be Mg5( CO3 ...a potential environmental exposure of approximately 29 g of the toxic yellow dyes throughout the life cycle of a single M194 signal! To mitigate this...consists of Solvent Yellow 33 as the smoke sublimating agent, hydrated basic magnesium carbonate (Mg5( CO3 )4(OH)2·4H2O) instead of sodium bicarbonate (NaHCO3

  2. Squaraine dyes as efficient coupling bridges between triarylamine redox centres.

    PubMed

    Völker, Sebastian F; Renz, Manuel; Kaupp, Martin; Lambert, Christoph

    2011-12-09

    Various indolenine squarylium dyes with additional electron-donating amine redox centres have been synthesised and their redox chemistry has been studied. A combination of cyclic voltammetry, spectro-electrochemistry and DFT calculations has been used to characterise the electronic structure of the mono-, di- and, in one case, trications. All monocations still retain the cyanine-like, delocalised character due to the relatively low redox potential of the squaraine bridge and are therefore compounds of Robin-Day class III. Thus we extended previous studies on organic mixed-valence systems by using the indolenine squaraine moiety as very electron-rich bridge between two electron-donating amine redox centres to provoke a strong coupling between the additional redox centres. We synthesised TA3, which has an N-N distance of 26 bonds between the triarylamine redox centres and is to our knowledge the longest bis(triarylamine) radical cation that is completely delocalised. We furthermore show that altering the symmetry of a squaraine dye by substitution of a squaric ring oxygen atom by a dicyanomethylene group has a direct impact on the optical properties of the monocations. In case of the dications, it turned out that the energetically most stable state of dianisylamine-substituted squaraines is an anti-ferromagnetically coupled open-shell singlet state. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Serological changes induced by blend of sunset yellow, metanil yellow and tartrazine in swiss albino rat, rattus norvegicus.

    PubMed

    Saxena, Beenam; Sharma, Shiv

    2014-01-01

    The present study was carried out to evaluate the toxic effect of blend of some food colors on Swiss albino rats. A blend (1:1:1) of sunset yellow, metanil yellow and tartrazine showed additive effects on serological parameters which indicate that addition of these dye together in food stuff may give rise to more toxic effects than are produced by each dye individually. Animals were divided into four groups (I, II, III, and IV). First group was treated as control and respective group of animals received 25, 50 and 75 mg/kg body weight blend of food colors by gavaging up to 30 days. The serological study showed a decrease in total protein and albumin and an increase in alkaline phosphatase, SGPT and total bilirubin. The results revealed that oral administration of these blend did not affect the body weight gain. The prolonged consumption of the blend may cause adverse effect on human health.

  4. Water Quality Criteria for Colored Smokes: Solvent Yellow 33

    DTIC Science & Technology

    1987-11-01

    Y . ’~ ~% d .’ 4’ . TABLE 4. DISTRIBUTION OF [1 4 C]-SOLVENT YELLOW 33 IN RATS 1 hr AFTER- EXPOSURE TO SOLVENT YELLOW 33 (SY) OR SOLVENT YELLOW 33...have shown that some individuals react strongly Lo this dye. The repeat insult patch test is used most often. The subjects receive five to ten exposures...70 Neutrophils Control 5 ± 2 0 ± 0 7 ± 3 3( lO cells/g) Exposed 1300 ± 130 d 470 ± i 0 0d 290 ± 50 d a. Adapted from Henderson et al. 1985b. b. Values

  5. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Yoshizaki, G.; Patino, R.; Thomas, P.; Bolamba, D.; Chang, Xiaotian

    2001-01-01

    A previous ultrastructural study of heterologous (granulosa cell-oocyte) gap junction (GJ) contacts in ovarian follicles of Atlantic croaker suggested that these contacts disappear late during the process of resumption of oocyte meiosis. This observation suggested that, unlike scenarios proposed for a number of other species, uncoupling of GJ is not necessary for the onset of meiotic resumption in croaker follicles. However, the functionality of heterologous GJ contacts and the temporal association between maturation-inducing hormone (MIH)-induced changes in heterologous coupling and resumption of oocyte meiosis have not been examined in Atlantic croaker. These questions were addressed with a cell-cell coupling assay that is based on the transfer of a GJ marker, Lucifer Yellow, from oocytes to granulosa cells. Follicle-enclosed oocytes injected with Lucifer Yellow allowed transfer of the dye into the follicle cell layer, thus confirming that there is functional heterologous coupling between the oocyte and the granulosa cells. Dye transfer was observed in vitellogenic, full-grown/maturation-incompetent, and full-grown /maturation-competent follicles. Treatment of maturation-competent follicles with MIH caused a time-dependent decline in the number of follicles transferring dye. However, although GJ uncoupling in some of the follicles was observed before germinal vesicle breakdown (GVBD, index of meiotic resumption), about 50% of the follicles maintained the ability to transfer dye even after GVBD had occurred. Further, a known GJ inhibitor (phorbol 12-myristate 13-acetate) blocked heterologous GJ within a time frame similar to that seen with MIH but without inducing any of the morphological changes (including GVBD) associated with follicular maturation. In conclusion, uncoupling of heterologous GJ seems insufficient and unnecessary for the onset of meiotic resumption in ovarian follicles of Atlantic croaker. ?? 2001 Elsevier Science.

  6. The Interior Olivary Complex of Guinea Pig: Cytoarchitecture and Cellular Morphology

    DTIC Science & Technology

    1986-01-01

    The oscillatory phenomenon ap- dye -coupling [471 between 1.0. cells might have been pre- peared in a sampling of neurons from all of the...information derived from injections of the ing of multiple cells from the Lucifer yellow injection into fluorescent dye Lucifer yellow revealed that...aggregates of only one 1.0. neuron [41. The early Golgi analyses also rv- inferior olive neurons are dye -coupled, presumably through vealed at least two

  7. A hybrid sorption - Spectrometric method for determination of synthetic anionic dyes in foodstuffs.

    PubMed

    Tikhomirova, Tatyana I; Ramazanova, Gyulselem R; Apyari, Vladimir V

    2017-04-15

    A sorption-spectrometric method for determination of the anionic synthetic dyes based on their sorption on silica sorbent modified with hexadecyl groups (C16) followed by measuring the diffuse reflectance spectra on the surface of the sorbent has been proposed. Adsorption of sulfonated azo dyes Tartrazine (E102), Sunset Yellow FCF (E110), Ponceau 4R (E124) reaches maximum in acidic medium (1M HCl - pH 1). For the quinophthalone type dye Quinoline Yellow (E104), the adsorption is also maximal in an acidic medium (1M HCl - pH 2). The triphenylmethane dye Fast Green FCF (E143) is absorbed in the wider area of pH (1M HCl - pH 6). Increasing concentration of the dyes in a solution led to the increase in absorption band intensity in diffuse reflectance spectra of the adsorbent, which was used for their direct determination. The proposed method was applied to the determination of dyes in beverages and pharmaceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core-shell structured nanoparticles.

    PubMed

    Khanna, Ankita; Shetty K, Vidya

    2013-08-01

    Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO2 nanoparticles comprising of Ag core and TiO2 shell (Ag@TiO2) have unique photocatalytic property of inhibition of electron-hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO2 nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO2 nanoparticles were characterized using thermogravimetric-differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO2 were found to be pH 3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH4)2S2O8 as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir-Hinshelwood model. Ag@TiO2 catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.

  9. Photocatalytic degradation of synthetic food dye, sunset yellow FCF (FD&C yellow no. 6) by Ailanthus excelsa Roxb. possessing antioxidant and cytotoxic activity.

    PubMed

    Deepika, Subramanyam; Harishkumar, Rajendran; Dinesh, Murugesan; Abarna, Rajadurai; Anbalagan, Moorthy; Roopan, Selvaraj Mohana; Selvaraj, Chinnadurai Immanuel

    2017-12-01

    The purpose of our work is to identify the bioactive compounds of bark and leaves extract from Ailanthus excelsa Roxb. and to explore its effectiveness against synthetic food dye. The presence of primary and secondary metabolites was confirmed by carrying out phytochemicals analysis. With the prior knowledge accessible on the indispensable secondary metabolites holding antioxidant and cytotoxicity activity, the quantitative screening of total phenolic and flavonoid content in methanolic and aqueous extract of bark and leaves from Ailanthus excelsa were done. Comparatively, a higher value of flavonoid (161±0.3μg/mg) and phenolic acid content (152.4±0.14μg/mg) was found in bark extract. By FTIR analysis, the characteristic peak was obtained at 1581.63 and 1598.99cm -1 confirmed the presence of functional groups associated to flavonoids and other phenolic groups respectively. In bark extract, 81% of DPPH inhibition was observed when compared to ascorbic acid (standard) 92% of free radical scavenging activity. Bark extract from Ailanthus excelsa exhibited 71% cytotoxicity against HeLa cell line (cervical cancer). In examining the toxicity level of crude extracts with red blood cells (RBC), the bark extract was showed a very less (2.8%) haemolytic activity. They also showed maximum zone of inhibition in antibacterial activity i.e. 13±0.5mm against Escherichia coli culture. At a concentration of 10mg/mL of crude extract from A. excelsa, 55% degradation of sunset yellow dye was observed. It concludes that, the compounds present in the A. excelsa, especially the bark extract showed better photocatalytic, haemolytic, antioxidant, cytotoxicity and antibacterial activity when compared to leaves extract. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.

    PubMed

    Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; Goddard, William A; Lee, Yoon Sup; Kim, Hyungjun

    2014-12-18

    During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D(+). The fast regeneration of D(+) using the redox pair (typically the I(-)/I3(-) couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provides a rapid dye regeneration route of ∼4 ps, where penetration of I(-) next to D(+) enables an immediate electron transfer, forming a kinetic barrier. This explains the recently reported ultrafast dye regeneration rate of a few picoseconds determined experimentally. We expect that our MD based comprehensive understanding of the dye regeneration mechanism will provide a helpful guideline in designing TiO2-dye-electrolyte interfacial systems for better performing DSSCs.

  11. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple.

    PubMed

    Daeneke, Torben; Uemura, Yu; Duffy, Noel W; Mozer, Attila J; Koumura, Nagatoshi; Bach, Udo; Spiccia, Leone

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sensitising potential of four textile dyes and some of their metabolites in a modified local lymph node assay.

    PubMed

    Stahlmann, Ralf; Wegner, Matthias; Riecke, Kai; Kruse, Matthias; Platzek, Thomas

    2006-02-15

    We studied the sensitising and allergenic potentials of the textile dyes disperse yellow 3, disperse orange 30, disperse red 82, disperse yellow 211 and two metabolites of disperse yellow 3, 4-aminoacetanilide and 2-amino-p-cresol, using modified protocols of the murine "local lymph node assay" (LLNA). Test substances were applied either to the dorsum of the mice ears (sensitisation protocol) or they were first applied to the skin of their backs and 2 weeks later to their ears (sensitisation-challenge protocol). In addition to the endpoints weight and cell number of the draining ear lymph nodes we analysed lymphocyte subpopulations by flow cytometry. In the sensitisation protocol, disperse yellow 3 and its metabolite 4-aminoacetanilide did not induce significant effects, whereas in the sensitisation-challenge protocol cell number and lymph node weight increased significantly indicating a sensitising potential in NMRI mice. Hence, two-phase treatment (skin of the back, ear) increased the sensitivity of this assay. The second metabolite of disperse yellow 3, 2-amino-p-cresol, showed distinct effects in both treatment protocols; this applied mainly to the parameters cell number and lymph node weight. The dye disperse red 82 caused ambiguous increases in lymph node weight and cell number in the sensitisation protocol which were not reproduced in the sensitisation-challenge protocol, ruling out a relevant sensitising potential for this dye in NMRI mice. Disperse yellow 211 and disperse orange 30 did not induce relevant changes under our experimental conditions. Phenotyping of lymphocytes did not influence the assessment of these dyes.

  13. Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells.

    PubMed

    Park, Kyung-Hee; Kim, Tae-Young; Han, Shin; Ko, Hyun-Seok; Lee, Suk-Ho; Song, Yong-Min; Kim, Jung-Hun; Lee, Jae-Wook

    2014-07-15

    Two natural dyes extracted from gardenia yellow (Gardenia jasminoides) and cochineal (Dactylopius coccus) were used as sensitizers in the assembly of dye-sensitized solar cells (DSSCs) to harvest light over a wide range of wavelengths. The adsorption characteristics, electrochemical properties and photovoltaic efficiencies of the natural DSSCs were investigated. The adsorption kinetics data of the dyes were obtained in a small adsorption chamber and fitted with a pseudo-second-order model. The photovoltaic performance of a photo-electrode adsorbed with single-dye (gardenia or cochineal) or the mixture or successive adsorption of the two dyes, was evaluated from current-voltage measurements. The energy conversion efficiency of the TiO2 electrode with the successive adsorption of cochineal and gardenia dyes was 0.48%, which was enhanced compared to single-dye adsorption. Overall, a double layer of the two natural dyes as sensitizers was successfully formulated on the nanoporous TiO2 surface based on the differences in their adsorption affinities of gardenia and cochineal. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Application of LC-MS to the analysis of dyes in objects of historical interest

    NASA Astrophysics Data System (ADS)

    Zhang, Xian; Laursen, Richard

    2009-07-01

    High-performance liquid chromatography (HPLC) with photodiode array and mass spectrometric detection permits dyes extracted from objects of historical interest or from natural plant or animal dyestuffs to be characterized on the basis of three orthogonal properties: HPLC retention time, UV-visible spectrum and molecular mass. In the present study, we have focused primarily on yellow dyes, the bulk of which are flavonoid glycosides that would be almost impossible to characterize without mass spectrometric detection. Also critical for this analysis is a method for mild extraction of the dyes from objects (e.g., textiles) without hydrolyzing the glycosidic linkages. This was accomplished using 5% formic acid in methanol, rather than the more traditional 6 M HCl. Mass spectroscopy, besides providing the molecular mass of the dye molecule, sometimes yields additional structural data based on fragmentation patterns. In addition, coeluting compounds can often be detected using extracted ion chromatography. The utility of mass spectrometry is illustrated by the analysis of historical specimens of silk that had been dyed yellow with flavonoid glycosides from Sophora japonica (pagoda tree) and curcumins from Curcuma longa (turmeric). In addition, we have used these techniques to identify the dye type, and sometimes the specific dyestuff, in a variety of objects, including a yellow varnish from a 19th century Tibetan altar and a 3000-year-old wool mortuary textiles, from Xinjiang, China. We are using HPLC with diode array and mass spectrometric detection to create a library of analyzed dyestuffs (>200 so far; mostly plants) to serve as references for identification of dyes in objects of historical interest.

  15. Biosorption of Azo dyes by spent Rhizopus arrhizus biomass

    NASA Astrophysics Data System (ADS)

    Salvi, Neeta A.; Chattopadhyay, S.

    2017-10-01

    In the present study, spent Rhizopus arrhizus biomass was used for the removal of six azo dyes from aqueous solutions. The dye removal capacity of the biomass was evaluated by conducting batch tests as a function of contact time, biomass dosage, pH and initial dye concentrations. The pseudo-second-order kinetic model fitted well with the experimental data with correlation coefficients greater than 0.999, suggesting that chemisorptions might be the rate limiting step. The equilibrium sorption data showed good fit to the Langmuir isotherm model. Among the six dyes tested, the maximum monolayer adsorption capacity for fast red A and metanil yellow was found to be 108.8 and 128.5 mg/g, respectively. These encouraging results suggest that dead Rhizopus arrhizus biomass could be a potential biomaterial for the removal of azo dyes from aqueous dye solution.

  16. Molecular and excited state properties of isomeric scarlet disperse dyes

    NASA Astrophysics Data System (ADS)

    Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.

    2018-06-01

    This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.

  17. PicoGreen dye as an active medium for plastic lasers

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Deoxyribonucleic acid lipid complex thin films are used as a host material for laser dyes. We tested PicoGreen dye, which is commonly used for the quantification of single and double stranded DNA, for its applicability as lasing medium. PicoGreen dye exhibits enhanced fluorescence on intercalation with DNA. This enormous fluorescence emission is amplified in a planar microcavity to achieve yellow lasing. Here the role of DNA is not only a host medium, but also as a fluorescence dequencher. With the obtained results we have ample reasons to propose PicoGreen dye as a lasing medium, which can lead to the development of DNA based bio-lasers.

  18. A new polymerizable fluorescent PET chemosensor of fluoride (F-) based on naphthalimide-thiourea dye.

    PubMed

    Alaei, Parvaneh; Rouhani, Shohre; Gharanjig, Kamaladin; Ghasemi, Jahanbakhsh

    2012-05-01

    A novel N-allyl-4-amino-substituted 1,8-naphthalimide dye, containing thiourea functional group with intense yellow-green fluorescence was successfully synthesized. Copolymerization was done with styrene. The photophysical characteristics of dye and its copolymer in solution and solid film were investigated in the presence of halide ions. The results reveal that the fluorescence emissions of the monomer dye and also its polymer were 'switched off' in the presence of fluoride ions. The dye showed spectral shifts and intensity changes in the presence of more fluoride ions which lead to detect certain fluoride concentrations of 10-150 mM at visible wavelengths. By adding the fluoride ions, green-yellow to purple color changes occurs and the green fluorescence emission quenches, all of which easily observed by naked eyes. These phenomena are essential for producing a dual responsive chemosensor for fluoride ions. The polymeric sensor, in the film state exhibited a fast response to the fluoride ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Studies on the Inhalation Toxicity of Dyes Present in Colored Smoke Munitions. Phase I Studies: Generation and Characterization of Dye Aerosol

    DTIC Science & Technology

    1984-02-01

    DYE AEROSOL Rogene F. Henderson Y. S. Cheng J. S. Dutcher T. C. Marshall J. E. White 0)February 1 . 1984 Supported by SU. S. ARMY MEDICAL RESEARCH AND...from Report) 1 . SUPPLEMENTARY NOTES IS. KEY WORDS (Coattine on re tore* side I’ necessary teid iatfiy by biock nuqber) Solvent Yellow Dye Aerosols...Solvent Green Exposure Atmosphere 2-(2’-quinolyl )-1,3-indandione 1 -4-di-p-toluidinoanthraquinone 20. AmTlACT (Cowftfuem a reserve ft D rofmwe ,uy md

  20. Quantitative cytochemistry of nuclear and cytoplasmic proteins using the Naphthol Yellow S and dinitrofluorobenzene staining methods.

    PubMed

    Tas, J; James, J

    1981-09-01

    The 'total protein staining' of biological specimens with the electrostatically binding Naphthol Yellow S or the covalently binding dinitrofluorobenzene must be interpreted as methods which yield data on the specific amino acid pool of the proteins concerned. Both dyes bind to certain free amino-acid side-chains, giving different dye--protein ratios for various proteins. In the presence of DNA, dinitrofluorobenzene stains all proteins present in cell nuclei, whereas Naphthol Yellow S only stains the majority of the non-histone proteins. When protein staining methods are combined with the Feulgen--Pararosanile (SO2) procedure for DNA, decreased Feulgen--DNA contents were measured in dinitrofluorobenzene-stained isolated nuclei and lymphocytes.

  1. Response surface optimization of electro-oxidation process for the treatment of C.I. Reactive Yellow 186 dye: reaction pathways

    NASA Astrophysics Data System (ADS)

    Rajkumar, K.; Muthukumar, M.

    2017-05-01

    In this study, central composite design at five levels (- β, -1, 0, +1, + β) combined with response surface methodology has been applied to optimize C.I. Reactive Yellow 186 using electro-oxidation process with graphite electrodes in a batch reactor. The variables considered were the pH ( X 1), NaCl concentration (M) ( X 2), and electrolysis time (min) ( X 3) on C.I. Reactive Yellow 186 were studied. A second-order empirical relationship between the response and independent variables was derived. Analysis of variance showed a high coefficient of determination value ( R 2 = 0.9556 and 0.9416 for color and COD, respectively). The optimized condition of the electro-oxidation of Reactive Yellow 186 is as follows: pH 3.9; NaCl concentration 0.11 M; and electrolysis time 18 min. Under this condition, the maximal decolorization efficiency of 99 % and COD removal 73 % was achieved. Detailed physico-chemical analysis of electrode and residues of the electro-oxidation process has also been carried out UV-Visible and Fourier transform infrared spectroscopy. The intermediate compounds formed during the oxidation were identified using a gas chromatography coupled with mass spectrometry. According to these results, response surface methodology could be useful for reducing the time to treat effluent wastewater.

  2. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    PubMed

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  3. Newer approach of using alternatives to (Indium doped) metal electrodes, dyes and electrolytes in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Patni, Neha; Sharma, Pranjal; Pillai, Shibu G.

    2018-04-01

    This work demonstrates the PV study of dye sensitised solar cells by fabricating the (PV) cell using the ITO, FTO and AZO glass substrate. Dyes used for the fabrication were extracted from beetroot and spinach and a cocktail dye by mixing both of the dyes was also prepared. Similarly the three dufferent electrolytes used were iodide-triiodide couple, polyaniline and mixture of polyaniline and iodide couple. Mixed dye and mixed electrolyte has emerged as the highest efficient cell. The electrical characterisation shows that the highest power conversion efficiency of 1.86% was achieved by FTO substrate, followed by efficiency of 1.83% by AZO substrate and efficiency of 1.63% with ITO substrate using mixed dye and mixed electrolyte approach. This justifies that FTO and AZO shows better efficiency and hence proposed to be used as an alternative to indium free system.

  4. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium.

    PubMed Central

    Pasti-Grigsby, M B; Paszczynski, A; Goszczynski, S; Crawford, D L; Crawford, R L

    1992-01-01

    Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1482183

  5. 21 CFR 74.1710 - D&C Yellow No. 10.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false D&C Yellow No. 10. 74.1710 Section 74.1710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color...

  6. 21 CFR 74.1710 - D&C Yellow No. 10.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false D&C Yellow No. 10. 74.1710 Section 74.1710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color...

  7. 21 CFR 74.1710 - D&C Yellow No. 10.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false D&C Yellow No. 10. 74.1710 Section 74.1710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color...

  8. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  9. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  10. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  11. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  12. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    PubMed

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  13. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    PubMed

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  14. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process

    PubMed Central

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M.; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5–8.0, 27(±2°C and 10.6–18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery. PMID:26496083

  15. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process.

    PubMed

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5-8.0, 27(±2°C and 10.6-18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery.

  16. Statistical Correlation between Ligninolytic Enzymes Secretion and Remazol Brilliant Yellow-3GL Dye Degradation Potential of Trametes versicolor IBL-04.

    PubMed

    Asgher, Muhammad; Shah, Syed Agha Hassan; Iqbal, Hafiz Muhammad Nasir

    2016-04-01

    Trametes versicolor IBL-04 was used for biodegradation of Remazol Brilliant Yellow 3-GL (RBY3-GL) reactive textile dye in Kirk's basal salts medium. During the initial screening study, the maximum decolorization (93.5%) of RBY3-GL was achieved in 7 days' shaking incubation period at pH 4 and 30 °C. Different physical and nutritional factors were statistically optimized to enhance the efficiency of T. versicolor IBL-04 for maximum decolorization. Under optimal conditions T. versicolor IBL-04 completely decolorized (100%) the RBY3-GL in 2 days of incubation with negligible adsorption on fungal mycelia. Laccase was the major enzyme (938.3 U/mL) secreted by T. versicolor IBL-04 along with comparatively lower activities of MnP. In this article and for the first time, a statistical correlation has been successfully investigated between the ligninolytic enzymes from an indigenously isolated white rot fungi, T. versicolor IBL-04, and the degradation of RBY3-GL.

  17. Direct analysis of textile dyes from trace fibers by automated microfluidics extraction system coupled with Q-TOF mass spectrometer for forensic applications.

    PubMed

    Sultana, Nadia; Gunning, Sean; Furst, Stephen J; Garrard, Kenneth P; Dow, Thomas A; Vinueza, Nelson R

    2018-05-19

    Textile fiber is a common form of transferable trace evidence at the crime scene. Different techniques such as microscopy or spectroscopy are currently being used for trace fiber analysis. Dye characterization in trace fiber adds an important molecular specificity during the analysis. In this study, we performed a direct trace fiber analysis method via dye characterization by a novel automated microfluidics device (MFD) dye extraction system coupled with a quadrupole-time-of-flight (Q-TOF) mass spectrometer (MS). The MFD system used an in-house made automated procedure which requires only 10μL of organic solvent for the extraction. The total extraction and identification time by the system is under 12min. A variety of sulfonated azo and anthraquinone dyes were analyzed from ∼1mm length nylon fiber samples. This methodology successfully characterized multiple dyes (≥3 dyes) from a single fiber thread. Additionally, it was possible to do dye characterization from single fibers with a diameter of ∼10μm. The MFD-MS system was used for elemental composition and isotopic distribution analysis where MFD-MS/MS was used for structural characterization of dyes on fibers. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effect of Molecular Coupling on Ultrafast Electron-Transfer and Charge-Recombination Dynamics in a Wide-Gap ZnS Nanoaggregate Sensitized by Triphenyl Methane Dyes.

    PubMed

    Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N

    2016-03-03

    Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal-Organic Framework for Fast White-Light Communication.

    PubMed

    Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin

    2017-10-11

    A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.

  20. Synthesis, biological activity and dyeing performance of some novel azo disperse dyes incorporating pyrazolo[1,5-a]pyrimidines for dyeing of polyester fabrics

    NASA Astrophysics Data System (ADS)

    Sayed, Ahmed Z.; Aboul-Fetouh, Mahmoud S.; Nassar, Hesham S.

    2012-02-01

    Several novel pyrazolopyrimidine azo compounds were achieved from diazotization of 4-aminoacetanilide and coupling with malononitrile and then refluxed with hydrazine hydrate to furnish 3,5-diamino-4-(4-acetamidophenylazo)-1H-pyrazole. The later compound was diazotized and coupled with substituted α-cyanocinnamate, α-cyanocinnamonitrile, 2-cyano-3-ethoxyacrylic acid ethyl ester, chalcones and ethylacetoacetate to produce novel dyestuffs. Structures of the dyes were fully characterized by using FT-IR, 1H NMR, mass spectroscopy and elemental analysis. The dyes were applied to polyester fiber, affording satisfactory results and showed biological activity towards various microorganisms.

  1. Physical and chemical investigations on natural dyes

    NASA Astrophysics Data System (ADS)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  2. Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies

    NASA Astrophysics Data System (ADS)

    Hebbar, Vidyashree; Bhajantri, R. F.; Naik, Jagadish; Rathod, Sunil G.

    2016-07-01

    In this paper, we report the microstructural, optical and fluorescence properties of poly(vinyl alcohol) (PVA)/Thiazole Yellow G (TY) dye composite prepared by solvent casting. The formation of change-transfer complex as a result of the interaction between the dye molecules and polymer chain is confirmed in FTIR, FT-Raman, XRD and DSC studies. SEM studies present the morphology of the samples. The UV-visible absorption spectra possess characteristic peaks of the TY dye corresponding to n-π* transition along with a characteristic peak of PVA. The composites exhibit the decreasing energy gap and increasing refractive index with an increase in wt.% of the TY dye. The fluorescence-quenching phenomena are observed in emission wavelength range of 391-406 nm upon excitation in the vicinity of absorption maxima (335 nm) with the quantum yield of 0.72 for lowest concentration of dye. The prepared composites bear high brightness, and improved thermal stability, which make them a promising material for sensors and optoelectronic applications.

  3. Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow.

    PubMed

    Soares, Bruno Moreira; Araújo, Taíssa Maíra Thomaz; Ramos, Jorge Amando Batista; Pinto, Laine Celestino; Khayat, Bruna Meireles; De Oliveira Bahia, Marcelo; Montenegro, Raquel Carvalho; Burbano, Rommel Mario Rodríguez; Khayat, André Salim

    2015-03-01

    Tartrazine is a food additive that belongs to a class of artificial dyes and contains an azo group. Studies about its genotoxic, cytotoxic and mutagenic effects are controversial and, in some cases, unsatisfactory. This work evaluated the potential in vitro cytotoxicity, genotoxicity and effects on DNA repair of human lymphocytes exposed to the dye. We assessed the cytotoxicity of tartrazine by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide test and the response of DNA repair through comet assay (alkaline version). We used different concentrations of the dye, ranging from 0.25-64.0 mM. The results demonstrated that tartrazine has no cytotoxic effects. However, this dye had a significant genotoxic effect at all concentrations tested. Although most of the damage was amenable to repair, some damage remained higher than positive control after 24 h of repair. These data demonstrate that tartrazine may be harmful to health and its prolonged use could trigger carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. [A novel yellow organic light-emitting device].

    PubMed

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules.

  5. A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin

    2016-01-15

    A novel porous anionic metal–organic framework, (Me{sub 2}NH{sub 2}){sub 2}[Zn{sub 2}L{sub 1.5}bpy]·2DMF (BUT-201; H{sub 4}L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH{sub 3}){sub 2}NH{sub 2}{sup +}, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acidmore » Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Graphical abstract: A porous anionic metal–organic framework (BUT-201) can selectively adsorb the cationic dyes by cationic guest molecule substitution, and the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Highlights: • An anionic metal-organic framework (BUT-201) has been synthesized and characterized. • BUT-201 has a three-dimensional (3D) pillared double-layer structure. • BUT-201 can selectively and rapidly adsorb cationic dyes. • The adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}.« less

  6. Directional emission from dye-functionalized plasmonic DNA superlattice microcavities

    PubMed Central

    Park, Daniel J.; Ku, Jessie C.; Sun, Lin; Lethiec, Clotilde M.; Stern, Nathaniel P.; Schatz, George C.; Mirkin, Chad A.

    2017-01-01

    Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena. PMID:28053232

  7. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides.

    PubMed

    Shaki, Hanieh; Gharanjig, Kamaladin; Khosravi, Alireza

    2015-01-01

    A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4-amino-N-2-aminomethylpyridine-1,8-naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N-diethylaniline, N,N-dihydroxyethylaniline, 8-hydroxyquinoline, and 2-methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance ((1) H NMR), carbon nuclear magnetic resonance ((13) C NMR), elemental analysis, and ultraviolet-visible (UV-visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate-to-good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N-dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used. © 2015 American Institute of Chemical Engineers.

  8. High laser efficiency and photostability of pyrromethene dyes mediated by nonpolar solvent.

    PubMed

    Gupta, Monika; Kamble, Priyadarshini; Rath, M C; Naik, D B; Ray, Alok K

    2015-08-10

    Many pyrromethene (PM) dyes have been shown to outperform established rhodamine dyes in terms of laser efficiency in the green-yellow spectral region, but their rapid photochemical degradation in commonly used ethanol or methanol solvents continues to limit its use in high average power liquid dye lasers. A comparative study on narrowband laser efficiency and photostability of commercially available PM567 and PM597 dyes, using nonpolar n-heptane and 1,4-dioxane and polar ethanol solvents, was carried out by a constructed pulsed dye laser, pumped by the second harmonic (532 nm) radiation of a Q-switched Nd:YAG laser. Interestingly, both nonpolar solvents showed a significantly higher laser photostability (∼100 times) as well as peak efficiency (∼5%) of these PM dyes in comparison to ethanol. The different photostability of the PM dyes was rationalized by determining their triplet-state spectra and capability to generate reactive singlet oxygen (O21) by energy transfer to dissolved oxygen in these solvents using pulse radiolysis. Heptane is identified as a promising solvent for these PM dyes for use in high average power dye lasers, pumped by copper vapor lasers or diode-pumped solid-state green lasers.

  9. Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles

    NASA Astrophysics Data System (ADS)

    Press, Adrian T.; Traeger, Anja; Pietsch, Christian; Mosig, Alexander; Wagner, Michael; Clemens, Mark G.; Jbeily, Nayla; Koch, Nicole; Gottschaldt, Michael; Bézière, Nicolas; Ermolayev, Volodymyr; Ntziachristos, Vasilis; Popp, Jürgen; Kessels, Michael M.; Qualmann, Britta; Schubert, Ulrich S.; Bauer, Michael

    2014-12-01

    Efficient delivery of short interfering RNAs reflects a prerequisite for the development of RNA interference therapeutics. Here, we describe highly specific nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties coupled to biodegradable polymers. The fluorescent dye, even when coupled to a nanoparticle, mimics a ligand for hepatic parenchymal uptake transporters resulting in hepatobiliary clearance of approximately 95% of the dye within 45 min. Body distribution, hepatocyte uptake and excretion into bile of the dye itself, or dye-coupled nanoparticles can be tracked by intravital microscopy or even non-invasively by multispectral optoacoustic tomography. Efficacy of delivery is demonstrated in vivo using 3-hydroxy-3-methyl-glutaryl-CoA reductase siRNA as an active payload resulting in a reduction of plasma cholesterol levels if siRNA was formulated into dye-functionalised nanoparticles. This suggests that organ-selective uptake of a near infrared dye can be efficiently transferred to theranostic nanoparticles allowing novel possibilities for personalised silencing of disease-associated genes.

  10. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.

    PubMed

    Boschloo, Gerrit; Hagfeldt, Anders

    2009-11-17

    Dye-sensitized solar cells (DSCs) have gained widespread interest because of their potential for low-cost solar energy conversion. Currently, the certified record efficiency of these solar cells is 11.1%, and measurements of their durability and stability suggest lifetimes exceeding 10 years under operational conditions. The DSC is a photoelectrochemical system: a monolayer of sensitizing dye is adsorbed onto a mesoporous TiO(2) electrode, and the electrode is sandwiched together with a counter electrode. An electrolyte containing a redox couple fills the gap between the electrodes. The redox couple is a key component of the DSC. The reduced part of the couple regenerates the photo-oxidized dye. The formed oxidized species diffuses to the counter electrode, where it is reduced. The photovoltage of the device depends on the redox couple because it sets the electrochemical potential at the counter electrode. The redox couple also affects the electrochemical potential of the TiO(2) electrode through the recombination kinetics between electrons in TiO(2) and oxidized redox species. This Account focuses on the special properties of the iodide/triiodide (I(-)/I(3)(-)) redox couple in dye-sensitized solar cells. It has been the preferred redox couple since the beginning of DSC development and still yields the most stable and efficient DSCs. Overall, the iodide/triiodide couple has good solubility, does not absorb too much light, has a suitable redox potential, and provides rapid dye regeneration. But what distinguishes I(-)/I(3)(-) from most redox mediators is the very slow recombination kinetics between electrons in TiO(2) and the oxidized part of the redox couple, triiodide. Certain dyes adsorbed at TiO(2) catalyze this recombination reaction, presumably by binding iodine or triiodide. The standard potential of the iodide/triiodide redox couple is 0.35 V (versus the normal hydrogen electrode, NHE), and the oxidation potential of the standard DSC-sensitizer (Ru(dcbpy)(2

  11. Synthesis and characterization of Acacia gum-Fe0Np-silica nanocomposite: an efficient Fenton-like catalyst for the degradation of Remazol Brilliant Violet dye

    NASA Astrophysics Data System (ADS)

    Singh, Vandana; Singh, Jadveer; Srivastava, Preeti

    2018-04-01

    Acacia gum-Fe0Np-silica nanocomposite (GFS1) has been crafted through sol-gel technique using a two-step process that involved the reduction of iron salt to zerovalent iron nanoparticles (Fe0Nps) followed by their impregnation within Acacia gum-silica matrix. GFS1 was characterized using Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray analysis (EDX), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS) techniques. GFS1 is decorated with Fe0Nps of 5 nm average size. The VSM study revealed that GFS1 has ferromagnetic nature. GFS1 was used as a heterogeneous Fenton-like catalyst for the degradation of azo dyes using Remazol Brilliant Violet (RBV) dye as a model dye. In first 5 min of operation, > 86% dye degradation was achieved and 94% dye (from 100 mg L-1 dye solution) was successfully degraded in 50 min. The dye degradation followed pseudo-first-order kinetics. The GFS1 performed efficiently well over the wide range of dye concentrations (25-200 mg L-1). The catalyst was reused for eight repeated cycles where 12.5% dye degradation was possible even in the eighth cycle. The catalyst behaved fairly well for the degradation of Metanil Yellow (MY) and Orange G (OG) dyes also. Under the optimum conditions of RBV dye degradation, Metanil Yellow (MY) and Orange G (OG) dyes were degraded to the extent of 97 and 26.3%, respectively.

  12. Solar/UV-induced photocatalytic degradation of three commercial textile dyes.

    PubMed

    Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, Banumathi; Murugesan, V

    2002-01-28

    The photocatalytic degradation of three commercial textile dyes with different structure has been investigated using TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation. Experiments were conducted to optimise various parameters viz. amount of catalyst, concentration of dye, pH and solar light intensity. Degradation of all the dyes were examined by using chemical oxygen demand (COD) method. The degradation efficiency of the three dyes is as follows: Reactive Yellow 17(RY17) > Reactive Red 2(RR2) > Reactive Blue 4 (RB4), respectively. The experimental results indicate that TiO(2) (Degussa P25) is the best catalyst in comparison with other commercial photocatalysts such as, TiO(2) (Merck), ZnO, ZrO(2), WO(3) and CdS. Though the UV irradiation can efficiently degrade the dyes, naturally abundant solar irradiation is also very effective in the mineralisation of dyes. The comparison between thin-film coating and aqueous slurry method reveals that slurry method is more efficient than coating but the problems of leaching and the requirement of separation can be avoided by using coating technique. These observations indicate that all the three dyes could be degraded completely at different time intervals. Hence, it may be a viable technique for the safe disposal of textile wastewater into the water streams.

  13. Cow urine, Indian yellow, and art forgeries: An update.

    PubMed

    Smith, Gregory Dale

    2017-07-01

    In a recent technical note in this Journal, de Faria et al., 2017 [1] reported the Raman spectrum of authentic Indian yellow artists' pigment, correcting a decades old reference spectrum that has led to the misidentification of this pigment in artworks that actually contained tartrazine yellow. The present communication provides additional information and corrects important experimental details mentioned by de Faria et al. that should lead to further identifications of the authentic pigment in artworks. Despite their claim that the analysis of this naturally fluorescent colorant is only possible with Fourier transform (FT) instruments, the ready characterization of two authentic samples of historic Indian yellow pigment is demonstrated here using commonly available visible and near-infrared excitation sources on a dispersive Raman microspectrometer. To highlight the importance of the proper identification of dyes and colorants, the authentication and art historical implications of previous literature reports that have misidentified Indian yellow on historic documents are more thoroughly discussed here from a forensic science point of view. The numerous modern pigments that are sold as imitation Indian yellow are addressed and analyzed, allowing the ready noninvasive detection of anachronistic colorants in attempted forgeries. Finally, this unusual pigment is positively identified for the first time using non-invasive dispersive Raman microspectroscopy on a historic object of uncertain date, a highly decorative manuscript from the Indian subcontinent. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Near-infrared absorbing squarylium dyes with linearly extended π-conjugated structure for dye-sensitized solar cell applications.

    PubMed

    Maeda, Takeshi; Hamamura, Yuuto; Miyanaga, Kyohei; Shima, Naoki; Yagi, Shigeyuki; Nakazumi, Hiroyuki

    2011-11-18

    A novel class of near-infrared absorbing squarylium sensitizers with linearly extended π-conjugated structures, which were obtained by Pd-catalyzed cross-coupling reactions with stannylcyclobutenediones, has been developed for dye-sensitized solar cells. The cells based on these dyes exhibited a significant spectral response in the near-infrared region over 750 nm in addition to the visible region.

  15. Orientational dynamics and dye-DNA interactions in a dye-labeled DNA aptamer.

    PubMed

    Unruh, Jay R; Gokulrangan, Giridharan; Lushington, G H; Johnson, Carey K; Wilson, George S

    2005-05-01

    We report the picosecond and nanosecond timescale rotational dynamics of a dye-labeled DNA oligonucleotide or "aptamer" designed to bind specifically to immunoglobulin E. Rotational dynamics in combination with fluorescence lifetime measurements provide information about dye-DNA interactions. Comparison of Texas Red (TR), fluorescein, and tetramethylrhodamine (TAMRA)-labeled aptamers reveals surprising differences with significant implications for biophysical studies employing such conjugates. Time-resolved anisotropy studies demonstrate that the TR- and TAMRA-aptamer anisotropy decays are dominated by the overall rotation of the aptamer, whereas the fluorescein-aptamer anisotropy decay displays a subnanosecond rotational correlation time much shorter than that expected for the overall rotation of the aptamer. Docking and molecular dynamics simulations suggest that the low mobility of TR is a result of binding in the groove of the DNA helix. Additionally, associated anisotropy analysis of the TAMRA-aptamer reveals both quenched and unquenched states that experience significant coupling to the DNA motion. Therefore, quenching of TAMRA by guanosine must depend on the configuration of the dye bound to the DNA. The strong coupling of TR to the rotational dynamics of the DNA aptamer, together with the absence of quenching of its fluorescence by DNA, makes it a good probe of DNA orientational dynamics. The understanding of the nature of dye-DNA interactions provides the basis for the development of bioconjugates optimized for specific biophysical measurements and is important for the sensitivity of anisotropy-based DNA-protein interaction studies employing such conjugates.

  16. Orientational Dynamics and Dye-DNA Interactions in a Dye-Labeled DNA Aptamer

    PubMed Central

    Unruh, Jay R.; Gokulrangan, Giridharan; Lushington, G. H.; Johnson, Carey K.; Wilson, George S.

    2005-01-01

    We report the picosecond and nanosecond timescale rotational dynamics of a dye-labeled DNA oligonucleotide or “aptamer” designed to bind specifically to immunoglobulin E. Rotational dynamics in combination with fluorescence lifetime measurements provide information about dye-DNA interactions. Comparison of Texas Red (TR), fluorescein, and tetramethylrhodamine (TAMRA)-labeled aptamers reveals surprising differences with significant implications for biophysical studies employing such conjugates. Time-resolved anisotropy studies demonstrate that the TR- and TAMRA-aptamer anisotropy decays are dominated by the overall rotation of the aptamer, whereas the fluorescein-aptamer anisotropy decay displays a subnanosecond rotational correlation time much shorter than that expected for the overall rotation of the aptamer. Docking and molecular dynamics simulations suggest that the low mobility of TR is a result of binding in the groove of the DNA helix. Additionally, associated anisotropy analysis of the TAMRA-aptamer reveals both quenched and unquenched states that experience significant coupling to the DNA motion. Therefore, quenching of TAMRA by guanosine must depend on the configuration of the dye bound to the DNA. The strong coupling of TR to the rotational dynamics of the DNA aptamer, together with the absence of quenching of its fluorescence by DNA, makes it a good probe of DNA orientational dynamics. The understanding of the nature of dye-DNA interactions provides the basis for the development of bioconjugates optimized for specific biophysical measurements and is important for the sensitivity of anisotropy-based DNA-protein interaction studies employing such conjugates. PMID:15731389

  17. Adsorption performance of mixed dyes on alkalization loofah fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Liu, Jinyan; Li, Xingxing

    2018-02-01

    When the polyporous structures of loofah fiber is adequately exposed after alkali treatment,lignin, hemicellulose and pectin are removed. Specific surface area is increased to maximum, which means the efficiency of absorptivity is highest. In this paper, by using alkalization loofah (AL) as adsorbent, the effect of loofah fiber on waste water treatment is studied under the efficiency of loofah fiber which contain acridine yellow, methylene blue, mixed solution of the two dyes. The optimum treatment conditions of loofah fiber were studied from five aspects which include dosage, temperature, mixing time, pH and concentration. The results showed that the optimal conditions are 30°C, pH 8.0, 20mg dosage of loofah fiber in 40ml solution and mixing time 25min. The optimal treatment conditions of mixed dyes were studied from the aspects of mixing time, the dosage of AL and the molar ratio of the two components in the mixed dyes.

  18. A ``plasmonic cuvette'': dye chemistry coupled to plasmonic interferometry for glucose sensing

    NASA Astrophysics Data System (ADS)

    Siu, Vince S.; Feng, Jing; Flanigan, Patrick W.; Palmore, G. Tayhas R.; Pacifici, Domenico

    2014-06-01

    A non-invasive method for the detection of glucose is sought by millions of diabetic patients to improve personal management of blood glucose over a lifetime. In this work, the synergistic advantage of combining plasmonic interferometry with an enzyme-driven dye assay yields an optical sensor capable of detecting glucose in saliva with high sensitivity and selectivity. The sensor, coined a "plasmonic cuvette," is built around a nano-scale groove-slit-groove (GSG) plasmonic interferometer coupled to an Amplex-red/Glucose-oxidase/Glucose (AR/GOx/Glucose) assay. The proposed device is highly sensitive, with a measured intensity change of 1.7×105%/m (i.e., one order of magnitude more sensitive than without assay) and highly specific for glucose sensing in picoliter volumes, across the physiological range of glucose concentrations found in human saliva (20-240 μm). Real-time glucose monitoring in saliva is achieved by performing a detailed study of the underlying enzyme-driven reactions to determine and tune the effective rate constants in order to reduce the overall assay reaction time to ˜2 min. The results reported suggest that by opportunely choosing the appropriate dye chemistry, a plasmonic cuvette can be turned into a general, real-time sensing scheme for detection of any molecular target, with high sensitivity and selectivity, within extremely low volumes of biological fluid (down to femtoliters). Hereby, we present the results on glucose detection in artificial saliva as a notable and clinically relevant case study.

  19. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  20. Simultaneous identification of synthetic and natural dyes in different food samples by UPLC-MS

    NASA Astrophysics Data System (ADS)

    Mandal, Badal Kumar; Mathiyalagan, Siva; Dalavai, Ramesh; Ling, Yong-Chien

    2017-11-01

    Fast foods and variety food items are populating among the food lovers. To improve the appearance of the food product in surviving gigantic competitive environment synthetic or natural food dyes are added to food items and beverages. Although regulatory bodies permit addition of natural colorants due to its safe and nontoxic nature in food, synthetic dyes are stringently controlled in all food products due to their toxicity by regulatory bodies. Artificial colors are need certification from the regulatory bodies for human consumption. To analyze food dyes in different food samples many analytical techniques are available like high pressure liquid chromatography (HPLC), thin layer chromatography (TLC), spectroscopic and gas chromatographic methods. However all these reported methods analyzed only synthetic dyes or natural dyes. Not a single method has analyzed both synthetic and natural dyes in a single run. In this study a robust ultra-performance liquid chromatographic method for simultaneous identification of 6 synthetic dyes (Tartrazine, Indigo carmine, Briliant blue, Fast green, malachite green, sunset yellow) and one natural dye (Na-Cu-Chlorophyllin) was developed using acquitic UPLC system equipped with Mass detector and acquity UPLC HSS T3 column (1.8 μm, 2.1 × 50 mm, 100Å). All the dyes were separated and their masses were determined through fragments’ masses analyses.

  1. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  2. Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite.

    PubMed

    Al-Ghouti, Mohammad A; Al-Degs, Yehya S; Khraisheh, Majeda A M; Ahmad, Mohammad N; Allen, Stephen J

    2009-08-01

    The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the d-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern.

  3. Identification and partial characterization of C-glycosylflavone markers in Asian plant dyes using liquid chromatography-tandem mass spectrometry.

    PubMed

    Mouri, Chika; Laursen, Richard

    2011-10-14

    Flavonoids in the grasses (Poaceae family), Arthraxon hispidus (Thunb.) Makino and Miscanthus tinctorius (Steudel) Hackel have long histories of use for producing yellow dyes in Japan and China, but up to now there have been no analytical procedures for characterizing the dye components in textiles dyed with these materials. LC-MS analysis of plant material and of silk dyed with extracts of these plants shows the presence, primarily, of flavonoid C-glycosides, three of which have been tentatively identified as luteolin 8-C-rhamnoside, apigenin 8-C-rhamnoside and luteolin 8-C-(4-ketorhamnoside). Two of these compounds, luteolin 8-C-rhamnoside (M=432), apigenin 8-C-rhamnoside (M=416), along with the previously known tricin (M=330) and several other flavonoids that appear in varying amounts, serve as unique markers for identifying A. hispidus and M. tinctorius as the source of yellow dyes in textiles. Using this information, we have been able to identify grass-derived dyes in Japanese textiles dated to the Nara and Heian periods. However, due to the high variability in the amounts of various flavonoid components, our goal of distinguishing between the two plant sources remains elusive. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    PubMed

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  5. Effect of electrolyte nature on kinetics of remazol yellow G removal by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Rajabi, M.; Bagheri-Roochi, M.; Asghari, A.

    2011-10-01

    The present study describes an electrocoagulation process for the removal of remazol yellow G from dye solutions using Iron as the anode and Steel as the cathode. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to analyze the kinetic data obtained at different concentrations in different conditions. The adsorption kinetics was well described by the pseudo-second-order kinetic model.

  6. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    PubMed

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  7. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.

    PubMed

    Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar

    2017-01-01

    In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H 2 O 2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H 2 O 2 at a dye to H 2 O 2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5-10min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption.

    PubMed

    Mathur, Megha; Gola, Deepak; Panja, Rupobrata; Malik, Anushree; Ahammad, Shaikh Ziauddin

    2018-01-01

    A biological method was adopted to decolourize textile dyes, which is an economic and eco-friendly technology for textile wastewater remediation. Two fungal strains, i.e. Aspergillus lentulus and Aspergillus fumigatus, were used to study the removal of low to high concentrations (25 to 2000 mg L -1 ) of reactive remazol red, reactive blue and reactive yellow dyes by biosorption and bioaccumulation. The biosorption was successful only at the lower concentrations. A. lentulus was capable of removing 67-85% of reactive dyes during bioaccumulation mode of treatment at 500 mg L -1 dye concentration with an increased biomass uptake capacity. To cope up with the high dye concentration of 2000 mg L -1 , a novel combined approach was successful in case of A. lentulus, where almost 76% removal of reactive remazol red dye was observed during bioaccumulation followed by biosorption. The scanning electron microscopy also showed the accumulation of dye on the surface of fungal mycelium. The results signify the application of such robust fungal strains for the removal of high concentration of dyes in the textile wastewaters.

  9. Inclusion of aggregation effect to evaluate the performance of organic dyes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Kenan; Zhang, Weiyi; Heng, Panpan; Wang, Li; Zhang, Jinglai

    2018-05-01

    Two new indoline-based D-A-π-A dyes, D3F and D3F2 (see Scheme 1), are developed on the basis of the reported D3 by insertion of one or two F atoms on benzothiadiazole group. Our central aim is to explore high-efficiency organic dyes applied in dye-sensitized solar cells by inclusion of a simple group rather than by employment of new complicated groups. The performance of two new designed organic dyes, D3F and D3F2, is compared with that of D3 from various aspects including absorption spectrum, light harvesting efficiency, driving force, and open-circuit voltage. Besides the isolated dye, the interfacial property between dye and TiO2 surface is studied. D3F and D3F2 do not show absolute superiority than D3 not only for the isolated dyes but also for the monomeric adsorption system. However, D3F and D3F2 would effectively reduce the influence of aggregation resulting in the much smaller intermolecular electronic coupling. Although the aggregation has attracted much attention recently, it is studied alone in most of studies. To comprehensively evaluate the performance of dye-sensitized solar cells, it is necessary to consider aggregation along with electron injection time from dye into TiO2 rather than only static items, such as, band gap and absorption region.

  10. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    PubMed

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  11. Utilization of Corn Cob and TiO2 Photocatalyst Thin Films for Dyes Removal.

    PubMed

    Gan, Hui-Yee; Leow, Li-Eau; Ong, Siew-Teng

    2017-01-01

    The effectiveness of using TiO2 and corn cob films to remove Malachite Green oxalate (MG) and Acid Yellow 17 (AY 17) from binary dye solution was studied. The immobilization method in this study can avoid the filtration step which is not suited for practical applications. Batch studies were performed under different experimental conditions and the parameters studied involved initial pH of dye solution, initial dye concentration and contact time and reusability. The equilibrium data of MG and AY 17 conform to Freundlich and Langmuir isotherm model, respectively. The percentage removal of MG remained high after four sorption cycles, however for AY 17, a greater reduction was observed. The removal of both dyes were optimized and modeled via Plackett- Burman design (PB) and Response Surface Methodology (RSM). IR spectrum and surface conditions analyses were carried out using fourier-transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM) and atomic force microscope (AFM), respectively.

  12. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.

    PubMed

    Zhang, Y Z; Li, J; Li, W J; Li, Y

    2015-01-01

    Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption-desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g(-1) for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2>0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L(-1) and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%).

  13. Detection of azo dyes in curry powder using a 1064-nm dispersive hyperspectral Raman imaging system

    USDA-ARS?s Scientific Manuscript database

    Curry powder is extensively used in Southeast Asian dishes. It has been subject to adulteration by azo dyes. This study used a newly developed 1064 nm dispersive hyperspectral Raman imaging system for detection of metanil yellow and Sudan-I contamination in curry powder. Curry powder was mixed with ...

  14. A combined Surface Enhanced Raman Spectroscopy (SERS)/UV-vis approach for the investigation of dye content in commercial felt tip pens inks.

    PubMed

    Saviello, Daniela; Trabace, Maddalena; Alyami, Abeer; Mirabile, Antonio; Giorgi, Rodorico; Baglioni, Piero; Iacopino, Daniela

    2018-05-01

    The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.

    PubMed

    Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K

    2016-03-01

    The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run

    2016-04-01

    This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The

  17. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment.

    PubMed

    Dotto, G L; Pinto, L A A; Hachicha, M A; Knani, S

    2015-03-15

    In this work, statistical physics treatment was employed to study the adsorption of food dyes onto chitosan films, in order to obtain new physicochemical interpretations at molecular level. Experimental equilibrium curves were obtained for the adsorption of four dyes (FD&C red 2, FD&C yellow 5, FD&C blue 2, Acid Red 51) at different temperatures (298, 313 and 328 K). A statistical physics formula was used to interpret these curves, and the parameters such as, number of adsorbed dye molecules per site (n), anchorage number (n'), receptor sites density (NM), adsorbed quantity at saturation (N asat), steric hindrance (τ), concentration at half saturation (c1/2) and molar adsorption energy (ΔE(a)) were estimated. The relation of the above mentioned parameters with the chemical structure of the dyes and temperature was evaluated and interpreted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthesis of magnetic biocomposite for efficient adsorption of azo dye from aqueous solution.

    PubMed

    Sivashankar, R; Sathya, A B; Krishnakumar, Uma; Sivasubramanian, V

    2015-11-01

    A novel magnetic biocomposite was synthesized using metal chlorides and aquatic macrophytes by co-precipitation method. The resulting product, magnetic biocomposite was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and Scanning electron microscope (SEM). The adsorption performance of the magnetic biocomposite was tested with removal of Metanil Yellow dye from aqueous solution. The effect of influencing parameters such as initial dye concentration, solution pH and agitation were investigated. The equilibrium isotherm was well described by the Langmuir model with the with maximum adsorption capacity of 90.91mg/g. Adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the magnetic biocomposite could efficiently adsorb the azo dyes from aqueous solution, and the spent adsorbents could be recovered completely by magnetic separation process. Therefore, the prepared magnetic biocomposite could thus be used as promising adsorbent for the removal of azo dyes from polluted water. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Yellow Fever

    MedlinePlus

    ... Testing Vaccine Information Testing for Vaccine Adverse Events Yellow fever Vaccine Continuing Education Course Yellow Fever Home Prevention Vaccine Vaccine Recommendations Reactions to Yellow Fever Vacine Yellow Fever Vaccine, Pregnancy, & ... Transmission Symptoms, Diagnosis, & Treatment Maps Africa ...

  1. Probes labelled with energy transfer coupled dyes

    DOEpatents

    Mathies, Richard A.; Glazer, Alexander; Ju, Jingyue

    1997-01-01

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids.

  2. Probes labelled with energy transfer coupled dyes

    DOEpatents

    Mathies, R.A.; Glazer, A.; Ju, J.

    1997-11-18

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids. 7 figs.

  3. Ultrastrong exciton-photon coupling in single and coupled organic microcavities

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Bramante, Rosemary; Valle, Brent; Singer, Kenneth; Khattab, Tawfik; Williams, Jarrod; Twieg, Robert

    2015-03-01

    We have demonstrated ultrastrong light-matter coupling in organic planar microcavities composed of a neat glassy organic dye film between two metallic (aluminum) mirrors in a half-cavity configuration. Such cavities are characterized by Q factors around 10. Tuning the thickness of the organic layer enables the observation of the ultrastrong coupling regime. Via reflectivity measurements, we observe a very large Rabi splitting around 1.227 eV between upper and lower polariton branches at room temperature, and we detect polariton emission from the lower polariton branch via photoluminescence measurements. The large splitting is due to the large oscillator strength of the neat dye glass, and to the match of the low-Q cavity spectral width to the broad absorption width of the dye film material. We also study the interaction between excitonic states of neat glassy organic dye and cavity modes within coupled microcavity structures. The high-reflectivity mirrors are formed from distributed Bragg reflectors (DBR), which are multilayer films fabricated using the coextrusion process, containing alternating layers of high (SAN25, n =1.57) and low (Dyneon THV 220G, n =1.37) refractive index dielectric polymers. Nonlinear optical measurements will be discussed. This research was supported by the National Science Foundation Center for Layered Polymer Systems (CLiPS) under Grant Number DMR-0423914.

  4. Ethnobotany of dye plants in Dong communities of China.

    PubMed

    Liu, Yujing; Ahmed, Selena; Liu, Bo; Guo, Zhiyong; Huang, Weijuan; Wu, Xianjin; Li, Shenghua; Zhou, Jiangju; Lei, Qiyi; Long, Chunlin

    2014-02-19

    Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011-2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye plants, their efficacy in enhancing food

  5. Highly sensitive determination of sunset yellow FCF (E110) in food products based on Chitosan/Nanoparticles/MWCNTs with modified gold electrode

    NASA Astrophysics Data System (ADS)

    Rovina, K.; Siddiquee, S.; Shaarani, S. M.

    2016-06-01

    Sunset Yellow belongs to the family of azo dyes, commonly used in food industry. High consumption of Sunset Yellow can cause health problem to human. Due to arising of the health issues, there are several analytical methods available for determination of Sunset Yellow. However, these methods are required skilled manpower, complicated procedures, time consuming and high cost. Herein, an electrochemical sensor was developed based on the combination of chitosan (CHIT), calcium oxide nanoparticles (CaONPs) and multiwall carbon nanotubes (MWCNTs) sensing film for detection of Sunset Yellow in food products. Electrochemical behavior of the modified gold electrode in the presence of Sunset Yellow was studied by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The morphological characteristics of CHIT/CaONPs/MWCNTs were observed under scanning electron microscope and transmission electron microscope. Under optimal conditions, the DPV was detected with different concentrations of Sunset Yellow in the range of 0.9 to 10 ppm, with detection limit of 0.8 ppm. The developed method has successfully applied for monitoring the presence of Sunset Yellow with different food products including candy, royal jelly, ice cream and soft drink with satisfactory results.

  6. Direct identification of early synthetic dyes: FT-Raman study of the illustrated broadside prints of José Gaudalupe Posada (1852-1913)

    NASA Astrophysics Data System (ADS)

    Casadio, F.; Mauck, K.; Chefitz, M.; Freeman, R.

    2010-09-01

    Fourier Transform (FT)-Raman spectroscopy was used for the non-invasive, direct identification of colorants used to dye historical printed papers, overcoming obstacles such as low concentration of the dye, faded colors and fluorescence interference of the aged paper substrate. Based on a newly created FT-Raman reference database of 20 widely used dyes in the 19th century paper industry, the detectability of these dyes on aged biomaterials was determined by studying dyed paper samples from contemporary dye manuals, and identifying diagnostic peaks detectable on those substrates. Lastly, the method was applied to analyze the colorants used to dye the papers of a group of prints illustrated by the influential Mexico City artist José Guadalupe Posada, active 1876-1913. Unambiguous identification of the synthetic organic colorants Malachite Green (a triarylmethane dye), Orange II and Metanil Yellow (two acid monoazo dyes), Cotton Scarlet (an acid diazo dye), Phloxine (a xanthene dye) and Victoria Blue (a triarylmethane dye) in several of Posada’s prints challenged previous art-historical assumptions that these artworks were colored with natural dyes. The acquired knowledge has important conservation implications given that aniline dyes are sensitive to light and to aqueous treatments otherwise commonly carried out on works of art on paper.

  7. Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust.

    PubMed

    Macedo, Jeremias de Souza; da Costa Júnior, Nivan Bezerra; Almeida, Luis Eduardo; Vieira, Eunice Fragoso da Silva; Cestari, Antonio Reinaldo; Gimenez, Iara de Fátima; Villarreal Carreño, Neftali Lênin; Barreto, Ledjane Silva

    2006-06-15

    Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.

  8. Curcuma longa extract as a histological dye for collagen fibres and red blood cells

    PubMed Central

    Avwioro, O G; Onwuka, S K; Moody, J O; Agbedahunsi, J M; Oduola, T; Ekpo, O E; Oladele, A A

    2007-01-01

    Crude ethanolic extract and column chromatographic fractions of the Allepey cultivar of Curcuma longa Roxb, commonly called turmeric (tumeric) in commerce, were used as a stain for tissue sections. Staining was carried out under basic, acidic and neutral media conditions. Inorganic and organic dissolution solvents were used. The stain was used as a counterstain after alum and iron haematoxylins. C. longa stained collagen fibres, cytoplasm, red blood cells and muscle cells yellow. It also stained in a fashion similar to eosin, except for its intense yellow colour. Preliminary phytochemical evaluation of the active column fraction revealed that it contained flavonoids, free anthraquinone and deoxy sugar. A cheap, natural dye can thus be obtained from C. longa. PMID:17451535

  9. Time-resolved spectroscopy of dye-labeled photoactive yellow protein suggests a pathway of light-induced structural changes in the N-terminal cap.

    PubMed

    Hoersch, Daniel; Otto, Harald; Cusanovich, Michael A; Heyn, Maarten P

    2009-07-14

    The photoreceptor PYP responds to light activation with global conformational changes. These changes are mainly located in the N-terminal cap of the protein, which is approximately 20 A away from the chromophore binding pocket and separated from it by the central beta-sheet. The question of the propagation of the structural change across the central beta-sheet is of general interest for the superfamily of PAS domain proteins, for which PYP is the structural prototype. Here we measured the kinetics of the structural changes in the N-terminal cap by transient absorption spectroscopy on the ns to second timescale. For this purpose the cysteine mutants A5C and N13C were prepared and labeled with thiol reactive 5-iodoacetamidofluorescein (IAF). A5 is located close to the N-terminus, while N13 is part of helix alpha1 near the functionally important salt bridge E12-K110 between the N-terminal cap and the central anti-parallel beta-sheet. The absorption spectrum of the dye is sensitive to its environment, and serves as a sensor for conformational changes near the labeling site. In both labeled mutants light activation results in a transient red-shift of the fluorescein absorption spectrum. To correlate the conformational changes with the photocycle intermediates of the protein, we compared the kinetics of the transient absorption signal of the dye with that of the p-hydroxycinnamoyl chromophore. While the structural change near A5 is synchronized with the rise of the I(2) intermediate, which is formed in approximately 200 mus, the change near N13 is delayed and rises with the next intermediate I(2)', which forms in approximately 2 ms. This indicates that different parts of the N-terminal cap respond to light activation with different kinetics. For the signaling pathway of photoactive yellow protein we propose a model in which the structural signal propagates from the chromophore binding pocket across the central beta-sheet via the N-terminal region to helix alpha1

  10. Enhanced photocatalytic efficiency of NiS/TiO{sub 2} composite catalysts using sunset yellow, an azo dye under day light illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajamanickam, D.; Dhatshanamurthi, P.; Shanthi, M., E-mail: shanthimsm@gmail.com

    2015-01-15

    Highlights: • NiS/TiO{sub 2} was successfully synthesized by sol–gel method. • This new method of preparation gives a homogeneous dispersion of NiS on TiO{sub 2}. • Degradation activity of NiS/TiO{sub 2} is found to be more efficient than other catalysts. • Addition of oxidants enhances the degradation efficiency significantly. • COD measurements reveal the complete mineralization of dye molecules. • The catalyst is found to be reusable. - Abstract: To improve the solar light induced photocatalytic application performances of TiO{sub 2}, in this study, the NiS modified TiO{sub 2} composite photocatalysts with various ratios of NiS to TiO{sub 2} weremore » prepared by sol–gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), high resolution transmission electron microscope (HR-TEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (B–E–T) surface area measurement methods. The photocatalytic activity of NiS/TiO{sub 2} was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The NiS/TiO{sub 2} is found to be more efficient than prepared TiO{sub 2} and TiO{sub 2}–P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of oxidants such as H{sub 3}K{sub 5}O{sub 18}S{sub 4} (Oxone), KIO{sub 4}, and KBrO{sub 3}. The mineralization of SY has been identified by COD measurements. The catalyst is found to be reusable.« less

  11. Evaluation of out-in skin transparency using a colorimeter and food dye in patients with atopic dermatitis.

    PubMed

    Mochizuki, H; Tadaki, H; Takami, S; Muramatsu, R; Hagiwara, S; Mizuno, T; Arakawa, H

    2009-05-01

    Atopic dermatitis is a disease of skin barrier dysfunction and outside stimuli can cross the skin barrier. To examine a new method for evaluating the outside to inside skin transparency with a colorimeter and yellow dyes. In study 1, a total of 28 volunteer subjects (24 normal and four with atopic dermatitis) participated. After provocation with yellow dye, the skin colour of all the subjects was measured using a colorimeter. The skin transparency index was calculated by the changes of the skin colour to yellow. Other variables of skin function, including transepidermal water loss (TEWL) and stratum corneum hydration, were also measured. In study 2, the skin transparency index was evaluated for a cohort of 38 patients with atopic dermatitis, 27 subjects with dry skin and 29 healthy controls. In study 1, the measurement of skin colour (b*) using tartrazine showed good results. There was a significant relationship between the skin transparency index with tartrazine and the atopic dermatitis score (P = 0.014). No other measurements of skin function, including the TEWL, were correlated. In study 2, the skin transparency index score obtained with tartrazine in the patients with atopic dermatitis was significantly higher than that of the controls and those with dry skin (P < 0.001 and P = 0.022, respectively). However, the TEWL in patients with atopic dermatitis was not significantly higher than that of patients with dry skin and the TEWL in subjects with dry skin was not higher than that of the controls. This method, which used a colorimeter and food dye, is noninvasive, safe and reliable for the evaluation of out-in skin transparency and can demonstrate the characteristic dysfunction in the skin barrier in patients with atopic dermatitis.

  12. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM Microcapsules.

    PubMed

    Guo, Jia; Yang, Wuli; Deng, Yonghui; Wang, Changchun; Fu, Shoukuan

    2005-07-01

    We present a new approach for the fabrication of thermoresponsive polymer microcapsules with mobile magnetic cores that undergo a volume phase-transition upon changing the temperature and are collected under an external magnetic field. We have prepared organic/inorganic composite microspheres with a well-defined core-shell structure that are composed of a crosslinked poly(N-isopropylacrylamide) (PNIPAM) shell and silica cores dotted centrally by magnetite nanoparticles. Since the infiltration of template-decomposed products is dependent on the permeability of PNIPAM shells triggered by changes of exterior temperature, the silica layer sandwiched between the magnetic core and the PNIPAM shell was quantitatively removed to generate PNIPAM microcapsules with mobile magnetic cores by treatment with aqueous NaOH solution. For development of the desired multifunctional microcapsules, modification of the unetched silica surface interiors can be realized by treatment with a silane coupling agent containing functional groups that can easily bind to catalysts, enzymes, or labeling molecules. Herein, fluorescein isothiocyanate (FITC), which is a common organic dye, is attached to the insides of the mobile magnetic cores to give PNIPAM microcapsules with FITC-labeled magnetic cores. In this system, it can be expected that an extension of the functionalization of the cavity properties of smart polymer microcapsules is to immobilize other target molecules onto the mobile cores in order to introduce other desired functions in the hollow cage.

  13. Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resins.

    PubMed

    Huddleston, J G; Willauer, H D; Boaz, K R; Rogers, R D

    1998-06-26

    Aqueous biphasic systems (ABS) and aqueous biphasic extraction chromatographic (ABEC) resins are currently under investigation for their utility in the removal of color from textile plant wastes. The structures of several widely used food colorings, suggest that these dyes would also be retained on the resins. In work currently in progress, we have begun to investigate the retention and resolution of several common food colorings including indigo carmine, amaranth, carminic acid. erythrosin B, tartrazine and quinoline yellow. The relationship between the uptake of these dyes on ABEC resins in terms of the binding strengths and capacities of the resins and their partitioning behavior in ABS is illustrated. Some possible theoretical and practical approaches to the prediction of the partitioning and retention behavior is discussed.

  14. Patch testing to a textile dye mix by the international contact dermatitis research group.

    PubMed

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E; Diepgen, Thomas; Goh, Chee-Leok; Goossens R, An; Jerajani, Hemangi; Maibach, Howard I; Sasseville, Denis; Bruze, Magnus

    2015-01-01

    Disperse dyes are well-known contact sensitizers not included in the majority of commercially available baseline series. To investigate the outcome of patch testing to a textile dye mix (TDM) consisting of 8 disperse dyes. Two thousand four hundred ninety-three consecutive dermatitis patients in 9 dermatology clinics were patch tested with a TDM 6.6%, consisting of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0% each, and D Blue 106 and D Blue 124, each 0.3%. 90 reacted positively to the TDM. About 92.2% of the patients allergic to the TDM were also tested with the 8 separate dyes. Contact allergy to TDM was found in 3.6% (1.3-18.2) Simultaneous reactivity to p-phenylenediamine was found in 61.1% of the TDM-positive patients. Contact allergy to TDM and not to other p-amino-substituted sensitizers was diagnosed in 1.2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix should be considered for inclusion into the international baseline series.

  15. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).

    PubMed

    Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2017-10-01

    Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.

  16. Removal of Acid Yellow 17 Dye by Fenton Oxidation Process

    NASA Astrophysics Data System (ADS)

    Khan, Jehangeer; Sayed, Murtaza; Ali, Fayaz; Khan, Hasan Mahmood

    2018-05-01

    In the present research work the degradation of acid yellow 17 (AY 17) by H2O2/Fe2+ was investigated. The effect of various conditions such as pH value, temperature, conc. of H2O2, Fe2+, conc. of AY 17 were studied. Additionally the scavenging effects of various anions such as Cl-, SO42-, CO32- and HCO3-, on percent degradation of AY 17 were examined. It was found that these anions decrease percent degradation as well as rate of degradation reaction. The optimum conditions were determined as [AY 17]=[Fe2+]=0.06 mM [H2O2]=0.9 mM, and pH 3.0 for 60 min of reaction time. It was found that at optimum conditions 89% degradation of AY17 was achieved. The degradation kinetics of AY17 followed pseudo-first-order reaction kinetics. Thermodynamic studies under natural conditions showed positive value of ΔH (enthalpy) which indicates the degradation process is endothermic.

  17. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples.

    PubMed

    Lou, Chaoyan; Wu, Can; Zhang, Kai; Guo, Dandan; Jiang, Lei; Lu, Yang; Zhu, Yan

    2018-05-18

    Allergenic disperse dyes are a group of environmental contaminants, which are toxic and mutagenic to human beings. In this work, a method of dispersive solid-phase extraction (d-SPE) using graphene-coated polystyrene-divinylbenzene (G@PS-DVB) microspheres coupled with supercritical fluid chromatography (SFC) was proposed for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. G@PS-DVB microspheres were synthesized by coating graphene (G) sheets onto polystyrene-divinylbenzene (PS-DVB) polymers. Such novel sorbents were employed in d-SPE for the purification and concentration of allergenic disperse dyes in wastewater samples prior to the determination by SFC with UV detection. To achieve the maximum extraction efficiency for the target dyes, several parameters influencing d-SPE process such as sorbent dosage, extraction time, desorption conditions were investigated. SFC conditions including stationary phase, modifier composition and percentage, column temperature, backpressure and flow rate were optimized to well separate the allergenic disperse dyes. Under the optimum conditions, satisfactory linear relationship (R ≥ 0.9989) was observed with the concentration of dyes ranging from 0.02 to 10.0 μg/mL. The limits of detection (LOD, S/N = 3) for the ten dyes were in the range of 1.1-15.6 ng/mL. Recoveries for the spiked samples were between 89.1% and 99.7% with relative standard deviations (RSD) lower than 10.5% in all cases. The proposed method is time-saving, green, precise and repeatable for the analysis of the target dyes. Furthermore, the application of G@PS-DVB based d-SPE process can be potentially expanded to isolate and concentrate other aromatic compounds in various matrices and supercritical fluid chromatography methodology featuring rapidity, accuracy and green will be an ideal candidate for the analysis of these compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Spectral-Polarization Properties and Light Resistance of Polyvinyl-Alcohol Films Colored With Disazo Dyes

    NASA Astrophysics Data System (ADS)

    Fillipovich, L. N.; Ariko, N. G.; Agabekov, V. E.; Malashko, P. M.

    2005-09-01

    Polarizers containing disazo dyes from the group of azobenzene-azonaphthalene have been developed. It has been established that their polarizing ability is determined by the mutual disposition of the azo group and electron-donor substituents in the naphthalene ring. On diazo coupling of γ acid into the α position relative to the oxy group, the M1 and M3 dyes are formed, the polarizing ability of which in uniaxially oriented polyvinyl-alcohol films is higher than in the M2 dye produced as a result of diazo coupling into the α position relative to the amino group. On irradiation by UV light, the dyes are subjected to photodestruction, which, in the case of M2, proceeds through trans-cis-isomerization. The rate of photodestruction depends on the aggregation of the dye molecules, and it increases in the presence of a free-radical initiator. The UV absorber (substituted benzotriazole) and the uniaxial orientation of the film retard this process.

  19. Ethnobotany of dye plants in Dong communities of China

    PubMed Central

    2014-01-01

    Background Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Methods Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011–2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Results Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. Conclusions The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye

  20. [Yellow fever].

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio

    2007-06-01

    After the discovery of the New World, yellow fever proved to be an important risk factor of morbidity and mortality for Caribbean populations. In the following centuries epidemic risk, expanded by sea trade and travel, progressively reached the settlements in North America and Brazil as well as the Atlantic seaboard of tropical and equatorial Africa. In the eighteenth century and the first half of the nineteenth century epidemics of yellow fever were reported in some coastal towns in the Iberian peninsula, French coast, Great Britain and Italy, where, in 1804 at Leghorn, only one epidemic was documented. Prevention and control programs against yellow fever, developed at the beginning of the twentieth century in Cuba and in Panama, were a major breakthrough in understanding definitively its aetiology and pathogenesis. Subsequently, further advances in knowledge of yellow fever epidemiology were obtained when French scientists, working in West and Central Africa, showed that monkeys were major hosts of the yellow fever virus (the wild yellow fever virus), besides man. In addition, advances in research, contributing to the development of vaccines against the yellow fever virus in the first half of the nineteenth century, are reported in this paper.

  1. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push-Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells.

    PubMed

    Fernandes, Sara S M; Castro, M Cidália R; Pereira, Ana Isabel; Mendes, Adélio; Serpa, Carlos; Pina, João; Justino, Licínia L G; Burrows, Hugh D; Raposo, M Manuela M

    2017-12-31

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO 2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO 2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.

  2. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push–Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells

    PubMed Central

    2017-01-01

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push–pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine–thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20–64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%. PMID:29302638

  3. Gap junction coupling is required for tumor cell migration through lymphatic endothelium.

    PubMed

    Karpinich, Natalie O; Caron, Kathleen M

    2015-05-01

    The lymphatic vasculature is a well-established conduit for metastasis, but the mechanisms by which tumor cells interact with lymphatic endothelial cells (LECs) to facilitate escape remain poorly understood. Elevated levels of the lymphangiogenic peptide adrenomedullin are found in many tumors, and we previously characterized that its expression is necessary for lymphatic vessel growth within both tumors and sentinel lymph nodes and for distant metastasis. This study used a tumor cell-LEC coculture system to identify a series of adrenomedullin-induced events that facilitated transendothelial migration of the tumor cells through a lymphatic monolayer. High levels of adrenomedullin expression enhanced adhesion of tumor cells to LECs, and further analysis revealed that adrenomedullin promoted gap junction coupling between LECs as evidenced by spread of Lucifer yellow dye. Adrenomedullin also enhanced heterocellular gap junction coupling as demonstrated by Calcein dye transfer from tumor cells into LECs. This connexin-mediated gap junction intercellular communication was necessary for tumor cells to undergo transendothelial migration because pharmacological blockade of this heterocellular communication prevented the ability of tumor cells to transmigrate through the lymphatic monolayer. In addition, treatment of LECs with adrenomedullin caused nuclear translocation of β-catenin, a component of endothelial cell junctions, causing an increase in transcription of the downstream target gene C-MYC. Importantly, blockade of gap junction intercellular communication prevented β-catenin nuclear translocation. Our findings indicate that maintenance of cell-cell communication is necessary to facilitate a cascade of events that lead to tumor cell migration through the lymphatic endothelium. © 2015 American Heart Association, Inc.

  4. Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs.

    PubMed

    Otłowska, Olga; Ślebioda, Marek; Kot-Wasik, Agata; Karczewski, Jakub; Śliwka-Kaszyńska, Magdalena

    2018-02-06

    A multi-tool analytical practice was used for the characterisation of a 16th century carpet manufactured in Cairo. A mild extraction method with hydrofluoric acid has been evaluated in order to isolate intact flavonoids and their glycosides, anthraquinones, tannins, and indigoids from fibre samples. High-performance liquid chromatography coupled to spectroscopic and mass spectrometric detectors was used for the identification of possible marker compounds with special attention paid to natural dyes present in the historical samples. Weld, young fustic, and soluble redwood dye were identified as the dye sources in yellow thread samples. Based on the developed method, it was possible to establish that red fibres were coloured with lac dye, whereas green fibre shades were obtained with indigo and weld. Tannin-containing plant material in combination with indigo and weld were used to obtain the brown hue of the thread. Hyphenation of high-performance liquid chromatography (HPLC) with quadrupole time-of-flight mass spectrometry (QTOF MS) and triple-quadrupole mass spectrometry (QqQ MS) enabled us to recognise four uncommon and thus-far unknown dye components that were also found in the historical samples. These compounds probably represent a unique fingerprint of dyed threads manufactured in a Turkish workshop. Scanning electron microscopy with energy-dispersive X-ray detector (SEM-EDS) and Fourier transform infrared spectroscopy (FT-IR) were used for the identification and characterisation of substrates and mordants present in the historical carpet. Carbon and oxygen were detected in large quantities as a part of the wool protein. The presence of aluminium, iron, and calcium indicated their usage as mordants. Trace amounts of copper, silica, and magnesium might originate from the contaminants. FT-IR analysis showed bands characteristic for woollen fibres and SEM micrographs defined the structure of the wool.

  5. Dispersive liquid-phase microextraction with solidification of floating organic droplet coupled with high-performance liquid chromatography for the determination of Sudan dyes in foodstuffs and water samples.

    PubMed

    Chen, Bo; Huang, Yuming

    2014-06-25

    Dispersive liquid-phase microextraction with solidification of floating organic drop (SFO-DLPME) is one of the most interesting sample preparation techniques developed in recent years. In this paper, a new, rapid, and efficient SFO-DLPME coupled with high-performance liquid chromatography (HPLC) was established for the extraction and sensitive detection of banned Sudan dyes, namely, Sudan I, Sudan II, Sudan III, and Sudan IV, in foodstuff and water samples. Various factors, such as the type and volume of extractants and dispersants, pH and volume of sample solution, extraction time and temperature, ion strength, and humic acid concentration, were investigated and optimized to achieve optimal extraction of Sudan dyes in one single step. After optimization of extraction conditions using 1-dodecanol as an extractant and ethanol as a dispersant, the developed procedure was applied for extraction of the target Sudan dyes from 2 g of food samples and 10 mL of the spiked water samples. Under the optimized conditions, all Sudan dyes could be easily extracted by the proposed SFO-DLPME method. Limits of detection of the four Sudan dyes obtained were 0.10-0.20 ng g(-1) and 0.03 μg L(-1) when 2 g of foodstuff samples and 10 mL of water samples were adopted, respectively. The inter- and intraday reproducibilities were below 4.8% for analysis of Sudan dyes in foodstuffs. The method was satisfactorily used for the detection of Sudan dyes, and the recoveries of the target for the spiked foodstuff and water samples ranged from 92.6 to 106.6% and from 91.1 to 108.6%, respectively. These results indicated that the proposed method is simple, rapid, sensitive, and suitable for the pre-concentration and detection of the target dyes in foodstuff samples.

  6. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea.

    PubMed

    Jiang, Xin; Teng, Ankang; Xu, Wenzhe; Liu, Xiaoshou

    2014-06-15

    Heavy metal concentrations in surface sediments at 56 stations during two cruises in the Yellow Sea in summer and winter, 2011 were analyzed by inductively coupled plasma-mass spectrometry. The pollution status was assessed via the Geoaccumulation index and Hankanson potential ecological risk index. Higher concentrations of heavy metals (except for Mn) were found in the central Southern Yellow Sea and the western Northern Yellow Sea. The higher contents of Mn were much closer to Shandong Peninsula. Correlation analyses indicated that Pb, Cu, Fe, Ni, Zn and Co probably had the same origin and were controlled by grain size and total organic carbon. Pollution assessment showed that most areas of the Yellow Sea were not or lowly contaminated with the exception of the northwest and south parts of the Southern Yellow Sea showing Cd-contamination. The pollution status of the Yellow Sea in summer was worse than that in winter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. YELLOW SUPERGIANTS IN THE ANDROMEDA GALAXY (M31)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drout, Maria R.; Massey, Philip; Meynet, Georges

    2009-09-20

    The yellow supergiant content of nearby galaxies can provide a critical test of stellar evolution theory, bridging the gap between the hot, massive stars and the cool red supergiants. But, this region of the color-magnitude diagram is dominated by foreground contamination, requiring membership to somehow be determined. Fortunately, the large negative systemic velocity of M31, coupled to its high rotation rate, provides the means for separating the contaminating foreground dwarfs from the bona fide yellow supergiants within M31. We obtained radial velocities of {approx}2900 individual targets within the correct color-magnitude range corresponding to masses of 12 M{sub sun} and higher.more » A comparison of these velocities to those expected from M31's rotation curve reveals 54 rank-1 (near certain) and 66 rank-2 (probable) yellow supergiant members, indicating a foreground contamination >= 96%. We expect some modest contamination from Milky Way halo giants among the remainder, particularly for the rank-2 candidates, and indeed follow-up spectroscopy of a small sample eliminates four rank 2's while confirming five others. We find excellent agreement between the location of yellow supergiants in the H-R diagram and that predicted by the latest Geneva evolutionary tracks that include rotation. However, the relative number of yellow supergiants seen as a function of mass varies from that predicted by the models by a factor of >10, in the sense that more high-mass yellow supergiants are predicted than those are actually observed. Comparing the total number (16) of >20 M{sub sun} yellow supergiants with the estimated number (24,800) of unevolved O stars indicates that the duration of the yellow supergiant phase is {approx}3000 years. This is consistent with what the 12 M{sub sun} and 15 M{sub sun} evolutionary tracks predict, but disagrees with the 20,000-80,000 year timescales predicted by the models for higher masses.« less

  8. Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: artificial neural network modeling.

    PubMed

    Ghaedi, A M; Ghaedi, M; Karami, P

    2015-03-05

    The present work focused on the removal of sunset yellow (SY) dye from aqueous solution by ultrasound-assisted adsorption and stirrer by activated carbon prepared from wood of an orange tree. Also, the artificial neural network (ANN) model was used for predicting removal (%) of SY dye based on experimental data. In this study a green approach was described for the synthesis of activated carbon prepared from wood of an orange tree and usability of it for the removal of sunset yellow. This material was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of variables, including initial dye concentration (mg/L), pH, adsorbent dosage (g), sonication time (min) and temperature (°C) on SY removal were studied. Fitting the experimental equilibrium data of different isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models display the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data by different kinetic models including pseudo-first and second order, Elovich and intraparticle diffusion models indicate the applicability of the second-order equation model. The adsorbent (0.5g) is applicable for successful removal of SY (>98%) in short time (10min) under ultrasound condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    NASA Astrophysics Data System (ADS)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  10. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  11. Application of concentrating plasmonic luminescent down-shifting layers for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Rafiee, M.; Chandra, S.; Sethi, A.; McCormack, S. J.

    2017-02-01

    In this paper, concentrating structures of plasmonic luminescent downshifting composite layers (c-pLDS) containing lumogen yellow dye and silver nanoparticles (Ag NPs) to increase the efficiency of Photovoltaic (PV) devices were investigated. The c-pLDS structures allowed for a wider absorption range of both wavelength shifting and light concentration with a strong energy transfer that red shifts photons to wavelengths which gives greater spectral response of solar cells. The optimum dye concentration in a poly(methyl,methacrylate) polymer of a thin layer 10μm spin coated on glass substrate was established. Subsequently, plasmonic coupling with Ag NPs was introduced for the c-pLDS composite structures. Plasmonic coupling has been observed to produce fluorescence emission enhancement of up to 20% for the dye c-pLDS layer. The c-pLDS layer was modelled for CdTe mini modules (15x15 cm) and compared with a blank PMMA/GLASS and dye c-LDS structure. It has been demonstrated that the addition of c-pLDS layers containing lumogen yellow dye increases the optical efficiency and the Short circuit current (Jsc) of CdTe solar cells. An increase of 7.3% in the optical efficiency has been achieved and a 30% in the Jsc was obtained when a c-pLDS composite layer is used.

  12. Equilibrium, kinetics and process design of acid yellow 132 adsorption onto red pine sawdust.

    PubMed

    Can, Mustafa

    2015-01-01

    Linear and non-linear regression procedures have been applied to the Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Redlich-Peterson isotherms for adsorption of acid yellow 132 (AY132) dye onto red pine (Pinus resinosa) sawdust. The effects of parameters such as particle size, stirring rate, contact time, dye concentration, adsorption dose, pH, and temperature were investigated, and interaction was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscope. The non-linear method of the Langmuir isotherm equation was found to be the best fitting model to the equilibrium data. The maximum monolayer adsorption capacity was found as 79.5 mg/g. The calculated thermodynamic results suggested that AY132 adsorption onto red pine sawdust was an exothermic, physisorption, and spontaneous process. Kinetics was analyzed by four different kinetic equations using non-linear regression analysis. The pseudo-second-order equation provides the best fit with experimental data.

  13. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells.

    PubMed

    Feldt, Sandra M; Gibson, Elizabeth A; Gabrielsson, Erik; Sun, Licheng; Boschloo, Gerrit; Hagfeldt, Anders

    2010-11-24

    Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.

  14. Tyre char preparation from waste tyre rubber for dye removal from effluents.

    PubMed

    Mui, Edward L K; Cheung, W H; McKay, Gordon

    2010-03-15

    A number of chars from waste tyre rubber were prepared by carbonisation at 673-1173 K. The effects of holding time, heating rate and particle size on the textural characteristics and elemental composition of the resultant chars were investigated. It was demonstrated that temperatures over 773 K did not have a significant improvement on the total surface area but resulted in lower char yields following increased aromatisation. Modelling of dye adsorption isotherms showed that the Redlich-Peterson expression yields the best-fit between experimental and predicted data. Furthermore, for a larger sized dye like Acid Yellow 117 (MW=848 g/mol), the amount adsorbed by the tyre char is not directly proportional to the total surface area when compared with a commercial carbon, revealing that factors other than total surface area are involved in the adsorption potential of the tyre chars. (c) 2009 Elsevier B.V. All rights reserved.

  15. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  16. Choline-based ionic liquids-enhanced biodegradation of azo dyes.

    PubMed

    Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran

    2012-05-01

    Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation. © 2012 American Chemical Society

  17. [Induce of laccase from Trametes gallica and its degradation on neutral dyes and organophosphorus pesticides].

    PubMed

    Jing, De-Jun; Huang, Jian-Bo; Yang, Zhou-Ping; Hu, Rong; Cheng, Zi-Zhang; Huang, Qian-Ming

    2011-12-01

    The characteristics of the induction of laccase in Trametes gallica under different initial cultural pH, incubation time by different inducers were discussed, as well as the effects of temperature, pH and time on laccase degradation of six dyes and four organophosphors. The results showed that RB-bright blue, ABTS and o-toluidine affected the production of laccase at different levels, and ABTS was the best inductive agent in our test conditions, whose optimal initial pH and incubation time were 4.0 and 13 days, respectively. The appropriate reaction temperature of the laccase produced was 38 degrees C, and it got a good stability, for it could retain 78.6% of the enzyme activity after 20 min holding at 40 degrees C. Mediated by ABTS, the optimal temperature for laccase to degrade the six types of neutral dyes could be divided into two cases, that was 30 degrees C (neutral black, neutral bordeaux, neutral pink, methyl orange) and 60 degrees C (neutral dark yellow, cresol red), the optimal pH were 6.0 (neutral black), 2.0 (neutral bordeaux, neutral pink) and 4.0 (methyl orange, neutral dark yellow, cresol red), respectively, while the optimal times separately were 6 h (methyl orange, neutral dark yellow, cresol red), 12 h (neutral pink) and 24 h (neutral bordeaux). And using the same inductive agent, the best temperature for laccase to degrade dimethoate, chlorpyrifos, trichlorfon and parathion-pyridazine was 25 degrees C, the suitable time was 9 h, and the optimal pH was 10.0 for dimethoate, chlorpyrifos and parathion-pyridazine, and 8.0 for trichlorfon.

  18. In-Vitro Analysis of the Effect of Constructional Parameters and Dye Class on the UV Protection Property of Cotton Knitted Fabrics.

    PubMed

    Kan, Chi-Wai; Au, Chui-Ha

    2015-01-01

    Cotton knitted fabrics were manufactured with different yarn types (conventional ring spun yarn and torque-free ring spun yarn) with different fibre types (combed cotton and combed Supima cotton) and yarn fineness (Ne30 and Ne40). These fabrics were then dyed with three types of dye (reactive, direct and sulphur dye) with three dye concentrations (0.1%, 1.0% and 5.0% on-weight of fabric (owf)) in three colours (red, yellow and blue). This study examined the impact of constructional parameters and dyeing on ultraviolet (UV) protection properties of cotton knitted fabric. In-vitro test with spectrophotometer was used for evaluating the UV protection property of dyed cotton knitted fabrics. Among the six parameters investigated, fineness of yarn and dye concentration were the most significant factors affecting UPF while the color effect is the least significant. Experimental results revealed that the UPF value of dyed fabrics made from combed cotton is generally higher than the combed Supima cotton since combed cotton is composed of shorter fibres which facilitate the blocking or absorption of UV radiation. Second, fabrics made with twist yarn (i.e. ring spun yarn) have higher UPF value than the corresponding ESTex one (i.e. torque-free yarn) in general since fabrics made with ring spun yarn tend to shrink during wet processing and so it is more compact. Third, the UPF value of fabrics made with 30Ne yarn was higher than the 40Ne one since it is thicker and has lower fabric porosity. Fourth, fabrics dyed with lower concentration of dye gave the lowest UPF. Fifth, the sulphur dyed samples performed worse than the reactive and direct dyed samples in terms of UV protection property. Sixth, there is no significant difference in UPF for red, yellow and blue coloured fabrics. Seventh, this study also demonstrated that lightness of fabric is negatively related to UV protection property.

  19. In-Vitro Analysis of the Effect of Constructional Parameters and Dye Class on the UV Protection Property of Cotton Knitted Fabrics

    PubMed Central

    2015-01-01

    Cotton knitted fabrics were manufactured with different yarn types (conventional ring spun yarn and torque-free ring spun yarn) with different fibre types (combed cotton and combed Supima cotton) and yarn fineness (Ne30 and Ne40). These fabrics were then dyed with three types of dye (reactive, direct and sulphur dye) with three dye concentrations (0.1%, 1.0% and 5.0% on-weight of fabric (owf)) in three colours (red, yellow and blue). This study examined the impact of constructional parameters and dyeing on ultraviolet (UV) protection properties of cotton knitted fabric. In-vitro test with spectrophotometer was used for evaluating the UV protection property of dyed cotton knitted fabrics. Among the six parameters investigated, fineness of yarn and dye concentration were the most significant factors affecting UPF while the color effect is the least significant. Experimental results revealed that the UPF value of dyed fabrics made from combed cotton is generally higher than the combed Supima cotton since combed cotton is composed of shorter fibres which facilitate the blocking or absorption of UV radiation. Second, fabrics made with twist yarn (i.e. ring spun yarn) have higher UPF value than the corresponding ESTex one (i.e. torque-free yarn) in general since fabrics made with ring spun yarn tend to shrink during wet processing and so it is more compact. Third, the UPF value of fabrics made with 30Ne yarn was higher than the 40Ne one since it is thicker and has lower fabric porosity. Fourth, fabrics dyed with lower concentration of dye gave the lowest UPF. Fifth, the sulphur dyed samples performed worse than the reactive and direct dyed samples in terms of UV protection property. Sixth, there is no significant difference in UPF for red, yellow and blue coloured fabrics. Seventh, this study also demonstrated that lightness of fabric is negatively related to UV protection property. PMID:26222792

  20. Yellow fever.

    PubMed

    Monath, Thomas P; Vasconcelos, Pedro F C

    2015-03-01

    Yellow fever, a mosquito-borne flavivirus disease occurs in tropical areas of South America and Africa. It is a disease of major historical importance, but remains a threat to travelers to and residents of endemic areas despite the availability of an effective vaccine for nearly 70 years. An important aspect is the receptivity of many non-endemic areas to introduction and spread of yellow fever. This paper reviews the clinical aspects, pathogenesis, and epidemiology of yellow fever, with an emphasis on recent changes in the distribution and incidence of the disease. Recent knowledge about yellow fever 17D vaccine mechanism of action and safety are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, James M.

    1992-01-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam.

  2. Master dye laser oscillator including a specific grating assembly for use therein

    DOEpatents

    Davin, J.M.

    1992-09-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.

  3. Preparation of fluorescent-dye-labeled cDNA from RNA for microarray hybridization.

    PubMed

    Ares, Manuel

    2014-01-01

    This protocol describes how to prepare fluorescently labeled cDNA for hybridization to microarrays. It consists of two steps: first, a mixture of anchored oligo(dT) and random hexamers is used to prime amine-modified cDNA synthesis by reverse transcriptase using a modified deoxynucleotide with a reactive amine group (aminoallyl-dUTP) and an RNA sample as a template. Second, the cDNA is purified and exchanged into bicarbonate buffer so that the amine groups in the cDNA react with the dye N-hydroxysuccinimide (NHS) esters, covalently joining the dye to the cDNA. The dye-coupled cDNA is purified again, and the amount of dye incorporated per microgram of cDNA is determined.

  4. Some heterocyclic azo dyes derived from thiazolyl derivatives; synthesis; substituent effects and solvatochromic studies

    NASA Astrophysics Data System (ADS)

    Yazdanbakhsh, M. R.; Mohammadi, A.; Abbasnia, M.

    2010-12-01

    A series of azo disperse dyes were synthesized by coupling reaction of N, N-diethylaniline, 2-anilinoethanol and N-phenyl-2,2'-iminodiethanol with diazotized aminothiazolyl derivatives as diazo components. These dyes have been prepared in good yields, and were characterized by UV-Vis, FT-IR and 1H NMR spectroscopic techniques. The effects of solvent polarity and various pH on dyes in the visible absorption spectra were evaluated. All dyes exhibit an excellent correlation coefficient ( r > 0.92) for the linear solvation energy relationship with π* values calculated by Kamlet et al. The influence of the pH on the dyes with electron-donating group implied that these dyes exist in acid-base equilibrium in acidic environment. The effect of substituents of both coupler and diazo component on the color of dyes was investigated as well.

  5. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.

    PubMed

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-17

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  6. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite.

    PubMed

    Al-Ghouti, M A; Khraisheh, M A M; Ahmad, M N; Allen, S J

    2007-07-19

    The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated. On the basis of the experimental results, it can be concluded that the adsorption of RY onto manganese oxides modified diatomite (MOMD) exhibited a characteristic "S" shape and can be simulated effectively by the Thomas model. It is shown that the adsorption capacity increased as the initial dye concentration increased. The increase in the dye uptake capacity with the increase of the adsorbent mass in the column was due to the increase in the surface area of adsorbent, which provided more binding sites for the adsorption. It is shown that the use of high flow rates reduced the time that RY in the solution is in contact with the MOMD, thus allowing less time for adsorption to occur, leading to an early breakthrough of RY. A rapid decrease in the column adsorption capacity with an increase in particle size with an average 56% reduction in capacity resulting from an increase in the particle size from 106-250 microm to 250-500 microm. The experimental data correlated well with calculated data using the Thomas equation and the bed depth-service time (BDST) equation. Therefore, it might be concluded that the Thomas equation and the BDST equations can produce accurate predication for variation of dye concentration, mass of the adsorbent, flow rate and particle size. In general, the values of adsorption isotherm capacity

  7. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species. Copyright © 2016. Published by Elsevier B.V.

  9. Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes.

    PubMed

    Nagarpita, M V; Roy, Pratik; Shruthi, S B; Sailaja, R R N

    2017-09-01

    Chitosan/carboxy methyl chitosan (CMC) grafted sodium acrylate-co-acrylamide/nanoclay superabsorbent nanocomposites have been synthesized in this study by following conventional and microwave assisted grafting methods. Microwave assisted grafting method showed higher grafting yield with enhanced reaction rate. Effect of nanoclay on water adsorption and swelling behaviour of both the composites in acidic, neutral and alkaline medium has been studied. Results showed enhanced swelling rate and water adsorption of both composites after adding 5% of silane treated nanoclay. Dye adsorption capacity of both the composites has been investigated for crystal violet, napthol green and sunset yellow dyes. It was observed that addition of 5% nanoclay enhanced the dye adsorption in both the composites. Langmuir and Freundlich isotherm models have been used to explain the dye adsorption capabilities. The chitosan and CMC nanocomposites follow both the models with R 2 value more than 0.97. Both the composites showed enhanced dye adsorption with 5% nanoclay. Effect of pH on dye adsorption has also been studied in both the composites. Chitosan nanocomposites showed better performance in dye removal as compared to CMC nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biodecolorization of Reactive Yellow-2 by Serratia sp. RN34 Isolated from Textile Wastewater.

    PubMed

    Najme, Rabia; Hussain, Sabir; Maqbool, Zahid; Imran, Muhammad; Mahmood, Faisal; Manzoor, Hamid; Yasmeen, Tahira; Shehzad, Tanvir

    2015-12-01

    Remediation of colored textile wastewaters is a matter of interest. In this study, 49 bacteria were isolated from the textile wastewater and tested for their ability to decolorize reactive yellow-2 (RY2) dye. The most efficient isolate, RN34, was identified through amplification, sequencing, and phylogenetic analysis of its 16S rDNA and was designated as Serratia sp. RN34. This bacterium was also found capable of decolorizing other related reactive azo-dyes, including reactive black-5, reactive red-120, and reactive orange-16 but at varying rates. The optimum pH for decolorization of RY2 by the strain RN34 was 7.5 using yeast extract as cosubstrate under static incubation at 30 °C. The strain RN34 also showed potential to decolorize RY2 in the presence of considerable amounts of hexavalent chromium and sodium chloride. A phytotoxicity study demonstrated relatively reduced toxicity of RY2 decolorized products on Vigna radiata plant as compared to the uninoculated RY2 solution.

  11. Decolorization and degradation of reactive yellow HF aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Bedolla-Guzman, A; Feria-Reyes, R; Gutierrez-Granados, S; Peralta-Hernández, Juan M

    2017-05-01

    Textile manufacturing is the one responsible for water bodies' contamination through the discharge of colored wastes. This work presents the study of reactive yellow HF (RYHF) dye degradation under two different electrochemical advanced oxidation processes (EAOP), namely anodic oxidation (AO) and electro-Fenton (EF)/boron-doped diamond (BDD) process. For the AO, 100 and 300 mg/L solutions using Pt and BDD as anodes in a 100 mL stirred tank cell were used, with a supporting electrolyte of 0.05 mol/L of Na 2 SO 4 at pH 3 under 30 and 50 mA/cm 2 current density. The EF/BDD process was carried out in a flow reactor at 4 and 7 L/min to degrade 100, 200, and 300 mg/L RYHF solutions under 50 and 80 mA/cm 2 . UV-Vis determinations were used for decolorization evaluation, while high-performance liquid chromatography (HPLC) method provided information on dye degradation rate.

  12. Discovery of black dye crystal structure polymorphs: Implications for dye conformational variation in dye-sensitized solar cells

    DOE PAGES

    Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun

    2015-11-24

    Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less

  13. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions.

    PubMed

    Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-09-02

    The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  14. Jackfruit (Artocarpus heterophyllus lamk) wood waste as a textile natural dye by micowave-assisted extraction method

    NASA Astrophysics Data System (ADS)

    Qadariyah, Lailatul; Gala, Selfina; Widoretno, Dhaniar Rulandri; Kunhermanti, Delita; Bhuana, Donny S.; Sumarno, Mahfud, Mahfud

    2017-05-01

    The development of technology causes most of textile industries in Indonesia prefer to use synthetic dyes in the fabric dyeing process. In fact, synthetic dyes is able to have negative effect since it is is toxic to the health of workers and environment. To resolve this issues, one way to do is to use natural dyes. One of untapped potential in Indonesia is wood waste of jackfruit from furniture industry. Jackfruit wood itself containing dyestuffs which gives yellow color pigment so that it can be used as an alternative source of natural dyes. The purpose of this research is to study the effect of extraction time, mass to solvent volume ratio, and microwave power to yield of dyes. The extract of dye analyzed by UV-Visible Spectrophotometer and GC-MS, along the coloring and endurance tests of natural dyes on fabric and compare it with synthetic dyes. In this research, material is going to be extracted is the wood of jackfruit (Artocarpus heterophyllus lamk) with material size between 35 mesh - 60 mesh. The extraction process is done by using ethanol 96%. Extraction using MAE is carried out at the ratio of materials to solvent of 0,02-0,1 g/mL, the microwave power of 100-800 Watt, and the extraction time of 10-90 minutes. The conclusion is at microwave power of 400 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,39% while at microwave power of 600 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,67% with extraction time of 30 minutes. The highest recovery from ethanol 96% solvent is 60,41%. The result of UV-Vis Spectrophotometry and GC-MS test show that there is a chromophore compound in the extract of natural dye. The test results show the natural dyes of jackfruit wood can be used to coloring on the textile because it can gives staining result permanently.

  15. Application of an enzyme immunoassay for the quantitative determination of azo dye (Orange II) in food products.

    PubMed

    Xue, Huyin; Xing, Yue; Yin, Yongmei; Zhang, Taichang; Zhang, Bo; Zhang, Yu; Song, Pei; Tian, Xi; Xu, Yinghui; Wang, Peng; Meng, Meng; Xi, Rimo

    2012-01-01

    This paper reports the preparation of polyclonal antibodies against a synthetic azo dye, Orange II, and the development of an indirect ELISA to detect Orange II in foods. The sulfonic group of Orange II was modified and linked with carrier protein to synthesise an artificial antigen. Based on the checkerboard titration, the method showed excellent sensitivity (IC₅₀ = 0.61 ng g⁻¹) to Orange II in the linear range of 0.05-10 ng g⁻¹. The antibody had little cross-reactivity with Chromotrope FB, Gardenia Yellow, Ponceau 4R, Sunset Yellow and Sudan dyes. The ELISA had limits of detection (LOD) of 0.22, 0.97 and 0.74 ng g⁻¹ in chilli powder, chilli oil and braised pork, respectively. The limits of quantification (LOQ) of the assay were 0.91 ng g⁻¹ in chilli powder, 1.48 ng g⁻¹ in chilli oil and 1.10 ng g⁻¹ in braised pork. For food products fortified with 1-10 ng g⁻¹ Orange II, the inter- and intra-assay variations were all less than 24.0% and 18.0%, respectively. Therefore, the proposed test could be used as a rapid screening method for Orange II detection in food samples.

  16. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes.

    PubMed Central

    Han, Qian; Fang, Jianmin; Ding, Haizhen; Johnson, Jody K; Christensen, Bruce M; Li, Jianyong

    2002-01-01

    This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway. Drosophila yellow -y gene and yellow -b, -c, -f and -f2 genes were expressed in an insect cell/baculovirus expression system and their corresponding recombinant proteins were screened for dopachrome-conversion enzyme activity. Among the yellow and yellow -related genes, the yellow -f and yellow -f2 genes were identified as the genes coding for Drosophila dopachrome-conversion enzyme based on the high activity of their recombinant proteins in catalysing the production of 5,6-dihydroxyindole from dopachrome. Both yellow-f and yellow-f2 are capable of mediating a decarboxylative structural rearrangement of dopachrome, as well as an isomerization/tautomerization of dopamine chrome and dopa methyl ester chrome. Northern hybridization revealed the transcription of yellow -f in larvae and pupae, but a high abundance of mRNA was observed in later larval and early pupal stages. In contrast, yellow-f2 transcripts were present at all stages, but high abundance of its mRNA was observed in later-stage pupae and adults. These data indicate that yellow-f and yellow-f2 complement each other during Drosophila development and that the yellow-f is involved in larval and pupal melanization, and yellow-f2 plays a major role in melanization reactions in Drosophila during later pupal and adult development. Results from this study provide the groundwork towards a better understanding of the physiological roles of the Drosophila yellow gene family. PMID:12164780

  17. Color Degradation of Textiles with Natural Dyes and of Blue Scale Standards Exposed to White LED Lamps:Evaluation of White LED Lamps for Effectiveness as Museum Lighting

    NASA Astrophysics Data System (ADS)

    Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako

    White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.

  18. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  19. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  20. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters.

    PubMed

    Kuo, Chao-Yin; Wu, Chung-Hsin; Wu, Jane-Yii

    2008-11-15

    This study examined the feasibility of removing direct dyes C.I. Direct Yellow 86 (DY86) and C.I. Direct Red 224 (DR224) from aqueous solutions using carbon nanotubes (CNTs). The effects of dye concentration, CNT dosage, ionic strength and temperature on adsorption of direct dyes by CNTs were also evaluated. Pseudo second-order, intraparticle diffusion and Bangham models were adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. Additionally, this study used the Langmuir, Freundlich, Dubinin and Radushkevich (D-R) and Temkin isotherms to describe equilibrium adsorption. The adsorption percentage of direct dyes increased as CNTs dosage, NaCl addition and temperature increased. Conversely, the adsorption percentage of direct dyes decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. Based on the regressions of intraparticle diffusion and Bangham models, experimental data suggest that the adsorption of direct dyes onto CNTs involved intraparticle diffusion, but that was not the only rate-controlling step. The equilibrium adsorption of DR86 is best fitted in the Freundlich isotherm and that of DR224 was best fitted in the D-R isotherm. The capacity of CNTs to adsorb DY86 and DR224 was 56.2 and 61.3 mg/g, respectively. For DY86, enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were 13.69 kJ/mol and 139.51 J/mol K, respectively, and those for DR224 were 24.29 kJ/mol and 172.06 J/mol K, respectively. The values of DeltaH(0), DeltaG(0) and E all indicate that the adsorption of direct dyes onto CNTs was a physisorption process.

  1. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste.

    PubMed

    Olgun, Asim; Atar, Necip

    2009-01-15

    In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73mgg(-1), respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23kJ/mol for BY 28 and 18.15kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents.

  2. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  4. Triphenylmethane dye activation of beta-arrestin.

    PubMed

    Barak, Larry S; Bai, Yushi; Snyder, Joshua C; Wang, Jiangbo; Chen, Wei; Caron, Marc G

    2013-08-13

    β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy.

  5. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes.

    PubMed

    Daeneke, Torben; Kwon, Tae-Hyuk; Holmes, Andrew B; Duffy, Noel W; Bach, Udo; Spiccia, Leone

    2011-03-01

    Dye-sensitized solar cells based on iodide/triiodide (I(-)/I(3)(-)) electrolytes are viable low-cost alternatives to conventional silicon solar cells. However, as well as providing record efficiencies of up to 12.0%, the use of I(-)/I(3)(-) in such solar cells also brings about certain limitations that stem from its corrosive nature and complex two-electron redox chemistry. Alternative redox mediators have been investigated, but these generally fall well short of matching the performance of conventional I(-)/I(3)(-) electrolytes. Here, we report energy conversion efficiencies of 7.5% (simulated sunlight, AM1.5, 1,000 W m(-2)) for dye-sensitized solar cells combining the archetypal ferrocene/ferrocenium (Fc/Fc(+)) single-electron redox couple with a novel metal-free organic donor-acceptor sensitizer (Carbz-PAHTDTT). These Fc/Fc(+)-based devices exceed the efficiency achieved for devices prepared using I(-)/I(3)(-) electrolytes under comparable conditions, revealing the great potential of ferrocene-based electrolytes in future dye-sensitized solar cells applications. This improvement results from a more favourable matching of the redox potential of the ferrocene couple with that of the new donor-acceptor sensitizer.

  6. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    NASA Astrophysics Data System (ADS)

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  7. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    PubMed Central

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  8. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  9. Binding patterns and structure-affinity relationships of food azo dyes with lysozyme: a multitechnique approach.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Jiang, Yu-Ting; Zhang, Li

    2013-12-18

    Food dyes serve to beguile consumers: they are often used to imitate the presence of healthful, colorful food produce such as fruits and vegetables. But considering the hurtful impact of these chemicals on the human body, it is time to thoroughly uncover the toxicity of these food dyes at the molecular level. In the present contribution, we have examined the molecular reactions of protein lysozyme with model food azo compound Color Index (C.I.) Acid Red 2 and its analogues C.I. Acid Orange 52, Solvent Yellow 2, and the core structure of azobenzene using a combination of biophysical methods at physiological conditions. Fluorescence, circular dichroism (CD), time-resolved fluorescence, UV-vis absorption as well as computer-aided molecular modeling were used to analyze food dye affinity, binding mode, energy transfer, and the effects of food dye complexation on lysozyme stability and conformation. Fluorescence emission spectra indicate complex formation at 10(-5) M dye concentration, and this corroborates time-resolved fluorescence results showing the diminution in the tryptophan (Trp) fluorescence mainly via a static type (KSV = 1.505 × 10(4) M(-1)) and Förster energy transfer. Structural analysis displayed the participation of several amino acid residues in food dye protein adducts, with hydrogen bonds, π-π and cation-π interactions, but the conformation of lysozyme was unchanged in the process, as derived from fluorescence emission, far-UV CD, and synchronous fluorescence spectra. The overall affinity of food dye is 10(4) M(-1) and there exists only one kind of binding domain in protein for food dye. These data are consistent with hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement, and molecular modeling manifesting the food dye binding patch was near to Trp-62 and Trp-63 residues of lysozyme. On the basis of the computational analyses, we determine that the type of substituent on the azobenzene structure has a powerful influence on the

  10. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis.

    PubMed

    Kumar, Deepak; Kumar, Aditya; Sondhi, Sonica; Sharma, Prince; Gupta, Naveen

    2018-03-01

    In the present study, an extracellular alkali stable laccase (Lac DS) from Bacillus subtilis DS which has pH optima at 8.5 using p -phenylenediamine (PPD) as substrate has been reported. Lac DS retained 70% activity for 4 h at pH 8.5 and 90% activity for 24 h at 55 °C. The enzyme yield was enhanced by optimization of fermentation conditions. A 746-fold increase in yield was observed under optimized conditions using 150 µM MgSO 4 , 1.2% yeast extract, 0.35% tryptone, and 150 µM vanillic acid. Lac DS was used to polymerize natural dye precursor catechol, pyrogallol, syringaldehyde, syringic acid, ferulic acid and gallic acid to develop a range of natural hair colors such as black, golden yellow, and reddish brown. The results indicate that alkaline Lac DS is a suitable candidate to develop a user-friendly and commercially applicable hair dyeing process in the area of cosmetic industry.

  11. Characteristics of a broadband dye laser using Pyrromethene and Rhodamine dyes.

    PubMed

    Tedder, Sarah A; Wheeler, Jeffrey L; Danehy, Paul M

    2011-02-20

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full width at half-maximum from 592 to 610 nm was created for the use in a dual-pump broadband coherent anti-Stokes Raman spectroscopy (CARS) system called width increased dual-pump enhanced CARS (WIDECARS). The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes was used in the amplifier dye cell. To create this laser, a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640 and Pyrromethene dyes 597 and 650, as well as mixtures of these dyes.

  12. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications.

    PubMed

    Prajongtat, Pongthep; Suramitr, Songwut; Nokbin, Somkiat; Nakajima, Koichi; Mitsuke, Koichiro; Hannongbua, Supa

    2017-09-01

    Structural and electronic properties of eight isolated azo dyes (ArNNAr', where Ar and Ar' denote the aryl groups containing benzene and naphthalene skeletons, respectively) were investigated by density functional theory (DFT) based on the B3LYP/6-31G(d,p) and TD-B3LYP/6-311G(d,p) methods The effect of methanol solvent on the structural and electronic properties of the azo dyes was elucidated by employing a polarizable continuum model (PCM). Then, the azo dyes adsorbed onto the anatase TiO 2 (101) slab surface through a carboxyl group. The geometries and electronic structures of the adsorption complexes were determined using periodic DFT based on the PWC/DNP method. The calculated adsorption energies indicate that the adsorbed dyes preferentially take configuration of the bidentate bridging rather than chelating or monodentate ester-type geometries. Furthermore, the azo compounds having two carboxyl groups are coordinated to the TiO 2 surface more preferentially through the carboxyl group connecting to the benzene skeleton than through that connecting to the naphthalene skeleton. The dihedral angles (Φ B-N ) between the benzene- and naphthalene-skeleton moieties are smaller than 10° for the adsorbed azo compounds containing one carboxyl group. In contrast, Φ B-N > 30° are obtained for the adsorbed azo compounds containing two carboxyl groups. The almost planar conformations of the former appear to strengthen both π-electrons conjugation and electronic coupling between low-lying unoccupied molecular orbitals of the azo dyes and the conduction band of TiO 2 . On the other hand, such coupling is very weak for the latter, leading to a shift of the Fermi level of TiO 2 in the lower-energy direction. The obtained results are useful to the design and synthesize novel azo-dye-based molecules that give rise to higher photovoltaic performances of the dye-sensitized solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. New fluorescent symmetrically substituted perylene-3,4,9,10-dianhydride-azohybrid dyes: Synthesis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Shabir, Ghulam

    2014-12-01

    Five phenolic azo-dyes (3a-e) were synthesized by diazo coupling of the suitably substituted anilines (1a-e) with phenol at low temperature in alkaline medium. The resulting dyes have low solubility in aqueous medium due to lack of carboxylic or sulfonic solubilizing functionalities. The hybridization of perylene dianhydride with phenolic azo-dyes was achieved by the nucleophilic aromatic substitution (SNAr) reaction of perylene-3,4,9,10-dianhydride 4 with phenolic azo-dyes 3a-e in basic medium. The hybrid dyes exhibit absorption maxima λmax in the range 440-460 nm in aqueous medium due to presence of azo linkage and highly conjugated system of π bonds. Fluorescence spectra of these dyes in water show sharp emission peaks with small band widths. The structures of perylene-azo dyes were confirmed by FTIR and NMR spectroscopy.

  14. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    efficient coupling of optical energy, pre-injection of photoactive dyes promoted the degree of tissue removal during laser irradiation. Further studies will investigate spatial distribution of dyes and optimal injecting pressure to govern the extent of dye-assisted ablation in a predictable manner. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser vaporization for BPH with low power application. © 2014 Wiley Periodicals, Inc.

  15. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters

    NASA Astrophysics Data System (ADS)

    Regti, Abdelmajid; Ayouchia, Hicham Ben El; Laamari, My Rachid; Stiriba, Salah Eddine; Anane, Hafid; Haddad, Mohammadine El

    2016-12-01

    The adsorption of cationic dyes, Basic Yellow (BY28) and Methylene Blue (MB) on a new activated carbon from medlar species were studied in both single and binary system. Some experimental parameters, namely, pH, amount of adsorbent and contact time are studied. Quantum chemical results indicate that the adsorption efficiency was directly related to the dye electrophilicity power. Some theorical parameters were calculated and proved that MB is more electrophilic than BY28, than greatest interaction with surface sites. Kinetic study showed that the adsorption follows the pseudo-second-order model and Freundlich was the best model to describe the phenomenon in the single and binary system. According to the local reactivity results using Parr functions, the sulphur and nitrogen atoms will be the main adsorption sites.

  16. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  17. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-05-30

    Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.

  18. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    PubMed

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  20. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    PubMed

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis.

    PubMed

    Mui, Edward L K; Cheung, W H; Valix, Marjorie; McKay, Gordon

    2010-07-15

    Two types of activated carbons from tyre char (with or without sulphuric acid treatment) were produced via carbon dioxide activation with BET surface areas in the range 59-1118 m(2)/g. Other characterisation tests include micropore and mesopore surface areas and volumes, pH, and elemental compositions, particularly heteroatoms such as nitrogen and sulphur. They were correlated to the adsorption capacity which were in the range of 0.45-0.71 mmol/g (untreated) and 0.62-0.84 mmol/g (acid-treated) for Acid Blue 25. In the case of larger-sized molecules like Acid Yellow 117, capacities were in the range of 0.23-0.42 mmol/g (untreated) and 0.29-0.40 mmol/g (acid-treated). Some tyre carbons exhibit a more superior performance than a microporous, commercial activated carbon (Calgon F400). By modelling the dye adsorption equilibrium data, the Redlich-Peterson isotherm is adopted as it has the lowest SSE. Based on the surface coverage analysis, a novel molecular orientation modelling of adsorbed dyes has been proposed and correlated with surface area and surface charge. For the acid dyes used in this study, molecules were likely to be adsorbed by the mesopore areas. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Recent advancements in bioremediation of dye: Current status and challenges.

    PubMed

    Vikrant, Kumar; Giri, Balendu Shekhar; Raza, Nadeem; Roy, Kangkan; Kim, Ki-Hyun; Rai, Birendra Nath; Singh, Ram Sharan

    2018-04-01

    The rampant industrialization and unchecked growth of modern textile production facilities coupled with the lack of proper treatment facilities have proliferated the discharge of effluents enriched with toxic, baleful, and carcinogenic pollutants including dyes, heavy metals, volatile organic compounds, odorants, and other hazardous materials. Therefore, the development of cost-effective and efficient control measures against such pollution is imperative to safeguard ecosystems and natural resources. In this regard, recent advances in biotechnology and microbiology have propelled bioremediation as a prospective alternative to traditional treatment methods. This review was organized to address bioremediation as a practical option for the treatment of dyes by evaluating its performance and typical attributes. It further highlights the current hurdles and future prospects for the abatement of dyes via biotechnology-based remediation techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Yellow fever: epidemiology and prevention.

    PubMed

    Barnett, Elizabeth D

    2007-03-15

    Yellow fever continues to occur in regions of Africa and South America, despite the availability of effective vaccines. Recently, some cases of severe neurologic disease and multiorgan system disease have been described in individuals who received yellow fever vaccine. These events have focused attention on the need to define criteria for judicious use of yellow fever vaccine and to describe the spectrum of adverse events that may be associated with yellow fever vaccine. Describing host factors that would increase risk of these events and identifying potential treatment modalities for yellow fever and yellow fever vaccine-associated adverse events are subjects of intense investigation.

  4. Self-Assembly of Cis-Configured Squaraine Dyes at the TiO2-Dye Interface: Far-Red Active Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Punitharasu, Vellimalai; Mele Kavungathodi, Munavvar Fairoos; Nithyanandhan, Jayaraj

    2018-05-16

    To synergize both steric and electronic factors in designing the dyes for dye-sensitized solar cells, a series of cis-configured unsymmetrical squaraine dyes P11-P15 with suitably functionalized alkyl groups and squaric acid units containing the electron-withdrawing groups were synthesized, respectively. These dyes capture the importance of (i) the effect and position of branched alkyl groups, (ii) mono- and di-anchoring groups containing dyes, and (iii) further appending the alkyl groups through the cyanoester vinyl unit on the central squaric acid units of D-A-D-based cis-configured squaraine dyes. All the above factors govern the controlled self-assembly of the dyes on the TiO 2 surface which helps to broaden the absorption profile of the dyes with an increased energy-harvesting process. With respect to the position of the branched alkyl groups, dye P11 with the sp 3 -C and N-alkyl groups away from the TiO 2 surface showed a better device efficiency of 5.98% ( J sc of 14.46 mA cm -2 , V oc of 0.576 V, and ff of 71.8%) than its positional isomer P12 with 3.45% ( J sc of 8.78 mA cm -2 , V oc of 0.554 V, and ff of 70.9%). However, with respect to the dyes containing mono- and di-anchoring groups, P13 with two anchoring units exhibited a superior device performance of 7.58% ( J sc of 17.12 mA cm -2 , V oc of 0.618 V, and ff of 71.7%) in the presence of optically transparent co-adsorbent CDCA (3α,7α-dihydroxy-5β-cholanic acid) than dyes P11 and P12.

  5. Triphenylmethane Dye Activation of Beta-Arrestin

    PubMed Central

    2013-01-01

    β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy. PMID:23865508

  6. Fabrication and characterization of mixed dye: Natural and synthetic organic dye

    NASA Astrophysics Data System (ADS)

    Richhariya, Geetam; Kumar, Anil

    2018-05-01

    Mixed dye from hibiscus sabdariffa and eosin Y was employed in the fabrication of dye sensitized solar cell (DSSC). Nanostructured mesoporous film was prepared from the titanium dioxide (TiO2). The energy conversion efficiency of hibiscus, eosin Y and mixed dye was obtained as 0.41%, 1.53% and 2.02% respectively. Mixed DSSC has shown improvement in the performance of the cell as compared to hibiscus and eosin Y dye due to addition of synthetic organic dye. This illustrates the effect of synthetic organic dyes in performance enhancement of natural dyes. It has been credited to the improved absorption of light mainly in higher energy state (λ = 440-560 nm) when two dyes were employed simultaneously as was obvious from the absorption spectra of dyes adsorbed onto TiO2 electrode. The cell with TiO2 electrode sensitized by mixed dye gives short circuit current density (Jsc) = 4.01 mA/cm2, open circuit voltage (Voc) = 0.67 V, fill factor (FF) = 0.60 and energy conversion efficiency (η) of 2.02%.

  7. Photovoltaic studies of Dye Sensitized Solar cells Fabricated from Microwave Exposed Photo anodes

    NASA Astrophysics Data System (ADS)

    Ramachandran, Anju; Sreekala, C. O.; Sreelatha, K. S.; Jinchu, I.

    2018-02-01

    The configuration of Dye Sensitized solar cells (DSSC), consists of sintered nanoparticle titanium dioxide film, dyes, electrolyte and counter electrodes. Upon the absorption of photons by the dye molecules, excitons are generated, subsequently electrons are injected into the TiO2 photoanode. Afterward the electrons injected into the TiO2 photoanode, to produce photocurrent, scavenged by redox couple, and the hole transport to the photo cathode. The power conversion efficiency of the device depends on the amount of dye adsorbed by the photoanode. This paper explores in enhancing the efficiency of the device by controlled microwave exposure. With same exposure time, the photoanode is exposed at three different frequencies. SEM analysis is carried out to find the porosity of the photoanode on exposure. Current density is found to have an effect on microwave exposure.

  8. A New Synergetic Nanocomposite for Dye Degradation in Dark and Light

    PubMed Central

    V., Lakshmi Prasanna; Rajagopalan, Vijayaraghavan

    2016-01-01

    Environmental hazard caused due to the release of dyes in effluents is a concern in many countries. Among the various methods to combat this problem, Advanced Oxidation Process, in which semiconductor photocatalysts are used, is considered the most effective one. These materials release Reactive Oxygen Species (ROS) such as hydroxyl radical and superoxide in suspension that degrade the dyes into non-toxic minerals. However, this process requires visible or UV light for activation. Hence, there is a need to develop materials that release ROS, both in the absence and in the presence of light, so that the efficiency of dye removal is enhanced. Towards this objective, we have designed and synthesized a new nanocomposite ZnO2/polypyrrole which releases ROS even in the dark. The ROS released in the dark and in light were estimated by standard methods. It is to be noted that ZnO2 degrades the dye only under UV light but not in dark or in the presence of visible light. We propose the mechanism of dye degradation in dark and light. The synergically coupled nanocomposite of ZnO2/ppy is the first example that degrades dyes in the dark, through advanced oxidation process without employing additional reagents. PMID:27929084

  9. Laccase induction by synthetic dyes in Pycnoporus sanguineus and their possible use for sugar cane bagasse delignification.

    PubMed

    Hernández, Christian; Farnet Da Silva, Anne-Marie; Ziarelli, Fabio; Perraud-Gaime, Isabelle; Gutiérrez-Rivera, Beatriz; García-Pérez, José Antonio; Alarcón, Enrique

    2017-02-01

    The use of synthetic dyes for laccase induction in vivo has been scarcely explored. We characterized the effect of adding different synthetic dyes to liquid cultures of Pycnoporus sanguineus on laccase production. We found that carminic acid (CA) can induce 722 % and alizarin yellow 317 % more laccase than control does, and they promoted better fungal biomass development in liquid cultures. Aniline blue and crystal violet did not show such positive effect. CA and alizarin yellow were degraded up to 95 % during P. sanguineus culturing (12 days). With this basis, CA was selected as the best inducer and used to evaluate the induction of laccase on solid-state fermentation (SSF), using sugarcane bagasse (SCB) as substrate, in an attempt to reach selective delignification. We found that laccase induction occurred in SSF, and a slight inhibition of cellulase production was observed when CA was added to the substrate; also, a transformation of SCB under SSF was followed by the 13 C cross polarization magic angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). Results showed that P. sanguineus can selectively delignify SCB, decreasing aromatic C compounds by 32.67 % in 16 days; O-alkyl C region (polysaccharides) was degraded less than 2 %; delignification values were not correlated with laccase activities. Cellulose-crystallinity index was increased by 27.24 % in absence of CA and 15.94 % when 0.01 mM of CA was added to SCB; this dye also inhibits the production of fungal biomass in SSF (measured as alkyl C gain). We conclude that CA is a good inducer of laccase in liquid media, and that P. sanguineus is a fungus with high potential for biomass delignification.

  10. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, James

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

  11. Recycling food waste to clean water: the use of a biodigester's residual liquid inoculum (RLI) to decolourise textile azo dyes.

    PubMed

    Maganha de Almeida, A C; Backhaus, J; Corso, C R

    2018-01-01

    A residual liquid inoculum (RLI) was used to decolourise solutions of Acid Yellow 25 (AY25) and Direct Violet 51 (DV51) azo dyes. The RLI was obtained through anaerobic digestion of food waste from a university restaurant. The concentration of bacteria in the RLI was 8.45 × 10 7 CFU mL -1 . Dye solutions (50 μg mL -1 ) were inoculated with the RLI (20% v/v) and incubated at room temperature. The decolourisation studies took place at microaerophilic and in-batch conditions and at pH = 2.50. Initially, the dyes were taken up from solution by biosorption; maximum colour removal was achieved after 3 hours of incubation, with 88.66% for AY25 and 77.65% of DV51. At prolonged incubation times (3-96 hours) decolourisation was mainly attributed to biodegradation of the azo solutions, with breakage of the azo bond, as detected by UV-VIS spectroscopy and Fourier transform infrared (FT-IR) analysis. Analysis of UV-VIS absorption rates of dyes showed, however, that AY25 was more readily biodegradable whereas DV51 was more recalcitrant to the action of the RLI.

  12. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    PubMed

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326.

    PubMed

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2009-07-30

    Navy blue HER was decolorized and degraded within 24h by Trichosporon beigelii NCIM-3326 under static condition. In the present study, we investigated various physicochemical parameters such as agitation, temperature, pH, cell concentration, initial dye concentration and different carbon and nitrogen sources to achieve maximum dye degradation by T. beigelii. Sequentially, decolorization and decrease in the total organic carbon (TOC) of Navy blue HER by T. beigelii were measured. Among five strains T. beigelii gave the better performance on the decolorization of Navy blue HER along with a 95% TOC reduction within 24h. A significant increase in the activities of NADH-DCIP (dichlorophenolindophenol) reductase and azoreductase in the cells obtained after complete decolorization presumably indicates involvement of these enzymes in decolorization process. UV-vis, TLC, HPLC and FTIR analysis of extracted products confirmed the biodegradation of Navy blue HER. Phytotoxicity study demonstrated no toxicity of the biodegraded products with respect to plants viz. Phaseolus mungo and Sorghum vulgare. In addition to Navy blue HER, this strain also shows ability to decolorize various industrial dyes, including Red HE7B, Golden yellow 4BD, Green HE4BD, Orange HE2R, Malachite green, Crystal violet and Methyl violet.

  14. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    PubMed

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. One- and two-photon absorption spectra of the yellow fluorescent protein citrine: effects of intramolecular electron-vibrational coupling and intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Chen, Fasheng; Zhao, Xinyi; Liang, WanZhen

    2018-04-01

    Both the vibrationally resolved and statistically averaged one-photon absorption (OPA) and two-photon absorption (TPA) spectra of the anionic form of chromophore (AC) in its micro-environment of yellow fluorescent protein (YFP) Citrine have been calculated. The result comparison has been made with those of the AC model compounds in vacuo and methanol solution, which allows us to allocate the individual contribution of the intramolecular electron-vibrational coupling, the electrostatic π-stacking interaction between Tyr203 and AC, and the interaction between AC and its micro-environment to the spectra. The results reveal that the non-Condon vibronic coupling effect is responsible for the blue shift of TPA absorption maximum compared with its OPA counterpart corresponding to S0 → S1, and that the π-stacking interaction between Tyr203 and AC alters the relative intensities of TPA maxima, which further enhances the higher-energy vibronic peaks and weakens the lowest-energy peak. The statically averaged OPA and TPA spectra calculated by quantum mechanics/molecular mechanics (QM/MM) methods based on Born-Oppenheimer molecular dynamics simulation largely deviate the experimental spectral lineshapes, which further verifies the significant contribution of non-Condon vibronic coupling effect on the spectra. The interaction of individual amino acid residue or water close to AC+Tyr203 has different effects on the spectra, which may increase/decrease the excitation energy depending on its position and electronic property.

  17. A new type of two-wave interaction in saturable dye

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Lin, F.

    1986-03-01

    A new interaction of two noncollinear laser beams with the same frequency have been observed in a saturable dye solution of bis-(4-dimethyl aminodithio benzil) (DN) and pentamethine cyanine. It differs from the four-wave mixing effect and the transient self-diffraction and coherent coupling effects.

  18. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  19. Synthesis, spectral features and biological activity of some novel hetarylazo dyes derived from 6-amino-1,3-dimethyluracil

    NASA Astrophysics Data System (ADS)

    Yousefi, Hessamoddin; Yahyazadeh, Asieh; Yazdanbakhsh, Mohammad Reza; Rassa, Mehdi; Moradi-e-Rufchahi, Enayat O.'llah

    2012-05-01

    A series of hetarylazoaminouracil dyes were prepared by coupling of 6-amino-1,3-dimethyluracil with eight diazotized heterocyclic amines in nitrosyl sulphuric acid. The prepared azo dyes were characterized by UV-Vis, FT-IR, 13C NMR, 1H NMR spectroscopic techniques and elemental analysis. The solvatochromism of dyes was evaluated with respect to wavelength of maximum absorption (λmax) in seven solvents with different polarities: acetic acid, methanol, water, chloroform, acetonitrile, dimethyl sulfoxide and dimethyl formamide. The effects of acid, base and concentration of the dye on the visible absorption spectra were also reported. In addition, the antimicrobial activity of the synthesized dyes was evaluated on Escherichia coli, Bacillus subtilis, Micrococcus leuteus and Pseudomonas aeruginosa.

  20. The yellow x paper birch hybrid--a potential substitute for yellow birch on problem sites

    Treesearch

    Knud E. Clausen

    1977-01-01

    Yellow x paper birch hybrids and yellow birches with common female parents were compared after 5 growing seasons in an open field. Survival of the hybrids was 91 percent compared with 64 percent for the yellow birch trees. The hybrids were from 25 to 32 percent taller than the yellow birches and had 19-40 percent greater diameter. Because this hybrid not only grows...

  1. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    NASA Astrophysics Data System (ADS)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  2. Triazine dyes are agonists of the NAADP receptor

    PubMed Central

    Billington, Richard A; Bak, Judit; Martinez-Coscolla, Ana; Debidda, Marcella; Genazzani, Armando A

    2004-01-01

    NAADP has been shown to be a potent calcium-releasing second messenger in a wide variety of cell types to date. However, research has been hampered by a lack of pharmacological agents, with which to investigate NAADP-induced calcium release, and by the molecular identity of its cellular target protein being unknown.In the present paper, the sea urchin egg model was used to investigate whether triazine dyes, which can act as nucleotide mimetics, can bind to the NAADP receptor, induce Ca2+ release and be used for affinity chromatography of the receptor.Indeed, all the triazine dyes tested (Reactive Red 120 (RR120), Reactive Green 19 (RG19), Reactive Green 5 (RG5), Cibacron Blue 3GA and Reactive Yellow 86) displayed micromolar affinities, except for Reactive Orange 14. Furthermore, unlike NAADP, RR120, RG19 and RG5 did not bind in an irreversible manner.The compound that displayed the highest affinity, RR120, was tested in a 45Ca2+ efflux assay. This compound released Ca2+ via the NAADP receptor, as shown by the ability of subthreshold NAADP concentrations to inhibit this release. Furthermore, heparin and ruthenium red were unable to block RR120-induced Ca2+ release.We have also shown that RG5 and RG19, immobilised on resins, retain the ability to bind to the receptor, and that this interaction can be disrupted by high salt concentrations. As a proof of principle, we have shown that this can be used to partially purify the NAADP receptor by at least 75-fold.In conclusion, triazine dyes interact with the NAADP receptor, and this could be exploited in future to create a new generation of pharmacological tools to investigate this messenger and, in combination with other techniques, to purify the receptor. PMID:15265807

  3. Mapping landscape phenology preference of yellow-billed cuckoo with AVHRR data

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Villarreal, Miguel; van Riper, Charles

    2013-01-01

    We mapped habitat for threatened Yellow-billed Cuckoo (Coccycus americanus occidentalis) in the State of Arizona using the temporal greenness dynamics of the landscape, or the landscape phenology. Landscape phenometrics were derived from Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) data for 1998 and 1999 by using Fourier harmonic analysis to analyze the waveform of the annual NDVI profile at each pixel. We modeled the spatial distribution of Yellow-billed Cuckoo habitat by coupling the field data of Cuckoo presence or absence and point-based samples of riparian and cottonwood-willow vegetation types with satellite phenometrics for 1998. Models were validated using field and satellite data collected in 1999. The results indicate that Yellow-billed Cuckoo occupy locations within their preferred habitat that exhibit peak greenness after the start of the summer monsoon and are greener and more dynamic than “average” habitat. Identification of preferred phenotypes within recognized habitat areas can be used to refine habitat models, inform predictions of habitat response to climate change, and suggest adaptation strategies.

  4. The effects of chemical coagulants on the decolorization of dyes by electrocoagulation using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Butler, Erick B.; Hung, Yung-Tse; Mulamba, Oliver

    2017-09-01

    This study assessed the efficiency of electrocoagulation (ECF) coupled with an addition of chemical coagulant to decolorize textile dye. Tests were conducted using Box Behnken methodology to vary six parameters: dye type, weight, coagulant type, dose, initial pH and current density. The combination of electrocoagulation and chemical coagulation was able to decolorize dye up to 99.42 % in 30 min of treatment time which is remarkably shorter in comparison with using conventional chemical coagulation. High color removal was found to be contingent upon the dye type and current density, along with the interactions between the current density and the coagulant dose. The addition of chemical coagulants did enhanced treatment efficiency.

  5. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  7. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.

    PubMed

    Gaffer, Hatem E; Khalifa, Mohamed E

    2015-12-09

    The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  8. Influence of humic acids on the adsorption of Basic Yellow 28 dye onto an iron organo-inorgano pillared clay and two hydrous ferric oxides.

    PubMed

    Zermane, Faiza; Cheknane, Benamar; Basly, Jean Philippe; Bouras, Omar; Baudu, Michel

    2013-04-01

    Effect of humic acids (HAs), macromolecules from natural organic matter, on the adsorption of Basic Yellow 28 is the aim of the present work. Three adsorbents were investigated in this study: an iron organo-inorgano pillared clay and two synthetic Hydrous Iron Oxide (Goethite and HFO). The surface charge was positive in the pH range of this study for the pillared clay; in contrast, it changes from positive to negative when the pH value increased (pH>9) for the two (oxy)hydroxides. Pseudo-first order kinetic rate constants and adsorption capacities increase from humic acid to BY 28. Adsorption isotherms of BY 28 and HA in single component were analysed using the Freundlich equation. Adsorption capacities increased sharply when the pH value of the dye solution was raised from 3 to 9. Increasing the pH medium from 3 to 9 reduces the HA adsorption capacities onto Fe-SMPM and iron oxyhydroxides, respectively. Fitting between measured and predicted sorption capacities of BY 28 and HA in a binary component system indicates that the Sheindorf-Rebuhn-Sheintuch (SRS) model, an extended Freundlich model, is able to describe the simultaneous adsorption of BY 28 and HA. Humic acids favourably affect the adsorption of BY 28, and a cooperative mechanism could be suggested. The synergetic effect existing between BY 28 and HA is shown by the interaction coefficients η12, which are generally high and increase with pH. Some phenomena have been advanced to explain this mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Strong coupling in the optical spectra of polymorphs of a squarylium dye

    NASA Astrophysics Data System (ADS)

    Tristani-Kendra, M.; Eckhardt, C. J.; Bernstein, J.; Goldstein, E.

    1983-06-01

    The X-ray structure and single-crystal spectra of monoclinic and triclinic dimorphs of a squarylium dye are reported. Crystal polymorphism is shown to be an effective approach for studying excitation energy transfer in crystals. The long-axis-polarized transition leads to quasi-metallic reflection bands which cannot be fitted by molecular polariton calculations in the point-dipole approximation.

  10. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    PubMed

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Flesh color inheritance and gene interactions among canary yellow, pale yellow and red watermelon

    USDA-ARS?s Scientific Manuscript database

    Two loci, C and i-C were previously reported to determine flesh color between canary yellow and red watermelon. Recently LCYB was found as a color determinant gene for canary yellow (C) and co-dominant CAPS marker was developed to identify canary yellow and red alleles. Another report suggested th...

  12. Beet yellow stunt

    USDA-ARS?s Scientific Manuscript database

    Beet yellow stunt virus (BYSV) is a potentially destructive yellows-type virus affecting plants in the family Asteraceae. The virus is a member of the genus Closterovirus, family Closteroviridae, and has been found in California and England. Initial symptoms consist of chlorosis of the older leaves,...

  13. Optical Properties of Vibronically Coupled Cy3 Dimers on DNA Scaffolds.

    PubMed

    Cunningham, Paul D; Kim, Young C; Díaz, Sebastián A; Buckhout-White, Susan; Mathur, Divita; Medintz, Igor L; Melinger, Joseph S

    2018-05-17

    We examine the effect of electronic coupling on the optical properties of Cy3 dimers attached to DNA duplexes as a function of base pair (bp) separation using steady-state and time-resolved spectroscopy. For close Cy3-Cy3 separations, 0 and 1 bp between dyes, intermediate to strong electronic coupling is revealed by modulation of the absorption and fluorescence properties including spectral band shape, peak wavelength, and excited-state lifetime. Using a vibronic exciton model, we estimate coupling strengths of 150 and 266 cm -1 for the 1 and 0 bp separations, respectively, which are comparable to those found in natural light-harvesting complexes. For the strongest electronic coupling (0 bp separation), we observe that the absorption band shape is strongly affected by the base pairs that surround the dyes, where more strongly hydrogen-bonded G-C pairs produce a red-shifted absorption spectrum consistent with a J-type dimer. This effect is studied theoretically using molecular dynamics simulation, which predicts an in-line dye configuration that is consistent with the experimental J-type spectrum. When the Cy3 dimers are in a standard aqueous buffer, the presence of relatively strong electronic coupling is accompanied by decreased fluorescence lifetime, suggesting that it promotes nonradiative relaxation in cyanine dyes. However, we show that the use of a viscous solvent can suppress this nonradiative recombination and thereby restore the dimer fluorescent emission. Ultrafast transient absorption measurements of Cy3 dimers in both standard aqueous buffer and viscous glycerol buffer suggest that sufficiently strong electronic coupling increases the probability of excited-state relaxation through a dark state that is related to Cy3 torsional motion.

  14. Use of sugarcane molasses by Pycnoporus sanguineus for the production of laccase for dye decolorization.

    PubMed

    Marim, R A; Oliveira, A C C; Marquezoni, R S; Servantes, J P R; Cardoso, B K; Linde, G A; Colauto, N B; Valle, J S

    2016-10-17

    Pycnoporus sanguineus is a white-rot basidiomycete that produces laccase as the only oxidoreductase; enzyme synthesis depends on cultivation variables, and fungal species and strain. Laccases have wide substrate specificity, oxidize a broad range of compounds, and show potential for use in dye decolorization. We evaluated laccase production in a recently isolated strain of P. sanguineus cultivated with sugarcane molasses as the only carbon source, and urea or yeast extract as the nitrogen source [at various nitrogen concentrations (0.4, 1.4, 2.4, 3.4, and 4.4 g/L)], supplemented with copper (0, 150, 200, 250, and 300 µM), with or without agitation. The enzymatic extract produced at laccase peak activity was tested for dye decolorization capability on Remazol Brilliant Blue R, Reactive Black 5, Reactive Red 195, and Reactive Yellow 145. The nitrogen source did not affect enzyme production and the higher nitrogen concentration (3.4 g/L nitrogen as urea) increased enzymatic activity. The addition of up to 300 µM of Cu did not affect laccase production, whereas cultivation with agitation increased the activity peak by 17%. The highest laccase activity was ~50,000 U/L on the ninth day of cultivation. After 24 h, decolorization was 80% for Remazol Brilliant Blue R, 9% for Reactive Yellow 145, 6% for Reactive Red 195, and 2% for Reactive Black 5. The enzymatic extract of P. sanguineus provides a potential alternative to wastewater treatment. A better understanding of the behavior of this fungus under various culture conditions would allow improvement of the enzyme production bioprocess.

  15. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dielectric and thermal effects on the optical properties of natural dyes: a case study on solvated cyanin.

    PubMed

    Malcıoğlu, Osman Bariş; Calzolari, Arrigo; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano

    2011-10-05

    The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations.

  17. Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): a design suitable for scaling-up.

    PubMed

    Cui, Dan; Guo, Yu-Qi; Lee, Hyung-Sool; Wu, Wei-Min; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2014-07-01

    A four-compartment anaerobic baffled reactor (ABR) incorporated with membrane-less biocatalyzed electrolysis system (BES) was tested for the treatment of azo dye (alizarin yellow R, AYR) wastewater (AYR, 200 mg L(-1); glucose, 1000 mg L(-1)). The ABR-BES was operated without and with external power supply to examine AYR reduction process and reductive intermediates with different external voltages (0.3, 0.5 and 0.7 V) and hydraulic retention times (HRT: 8, 6 and 4h). The decolorization efficiency in the ABR-BES (8h HRT, 0.5 V) was higher than that in ABR-BES without electrolysis, i.e. 95.1 ± 1.5% versus 86.9 ± 6.3%. Incorporation of BES with ABR accelerated the consumption of VFAs (mainly acetate) and attenuated biogas (methane) production. Higher power supply (0.7 V) enhanced AYR decolorization efficiency (96.4 ± 1.8%), VFAs removal, and current density (24.1 Am(-3) TCV). Shorter HRT increased volumetric AYR decolorization rates, but decreased AYR decolorization efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Structural and quantum chemical analysis of exciton coupling in homo- and heteroaggregate stacks of merocyanines

    NASA Astrophysics Data System (ADS)

    Bialas, David; Zitzler-Kunkel, André; Kirchner, Eva; Schmidt, David; Würthner, Frank

    2016-09-01

    Exciton coupling is of fundamental importance and determines functional properties of organic dyes in (opto-)electronic and photovoltaic devices. Here we show that strong exciton coupling is not limited to the situation of equal chromophores as often assumed. Quadruple dye stacks were obtained from two bis(merocyanine) dyes with same or different chromophores, respectively, which dimerize in less-polar solvents resulting in the respective homo- and heteroaggregates. The structures of the quadruple dye stacks were assigned by NMR techniques and unambiguously confirmed by single-crystal X-ray analysis. The heteroaggregate stack formed from the bis(merocyanine) bearing two different chromophores exhibits remarkably different ultraviolet/vis absorption bands compared with those of the homoaggregate of the bis(merocyanine) comprising two identical chromophores. Quantum chemical analysis based on an extension of Kasha's exciton theory appropriately describes the absorption properties of both types of stacks revealing strong exciton coupling also between different chromophores within the heteroaggregate.

  19. Modification of wool surface by liposomes for dyeing with weld.

    PubMed

    Montazer, Majid; Zolfaghari, Alireza; Toliat, Taibeh; Moghadam, Mohammad Bameni

    2009-01-01

    In this research work, wool surface has been modified by liposome to investigate its effects on dyeing with weld, a yellow natural dye. To do this, samples were first treated with aluminium sulphate and afterward with different concentrations of liposomes at various temperatures for 30 minutes and, finally, dyed with weld at 75, 85, and 95 degrees C for 30, 45, and 60 minutes. K/S values of fabric samples were calculated and washing, light and rub fastness properties of the samples were indicated. The results proposed that the sample treated with 1% liposomes and dyed at 75 degrees C for 60 min has the highest K/S value. The central composite design (CCD) used for the experimental plan with three variables on the results of color strength and statistical analysis confirms the optimum conditions obtained by the experimental results. It was also found that washing, light, wet, and dry rub fastness properties of samples dyed with weld, including liposomes, have not significantly changed. The results of water drop absorption indicated that the hydrophobicity is higher for the samples pretreated with liposomes. The SEM picture of wool sample treated with mordant and liposomes and finally dyed with weld shows a coated layer on the fiber surface.

  20. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds.

    PubMed

    Yan, Hongyuan; Qiao, Jindong; Pei, Yuning; Long, Tao; Ding, Wen; Xie, Kun

    2012-05-01

    New molecularly imprinted microspheres synthesized by suspension polymerisation using phenylamine and naphthol as mimic template were successfully applied as selective sorbents for the solid-phase extraction used for the simultaneous determination of four Sudan dyes from preserved beancurd products. The obtained imprinted microspheres showed good recognition and selectivity to the four Sudan dyes in aqueous solution and the affinity could be easily controlled by adjusting the property of the solution. Under the selected experimental condition, the recoveries of the Sudan dyes in preserved beancurds at three spiked levels were ranged between 90.2-104.5% with the relative standard deviation of less than 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) based on a signal-to-noise of 3 and 10 were in the range of 0.005-0.009μgg(-1) and 0.015-0.030μgg(-1), respectively. Comparing with alumina and C18-based extraction, the selectivity and repeatability of molecularly imprinted solid-phase extraction (MISPE) were obviously improved. This method could be potentially applied for the determination of Sudan dyes in complicated food samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Coupling between absorption and scattering in disordered colloids

    NASA Astrophysics Data System (ADS)

    Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.

    We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.

  2. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.

    PubMed

    Bilal, Muhammad; Asgher, Muhammad

    2015-12-10

    In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like

  3. Dyes for displays

    NASA Astrophysics Data System (ADS)

    Claussen, U.

    1984-01-01

    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  4. The development of CotA mediator cocktail system for dyes decolorization.

    PubMed

    Luo, S; Xie, T; Liu, Z; Sun, F; Wang, G

    2018-05-01

    The increasing use of dyes leads to serious environmental concerns, it is significant to explore eco-friendly and economic approaches for dye decolorization. This study aimed to develop mediator cocktail (AS and ABTS) for enhancing the capability of laccase-mediator system in the removal of dyes. By mediator screening, the mediators of ABTS and AS (ABTS, 2, 2'-azino-bis-(3-ethylbenzothiazo-thiazoline-6-sulphonic acid); AS, acetosyringone) were combined for dyes decolorization. The Box-Behnken Design and response surface analysis was performed to optimize experiment conditions. Comparing the CotA-ABTS-AS cocktail system with CotA-single mediator system showed that the coupling of ABTS and AS could increase the decolorization rate 15 times higher, save a third of the cost and shorten the reaction time by 50%. In addition, our studies revealed that sequential oxidation may occur in CotA-ABTS-AS system. Compared with CotA laccase-single mediator system, the CotA-ABTS-AS cocktail system showed advantages including higher efficiency, lower cost and shorter reaction time. This was the first report on the dyes decolorization by laccase mediator cocktail system. These results paved the curb for the application of laccase mediator system in various industrial processes. © 2018 The Society for Applied Microbiology.

  5. The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Ying; Jiang, Xin-Yu; Jiao, Fei-Peng; Yu, Jin-Gang

    2018-04-01

    A contrastive work on the removal of two organic dyes, alizarin yellow R (AYR) and alizarin red S (ARS), was carried out by utilizing pentaerythritol modified multi-walled carbon nanotubes (ox-MWCNT-PER) as a highly efficient adsorbent. Various characterization methods such as scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, the Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS), were applied for revealing the physical and chemical properties of the as-prepared material. In addition, the adsorption kinetics, isotherms and thermodynamic parameters were also discussed. The results showed that the time required to achieve the adsorption equilibrium for both dyes was about 30 min, and the increase in temperature was not favorable to the adsorption process. It was worth noting that the adsorption capacity of ox-MWCNT-PER towards ARS dye was more significant than that towards AYR dye. And the maximum adsorption capacities for ARS and AYR were 257.73 mg g-1 and 45.39 mg g-1, respectively. The possible adsorption mechanism was also proposed, and the synergistic effects of the hydrogen bonding and the π-π electron stacking interactions between the adsorbents and adsorbates both contributed to the adsorption. It could be proposed that the ox-MWCNT-PER nanocomposite might have some positive effects in removing organic dyes from water treatment in the future.

  6. Conversion efficiency versus sensitizer for electrospun TiO2 nanorod electrodes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jose, R.; Kumar, A.; Thavasi, V.; Ramakrishna, S.

    2008-10-01

    The electrochemical and optical properties of three indoline dyes, namely C35H28N2O2 (D131), C37H30N2O3S2 (D102), and C42H35N3O4S3 (D149), were studied and compared with that of the N3 dye. D131 has the largest bandgap and lowest unoccupied molecular orbital (LUMO) energies compared to the other dyes. A size-dependent variation in the absorptivity of the indoline dyes was observed—the absorptivity increased with increase in the molecular size. The dyes were anchored onto TiO2 nanorods. The TiO2 nanorods were obtained by electrospinning a polymeric solution containing titanium isopropoxide and polyvinylpyrrolidone and subsequent sintering of the as-spun composite fibers. Absorption spectral measurements of the dye-anchored TiO2 showed blue shifts in the excitonic transition of the indoline dyes, the magnitude of which increased with decrease in the molecular size. Dye-sensitized solar cells (DSSCs) were fabricated using the indoline dyes, TiO2 nanorods, and iodide/triiodide electrolyte. The D131 dye showed comparable energy conversion efficiency (η) to that of the N3 dye. A systematic change in the short circuit current density (JSC) and η of the indoline DSSCs was observed. The observed variation in JC is most likely originated from the difference in the electronic coupling strengths between the dye and the TiO2.

  7. Natural Dye Extracted from Vitex negundo as a Potential Alternative to Synthetic Dyes for Dyeing of Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, Venkataramanappa; Gowda, Kurikempanadoddi Ninge; Sudhakar, Rajagopal

    2016-04-01

    Since the last decade, the application of natural dyes on textile material has been gaining popularity all over the world, possibly because of the increasing awareness of issues concerning the environment, ecology and pollution control. The present paper investigates extraction of natural dye from leaves of the plant Vitex negundo, which is an abundant, cheap, and readily available agricultural by-product. Water extracts from V. negundo was used to dye silk fabrics. Optimum extraction conditions included pH 9, duration 120 min, and temperature 90 °C. Optimum dyeing conditions included dyeing pH 5 and duration of 60 min. Potash alum, tannic and tartaric acid were used as mordants, all of which are benign to human health and the environment. Color strength and color coordinates in terms of L*, a*, b*, C, and h were examined. A range of shades were obtained when fabrics were dyed with different mordants and mordanting techniques. The extracted dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with set standards to determine the eco-friendliness of natural dye. Their concentrations were found to be lower than the stipulated limits. Dyed samples were tested for antimicrobial activity against gram-positive and gram-negative bacteria. The dyed silk fabrics showed acceptable fastness properties and were also found to possess antibacterial activity. It can be concluded that the abundantly available agricultural by-product V. negundo has great potential to be effectively utilized as a natural dye for silk.

  8. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  9. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  10. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    NASA Astrophysics Data System (ADS)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  11. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    NASA Astrophysics Data System (ADS)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  12. MALDI mass spectrometry of dye-peptide and dye-protein complexes.

    PubMed

    Salih, B; Zenobi, R

    1998-04-15

    Immobilized sulfonate dyes are widely used for protein separation and purification, but the mode of interaction between the dye molecules and the proteins is largely unknown. Here we show that specific noncovalent dye-protein and dye-peptide complexes can be observed using MALDI mass spectrometry. We prove that the interaction is prodominantly electrostatic and that it involves protonated sites of the peptides and proteins, including the NH2 terminus, and deprotonated SO3 groups of the dyes. Furthermore, we show that MALDI-MS of such complexes with a nonacidic matrix, p-nitro-aniline, can be used to determine the number of accessible basic sites of a protein or peptide in its folded structure. Our results are in good agreement with measurements of the same property done with electrospray ionization.

  13. An enhanced mangiferaindica for dye sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, U. E., E-mail: moses.emetere@covenantuniversity.edu.ng; Emetere, M. E., E-mail: uno-essang@yahoo.co.uk; Fadipe, L. A.

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO{sub 2} conductive. The DSSC fabricated consist of 2.25 cm{sup 2} active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filledmore » with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10{sup −2}, current density (Jsc)=4.07×10{sup −2}, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.« less

  14. An enhanced mangiferaindica for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  15. Insect enemies of yellow-poplar

    Treesearch

    Denver P. Burns; Denver P. Burns

    1970-01-01

    Yellow-poplar, like the other desirable hardwoods, is attacked by a variety of insects. However, only four species of insects are considered economically important: the tuliptree scale, the yellow-poplar weevil, the root-collar borer, and the Columbian timber beetle. These are native enemies of yellow-poplar (Liriodendvon tzllipifera L.) wherever the tree grows.

  16. Coumarin-indole conjugate donor-acceptor system: Synthesis, photophysical properties, anion sensing ability, theoretical and biological activity studies of two coumarin-indole based push-pull dyes

    NASA Astrophysics Data System (ADS)

    Aksungur, Tuğçe; Aydıner, Burcu; Seferoğlu, Nurgül; Özkütük, Müjgan; Arslan, Leyla; Reis, Yasemin; Açık, Leyla; Seferoğlu, Zeynel

    2017-11-01

    Two coumarin-indole conjugate fluorescent dyes having donor-acceptor-donor (D-A-D) (CI-1 and CI-2) were synthesized, and characterized using IR, 1H/13C NMR and HRMS. The absorption and emission properties of the dyes were determined in different solvents. The anion sensitivity and selectivity of the dyes were studied with some anions (CN-, F-, AcO-, Cl-, Br-, I-, HSO4- and H2PO4-) in DMSO, and their interaction mechanisms were evaluated by spectrophotometric and 1H NMR titration techniques. In addition, the molecular and electronic structures of CI-1, as well as the molecular complexes of CI-1, formed with the anions (F- and AcO-), were obtained theoretically and confirmed by DFT and TD-DFT calculations. CI-1 behaves as a colorimetric chemosensor for selective and sensitive detection of CN- in DMSO/H2O (9:1) over other competing anions such as F- and AcO-. However, only CN- interacts with chromophore CI-2 via Michael addition and the main absorption maxima shifts hypsochromically with an observed distinctive color change from orange to yellow. For using as a optic dye, the thermal stability properties of the dyes was determined by TGA (Thermal Gravimetric Analysis). Antimicrobial, antifungal and DNA-ligand interaction studies of the dyes were also examined. The dyes cause conformational changes on DNA and selectively bind to nucleotides of A/A and G/G.

  17. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows themore » dye molecules to remain electrochemically addressable.« less

  18. Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater.

    PubMed

    Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun

    2016-12-01

    In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by 1 H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes.

    PubMed

    Babar, Aijaz Ahmed; Peerzada, Mazhar Hussain; Jhatial, Abdul Khalique; Bughio, Noor-Ul-Ain

    2017-01-01

    Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na 2 CO 3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. TiO2 nanofibers resembling 'yellow bristle grass' in morphology by a soft chemical transformation.

    PubMed

    Nandan, Sandeep; Deepak, T G; Nair, Shantikumar V; Nair, A Sreekumaran

    2015-05-28

    We synthesized a uniquely shaped one-dimensional (1-D) TiO2 nanostructure having the morphology of yellow bristle grass with high surface area by the titanate route under mild reaction conditions. The electrospun TiO2-SiO2 composite nanofibers upon treatment with concentrated NaOH at 80 °C under ambient pressure for 24 h resulted in sodium titanate (Na2Ti3O7) nanostructures. The Na2Ti3O7 nanostructures have an overall 1-D fibrous morphology but the highly porous fiber surfaces were decorated with layered thorn-like features (a morphology resembling that of yellow bristle grass) resulting in high surface area (113 m(2) g(-1)) and porosity. The Na2Ti3O7 nanostructures were converted into TiO2 nanostructures of the same morphology by acidification (0.1 N HCl) followed by low temperature sintering (110 °C) processes. Dye-sensitized solar cells (DSCs) constructed out of the material (cells of area 0.20 cm(2) and thickness 12 μm) showed a power conversion efficiency (η) of 8.02% in comparison with commercial P-25 TiO2 (η = 6.1%).

  1. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system

    NASA Astrophysics Data System (ADS)

    Cui, Min-Hua; Cui, Dan; Lee, Hyung-Sool; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2016-04-01

    In this study, two modes of hybrid anaerobic digestion (AD) bioreactor with built-in BESs (electrodes installed in liquid phase (R1) and sludge phase (R2)) were tested for identifying the effect of electrodes position on azo dye wastewater treatment. Alizarin yellow R (AYR) was used as a model dye. Decolorization efficiency of R1 was 90.41 ± 6.20% at influent loading rate of 800 g-AYR/ m3·d, which was 39% higher than that of R2. The contribution of bioelectrochemical reduction to AYR decolorization (16.23 ± 1.86% for R1 versus 22.24 ± 2.14% for R2) implied that although azo dye was mainly removed in sludge zone, BES further improved the effluent quality, especially for R1 where electrodes were installed in liquid phase. The microbial communities in the electrode biofilms (dominant by Enterobacter) and sludge (dominant by Enterococcus) were well distinguished in R1, but they were similar in R2. These results suggest that electrodes installed in liquid phase in the anaerobic hybrid system are more efficient than that in sludge phase for azo dye removal, which give great inspirations for the application of AD-BES hybrid process for various refractory wastewaters treatment.

  2. Visible light photocatalytic activities of template free porous graphitic carbon nitride-BiOBr composite catalysts towards the mineralization of reactive dyes

    NASA Astrophysics Data System (ADS)

    Kanagaraj, Thamaraiselvi; Thiripuranthagan, Sivakumar; Paskalis, Sahaya Murphin Kumar; Abe, Hideki

    2017-12-01

    Template free porous g-C3N4 (pGCN) and flower like bismuth oxybromide catalysts were synthesized by poly condensation and precipitation methods respectively. Various weight percentages of porous GCN-BiOBr composite catalysts (x% pGCN-BiOBr where x = 5, 10, 30, 50 & 70 wt% of pGCN) were synthesized by impregnation method. All the synthesized catalysts were characterized by X-Ray diffractometer, Fourier transform infrared spectrophotometer, BET surface area analyzer, UV Visible diffuse reflectance spectrophotometer, X-Ray photoelectron spectrophotometer, SEM with Energy dispersive X-ray analyzer (SEM/EDAX) and elemental mapping, Transmission electron microscope, Photoluminescence spectrophotometer and Electrochemical impedance. Photocatalytic degradation of all the synthesized catalysts were tested towards the harmful reactive dyes such as reactive blue 198 (RB 198), reactive black 5 (RB 5) and reactive yellow 145 (RY 145) in presence of visible irradiation. Among the catalysts 30% pGCN-BiOBr resulted in the highest photocatalytic activity towards the degradation of all the three dyes in presence of UV, visible and solar irradiations. Kinetics studies on the photocatalytic mineralization of dyes indicated that it followed pseudo first order. HPLC, TOC and COD studies confirm that the dyes are mineralized into CO2, water and mineral salts.

  3. Dye anchored ZnO nanoparticles: The positive and negative photoluminescence quenching effects

    NASA Astrophysics Data System (ADS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Lee, Sangjin; Lee, Wonjoo; Mane, Rajaram S.; Han, Jin Wook; Han, Sung-Hwan

    2009-10-01

    The positive and negative photoluminescence quenching effects in dye [BCMoxo and BCtCM (curcumin-derived molecules)] anchored ZnO nanoparticles (NPs) are investigated using the optical and electronic properties. The photoluminescence, band gap (BCMoxo, 2.2 eV; BCtCM, 2.3 eV), and wettability studies confirm an optical quenching, well-matched electronic structure and relative hydrophobic nature, respectively, in the presence of dicarboxylic anchor groups (BCtCM) on ZnO NPs in contrast to that of keto groups (BCMoxo). Systematic change in UV-visible absorption band edge is noticeable for the BCtCM and BCMoxo-anchored ZnO NPs. The atomic absorption spectroscopy and inductively coupled-mass-spectroscopy analysis quantitatively verifies the amount of BCtCM dye molecules present on ZnO NPs surface area about three times higher than that of BCMoxo dye molecule without anchor groups.

  4. Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement.

    PubMed

    Wang, Lin-Wei; Qu, Ai-Ping; Liu, Wen-Lou; Chen, Jia-Mei; Yuan, Jing-Ping; Wu, Han; Li, Yan; Liu, Juan

    2016-02-03

    As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4',6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% < Ki67 < 50% (moderate grade), and Ki67 ≥ 50% (high grade) showed computerized Ki67 counting is better than visual Ki67 counting, especially for Ki67 low and moderate grades. Based on QDs-based double imaging and organic dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index.

  5. Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell.

    PubMed

    Parlane, Fraser G L; Mustoe, Chantal; Kellett, Cameron W; Simon, Sarah J; Swords, Wesley B; Meyer, Gerald J; Kennepohl, Pierre; Berlinguette, Curtis P

    2017-11-24

    The interactions between a surface-adsorbed dye and a soluble redox-active electrolyte species in the dye-sensitized solar cell has a significant impact on the rate of regeneration of photo-oxidized dye molecules and open-circuit voltage of the device. Dyes must therefore be designed to encourage these interfacial interactions, but experimentally resolving how such weak interactions affect electron transfer is challenging. Herein, we use X-ray absorption spectroscopy to confirm halogen bonding can exist at the dye-electrolyte interface. Using a known series of triphenylamine-based dyes bearing halogen substituents geometrically positioned for reaction with halides in solution, halogen bonding was detected only in cases where brominated and iodinated dyes were photo-oxidized. This result implies that weak intermolecular interactions between photo-oxidized dyes and the electrolyte can impact device photovoltages. This result was unexpected considering the low concentration of oxidized dyes (less than 1 in 100,000) under full solar illumination.

  6. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide.

    PubMed

    Yang, Zhen; Yang, Hu; Jiang, Ziwen; Cai, Tao; Li, Haijiang; Li, Haibo; Li, Aimin; Cheng, Rongshi

    2013-06-15

    In the current work, a series of amphoteric grafting chitosan-based flocculants (carboxymethyl chitosan-graft-polyacrylamide, denoted as CMC-g-PAM) was designed and prepared successfully. The flocculants were applied to eliminate various dyes from aqueous solutions. Among different graft copolymers, CMC-g-PAM11 with a PAM grafting ratio of 74% demonstrated the most efficient performance for removal of both the anionic dye (Methyl Orange, MO) and the cationic dye (Basic Bright Yellow, 7GL) under the corresponding favored conditions (80 mg/L of the flocculant at pH 4.0, and 160 mg/L at pH 11.0). In comparison with its precursors, chitosan and carboxymethyl chitosan, CMC-g-PAM11 showed higher removal efficiencies and wider flocculation windows. More importantly, the graft copolymer produced notably more compacted flocs based on image analysis in combination with fractal theory, which was of great significance in practical water treatment. Furthermore, the flocculation mechanism was discussed in detail. The grafted polyacrylamide chains were found to contribute much to the improved bridging and sweeping flocculation effects, but reduced charge neutralization flocculation for the effect of charge screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    NASA Astrophysics Data System (ADS)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  8. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively.

  9. Coupling carbon nanotube film microextraction with desorption corona beam ionization for rapid analysis of Sudan dyes (I-IV) and Rhodamine B in chilli oil.

    PubMed

    Chen, Di; Huang, Yun-Qing; He, Xiao-Mei; Shi, Zhi-Guo; Feng, Yu-Qi

    2015-03-07

    A rapid analysis method by coupling carbon nanotube film (CNTF) microextraction with desorption corona beam ionization (DCBI) was developed for the determination of Sudan dyes (I-IV) and Rhodamine B in chilli oil samples. Typically, CNTF was immersed into the diluted solution of chilli oil for extraction, which was then placed directly under the visible plasma beam tip of the DCBI source for desorption and ionization. Under optimized conditions, five dyes were simultaneously determined using this method. Results showed that the analytes were enriched by the CNTF through the π-π interactions, and the proposed method could significantly improve the sensitivities of these compounds, compared to the direct analysis by DCBI-MS/MS. The method with a linear range of 0.08-12.8 μg g(-1) and good linear relationships (R(2) > 0.93) in a multiple reaction monitoring (MRM) mode was developed. Satisfactory reproducibility was achieved. Relative standard deviations (RSDs) were less than 20.0%. The recoveries ranged from 80.0 to 110.0%, and the limits of detection (LODs) were in the range of 1.4-21 ng g(-1). Finally, the feasibility of the method was further exhibited by the determination of five illegal dyes in chilli powder. These results demonstrate that the proposed method consumes less time and solvent than conventional HPLC-based methods and avoids the contamination of chromatographic column and ion source from non-volatile oil. With the help of a 72-well shaker, multiple samples could be treated simultaneously, which ensures high throughput for the entire pretreatment process. In conclusion, it provides a rapid and high-throughput approach for the determination of such illicit additions in chilli products.

  10. Enhanced Aqueous Solubility of Long Wavelength Voltage-Sensitive Dyes by Covalent Attachment of Polyethylene Glycol

    PubMed Central

    Patrick, Michael J.; Ernst, Lauren A.; Waggoner, Alan S.; Thai, Dung; Salama, Guy

    2011-01-01

    Long wavelength voltage-sensitive dyes (VSDs) called Pittsburgh (PGH) dyes were recently synthesized by coupling various heterocyclic groups to a styryl-thiophene intermediate forming extended, partially rigidized chromophores. Unlike most styryl VSDs, dyes with a sulfonic acid anchor directly attached to the chromophore showed no solvatochromic absorption shifts. The limited water solubility of many long wavelength VSDs requires the use of surfactants to transport the dye through aqueous media and effectively label biological membranes. Here, we tested the chemical substitution of the sulfonic acid moiety with polyethyleneglycol (PEG) chains ranging from MW 750 to 5000, to overcome the poor solubility of VSDs while retaining their properties as VSDs. The chemical synthesis of PGH dyes and their PEG derivatives are described. The PEG-derivatives were soluble in aqueous solutions (> 1 mM) and still reported membrane potential changes. In frog and mouse hearts, the voltage sensitivity (ΔF/F per action potential) and spectral properties of PEG dyes were the same as the sulfonated analogs. Thus, the solubility of VSDs can be considerably improved with small polyethyleneglycol chains and can provide an effective approach to improve staining of excitable tissues and optical recordings of membrane potential. PMID:17912389

  11. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  12. Dyeing and characterization of regenerated cellulose nanofibers with vat dyes.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Shaikh, Irfan; Phan, Duy-Nam; Khan, Qamar; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-10-15

    Recent advancement in dyeing of nanofibers has been accelerated to improve their aesthetic properties, however, achieving good color fastness remains a challenge. Therefore, we attempt to improve the color fastness properties nanofibers. Vat dyes are known for better color fastness and their application on nanofibers has not been investigated to date. Herein, we report dyeing of regenerated cellulose nanofibers (RCNF) that were produced from precursor of cellulose acetate (CA) followed by deacetylation process. The resultant RCNF was dyed with two different vat dyes and the color attributes were examined under spectrophotometer which showed outstanding color build-up. Morphological of CA before and after deacetylation and before and after vat dyeing was investigated under TEM, FE-SEM and SEM respectively. The vat dyed RCNF were further characterized by FTIR and WAXD. Excellent color fastness results demonstrate that vat dyed RCNF can potentially be considered for advanced apparel applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An electro-optical and electron injection study of benzothiazole-based squaraine dyes as efficient dye-sensitized solar cell materials: a first principles study.

    PubMed

    Al-Fahdan, Najat Saeed; Asiri, Abdullah M; Irfan, Ahmad; Basaif, Salem A; El-Shishtawy, Reda M

    2014-12-01

    Squaraine dyes have attracted significant attention in many areas of daily life from biomedical imaging to semiconducting materials. Moreover, these dyes are used as photoactive materials in the field of solar cells. In the present study, we investigated the structural, electronic, photophysical, and charge transport properties of six benzothiazole-based squaraine dyes (Cis-SQ1-Cis-SQ3 and Trans-SQ1-Trans-SQ3). The effect of electron donating (-OCH3) and electron withdrawing (-COOH) groups was investigated intensively. Ground state geometry and frequency calculations were performed by applying density functional theory (DFT) at B3LYP/6-31G** level of theory. Absorption spectra were computed in chloroform at the time-dependent DFT/B3LYP/6-31G** level of theory. The driving force of electron injection (ΔG (inject)), relative driving force of electron injection (ΔG r (inject)), electronic coupling constants (|VRP|) and light harvesting efficiency (LHE) of all six compounds were calculated and compared with previously studied sensitizers. The ΔG (inject), ΔG r (inject) and |VRP| of all six compounds revealed that these sensitizers would be efficient dye-sensitized solar cell materials. Cis/Trans-SQ3 exhibited superior LHE as compared to other derivatives. The Cis/Trans geometric effect was studied and discussed with regard to electro-optical and charge transport properties.

  14. A new integrated TLC/MU-ATR/SERS advanced approach for the identification of trace amounts of dyes in mixtures.

    PubMed

    Sciutto, Giorgia; Prati, Silvia; Bonacini, Irene; Litti, Lucio; Meneghetti, Moreno; Mazzeo, Rocco

    2017-10-23

    The present research is focused on the setting up of an advanced analytical system for the detection of synthetic dyes. The system is based on the combination of an innovative thin layer chromatography (TLC) plate coupled with enhanced infrared (MU-ATR, metal underlayer attenuated total reflection) and Surface Enhanced Raman (SERS) spectroscopy. In particular, a TLC plate made of silver iodide (AgI) applied onto a gold coated glass slide (AgI@Au) is proposed as an efficient stationary phase for the separation of dyes mixtures. The separated dyes are then identified by means of both enhanced FTIR and SERS, performed directly on the same eluted spots. The use of a mid-IR transparent inorganic salt as stationary phase coupled with the underneath gold layer avoids spectral interferences, enhancing the signal obtained from ATR analyses. At the same time, SERS spectra can be recorded as the TLC plate may act as a SERS active substrate due to the photoreduction of AgI to metallic Ag caused by the exposure to the laser during the Raman analysis. Different mixtures of synthetic dyes of known composition, widely used in dyeing processes, have been tested and the method resulted to be effective in identifying trace amounts in the order of tens nanograms. Moreover, the method has been further evaluated on a real case study represented by dyes extracted from dyed wool. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of New Laser Protective Dyes

    DTIC Science & Technology

    1993-07-31

    Science’s Phase I research, the feasibility of thermally stabilizing cyanine and squarylium dyes for simulated polycarbonate injection-molding... SQUARYLIUM & CROCONIUM FIUORENE DYE SYNTHESIS SYNTHESIS OF NEW DYES DYE SYNTHESES IENGFICA TION ASYNTHESIS OF SUSSTITUTED DYES EVELOP OH TECHNOLOGIES...region, three dyes were successfully extruded into PETG and/or PC: (a.) the croconium dye SS-1044 (,%max = 834 um in PETG). (b.) the squarylium dye

  16. Yellow fever: an update.

    PubMed

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  17. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  18. Clinical approved fluorescent dyes coupled to endomicroscopy for in vivo diagnostic of peritoneal carcinomatosis

    NASA Astrophysics Data System (ADS)

    Abbaci, Muriel; Dartigues, Peggy; Soufan, Ranya; De Leeuw, Frederic; Fabre, Monique; Laplace-Builhé, Corinne

    2015-03-01

    Peritoneal carcinomatosis is metastatic stage aggravating digestive, gynecological or bladder cancer dissemination and the preoperative evaluation of lesions remains difficult. There is therefore a need for minimal invasive innovative techniques to establish a precise preoperative assessment of cancer peritoneal cavity. Probe-based confocal laser endomicroscopy (pCLE) provides dynamic images of the microarchitecture of tissues during an endoscopy. The PERSEE project proposes new developments in robotics and pCLE for the exploration of the peritoneal cavity during laparoscopy. Two fluorescent dyes, Patent blue V and Indocyanine green have been evaluated on human ex vivo samples to improve the contrast of pCLE images. For a future implementation in clinical study, two topically staining protocols operable in vivo have been validated on 70 specimens from 25 patients with a peritoneal carcinomatosis. The specimens were then imaged by pCLE with an optical probe designed for the application. A histo-morphological correlative study was performed on 350 pCLE images and 70 standard histological preparations. All images were interpreted in a random way by two pathologists. Differential histological diagnostics such as normal peritoneum or pseudomyxoma could be recognized on fluorescence images. The statistical analysis of the correlative study is underway. These dyes already approved for human use are interesting for pCLE imaging because some micromorphological criteria look like to conventional histology and are readable by pathologist. Thus pCLE images using both dyes do not require a specific semiology unlike to what is described in the literature, for pCLE associated with fluorescein for the in vivo imaging of pancreatic cysts.

  19. Sodium Fluorescein-Guided Resection under the YELLOW 560 nm Surgical Microscope Filter in Malignant Gliomas: Our First 38 Cases Experience.

    PubMed

    Zhang, Ningning; Tian, Hailong; Huang, Dezhang; Meng, Xianbing; Guo, Wenqiang; Wang, Chaochao; Yin, Xin; Zhang, Hongying; Jiang, Bin; He, Zheng; Wang, Zhigang

    2017-01-01

    Sodium fluorescein (FL) had been safely used in fluorescence-guided microsurgery for imaging various brain tumors. Under the YELLOW 560 nm surgical microscope filter, low-dose FL as a fluorescent dye helps in visualization. Our study investigated the safety and efficacy of this innovative technique in malignant glioma (MG) patients. 38 patients suffering from MGs confirmed by pathology underwent FL-guided resection under YELLOW 560 nm surgical microscope filter. We retrospectively analyzed the clinical characters, microsurgery procedure, extent of resection, pathology of MGs, progression-free survival (PFS), and overall survival (OS). Thirty-eight patients had MGs (10 WHO grade III, 28 WHO grade IV). With YELLOW 560 nm surgical microscope filter combined with neuronavigation, sodium fluorescein-guided gross total resection (GTR) was achieved in 35 (92.1%) patients and subtotal resection in 3 (7.69%). The sensitivity and specificity of FL were 94.4% and 88.6% regardless of radiographic localization. Intraoperatively, 10 biopsies (10/28 FL[+]) showed "low" or "high" fluorescence in non-contrast-enhancement region and are also confirmed by pathology. Our data showed 6-month PFS of 92.3% and median survival of 11 months. FL-guided resection of MGs under the YELLOW 560 nm surgical microscope filter combined with neuronavigation was safe and effective, especially in non-contrast-MRI regions. It is feasible for improving the extent of resection in MGs especially during emergency cases.

  20. Sodium Fluorescein-Guided Resection under the YELLOW 560 nm Surgical Microscope Filter in Malignant Gliomas: Our First 38 Cases Experience

    PubMed Central

    Tian, Hailong; Huang, Dezhang; Meng, Xianbing; Guo, Wenqiang; Wang, Chaochao; Yin, Xin; Zhang, Hongying; Jiang, Bin; He, Zheng

    2017-01-01

    Objective Sodium fluorescein (FL) had been safely used in fluorescence-guided microsurgery for imaging various brain tumors. Under the YELLOW 560 nm surgical microscope filter, low-dose FL as a fluorescent dye helps in visualization. Our study investigated the safety and efficacy of this innovative technique in malignant glioma (MG) patients. Patients and Method 38 patients suffering from MGs confirmed by pathology underwent FL-guided resection under YELLOW 560 nm surgical microscope filter. We retrospectively analyzed the clinical characters, microsurgery procedure, extent of resection, pathology of MGs, progression-free survival (PFS), and overall survival (OS). Results Thirty-eight patients had MGs (10 WHO grade III, 28 WHO grade IV). With YELLOW 560 nm surgical microscope filter combined with neuronavigation, sodium fluorescein-guided gross total resection (GTR) was achieved in 35 (92.1%) patients and subtotal resection in 3 (7.69%). The sensitivity and specificity of FL were 94.4% and 88.6% regardless of radiographic localization. Intraoperatively, 10 biopsies (10/28 FL[+]) showed “low” or “high” fluorescence in non-contrast-enhancement region and are also confirmed by pathology. Our data showed 6-month PFS of 92.3% and median survival of 11 months. Conclusion FL-guided resection of MGs under the YELLOW 560 nm surgical microscope filter combined with neuronavigation was safe and effective, especially in non-contrast-MRI regions. It is feasible for improving the extent of resection in MGs especially during emergency cases. PMID:29124069

  1. Dye ingredients and energy conversion efficiency at natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Özbay Karakuş, Mücella; Koca, İrfan; Er, Orhan; Çetin, Hidayet

    2017-04-01

    In this work, natural dyes extracted from the same genus but different species flowers were used as sensitizer in Dye Sensitized Solar Cell (DSSC). To clearly show dye ingredients effect on electrical characteristics, the same genus flowers were selected. The dye ingredients were analyzed by Gas Chromatography Mass Spectrometer (GC-MS). The dyes were modified by a procedure that includes refluxing in acetone. All results indicate a relationship between gallic acid quantity in dyes and solar cell efficiency. To gain further insight, the solar cell parameters were obtained by using the single-diode and double-diode models and they were compared to each other. It was observed that the applied process causes a decrease in series resistance. How the modification process and gallic acid affect energy conversion efficiency were argued in detail in the frame of results that were obtained from solar cell models.

  2. Multicolor fluorescence of a styrylquinoline dye tuned by metal cations.

    PubMed

    Shiraishi, Yasuhiro; Ichimura, Chizuru; Sumiya, Shigehiro; Hirai, Takayuki

    2011-07-18

    A styrylquinoline dye with a dipicolylamine (DPA) moiety (1) has been synthesized. The dye 1 in acetonitrile demonstrates multicolor fluorescence upon addition of different metal cations. Compound 1 shows a green fluorescence without cations. Coordination of 1 with Cd(2+) shows a blue emission, while with Hg(2+) and Pb(2+) exhibits yellow and orange emissions, respectively. The different fluorescence spectra are due to the change in intramolecular charge transfer (ICT) properties of 1 upon coordination with different cations. The DPA and quinoline moieties of 1 behave as the electron donor and acceptor units, respectively, and both units act as the coordination site for metal cations. Cd(2+) coordinates with the DPA unit. This reduces the donor ability of the unit and decreases the energy level of HOMO. This results in an increase in HOMO-LUMO gap and blue shifts the emission. Hg(2+) or Pb(2+) coordinate with both DPA and quinoline units. The coordination with the quinoline unit decreases the energy level of LUMO. This results in a decrease in HOMO-LUMO gap and red shifts the emission. Addition of two different metal cations successfully creates intermediate colors; in particular, the addition of Cd(2+) and Pb(2+) at once creates a bright white fluorescence. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.

  4. Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.

    PubMed

    Wei, D; Bortolozzo, U; Huignard, J P; Residori, S

    2013-08-26

    Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.

  5. Characterizing the marker-dye correction for Gafchromic(®) EBT2 film: a comparison of three analysis methods.

    PubMed

    McCaw, Travis J; Micka, John A; Dewerd, Larry A

    2011-10-01

    Gafchromic(®) EBT2 film has a yellow marker dye incorporated into the active layer of the film that can be used to correct the film response for small variations in thickness. This work characterizes the effect of the marker-dye correction on the uniformity and uncertainty of dose measurements with EBT2 film. The effect of variations in time postexposure on the uniformity of EBT2 is also investigated. EBT2 films were used to measure the flatness of a (60)Co field to provide a high-spatial resolution evaluation of the film uniformity. As a reference, the flatness of the (60)Co field was also measured with Kodak EDR2 films. The EBT2 films were digitized with a flatbed document scanner 24, 48, and 72 h postexposure, and the images were analyzed using three methods: (1) the manufacturer-recommended marker-dye correction, (2) an in-house marker-dye correction, and (3) a net optical density (OD) measurement in the red color channel. The field flatness was calculated from orthogonal profiles through the center of the field using each analysis method, and the results were compared with the EDR2 measurements. Uncertainty was propagated through a dose calculation for each analysis method. The change in the measured field flatness for increasing times postexposure was also determined. Both marker-dye correction methods improved the field flatness measured with EBT2 film relative to the net OD method, with a maximum improvement of 1% using the manufacturer-recommended correction. However, the manufacturer-recommended correction also resulted in a dose uncertainty an order of magnitude greater than the other two methods. The in-house marker-dye correction lowered the dose uncertainty relative to the net OD method. The measured field flatness did not exhibit any unidirectional change with increasing time postexposure and showed a maximum change of 0.3%. The marker dye in EBT2 can be used to improve the response uniformity of the film. Depending on the film analysis method used

  6. Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength

    NASA Astrophysics Data System (ADS)

    Inakazu, Fumi; Noma, Yusuke; Ogomi, Yuhei; Hayase, Shuzi

    2008-09-01

    Dye-sensitized solar cells (DSCs) containing dye-bilayer structure of black dye and NK3705 (3-carboxymethyl-5-[3-(4-sulfobutyl)-2(3H)-bezothiazolylidene]-2-thioxo-4-thiazolidinone, sodium salt) in one TiO2 layer (2-TiO-BD-NK) are reported. The 2-TiO-BD-NK structure was fabricated by staining one TiO2 layer with these two dyes, step by step, under a pressurized CO2 condition. The dye-bilayer structure was observed by using a confocal laser scanning microscope. The short circuit current (Jsc) and the incident photon to current efficiency of the cell (DSC-2-TiO-BD-NK) was almost the sum of those of DSC stained with black dye only (DSC-1-TiO-BD) and DSC stained with NK3705 only (DSC-1-TiO-NK).

  7. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    PubMed

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  8. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    NASA Astrophysics Data System (ADS)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  9. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons

    PubMed Central

    2017-01-01

    Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural

  10. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons.

    PubMed

    Kennedy, Tyler; Broadie, Kendal

    2017-10-11

    Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural

  11. Yellow-poplar seedfall pattern

    Treesearch

    LaMont G. Engle

    1960-01-01

    Knowing the pattern of seedfall can be helpful when trying to regenerate yellow-poplar. This is especially true if the stand contains only scattered yellow-poplar seed trees. Information obtained from seed collections in Indiana shows that most of the seed falls north and northeast of seed trees.

  12. Theoretical study of electronic transfer current rate at dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    AL-Agealy, Hadi J. M.; AlMaadhede, Taif Saad; Hassooni, Mohsin A.; Sadoon, Abbas K.; Ashweik, Ahmed M.; Mahdi, Hind Abdlmajeed; Ghadhban, Rawnaq Qays

    2018-05-01

    In this research, we present a theoretical study of electronic transfer kinetics rate in N719/TiO2 and N719/ZnO dye-sensitized solar cells (DSSC) systems using a simple model depending on the postulate of quantum mechanics theory. The evaluation of the electronic transition current rate in DSSC systems are function of many parameters such that; the reorientation transition energies ΛSe m D y e , the transition coupling parameter ℂT(0), potential exponential effect e-(E/C-EF ) kBT , unit cell volume VSem, and temperature T. Furthermore, the analysis of electronic transfer current rate in N719/TiO2 and N719/ZnO systems show that the rate upon dye-sensitization solar cell increases with increases of transition coupling parameter, decreasing potential that building at interface a results of different material in this devices and increasing with reorientation transition energy. On the other hand, we can find the electronic transfer behavior is dependent of the dye absorption spectrum and mainly depending on the reorientation of transition energy. The replacement of the solvents in both DSSC system caused increasing of current rates dramatically depending on polarity of solvent in subset devices. This change in current rate of electron transfer were attributed to much more available of recombination sites introduced by the solvents medium. The electronic transfer current dynamics are shown to occurs in N719/TiO2 system faster many time compare to ocuures at N719/ZnO system, this indicate that TiO2 a is a good and active material compare with ZnO to using in dye sensitized solar cell devices. In contrast, the large current rate in N719/TiO2 comparing to ZnO of N719/ZnO systems indicate that using TiO2 with N719 dye lead to increasing the efficiency of DSSC.

  13. Structural and spectral comparisons between isomeric benzisothiazole and benzothiazole based aromatic heterocyclic dyes

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ge; Wang, Yue-Hua; Tao, Tao; Qian, Hui-Fen; Huang, Wei

    2015-09-01

    A pair of isomeric heterocyclic compounds, namely 3-amino-5-nitro-[2,1]-benzisothiazole and 2-amino-6-nitrobenzothiazole, are used as the diazonium components to couple with two N-substituted 4-aminobenzene derivatives. As a result, two pairs of isomeric aromatic heterocyclic azo dyes have been produced and they are structurally and spectrally characterized and compared including single-crystal structures, electronic spectra, solvatochromism and reversible acid-base discoloration, thermal stability and theoretically calculations. It is concluded that both benzisothiazole and benzothiazole based dyes show planar molecular structures and offset π-π stacking interactions, solvatochromism and reversible acid-base discoloration. Furthermore, benzisothiazole based aromatic heterocyclic dyes exhibit higher thermal stability, larger solvatochromic effects and maximum absorption wavelengths than corresponding benzothiazole based ones, which can be explained successfully by the differences of their calculated isomerization energy, dipole moment and molecular band gaps.

  14. 21 CFR 137.215 - Yellow corn flour.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  15. 21 CFR 137.275 - Yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...

  16. 21 CFR 137.215 - Yellow corn flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  17. 21 CFR 137.275 - Yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...

  18. Iodine/iodide-free dye-sensitized solar cells.

    PubMed

    Yanagida, Shozo; Yu, Youhai; Manseki, Kazuhiro

    2009-11-17

    Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO(2) with a 101 crystal face (nc-TiO(2)) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I(-)/I(3)(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO(2) layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO(2) porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I(-)/I(3)(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO(2) layers, promoting the mobility of the nc-TiO(2) layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I(-)/I(3)(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I(-)/I(3)(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I(-)/I(3)(-)) can absorb visible light (lambda = approximately 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO(2) DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the

  19. Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system.

    PubMed

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    A continuous stirred tank reactor with built-in bioelectrochemical system (CSTR-BES) was developed for azo dye Alizarin Yellow R (AYR) containing wastewater treatment. The decolorization efficiency (DE) of the CSTR-BES was 97.04±0.06% for 7h with sludge concentration of 3000mg/L and initial AYR concentration of 100mg/L, which was superior to that of the sole CSTR mode (open circuit: 54.87±4.34%) and the sole BES mode (without sludge addition: 91.37±0.44%). The effects of sludge concentration and sodium acetate (NaAc) concentration on azo dye decolorization were investigated. The highest DE of CSTR-BES for 4h was 87.66±2.93% with sludge concentration of 12,000mg/L, NaAc concentration of 2000mg/L and initial AYR concentration of 100mg/L. The results in this study indicated that CSTR-BES could be a practical strategy for upgrading conventional anaerobic facilities against refractory wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Optimization of potent hepatitis C virus NS3 helicase inhibitors isolated from the yellow dyes thioflavine S and primuline.

    PubMed

    Li, Kelin; Frankowski, Kevin J; Belon, Craig A; Neuenswander, Ben; Ndjomou, Jean; Hanson, Alicia M; Shanahan, Matthew A; Schoenen, Frank J; Blagg, Brian S J; Aubé, Jeffrey; Frick, David N

    2012-04-12

    A screen for hepatitis C virus (HCV) NS3 helicase inhibitors revealed that the commercial dye thioflavine S was the most potent inhibitor of NS3-catalyzed DNA and RNA unwinding in the 827-compound National Cancer Institute Mechanistic Set. Thioflavine S and the related dye primuline were separated here into their pure components, all of which were oligomers of substituted benzothiazoles. The most potent compound (P4), a benzothiazole tetramer, inhibited unwinding >50% at 2 ± 1 μM, inhibited the subgenomic HCV replicon at 10 μM, and was not toxic at 100 μM. Because P4 also interacted with DNA, more specific analogues were synthesized from the abundant dimeric component of primuline. Some of the 32 analogues prepared retained ability to inhibit HCV helicase but did not appear to interact with DNA. The most potent of these specific helicase inhibitors (compound 17) was active against the replicon and inhibited the helicase more than 50% at 2.6 ± 1 μM. © 2012 American Chemical Society

  1. Hair dye poisoning

    MedlinePlus

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  2. Synthesis, structural characterization and tautomeric properties of some novel bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Safarnejad, Mastaneh

    Nine new bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone have been synthesized in two steps using Knoevenagel condensation and diazotization-coupling reaction. The structures of the compounds were confirmed by UV-vis, IR, 1H NMR and 13C NMR spectroscopic techniques. The spectral characterizations demonstrate that there is an equilibrium between the azo (T1) and hydrazine (T2 and T3) tautomers for all prepared dyes in solutions. In addition, the solvatochromic behavior of the prepared dyes was evaluated using polarity/polarizability parameter (π*) in various solvents. The UV-vis absorption spectra of dyes show a bathochromic shift with increasing polarity and base strength of the solvents. Finally, the effects of acid and base on the UV-vis absorption spectra of the dyes with different substituent in diazo component are reported.

  3. Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.

    PubMed

    Pham, Ha H; Szent-Gyorgyi, Christopher; Brotherton, Wendy L; Schmidt, Brigitte F; Zanotti, Kimberly J; Waggoner, Alan S; Armitage, Bruce A

    2015-03-28

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields.

  4. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  5. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability

    PubMed Central

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  6. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  7. Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine.

    PubMed

    dos Santos, Tuane Cristina; Zocolo, Guilherme Julião; Morales, Daniel Alexandre; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin

    2014-06-01

    The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30min of irradiation, when a dye solution 1×10(-5)molL(-1) was submitted to an energy dose of 37.8Jcm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34mg/plate and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Use of dyes in cariology.

    PubMed

    van de Rijke, J W

    1991-04-01

    The property of dyes to enhance contrast by their colour can be used in clinical dentistry and in investigations in vitro or in vivo. They have been used for indication of affected dental tissues, improvement of diagnostic methods, enhancement of patient awareness and information about specific processes. The development of particular dye systems, aimed at clinical application, is often laborious because of toxic effects, lack of specificity, irreversible staining or difficulties with removal of the dye. Clinically used dyes are often visually observed, which means a qualitative assessment of the staining, while quantification of the staining, if performed at all, is confined mostly to laboratory experiments. In this paper the application of dyes, arranged according to their specific purpose in cariology, is discussed, and a brief historical overview is given of the development of two particular dye applications for which commercial dye systems are now available. If certain requirements are met, dyes can be of great help in detection and quantification when used with several diagnostic methods.

  9. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system

    PubMed Central

    Cui, Min-Hua; Cui, Dan; Lee, Hyung-Sool; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2016-01-01

    In this study, two modes of hybrid anaerobic digestion (AD) bioreactor with built-in BESs (electrodes installed in liquid phase (R1) and sludge phase (R2)) were tested for identifying the effect of electrodes position on azo dye wastewater treatment. Alizarin yellow R (AYR) was used as a model dye. Decolorization efficiency of R1 was 90.41 ± 6.20% at influent loading rate of 800 g-AYR/ m3·d, which was 39% higher than that of R2. The contribution of bioelectrochemical reduction to AYR decolorization (16.23 ± 1.86% for R1 versus 22.24 ± 2.14% for R2) implied that although azo dye was mainly removed in sludge zone, BES further improved the effluent quality, especially for R1 where electrodes were installed in liquid phase. The microbial communities in the electrode biofilms (dominant by Enterobacter) and sludge (dominant by Enterococcus) were well distinguished in R1, but they were similar in R2. These results suggest that electrodes installed in liquid phase in the anaerobic hybrid system are more efficient than that in sludge phase for azo dye removal, which give great inspirations for the application of AD-BES hybrid process for various refractory wastewaters treatment. PMID:27121278

  10. Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA

    NASA Astrophysics Data System (ADS)

    Cunningham, Paul D.; Bricker, William P.; Díaz, Sebastián A.; Medintz, Igor L.; Bathe, Mark; Melinger, Joseph S.

    2017-08-01

    Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.

  11. Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Cui, Jin; Han, Junbo; Zhang, Junpei; Zhang, Yibo; Luan, Lin; Alemu, Getachew; Wang, Zhong; Shen, Yan; Xiong, Dehua; Chen, Wei; Wei, Zhanhua; Yang, Shihe; Hu, Bin; Cheng, Yibing; Wang, Mingkui

    2014-01-01

    Over the past few decades, the field of p-type dye-sensitized solar cell (p-DSSC) devices has undergone tremendous advances, in which Cu-based delafossite nanocrystal is of prime interest. This paper presents an augment of about 87% improvement in photocurrent observed in a particular configuration of organic dye P1 sensitized CuCrO2 delafossite nanocrystal electrode coupled with organic redox shuttle, 1-methy-1H- tetrazole-5-thiolate and its disulfide dimer when Au nanoparticles (NPs, with diameter of about 20 nm) is added into the photocathode, achieving a power convert efficiency of 0.31% (measured under standard AM 1.5 G test conditions). Detailed investigation shows that the local electrical-magnetic field effect, induced by Au NPs among the mesoporous CuCrO2 film, can improve the charge injection efficiency at dye/semiconductor interface, which is responsible for the bulk of the gain in photocurrent. PMID:24492539

  12. Combining aminocyanine dyes with polyamide dendrons: a promising strategy for imaging in the near-infrared region.

    PubMed

    Ornelas, Cátia; Lodescar, Rachelle; Durandin, Alexander; Canary, James W; Pennell, Ryan; Liebes, Leonard F; Weck, Marcus

    2011-03-21

    Cyanine dyes are known for their fluorescence in the near-IR (NIR) region, which is desirable for biological applications. We report the synthesis of a series of aminocyanine dyes containing terminal functional groups such as acid, azide, and cyclooctyne groups for further functionalization through, for example, click chemistry. These aminocyanine dyes can be attached to polyfunctional dendrons by copper-catalyzed azide alkyne cycloaddition (CuAAC), strain-promoted azide alkyne cycloaddition (SPAAC), peptide coupling, or direct S(NR)1 reactions. The resulting dendron-dye conjugates were obtained in high yields and displayed high chemical stability and photostability. The optical properties of the new compounds were studied by UV/Vis and fluorescence spectroscopy. All compounds show large Stokes shifts and strong fluorescence in the NIR region with high quantum yields, which are optimal properties for in vivo optical imaging. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Comparative Study on the Photophysics and Photochemistry of Xanthene Dyes in the Presence of Polyamidoamine (PAMAM) Dendrimers.

    PubMed

    Arbeloa, Ernesto Maximiliano; Previtali, Carlos Mario; Bertolotti, Sonia Graciela

    2018-04-17

    The photophysical and photochemical properties of the xanthene dyes Eosin Y, Erythrosin B, and Rose Bengal are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of relatively high generation (G3-G5) in alkaline aqueous solution. UV/Vis absorption and fluorescence spectra of the dyes show bathochromic shifts, which correlate with the size of the dendrimer. Binding constants (K bind ) are calculated from absorption data. The resulting high K bind values indicate strong interactions between both molecules. Triplet-triplet absorption spectra of the dyes are recorded by laser flash photolysis, and a decrease in the triplet lifetimes is observed in the presence of dendrimers. At the same time, an increase in the absorption of the semireduced form of the dyes is observed. Rate constants for triplet quenching ( 3 k q ) and radical quantum yields (Φ R ) are obtained. The results are explained by a very efficient electron-transfer process from PAMAM to xanthene dyes for all of the dye/dendrimer couples that are evaluated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative Determination of Four Azo Dyes in Rat Plasma with Solid-Phase Extraction and UFLC-MS-MS Analysis: Application to a Pharmacokinetic Study.

    PubMed

    Zhu, Hao; Huang, Changshun; Chen, Yijun; Lu, Zihui; Zhou, Haidong; Chen, Chunru; Wu, Jin; Chen, Xiaohong; Jin, Micong

    2016-06-05

    A rapid and sensitive ultra-fast liquid chromatography tandem mass spectrometry method, followed by simple protein precipitation and solid-phase extraction, has been developed and validated for the quantitative determination of four azo dyes (Para red, Solvent yellow 2, Solvent red 1 and Sudan red 7B) in rat plasma using D 5 -Sudan I as the internal standard. The optimal separation was accomplished on an Agilent Eclipse Plus C18 column (100 × 2.1 mm, 1.8 μm) with gradient elution using the mobile phase including acetonitrile and water (containing 0.1% formic acid). The flow rate was 0.45 mL/min. The detection was conducted by means of electrospray ionization mass spectrometry in positive ion mode with multiple reaction monitoring. The calibration curves showed good linearity, with correlation coefficients >0.998 for all of the analytes within the concentration range. The lower limits of quantification (LLOQs) of Para red, Solvent yellow 2, Solvent red 1 and Sudan red 7B in rat plasma were 1.0, 0.1, 0.1 and 0.1 μg/L, respectively. The intra- and interday relative standard deviations were ≤9.6 and ≤12.4%, respectively, and the accuracy was in the range of -5.8 to -9.5%. The average recoveries were between 81.49 and 118.65%, and the matrix effects were satisfactory in the biological matrices. The fully validated method has been successfully applied in measuring levels of the four azo dyes in rat plasma following oral administration of 20.0 mg/kg of analytes in rats, which was suitable for the pharmacokinetic studies of the azo dyes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Automated extraction of direct, reactive, and vat dyes from cellulosic fibers for forensic analysis by capillary electrophoresis.

    PubMed

    Dockery, C R; Stefan, A R; Nieuwland, A A; Roberson, S N; Baguley, B M; Hendrix, J E; Morgan, S L

    2009-08-01

    Systematic designed experiments were employed to find the optimum conditions for extraction of direct, reactive, and vat dyes from cotton fibers prior to forensic characterization. Automated microextractions were coupled with measurements of extraction efficiencies on a microplate reader UV-visible spectrophotometer to enable rapid screening of extraction efficiency as a function of solvent composition. Solvent extraction conditions were also developed to be compatible with subsequent forensic characterization of extracted dyes by capillary electrophoresis with UV-visible diode array detection. The capillary electrophoresis electrolyte successfully used in this work consists of 5 mM ammonium acetate in 40:60 acetonitrile-water at pH 9.3, with the addition of sodium dithionite reducing agent to facilitate analysis of vat dyes. The ultimate goal of these research efforts is enhanced discrimination of trace fiber evidence by analysis of extracted dyes.

  16. Cloth dye poisoning

    MedlinePlus

    ... this damage. Poisoning from dye containing an alkali may result in continuing injury to these tissues for weeks or months. If the person swallowed a nonpoisonous household dye, recovery is likely.

  17. Growth and physiology of Clostridium perfringens wild-type and ΔazoC knockout: an azo dye exposure study.

    PubMed

    Morrison, Jessica M; John, Gilbert H

    2016-02-01

    Clostridium perfringens, a strictly anaerobic micro-organism and inhabitant of the human intestine, has been shown to produce the azoreductase enzyme AzoC, an NAD(P)H-dependent flavin oxidoreductase. This enzyme reduces azo dyes to aromatic amines, which are carcinogenic in nature. A significant amount of work has been completed that focuses on the activity of this enzyme; however, few studies have been completed that focus on the physiology of azo dye reduction. Dye reduction studies coupled with C. perfringens growth studies in the presence of ten different azo dyes and in media of varying complexities were completed to compare the growth rates and dye-reducing activity of C. perfringens WT cells, a C. perfringens ΔazoC knockout, and Bifidobacterium infantis, a non-azoreductase-producing control bacterium. The presence of azo dyes significantly increased the generation time of C. perfringens in rich medium, an effect that was not seen in minimal medium. In addition, azo dye reduction studies with the ΔazoC knockout suggested the presence of additional functional azoreductases in this medically important bacterium. Overall, this study addresses a major gap in the literature by providing the first look, to our knowledge, at the complex physiology of C. perfringens upon azo dye exposure and the effect that both azo dyes and the azoreductase enzyme have on growth.

  18. Biobleaching of Industrial Important Dyes with Peroxidase Partially Purified from Garlic

    PubMed Central

    Osuji, Akudo Chigozirim; Eze, Sabinus Oscar O.; Osayi, Emmanuel Emeka; Chilaka, Ferdinand Chiemeka

    2014-01-01

    An acidic peroxidase was extracted from garlic (Allium sativum) and was partially purified threefold by ammonium sulphate precipitation, dialysis, and gel filtration chromatography using sephadex G-200. The specific activity of the enzyme increased from 4.89 U/mg after ammonium sulphate precipitation to 25.26 U/mg after gel filtration chromatography. The optimum temperature and pH of the enzyme were 50°C and 5.0, respectively. The Km and V max for H2O2 and o-dianisidine were 0.026 mM and 0.8 U/min, and 25 mM and 0.75 U/min, respectively. Peroxidase from garlic was effective in decolourizing Vat Yellow 2, Vat Orange 11, and Vat Black 27 better than Vat Green 9 dye. For all the parameters monitored, the decolourization was more effective at a pH range, temperature, H2O2 concentration, and enzyme concentration of 4.5–5.0, 50°C, 0.6 mM, and 0.20 U/mL, respectively. The observed properties of the enzyme together with its low cost of extraction (from local sources) show the potential of this enzyme for practical application in industrial wastewater treatment especially with hydrogen peroxide. These Vat dyes also exhibited potentials of acting as peroxidase inhibitors at alkaline pH range. PMID:25401128

  19. Biobleaching of industrial important dyes with peroxidase partially purified from garlic.

    PubMed

    Osuji, Akudo Chigozirim; Eze, Sabinus Oscar O; Osayi, Emmanuel Emeka; Chilaka, Ferdinand Chiemeka

    2014-01-01

    An acidic peroxidase was extracted from garlic (Allium sativum) and was partially purified threefold by ammonium sulphate precipitation, dialysis, and gel filtration chromatography using sephadex G-200. The specific activity of the enzyme increased from 4.89 U/mg after ammonium sulphate precipitation to 25.26 U/mg after gel filtration chromatography. The optimum temperature and pH of the enzyme were 50°C and 5.0, respectively. The Km and V max for H2O2 and o-dianisidine were 0.026 mM and 0.8 U/min, and 25 mM and 0.75 U/min, respectively. Peroxidase from garlic was effective in decolourizing Vat Yellow 2, Vat Orange 11, and Vat Black 27 better than Vat Green 9 dye. For all the parameters monitored, the decolourization was more effective at a pH range, temperature, H2O2 concentration, and enzyme concentration of 4.5-5.0, 50°C, 0.6 mM, and 0.20 U/mL, respectively. The observed properties of the enzyme together with its low cost of extraction (from local sources) show the potential of this enzyme for practical application in industrial wastewater treatment especially with hydrogen peroxide. These Vat dyes also exhibited potentials of acting as peroxidase inhibitors at alkaline pH range.

  20. Cytotoxicity of yellow sand in lung epithelial cells.

    PubMed

    Kim, Y H; Kim, K S; Kwak, N J; Lee, K H; Kweon, S A; Lim, Y

    2003-02-01

    The present study was carried out to observe the cytotoxicity of yellow sand in comparison with silica and titanium dioxide in a rat alveolar type II cell line (RLE-6TN). Yellow sand (China Loess) was obtained from the loess layer in the Gunsu Province of China. The mean particle diameter of yellow sand was about 0.003 +/- 0.001 mm. Major elements of yellow sand were Si(27.7 +/- 0.6%), Al(6.01 +/- 0.17%), and Ca(5.83 +/- 0.23%) in that order. Silica and yellow sand significantly decreased cell viability and increased [Ca2+]i. All three particles increased the generation of H2O2. TiO2 did not change Fenton activity, while silica induced a slight increase of Fenton activity. In contrast, yellow sand induced a significant increase of Fenton activity. Silica, yellow sand and TiO2 induced significant nitrite formations in RLE-6TN cells. Silica showed the highest increase in nitrite formation, while yellow sand induced the least formation of nitrite. Silica and yellow sand increased the release of TNF-a. Based on these results, we suggest that yellow sand can induce cytotoxicity in RLE-6TN cells and reactive oxygen species, Fenton activity and reactive nitrogen species might be involved in this toxicity.

  1. Molecular engineering of fluorescein dyes as complementary absorbers in dye co-sensitized solar cells

    DOE PAGES

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...

    2016-09-22

    Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), amore » mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO 2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical investigation lead to two molecularly engineered

  2. Molecular engineering of fluorescein dyes as complementary absorbers in dye co-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.

    Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), amore » mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO 2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical investigation lead to two molecularly engineered

  3. Yellow phosphorus-induced Brugada phenocopy.

    PubMed

    Dharanipradab, Mayakrishnan; Viswanathan, Stalin; Kumar, Gokula Raman; Krishnamurthy, Vijayalatchumy; Stanley, Daphene Divya

    Metallic phosphides (of aluminum and phosphide) and yellow phosphorus are commonly used rodenticide compounds in developing countries. Toxicity of yellow phosphorus mostly pertains to the liver, kidney, heart, pancreas and the brain. Cardiotoxicity with associated Brugada ECG pattern has been reported only in poisoning with metallic phosphides. Brugada phenocopy and hepatic dysfunction were observed in a 29-year-old male following yellow phosphorus consumption. He had both type 1 (day1) and type 2 (day2) Brugada patterns in the electrocardiogram, which resolved spontaneously by the third day without hemodynamic compromise. Toxins such as aluminum and zinc phosphide have been reported to induce Brugada ECG patterns due to the generation of phosphine. We report the first case of yellow phosphorus-related Brugada phenocopy, without hemodynamic compromise or malignant arrhythmia. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Development auxiliaries for dyeing polyester with disperse dyes at low temperatures

    NASA Astrophysics Data System (ADS)

    Carrion-Fite, F. J.; Radei, S.

    2017-10-01

    High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.

  5. Dye-sensitized TiO2-catalyzed photodegradation of sulfamethoxazole under blue or yellow light.

    PubMed

    Lu, Norman; Yeh, Yun-Peng; Wang, Guan-Bo; Feng, Tsung-Yao; Shih, Yang-Hsin; Chen, Dong

    2017-01-01

    Visible light-induced photocatalysis is potentially advantageous and could be an efficient approach to degrade contaminants because it can be used to selectively target specific wavelength for decomposition of organic contaminants in water and wastewater. This study demonstrates the photodegradation of sulfamethoxazole (SMX) using [Pt(3,3'-dicarboxy-2,2'-bpy)(1,2-benzenedithiolate)] (Complex 1)-sensitized and [Pt(4,4'-dicarboxy-2,2'-bpy)(1,2-benzenedithiolate)] (Complex 2)-sensitized titanium dioxide (TiO 2 ) under blue or yellow light (420 or 580 nm, respectively) irradiation in water. The Complex 1-sensitized TiO 2 photocatalytic oxidation of SMX reached almost 100 % removal under 420 nm irradiation for 3 h in water. In addition, the formation of hydroxyl radicals can be facilitated by bubbling O 2 during the photodegradation in which an effective decomposition of SMX was observed. Based on HPLC and UV-Vis studies of the decomposed products, it was found that SMX underwent cleavage of aromatic rings during the photodegradation process.

  6. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2016-05-23

    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by {sup 1}H NMR, {sup 13}C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation ofmore » 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.« less

  7. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2}more » and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.« less

  9. Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves.

    PubMed

    Baaka, Noureddine; Mahfoudhi, Adel; Haddar, Wafa; Mhenni, Mohamed Farouk; Mighri, Zine

    2017-01-01

    This research work involves an eco-friendly dyeing process of modified cotton with the aqueous extract of Tamarix aphylla leaves. During this process, the dyeing step was carried out on modified cotton by several cationising agents in order to improve its dyeability. The influence of the main dyeing conditions (dye bath pH, dyeing time, dyeing temperature, salt addition) on the performances of this dyeing process were studied. The dyeing performances of this process were appreciated by measuring the colour yield (K/S) and the fastness properties of the dyed samples. The effect of mordant type with different mordanting methods on dyeing quality was also studied. The results showed that mordanting gave deeper shades and enhanced fastness properties. In addition, environmental indicators (BOD 5 , COD and COD/BOD 5 ) were used to describe potential improvements in the biodegradability of the dyebath wastewater. Further, HPLC was used to identify the major phenolic compounds in the extracted dye.

  10. Perinatal Yellow Fever: A Case Report.

    PubMed

    Diniz, Lilian Martins Oliveira; Romanelli, Roberta Maia Castro; de Carvalho, Andréa Lucchesi; Teixeira, Daniela Caldas; de Carvalho, Luis Fernando Andrade; Cury, Verônica Ferreira; Filho, Marcelo Pereira Lima; Perígolo, Graciele; Heringer, Tiago Pires

    2018-04-09

    An outbreak of yellow fever in Brazil made it possible to assess different presentations of disease such as perinatal transmission. A pregnant woman was admitted to hospital with yellow fever symptoms. She was submitted to cesarean section and died due to fulminant hepatitis. On the 6th day the newborn developed liver failure and died 13 days later. Yellow fever PCR was positive for both.

  11. An evaluation of yellow-flowering magnolias and magnolia rootstocks

    USDA-ARS?s Scientific Manuscript database

    Yellow-flowering magnolias were evaluated for flower color, bloom duration and growth rate in USDA Hardiness Zone 6b. Of the thirty selections evaluated, all were reported to have yellow blooms; however, tepal color ranged from light pink with some yellow coloration, to creamy yellow to dark yellow....

  12. Molecular engineering of cyanine dyes to design a panchromatic response in Co-sensitized dye-sensitized solar cells

    DOE PAGES

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...

    2016-04-05

    Cyanines are optically tunable dyes with high molar extinction coefficients, suitable for applications in co-sensitized dye-sensitized solar cells (DSCs); yet, barely thus applied. This might be due to the lack of a rational molecular design strategy that efficiently exploits cyanine properties. This study computationally re-designs these dyes, to broaden their optical absorption spectrum and create dye···TiO 2 binding and co-sensitization functionality. This is achieved via a stepwise molecular engineering approach. Firstly, the structural and optical properties of four parent dyes are experimentally and computationally investigated: 3,3’-diethyloxacarbocyanine iodide, 3,3’-diethylthiacarbocyanine iodide, 3,3’-diethylthiadicarbocyanine iodide and 3,3’-diethylthiatricarbocyanine iodide. Secondly, the molecules are theoretically modifiedmore » and their energetics are analyzed and compared to the parent dyes. A dye···TiO 2 anchoring group (carboxylic or cyanoacrylic acid), absent from the parent dyes, is chemically substituted at different molecular positions to investigate changes in optical absorption. We find that cyanoacrylic acid substitution at the para-quinoidal position affects the absorption wavelength of all parent dyes, with an optimal bathochromic shift of ca. 40 nm. The theoretical lengthening of the polymethine chain is also shown to effect dye absorption. Two molecularly engineered dyes are proposed as promising co-sensitizers. Finally, corresponding dye···TiO 2 adsorption energy calculations corroborate their applicability, demonstrating the potential of cyanine dyes in DSC research.« less

  13. Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in foods.

    PubMed

    Qi, Feifei; Jian, Ningge; Qian, Liangliang; Cao, Weixin; Xu, Qian; Li, Jian

    2017-09-01

    A simple and efficient three-step sample preparation method was developed and optimized for the simultaneous analysis of illegal anionic and cationic dyes (acid orange 7, metanil yellow, auramine-O, and chrysoidine) in food samples. A novel solid-phase extraction (SPE) procedure based on nanofibers mat (NFsM) was proposed after solvent extraction and freeze-salting out purification. The preferred SPE sorbent was selected from five functionalized NFsMs by orthogonal experimental design, and the optimization of SPE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD). Under the optimal conditions, the target analytes could be completely adsorbed by polypyrrole-functionalized polyacrylonitrile NFsM (PPy/PAN NFsM), and the eluent was directly analyzed by high-performance liquid chromatography-diode array detection (HPLC-DAD). The limits of detection (LODs) were between 0.002 and 0.01 mg kg -1 , and satisfactory linearity with correlation coefficients (R > 0.99) for each dye in all samples was achieved. Compared with the Chinese standard method and the published methods, the proposed method was simplified greatly with much lower requirement of sorbent (5.0 mg) and organic solvent (2.8 mL) and higher sample preparation speed (10 min/sample), while higher recovery (83.6-116.5%) and precision (RSDs < 7.1%) were obtained. With this developed method, we have successfully detected illegal ionic dyes in three common representative foods: yellow croaker, soybean products, and chili seasonings. Graphical abstract Schematic representation of the process of the three-step sample preparation.

  14. 21 CFR 137.285 - Degerminated yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...

  15. 21 CFR 137.285 - Degerminated yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...

  16. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  17. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  18. Study of the sensitising potential of various textile dyes using a biphasic murine local lymph node assay.

    PubMed

    Ahuja, V; Platzek, T; Fink, H; Sonnenburg, A; Stahlmann, R

    2010-09-01

    Disperse Blue 35 (10%); and group 4, very weak: Disperse yellow 3 and Disperse Orange 3 (increase at 30% or no increase at 30%). In conclusion, our study shows that the biphasic LLNA protocol was proficient enough to study the sensitisation potential of tested textile dyes and provides data allowing to discriminate them according to their potency.

  19. 17DD yellow fever vaccine

    PubMed Central

    Martins, Reinaldo M.; Maia, Maria de Lourdes S.; Farias, Roberto Henrique G.; Camacho, Luiz Antonio B.; Freire, Marcos S.; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C.; Lima, Sheila Maria B.; Nogueira, Rita Maria R.; Sá, Gloria Regina S.; Hokama, Darcy A.; de Carvalho, Ricardo; Freire, Ricardo Aguiar V.; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-01-01

    Objective: To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Results: Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Methods: Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. Conclusion: In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. International Register ISRCTN 38082350. PMID:23364472

  20. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    PubMed

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  1. Transforming Benzophenoxazine Laser Dyes into Chromophores for Dye-Sensitized Solar Cells: A Molecular Engineering Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schröder, Florian A. Y. N.; Cole, Jacqueline M.; Waddell, Paul G.

    2015-02-03

    The re-functionalization of a series of four well-known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye-sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC-active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a step-wise approach. Firstly, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet (1); Oxazine 170 (2); Nile Blue Amore » (3), Oxazine 750 (4). These reveal structure-property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D-π-A) and intramolecular charge transfer. Secondly, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I-/I3- and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co-sensitizers for DSC applications.« less

  2. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  3. Significant enhancement of yellow-green light emission of ZnO nanorod arrays using Ag island films

    NASA Astrophysics Data System (ADS)

    Lin, Chin-An; Tsai, Dung-Sheng; Chen, Cheng-Ying; He-Hau, Jr.

    2011-03-01

    Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO.Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO. Electronic supplementary information (ESI) available. See DOI: 10.1039/c0nr00732c

  4. Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study.

    PubMed

    Fan, Wenjie; Tan, Dazhi; Deng, Wei-Qiao

    2012-06-04

    A series of metal-free acene-modified triphenylamine dyes (benzene to pentacene, denoted as TPA-AC1 to TPA-AC5) are investigated as organic sensitizers for application in dye-sensitized solar cells (DSSCs). A combination of density functional theory (DFT), density functional tight-binding (DFTB), and time-dependent DFT (TDDFT) approaches is employed. The effects of acene units on the spectra and electrochemical properties of the acene-modified TPA organic dyes are demonstrated. The dye/(TiO(2))(46) anatase nanoparticle systems are also simulated to show the electronic structures at the interface. The results show that from TPA-AC1 to TPA-AC5 with increasing sizes of the acenes, the absorption and fluorescence spectra are systematically broadened and red-shifted, but the oscillator strength and electron injection properties are reduced. The molecular orbital contributions show increasing localization on the bridging acene units from TPA-AC1 to TPA-AC5. From the theoretical examination of some key parameters including free enthalpy related to the electron injection, light-harvesting efficiency, and the shift of semiconductor conduction band, TPA-AC3 with an anthracene moiety demonstrates a balance of the above crucial factors. TPA-AC3 is expected to be a promising dye with desirable energetic and spectroscopic parameters in the DSSC field, which is consistent with recent experimental work. This study is expected to deepen our understanding of TPA-based organic dyes and assist the molecular design of new metal-free dyes for the further optimization of DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Yellow-Poplar Site Index Curves

    Treesearch

    Donald E. Beck

    1962-01-01

    Yellow-poplar (Liriodendron tulipifera L.) occurs naturally throughout the eastern and central United States from southern New England west to Michigan and south to Florida and Louisiana. Because of its wide occurrence, yellow-poplar grows under a variety of climatic, edaphic, and biotic conditions. Combinations of these different environmental...

  7. Efficient quasisolid dye- and quantum-dot-sensitized solar cells using thiolate/disulfide redox couple and CoS counter electrode.

    PubMed

    Meng, Ke; Thampi, K Ravindranathan

    2014-12-10

    For the first time, a quasisolid thiolate/disulfide-based electrolyte was prepared using succinonitrile as a matrix. An optimized configuration of the quasisolid electrolyte contains 5-mercapto-1-methyltetrazole N-tetramethylammonium/disulfide/LiClO4/N-methylbenzimidazole in the molar ratio of 0.8:0.8:0.1:0.1. Dye-sensitized solar cells fabricated using this quasisolid electrolyte, together with N719 dye-sensitized photoelectrode and CoS counter electrode, attained power conversion efficiencies of 4.25% at 1 sun and 6.19% at 0.1 sun illumination intensities. The optimized quasisolid electrolyte, when introduced to quasisolid CdS quantum-dot-sensitized solar cells, exhibited a power conversion efficiency of 0.94%, despite the fact that CdS absorbs only a small fraction of the visible light, unlike dyes. The encouraging results show the potential for the utilization of the quasisolid thiolate/disulfide-based electrolyte in sensitized solar cells.

  8. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  9. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  10. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  11. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  12. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  13. Fatal Yellow Fever in Travelers to Brazil, 2018.

    PubMed

    Hamer, Davidson H; Angelo, Kristina; Caumes, Eric; van Genderen, Perry J J; Florescu, Simin A; Popescu, Corneliu P; Perret, Cecilia; McBride, Angela; Checkley, Anna; Ryan, Jenny; Cetron, Martin; Schlagenhauf, Patricia

    2018-03-23

    Yellow fever virus is a mosquito-borne flavivirus that causes yellow fever, an acute infectious disease that occurs in South America and sub-Saharan Africa. Most patients with yellow fever are asymptomatic, but among the 15% who develop severe illness, the case fatality rate is 20%-60%. Effective live-attenuated virus vaccines are available that protect against yellow fever (1). An outbreak of yellow fever began in Brazil in December 2016; since July 2017, cases in both humans and nonhuman primates have been reported from the states of São Paulo, Minas Gerais, and Rio de Janeiro, including cases occurring near large urban centers in these states (2). On January 16, 2018, the World Health Organization updated yellow fever vaccination recommendations for Brazil to include all persons traveling to or living in Espírito Santo, São Paulo, and Rio de Janeiro states, and certain cities in Bahia state, in addition to areas where vaccination had been recommended before the recent outbreak (3). Since January 2018, 10 travel-related cases of yellow fever, including four deaths, have been reported in international travelers returning from Brazil. None of the 10 travelers had received yellow fever vaccination.

  14. Response characterization of a fiber optic sensor array with dye-coated planar waveguide for detection of volatile organic compounds.

    PubMed

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-07-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  15. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  16. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  17. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  18. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  19. Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis.

    PubMed

    Shearer, Freya M; Longbottom, Joshua; Browne, Annie J; Pigott, David M; Brady, Oliver J; Kraemer, Moritz U G; Marinho, Fatima; Yactayo, Sergio; de Araújo, Valdelaine E M; da Nóbrega, Aglaêr A; Fullman, Nancy; Ray, Sarah E; Mosser, Jonathan F; Stanaway, Jeffrey D; Lim, Stephen S; Reiner, Robert C; Moyes, Catherine L; Hay, Simon I; Golding, Nick

    2018-03-01

    Yellow fever cases are under-reported and the exact distribution of the disease is unknown. An effective vaccine is available but more information is needed about which populations within risk zones should be targeted to implement interventions. Substantial outbreaks of yellow fever in Angola, Democratic Republic of the Congo, and Brazil, coupled with the global expansion of the range of its main urban vector, Aedes aegypti, suggest that yellow fever has the propensity to spread further internationally. The aim of this study was to estimate the disease's contemporary distribution and potential for spread into new areas to help inform optimal control and prevention strategies. We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide. Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016

  20. Laser desorption/ionization mass spectrometry of dye-sensitized solar cells: identification of the dye-electrolyte interaction.

    PubMed

    Ellis, Hanna; Leandri, Valentina; Hagfeldt, Anders; Boschloo, Gerrit; Bergquist, Jonas; Shevchenko, Denys

    2015-05-01

    Dye-sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye-sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization mass spectrometry (LDI-MS). We applied LDI-MS for the study of molecular interactions between a dye and electrolyte on the surface of a TiO2 photoanode. We found that a dye containing polyoxyethylene groups forms complexes with alkali metal cations from the electrolyte, while a dye substituted with alkoxy groups does not. Guanidinium ion forms adducts with neither of the two dyes. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  2. Harmonic generation with an ultra-strongly coupled cavity polariton

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Singer, Kenneth; Liu, Bin; McMaster, Michael

    2017-04-01

    The large dipole density in a new class of glassy organic dyes results in ultrastrong exciton-cavity field coupling leading to polariton splittings of over an eV. We describe the theoretical model and experimental protocol used to understand third harmonic generation (THG) in this system. We quantify the THG enhancement at the polariton branches through its dependence on coupling, cavity-exciton detuning and cavity finesse.

  3. Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants.

    PubMed

    Mbuligwe, Stephen E

    2005-01-01

    In Dar es Salaam City there are more than a thousand tie-and-dye (TAD) small-scale industries (SSIs) that discharge dye-rich wastewater indiscriminately with resultant water pollution. Due to the decentralised nature of the TAD SSIs, coupled with financial constraints facing their operators, control of their pollution needs a simple cost-effective waste treatment technology. Engineered wetland systems (EWSs) constitute such a technology. A pilot scale EWS was evaluated with respect to its effectiveness in treating dye-rich wastewater. The role of wetland plants was assessed through comparing treatment performance efficiencies between an unplanted and vegetated EWS beds. On the whole, it has been demonstrated that the EWS has the potential to effectively treat dye-rich wastewater. Colour, which is the most apparent problem issue with textile wastewater, was reduced by 72-77%. COD was reduced by 68-73%, while sulphate was reduced by 53-59%. The proportionately high COD removal suggests the reduction in colour was accompanied by almost complete degradation of dyes and daughter products. The overall treatment efficiency of the vegetated units was more than twice as high as that of the unplanted bed. On average, the bed vegetated with coco yam plants performed better (7.6%) than the one planted with cattail plants.

  4. The Effects of Phosphonic Acids in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    James, Keith Edward

    Novel methods for the construction of dye-sensitized solar cells (DSSCs) were developed. A thin dense underlayer of TiO2 was applied on fluorine-doped tin oxide (FTO) glass using as a precursor Tyzor AA-105. Subsequently a mesoporous film of P-25 TiO2 was applied by spreading a suspension uniformly over the surface of the underlayer and allowing the plate to slowly dry while resting on a level surface. After sintering at 500° C slides were treated with TCPP as a sensitizing dye and assembled into DSSCs. A novel method was used to seal the cells; strips of ParafilmRTM were used as spacers between the electrodes and to secure the electrodes together. The cells were filled with a redox electrolyte and sealed by dipping into molten paraffin. A series of phosphonic acids and one arsonic acid were employed as coadsorbates in DSSCs. The coadsorbates were found to compete for binding sites, resulting in lower levels of dye adsorption. The resulting loss of photocurrent was not linear with the reduction of dye loading, and in some cases photocurrent and efficiency were higher for cells with lower levels of dye loading. Electrodes were treated with coadsorbates by procedures including pre-adsorption, simultaneous (sim-adsorption), and post-adsorption, using a range of concentrations and treatment times and a variety of solvents. Most cells were tested using an iodide-triiodide based electrolyte (I3I-1) but some cells were tested using electrolytes based on a Co(II)/Co(III) redox couple (CoBpy electrolytes). Phosphonic acid post-adsorbates increased the Voc of cells using CoBpy electrolytes but caused a decrease in the Voc of cells using I3I-1 electrolyte. Phosphonic acids as sim-adsorbates resulted in a significant increase in efficiency and Jsc, and they show promise as a treatment for TCPP DSSCs.

  5. Theoretical Study of Electron Transfer Properties of Squaraine Dyes for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Juwita, Ratna; Tsai, Hui-Hsu Gavin

    2018-01-01

    The environmental issues and high cost of Ru create many scientists to explore cheaper and safer sensitizer as alternative for dye sensitized solar cells (DSCs). Dyes play an important role in solar energy conversion efficiency. The squaraine (SQ) dyes has good spectral match with the solar spectra, therefore, SQ dyes have great potential for the applications in DSCs. SQ01_CA is an unsymmetrical SQ dye, reported by Grätzel and colleagues in 2007, featuring a D-π-spacer-A framework and has a carboxylic acid anchoring group. The electron donating ability of indolium in SQ01_CA and SQ01_CAA dyes is relatively weak, better performance may be achieved by introducing an additional donor moiety into indolium [1]. In this study, we investigate six unsymmetrical SQ dyes adsorbed on a (TiO2)38 cluster [2] using density functional theory (DFT) and time-dependent DFT to study electron transfer properties of squaraine dyes on their photophysical. SQ01_CA, WH-SQ01_CA, and WH-SQ02_CA use a carboxylic acid group as its electron acceptor. Furthermore, SQ01_CAA, WH-SQ01_CAA, and WH-SQ02_CAA use a cyanoacrylic acid group as its electron acceptor. WH-SQ01_CA and WH-SQ01_CAA have an alkyl, while WH-SQ02_CA and WH-SQ02_CAA have alkoxyl substituted diarylamines to the indolium donor of sensitizer SQ01_CA. Our calculations show with additional diarylamines in donor tail of WH-SQ02_CAA, the SQ dyes have red-shifted absorption and have slightly larger probability of electron density transferred to TiO2 moiety. Furthermore, an additional -CN group as electron a withdrawing group in the acceptor exhibits red-shifted absorption and enhances the electron density transferred to TiO2 and anchoring moiety after photo-excitation. The tendency of calculated probabilities of electron density being delocalized into TiO2 and driving force for excited-state electron injection of these studied SQ dyes is compatible with their experimentally observed.

  6. Yield of Unthinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1970-01-01

    Cubic-foot and board-foot yields of unthinned yellow-poplar (Liriodendron Tulipiferi L.) stands are described in relation to stand age, site index, and number of trees per acre. The yield tables are based on analysis of diameter distributions and height-diameter relationships obtained from 141 natural, unthinned yellow-poplar stands in the...

  7. Textile dye decolorization using cyanobacteria.

    PubMed

    Parikh, Amit; Madamwar, Datta

    2005-03-01

    Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.

  8. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor.

    PubMed

    Vallet, Ana; Besson, Michèle; Ovejero, Gabriel; García, Juan

    2012-08-15

    Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550°C. An increase in the reaction temperature (120-180°C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.7 mL min(-1)) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min(-1) and 180°C under 5 MPa air. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Plant Guide: Yellow beeplant (Cleome lutea Hook)

    Treesearch

    Derek Tilley; Jim Cane; Loren St. John; Dan Ogle; Nancy Shaw

    2012-01-01

    Yellow beeplant is a valuable native forage species for bees wasps and butterflies. Over 140 species of native bees have been observed foraging for nectar or pollen on yellow beeplant in southern Utah (Cane, 2008). Yellow beeplant is an annual forb which could provide food to insects in the first growing season of a range seeding (Ogle and others, 2011a). This...

  10. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.; Cobb, Ernest D.; Kilpatrick, F.A.

    1986-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  11. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.

    1968-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  12. Why is my alfalfa yellow?

    USDA-ARS?s Scientific Manuscript database

    In 2016, many parts of the Midwest experienced far wetter than normal summer weather and by August or September, many growers were asking, “Why is my alfalfa yellow?” When all or part of an alfalfa field is yellow, it is a certain sign that something has gone wrong. In this case the problem in most ...

  13. Financial maturity of yellow birch

    Treesearch

    William B. Leak

    1969-01-01

    The methods used to compute financial maturity of yellow birch sawtimber are similar to those used for paper birch sawtimber, except for minor differences in detail. The procedure followed for yellow-birch veneer-log trees was also similar, except that local veneer grades and local veneer-log prices were used as the basis for the financial maturity computations.

  14. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  15. Cross-reactions among hair dye allergens.

    PubMed

    Basketter, David A; English, John

    2009-01-01

    p-Phenylenediamine (PPD) is an important hair dye allergen, but there remains a reasonable suspicion that other hair dye chemicals may also be responsible for a proportion of the clinical burden of hair dye allergy. To assess to what extent presently assessed additional patch test agents contribute to the diagnosis of non-PPD hair dye allergy. A retrospective analysis was conducted of patch test results with hair dye allergens, focusing on the extent to which patients who were positive for allergic reactions to other hair dye allergens also had a concomitant positive reaction to PPD. For the hair dye allergens other than p-toluenediamine (PTD), reactions in the absence of a concomitant positive reaction to PPD were very rare. Positive reactors to PTD were also positive for reactions to PPD in 5 of every 6 cases. Pyrogallol positives often occurred in the absence of a PPD positive, but were never judged to be of clinical relevance. Hair dye chemicals other than PPD may be of importance, but the presently tested materials, with the possible exception of PTD, are normally positive only when a PPD-positive reaction is also present, suggesting that their use in patch testing in hair dye allergy is likely to be of limited value.

  16. Modification on C217 by auxiliary acceptor toward efficient sensitiser for dye-sensitised solar cells: a theoretical study

    NASA Astrophysics Data System (ADS)

    Zhao, Caibin; Jin, Lingxia; Ge, Hongguang; Guo, Xiaohua; Zhang, Qiang; Wang, Wenliang

    2018-02-01

    In this work, to develop efficient organic dye sensitisers, a series of novel donor-acceptor-π-acceptor metal-free dyes were designed based on the C217 dye by means of modifying different auxiliary acceptors, and their photovoltaic performances were theoretically investigated with systematic density functional theory calculations coupled with the incoherent charge-hopping model. Results showed that the designed dyes possess lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels as well as narrower HOMO-LUMO gaps compared to C217, which indicate their higher light-harvesting efficiency. In addition, using the (TiO2)38 cluster and bidentate bridging model, we predicted that the photoelectric conversion efficiency (PCE) for the C217 dye is as high as 9.92% under air mass (AM) 1.5 illumination (100 mW.cm-2), which is in good agreement with its experimental value (9.60%-9.90%). More interestingly, the cell sensitised by the dye 7 designed in this work exhibits a middle-sized open-circuit voltage of 0.737 V, large short-circuit photocurrent density of 21.16 mAˑcm-2 and a fill factor of 0.801, corresponding to a quite high PCE of 12.49%, denoting the dye 7 is a more promising sensitiser candidate than the C217, and is worth further experimental study.

  17. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  18. Viscerotropic disease following yellow fever vaccination in Peru.

    PubMed

    Whittembury, Alvaro; Ramirez, Gladys; Hernández, Herminio; Ropero, Alba Maria; Waterman, Steve; Ticona, María; Brinton, Margo; Uchuya, Jorge; Gershman, Mark; Toledo, Washington; Staples, Erin; Campos, Clarense; Martínez, Mario; Chang, Gwong-Jen J; Cabezas, Cesar; Lanciotti, Robert; Zaki, Sherif; Montgomery, Joel M; Monath, Thomas; Hayes, Edward

    2009-10-09

    Five suspected cases of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) clustered in space and time following a vaccination campaign in Ica, Peru in 2007. All five people received the same lot of 17DD live attenuated yellow fever vaccine before their illness; four of the five died of confirmed YEL-AVD. The surviving case was classified as probable YEL-AVD. Intensive investigation yielded no abnormalities of the implicated vaccine lot and no common risk factors. This is the first described space-time cluster of yellow fever viscerotropic disease involving more than two cases. Mass yellow fever vaccination should be avoided in areas that present extremely low risk of yellow fever.

  19. New energy transfer dyes for DNA sequencing.

    PubMed Central

    Lee, L G; Spurgeon, S L; Heiner, C R; Benson, S C; Rosenblum, B B; Menchen, S M; Graham, R J; Constantinescu, A; Upadhya, K G; Cassel, J M

    1997-01-01

    We have synthesized a set of four energy transfer dyes and demonstrated their use in automated DNA sequencing. The donor dyes are the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein and the acceptor dyes are a novel set of four 4,7-dichloro-substituted rhodamine dyes which have narrower emission spectra than the standard, unsubstituted rhodamines. A rigid amino acid linker, 4-aminomethylbenzoic acid, was used to separate the dyes. The brightness of each dye in an automated sequencing instrument equipped with a dual line argon ion laser (488 and 514 nm excitation) was 2-2.5 times greater than the standard dye-primers with a 2 times reduction in multicomponent noise. The overall improvement in signal-to-noise was 4- to 5-fold. The utility of the new dye set was demonstrated by sequencing of a BAC DNA with an 80 kb insert. Measurement of the extinction coefficients and the relative quantum yields of the dichlororhodamine components of the energy transfer dyes showed their values were reduced by 20-25% compared with the dichlororhodamine dyes alone. PMID:9207029

  20. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  1. [Effect of transparent yellow and orange colored contact lenses on color discrimination in the yellow color range].

    PubMed

    Schürer, M; Walter, A; Brünner, H; Langenbucher, A

    2015-08-01

    Colored transparent filters cause a change in color perception and have an impact on the perceptible amount of different colors and especially on the ability to discriminate between them. Yellow or orange tinted contact lenses worn to enhance contrast vision by reducing or blocking short wavelengths also have an effect on color perception. The impact of the yellow and orange tinted contact lenses Wöhlk SPORT CONTRAST on color discrimination was investigated with the Erlangen colour measurement system in a study with 14 and 16 subjects, respectively. In relation to a yellow reference color located at u' = 0.2487/v' = 0.5433, measurements of color discrimination thresholds were taken in up to 6 different color coordinate axes. Based on these thresholds, color discrimination ellipses were calculated. These results are given in the Derrington, Krauskopf and Lennie (DKL) color system. Both contact lenses caused a shift of the reference color towards higher saturated colors. Color discrimination ability with the yellow and orange colored lenses was significantly enhanced along the blue-yellow axis in comparison to the reference measurements without a tinted filter. Along the red-green axis only the orange lens caused a significant reduction of color discrimination threshold distance to the reference color. Yellow and orange tinted contact lenses enhance the ability of color discrimination. If the transmission spectra and the induced changes are taken into account, these results can also be applied to other filter media, such as blue filter intraocular lenses.

  2. Dyeing regions of oxidative hair dyes in human hair investigated by nanoscale secondary ion mass spectrometry.

    PubMed

    Kojima, Toru; Yamada, Hiromi; Yamamoto, Toshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2013-06-01

    To develop more effective oxidative hair coloring products, it is important to understand the localization of colored chromophores, which are formed from oxidative dyes, in the fine structure of hair. However, the dyeing regions of oxidative hair dyes in the fine structure of hair have not been extensively examined. In this study, we investigated the distribution and localization of colored chromophores formed by an oxidative hair coloring product in the fine structure of human hair by using a stable isotope-labeled oxidative dye with nanoscale secondary ion mass spectrometry (NanoSIMS). First, formation of the colored chromophore from a deuterium-labeled oxidative dye was examined by visible spectra similarly to a study of its formation using nonlabeled oxidative dye. Furthermore, the formation of binuclear indo dye containing deuterium in its chemical structure was confirmed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. As a result of the NanoSIMS image on a cross-sectional dyed hair, although deuterium ions were detected in whole hair cross-section, quite a few of them were detected at particulate regions. These particulate regions of the dyed black hair in which deuterium ions were intensely detected were identified as melanin granules, by comparing the dyeing behaviors of black and white hair. NanoSIMS analysis revealed that melanin granules of black human hair are important dyeing regions in oxidative hair coloring. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James E.; Cobb, Ernest D.; Kilpatrick, Frederick A.

    1984-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The outstanding characteristics of dye tracing are: (1) the low detection and measurement limits, and (2) the simplicity and accuracy of measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a general guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section is included on aerial photography because of its possible use to supplement ground-level fluorometry.

  4. Theoretical structures and binding energies of RNA-RNA/cyanine dyes and spectroscopic properties of cyanine dyes

    NASA Astrophysics Data System (ADS)

    Salaeh, Salsabila; Chong, Wei Lim; Dokmaisrijan, Supaporn; Payaka, Apirak; Yana, Janchai; Nimmanpipug, Piyarat; Lee, Vannajan Sanghiran; Dumri, Kanchana; Anh, Dau Hung

    2014-10-01

    Cyanine dyes have been widely used as a fluorescence probe for biomolecules and protein labeling. The mostly used cyanine dyes for nucleic acids labeling are DiSC2(3), DiSC2(5), and DiSC2(7). The possible structures and binding energies of RNA-RNA/Cyanine dyes were predicted theoretically using AutoDock Vina. The results showed that cyanine dyes and bases of RNA-RNA have the van der Waals and pi-pi interactions. The maximum absorption wavelength in the visible region obtained from the TD-DFT calculations of all cyanine dyes in the absence of the RNA-RNA double strand showed the bathochromic shift.

  5. Minimizing yellow-bellied sapsucker damage

    Treesearch

    Gayne G. Erdmann; Ralph M., Jr. Peterson

    1992-01-01

    The yellow-bellied sapsucker is a migratory woodpecker that feeds on a wide variety of orchard, shade, and forest trees. Instead of drilling holes to find insects like other woodpeckers, sapsuckers drill holes in living trees to feed on sap and phloem tissues. Yellow and paper birches are their favorite summer food sources on their nesting grounds in Upper Michigan and...

  6. Silvical Characteristics of Yellow-Poplar

    Treesearch

    David F. Olson

    1969-01-01

    Yellow-poplar (Liriorlentlron tulipifera L.) is also commonly known as tulip poplar, tulip tree, white-poplar, whitewood, and "poplar" (60). It gets its name from the tulip-like flowers which it bears in the late spring. Because of the excellent form and rapid growth of the tree, plus the fine working qualities of the wood, yellow-poplar is one of the most...

  7. Rational molecular engineering of cyclopentadithiophene-bridged D-A-π-A sensitizers combining high photovoltaic efficiency with rapid dye adsorption

    PubMed Central

    Chai, Qipeng; Li, Wenqin; Liu, Jingchuan; Geng, Zhiyuan; Tian, He; Zhu, Wei-hong

    2015-01-01

    Dye-sensitized solar cell (DSSC) is considered as a feasible route to the clean and renewable energy conversion technique. The commercial application requires further enhancements on photovoltaic efficiency and simplification on the device fabrication. For avoiding the unpreferable trade-off between photocurrent (JSC) and photovoltage (VOC), here we report the molecular engineering and comprehensive photovoltaic characterization of three cyclopentadithiophene-bridged D-A-π-A motif sensitizers with a change in donor group. We make a careful choice on the donor and conjugation bridge for synergistically increasing JSC and VOC. Comparing with the reference dye WS-2, the photovoltaic efficiency with the single component dye of WS-51 increases by 18%, among one of the rare examples in pure metal-free organic dyes exceeding 10% in combination with traditional iodine redox couples. Moreover, WS-51 exhibits several prominent merits on potentially scale-up industrial application: i) facile synthetic route to target molecule, ii) simple dipping procedure without requirement of co-sensitization, and iii) rapid dye adsorption capability. PMID:26066974

  8. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation.

    PubMed

    Li, Mei; Li, Ji-Tai; Sun, Han-Wen

    2008-07-01

    At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution. The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.

  9. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  10. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells

    PubMed Central

    Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang

    2016-01-01

    We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction. PMID:26738698

  11. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoormore » consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.« less

  12. Benzidine Dyes Action Plan

    EPA Pesticide Factsheets

    This Action Plan addresses the use of benzidine-based dyes and benzidine congener-based dyes, both metalized and non-metalized, in products that would result in consumer exposure, such as for use to color textiles.

  13. Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates

    PubMed Central

    2013-01-01

    Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates results in a Rabi splitting reaching 260 meV. Importantly, broad absorption features of nanostars extending over a visible and near-infrared spectral range allowed us to demonstrate double Rabi splitting resulting from the simultaneous coherent coupling between plasmons of the nanostars and excitons of J-aggregates of two different cyanine dyes. PMID:23522305

  14. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    PubMed

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti

    2004-01-01

    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.

  15. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    NASA Astrophysics Data System (ADS)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  16. Step-by-Step Heating of Dye Solution for Efficient Solar Energy Harvesting in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan

    2018-05-01

    A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.

  17. Synthesis of 8-Aryl-O-methylcyanidins and Their Usage for Dye-Sensitized Solar Cell Devices

    PubMed Central

    Kimura, Yuki; Oyama, Kin-ichi; Murata, Yasujiro; Wakamiya, Atsushi; Yoshida, Kumi

    2017-01-01

    Anthocyanins as natural pigments are colorful and environmentally compatible dyes for dye-sensitized solar cells (DSSCs). To increase the efficiency, we designed and synthesized unnatural O-methylflavonols and O-methylcyanidins that possess an aryl group at the 8-position. We synthesized per-O-methylquercetin from quercetin, then using selective demethylation prepared various O-methylquercetins. Using the Suzuki-Miyaura coupling reaction, 8-arylation of per-O-methylquercetin was achieved. Using a LiAlH4 reduction or Clemmensen reduction, these flavonols were transformed to the corresponding cyanidin derivatives in satisfactory yields. Using these dyes, we fabricated DSSCs, and their efficiency was investigated. The efficiency of tetra-O-methylflavonol was 0.31%. However, the introduction of the 8-aryl residue increased the efficiency to 1.04%. In comparison to these flavonols, O-methylcyanidins exhibited a lower efficiency of 0.05% to 0.52%. The introduction of the 8-aryl group into the cyanidin derivatives did not result in a remarkable increase in the efficiency. These phenomena may be due to the poor fit of the HOMO-LUMO level of the dyes to the TiO2 conduction band. PMID:28212330

  18. Synthesis of 8-Aryl-O-methylcyanidins and Their Usage for Dye-Sensitized Solar Cell Devices.

    PubMed

    Kimura, Yuki; Oyama, Kin-Ichi; Murata, Yasujiro; Wakamiya, Atsushi; Yoshida, Kumi

    2017-02-16

    Anthocyanins as natural pigments are colorful and environmentally compatible dyes for dye-sensitized solar cells (DSSCs). To increase the efficiency, we designed and synthesized unnatural O -methylflavonols and O -methylcyanidins that possess an aryl group at the 8-position. We synthesized per - O -methylquercetin from quercetin, then using selective demethylation prepared various O -methylquercetins. Using the Suzuki-Miyaura coupling reaction, 8-arylation of per - O -methylquercetin was achieved. Using a LiAlH₄ reduction or Clemmensen reduction, these flavonols were transformed to the corresponding cyanidin derivatives in satisfactory yields. Using these dyes, we fabricated DSSCs, and their efficiency was investigated. The efficiency of tetra - O -methylflavonol was 0.31%. However, the introduction of the 8-aryl residue increased the efficiency to 1.04%. In comparison to these flavonols, O -methylcyanidins exhibited a lower efficiency of 0.05% to 0.52%. The introduction of the 8-aryl group into the cyanidin derivatives did not result in a remarkable increase in the efficiency. These phenomena may be due to the poor fit of the HOMO-LUMO level of the dyes to the TiO₂ conduction band.

  19. Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular Structure.

    PubMed

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.

  20. Influence of styryl dyes on blood erythrocytes

    NASA Astrophysics Data System (ADS)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  1. Dye sensitized solar cell (DSSC) with natural dyes extracted from Jatropha leaves and purple Chrysanthemum flowers as sensitizer

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Satriani, Wilda; Gareso, P. L.; Abdullah, B.

    2018-03-01

    DSSC (Dye-Sensitized Solar Cell) prototype has been investigated using Jatropha leaves and purple Chrysanthemum flowers as natural dyes. DSSC consists of working electrode and counter electrode. A working electrode composed of semiconductor nanoparticles TiO2 that has been coated with dye molecules. Dye molecules serve as light photon catchers, while semiconductor nanoparticles TiO2 function to absorb and forward photons into electrons. In the electrode counter given catalyst carbon, serves to accelerate the reaction kinetics of triiodide reduction process on transparent conductive oxide (TCO). DSSC using TiO2 as a semiconductor material and natural dyes as sensitizer from Jatropha leaves and purple Chrysanthemum flowers are successful produced. The physical properties of the working electrode have been determined by using XRD and the chemical properties of the TiO2 powder and dye powder using FTIR and dye solution using UV-Vis. The resulted fabrications are also examined its I-V characteristics. The best performance is generated by mixed dye 1.91 x 10-3 % compared than those DSSC for dye extracted from Jatropha leaves or purple Chrysanthemum. The characterization results show that the higher of the absorption wavelength of the DSSC efficiency is high.

  2. Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis.

    PubMed

    Holland, Ashling

    2018-01-01

    Comparative tissue proteomics aims to analyze alterations of the proteome in response to a stimulus. Two-dimensional difference gel electrophoresis (2D-DIGE) is a modified and advanced form of 2D gel electrophoresis. DIGE is a powerful biochemical method that compares two or three protein samples on the same analytical gel, and can be used to establish differentially expressed protein levels between healthy normal and diseased pathological tissue sample groups. Minimal DIGE labeling can be used via a 2-dye system with Cy3 and Cy5 or a 3-dye system with Cy2, Cy3, and Cy5 to fluorescently label samples with CyDye flours pre-electrophoresis. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization. This form of quantitative high-resolution proteomics facilitates the comparative analysis and evaluation of tissue protein compositions. Comparing tissue groups under different conditions is crucially important for advancing the biomedical field by characterization of cellular processes, understanding pathophysiological development and tissue biomarker discovery. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of 2-dye and 3-dye DIGE minimal labeling.

  3. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the newmore » dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.« less

  4. Dermatology Internet Yellow Page advertising.

    PubMed

    Francis, Shayla; Kozak, Katarzyna Z; Heilig, Lauren; Lundahl, Kristy; Bowland, Terri; Hester, Eric; Best, Arthur; Dellavalle, Robert P

    2006-07-01

    Patients may use Internet Yellow Pages to help select a physician. We sought to describe dermatology Internet Yellow Page advertising. Dermatology advertisements in Colorado, California, New York, and Texas at 3 Yellow Page World Wide Web sites were systematically examined. Most advertisements (76%; 223/292) listed only one provider, 56 listed more than one provider, and 13 listed no practitioner names. Five advertisements listed provider names without any credentialing letters, 265 listed at least one doctor of medicine or osteopathy, and 9 listed only providers with other credentials (6 doctors of podiatric medicine and 3 registered nurses). Most advertisements (61%; 179/292) listed a doctor of medicine or osteopathy claiming board certification, 78% (139/179) in dermatology and 22% (40/179) in other medical specialties. Four (1%; 4/292) claims of board certification could not be verified (one each in dermatology, family practice, dermatologic/cosmetologic surgery, and laser surgery). Board certification could be verified for most doctors of medicine and osteopathy not advertising claims of board certification (68%; 41/60; 32 dermatology, 9 other specialties). A total of 50 advertisements (17%) contained unverifiable or no board certification information, and 47 (16%) listed a physician with verifiable board certification in a field other than dermatology. All Internet Yellow Page World Wide Web sites and all US states were not examined. Nonphysicians, physicians board certified in medical specialties other than dermatology, and individuals without verifiable board certification in any medical specialty are advertising in dermatology Internet Yellow Pages. Many board-certified dermatologists are not advertising this certification.

  5. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  6. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  7. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  8. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  9. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  10. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications.

    PubMed

    Klymchenko, Andrey S

    2017-02-21

    , aptamers and receptors. The emerging concepts to achieve fluorogenic response to the microenvironment include ground-state isomerization, aggregation-caused quenching, and aggregation-induced emission. The ground-state isomerization exploits, for instance, polarity-dependent spiro-lactone formation in silica-rhodamines. The aggregation-caused quenching uses disruption of the self-quenched dimers and nanoassemblies of dyes in less polar environments of lipid membranes and biomolecules. The aggregation-induced emission couples target recognition with formation of highly fluorescent dye aggregates. Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging. Further development of fluorescent environment-sensitive probes should address some remaining problems: (i) improving their optical properties, especially brightness, photostability, and far-red to near-infrared operating range; (ii) minimizing nonspecific interactions of the probes in biological systems; (iii) their adaptation for advanced microscopies, notably for superresolution and in vivo imaging.

  11. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Treesearch

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  12. Novel energy relay dyes for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon

    2015-02-01

    4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342

  13. Yellow fever: the recurring plague.

    PubMed

    Tomori, Oyewale

    2004-01-01

    Despite the availability of a safe and efficacious vaccine, yellow fever (YF) remains a disease of significant public health importance, with an estimated 200,000 cases and 30,000 deaths annually. The disease is endemic in tropical regions of Africa and South America; nearly 90% of YF cases and deaths occur in Africa. It is a significant hazard to unvaccinated travelers to these endemic areas. Virus transmission occurs between humans, mosquitoes, and monkeys. The mosquito, the true reservoir of YF, is infected throughout its life, and can transmit the virus transovarially through infected eggs. Man and monkeys, on the other hand, play the role of temporary amplifiers of the virus available for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean, the Middle East, Asia, Australia, and Oceania. It is an acute infectious disease characterized by sudden onset with a two-phase development, separated by a short period of remission. The clinical spectrum of yellow fever varies from very mild, nonspecific, febrile illness to a fulminating, sometimes fatal disease with pathognomic features. In severe cases, jaundice, bleeding diathesis, with hepatorenal involvement are common. The case fatality rate of severe yellow fever is 50% or higher. The pathogenesis and pathophysiology of the disease are poorly understood and have not been the subject of modern clinical research. There is no specific treatment for YF, making the management of YF patients extremely problematic. YF is a zoonotic disease that cannot be eradicated, therefore instituting preventive vaccination through routine childhood vaccination in endemic countries, can significantly reduce the burden of the disease. The distinctive properties of lifelong immunity after a single dose of yellow fever vaccination are the

  14. Feasibility of solar-pumped dye lasers

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  15. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik, E-mail: youngkim@hongik.ac.kr

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dyemore » as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.« less

  16. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography - photodiode array - electrospray ionisation mass spectrometer.

    PubMed

    Han, Jing; Wanrooij, Jantien; van Bommel, Maarten; Quye, Anita

    2017-01-06

    This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI-MS) to the chemical characterisation of common textile dyes in ancient China. Three different extraction methods, respectively involving dimethyl sulfoxide (DMSO)-oxalic acid, DMSO and hydrochloric acid, are unprecedentedly applied together to achieve an in-depth understanding of the chemical composition of these dyes. The first LC-PDA-MS database of the chemical composition of common dyes in ancient China has been established. The phenomena of esterification and isomerisation of the dye constituents of gallnut, gardenia and saffron, and the dye composition of acorn cup dyed silk are clarified for the first time. 6-Hydroxyrubiadin and its glycosides are first reported on a dyed sample with Rubia cordifolia from China. UHPLC-PDA-ESI-MS with a C18 BEH shield column shows significant advantages in the separation and identification of similar dye constituents, particularly in the cases of analysing pagoda bud and turmeric dyed sample extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Continuous-wave organic dye lasers and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuouslymore » so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.« less

  18. Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System

    NASA Astrophysics Data System (ADS)

    You, S.; Park, S.; Seo, J.; Kim, K.

    2008-12-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the

  19. The dye-sensitized solar cell database.

    PubMed

    Venkatraman, Vishwesh; Raju, Rajesh; Oikonomopoulos, Solon P; Alsberg, Bjørn K

    2018-04-03

    Dye-sensitized solar cells (DSSCs) have garnered a lot of attention in recent years. The solar energy to power conversion efficiency of a DSSC is influenced by various components of the cell such as the dye, electrolyte, electrodes and additives among others leading to varying experimental configurations. A large number of metal-based and metal-free dye sensitizers have now been reported and tools using such data to indicate new directions for design and development are on the rise. DSSCDB, the first of its kind dye-sensitized solar cell database, aims to provide users with up-to-date information from publications on the molecular structures of the dyes, experimental details and reported measurements (efficiencies and spectral properties) and thereby facilitate a comprehensive and critical evaluation of the data. Currently, the DSSCDB contains over 4000 experimental observations spanning multiple dye classes such as triphenylamines, carbazoles, coumarins, phenothiazines, ruthenium and porphyrins. The DSSCDB offers a web-based, comprehensive source of property data for dye sensitized solar cells. Access to the database is available through the following URL: www.dyedb.com .

  20. Influence of the Yellow Sea Warm Current on phytoplankton community in the central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Chiang, Kuo-Ping; Liu, Su-Mei; Wei, Hao; Zhao, Yuan; Huang, Bang-Qin

    2015-12-01

    In early spring, a hydrological front emerges in the central Yellow Sea, resulting from the intrusion of the high temperature and salinity Yellow Sea Warm Current (YSWC). The present study, applying phytoplankton pigments and flow cytometry measurements in March of 2007 and 2009, focuses on the biogeochemical effects of the YSWC. The nutrients fronts were coincident with the hydrological front, and a positive linear relationship between nitrate and salinity was found in the frontal area. This contrast with the common situation of coastal waters where high salinity values usually correlate with poor nutrients. We suggested nutrient concentrations of the YSWC waters might have been enhanced by mixing with the local nutrient-rich waters when it invaded the Yellow Sea from the north of the Changjiang estuary. In addition, our results indicate that the relative abundance of diatoms ranged from 26% to 90%, showing a higher value in the YSCC than in YSWC waters. Similar distributions were found between diatoms and dinoflagellates, however the cyanobacteria and prasinophytes showed an opposite distribution pattern. Good correlations were found between the pigments and flow cytometry observations on the picophytoplankton groups. Prasinophytes might be the major contributor to pico-eukaryotes in the central Yellow Sea as similar distributional patterns and significant correlations between them. It seems that the front separates the YSWC from the coastal water, and different phytoplankton groups are transported in these water masses and follow their movement. These results imply that the YSWC plays important roles in the distribution of nutrients, phytoplankton biomass and also in the community structure of the central Yellow Sea.

  1. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing.

    PubMed

    Abraham, Baxter; Fan, Hao; Galoppini, Elena; Gundlach, Lars

    2018-03-01

    Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO 2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.

  2. Optimization strategies for a fluorescent dye with bimodal excitation spectra: application to semiautomated proteomics

    NASA Astrophysics Data System (ADS)

    Patton, Wayne F.; Berggren, Kiera N.; Lopez, Mary F.

    2001-04-01

    Facilities engaged in proteome analysis differ significantly in the degree that they implement automated systems for high-throughput protein characterization. Though automated workstation environments are becoming more routine in the biotechnology and pharmaceutical sectors of industry, university-based laboratories often perform these tasks manually, submitting protein spots excised from polyacrylamide gels to institutional core facilities for identification. For broad compatibility with imaging platforms, an optimized fluorescent dye developed for proteomics applications should be designed taking into account that laser scanners use visible light excitation and that charge-coupled device camera systems and gas discharge transilluminators rely upon UV excitation. The luminescent ruthenium metal complex, SYPRO Ruby protein gel stain, is compatible with a variety of excitation sources since it displays intense UV (280 nm) and visible (470 nm) absorption maxima. Localization is achieved by noncovalent, electrostatic and hydrophobic binding of dye to proteins, with signal being detected at 610 nm. Since proteins are not covalently modified by the dye, compatibility with downstream microchemical characterization techniques such as matrix-assisted laser desorption/ionization-mass spectrometry is assured. Protocols have been devised for optimizing fluorophore intensity. SYPRO Ruby dye outperforms alternatives such as silver staining in terms of quantitative capabilities, compatibility with mass spectrometry and ease of integration into automated work environments.

  3. Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture

    PubMed Central

    Weng, Nan; Wang, Feng; Qin, Fengxiang; Tang, Wanying; Dan, Zhenhua

    2017-01-01

    Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol−1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders. PMID:28846622

  4. Metal-enhanced fluorescence of dye-doped silica nano particles.

    PubMed

    Gunawardana, Kalani B; Green, Nathaniel S; Bumm, Lloyd A; Halterman, Ronald L

    2015-03-01

    Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.

  5. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66 gallons...

  6. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66 gallons...

  7. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...

  8. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...

  9. Assessment of PM10 enhancement by yellow sand on the air quality of Taipei, Taiwan in 2001.

    PubMed

    Chang, Shuenn-Chin; Lee, Chung-Te

    2007-09-01

    The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM(10) during yellow sand periods. In order to estimate PM(10) enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM(10) level was high, and the CO and NOx levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM(10) levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM(10) enhancement during the YS periods is then calculated by subtracting the simulated PM(10) from the observed PM(10) levels. Based on our calculations, the PM(10) enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM(10) were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM(10) enhancement caused by yellow sand.

  10. Synthesis of nano silver on cellulosic denim fabric producing yellow colored garment with antibacterial properties.

    PubMed

    Maryan, Ali Sadeghian; Montazer, Majid; Harifi, Tina

    2015-01-22

    In this study, an aged-look denim fabric with antibacterial property was prepared in one single step process. For this purpose, the simultaneous antibacterial finishing and discoloration of denim fabric was carried out through reduction of indigo dye and silver nitrate by glucose in alkaline media using a conventional garment washing machine. The uniform distribution of silver nanoparticles on the fiber surface was confirmed by scanning electron microscope and energy dispersive X-ray spectroscopy. The treated fabrics were also characterized by X-ray diffraction (XRD) and Raman spectroscopy. Due to the color changes during the process, the color coordinates of the treated samples were also measured. Findings suggest the potential of the proposed method in producing old-look denim fabric with desirable yellow appearance and reasonable antibacterial activity against Staphylococcus aureus and Escherichia coli with low toxicity for human. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microencapsulated Fluorescent Dye Penetrant.

    DTIC Science & Technology

    1979-07-01

    Microencapsulated fluorescent dye pentrant materials were evaluated for feasibility as a technique to detect cracks on metal surfaces when applied as...a free flowing dry powder. Various flourescent dye solutions in addition to a commercial penetrant (Zyglo ZL-30) were microencapsulated and tested on

  12. High-throughput screening of dye-ligands for chromatography.

    PubMed

    Kumar, Sunil; Punekar, Narayan S

    2014-01-01

    Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.

  13. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules.

    PubMed

    Mishra, Amaresh; Fischer, Markus K R; Bäuerle, Peter

    2009-01-01

    Dye-sensitized solar cells (DSSC) have attracted considerable attention in recent years as they offer the possibility of low-cost conversion of photovoltaic energy. This Review focuses on recent advances in molecular design and technological aspects of metal-free organic dyes for applications in dye-sensitized solar cells. Special attention has been paid to the design principles of these dyes and on the effect of various electrolyte systems. Cosensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device. In addition, we report on inverted dyes for photocathodes, which constitutes a relatively new approach for the production of tandem cells. Special consideration has been paid to the correlation between the molecular structure and physical properties to their performance in DSSCs.

  14. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  15. Yellow Fever Outbreak, Southern Sudan, 2003

    PubMed Central

    Onyango, Clayton O.; Grobbelaar, Antoinette A.; Gibson, Georgina V.F.; Sang, Rosemary C.; Sow, Abdourahmane; Swanepoel, Robert

    2004-01-01

    In May 2003, an outbreak of fatal hemorrhagic fever, caused by yellow fever virus, occurred in southern Sudan. Phylogenetic analysis showed that the virus belonged to the East African genotype, which supports the contention that yellow fever is endemic in East Africa with the potential to cause large outbreaks in humans. PMID:15498174

  16. Various Measures of the Effectiveness of Yellow Goggles

    DTIC Science & Technology

    1980-10-08

    technique which is widely used r.o improve vision under these conditions is the use of yellow goggles. Skiers commonly don yellow goggles...different laboratory studies are presented. Two of the studies were of depth perception, since skiers believe that yellow goggles help them...selected for measurement because of practical considerations and theoretical implications. EXPERIMENTS ON DEPTH PERCEPTION Background Since skiers

  17. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    PubMed

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  18. Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins—A convenient way to eliminate dye migration and leaching

    PubMed Central

    Koren, Klaus; Borisov, Sergey M.; Klimant, Ingo

    2012-01-01

    Nucleophilic substitution of the labile para-fluorine atoms of 2,3,4,5,6-pentafluorophenyl groups enables a click-based covalent linkage of an oxygen indicator (platinum(II) or palladium(II) 5,10,15,20-meso-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin) to the sensor matrix. Copolymers of styrene and pentafluorostyrene are chosen as polymeric materials. Depending on the reaction conditions either soluble sensor materials or cross-linked microparticles are obtained. Additionally, we prepared Ormosil-based sensors with linked indicator, which showed very high sensitivity toward oxygen. The effect of covalent coupling on sensor characteristics, stability and photophysical properties is studied. It is demonstrated that leaching and migration of the dye are eliminated in the new materials but excellent photophysical properties of the indicators are preserved. PMID:23576845

  19. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells.

    PubMed

    Weidelener, Martin; Powar, Satvasheel; Kast, Hannelore; Yu, Ze; Boix, Pablo P; Li, Chen; Müllen, Klaus; Geiger, Thomas; Kuster, Simon; Nüesch, Frank; Bach, Udo; Mishra, Amaresh; Bäuerle, Peter

    2014-11-01

    Four new donor-π-acceptor dyes differing in their acceptor group have been synthesized and employed as model systems to study the influence of the acceptor groups on the photophysical properties and in NiO-based p-type dye-sensitized solar cells. UV/Vis absorption spectra showed a broad range of absorption coverage with maxima between 331 and 653 nm. Redox potentials as well as HOMO and LUMO energies of the dyes were determined from cyclic voltammetry measurements and evaluated concerning their potential use as sensitizers in p-type dye-sensitized solar cells (p-DSCs). Quantum-chemical density functional theory calculations gave further insight into the frontier orbital distributions, which are relevant for the electronic processes in p-DSCs. In p-DSCs using an iodide/triiodide-based electrolyte, the polycyclic 9,10-dicyano-acenaphtho[1,2-b]quinoxaline (DCANQ) acceptor-containing dye gave the highest power conversion efficiency of 0.08%, which is comparable to that obtained with the perylenemonoimide (PMI)-containing dye. Interestingly, devices containing the DCANQ-based dye achieve a higher V(OC) of 163 mV compared to 158 mV for the PMI-containing dye. The result was further confirmed by impedance spectroscopic analysis showing higher recombination resistance and thus a lower recombination rate for devices containing the DCANQ dye than for PMI dye-based devices. However, the use of the strong electron-accepting tricyanofurane (TCF) group played a negative role in the device performance, yielding an efficiency of only 0.01% due to a low-lying LUMO energy level, thus resulting in an insufficient driving force for efficient dye regeneration. The results demonstrate that a careful molecular design with a proper choice of the acceptor unit is essential for development of sensitizers for p-DSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  1. Visible to near infra red absorption in natural dye (Mondo Grass Berry) for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.

    2012-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.

  2. Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes.

    PubMed

    Fan, Suhua; Lu, Xuefeng; Sun, Hong; Zhou, Gang; Chang, Yuan Jay; Wang, Zhong-Sheng

    2016-01-14

    To obtain a broad spectral response in the visible region, TiO2 film is co-sensitized with a porphyrin dye (FNE57 or FNE59) and an organic dye (FNE46). It is found that the stepwise co-sensitization in one single dye solution followed by in another single dye solution is better than the co-sensitization in a cocktail solution in terms of photovoltaic performance. The stepwise co-sensitization first with a porphyrin dye and then with an organic dye outperforms that in a reverse order. DSSC devices based on co-sensitizers FNE57 + FNE46 and FNE59 + FNE46 with a quasi-solid-state gel electrolyte generate power conversion efficiencies of 7.88% and 8.14%, respectively, which exhibits remarkable efficiency improvements of 61% and 35%, as compared with devices sensitized with the porphyrin dyes FNE57 and FNE59, respectively. Co-sensitization brings about a much improved short-circuit photocurrent due to the complementary absorption of the two sensitizers. The observed enhancement of incident monochromatic photon-to-electron conversion efficiency from individual dye sensitization to co-sensitization is attributed to the improved charge collection efficiency rather than to the light harvesting efficiency. Interestingly, the open-circuit photovoltage for the co-sensitization system comes between the higher voltage for the porphyrin dye (FNE57 or FNE59) and the lower voltage for the organic dye (FNE46), which is well correlated with their electron lifetimes. This finding indicates that not only the spectral complementation but also the electron lifetime should be considered to select dyes for co-sensitization.

  3. Quantitative comparison of airborne remote-sensed and in situ Rhodamine WT dye and temperature during RIVET & IB09

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Clark, D. B.; Guza, R. T.; Hally-Rosendahl, K.; Statom, N.; Feddersen, F.

    2012-12-01

    The transport and evolution of temperature, sediment, chlorophyll, fluorescent dye, and other tracers is of significant oceanographic interest, particularly in complex coastal environments such as the nearshore, river mouths, and tidal inlets. Remote sensing improves spatial coverage over in situ observations, and ground truthing remote sensed observations is critical for its use. Here, we present remotely sensed observations of Rhodamine WT dye and Sea Surface Temperature (SST) using the SIO Modular Aerial Sensing System (MASS) and compare them with in situ observations from the IB09 (0-300 m seaward of the surfzone, Imperial Beach, CA, October 2009) and RIVET (New River Inlet, NC, May 2012) field experiments. Dye concentrations are estimated from a unique multispectral camera system that measures the emission and absorption wavelengths of Rhodamine WT dye. During RIVET, dye is also characterized using a pushbroom hyperspectral imaging system (SPECIM AISAEagle VNIR 400-990 nm) while SST is estimated using a long-wave infrared camera (FLIR SC6000HS) coupled with an infrared pyrometer (Heitronics KT19.85II). Repeated flight passes over the dye plume were conducted approximately every 5 min for up to 4.5 hr in duration with a swath width ranging from 400 to 2000 m (altitude dependent), and provided a unique spatio-temporal depiction of the plume. A dye proxy is developed using the measured radiance at the emission and absorption wavelengths of the Rhodamine WT dye. During IB09 and RIVET, in situ dye and temperature were measured with two GPS-tracked jet skis, a small boat, and moored observations. The in situ observations are compared with the remotely sensed data in these two complex coastal environments. Funding was provided by the Office of Naval Research.

  4. [Application of natural plant pigment in hair dyes].

    PubMed

    Hu, Yu-Li; Luo, Jiao-Yang; Zhao, Hong-Zheng; Zhang, Shan-Shan; Yang, Shi-Hai; Yang, Mei-Hua

    2016-09-01

    With the development of living condition, more and more people tend to show unique personality, thus hair dyes as hair cosmetics are highly favored. By the year 2012, the global sales of hair dye had exceeded $15 billion, with a sustained growth at a rate of 8%-10% annually. However, the harm caused by long-term use of hair dyes has aroused widespread public concern, so people begin to seek non-toxic or low toxic natural plant hair dyes. The types of commonly used hair dyes and the corresponding dyeing mechanisms were summarized in this manuscript, and the representative natural botanic dyes were listed. Thereafter, their effective fractions, constituents and application status were described. In addition, the values of botanic hair dyes and their broad market prospect were discussed. Finally, the problems that exist in the research and development of plant hair dyes were issued. This review may help to provide thought for developing novel, green and ecological natural plant hair dyes. Copyright© by the Chinese Pharmaceutical Association.

  5. New dye-labeled terminators for improved DNA sequencing patterns.

    PubMed Central

    Rosenblum, B B; Lee, L G; Spurgeon, S L; Khan, S H; Menchen, S M; Heiner, C R; Chen, S M

    1997-01-01

    We have used two new dye sets for automated dye-labeled terminator DNA sequencing. One set consists of four, 4,7-dichlororhodamine dyes (d-rhodamines). The second set consists of energy-transfer dyes that use the 5-carboxy-d-rhodamine dyes as acceptor dyes and the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein as the donor dye. Both dye sets utilize a new linker between the dye and the nucleotide, and both provide more even peak heights in terminator sequencing than the dye-terminators consisting of unsubstituted rhodamine dyes. The unsubstituted rhodamine terminators produced electropherograms in which weak G peaks are observed after A peaks and occasionally C peaks. The number of weak G peaks has been reduced or eliminated with the new dye terminators. The general improvement in peak evenness improves accuracy for the automated base-calling software. The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA. PMID:9358158

  6. Dimension yields from yellow-poplar lumber

    Treesearch

    R. C. Gilmore; J. D. Danielson

    1984-01-01

    The available supply of yellow poplar (Liriodendron tulipifera L.), its potential for new uses, and its continuing importance to the furniture industry have created a need to accumulate additional information about this species. As an aid to better utilization of this species, charts for determining cutting stock yields from yellow poplar lumber are presented for each...

  7. The complete nucleotide sequence of the Barley yellow dwarf virus-RMV genome reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    USDA-ARS?s Scientific Manuscript database

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All ...

  8. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  9. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  10. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  11. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  12. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  13. THE TRANSMISSION OF YELLOW FEVER

    PubMed Central

    Davis, Nelson C.

    1930-01-01

    1. Saimiri sciureus has been infected with yellow fever virus, both by the inoculation of infectious blood and by the bites of infective mosquitoes. Some of the monkeys have died, showing lesions, including hepatic necrosis, suggesting yellow fever as seen in human beings and in rhesus monkeys. Virus has been transferred back to M. rhesus from infected Saimiri both by blood inoculation and by mosquito bites. The virus undoubtedly has been maintained through four direct passages in Saimiri. Reinoculations of infectious material into recovered monkeys have not given rise to invasion of the blood stream by virus. Sera from recovered animals have protected M. rhesus against the inoculation of virus. 2. It has been possible to pass the virus to and from Ateleus ater by the injection of blood or liver and by the bites of mosquitoes. The livers from two infected animals have shown no necrosis. The serum from one recovered monkey proved to be protective for M. rhesus. 3. Only three out of twelve Lagothrix lagotricha have reacted to yellow fever virus by a rise in temperature. Probably none have died as a result of the infection. In only one instance has the virus been transferred back to M. rhesus. The sera of recovered animals have had a protective action against yellow fever virus. PMID:19869721

  14. Effect of composition of chlorophyll and ruthenium dyes mixture (hybrid) on the dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2018-03-01

    The fabrication of dye-sensitized solar cell (DSSC) has been conducted by varying the composition of natural dye from moss chlorophyll (Bryophyte) and synthesis dye from ruthenium complex N719. The sandwich structure of DSSC consists of the working electrode using TiO2, dye, electrolyte, and counter electrode using carbon. The composition of chlorophyll and synthesis dyes mixture were 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80%. The UV-Vis absorption spectra of moss chlorophyll showed the first peak in the wavelength range of 450-500 nm and the second peak at wavelength of 650-700 nm. The peak value of absorbance at wavelengths of 450-500 nm was 6.1004 and at wavelengths of 650-700 nm was 3.5835. The IPCE characteristic curves showed the absorption peak of photon for DSSCs occurred at wavelength of 550-650 nm. It considered that photon in this wavelength can contribute dominantly to produce the optimum electrons. The I-V characteristics of DSSCs with composition of chlorophyll and synthesis dyes mixture of 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80% resulted the efficiency of 0.0022; 0.0194; 0.0239; 0.0342; and 0.0414, respectively. It suggested that the addition of a little composition of the ruthenium complex dye into moss chlorophyll dye can increase the efficiency significantly.

  15. [Rapid screening and identification of 22 allergenic disperse dyes in ecological textiles by high performance liquid chromatography-linear ion trap/orbitrap mass spectrometry].

    PubMed

    Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Xiu, Xiaoli; Zhang, Li; Wang, Xin; Chen, Jing

    2015-10-01

    A rapid screening method based on high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) for 22 disperse dyes in ecological textiles has been established. The target compounds were extracted by pyridine/water (1:1, v/v) by shaking extraction in 90 degrees C water bath. The extracts were then separated by a CAPCELL PAK C18 column (100 mm x 2.0 mm, 5 μm) using gradient elution with acetonitrile-5 mmol/L ammonium acetate containing 0.01% (v/v) formic acid as mobile phases, and finally analyzed by HPLC-LTQ/Orbitrap in positive and negative ESI modes. The retention time and accurate mass of parent ion were used for fast screening of 22 disperse dyes, while the confirmatory analysis was obtained by fragments generated by collision-induced dissociation (CID) MS/MS. Target analysis exhibited high mass accuracy (< 5 x 10(-6)). Each target showed a good linearity in its own concentration range and the correlation coefficient was higher than 0.99. The LOQs were 0.125-2.5 mg/kg. Except for Disperse Yellow 49, the average recoveries of most disperse dyes at three spiked levels were 65%-120%, and the relative standard deviations (n = 6) were less than 15%. The method was applied for screening 40 different kinds of textiles, and Disperse Orange 37/76 was detected in one of them. With high selectivity and strong anti-jamming ability, this method is simple, rapid, accurate, and it can be used for the inspection of disperse dyes in textiles.

  16. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    PubMed Central

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  17. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  18. Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination

    NASA Astrophysics Data System (ADS)

    Saxena, Vibha; Aswal, D. K.

    2015-06-01

    In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using

  19. Yellow Fever Vaccine

    MedlinePlus

    ... way to prevent yellow fever is to avoid mosquito bites by:staying in well-screened or air-conditioned areas, wearing clothes that cover most of your body, using an effective insect repellent, such as those containing DEET.

  20. Analysis of cytotoxicity and genotoxicity on E. coli, human blood cells and Allium cepa suggests a greater toxic potential of hair dye.

    PubMed

    Maiti, Swati; Sasmal, Kankaayan; Sinha, Sudarson Sekhar; Singh, Mukesh

    2016-02-01

    Pharmaceuticals and personal care products (PPCPs) are among the most important emerging environmental contaminants in recent time. PPCPs include wide range of cosmetics, among which hair dyes, are immensely popular in modern society. However, impact of hair dye and its residual discharged to the environment in relation to human health and ecological imbalance have not been widely studied. Based on the result of initial survey among the group of populations of eastern India, three most popular and commonly used permanent hair dyes are selected. Working sample of dye is prepared as recommended on the instructions booklet of the hair dye. The effect of three dyes is studied on Escherichia coli, human red blood cells (RBC), white blood cells (WBC) and Allium cepa bulbs by growth inhibition, hemolysis, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and A. cepa micronuclei assays respectively. The Lethal dose (LD) demonstrated significant differences among three dyes and the model systems. In vitro hemolytic assays performed on RBC, and MTT assays on WBC show the cytotoxic effects of hair dye. Significant growth inhibition of E. coli has also been noted. In addition, the root tips of A. cepa treated with the dye have shown major chromosomal abnormalities coupled with cell division retardation. Here low mitotic index confirm cell division retardation. Finally, results of in vitro studies of dye-DNA interactions demonstrate electrostatic interaction. Combing all these results it confirms that hair dyes are cytotoxic and may cause mutagenic effect on living cells irrespective of microbes, plant and animal system. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Determination of synthetic food dyes in commercial soft drinks by TLC and ion-pair HPLC.

    PubMed

    de Andrade, Francisca Ivani; Florindo Guedes, Maria Izabel; Pinto Vieira, Ícaro Gusmão; Pereira Mendes, Francisca Noélia; Salmito Rodrigues, Paula Alves; Costa Maia, Carla Soraya; Marques Ávila, Maria Marlene; de Matos Ribeiro, Luzara

    2014-08-15

    Synthetic food colourings were analyzed on commercial carbonated orange and grape soft drinks produced in Ceará State, Brazil. Tartrazine (E102), Amaranth (E123), Sunset Yellow (E110) and Brilliant Blue (E133) were extracted from soft drinks using C18 SPE and identified by thin layer chromatography (TLC), this method was used to confirm the composition of food colouring in soft drinks stated on label. The concentration of food colouring in soft drink was determined by ion-pair high performance liquid chromatography with photodiode array detection. The results obtained with the samples confirm that the identification and quantification methods are recommended for quality control of the synthetic colours in soft drinks, as well as to determine whether the levels and lables complies with the recommendations of food dyes legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  3. Hair cosmetics: dyes.

    PubMed

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  4. Yellow fever cases in Asia: primed for an epidemic.

    PubMed

    Wasserman, Sean; Tambyah, Paul Anantharajah; Lim, Poh Lian

    2016-07-01

    There is currently an emerging outbreak of yellow fever in Angola. Cases in infected travellers have been reported in a number of other African countries, as well as in China, representing the first ever documented cases of yellow fever in Asia. There is a large Chinese workforce in Angola, many of whom may be unvaccinated, increasing the risk of ongoing importation of yellow fever into Asia via busy commercial airline routes. Large parts of the region are hyperendemic for the related Flavivirus dengue and are widely infested by Aedes aegypti, the primary mosquito vector of urban yellow fever transmission. The combination of sustained introduction of viraemic travellers, an ecology conducive to local transmission, and an unimmunized population raises the possibility of a yellow fever epidemic in Asia. This represents a major global health threat, particularly in the context of a depleted emergency vaccine stockpile and untested surveillance systems in the region. In this review, the potential for a yellow fever outbreak in Asia is discussed with reference to the ecological and historical forces that have shaped global yellow fever epidemiology. The limitations of surveillance and vector control in the region are highlighted, and priorities for outbreak preparedness and response are suggested. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Biology and biological control of Dalmatian and yellow toadflax

    Treesearch

    Sharlene E. Sing; Rosemarie De Clerck-Floate; Richard W. Hansen; Hal Pearce; Carol Bell Randall; Ivo Tosevski; Sarah M. Ward

    2016-01-01

    Dalmatian toadflax, Linaria dalmatica (L.) Mill., and yellow toadflax, Linaria vulgaris Mill., are exotic weeds of rangeland, grassland, forests, and cropland. Both Dalmatian and yellow toadflax are short-lived perennial forbs that are easily recognized by their yellow snapdragon- like flowers (Figure 1a, 1b). Both species propagate by seed and vegetatively...

  6. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  7. 33 CFR 117.225 - Yellow Mill Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Yellow Mill Channel. 117.225 Section 117.225 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.225 Yellow Mill Channel. The...

  8. Benzo[a]carbazole-Based Donor-π-Acceptor Type Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Qian, Xing; Zhu, Yi-Zhou; Chang, Wen-Ying; Song, Jian; Pan, Bin; Lu, Lin; Gao, Huan-Huan; Zheng, Jian-Yu

    2015-05-06

    A novel class of metal-free organic dyes based on benzo[a]carbazole have been designed, synthesized, and used in dye-sensitized solar cells for the first time. These types of dyes consisted of a cyanoacrylic acid moiety as the electron acceptor/anchoring group and different electron-rich spacers such as thiophene (JY21), furan (JY22), and oligothiophene (JY23) as the π-linkers. The photophysical, electrochemical, and photovoltaic properties, as well as theoretical calculations of these dyes were investigated. The photovoltaic performances of these dyes were found to be highly relevant to the π-conjugated linkers. In particular, dye JY23 exhibited a broad IPCE response with a photocurrent signal up to about 740 nm covering the most region of the UV-visible light. A DSSC based on JY23 showed the best photovoltaic performance with a Jsc of 14.8 mA cm(-2), a Voc of 744 mV, and a FF of 0.68, achieving a power conversion efficiency of 7.54% under standard AM 1.5 G irradiation.

  9. International travel between global urban centres vulnerable to yellow fever transmission.

    PubMed

    Brent, Shannon E; Watts, Alexander; Cetron, Martin; German, Matthew; Kraemer, Moritz Ug; Bogoch, Isaac I; Brady, Oliver J; Hay, Simon I; Creatore, Maria I; Khan, Kamran

    2018-05-01

    To examine the potential for international travel to spread yellow fever virus to cities around the world. We obtained data on the international flight itineraries of travellers who departed yellow fever-endemic areas of the world in 2016 for cities either where yellow fever was endemic or which were suitable for viral transmission. Using a global ecological model of dengue virus transmission, we predicted the suitability of cities in non-endemic areas for yellow fever transmission. We obtained information on national entry requirements for yellow fever vaccination at travellers' destination cities. In 2016, 45.2 million international air travellers departed from yellow fever-endemic areas of the world. Of 11.7 million travellers with destinations in 472 cities where yellow fever was not endemic but which were suitable for virus transmission, 7.7 million (65.7%) were not required to provide proof of vaccination upon arrival. Brazil, China, India, Mexico, Peru and the United States of America had the highest volumes of travellers arriving from yellow fever-endemic areas and the largest populations living in cities suitable for yellow fever transmission. Each year millions of travellers depart from yellow fever-endemic areas of the world for cities in non-endemic areas that appear suitable for viral transmission without having to provide proof of vaccination. Rapid global changes in human mobility and urbanization make it vital for countries to re-examine their vaccination policies and practices to prevent urban yellow fever epidemics.

  10. Synthesis, structural elucidation, solvatochromism and spectroscopic properties of some azo dyes derived from 6-chloro-4-hydroxyquinoline-2(1H)-one

    NASA Astrophysics Data System (ADS)

    Rufchahi, E. O. Moradi; Gilani, A. Ghanadzadeh; Taghvaei, V.; Karimi, R.; Ramezanzade, N.

    2016-03-01

    Malondianilide (I) derived from p-chloroaniline was cyclized to 6-chloro-4-hydroxyquinoline-2(1H)-one (II) in moderately good yield using polyphosphoric acid as catalyst. This compound was then coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes 1-12. A systematic study of the effect of solvent, acid, base and pH upon the electronic absorption spectra of the dyes 1-12 was carried out. In DMSO, DMF, CH3CN, CHCl3, EtOH and acidic media (CH3COOH, acidified EtOH) these dyes that theoretically may be involved in azo-hydrazone tautomerism have been detected only as hydrazone tautomers T1 and T2. The acidic dissociation constants of the dyes were measured in 80 vol% ethanol-water solution at room temperature and ionic strength of 0.1. The results were correlated by the Hammett-type equation using the substituent constants σx.

  11. Effect of Donor Strength and Bulk on Thieno[3,4-b]-pyrazine-Based Panchromatic Dyes in Dye-Sensitized Solar Cells.

    PubMed

    Liyanage, Nalaka P; Cheema, Hammad; Baumann, Alexandra R; Zylstra, Alexa R; Delcamp, Jared H

    2017-06-22

    Near-infrared-absorbing organic dyes are critically needed in dye-sensitized solar cells (DSCs). Thieno[3,4-b]pyrazine (TPz) based dyes can access the NIR spectral region and show power conversion efficiencies (PCEs) of up to 8.1 % with sunlight being converted at wavelengths up to 800 nm for 17.6 mA cm -2 of photocurrent in a co-sensitized DSC device. Precisely controlling dye excited-state energies is critical for good performances in NIR DSCs. Strategies to control TPz dye energetics with stronger donor groups and TPz substituent choice are evaluated here. Additionally, donor size influence versus dye loading on TPz dyes is analyzed with respect to the TiO 2 surface protection designed to prevent recombination of electrons in TiO 2 with the redox shuttle. Importantly, the dyes evaluated were demonstrated to work well with low Li + concentration electrolytes, with iodine and cobalt redox shuttle systems, and efficiently as part of co-sensitized devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  13. Lost trust: a yellow fever patient response.

    PubMed

    Runge, John S

    2013-12-13

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care.

  14. Lost Trust: A Yellow Fever Patient Response

    PubMed Central

    Runge, John S.

    2013-01-01

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care. PMID:24348220

  15. 21 CFR 137.290 - Self-rising yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Self-rising yellow corn meal. 137.290 Section 137... Cereal Flours and Related Products § 137.290 Self-rising yellow corn meal. Self-rising yellow corn meal conforms to the definition and standard of identity prescribed by § 137.270 for self-rising white corn meal...

  16. 21 CFR 137.290 - Self-rising yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Self-rising yellow corn meal. 137.290 Section 137... Cereal Flours and Related Products § 137.290 Self-rising yellow corn meal. Self-rising yellow corn meal conforms to the definition and standard of identity prescribed by § 137.270 for self-rising white corn meal...

  17. Competition between nonindigenous ruffe and native yellow perch in laboratory studies

    USGS Publications Warehouse

    Savino, Jacqueline F.; Kolar, Cynthia S.

    1996-01-01

    The ruffe Gymnocephalus cernuus is a European percid that was accidently introduced in Duluth Harbor, Lake Superior. This nonindigenous species is closely related to yellow perch Perca flavescens, and because the two species have similar diets and habitat requirements, they are potential competitors. Laboratory studies in aquaria and pools were conducted to determine whether ruffe can compete with yellow perch for food. Ruffe had capture rates similar to those of yellow perch when food was unlimited. Ruffe spent more time than yellow perch over a feeding container before leaving it and searching again, and they also required less time to ingest (or handle) prey. However, the presence of yellow perch shortened the time ruffe spent over foraging areas when food was more limited. In addition, yellow perch were more active than ruffe, as indicated by their more frequent visits to a feeding container. Hence, the outcome of exploitative competition was not conclusive; ruffe appear to have the advantage in some behaviors, yellow perch in others. Ruffe were much more aggressive than yellow perch, and interference competition may be important in the interactions between these species. Our results indicate that ruffe might compete with native yellow perch.

  18. Modulation of π-spacer of carbazole-carbazole based organic dyes toward high efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chitpakdee, Chirawat; Jungsuttiwong, Siriporn; Sudyoadsuk, Taweesak; Promarak, Vinich; Kungwan, Nawee; Namuangruk, Supawadee

    2017-03-01

    The effects of type and position of π-linker in carbazole-carbazole based dyes on their performance in dye-sensitized solar cells (DSSCs) were investigated by DFT and TDDFT methods. The calculated electronic energy level, electron density composition, charge injection and charge recombination properties were compared with those of the high performance CCT3A dye synthesized recently. It is found that that mixing a benzothiadizole (B) unit with two thiophene (T) units in the π-spacer can greatly shift absorption wavelength to near infrared region and enhance the light harvesting efficiency (LHE) resulting in increasing of short-circuit current density (Jsc), whereas a thienothiophene unit does not affect those properties. However, a B should be not directly connected to the anchoring group of the dye because it brings electrolyte to the TiO2 surface which may increase charge recombination rate and consequently decrease open circuit voltage (Voc). This work shows how type and position of the π-linker affect the performance of DSSCs, and how to modulate those properties. We predicted that the designed dye derived from insertion of the B unit in between the two T units would have higher performance than CCT3A dye. The insight understanding from this study is useful for further design of higher performance dyes by molecular engineering.

  19. Influence of Background Genome on Enzymatic Characteristics of Yellow (Ay/-, Avy/-) Mice

    PubMed Central

    Wolff, George L.; Pitot, Henry C.

    1973-01-01

    Identification of the fundamental polypeptide difference between yellow (Ay/-, Avy/-) and non-yellow mice is important for biomedical research because of the influence of the yellow genotype on normal and neoplastic growth and obesity. The complexity of the "yellow mouse syndrome" makes attainment of this objective dependent on the separation of those pleiotropic enzyme differences which are secondary, and depend on the background genome, from those which are primary, and depend primarily on the agouti locus genotype.—Four of nine hepatic enzyme activities assayed simultaneously differed between eight-week-old yellow (Ay/-, Avy/-) and non-yellow (A/-, a/a) male inbred and F1 hybrid mice. Among these four, only cytoplasmic malic enzyme activity was elevated in all yellow mice, as compared with the non-yellow sibs, regardless of background genome. Glucokinase, serine dehydratase, and tyrosine α-ketoglutarate transaminase activities were also changed in yellow mice, but these alterations depended on the background genome.—The ratio of malic enzyme activity to citrate-cleavage enzyme activity, possibly related to the altered fat metabolism of yellow mice, was influenced by background genome as well as by the yellow genotype.——Significant deviations of enzyme activities from mid-parent values among F1 hybrids were associated with particular background genomes; the number of such deviations was larger among yellow mice than among non-yellows and this difference was greater among C3H F1 hybrids than among C57BL/6 F1 hybrids. PMID:4405752

  20. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study.

    PubMed

    Reda, S M; Soliman, K A

    2016-02-01

    This work presents an experimental and theoretical study of cyanidin natural dye as a sensitizer for ZnO dye-sensitized solar cells. ZnO nanoparticles were prepared using ammonia and oxalic acid as a capping agent. The calculated average size of the synthesized ZnO with different capping agents was found to be 32.1 nm. Electronic properties of cyanidin and delphinidin dye were studied using density functional theory (DFT) and time-dependent DFT with a B3LYP/6-31G(d,p) level. By comparing the theoretical results with the experimental data, the cyanidin dye can be used as a sensitizer in dye-sensitized solar cells. An efficiency of 0.006% under an AM-1.5 illumination at 100  mW/cm(2) was attained. The influence of dye adsorption time on the solar cell performance is discussed.

  1. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  2. Toxicological Assessment and UV/TiO2-Based Induced Degradation Profile of Reactive Black 5 Dye

    NASA Astrophysics Data System (ADS)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M. N.; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-01-01

    In this study, the toxicological and degradation profile of Reactive Black 5 (RB5) dye was evaluated using a UV/TiO2-based degradation system. Fourier transform infrared spectroscopy (FT-IR), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) techniques were used to evaluate the degradation level of RB5. The UV-Vis spectral analysis revealed the disappearance of peak intensity at 599 nm (λmax). The FT-IR spectrum of UV/TiO2 treated dye sample manifest appearance of new peaks mainly because of the degraded product and/or disappearance of some characteristics peaks which were present in the untreated spectrum. The HPLC profile verified the RB5 degradation subject to the formation of metabolites at different retention times. A stable color removal higher than 96% with COD removal in the range of 74-82.3% was noted at all evaluated dye concentrations. The tentative degradation pathway of RB5 is proposed following a careful analysis of the intermediates identified by UPLC-MS. Toxicity profile of untreated and degraded dye samples was monitored using three types of human cell lines via MTT assay and acute toxicity testing with Artemia salina. In conclusion, the UV/TiO2-based degradation system could be effectively employed for the remediation of textile wastewater comprising a high concentration of reactive dyes.

  3. Adsorption Properties of p -Methyl Red Monomeric-to-Pentameric Dye Aggregates on Anatase (101) Titania Surfaces: First-Principles Calculations of Dye/TiO 2 Photoanode Interfaces for Dye-Sensitized Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.

    2014-08-29

    The optical and electronic properties of dye aggregates of p-methyl red on a TiO2 anatase (101) surface were modeled as a function of aggregation order (monomer to pentameric dye) via first principles calculations. A progressive red-shifting and intensity increase toward the visible region in UV/vis absorption spectra is observed from monomeric-to-tetrameric dyes, with each molecule in a given aggregate binding to one of the four possible TiO2 (101) adsorption sites. The pentamer exhibits a blue-shifted peak wave- length in the UV/vis absorption spectra and less absorption intensity in the visible region in comparison; a corresponding manifestation of H-aggregation occurs sincemore » one of these five molecules cannot occupy an adsorption site. This finding is consistent with experiment. Calculated density of states (DOS) and partial DOS spectra reveal similar dye…TiO2 nanocomposite conduction band characteristics but different valence band features. Associated molecular orbital distributions reveal dye-to-TiO2 interfacial charge transfer in all five differing aggregate orders; meanwhile, the level of intramolecular charge transfer in the dye becomes progressively localized around its azo- and electron-donating groups, up to the tetrameric dye/TiO2 species. Dye adsorption energies and dye coverage levels are calculated and compared with experiment. Overall, the findings of this case study serve to aid the molecular design of azo dyes towards better performing DSSC devices wherein they are incorporated. In addition, they provide a helpful example reference for understanding the effects of dye aggregation on the adsorbate…TiO2 interfacial optical and electronic properties.« less

  4. Quantum dynamical simulation of photoinduced electron transfer processes in dye-semiconductor systems: theory and application to coumarin 343 at TiO₂.

    PubMed

    Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael

    2015-04-10

    A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.

  5. Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.

    2016-05-01

    In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.

  6. International travel between global urban centres vulnerable to yellow fever transmission

    PubMed Central

    Brent, Shannon E; Watts, Alexander; Cetron, Martin; German, Matthew; Kraemer, Moritz UG; Bogoch, Isaac I; Brady, Oliver J; Hay, Simon I; Creatore, Maria I

    2018-01-01

    Abstract Objective To examine the potential for international travel to spread yellow fever virus to cities around the world. Methods We obtained data on the international flight itineraries of travellers who departed yellow fever-endemic areas of the world in 2016 for cities either where yellow fever was endemic or which were suitable for viral transmission. Using a global ecological model of dengue virus transmission, we predicted the suitability of cities in non-endemic areas for yellow fever transmission. We obtained information on national entry requirements for yellow fever vaccination at travellers’ destination cities. Findings In 2016, 45.2 million international air travellers departed from yellow fever-endemic areas of the world. Of 11.7 million travellers with destinations in 472 cities where yellow fever was not endemic but which were suitable for virus transmission, 7.7 million (65.7%) were not required to provide proof of vaccination upon arrival. Brazil, China, India, Mexico, Peru and the United States of America had the highest volumes of travellers arriving from yellow fever-endemic areas and the largest populations living in cities suitable for yellow fever transmission. Conclusion Each year millions of travellers depart from yellow fever-endemic areas of the world for cities in non-endemic areas that appear suitable for viral transmission without having to provide proof of vaccination. Rapid global changes in human mobility and urbanization make it vital for countries to re-examine their vaccination policies and practices to prevent urban yellow fever epidemics. PMID:29875519

  7. Development of New Laser Protective Dyes. Phase 2.

    DTIC Science & Technology

    DYE LASERS, PROTECTION, LASERS, DYES , HAZARDS, SYNTHESIS, EYE SAFETY, OPTICAL MATERIALS, PLASTICS, LENSES, THERMAL STABILITY, CYANINE DYES , POLYCARBONATES, INJECTION MOLDING, NEAR INFRARED RADIATION, FLUORENES.

  8. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.

    PubMed

    Sani, R K; Azmi, W; Banerjee, U C

    1998-01-01

    Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.

  9. Altering the self-organization of dyes on titania with dyeing solvents to tune the charge-transfer dynamics of sensitized solar cells.

    PubMed

    Wang, Yinglin; Yang, Lin; Zhang, Jing; Li, Renzhi; Zhang, Min; Wang, Peng

    2014-04-14

    Herein we selected the model organic donor-acceptor dye C218 and modulated the self-organization of dye molecules on the surface of titania by changing the dyeing solvent from chlorobenzene to a mixture of acetonitrile and tert-butanol. We further unveiled the relationship between the microstructure of a dye layer and the multichannel charge-transfer dynamics that underlie the photovoltaic performance of dye-sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  11. Fluorescein isothiocyanate and rhodamine B dye encapsulated mesoporous SiO2 for applications of blue LED excited white LED

    NASA Astrophysics Data System (ADS)

    Das, Sourav; Manam, J.

    2018-05-01

    In this work, the fluorescein isothiocyanate (FITC) and rhodamine B (RhB) dyes were encapsulated in mesoporous silica nanoparticles (MSNp). The MSNp-FITC-RhB nanohybrids phosphor showed a dichromatic PL emission at green region and orange region when excited at 460 nm. A Forster Resonance Energy Transfer (FRET) was observed from FITC to RhB. The materials were further characterized by XRD, FTIR, TEM, and temperature dependent photoluminescence. The CIE coordinates were tuned from greenish yellow to the orange region and quantum yield was reached 52.04% based on FRET. So by combining the MSNp-FITC-RhB nanohybrids phosphor with the blue LED chip, the white light emission with flexible Color Correlated Temperature and improved Color Rendering Index can be obtained.

  12. Novel water soluble NIR dyes: does charge matter?

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Beckford, Garfield; Daube, Alison

    2012-03-01

    Near-Infrared (NIR) dyes are used as reporters, probes or markers in the biological and medical field. NIR dyes can be useful for investigating and characterizing biomolecular interactions or imaging which is possible because biological mammalian tissue has a low absorption window in the NIR region. Biomolecules such as proteins are known to bind to NIR dyes. Upon binding NIR dyes often exhibit spectral changes that can be used for characterizing the binding event. Serum albumins may be responsible for in vivo transport of NIR dyes. Studying this binding event can be useful when correlated to in vivo behavior of the NIR dye. The studies presented here use spectroscopic methods to investigate how NIR dyes that may be used in imaging, biological or bioanalytical applications bind to proteins, such as serum albumins. Our research group systematically synthesized several NIR dyes that have varying hydrophobicity, chromophore size and charge. During these investigations we developed novel NIR cyanine fluorophores having varying aqueous solubility and a variety of net charges. The binding properties of the carbocyanines change when charged or hydrophobic moieties are systematically varied. One of the properties we put a special emphasis on is what we call residual hydrophobicity of the NIR dye molecule which is defined as the unmasked (by the charged moieties) hydrophobicity of the molecule. Residual hydrophobicity may be responsible for binding the otherwise highly water soluble NIR dye to hydrophobic pockets of biomolecules. High residual hydrophobicity of a highly water soluble dye can be disadvantageous during biological, medical or similar applications.

  13. Symplastic continuity between mesophyll and companion cells in minor veins of mature Cucurbita pepo L. leaves.

    PubMed

    Turgeon, R; Hepler, P K

    1989-08-01

    Dye-coupling studies have been undertaken to determine whether plasmodesmata between intermediary cells (companion cells) and bundle-sheath cells in the minor veins of mature Cucurbita pepo L. leaves are open to passage of low-molecular-weight compounds. The abaxial phloem of these veins was exposed by stripping the lower epidermis of the leaf and removing the spongy-mesophyll cells by abrasion. Lucifer yellow, or 6-carboxyfluorescein, were microinjected into intermediary cells by iontophoresis, and dye location was monitored by fluorescence microscopy. Dye spread from one intermediary cell to another and from intermediary cells to bundle-sheath and mesophyll cells. No movement of microinjected dye occurred in some experiments, probably because plasmodesmata closed in response to cell damage incurred during tissue preparation. Most, but not all, minor veins in tissue prepared for microinjections studies are able to accumulate exogenously supplied [(14)C]sucrose. Plasmolysis studies indicate that the solute content of intermediary cells is much higher than that of bundle-sheath cells. In C. pepo, plasmodesmata may provide a route for the selective phloem loading of export sugars.

  14. Photobleaching effect in azo-dye containing epoxy resin films: the potentiality of carbon nanotubes as azo-dye dispensers

    NASA Astrophysics Data System (ADS)

    Díaz Costanzo, Guadalupe; Goyanes, Silvia; Ledesma, Silvia

    2015-04-01

    Azo-dye molecules may suffer from bleaching under certain illumination conditions. When this photoinduced process occurs, it generates an irreversible effect that is characterized by the loss of absorption of the dye molecule. Moreover, the well-known isomerization of azodye molecules does not occur anymore. In this work it is shown how the addition of a small amount of multi-walled carbon nanotubes (MWCNTs) helps to decrease the bleaching effect in a photosensitive guest-host azo-polymer film. Two different systems were fabricated using an epoxy resin as polymer matrix. An azo-dye, Disperse Orange 3, was used as photosensitive material in both systems and MWCNTs were added into one of them. The optical response of the polymeric systems was studied considering the degree of photoinduced birefringence. Photobleaching of the azo-dye was observed in all cases however, the effect is lower for the composite material containing 0.2 wt % MWCNTs. The weak interaction between MWCNTs and dye molecules is less favorable when the material is heated. The optical behavior of the heated composite material suggests that carbon nanotubes can be potentially used as azo dye dispensers. The results are interpreted in terms of the non-covalent interaction between azo-dye molecules and MWCNTs.

  15. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations.

    PubMed

    Heidarizadi, Elham; Tabaraki, Reza

    2016-01-01

    A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test.

    PubMed

    Temeles, Ethan J; Newman, Julia T; Newman, Jennifer H; Cho, Se Yeon; Mazzotta, Alexandra R; Kress, W John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.

  17. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test

    PubMed Central

    Temeles, Ethan J.; Newman, Julia T.; Newman, Jennifer H.; Cho, Se Yeon; Mazzotta, Alexandra R.; Kress, W. John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants. PMID:26814810

  18. Premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions: deprotonation of dye in ion pair micelles.

    PubMed

    Gohain, Biren; Dutta, Robin K

    2008-07-15

    The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.

  19. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    PubMed Central

    El-Shishtawy, Reda M.; El-Zawahry, Manal M.; Abdelghaffar, Fatma; Ahmed, Nahed S. E.

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics. PMID:25258720

  20. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer

    NASA Astrophysics Data System (ADS)

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-01

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy.