Sample records for yellow river source

  1. Summer precipitation prediction in the source region of the Yellow River using climate indices

    NASA Astrophysics Data System (ADS)

    Yuan, F.

    2016-12-01

    The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role in meeting downstream water resources requirements. The summer precipitation from June to September in the source region of the Yellow River accounts for about 70% of the annual total, and its decrease would cause further water shortage problems. Consequently, the objectives of this study are to improve the understanding of the linkages between the precipitation in the source region of the Yellow River and global teleconnection patterns, and to predict the summer precipitation based on revealed teleconnections. Spatial variability of precipitation was investigated based on three homogeneous sub-regions. Principal component analysis and singular value decomposition were used to find significant relations between the precipitation in the source region of the Yellow River and global teleconnection patterns using climate indices. A back-propagation neural network was developed to predict the summer precipitation using significantly correlated climate indices. It was found that precipitation in the study area is positively related to North Atlantic Oscillation, West Pacific Pattern and El Nino Southern Oscillation, and inversely related to Polar Eurasian pattern. Summer precipitation was overall well predicted using these significantly correlated climate indices, and the Pearson correlation coefficient between predicted and observed summer precipitation was in general larger than 0.6. The results are useful for integrated water resources management in the Yellow River basin.

  2. Determination of microwave vegetation optical depth and water content in the source region of the Yellow River

    NASA Astrophysics Data System (ADS)

    Liu, R.; Wen, J.; Wang, X.

    2017-12-01

    In this study, we use dual polarization brightness temperature observational data at the K frequency band collected by the Micro Wave Radiation Imager (MWRI) on board the Fengyun-3B satellite (FY-3B) to improve the τ-ω model by considering the contribution of water bodies in the pixels to radiation in the wetland area of the Yellow River source region. We define a dual polarization slope parameter and express the surface emissivity in the τ-ω model as the sum of the soil and water body emissivity to retrieve the vegetation optical depth (VOD); however, in regions without water body coverage, we still use the τ-ω model to solve for the VOD. By using the field observation data on the vegetation water content (VWC) in the source region of the Yellow River during the summer of 2012, we establish the regression relationship between the VOD and VWC and retrieve the spatial distribution of the VWC. The results indicate that in the entire source region of the Yellow River in 2012, the VOD was in the range of 0.20-1.20 and the VWC was in the range of 0.20 to 1.40, thereby exhibiting a trend of low values in the west and high values in the east. The area with the largest regional variation is along the Yellow River. We compare the results from remote-sensing estimated and ground-measured vegetation water content, and the root-mean-square error is 0.12. The analysis results indicated that by considering the coverage of seasonal wetlands in the source region of the Yellow River, the microwave remote sensing data collected by the FY-3B MWRI can be used to retrieve the vegetation water content in the source region of the Yellow River.

  3. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  4. Polycyclic aromatic hydrocarbons in sediments from the Old Yellow River Estuary, China: occurrence, sources, characterization and correlation with the relocation history of the Yellow River.

    PubMed

    Yuan, Zijiao; Liu, Guijian; Wang, Ruwei; Da, Chunnian

    2014-11-01

    The levels of 16 USEPA priority PAHs were determined in surface sediments and one dated sediment core from the abandoned Old Yellow River Estuary, China. Total PAH concentrations in the surface sediments ranged from 100.4 to 197.3 ng g(-1) dry weight and the total toxic equivalent quantity (TEQ(carc)) values of the carcinogenic PAHs were very low. An evaluation of PAH sources based on diagnostic ratios and principal component analysis suggested that PAHs in the surface sediments mainly derived from combustion sources. The total PAH concentrations altered significantly with year of deposition and showed quite different patterns of change compared with other studies: it is hypothesized that the principal cause of these changes is the relocation of the course of the Yellow River to the sea in 1976 and 1996. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Eco-environmental degradation in the source region of the Yellow River, Northeast Qinghai-Xizang Plateau.

    PubMed

    Feng, Jianmin; Wang, Tao; Xie, Changwei

    2006-11-01

    The Yellow River is the second longest river in China and the cradle of the Chinese civilization. The source region of the Yellow River is the most important water holding area for the Yellow River, about 49.2% of the whole runoff comes from this region. However, for the special location, it is a region with most fragile eco-environment in China as well. Eco-environmental degradation in the source region of the Yellow River has been a very serious ecological and socially economic problem. According to census data, historical documents and climatic information, during the last half century, especially the last 30 years, great changes have taken place in the eco-environment of this region. Such changes are mainly manifested in the temporal-spatial changes of water environment, deglaciation, permafrost reduction, vegetation degeneracy and desertification extent, which led to land capacity decreasing and river disconnecting. At present, desertification of the region is showing an accelerating tendency. This paper analyzes the present status of eco-environment degradation in this region supported by GIS and RS, as well as field investigation and indoor analysis, based on knowledge, multi-source data is gathered and the classification is worked out, deals with their natural and anthropogenic causes, and points out that in the last half century the desertification and environmental degradation of this region are mainly attributed to human activities under the background of regional climate changes. To halt further degradation of the environment of this region, great efforts should be made to use land resources rationally, develop advantages animal agriculture and protect the natural grassland.

  6. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    PubMed Central

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area. PMID:24171160

  7. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    PubMed

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  8. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  9. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    PubMed

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Projecting the potential evapotranspiration by coupling different formulations and input data reliabilities: The possible uncertainty source for climate change impacts on hydrological regime

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Li, Changni; Xing, Wanqiu; Fu, Jianyu

    2017-12-01

    Representing atmospheric evaporating capability for a hypothetical reference surface, potential evapotranspiration (PET) determines the upper limit of actual evapotranspiration and is an important input to hydrological models. Due that present climate models do not give direct estimates of PET when simulating the hydrological response to future climate change, the PET must be estimated first and is subject to the uncertainty on account of many existing formulae and different input data reliabilities. Using four different PET estimation approaches, i.e., the more physically Penman (PN) equation with less reliable input variables, more empirical radiation-based Priestley-Taylor (PT) equation with relatively dependable downscaled data, the most simply temperature-based Hamon (HM) equation with the most reliable downscaled variable, and downscaling PET directly by the statistical downscaling model, this paper investigated the differences of runoff projection caused by the alternative PET methods by a well calibrated abcd monthly hydrological model. Three catchments, i.e., the Luanhe River Basin, the Source Region of the Yellow River and the Ganjiang River Basin, representing a large climatic diversity were chosen as examples to illustrate this issue. The results indicated that although similar monthly patterns of PET over the period 2021-2050 for each catchment were provided by the four methods, the magnitudes of PET were still slightly different, especially for spring and summer months in the Luanhe River Basin and the Source Region of the Yellow River with relatively dry climate feature. The apparent discrepancy in magnitude of change in future runoff and even the diverse change direction for summer months in the Luanhe River Basin and spring months in the Source Region of the Yellow River indicated that the PET method related uncertainty occurred, especially in the Luanhe River Basin and the Source Region of the Yellow River with smaller aridity index. Moreover, the possible reason of discrepancies in uncertainty between three catchments was quantitatively discussed by the contribution analysis based on climatic elasticity method. This study can provide beneficial reference to comprehensively understand the impacts of climate change on hydrological regime and thus improve the regional strategy for future water resource management.

  11. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Xu, Mengzhen; Li, Zhiwei; Wang, Zhaoyin; Zhou, Hanmi

    2017-09-01

    The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

  12. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: evidence based on macroelements and n-alkanes.

    PubMed

    Zhang, Shengyin; Li, Shuanglin; Dong, Heping; Zhao, Qingfang; Lu, Xinchuan; Shi, Ji'an

    2014-11-15

    By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.

  14. Assessment of heavy metal contamination in the sediments from the Yellow River Wetland National Nature Reserve (the Sanmenxia section), China.

    PubMed

    Cheng, Qingli; Wang, Ruiling; Huang, Wenhai; Wang, Wenlin; Li, Xudong

    2015-06-01

    The Yellow River Wetland National Nature Reserve (the Sanmenxia section) is an important area of the Yellow River for two important hydrologic gauging stations: the Sanmenxia reservoir and the Xiaolangdi reservoir. Seven sites along the section were selected: Jiziling, Dinghuwan, Houdi, Canglonghu, Shangcun, Wangguan, and Nancun. After the microwave digestion with aqua regia, concentrations of Cu, Pb, Cd, Cr, Zn, and Mn in the sediments were analyzed by flame atomic absorption spectrometry with air-acetylene flame. The results showed that all the concentrations of Cr detected were from the lithogenic source, and 63 % Mn, 48 % Pb, 41 % Cu, 20 % Cd, and 12 % Zn were from the anthropogenic source. The values of the index of geo-accumulation pointed out that there was moderate contamination of Mn at the Dinghuwan (1.04) and Houdi (1.00) sites (class 2), while the modified degree of contamination denoted that the contamination at the Houdi site (2.02) was moderate, nil to very low at the Nancun and Shangcun sites and low at the other sites, consisting with the tendency of pollution load index. For metal toxicity, the sediment pollution index indicated that the sediments of the Canglonghu site were low polluted, that of the Houdi site is nearly slightly contaminated, and those of others were natural and uncontaminated. It was vital to evaluate the degree of contamination with individual and overall elements and even with the metal toxicity. Cu, Pb, and Mn contaminations were aggravated in the Sanmenxia section, and there maybe was one of the main anthropogenic sources of these metals along the Yellow River. The findings were expected to update the current status of the heavy metal pollution in the Sanmenxia section as well as to create awareness concerning the sound condition of the whole reaches of the Yellow River.

  15. Contrastive Analysis of Meteorological Element Effect Simulated by parameterization schemes Land Surface Process of Noah and CLM4 over the Yellow River Source Region

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wen, X.

    2017-12-01

    The Yellow River source region is situated in the northeast Tibetan Plateau, which is considered as a global climate change hot-spot and one of the most sensitive areas in terms of response to global warming in view of its fragile ecosystem. This region plays an irreplaceable role for downstream water supply of The Yellow River because of its unique topography and variable climate. The water energy cycle processes of the Yellow River source Region from July to September in 2015 were simulated by using the WRF mesoscale numerical model. The two groups respectively used Noah and CLM4 parameterization schemes of land surface process. Based on the observation data of GLDAS data set, ground automatic weather station and Zoige plateau wetland ecosystem research station, the simulated values of near surface meteorological elements and surface energy parameters of two different schemes were compared. The results showed that the daily variations about meteorological factors in Zoige station in September were simulated quite well by the model. The correlation coefficient between the simulated temperature and humidity of the CLM scheme were 0.88 and 0.83, the RMSE were 1.94 ° and 9.97%, and the deviation Bias were 0.04 ° and 3.30%, which was closer to the observation data than the Noah scheme. The correlation coefficients of net radiation, surface heat flux, upward short wave and upward longwave radiation were respectively 0.86, 0.81, 0.84 and 0.88, which corresponded better than the observation data. The sensible heat flux and latent heat flux distribution of the Noah scheme corresponded quite well to GLDAS. the distribution and magnitude of 2m relative humidity and soil moisture were closer to surface observation data because the CLM scheme described the photosynthesis and evapotranspiration of land surface vegetation more rationally. The simulating abilities of precipitation and downward longwave radiation need to be improved. This study provides a theoretical basis for the numerical simulation of water energy cycle in the source region over the Yellow River basin.

  16. Assessment and potential sources of metals in the surface sediments of the Yellow River Delta, Eastern China.

    PubMed

    Cheng, Qingli; Lou, Guangyan; Huang, Wenhai; Li, Xudong

    2017-07-01

    The Yellow River Delta is the most intact estuary wetland in China and suffers from great pressure of metals. Seventy-seven surface sediment samples were collected in the delta, and contents of Cu, Pb, Cd, Cr, Zn, Ni, and Mn were analyzed by inductively coupled plasma spectrometry and those of Hg and As by atomic fluorescence spectrometry. The results showed that means of metal contents (ppm, dry weight) were as follows: Hg, 0.04; Cr, 61.72; Cu, 20.97; Zn, 60.73; As, 9.47; Pb, 21.91; Cd, 0.12; Ni, 27.24; and Mn, 540.48. 43.8% of Hg and 14.3% of Cd were from the allogenic source while others from the authigenic source. The results of the geoaccumulation indexes appeared that 6.5% of sites from the estuarine and the Gudao areas were moderately polluted by Hg. All ecological risk index values of Hg and 37.7% of Cd were more than 40, which were the main factors of strongly and moderately potential ecological risks of 37.7% of sites in the delta. High Cd contents may be due to the alkaline conditions of the delta and the unreasonable management of the farmland, while the abnormal distribution of Hg to the wet or dry deposition and the erosion of the seawater. It was suggested to monitor Hg content in the atmosphere of the Yellow River Delta. The results were expected to update the pollution status of metals in the delta and created awareness of preserving the sound condition of the Yellow River Delta.

  17. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in sediments from the Yellow and Yangtze Rivers, China.

    PubMed

    Gao, Lirong; Huang, Huiting; Liu, Lidan; Li, Cheng; Zhou, Xin; Xia, Dan

    2015-12-01

    Polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are toxic environmental pollutants that are often found in sediments. The Yangtze and Yellow rivers in China are two of the largest rivers in Asia and are therefore important aquatic ecosystems; however, few studies have investigated the PCDD/F and PCB content in the sediments of these rivers. Accordingly, this study was conducted to generate baseline data for future environmental risk assessments. In the present study, 26 surface sediments from the middle reaches of the Yellow and Yangtze rivers were analyzed for PCDD/Fs and dioxin-like (dl) PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yellow River were 2.1-19.8, 1.11-9.9, and 0.08-0.57 pg/g (dry weight), respectively. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yangtze River were 6.1-84.9, 1.8-24.1, and 0.13-0.29 pg/g (dry weight), respectively. Total organic carbon and dl-PCB contents in the Yellow River were significantly correlated (Spearman's correlation coefficient, r = 0.64, P < 0.05). It is well known that total organic carbon plays a role in the transport and redistribution of dl-PCB. Principal component analysis indicated that PCDD/Fs may arise from pentachlorophenol, sodium pentachlorophenate, and atmospheric deposition, while dl-PCBs likely originate from burning of coal and wood for domestic heating. The dioxin levels in the river sediments examined in this study were relatively low. These findings advance our knowledge regarding eco-toxicity and provide useful information regarding contamination sources.

  18. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra

    NASA Astrophysics Data System (ADS)

    Shang, Yuan; Prins, Maarten A.; Beets, Christiaan J.; Kaakinen, Anu; Lahaye, Yann; Dijkstra, Noortje; Rits, Daniël S.; Wang, Bin; Zheng, Hongbo; van Balen, Ronald T.

    2018-02-01

    The thick loess-palaeosol sequences in the Mangshan Loess Plateau (MLP; central China) along the south bank of the lower reach of the Yellow River provide high-resolution records of Quaternary climate change. In addition, substantial increases in grain-size and accumulation rate have been inferred in the upper part of the loess sequence, above palaeosol layer S2. This study investigates the sources of the long-term dust supply to the MLP and explores the mechanism behind the sudden increase in sediment delivery and coarsening of the loess deposits since S2 (∼240 ka) by using end member modelling of the loess grain-size dataset and single-grain zircon U-Pb dating. Our results indicate that the lower Yellow River floodplain, directly north of the MLP, served as a major dust supply for the plateau at least since the deposition of loess unit L9 and indirectly suggest that the integration of the Yellow River and the disappearance of the Sanmen palaeolake took place before L9 (∼900 ka). The sudden change in sedimentology of the Mangshan sequence above palaeosol unit S2 may result from an increased fluvial sediment flux being transported to the lower reaches of the Yellow River because of tectonic movements (initiated) in the Weihe Basin around 240 ka. Furthermore, sediment coarsening can be explained by the gradual southward migration of the lower Yellow River floodplain towards the MLP since the deposition of palaeosol S2. The migration is evidenced by the formation of an impressive scarp, and is likely caused by tectonic tilting of the floodplain area.

  19. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary.

    PubMed

    Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen

    2017-12-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Benefits of Turbid River Plume Habitat for Lake Erie Yellow Perch (Perca flavescens) Recruitment Determined by Juvenile to Larval Genotype Assignment

    PubMed Central

    Carreon-Martinez, Lucia B.; Walter, Ryan P.; Johnson, Timothy B.; Ludsin, Stuart A.; Heath, Daniel D.

    2015-01-01

    Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process. PMID:25954968

  1. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    PubMed

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.

  2. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    NASA Astrophysics Data System (ADS)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of the remaining POC, between 10 and 31% is fossil in origin (>26 000 yr), resulting from the physical erosion of ancient sedimentary rock and input of fossil fuel residues from anthropogenic activity, and 16-33% is modern carbon derived from terrestrial and aquatic productivity. These findings have implications both regarding the provenance and vintage of organic matter signatures emanating from the Yellow River basin and similar catchments containing extensive paleosol sequences, as well as for the reactivity and fate of this POC upon supply to adjacent marginal seas.

  3. Research on the resilience of husbandry economy to snow disaster

    NASA Astrophysics Data System (ADS)

    Zhao, Shuang; Fang, Yiping

    2017-04-01

    Snow disaster always makes adverse influence on the pastoral economy in alpine area. Resilience theory could efficiently enhance the capacities of resisting disaster and mitigating loss of animal husbandry economy. In order to distinguish the weak parts of existed resilience system and strengthen the construction of disaster mitigating in the source of Changjiang-Yellow River, this paper has developed two methods of comprehensive index and relationship model to measure the resilience from 1980 to 2014. The comprehensive index method is based on the conceptual framework of resilience assessment. And relationship model is derived from the internal relationship between vulnerability and resilience. Through the index system of resilience, this paper also summarizes the mean influencing indicator to husbandry economy resilience. The results show:(1)From time dimension, the resilience of snow disaster in Changjiang-Yellow River is rising with fluctuations. Based on the rate, the changes could be divided into slow(1980-1996) and fast(1997-2014) growing phases. The disaster-mitigating capacity of livestock has been markedly improved; (2)From spatial dimension, the magnitude and frequency of snow disaster change weakly. But the gap of resilience in Changjiang-Yellow River has shrunk in 35 years and the resilience in source of Changjiang is distinctly better than Yellow River; (3)Among all the indicators, snow disaster plays a decisive role in the changes of resilience. The resisting capacity including infrastructure construction makes significant effects on resilience and the reducing measures consisted of income, education and agricultural finance could effectively regulate the level. Key words: husbandry economy; snow disaster; resilience; mitigation

  4. Clay mineralogy indicates the muddy sediment provenance in the estuarine-inner shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Wang, Chenglong; Ge, Chendong; Xu, Min

    2018-02-01

    The estuarine-inner shelf mud regions of the East China Sea (ECS) are valuable for studying the source-to-sink processes of fluvial sediments deposited since the Holocene. In this study, we present evidence of the provenance and environmental evolution of two cores (S5-2 and JC07) from the estuarine-inner shelf regions of the ECS over the past 100 years based on 210Pb dating, high-resolution grain size measurements and clay mineral analyses. The results indicate that the clay mineral assemblages of cores S5-2 and JC07 are dominated by illite, followed by kaolinite and chlorite, and present scarce amounts of smectite. A comparison of these clay mineral assemblages with several major sources reveals that the fine sediments on the estuarine-inner shelf of the ECS represent a mixture of provenances associated with the Yangtze and Yellow Rivers, as well as smaller rivers. However, the contribution of each provenance has varied greatly over the past hundred years, as indicated by the down-core variability due to strong sediment reworking and transport on the inner shelf and the reduction of the sediment load from the Yangtze River basin. In the mud region of the Yangtze River estuary, the sediment from 1930 to 1956 was primarily derived from the Yangtze River, although the Yellow River was also an important influence. From 1956 to 2013, the Yellow River contribution decreased, whereas the Yangtze River contribution correspondingly increased. In the Zhe-Min mud region, the Yangtze River contributed more sediment than did other rivers from 1910 to 1950; however, the Yangtze River contribution gradually decreased from 1950 to 2013. Moreover, the other small rivers accounted for minor contributions, and the East Asian winter monsoon (EAWM) played an important role in the sediment transport process in the ECS. Our results indicate that the weakening/strengthening of the EAWM and a decrease in the sediment load of the Yangtze River influenced the transport and fate of sediment on the estuarine-inner shelf of the ECS.

  5. [Effects of Long-term Implementation of the Flow-Sediment Regulation Scheme on Grain and Clay Compositions of Inshore Sediments in the Yellow River Estuary].

    PubMed

    Wang, Miao-miao; Sun, Zhi-gao; Lu, Xiao-ning; Wang, Wei; Wang, Chuan-yuan

    2015-04-01

    Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.

  6. Temporal and geographic trends in mercury concentrations in muscle tissue in five species of Hudson River, USA, fish.

    PubMed

    Levinton, Jeffrey S; Pochron, Sharon T

    2008-08-01

    We analyzed a New York (USA) state database of mercury concentrations in muscle tissue for five species of fish (striped bass, yellow perch, largemouth bass, smallmouth bass, and carp) over a range of locations in the Hudson River (USA) between 1970 and 2004. We used regression models to discern temporal and geographic change in the fish while controlling for a positive correlation between mercury concentration and body mass. Mercury concentrations significantly increased in fish from New York Harbor waters to the mid-Hudson River. Striped bass and yellow perch showed a shallower increase in mercury concentration with river mile than did carp, largemouth bass, and smallmouth bass. Mercury concentrations declined over the 34-year period. These results imply that a geographically restricted source of mercury may be spread throughout the watershed by toxin-laden dispersing species. The increase of mercury toward the north may relate to a point source in the mid-Hudson River, or it may indicate mercury released from the Adirondack watershed. The decline of mercury over three decades corresponds to a reduction of various inputs in the region. The temporal and geographic pattern of mercury in sediments corresponds to the geographic trend of mercury in fish.

  7. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    NASA Astrophysics Data System (ADS)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  8. Geocode of River Networks in Global Plateaus

    NASA Astrophysics Data System (ADS)

    Ni, J.; Wang, Y.; Wang, T.

    2017-12-01

    As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.

  9. Centennial-scale records of total organic carbon in sediment cores from the South Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Lin, Jia; Hong, Yuehui; Yuan, Lirong; Liu, Jinzhong; Xu, Xiaoming; Wang, Jianghai

    2018-01-01

    Global carbon cycling is a significant factor that controls climate change. The centennial-scale variations in total organic carbon (TOC) contents and its sources in marginal sea sediments may reflect the influence of human activities on global climate change. In this study, two fine-grained sediment cores from the Yellow Sea Cold Water Mass of the South Yellow Sea were used to systematically determine TOC contents and stable carbon isotope ratios. These results were combined with previous data of black carbon and 210Pb dating from which we reconstructed the centennial-scale initial sequences of TOC, terrigenous TOC (TOCter) and marine autogenous TOC (TOCmar) after selecting suitable models to correct the measured TOC (TOCcor). These sequences showed that the TOCter decreased with time in the both cores while the TOCmar increased, particularly the rapid growth in core H43 since the late 1960s. According to the correlation between the Huanghe (Yellow) River discharge and the TOCcor, TOCter, or TOCmar, we found that the TOCter in the two cores mainly derived from the Huanghe River and was transported by it, and that higher Huanghe River discharge could strengthen the decomposition of TOCmar. The newly obtained initial TOC sequences provide important insights into the interaction between human activities and natural processes.

  10. Mercury Export from Mainland China to Adjacent Seas and Its Influence on the Marine Mercury Balance.

    PubMed

    Liu, Maodian; Chen, Long; Wang, Xuejun; Zhang, Wei; Tong, Yindong; Ou, Langbo; Xie, Han; Shen, Huizhong; Ye, Xuejie; Deng, Chunyan; Wang, Huanhuan

    2016-06-21

    Exports from mainland China are a significant source of mercury (Hg) in the adjacent seas (Bohai Sea, Yellow Sea, East China Sea, and South China Sea) near China. A total of 240 ± 23 Mg was contributed in 2012 (30% from natural sources and 70% from anthropogenic sources), including Hg from rivers, industrial wastewater, domestic sewage, groundwater, nonpoint sources, and coastal erosion. Among the various sources, the Hg from rivers amounts to 160 ± 21 Mg and plays a dominant role. The Hg that is exported from mainland China increased from 1984 to 2013; the contributions from rivers, industrial wastewater, domestic sewage and groundwater increased, and the contributions from nonpoint sources and coastal erosion remained stable. A box model is constructed to simulate the mass balance of Hg in these seas and quantify the sources, sinks and Hg biogeochemical cycle in the seas. In total, 160 Mg of Hg was transported to the Pacific Ocean and other oceans from these seas through oceanic currents in 2012, which could have negative impacts on the marine ecosystem. A prediction of the changes in Hg exportation through 2030 shows that the impacts of terrestrial export might worsen without effective pollution reduction measures and that the Hg load in these seas will increase, especially in the seawater of the Bohai Sea, Yellow Sea, and East China Sea and in the sea margin sediments of the Bohai Sea and East China Sea.

  11. [Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China].

    PubMed

    Wei, Mao-Hong; Lin, Hui-Long

    2014-03-01

    The alpine meadow in the source region of the Yangtze and Yellow River is suffering serious deterioration. Though great efforts have been put into, the restoration for the degraded grassland is far from being effective, mainly due to poor understanding of the degradation mechanism of alpine meadow in this region. In order to clarify the formation mechanism of degradation grassland and provide the new ideas for restoration, degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River were taken as target systems to analyze the soil particle size distribution, the fractal dimension of the soil particle size, and the relationship between soil erosion modulus and fractal dimension. The results showed that, with increasing grassland degradation, the percentage contents of clay increased while the percentage contents of silt sand and very fine sand showed a decreasing trend. The fractal dimension presented a positive correlation with clay among the degradation sequences while negative correlations were found with very fine sand and silt sand. The curvilinear regression of fractal dimension and erosion modulus fitted a quadratic function. Judged by the function, fractal dimension 2.81 was the threshold value of soil erosion. The threshold value has an indicative meaning on predicting the breakout of grazing-induced erosion and on restoration of the degraded grassland. Taking fractal dimension of 2.81 as the restoration indicator, adoption of corresponding measures to make fractal dimension less than 2.81, would an effective way to restore the degradation grassland.

  12. Investigation of the heavy metal contamination of the sediments from the yellow river wetland nature reserve of zhengzhou, china.

    PubMed

    Cheng, Q; Wang, W; Wang, H; Wang; Zhao, Z

    2012-01-01

    Heavy metal pollution in the sediment of the Yellow River draws wide attention in the recent years. The Yellow River Wetland Nature Reserve of Zhengzhou is one of the major wetlands of the river and located at the beginning of the lower reach. In this article, we aimed to investigate the degree and the sources of the metal pollution in the reserve. Metals as Cu, Pb, Cr, Cd and Mn in the sediment were monitored using flame atomic absorption spectrometry. The index of geo-accumulation (I(geo)) and the modified degree of contamination (mC(d)) were developed to evaluate individual metal pollution and overall enrichment impact of the elements. Compared with sediment quality guidelines, the effect of Cr and Pb are more serious than others. I(geo) values show Pb pollution are moderate at the Xinzhai, Langchenggang and Nansutan sites, and mC(d) analysis indicate the whole contamination at the Wantan, Langchenggang and Nansutan sites was low. Principal component analysis indicated that the first factor was Cu, Mn and Cd, mainly from soil erosion and the irrational use of phosphate fertilizers; the second Pb from fossil fuel burning; and the third Cr from weathering process. We conclude that Pb contamination is serious in the reserve, and the main sources of the metal are crude oil consumption and coal combustion of the brick kilns around. We also draw a conclusion that it is vital to evaluate contamination degree with both individual elements and overall average.

  13. Investigation of the Heavy Metal Contamination of the Sediments from the Yellow River Wetland Nature Reserve of Zhengzhou, China

    PubMed Central

    Cheng, Q; Wang, W; Wang, H; Wang; Zhao, Z

    2012-01-01

    Background Heavy metal pollution in the sediment of the Yellow River draws wide attention in the recent years. The Yellow River Wetland Nature Reserve of Zhengzhou is one of the major wetlands of the river and located at the beginning of the lower reach. In this article, we aimed to investigate the degree and the sources of the metal pollution in the reserve. Methods: Metals as Cu, Pb, Cr, Cd and Mn in the sediment were monitored using flame atomic absorption spectrometry. The index of geo-accumulation (Igeo) and the modified degree of contamination (mCd) were developed to evaluate individual metal pollution and overall enrichment impact of the elements. Results: Compared with sediment quality guidelines, the effect of Cr and Pb are more serious than others. Igeo values show Pb pollution are moderate at the Xinzhai, Langchenggang and Nansutan sites, and mCd analysis indicate the whole contamination at the Wantan, Langchenggang and Nansutan sites was low. Principal component analysis indicated that the first factor was Cu, Mn and Cd, mainly from soil erosion and the irrational use of phosphate fertilizers; the second Pb from fossil fuel burning; and the third Cr from weathering process. Conclusion: We conclude that Pb contamination is serious in the reserve, and the main sources of the metal are crude oil consumption and coal combustion of the brick kilns around. We also draw a conclusion that it is vital to evaluate contamination degree with both individual elements and overall average. PMID:23113147

  14. Variation of dissolved organic carbon transported by two Chinese rivers: The Changjiang River and Yellow River.

    PubMed

    Liu, Dong; Pan, Delu; Bai, Yan; He, Xianqiang; Wang, Difeng; Zhang, Lin

    2015-11-15

    Real-time monitoring of riverine dissolved organic carbon (DOC) and the associated controlling factors is essential to coastal ocean management. This study was the first to simulate the monthly DOC concentrations at the Datong Hydrometric Station for the Changjiang River and at the Lijin Hydrometric Station for the Yellow River from 2000 to 2013 using a multilayer back-propagation neural network (MBPNN), along with basin remote-sensing products and river in situ data. The average absolute error between the modeled values and in situ values was 9.98% for the Changjiang River and 10.84% for the Yellow River. As an effect of water dilution, the variations of DOC concentrations in the two rivers were significantly negatively affected by discharge, with lower values reported during the wet season. Moreover, vegetation growth status and agricultural activities, represented by the gross primary product (GPP) and cropland area percent (CropPer) in the river basin, respectively, also significantly affected the DOC concentration in the Changjiang River, but not the Yellow River. The monthly riverine DOC flux was calculated using modeled DOC concentrations. In particular, the riverine DOC fluxes were affected by discharge, with 71.06% being reported for the Changjiang River and 90.71% for the Yellow River. Over the past decade, both DOC concentration and flux in the two rivers have not shown significant changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene.

    PubMed

    Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian

    2018-01-08

    The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.

  16. Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Tang, Q.

    2017-12-01

    Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.

  17. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    PubMed

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  19. Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China.

    PubMed

    Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong

    2017-08-15

    Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.

  20. Riverine input of organic carbon and nitrogen in water-sediment system from the Yellow River estuary reach to the coastal zone of Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Wang, Chuanyuan; Lv, Yingchun; Li, Yuanwei

    2018-04-01

    The temporal-spatial distribution of the carbon and nitrogen contents and their isotopic compositions of suspended matter and sediments from the Yellow River estuary reach (YRER), the estuary to the offshore area were measured to identify the source of organic matter. The higher relative abundances of suspended and sedimentary carbon and nitrogen (POC, TOC, PN and TN) in the offshore marine area compared to those of the riverine and estuarine areas may be due to the cumulative and biological activity impact. The organic matter in surface sediments of YRER, the estuary and offshore area of Bohai Sea is basically the mixture of continental derived material and marine material. The values of δ13Csed fluctuate from values indicative of a land source (- 22.50‰ ± 0.31) to those indicative of a sea source (- 22.80‰ ± 0.38), which can be attributed to the fine particle size and decrease in terrigenous inputs to the offshore marine area. Contrary to the slight increase of POC and PN during the dry season, TOC and TN contents of the surface sediments during the flood season (October) were higher than those during the dry season (April). The seasonal differences in water discharge and suspended sediment discharge of the Yellow River Estuary may result in seasonal variability in TOC, POC, TN and PN concentrations in some degree. Overall, the surface sediments in the offshore area of Bohai Sea are dominated by marine derived organic carbon, which on average, accounts for 58-82% of TOC when a two end-member mixing model is applied to the isotopic data.

  1. Yellow River Delta, China

    NASA Image and Video Library

    2009-12-08

    The Yellow River is the second-longest river in China, and the sixth longest in the world and makes many dramatic shifts over time. This image was taken with the ASTER instrument aboard NASA Terra spacecraft in 2009.

  2. Effects of permafrost degradation on vegetation in the Source Area of the Yellow River NE Qinghai Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xiaoying, Jin; Huijun, Jin

    2017-04-01

    Permafrost degradation caused by climate warming has markedly changed ecological environment in the Source Area of the Yellow River, in the northeast of the Qinghai Tibetan Plateau. However, related research about ecological impact of permafrost degradation is limited in this area. More attentions should be paid to the impact of permafrost degradation on alpine grassland. In this study vegetation characteristics (plant species composition, vegetation cover and biomass, etc.) at different permafrost degradation stages (as represented by the continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone) is investigated. The results showed that (1) there are total 64 species in continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone, and seasonally frozen ground zone has more species than transitional zone and permafrost zone, (2) sedge is the dominant species in three zones. But Shrub only presented in the seasonally frozen ground zone. These results suggest that permafrost degradation affect the species number and species composition of alpine grassland.

  3. Remote sensing of cloud distributions over the Bayanhar Mountains - Watershed of the Yangtze and Yellow rivers

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.; Dodge, J. C.; Smith, R. E.

    1986-01-01

    Although the two largest rivers in China originate in the same region separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian sea and the Bay of Bengal are blocked by the Bayanhar Mountains. As a result the amount of water in the Yellow River is only 5 percent of that in the Yangtze river. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 km of the cumulus clouds located north and south of the Bayanhar Mountains from the geosynchronous satellite infrared imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  4. Satellite remote sensing of water resources in the Yangtze and Yellow Rivers of China based on infrared imagery of cloud distributions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Dodge, James C.

    1990-01-01

    Although the two largest rivers in China originate in the same region, separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow Rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian Sea and Bay of Bengal are blocked by the Bayanhar Mountains. As a result, the amount of water in the Yellow River is only 5 percent of that in the Yangtze River. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 kms of the cumulus clouds located north and south of the Bayanhar Mountains, from GEO satellite IR imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  5. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment

    NASA Astrophysics Data System (ADS)

    Hu, ZhenBo; Pan, BaoTian; Bridgland, David; Vandenberghe, Jef; Guo, LianYong; Fan, YunLong; Westaway, Rob

    2017-06-01

    The upper-middle Yellow River flows through the Fenwei graben, a structure resulting from extensional tectonism that was formed and repeatedly extended during the Cenozoic. The drainage system within this graben was formerly isolated from the lower reaches of the Yellow River system by the Xiaoshan mountains, an actively growing ∼ NW-SE trending range. The modern course of the Yellow River takes it through this range along the Sanmen gorge, the formation of which was of great significance in that it initiated through-going drainage between the upper-middle and lower reaches of the system. The timing of this event, which was clearly a critical point in the evolution of the Yellow River, can be established by dating the terraces in the gorge. Intermittent deepening of this gorge by the Yellow River from a high-level planation surface capping the mountain range has resulted in the formation of five terraces. Magnetostratigraphic records from aeolian deposits accumulated on these surfaces provide a geochronological sequence for this geomorphic archive, in which the ages of the planation surface and of terraces T5, T4, T3, T2, and T1 have been determined as ∼3.63 Ma, ∼1.24 Ma, ∼0.86 Ma, ∼0.62 Ma, ∼129 ka, and ∼12 ka, respectively. Under the constraint of this chronological framework, a model for landscape evolution is proposed here. Uplift of the inner Fenwei graben and of the surrounding mountain ranges led to dissection of the 3.63 Ma old planation surface in conjunction with the formation of the Sanmen gorge. Drainage of the lake previously occupying the basin would have promoted incision into the fluvio-lacustrine graben sediments; indeed, gorge formation through the Xiaoshan may have been initiated or intensified by lake overflow. The ages obtained for the planation surface and uppermost terrace suggest that the formation of the Sanmen gorge and the initiation of the through-going eastward drainage of the Yellow River occurred between 3.63 and 1.24 Ma. Before the start of gorge entrenchment, the products of erosion in the modern upper catchment of the Yellow River were unable to reach the sea. The dramatic increase in deposition rates in the Bohai Gulf (at the mouth of the modern Yellow River in the East China Sea), ∼1.0 Ma ago, thus resulted from the initiation of an integral (enlarged) Yellow River catchment drainage through the Sanmen gorge; it does not imply an increase in erosion rates at that time.

  6. Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009-2012.

    PubMed

    Liu, Xiaowei; Shi, Jianghong; Bo, Ting; Zhang, Hui; Wu, Wei; Chen, Qingcai; Zhan, Xinmin

    2014-01-01

    The first nationwide survey of six phthalic acid esters (PAEs) (diethyl phthalate (DEP); dimethyl phthalate (DMP); di-n-butyl phthalate (DBP); butyl benzyl phthalate (BBP); bis(2-ethylhexyl) phthalate (DEHP); di-n-octyl phthalate (DnOP)) in source waters was conducted in China. The results showed these PAEs were ubiquitous in source waters. DBP and DEHP were the most frequently detected with high concentrations ranging nd-1.52 μg/L and nd-6.35 μg/L, respectively. These PAEs concentrations (except DBP) in surface water (rivers, lakes and reservoirs) were generally higher than those in groundwater; DBP had high concentrations in groundwater in Northeast China (Liao River Basin) and North China (Hai River Basin). Their concentrations in the northern regions were generally higher than those in the southern and eastern regions; particularly, in North China. Three short-chain PAEs (DMP, DEP and DBP) were detected with high concentrations in Hai River Basin, Pearl River Basin and Yellow River Basin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Dynamics of organic and inorganic carbon in surface sediments of the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Wang, X.; Liu, X.; Zhang, E.; Hang, F.

    2017-12-01

    Estuarine sediment is an important carbon reservoir thus may play an important role in the global carbon cycle. However, little is known on the dynamics of organic carbon (OC) and inorganic carbon (IC) in the surface sediment of the Yellow River Estuary, a large estuary in northern China. In this study, we applied element analyses and isotopic approach to study spatial distribution and sources of OC and IC in the Yellow River Estuary. We found that TIC concentration (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the surface sediment. There showed a large spatial variability in TOC and TIC and their stable isotopes. Both TOC and TIC were higher to the north (2.6 and 14.5 g kg-1) than to the south (1.6 and 12.2 g kg-1), except in the southern bay where TOC and TIC reached 2.7 and 15.4 g kg-1, respectively. Generally, TOC and TIC in our study area was mainly autochthonous. The lower TOC values in the south section were due to relatively higher kinetic energy level whereas the higher values in the bay was attributable to terrigenous matters accumulation and lower kinetic energy level. However, the southern bay revealed the most negative δ13Corg and δ13Ccarb, suggesting that there might exist some transfer of OC to IC in the section. Our study points out that the dynamics of sedimentary carbon in the Yellow River Estuary is influenced by multiple and complex processes, and highlights the importance of carbonate in carbon sequstration.

  8. Documentation of a Gulf sturgeon spawning site on the Yellow River, Alabama, USA

    USGS Publications Warehouse

    Kreiser, Brian R.; Berg, J.; Randall, M.; Parauka, F.; Floyd, S.; Young, B.; Sulak, Kenneth J.

    2008-01-01

    Parauka and Giorgianni (2002) reported that potential Gulf sturgeon spawning habitat is present in the Yellow River; however, efforts to document spawning by the collection of eggs or larvae have been unsuccessful in the past. Herein, we report on the first successful collection of eggs from a potential spawning site on the Yellow River and the verification of their identity as Gulf sturgeon by using molecular methods.

  9. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry.

    PubMed

    Li, Jing; Li, Fadong; Liu, Qiang

    2017-07-01

    Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ 18 O and δ 2 H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ 18 O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Xu, M., III; Liu, X.

    2017-12-01

    In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using different empirical researching methods. Besides, we put forward an assessment frame for the researching methods of the runoff and sediment load variations in the Yellow River Basin from the point of view of inputting data, model structure and result output. And the assessment frame was then applied in the Huangfuchuan River.

  11. Impacts of human activities on nutrient transport in the Yellow River: The role of the Water-Sediment Regulation Scheme.

    PubMed

    Li, Xinyu; Chen, Hontao; Jiang, Xueyan; Yu, Zhigang; Yao, Qingzhen

    2017-08-15

    Anthropogenic activities alter the natural states of large rivers and their surrounding environment. The Yellow River is a well-studied case of a large river with heavy human control. An artificial managed water and sediment release system, known as the Water-Sediment Regulation Scheme (WSRS), has been carried out annually in the Yellow River since 2002. Nutrient concentrations and composition display significant time and space variations during the WSRS period. To figure out the anthropogenic impact of nutrient changes and transport in the Yellow River, biogeochemical observations were carried out in both middle reaches and lower reaches of the Yellow River during 2014 WSRS period. WSRS has a direct impact on water oxidation-reduction environment in the middle reaches; concentrations of nitrite (NO 2 - ) and ammonium (NH 4 + ) increased, while nitrate (NO 3 - ) concentration decreased by enhanced denitrification. WSRS changed transport of water and sediment; dissolved silicate (DSi) in the middle reaches was directly controlled by sediments release during the WSRS while in the lower reaches, DSi changed with both sediments and water released from middle reaches. During the WSRS, the differences of nutrient fluxes and concentrations between lower reaches and middle reaches were significant; dissolved inorganic phosphorous (DIP) and dissolved inorganic nitrogen (DIN) were higher in low reaches because of anthropogenic inputs. Human intervention, especially WSRS, can apparently change the natural states of both the mainstream and estuarine environments of the Yellow River within a short time. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Carbon Emission from Tibet Plateau Rivers: a Case Study of the Yellow River Headwater Region

    NASA Astrophysics Data System (ADS)

    Lu, X. X.; Yang, X.; Tian, M. Y.; Su, Y. R.; Ran, L.; Hu, H. Z.; Yu, R. H.

    2017-12-01

    Global warming will have major impacts on the high-altitude environments, including glacier retreats and permafrost thawing. Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. Study on riverine sediment and carbon fluxes from permafrost thawing and glacial retreat at high latitudes can help to identify the potential hazards of carbon emissions and provide scientific references for formulating climate adaptation strategy. The headwater region of the Yellow River, located in the north eastern Tibetan Plateau, retains a huge amount of organic carbon stored in the widely distributed meadow and steppe soils, which has been and will be affected by climate change. For example, carbon storage in the Ruoergai (Zoige) wetlands surrounded by mountain glaciers and permafrost is estimated at 23.2 Gt, representing a very high percentage of the soil carbon in the entire Tibet Plateau. Global warming will have far-reaching impacts on riverine sediment and carbon fluxes in this region. However, the amount of riverine carbon released by glacier retreat and permafrost thawing has not been well studied in this region. This talk will report our results obtained from 4 rounds of field campaign in the headwater region of the Yellow River, with a focus of the river and stream systems in the Ruoergai peatland and the Anyemaqen glacier. Our preliminary results indicated that riverine carbon emission from the headwater region was much higher than our previous report estimated from water chemistry data. With increase in temperature the rivers in Himalayas and Tibet Plateau are potential carbon source areas.

  13. Wash load and bed-material load transport in the Yellow River

    USGS Publications Warehouse

    Yang, C.T.; Simoes, F.J.M.

    2005-01-01

    It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.

  14. Study on Spatio-Temporal Change of Ecological Land in Yellow River Delta Based on RS&GIS

    NASA Astrophysics Data System (ADS)

    An, GuoQiang

    2018-06-01

    The temporal and spatial variation of ecological land use and its current distribution were studied to provide reference for the protection of original ecological land and ecological environment in the Yellow River Delta. Using RS colour synthesis, supervised classification, unsupervised classification, vegetation index and other methods to monitor the impact of human activities on the original ecological land in the past 30 years; using GIS technology to analyse the statistical data and construct the model of original ecological land area index to study the ecological land distribution status. The results show that the boundary of original ecological land in the Yellow River Delta had been pushed toward the coastline at an average speed of 0.8km per year due to human activities. In the past 20 years, a large amount of original ecological land gradually transformed into artificial ecological land. In view of the evolution and status of ecological land in the Yellow River Delta, related local departments should adopt differentiated and focused protection measures to protect the ecological land of the Yellow River Delta.

  15. 76 FR 14897 - Boundary Establishment for the Yellow Dog National Wild and Scenic River, Ottawa National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF AGRICULTURE Forest Service Boundary Establishment for the Yellow Dog National Wild... Dog National Wild and Scenic River to Congress. FOR FURTHER INFORMATION CONTACT: Information may be..., Ironwood, MI 49938, (906) 932-1330, ext. 342. SUPPLEMENTARY INFORMATION: The Yellow Dog Wild and Scenic...

  16. Effects of water temperature on breeding phenology, growth and timing of metamorphosis of foothill yellow-legged frogs (Rana boylii) on the mainstem and selected tributaries of California's Trinity River - 2004-2009.

    Treesearch

    Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh

    2013-01-01

    The cold temperatures maintained in the Trinity River are beneficial to fish but may be problematic for foothill yellow-legged frogs. We examined the timing of breeding, reproductive output, and growth and development of tadpoles for populations of foothill yellow-legged frogs on the mainstem and six tributaries of the Trinity River. On the colder mainstem, onset of...

  17. Influence of a water regulation event on the age of Yellow River water in the Bohai

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Haiyan; Guo, Xinyu; Liu, Zhe; Gao, Huiwang; Zhang, Guiling

    2017-10-01

    Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions (without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.

  18. Modeling potential river management conflicts between frogs and salmonids

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Sarah J. Kupferberg; Margaret M. Lang; Scott McBain; Hart H. Welsh

    2016-01-01

    Management of regulated rivers for yellow-legged frogs (Rana boylii) and salmonids exemplifies potential conflicts among species adapted to different parts of the natural flow and temperature regimes. Yellow-legged frogs oviposit in rivers in spring and depend on declining flows and warming temperatures for egg and tadpole survival and growth,...

  19. Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay

    USGS Publications Warehouse

    Simon, N.S.

    2005-01-01

    The fate of antibiotics that bind to riverine sediment is not well understood. A solution used in geochemical extraction schemes to determine loosely bound species in sediments, 1 M MgCl2 (pH 8), was chosen to determine loosely bound, and potentially bioavailable, tetracycline antibiotics (TCs), including oxytetracycline (5-OH tetracycline) (OTC) in sediment samples from two rivers on the eastern shore of the Chesapeake Bay. Bottom sediments were collected at sites upstream from, at, and downstream from municipal sewage-treatment plants (STPs) situated on two natural waterways, Yellow Bank Stream, MD, and the Pocomoke River, MD. Concentrations of easily desorbed OTC ranged from 0.6 to approximately 1.2 ??g g-1 dry wt sediment in Yellow Bank Stream and from 0.7 to approximately 3.3 ??g g-1 dry wt sediment in the Pocomoke River. Concentrations of easily desorbable OTC were generally smaller in sediment upstream than in sediment downstream from the STP in the Pocomoke River. STPs and poultry manure are both potential sources of OTC to these streams. OTC that is loosely bound to sediment is subject to desorption. Other researchers have found desorbed TCs to be biologically active compounds.

  20. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework

    NASA Astrophysics Data System (ADS)

    Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan

    2018-03-01

    The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.

  1. From Source to Sink of Polycyclic Aromatic Hydrocarbons in Sediments in the East China Seas

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Lin, T.; Hu, L.

    2014-12-01

    The East China Seas (ECSs), including Bohai Sea (77,000 km2), Yellow Sea (400,000 km2) and East China Sea (770,000 km2) have experienced a great variety of demographic and economic conditions which have a profound influence on the source composition of land-based polycyclic aromatic hydrocarbons (PAHs) in the sediments since ECSs's coasts support about 420 million peoples, provide more than half of the national GDP in China in 2007, and are major emission regions of PAHs in China. Furthermore, the ECSs are downwind of the Asian continental outflow in spring and winter driven by the East Asian monsoon. The sources of 16 USEPA priority PAHs in strategically selected surface sediment samples from the ECSs were apportioned using positive matrix factorization model, and the input pathways of PAHs were also revealed in the regions. Four sources were identified: petroleum residue, vehicular emissions, coal combustion and biomass burning. Petroleum residue was the dominant contributor of PAHs in the coast of the Bohai Bay probably due to Haihe River runoff, oil leakage from ships and offshore oil fields. The PAHs in sediments of the coastal East China Sea were mainly sourced from the Yangtze River discharge into the sea. The combined results of PMF, PCA and composition of PAHs suggest that the atmospheric deposition is the dominate input of PAHs for the open seas of Bohai Sea, East China Sea and Yellow Sea; while river input is the major pathway of PAHs in the estuarine and neighborhood coastal areas. The demographic and economic conditions around the ECSs have profound influence on the origins of the land-based PAHs in the sediments of the open seas.

  2. Water security evaluation in Yellow River basin

    NASA Astrophysics Data System (ADS)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  3. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin

    NASA Astrophysics Data System (ADS)

    Guo, Benhong; Liu, Shanpin; Peng, Tingjiang; Ma, Zhenhua; Feng, Zhantao; Li, Meng; Li, Xiaomiao; Li, Jijun; Song, Chunhui; Zhao, Zhijun; Pan, Baotian; Stockli, Daniel F.; Nie, Junsheng

    2018-02-01

    The fluvial archives in the upper-reach Yellow River basins provide important information about drainage history of the northeastern Tibetan Plateau (TP) associated with geomorphologic evolution and climate change. However, the Pliocene fluvial strata within this region have not been studied in detail, hence limiting the understanding of the late Cenozoic development of regional fluvial systems. In this paper, we present the results of a study of the geochronology, sedimentology, and provenance of the fluvial sequence of the Wuquan Formation in the Lanzhou Basin in the northeastern TP. Magnetostratigraphic and cosmogenic nuclide burial ages indicate that the Wuquan Formation was deposited during 3.6-2.2 Ma. Furthermore, sedimentary facies, gravel composition, paleocurrent data, and detrital zircon Usbnd Pb age spectra reveal that the fluvial sequence resembles the terraces of the Yellow River in terms of source area, flow direction, and depositional environment. Our results indicate that a paleo-drainage system flowing out of the northeastern TP was established by ca. 3.6 Ma and that the upstream parts of the Yellow River must have developed subsequently from this paleo-drainage system. The late Pliocene drainage system fits well with the dramatic uplift of the northeastern TP, an intensified Asian summer monsoon, and global increase in erosion rates, which may reflect interactions between geomorphic evolution, tectonic deformation, and climate change.

  4. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China.

    PubMed

    Kong, Dongxian; Miao, Chiyuan; Wu, Jingwen; Borthwick, Alistair G L; Duan, Qingyun; Zhang, Xiaoming

    2017-02-01

    The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects.

  5. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  6. Hydrological responses to climatic changes in the Yellow River basin, China: Climatic elasticity and streamflow prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Liu, Jianyu; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-11-01

    Prediction of streamflow of the Yellow River basin was done using downscaled precipitation and temperature based on outputs of 12 GCMs under RCP2.6 and RCP8.5 scenarios. Streamflow changes of 37 tributaries of the Yellow River basin during 2070-2099 were predicted related to different GCMs and climatic scenarios using Budyko framework. The results indicated that: (1) When compared to precipitation and temperature during 1960-1979, increasing precipitation and temperature are dominant during 2070-2099. Particularly, under RCP8.5, increase of 10% and 30% can be detected for precipitation and temperature respectively; (2) Precipitation changes have larger fractional contribution to streamflow changes than temperature changes, being the major driver for spatial and temporal patterns of water resources across the Yellow River basin; (3) 2070-2099 period will witness increased streamflow depth and decreased streamflow can be found mainly in the semi-humid regions and headwater regions of the Yellow River basin, which can be attributed to more significant increase of temperature than precipitation in these regions; (4) Distinctly different picture of streamflow changes can be observed with consideration of different outputs of GCMs which can be attributed to different outputs of GCMs under different scenarios. Even so, under RCP2.6 and RCP8.5 scenarios, 36.8% and 71.1% of the tributaries of the Yellow River basin are dominated by increasing streamflow. The results of this study are of theoretical and practical merits in terms of management of water resources and also irrigated agriculture under influences of changing climate.

  7. Origin and depositional environment of fine-grained sediments since the last glacial maximum in the southeastern Yellow Sea: evidence from rare earth elements

    NASA Astrophysics Data System (ADS)

    Um, In Kwon; Choi, Man Sik; Lee, Gwang Soo; Chang, Tae Soo

    2015-12-01

    Despite the well-reconstructed seismic stratigraphy of the Holocene mud deposit in the southeastern Yellow Sea, known as the Heuksan mud belt (HMB), the provenances of these sediments and their depositional environments are unclear, especially for the fine-grained sediments. According to seismic data (extracted from another article in this special issue), the HMB comprises several sedimentary units deposited since the last glacial maximum. Based on analytical results on rare earth elements, fine-grained sediments in all sedimentary units can be interpreted as mixtures of sediments discharged from Chinese and Korean rivers. The proportions of fine-grained sediments from Chinese rivers (74.5 to 80.0%) were constant and higher than those from Korean rivers in all units. This fact demonstrates that all units have the same fine-grained sediment provenance: units III-b and III-a, located in the middle and northern parts of the HMB and directly deposited from Chinese rivers during the sea-level lowstand, could be the sediment source for units II-b and II-a. Unit I, while ambiguous, is of mixed origin combining reworked sediments from nearby mud deposits and Changjiang River-borne material with those of the Keum River. The results of this study indicate that at least 18.6% of bulk sediments in the HMB clearly originate from Chinese rivers, despite its location close to the southwestern coast of Korea.

  8. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China.

    PubMed

    Chen, Xichao; Luo, Qian; Wang, Donghong; Gao, Jijun; Wei, Zi; Wang, Zijian; Zhou, Huaidong; Mazumder, Asit

    2015-11-01

    Owing to the growing public awareness on the safety and aesthetics in water sources, more attention has been given to the adverse effects of volatile organic compounds (VOCs) on aquatic organisms and human beings. In this study, 77 target VOCs (including 54 common VOCs, 13 carbonyl compounds, and 10 taste and odor compounds) were detected in typical drinking water sources from 5 major river basins (the Yangtze, the Huaihe, the Yellow, the Haihe and the Liaohe River basins) and their occurrences were characterized. The ecological, human health, and olfactory assessments were performed to assess the major hazards in source water. The investigation showed that there existed potential ecological risks (1.30 × 10 ≤ RQtotals ≤ 8.99 × 10) but little human health risks (6.84 × 10(-7) ≤ RQtotals ≤ 4.24 × 10(-4)) by VOCs, while that odor problems occurred extensively. The priority contaminants in drinking water sources of China were also listed based on the present assessment criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mapping Robinia pseudoacacia forest health in the Yellow River delta by using high-resolution IKONOS imagery and object-based image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lu, Kaiyu; Pu, Ruiliang

    2016-10-01

    The Robinia pseudoacacia forest in the Yellow River delta of China has been planted since the 1970s, and a large area of dieback of the forest has occurred since the 1990s. To assess the condition of the R. pseudoacacia forest in three forest areas (i.e., Gudao, Machang, and Abandoned Yellow River) in the delta, we combined an estimation of scale parameters tool and geometry/topology assessment criteria to determine the optimal scale parameters, selected optimal predictive variables determined by stepwise discriminant analysis, and compared object-based image analysis (OBIA) and pixel-based approaches using IKONOS data. The experimental results showed that the optimal segmentation scale is 5 for both the Gudao and Machang forest areas, and 12 for the Abandoned Yellow River forest area. The results produced by the OBIA method were much better than those created by the pixel-based method. The overall accuracy of the OBIA method was 93.7% (versus 85.4% by the pixel-based) for Gudao, 89.0% (versus 72.7%) for Abandoned Yellow River, and 91.7% (versus 84.4%) for Machang. Our analysis results demonstrated that the OBIA method was an effective tool for rapidly mapping and assessing the health levels of forest.

  10. Biological control of yellow starthistle (Centaurea solstitialis) in the Salmon River Canyon of Idaho

    Treesearch

    Jennifer L. Birdsall; George P. Markin

    2010-01-01

    Yellow starthistle is an invasive, annual, spiny forb that, for the past 30 yr has been steadily advancing up the Salmon River Canyon in west central Idaho. In 1994, a decision was made to attempt to manage yellow starthistle by establishing a complex of biological control agents in a containment zone where the weed was most dense. Between 1995 and 1997, six species of...

  11. Characteristics of soil C:N ratio and δ13C in wheat-maize cropping system of the North China Plain and influences of the Yellow River.

    PubMed

    Shi, Huijin; Wang, Xiujun; Xu, Minggang; Zhang, Haibo; Luo, Yongming

    2017-12-04

    To better understand the characteristics of soil organic matter (SOM) in the North China Plain, we evaluate the large scale variations of soil organic carbon (SOC), total nitrogen (TN), carbon to nitrogen (C:N) ratio and stable carbon isotopic compositions (δ 13 C) in SOC over 0-100 cm. To assess the influence of the Yellow River, 31 sites are selected from the wheat-maize double cropping system, and grouped into two: 10 sites near and 21 sites far from the river. Our data show that mean soil C:N ratio is low (7.6-9.9) across the region, and not affected by the Yellow River. However, SOC and TN are significantly (P < 0.05) lower in subsoil near the Yellow River (2.0 and 0.2-0.3 g kg -1 for SOC and TN) than far away (3.1 and 0.4 g kg -1 ); δ 13 C is significantly more negative below 60 cm near the river (-23.3 to -22.6‰) than far away (-21.8 to -21.4‰). We estimate that the contributions of wheat and maize to SOC are 61.3-68.1% and 31.9-38.8%, respectively. Our analyses indicate that the overall low levels of SOC in the North China Plain may be associated with the low soil C:N ratio and less clay content. The hydrological processes may also partly be responsible, particularly for those near the Yellow River.

  12. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  13. Century-scale high-resolution black carbon records in sediment cores from the South Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Hong, Yuehui; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Lirong; Wang, Jianghai

    2018-01-01

    Black carbon (BC) has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance, preserving fire-history records, and more importantly, acting as an indicator of biogeochemical cycles and global changes. By adopting an improved chemothermal oxidation method (WXY), this study reconstructed the century-scale high-resolution records of BC deposition from two fine-grained sediment cores collected from the Yellow Sea Cold Water Mass in the South Yellow Sea. The BC records were divided into five stages, which exhibited specific sequences with three BC peaks at approximately 1891, 1921, and 2007 AD, representing times at which the first heavy storms appeared just after the termination of long-term droughts. The significant correlation between the times of the BC peaks in the cores and heavy storms in the area of the Huanghe (Yellow) River demonstrated that BC peaks could result from markedly strengthened sedimentation due to surface runoff, which augmented the atmospheric deposition. Stable carbon isotope analysis indicated that the evident increase in carbon isotope ratios of BC in Stage 5 might have resulted from the input of weathered rock-derived graphitic carbon cardinally induced by the annual anthropogenic modulation of water-borne sediment in the Huanghe River since 2005 AD. Numerical calculations demonstrated that the input fraction of graphitic carbon was 22.97% for Stage 5, whereas no graphitic carbon entered during Stages 1 and 3. The obtained data provide new and important understanding of the source-sink history of BC in the Yellow Sea.

  14. Simulation of irrigation effect on water cycle in Yellow River catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-12-01

    The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.

  15. Ecological restoration and its effects on a regional climate: the source region of the Yellow River, China.

    PubMed

    Li, Zhouyuan; Liu, Xuehua; Niu, Tianlin; Kejia, De; Zhou, Qingping; Ma, Tianxiao; Gao, Yunyang

    2015-05-19

    The source region of the Yellow River, China, experienced degradation during the 1980s and 1990s, but effective ecological restoration projects have restored the alpine grassland ecosystem. The local government has taken action to restore the grassland area since 1996. Remote sensing monitoring results show an initial restoration of this alpine grassland ecosystem with the structural transformation of land cover from 2000 to 2009 as low- and high-coverage grassland recovered. From 2000 to 2009, the low-coverage grassland area expanded by over 25% and the bare soil area decreased by approximately 15%. To examine the relationship between ecological structure and function, surface temperature (Ts) and evapotranspiration (ET) levels were estimated to study the dynamics of the hydro-heat pattern. The results show a turning point in approximately the year 2000 from a declining ET to a rising ET, eventually reaching the 1990 level of approximately 1.5 cm/day. We conclude that grassland coverage expansion has improved the regional hydrologic cycle as a consequence of ecological restoration. Thus, we suggest that long-term restoration and monitoring efforts would help maintain the climatic adjustment functions of this alpine grassland ecosystem.

  16. Contribution of petroleum-derived organic carbon to sedimentary organic carbon pool in the eastern Yellow Sea (the northwestern Pacific).

    PubMed

    Kim, Jung-Hyun; Lee, Dong-Hun; Yoon, Suk-Hee; Jeong, Kap-Sik; Choi, Bohyung; Shin, Kyung-Hoon

    2017-02-01

    We investigated molecular distributions and stable carbon isotopic compositions (δ 13 C) of sedimentary n-alkanes (C 15 C 35 ) in the riverbank and marine surface sediments to trace natural and anthropogenic organic carbon (OC) sources in the eastern Yellow Sea which is a river dominated marginal sea. Molecular distributions of n-alkanes are overall dominated by odd-carbon-numbered high molecular weight n-C 27 , n-C 29 , and n-C 31 . The δ 13 C signatures of n-C 27 , n-C 29 , and n-C 31 indicate a large contribution of C 3 gymnosperms as the main source of n-alkanes, with the values of -29.5 ± 1.3‰, -30.3 ± 2.0‰, and -30.0 ± 1.7‰, respectively. However, the contribution of thermally matured petroleum-derived OC to the sedimentary OC pool is also evident, especially in the southern part of the study area as shown by the low carbon preference index (CPI 25-33 , <1) and natural n-alkanes ratio (NAR, <-0.6) values. Notably, the even-carbon-numbered long-chain n-C 28 and n-C 30 in this area have higher δ 13 C values (-26.2 ± 1.5‰ and -26.5 ± 1.9‰, respectively) than the odd-carbon-numbered long-chain n-C 29 and n-C 31 (-28.4 ± 2.7‰ and -28.4 ± 2.4‰, respectively), confirming two different sources of long-chain n-alkanes. Hence, our results highlight a possible influence of petroleum-induced OC on benthic food webs in this ecosystem. However, the relative proportions of the natural and petroleum-derived OC sources are not calculated due to the lack of biogeochemical end-member data in the study area. Hence, more works are needed to constrain the end-member values of the organic material supplied from the rivers to the eastern Yellow Sea and thus to better understand the source and depositional process of sedimentary OC in the eastern Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  18. A Cultural Resources Inventory of the Proposed Dry Impoundment Area North of Ross Barnett Reservoir and Field Reconnaissance of the Pearl River, between River Miles 278 and 301, in the Vicinity of Jackson, Mississippi.

    DTIC Science & Technology

    1982-08-01

    are about twice as many herbs as shrubs and vines. These subordinate species support a rich fauna of insectp and spiders. The understory trees include...coco, three-cornered grass, yellow cut grass, bull tongue, pickerel weed and wild mullet charac- terize the vegetation in the brackish marshes. The...that frog legs are generally known as a good source of food, and in aboriginal times, salamanders were also eaten. Edible and larger frogs that would

  19. Distribution, sources and contamination assessment of heavy metals in surface sediments of the South Yellow Sea and northern part of the East China Sea.

    PubMed

    Lu, Jian; Li, Anchun; Huang, Peng

    2017-11-15

    Surface sediment samples collected from the South Yellow Sea and northern part of the East China Sea during spring and autumn, respectively, were analyzed for grain size, aluminum, and heavy metals (Cr, Ni, Cu, Zn, and Pb) to evaluate heavy metal levels and the contamination status. The results showed that all of the heavy metal concentrations met the standard criteria of the Chinese National Standard Criteria for Marine Sediment Quality. Both the EFs and a multivariate analysis (PCA) indicated that Cr, Ni, Cu, and Zn were mainly from natural contributions, while Pb was influenced by anthropogenic inputs, especially during autumn. The geoaccumulation index of Pb near the mouth of the Yangtze River suggested that the pollution degree in autumn was heavier than that in spring, which might be caused by the greater river discharge in summer and more heavy metal adsorption with finer grain sizes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Coastline change and marine geo-hazards in the Yellow River Delta (China)

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Liu, J.; Liu, X.

    2003-04-01

    COASTLINE CHANGE AND MARINE GEO-HAZARDS IN THE YELLOW RIVER DELTA (CHINA) Zhou Liangyong(1,2), Liu Jian(1,3), Liu Xiqing(1) (1)Qingdao Institute of Marine Geology,(2)Ocean University of China,(3)Research Centre for Coastal Geology, CGS qdzliangyong@cgs.gov.cn/Fax: +86-532-5720553 Satellite remote sensing, bathymetry and high-resolution seismic data have been used to examine the coastline change during the period from 1976 to 2001 and the offshore marine geo-hazards in the modern Yellow River Delta. Trends in the temporal sequence of the eight coastlines derived from Landsat images were used in the definition of erosional classes of the coastline. Four classes were distinguished, including rapid erosion (>100 m/yr), moderate erosion (20-100 m/yr), no detectable erosion (-1 - 20 m/yr), and accretion (-200--1 m/yr). We revealed the subtle variations in sea floor morphology and sediment geometries using high-resolution acoustic survey. Many kinds of geo-hazards were identified in the active subaqueous delta lobe and abandoned delta lobes, such as seabed erosions, gas-charged sediments, listric faults, synsedimentary rises, incised palaeo-valleys, infilled gullies, diapirs, active slope failures and sediment collapses. The resultant map of geo-envrionment and geo-hazards presents the coastline change and distribution of geo-hazards mentioned above in the Yellow River Delta. The gas-charged sediment distributes mainly in the abandoned delta lobes. The synsedimentary rise outside of the modern river mouth is a new evidence for the seabed mass-movement which modifies the progradational subaquaeous slopes of modern Yellow River Delta.

  1. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques.

    PubMed

    Ma, Xiaoling; Zuo, Hang; Tian, Mengjing; Zhang, Liyang; Meng, Jia; Zhou, Xuening; Min, Na; Chang, Xinyuan; Liu, Ying

    2016-02-01

    Metal chemical fractions obtained by optimized BCR three-stage extraction procedure and multivariate analysis techniques were exploited for assessing 7 heavy metals (Cr, Pb, Cd, Co, Cu, Zn and Ni) in sediments from Gansu province, Ningxia and Inner Mongolia Autonomous Regions of the Yellow River in Northern China. The results indicated that higher susceptibility and bioavailability of Cr and Cd with a strong anthropogenic source were due to their higher availability in the exchangeable fraction. A portion of Pb, Cd, Co, Zn, and Ni in reducible fraction may be due to the fact that they can form stable complexes with Fe and Mn oxides. Substantial amount of Pb, Co, Ni and Cu was observed as oxidizable fraction because of their strong affinity to the organic matters so that they can complex with humic substances in sediments. The high geo-accumulation indexes (I(geo)) for Cr and Cd showed their higher environmental risk to the aquatic biota. Principal component analysis (PCA) revealed that high toxic Cr and Cd in polluted sites (Cd in S10, S11 and Cr in S13) may be contributed to anthropogenic sources, it was consistent with the results of dual hierarchical clustering analysis (DHCA), which could give more details about contributing sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea.

    PubMed

    Liu, Xiaochen; Beusen, Arthur H W; Van Beek, Ludovicus P H; Mogollón, José M; Ran, Xiangbin; Bouwman, Alexander F

    2018-06-04

    Nitrogen (N) and phosphorus (P) flows from land to sea in the Yangtze River basin were simulated for the period 1900-2010, by combining models for hydrology, nutrient input to surface water, and an in-stream retention. This study reveals that the basin-wide nutrient budget, delivery to surface water, and in-stream retention increased during this period. Since 2004, the Three Gorges Reservoir has contributed 5% and 7% of N and P basin-wide retention, respectively. With the dramatic rise in nutrient delivery, even this additional retention was insufficient to prevent an increase of riverine export from 337 Gg N yr -1 and 58 Gg P yr -1 (N:P molar ratio = 13) to 5896 Gg N yr -1 and 381 Gg P yr -1 (N:P molar ratio = 35) to the East China Sea and Yellow Sea (ECSYS). The midstream and upstream subbasins dominate the N and P exports to the ECSYS, respectively, due to various human activities along the river. Our spatially explicit nutrient source allocation can aid in the strategic targeting of nutrient reduction policies. We posit that these should focus on improving the agricultural fertilizer and manure use efficiency in the upstream and midstream and better urban wastewater management in the downstream subbasin. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  4. Development of yellow perch (Perca flavescens) broodstocks: initial characterization of growth and quality traits following grow-out of different stocks

    USDA-ARS?s Scientific Manuscript database

    Broodstocks of yellow perch (Perca flavescens) were initiated from fertilized gametes obtained from wild fish taken from the Perquimans River (North Carolina), Choptank River (Maryland), Lake Winnebago (Wisconsin), and Lac du Flambeau (Wisconsin). Populations at these sites were chosen based on the ...

  5. Creating Habitat for the Yellow-Billed Cuckoo (Coccyzus americana)

    Treesearch

    Bertin W. Anderson; Stephen A. Laymon

    1989-01-01

    Yellow-billed Cuckoo numbers have decreased alarmingly in recent decades. This is associated with demise of their riparian habitats. Study of habitat along the lower Colorado River and along the South Fork Kern River led to the conclusion that they require dense habitats dominated by cottonwood (Populus fremontii) and willow (Salix...

  6. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China.

    PubMed

    Qin, Yue; Yang, Dawen; Gao, Bing; Wang, Taihua; Chen, Jinsong; Chen, Yun; Wang, Yuhan; Zheng, Guanheng

    2017-12-15

    The Yellow River source region is located in the transition region between permafrost and seasonally frozen ground on the northeastern Qinghai-Tibet Plateau. The region has experienced severe climate change, especially air temperature increases, in past decades. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to assess the impacts of climate change on the frozen ground and eco-hydrological processes in the region. Based on a long-term simulation from 1981 to 2015, we found that the areal mean maximum thickness of seasonally frozen ground ranged from 1.1-1.8m and decreased by 1.2cm per year. Additionally, the ratio of the permafrost area to the total area decreased by 1.1% per year. These decreasing trends are faster than the average in China because the study area is on the sensitive margin of the Qinghai-Tibet Plateau. The annual runoff exhibited variations similar to those of the annual precipitation (R 2 =0.85), although the annual evapotranspiration (ET) exhibited an increasing trend (14.3mm/10a) similar to that of the annual mean air temperature (0.66°C/10a). The runoff coefficient (annual runoff divided by annual precipitation) displayed a decreasing trend because of the increasing ET, and the vegetation responses to climate warming and permafrost degradation were manifested as increases in the leaf area index (LAI) and ET at the start of the growing season. Furthermore, the results showed that changes to the frozen ground depth affected vegetation growth. Notably, a rapid decrease in the frozen ground depth (< -3.0cm/a) decreased the topsoil moisture and then decreased the LAI. This study showed that the eco-hydrological processes in the headwater area of the Yellow River have changed because of permafrost degradation, and these changes could further influence the water resources availability in the middle and lower reaches of the basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Methane fluxes and controlling factors in the intertidal zone of the Yellow River estuary in autumn].

    PubMed

    Jiang, Huan-Huan; Sun, Zhi-Gao; Wang, Ling-Ling; Mou, Xiao-Jie; Sun, Wan-Long; Song, Hong-Li; Sun, Wen-Guang

    2012-02-01

    The characteristics of methane (CH4) fluxes from tidal wetlands of the Yellow River estuary were observed in situ with static-chamber and GC methods in September and October 2009, and the key factors affecting CH4 fluxes were discussed. From the aspect of space, the CH4 flux ranges in high tidal wetland, middle tidal wetland, low tidal wetland, bare flat are - 0.206-1.264, -0.197-0.431, -0.125-0.659 and -0.742-1.767 mg x (m2 x h)(-1), the day average fluxes are 0.089, 0.038, 0.197 and 0.169 mg x (m2 x h)(-1), respectively, indicating that the tidal wetlands are the sources of CH4 and the source function of CH4 differed among the four study sites, in the order of low tidal wetland > bare flat > high tidal wetland > middle tidal wetland. From the aspect of time, the ranges of CH4 fluxes from the tidal wetland ecosystems are -0.444-1.767 and - 0.742- 1.264 mg x (m2 x h)(-1), and the day average fluxes are 0.218 and 0.028 mg x (m2 x h)(-1) in September and October, respectively. The CH4 fluxes in each tidal wetland in September are higher than those in October except that the high tidal wetland acts as weak sink in September. Further studies indicate that the changes of environmental factors in the Yellow River estuary are complicated, and the CH4 fluxes are affected by multiple factors. The differences of CH4 fluxes characteristics among different tidal wetlands in autumn are probably related to temperature (especially atmospheric temperature) and vegetation growth status, while the effects of water or salinity condition and tide status on the CH4 flux characteristics might not be ignored.

  8. [Research on the Content Characteristics and Pollution Evaluation of Heavy Metals in Filtered Water and Suspended Particles from Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season Using HR-ICP-MS].

    PubMed

    Ma, Xiao-ling; Liu, Jing-jun; Deng, Feng-yu; Zuo, Hang; Huang, Fang; Zhang, Li-yang; Liu, Ying

    2015-10-01

    The content characteristics, pollution evaluation and source identification of 6 heavy Metals (Cd, Pb, Cr, As, Cu and Zn) in filtered water and 9 heavy Metals (Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn) in suspended particles from 10 sampling sites such as Zhaojunfuqiao (S1) and Baotoufuqiao (S2), etc. from Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 Wet Season were studied to understand the condition of the heavy metal pollution in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River by using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Multivariate geochemical approaches and statistical analysis were also exploited for assessing the level of heavy metals in filtered water and suspended particles from studied area. The results showed that in filtering water, only the concentrations of Cr exceeded the standard value of Environmental Quality Standard for Surface Water (GB3838-2002) and were the highest (74.8-94.7 μg x L(-1)) among all elements in 10 sampling sites; Single factor pollution index (I(i)) results suggested that the water quality in all sampling sites were contaminated by both Cr and total nitrogen (TN), with the exception of TN in Baotoufuqiao (S2); Integrated Nemerow pollution index (I) indicated that the I values in all sampling sites were between 1-2 (light pollution), which implied that the water quality in Gansu, Ningxia and Inner Mongolia sections, especially downstream sections (S1-S6) of the Yellow River wasn't an ideal source for drinking and using in aquaculture any more. In suspended particles, concentrations of heavy metals were relatively higher than their soil background values in 10 sampling sites, except Ni in S10 (34.7 μg x L(-1)). Index of geo-accumulation (I(geo)) indicated that the I(geo) values of Pb, Cr, Ni, Cu, V, Co, Zn and Mn in all sampling sites were less than 1 (unpolluted or unpolluted-moderately polluted), respectively, while I(geo)Cd were the highest in 10 sampling sites among all heavy metals and with the moderately to strong contamination in Zhaojunfuqiao (S1), Baotoufuqiao (S2), Wuhai (S5) and Dongdagouruhuanghekou (S8). The results of this paper would help to supply reliable experimental data for researching of distribution, migration and effective protection of heavy metals in study area.

  9. Seasonal Variation of Arsenic Concentration in Natural Water of the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Yu, C.; Wen, L.; Yu, Z.

    2017-12-01

    Seasonal variation in the arsenic (As) concentration of natural water has been studied the first time in the source area of the Yellow River (SAYR) in Tibet, China. Samples were collected in the lake, river and spring across the whole area in April (spring) and July (summer), 2014. In April the average values of arsenic concentration in SAYR from high to low were: lake (38.1μg/L, n=47, range 8.6-131.0μg/L) > river (24.3μg/L, n=83, range 4.3-77.1μg/L) > spring (19.1μg/L, n=12, range 12.0-29.4μg/L). In July the same order of the average values of arsenic concentration in SAYR was found: lake (14.1μg/L, n=57, range 5.8-68.5μg/L) > river (7.3μg/L, n=106, range 3.6-22.9μg/L)> spring (6.7μg/L, n=9, range 4.8-8.2μg/L).The average arsenic concentrations in April were almost three times higher than those in July. In both season, the higher concentrations of arsenic were distributed in the upper reaches above the two biggest lakes of Gyaring and Ngoring Lakes in SAYR. The two big lakes buffered the naturally generated arsenic concentration in surface water, suggesting the important ecological role of the lakes. Generally, the lower concentrations in July probably were due to 1. the dilution effect of the precipitation; 2 the change of water sources. In April when the permafrost and mountain snow started to thaw and melt, ground water with high arsenic concentration was the main water source with high concentration of arsenic; but in July, with the increase of the temperature, mountain snow, permafrost would contribute more than in April, in addition, the main arsenic contributor groundwater was diluted by the precipitation recharge. Since in spring, lake and river water arsenic concentration decreased with almost the same magnitude., assuming the dilution effect dominant. The exported arsenic from SAYR in April (903.4Kg) were twice more than it in July (449.1Kg), because the flowrates were similar in the two months, the water source of the runoff components was grandly different in April and July. The seasonal variation of arsenic is obvious and further investigation is needed.

  10. Change in Spatial Distribution of Permafrost in the Source Area of the Yellow River: A Numerical Prediction

    NASA Astrophysics Data System (ADS)

    Ma, S.; Sheng, Y.; Wu, J.; Hu, X.; Li, J.

    2017-12-01

    Permafrost plays an important role in the climate system through its influence on energy exchanges, hydrological processes, natural hazards and carbon budgets. As a response to the global warming, permafrost is degrading with various manifestations, such as increase in permafrost temperature, thickening of active layer, permafrost disappearance. The Source Area of the Yellow River is located in the mosaic transition zones of seasonally frozen ground, and discontinuous and continuous permafrost on the northeastern Qinghai-Tibet Plateau. Based on the prediction results of the climate model in the IPCC Fifth Assessment Report, this article attempts to forecast the change of the typical permafrost types in the SAYR by using the numerical simulation method. And we calculate the spatial distribution of permafrost in the past and predict the change trend of permafrost in the future. The results show that only a small part of the permafrost in this region has degraded in1972 2012 and the degraded area is about 279 km2. The seasonal frozen soil is mainly distributed in the valley of Re Qu, Xiaoyemaling and Tangchama in the south of the two lake basins. There is little area difference on the permafrost degrading into the seasonal frozen soil under the scenarios of RCP2.6, RCP6.0, RCP8.5 in 2050. The degrading area of permafrost is 2224 km2, 2347 km2, 2559 km2. They account for 7.5%, 7.9%, 8.6% of the Source Area, respectively. And the seasonal frozen soil is sporadically distributed in Lena Qu, Duo Qu, Baima Qu. They widely spread on Yeniugou, Yeniutan and four Madio lakes being located in the Yellow River valley of the eastern part of Ngoring Lake. In 2100, the area of permafrost degradation is 5636 km2, 9769 km2, 15548 km2. They accounts for 19%, 32.9% and 52.3% of the source area, respectively. The permafrost mainly degenerate in the area of Xingsuhai, Gamaletan, Duogerong. Permafrost influences hydrology by providing an impermeable barrier to the movement of liquid water. The decrease in ground ice content, as caused by permafrost degradation, facilitates the percolation of more water to deeper soil layers, thus resulting in the reallocation of runoff. These results provide useful references for evaluating the level of permafrost degradation in response to climate warming on the SAYR.

  11. Movement and Harvest of Fish in Lake Saint Clair, Saint Clair River, and Detroit River

    DTIC Science & Technology

    1985-01-01

    a creel survey of the angling fishery , a trap net survey, and a tagging study of the adult fish community . The study area encompassed all of...River does not support a winter walleye fishery (C. Baker, ODNR, personal communication ). Yellow perch,-Yellow perch, like walleyes, are considered best...two basic forms: affecting the adult fish community directly, or interfering with the winter angling fishery . The fish community might be affected

  12. Effects of a mine tailings spill on feeding and metal concentrations in yellow perch (Perca flavescens)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draves, J.F.; Fox, M.G.

    1998-08-01

    In this study, the authors examined the effects of a gold mine tailings spill in the Montreal River (northern Ontario, Canada) on juvenile yellow perch (Perca flavescens), a benthic-feeding fish, and identified the major contributors to their uptake of tailings metals (Pb, Zn, Cd, and Cu) in dietary items and river water. Juvenile perch sampled from a 6-km reach of the river where most of the tailings were deposited had significantly less food in their stomachs than individuals sampled from a reference reach of the river. Concentrations of Pb in invertebrate prey taxa from the contaminated reach were 9 tomore » 20 times higher than in those sampled from the reference reach. These differences were consistent with a higher concentration of Pb in perch from the contaminated reach. In contrast, Zn concentrations were high in river water and perch from both the reference and contaminated reaches, and little difference was found in Zn concentration between invertebrate prey types sampled from the two reaches. No significant differences were found in Cu or Cd concentrations in yellow perch sampled from the two reaches. Higher levels of Pb in the major prey types from the contaminated reach indicate that dietary uptake may be the major vector for Pb accumulation in yellow perch from the Montreal River.« less

  13. Distribution of heavy metals, stable isotope ratios (δ13C and δ15N) and risk assessment of fish from the Yellow River Estuary, China.

    PubMed

    Liu, Houqi; Liu, Guijian; Wang, Shanshan; Zhou, Chuncai; Yuan, Zijiao; Da, Chunnian

    2018-06-05

    This study measured the concentrations of eight heavy metals, including copper (Cu), zinc (Zn), lead (Pb), chromium (Cr), cadmium (Cd), iron (Fe), manganese (Mn) and nickel (Ni), and the stable isotope ratios of δ 13 C and δ 15 N in 129 fish samples collected from the Yellow River Estuary (YRE) of China. Accumulation characteristics and possible sources of these heavy metals (HMs) were analyzed. The levels of HMs presented high variations among sampling sites, higher concentrations of ∑HMs were observed at the sites closest to the estuary. Cu and Cd in fishes of the YRE were much higher than those found in the fishes of other rivers of China. Furthermore, the mean concentrations of Cu, Zn, Pb, Cr and Cd were also significantly higher than those measured in the fishes of the same region twenty years ago. According to the results of correlation analysis and principal components analysis (PCA), Pb, Cr, Fe, Mn and Ni might be originated from similar sources. The values of δ 13 C and δ 15 N presented high variation in fishes, indicating a wide range of energy sources and trophic status of the investigated fish species. The mean concentrations of Pb, Cr and Cd in fishes were all lower than the recommended values enacted by the Chinese government. The human health risk assessment showed that the estimated daily intake (EDI) of these HMs did not exceed the permissible tolerable daily intake (PTDI) and oral reference dose (RfD), indicating a situation of no potential health risk for consumption of these fish species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River.

    PubMed

    Kang, Bin; Huang, Xiaoxia; Wu, Yunfei

    2017-01-01

    The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change.

  15. Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River

    PubMed Central

    Wu, Yunfei

    2017-01-01

    The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change. PMID:28406965

  16. Effects of water use diversion regulation and conservation on sediemtn transport with comparisons from the United States

    USGS Publications Warehouse

    Gray, J. R.; Osterkamp, W. R.; Jianhua, Xu

    2002-01-01

    Too much sediment and too little water are related problems in China’s Yellow River Basin. Sediment yield in the basin averages about 2,100 t/(km2·a), greatest is of the world’s large rivers although the Yellow River ranks 31st in mean flow. A quarter of the sediment deposited in the 780-km lower reach, causing bed levels to rise an average of a meter per decade wang and other. Sediment aggradation along this reach is concentrated between dikes, resulting in average river-bed elevations 5 m higher, and at Xinxiang as much as 10 m higher, than surrounding bottomlands. The dikes, which have breached nearly 1,600 times in the last 24 centuries, reduce the threat of flooding for 85-million people on 120,000 km2 in five provinces of northeastern China (Decun, undated). This paper addresses some environmental and social factors related to this problem, and provides descriptions of two United States rivers that exhibit some analogous responses, albeit not to the extent of those associated with the Yellow River, “China’s Sorrow”.

  17. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  18. Studies in western yellow pine nursery practice

    Treesearch

    Donald R. Brewster; J. A. Larsen

    1925-01-01

    In 1912 and 1913, when nursery experiments were started under direction of the then "Priest River'' Forest Experiment Station, at Priest River, Idaho, and elsewhere, western yellow pine (Pinus ponderosa) was one of the principal species being planted on a large scale in the northern Rocky Mountain region and millions of plants were being raised each year...

  19. Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Jing; Sheng, Yu; Wu, Jichun; Feng, Ziliang; Ning, Zuojun; Hu, Xiaoying; Zhang, Xiumin

    2016-09-01

    The source area of the Yellow River (SAYR) lies in the eastern part of the Qinghai-Tibet Plateau (QTP). Glaciers are absent in the area, but permafrost is widespread because of the high elevations, typically 4200-5000 m a.s.l. Landforms in the SAYR were classified into seven basic types, based on their morphological characteristics and genesis, and further divided into 12 sub-classes based on geomorphic processes. Permafrost development and ground temperature in boreholes were analyzed on representative landforms in the SAYR. Permafrost was discontinuously distributed at 4300-4400 m a.s.l. in fluvial plains because of variations in local topography, sediments, vegetation and water content. In hills and low-relief mountains in the western part of the study area, permafrost is continuous above 4400 m a.s.l. even on unshaded south-facing slopes. In contrast, permafrost in the central part of the study area is discontinuous over this elevation range. Analysis of ground temperature measurements revealed that three macro-scale factors, latitude, longitude, and elevation, explain 72.8% of the variation in the measured mean annual ground temperature (MAGT). The remaining 27.2% can potentially be explained by variations in topography and land cover within the SAYR.

  20. Distribution features and controls of heavy metals in surface sediments from the riverbed of the Ningxia-Inner Mongolian reaches, Yellow River, China.

    PubMed

    Guan, Qingyu; Wang, Lei; Pan, Baotian; Guan, Wenqian; Sun, Xiazhong; Cai, Ao

    2016-02-01

    Fifty-six riverbed surface sediment (RSS) samples were collected along the Ningxia-Inner Mongolian reaches of the Yellow River (NIMYR). These samples were analyzed to determine their heavy metal concentrations (Co, Cr, Ni, Cu, V and Zn), grain sizes, sediment sources and the causes of their heavy metal contamination. The cumulative distribution functions of the heavy metals in RSS of these reaches are plotted to identify the geochemical baseline level (GBL) of each element and determine the average background concentration of each heavy metal. Principal component analysis and hierarchical cluster analysis are conducted based on the grain sizes of RSS, and the samples are classified into two groups: coarse grained samples (CGS) and fine grained samples (FGS). The degree of heavy metal contamination for each sample is identified by its enrichment factor (EF). The results reveal that the coarse particle component (medium sand and coarse sand) in the bed materials is chiefly from the bordering deserts along the Yellow River. The clay and silt in the bed materials chiefly originate from the upper reaches of the Yellow River, and the fine sand is identified as a hybrid sediment derived from the upper reaches of the Yellow River and the bordering deserts. The CGS primarily appear in the reaches bordering deserts, and the sites are near the confluence of gullies and the Yellow River. The FGS are located adjacent to cities with especially strong industrial activity such as Wuhai, Bayan Nur, Baotou and Togtoh. The Cr, Ni, Cu, V and Zn concentrations (mg kg(-1)) are 84.34 ± 49.46, 30.21 ± 7.90, 25.01 ± 7.61, 73.17 ± 18.92 and 55.62 ± 18.93 in the FGS and 65.07 ± 19.51, 23.86 ± 6.84, 18.04 ± 3.8, 53.47 ± 10.57 and 34.89 ± 9.19 in the CGS respectively, and the concentrations of Co in the CGS (213.40 ± 69.71) are notably higher than in the FGS (112.02 ± 48.87) and greater than the Co GBL (210). The most contaminated samples in the NIMYR are adjacent to the cities of Wuhai (EF(Cr) = 5.19; EF(Ni) = 1.96), Bayan Nur (EF(Cr) = 5.88; EF(Ni )= 2.08) and Baotou (EF(Cu) = 1.55; EF(Zn) = 1.68) where the Cr, Ni, Cu, V and Zn concentrations are above the correlated GBLs (85, 34, 27, 75 and 62 mg kg(-1), respectively), which are mostly affected by industrial processes, and samples that are only moderately contaminated by heavy metals are found in the reaches bordering desert (Wuhai-Baotou) because contaminated sediments are diluted by uncontaminated desert sand. In contrast, all of the Cu, Cr, Ni, V and Zn concentrations in RSS of the Qingtongxia-Wuhai reach are lower than the correlated GBLs of elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Spatial and temporal variations of aeolian sediment input to the tributaries (the Ten Kongduis) of the upper Yellow River

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Shi, Changxing

    2018-02-01

    The Ten Kongduis of the upper Yellow River, located in Inner Mongolia, northern China, is an area with active wind-water coupled erosion and hence one of the main sediment sources of the Yellow River. In this study, we analyzed the characteristics of spatial and temporal variations of aeolian sediment input to the river channel. For this purpose, three segments of sand dune-covered banks of the Maobula and the Xiliugou kongduis were investigated three times from November 2014 to November 2015 using a 3-D laser scanner, and the displacement of banks of desert reaches of three kongduis was derived from interpreting remote sensing images taking in the years from 2005 to 2015. The data of the surveyed sand dunes reveal that the middle kongduis were fed by aeolian sand through the sand dunes moving towards the river channels. The amount of aeolian sediment input was estimated to be about 14.94 × 104 t/yr in the Maobula Kongdui and about 5.76 × 104 t/yr in the Xiliugou Kongdui during the period from November 2014 to November 2015. According to the interpretation results of remote sensing images, the amount of aeolian sediment input to the Maobula Kongdui was about 15.74 × 104 t in 2011 and 18.2 × 104 t in 2012. In the Xiliugou Kongdui, it was in the range of 9.52 × 104 - 9.99 × 104 t in 2012 and in the springs of 2013 and 2015. In the Hantaichuan Kongdui, it was 7.04 × 104 t in 2012, 7.53 × 104 t in the spring of 2013, and 8.52 × 104 t in the spring of 2015. Owing to the changes in wind and rainfall, both interseasonal and interannual sediment storage and release mechanisms exist in the processes of aeolian sand being delivered into the kongduis. However, all of the aeolian sediment input to the Ten Kongduis should be delivered downstream by the river flows during a long term.

  2. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5 μm; however, the delta suffered net erosion because of the insufficient sediment supply (0.11 Gt/yr). In the most recent stage (2002 - 2013), the intensive scouring of the lower river channel induced by the dam regulation provided relatively coarser sediment, which effectively reduced the critical sediment load to 0.06 Gt/yr, much lower than the corresponding sediment load at Lijin station ( 0.16 Gt/yr). Consequently, the subaerial Yellow River delta transitioned to a slight accretion phase. Overall, the evolution of the active Yellow River delta is highly correlated to riverine water and sediment discharge. The sediment supply for keeping the subaerial delta stability is inconstant and varying with the river channel morphology and sediment grain size. We conclude that the human-impacted riverine sediment discharge and grain-size composition play dominant roles in the stepwise morphological evolution of the active delta lobe.

  3. Selection of growth-related genes and dominant genotypes in transgenic Yellow River carp Cyprinus carpio L.

    PubMed

    Luo, Lifei; Huang, Rong; Zhang, Aidi; Yang, Cheng; Chen, Liangming; Zhu, Denghui; Li, Yongming; He, Libo; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2018-07-01

    Transgenic Yellow River carp is characterized by rapid growth rate and high feed-conversion efficiency and exhibits a great application prospect. However, there is still a significant separation of growth traits in the transgenic Yellow River carp family; as such, growth-related genotypes must be screened for molecular marker-assisted selection. In this study, 23 growth-related candidate genes containing 48 SNP markers were screened through bulked segregant analysis (BSA) among transgenic Yellow River carp family members showing significant separation of growth traits. Then, two growth-related genes (Nos. 17 and 14 genes) were identified through combined genome-wide association study (GWAS) of candidate genes and validation of the full-sibling family approach. Nos. 17 and 14 genes encode BR serine/threonine-protein kinase 2 (BRSK2) and eukaryotic translation-initiation factor 2-alpha kinase 3 (Eif2ak3), respectively. The average body weight of three subgroups carrying the genotypes 17GG, 17GG + 14CC, and 17GG + 14TT of these two genes increased by 27.96, 38.28, and 33.72%, respectively, compared with the controls. The proportion of individuals with body weight > 500 g in these subgroups increased by 19.22, 26.82, and 30.92%, respectively. The results showed that appropriate genotype carriers can be selected from the progeny population through BSA sequencing combined with simplified GWAS analysis. Hence, basic population for breeding can be constructed and transgenic Yellow River carp strains with stable production performance and uniform phenotypic properties can be bred.

  4. CNA Maritime Asia Project. Workshop One: The Yellow and East China Seas

    DTIC Science & Technology

    2012-05-01

    TEU) were all in the world’s top 25 ports.2 Shanghai, positioned at the crossroads of the Yellow Sea, East China Sea, and Yangtze River, is the...Sea, and Yangtze River, is the largest port in the world, shipping over 29 million TEU in 2011.4 Nearly 57% of China’s total trade volume emanates

  5. Distribution of PAEs in the middle and lower reaches of the Yellow River, China.

    PubMed

    Sha, Yujuan; Xia, Xinghui; Yang, Zhifeng; Huang, Gordon H

    2007-01-01

    Samples of water, sediment and suspended particulates were collected from 13 sites in the middle and lower reaches of the Yellow River in China. Phthalic acid esters (PAEs) concentrations in different phases of each sample were determined by Gas Chromatogram GC-FID. The results are shown as follows: (1) In the Xiao Langdi-Dongming Bridge section, PAEs concentrations in water phase from the main river ranged from 3.99 x 10(-3) to 45.45 x 10(-3) mg/L, which were similar to those from other rivers in the world. The PAEs levels in the tributaries of the Yellow River were much higher than those of the main river. (2) In the studied branches, the concentration of PAEs in sediment for Luoyang Petrochemical Channel (331.70 mg/Kg) was the highest. The concentrations of PAEs in sediment phase of the main river were 30.52 to 85.16 mg/Kg, which were much higher than those from other rivers in the world. In the main river, the concentration level of PAEs on suspended solid phases reached 94.22 mg/Kg, and it reached 691.23 mg/Kg in the Yiluo River - one tributary of the Yellow River. (3) Whether in the sediment or on the suspended solid phases, there was no significant correlation between the contents of PAEs and TOC or particle size of the solid phase; and the calculated Koc of Di (2-Ethylhexyl) Phthalate (DEHP) in the river were much less than the theoretical value, which inferred that PAEs were not on the equilibrium between water and suspended solid phases/sediment. (4) Among the measured PAEs compounds, the proportions of DEHP and di-n-butyl phthalate (DBP) were much higher than the others. The concentrations of DEHP exceeded the Quality Standard in all the main river and tributary stations except those in the Mengjin and Jiaogong Bridge of the main river. This indicates that more attention should be paid to pollution control and further assessment in understanding risks associated with human health.

  6. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jia, Y.

    2017-12-01

    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  7. From yellow perch to round goby: A review of double-crested cormorant diet and fish consumption at three St. Lawrence River colonies, 1999–2013

    USGS Publications Warehouse

    Johnson, James H.; Farquhar, James F.; Klindt, Rodger M; Mazzocchi, Irene; Mathers, Alastair

    2015-01-01

    The number of double-crested cormorants (Phalacrocorax auritus) in the upper St. Lawrence River has increased markedly since the early 1990s. In 1999, a binational study was initiated to examine the annual diet composition and fish consumption of cormorants at colonies in the upper river. Since 1999, 14,032 cormorant pellets, collected from May through September each year, have been examined from St. Lawrence River colonies to estimate fish consumption and determine temporal and spatial variation in diet. Seasonal variation in diet composition within a colony was low. Prior to 2006 yellow perch was the primary fish consumed by cormorants in the upper St. Lawrence River. Round goby were first observed in cormorant diets in 2003 and by 2006 were the main fish consumed at two of the three colonies. The time interval it took from the first appearance of round goby in the diet at a colony to when goby were the dominant prey species varied by island, ranging from two to five years. Daily fish consumption at each cormorant colony increased significantly from the pre-round goby to post-round goby period. The mean annual biomass of yellow perch consumed decreased significantly during the post-round goby period at the three colonies. Reduced consumption of yellow perch by cormorants may alleviate suspected localized impacts on perch near some of the larger river colonies.

  8. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China.

    PubMed

    Zhang, Pengyan; Qin, Chengzhe; Hong, Xin; Kang, Guohua; Qin, Mingzhou; Yang, Dan; Pang, Bo; Li, Yanyan; He, Jianjian; Dick, Richard P

    2018-08-15

    The level of concentration of heavy metal in soil is detrimental to soil quality. The Heigangkou-Liuyuankou irrigation area in the lower-reach of Yellow River irrigation, as home to a large population and a major site to agricultural production, is vulnerable to heavy metal pollution. This study examined soil quality in Heigangkou-Liuyuankou irrigation areas of Kaifeng, China. Pollution in soil and potential risks introduced by heavy metal accumulation were assessed using Nemerow, Geoaccumulation, and Hakanson's ecological risk indices. Statistics and Geographic Information Systems (GIS) were used to model and present the spatiotemporal changes of the pollution sources and factors affecting the levels of pollution. The heavy metals found in the sampled soil are Cr, Ni, Cu, Zn, Cd, Pb, As, and Hg. Among them, Cd is more concentrated than the others. The southwestern region of the studied area confronts the most serious heavy metal pollution. There exist spatial disparities of low concentrations of different heavy metals in the study area. Hg and Cd are found to pose the highest potential ecological risks. However, their risk levels are not the same across the study area. Levels concentration of Ni, Cu, Zn, Cd, Pb, As, and Hg in soil are highly correlated. In combination, they post an additional threat to the ecological environment. Transportation, rural settlements, and water bodies are found to be the major sources of Cr, Ni, Cu, Zn, Cd, Pb, and Hg pollution in the soil; among the major sources, transportation is the most significant factor. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Sustainability of massively anthropic deltas via dispersal of sediment to manage land building: results from two unique case studies, the Mississippi River (U.S.A.) and the Yellow River (China) deltas

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey

    2016-04-01

    Owing to their extraordinary natural resources and ecosystem services, deltaic coastlines host hundreds of millions of people worldwide. Societal sustainability on these coastal landscapes is far from certain, however, due to anthropogenic influences including sediment-supply reduction, accelerated subsidence from sub-surface fluid extraction, and leveeing of rivers. The crucial resource in building stable deltaic coastlines is sediment, and the key control on sediment delivery, whether natural or engineered, is by way river channel diversions. Two case studies, based on previous and ongoing research efforts, are presented here to describe the effects of engineered diversions for the removal of river water and associated sediment: the Mississippi River (U.S.A) and the Yellow River (China). Comparatively speaking, these two systems are end-members: Mississippi River water discharge is five times greater than the Yellow River, and yet historically, the Yellow River sediment discharges five times more sediment than the Mississippi system. As such, diversions for the two systems have contrasting goals. During flood events, the Mississippi water stage threatens major metropolitan regions with levee overtopping; spillways are therefore utilized to reduce water flux through the main channel. For the Yellow River, extremely high sediment loads result in significant sedimentation within the main channel, and so there is a concerted effort to divert and shorten the main channel, in order to enhance the water surface slope and increase sediment transport capacity. Interestingly, the net effect of these two projects has been to deposit a significant amount of sediment into the respective receiving basins, which in turn has led to the development of subaerial land. In essence, this represents two compelling case studies documenting how managed (engineered) land building practices can be implemented for other large fluvial-deltaic systems. Observational data collected from field studies of both the Mississippi and Yellow rivers have been used to inform and validate numerical modeling efforts that seek to replicate the morphodynamics of the two diversions. The aim is to evaluate best practices for building deltaic landscape. Based on these research efforts, there are key similarities found for the delta systems: 1) coarse (sandy) sediment is the primary contributor to subaerial delta development, despite the abundance of mud for both rivers; 2) the influx of freshwater into estuarine regions of deltas has tremendous impact on vegetation development, and therefore the cohesion of the deltaic sediment deposit; and 3) it is feasible to produce efficient diversions that maximize sediment delivery and still provide for continued use of the riverine resource (for example, navigation of the channel by vessels). These findings are critical when considering future plans that seek sustainable management practices of other large, anthropic fluvial deltaic systems.

  10. Flood-inundation maps for the Yellow River at Plymouth, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2016-11-16

    Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within the calibrated water-surface elevations for comparison. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 05516500, Yellow River at Plymouth, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  11. Evaluating the applicability of four recent satellite–gauge combined precipitation estimates for extreme precipitation and streamflow predictions over the upper Yellow river basin in China

    USDA-ARS?s Scientific Manuscript database

    This study aimed to statistically and hydrologically assess the performance of four latest and widely used satellite–gauge combined precipitation estimates (SGPEs), namely CRT, BLD, 3B42CDR, and 3B42 for the extreme precipitation and stream'ow scenarios over the upper Yellow river basin (UYRB) in ch...

  12. Development and Cause of Aeolian Desertification in Alpine Region-In Case of Maqu County in the Source of Yellow River

    NASA Astrophysics Data System (ADS)

    Lu, Junfeng; Qian, Quangqiang; Luo, Wanyin; Dong, Zhibao

    2016-04-01

    Maqu county locates in the northeast of Qinghai-Tibetan Plateau, which main native vegetation is alpine meadow. It was suffered severe desertification in recent years. In this study, we used Landsat images to investigate development of desertification. The result showed that the area of desertification land increased significantly, patch numbers and patch area of desertified land also increased from 1975-1990, the increased desertified land mainly converted from grassland. The degree of desertification also increased from 1990-2000, mainly because fixed sandy land converted to mobile sandy land and semi-fixed sandy land. The area of desertification land decreased from 2000-2010, the desertification land mainly converted to low coverage grassland. The reason responsible for desertification development including natural factors, such as temperature increased, the Yellow River runoff decreased, rodents and pests damage, and unreasonable management measures, such as long-time overgrazing, digging turf for building fence and herbs. In the beginning of this century, the implementation of ecological restoration project was main reason responsible for desertification reversion.

  13. Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang

    2018-03-01

    The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.

  14. Distribution and assessment of heavy metals in the surface sediment of Yellow River, China.

    PubMed

    Yan, Nan; Liu, Wenbin; Xie, Huiting; Gao, Lirong; Han, Ying; Wang, Mengjing; Li, Haifeng

    2016-01-01

    Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study, fourteen surface sediment samples were taken in the middle reach of the Yellow River. Contents of Zn, Pb, Ni, Cu, Cr, Cd, As were measured, and the pollution status was assessed using three widely used pollution assessment methods, including the single factor index method, Nemerow pollution index method and potential ecological risk index. The concentrations of the studied heavy metals followed the order: Zn>Cr>Cu>Ni>Pb>As>Cd. Nearly 50% of sites had Cu and Cr accumulation. The concentration of Cu at the Yiluo River exceeded the secondary standard value of the Environmental quality standard for soils. Comparison of heavy metal concentrations between this study and other selected rivers indicated that Cu and Cr may be the major pollutants in our case. The single factor index indicated that many samples were at high levels of pollution for Cu and Cd; the Nemerow pollution index indicated that the Yihe River, Luohe River, Yiluo River and Huayuankou were polluted. According to the results of potential ecological risk assessment, Cd in the tributaries of Luo River, Yihe River, and Yiluo River showed high risk toward the ecosystem and human health, Cd in Huanyuankou and Cu in Yiluo River showed a middle level of risk and other samples were at a low level of risk. Copyright © 2015. Published by Elsevier B.V.

  15. Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Liu, Jie; Feng, Xiuli

    2018-06-01

    The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacted and consolidate under the geostatic stress and overburden stress. It is one of the key areas with land subsidence disasters in China, bringing a series of safety hazards to production and living. Based on the data of massive surface cores and ten drill holes ranging from 12 to 40 m obtained from the northern modern Yellow River subaqueous delta, the inversion method suitable for the calculation of consolidation settlement characteristics of the modern Yellow River subaqueous delta is discussed, and the consolidation settlement characteristics of the delta sediments are inversed and predicted in this paper. The actual void ratio of the delta sediments at the depth from 3 to 15 m shows a significant power function relationship with the depth, while the void ratio of the sediments below 15 m changes little with depth. The pre-consolidation settlement (from deposition to sampling) of the delta sediments is between 0.91 and 1.96 m, while the consolidation settlement of unit depth is between 9.6 and 14.0 cm m-1. The post-consolidation settlement (from sampling to stable) of the subaqueous delta sediments is between 0.65 and 1.56 m in the later stage, and the consolidation settlement of unit depth is between 7.6 and 13.1 cm m-1 under the overburden stress. The delta sediments with a buried depth of 3 to 7 m contribute the most to the possible consolidation settlement in the later stage.

  16. Sedimentary and hydrological studies of the Holocene palaeofloods in the Shanxi-Shaanxi Gorge of the middle Yellow River, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaogang; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Ma, Yugai

    2015-01-01

    Holocene slackwater deposits along the river channels were used to study the magnitude and frequency of the palaeofloods that occurred prior to gauged and historical data sets all over the world. Palaeohydrological investigations along the Shanxi-Shaanxi Gorge of the middle Yellow River, China, identified palaeoflood slackwater deposits (SWDs) at several sites along the cliffs bordering the river channel. The SWDs are intercalated within Holocene eolian loess-soil profiles and clastic slope deposits. The palaeoflood SWDs were differentiated from eolian loess and soil by the sedimentary criteria and analytical results including magnetic susceptibility and particle-size distribution, similar to the flood SWDs in 2012, which indicated that these well-sorted palaeoflood SWD beds were deposited from the suspended sediment load in floodwaters. They have recorded the extraordinary palaeoflood events which occurred between 3200 and 3000 a BP as dated by the optically stimulated luminescence method in combination with pedostratigraphic correlations with the previously studied Holocene pedo-stratigraphy in the Yellow River drainage basin. Manning slope-area calculations estimate the peak discharged for these palaeoflood events to range from 43,290 to 49,830 m3/s. The drainage area of the study site is 489,900 km2. It is 2.0-2.5 times the largest gauged flood (21,000 m3/s) that has ever occurred since 1934. These events also occurred on Yellow River tributaries, including the Weihe, Jinghe and Qishuihe Rivers. These flood events are therefore considered to be a regional expression of known climatic events in the northern hemisphere and demonstrate Holocene climatic instability. This study provides important data in understanding the interactions between regional hydro-climatic systems and global change in semiarid and subhumid regions.

  17. Degradation dynamics and bioavailability of land-based dissolved organic nitrogen in the Bohai Sea: Linking experiment with modeling.

    PubMed

    Li, Keqiang; Ma, Yunpeng; Dai, Aiquan; Wang, Xiulin

    2017-11-30

    Dissolved organic nitrogen (DON) is the major nitrogen form in the Bohai Sea. Land-based DON is released into the nitrogen pool and degraded by planktonic microbiota in coastal ocean. In this study, we evaluated the degradation of land-based DON, particularly its dynamics and bioavailability, in coastal water by linking experiment and modeling. Results showed that the degradation rate constant of DON from sewage treatment plant was significantly faster than those of other land-based sources (P<0.05). DON was classified into three categories based on dynamics and bioavailability. The supply of dissolved inorganic nitrogen (DIN) pool from the DON pool of Liao River, Hai River, and Yellow River was explored using a 3D hydrodynamic multi-DON biogeochemical model in the Bohai Sea. In the model, large amounts of DIN were supplied from DON of Liao River than the other rivers because of prolonged flushing time in Liaodong Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Impacts of sea cucumber farming on biogeochemical characteristics in the Yellow River estuary, Northern China

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Yokoyama, Hisashi; Cui, Baoshan; Zhou, Jin; Yan, Jiaguo; Ma, Xu; Shibata, Shozo

    2017-02-01

    To investigate the potential environmental effects of pond farming for Apostichopus japonicas in Yellow River estuary, we examined discrepancies of distance-based typical pollution indicators (TOC, TN, NO3-, NH4+, NO2- and PO43-) and biochemical tracers (δ13C and δ15N) in water column and sediment, as well as dietary characteristics of dominant macrobenthos between farming and non-farming areas. The results revealed that studied variables in water column showed no uniform spatial differences. Meanwhile, those in sediment displayed similar decrease tendencies from farming pond to the adjacent tidal flat, which was considered to represent the environmental effects of farming. Biochemical tracers (δ13C and δ15N) in both water column and sediment confirmed the origin of organic matters from the aquaculture waste. The detectable dispersion distance of aquaculture waste was restricted to an area within 50 m distance as determined by most variables in sediment (TOC, TN, NO3- and NH4+), particularly by C:N ratio and δ13C with which origins of the wastes were traced. Bayesian mixing models indicated that in the farming area BMA had a larger contribution, while POM(marine) showed a smaller contribution to the diets of Helice tridens and Macrophthalmus abbreviates compared to those in the non-farming area. The overall results showed that pond farming for Apostichopus japonicus in the Yellow River estuary altered the local environment to a certain extent. For methodological consideration, sediment biogeochemical characteristics as a historical recorder much more effectively reflected aquaculture waste accumulation, and stable isotope approaches are efficient in tracing the origin and extent of various allogenous sources.

  19. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

    DOE PAGES

    Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin; ...

    2017-01-10

    On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less

  20. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin

    On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less

  1. Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012

    NASA Astrophysics Data System (ADS)

    Kong, D.

    2017-12-01

    Runoff in the Yellow River Basin (YRB) has changed constantly during the past six decades. This study investigates the features of variations in runoff increment in the YRB and evaluates the impact of climate change and human activities on the mean annual net runoff. Residual analysis based on double mass curves (RA-DMC) was performed to quantitatively assess the separate contributions of climate change and human activities to the changes in net runoff. There was a significant downward trend in annual net runoff for each of the Yellow River sub-basins. For the basin as a whole, net runoff decreased at a rate of 0.721 × 109 m3 yr-1, with the upper, middle, and lower sub-basins separately accounting for 28.4%, 40.5% and 31.1% of the decrease. Human activities were responsible for more than 90% of the change in runoff in each separate sub-basin between 1960 and 2012. For the entire YRB, 91.7% of the change in net runoff from baseline was attributed to human activities. This indicates that human activities have become the dominant factor in net runoff changes in the Yellow River Basin. Among the upper, middle, and lower reaches, the effect of human activities was greatest in the lower reaches.

  2. Pollutant sensitivity of the endangered Tar River Spinymussel as assessed by single chemical and effluent toxicity tests

    USGS Publications Warehouse

    Augspurger, Thomas P.; Wang, Ning; Kunz, James L.; Ingersoll, Christopher G.

    2014-01-01

    The federally endangered Tar River spinymussel (Elliptio steinstansana) is endemic to the Tar River and Neuse River systems in North Carolina. The extent to which water quality limits Tar River spinymussels’ recovery is important to establish, and one aspect of that is understanding the species’ pollutant sensitivity. The primary objectives of this study were to 1) develop captive propagation and culture methods for Tar River spinymussels; 2) determine the pollutant sensitivity of captively propagated Tar River spinymussels; 3) examine the utility of the non-endangered yellow lance (Elliptio lanceolata), yellow lampmussel (Lampsilis cariosa) and notched rainbow (Villosa constricta) as surrogates for the Tar River spinymussels’ chemical sensitivity; 4) develop a 7-d method for conducting effluent toxicity tests starting with newly transformed mussels; 5) assess the toxicity of municipal wastewater effluents discharged into the Tar River spinymussels’ current and historic habitat; and, 6) evaluate the protection afforded by existing effluent toxicity test requirements.

  3. Organic carbon source and salinity shape sediment bacterial composition in two China marginal seas and their major tributaries.

    PubMed

    Wang, Kai; Zou, Li; Lu, Xinxin; Mou, Xiaozhen

    2018-08-15

    Marginal sea sediments receive organic substrates of different origins, but whether and to what extent sediment microbial communities are reflective of the different sources of organic substrates remain unclear. To address these questions, sediment samples were collected in two connected China marginal seas, i.e., Bohai Sea and Yellow Sea, and their two major tributaries (Yellow River and Liao River). Sediment bacterial community composition (BCC) was examined using 16S rRNA gene pyrosequencing. In addition, physicochemical variables that describe environmental conditions and sediment features were measured. Our results revealed that BCCs changed with salinity and organic carbon (OC) content. Members of Gaiellaceae and Comamonadaceae showed a rapid decrease as salinity and phytoplankton-derived OC increased, while Piscirickettsiaceae and Desulfobulbaceae exhibited an opposite distribution pattern. Differences of riverine vs. marginal sea sediment BCCs could be mostly explained by salinity. However, within the marginal seas, sediment BCC variations were mainly explained by OC-related variables, including terrestrial-derived fatty acids (Terr_FA), phytoplankton-derived polyunsaturated fatty acids (Phyto_PUFA), stable carbon isotopes (δ 13 C), and carbon to nitrogen ratio (C/N). In addition to environmental variables, network analysis suggested that interactions among individual bacterial taxa might be important in shaping sediment BCCs in the studied areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evaluation of blue and green water resources in the upper Yellow River basin of China

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoxi; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Xianming, Han

    2018-06-01

    The total amount of water resources severely affects socioeconomic development of a region or watershed, which means that accurate quantification of the total amount of water resources is vital for the area, especially for the arid and semi-arid regions. Traditional evaluation of water resources only focused on the qualification of blue water, while the importance of green water was not fully considered. As the second largest river in China, the Yellow River plays an important role in socioeconomic development of the Yellow River basin. Therefore, the blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability of the blue water and green water is relatively similar during the same period. The higher temperature, the greater difference between the blue and green water. The inter-annual variability of the blue and green water shows that the trends in precipitation, blue and green water have a relatively similar characteristic. The spatial distribution of the blue and green water is characteristic with gradually decreasing from the northwest to the southeast, and the blue water around the main stream is greater than that in the other areas.

  5. Hazardous geology zoning and influence factorsin the near-shore shallow strata and seabed surfaceof the modern Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Li, P.

    2016-12-01

    In this study, on the basis of 3,200 km shallow stratigraphic section and sidescan sonar data of the coastal area of the Yellow River Delta, we delineated and interpreted a total of seven types of typical hazardous geologies, including the hazardous geology in the shallow strata (buried ancient channel and strata disturbance) and hazardous geology in the seabed surface strata (pit, erosive residual body, sand patch, sand wave and scour channel). We selected eight parameters representing the development scale of the hazardous geology as the zoning indexes, including the number of hazardous geology types, pit depth, height of erosive residual body, length of scour channel, area of sand patch, length of sand wave, width of the buried ancient channel and depth of strata disturbance, and implemented the grid processing of the research area to calculate the arithmetic sum of the zoning indexes of each unit grid one by one. We then adopted the clustering analysis method to divide the near-shore waters of the Yellow River Delta into five hazardous geology areas, namely the serious erosion disaster area controlled by Diaokou lobe waves, hazardous geology area of multi-disasters under the combined action of the Shenxiangou lobe river wave flow, accumulation type hazardous geology area controlled by the current estuary river, hazardous geology area of single disaster in the deep water area and potential hazardous geology area of the Chengdao Oilfield. All four of the main factors affecting the development of hazardous geology, namely the diffusion and movement of sediment flux of the Yellow River water entering the sea, seabed stability, bottom sediment type and distribution, as well as the marine hydrodynamic characteristics, show significant regional differentiation characteristics and laws. These characteristics and laws are consistent with the above-mentioned zoning results, in which the distribution, scale and genetic mechanism of hazardous geology are considered comprehensively. This indicates that the hazardous geology zoning based on the cluster analysis is a new attempt in research regarding the hazardous geology zoning of the near-shore waters of the modern Yellow River Delta and that this type of zoning has a high level of reasonability.

  6. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    NASA Astrophysics Data System (ADS)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the sediment fall velocity is arbitrarily greatly reduced. A consideration of sediment mixtures, however, shows that the two formulations give very different patterns of grain sorting. We explain this in terms of the structures of the two Exner equations for sediment mixtures, and define conditions for applicability of each formulation.

  7. Regulating N Application for Rice Yield and Sustainable Eco-Agro Development in the Upper Reaches of Yellow River Basin, China

    PubMed Central

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region. PMID:25045728

  8. Regulating N application for rice yield and sustainable eco-agro development in the upper reaches of Yellow River basin, China.

    PubMed

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region.

  9. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    PubMed

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  10. Quantitative analysis on sensitive factors of runoff change in Fenhe watershed based on integration approach

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Jian, Shengqi; Wu, Zening; Zhang, Zhaoxi; Hu, Caihong

    2018-06-01

    The runoff of the Fenhe River flowed into the Yellow River (RRY) is reducing significantly due to the influence of climate change and human activities. It is generating bad situation of shortage of water resources and led to the deterioration of ecological environment of Shanxi Province. At the same time, the reduction in RRY causes the runoff reduction in Yellow River and exacerbated the water resources shortage of the middle area of the Yellow River. Therefore, it is important to alleviate water shortage and develop the soil and water conservation measurements and regional water policy by analyzing the influence of human activities and climate change on the RRY. The existing study quantified the reduction in amount of RRY which caused by human activities and climate change using statistical methods and watershed hydrological model. The main results of the study were as follow:

    1. Using hydrological variation diagnosis system, the variation characteristics of long time series of measured annual runoff were analyzed in Hejin station that is the Fenhe River control station. The results showed that the runoff of Fenhe River run into Yellow River declined year by year, in 1971, fell the most obviously.
    2. The impact of LUCC on runoff was calculated using the method of area ratio in the Fenhe River basin. Human activities were major factor in the reduction of RRY than the climate change, contributed 83.09 % of the total reduction in RRY, Groundwater exploitation gave the greatest contribution to the decrease in RRY in the scope of several kinds of human activity (30.09 %), followed by coal mining (26.03 %), climate changed contributed 19.17 % of the total reduction of RRY, and the decrease of precipitation contributed 20.81 %. But the variation of air temperature and wind speed would result in the increase of the amount of RRY.

  11. Uplifted Yellow river terraces across the Haiyuan fault, China and their implications to geometrical complexity of strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Liu, J.; van der Woerd, J.; Li, Z.; Klinger, Y.; Matrau, R.; Shao, Y.; Zhang, J.; Wang, P.

    2016-12-01

    Geometrical complexities and discontinues, such as fault bends, splays and step-overs, are common along large strike-slip faults. Numerical and observational studies show that geometrical complexities above some threshold degree may inhibit thoroughgoing rupture, limiting rupture length and the size of the resulting earthquake. Studying the fine structure and long-term evolution of fault step-overs would help us better understand their effect on earthquake ruptures. In this study, we focus on a prominent geometrical "knot" on the left-lateral Haiyuan fault, where the fault curves with multi-strand splays bounding the Mijia Shan-Hasi Shan ranges. Incidentally, the Yellow river flows between the Mijia Shan and Hasi Shan and cuts a deep gorge when crossing the fault. On the western bank of the river, a series of at least twelve levels of fluvial strath terraces perch above river bed, and are capped with no more than 5 meters of alluvial deposits. We measured the terrace heights above river bed, using RTK and UAV surveys. We collected quartz-rich pebbles of yellow river gravel for cosmogenic radio nuclide (CRN), and silt layers within gravel and the overlying loess cap for optimally stimulated luminescence (OSL) dating to constrain the terrace formation ages. Quartz-rich pebbles were sampled both in hand-dug pit for depth-profile method and surface samples on terrace surfaces. The CRN age results were corrected in terms of inheritance and shielding by loess. The dates and heights of serial terraces yielded an average uplift rate of 2±0.34 mm/yr, which represents the late Quaternary uplifting rate of the Mijia Shan. The uplift of the Mijia Shan-Hasi Shan may result from the oblique shear of positive flower in the deep crust of the left-lateral Haiyuan fault. We further speculate that with progressively uplifted mountain ranges, the active fault trace shifts with time among the multi-strands of the fault system. In addition, the coincidence of prominent uplifted mountains at the position where the Yellow river cut across the left-lateral strike-slip fault suggests that Yellow river may play a role in enhancing the uplifting rate, though efficient mass unloading.

  12. Seasonal and downstream alterations of dissolved organic matter and dissolved inorganic ions in a human-impacted mountainous tributary of the Yellow River, China.

    PubMed

    Zhang, Shurong; Bai, Yijuan; Wen, Xin; Ding, Aizhong; Zhi, Jianhui

    2018-04-22

    Human activities impose important disturbances on both organic and inorganic chemistry in fluvial systems. In this study, we investigated the intra-annual and downstream variations of dissolved organic carbon (DOC), dissolved organic matter (DOM) excitation-emission matrix fluorescence (EEM) with parallel factor analysis (PARAFAC), major ions, and dissolved inorganic nitrogen (DIN) species in a mountainous tributary of the Yellow River, China. Both DOM quantity and quality, as represented by DOC and DOM fluorescence respectively, changed spatially and seasonally in the studied region. Fluorescence intensity of tryptophan-like components (C3) were found much higher at the populated downstream regions than in the undisturbed forested upstream regions. Seasonally, stronger fluorescence intensity of protein-like components (C3 and C4) was observed in the low-flow period (December) and in the medium-flow period (March) than in the high-flow period (May), particularly for the downstream reaches, reflecting the dominant impacts of wastewater pollution in the downstream regions. In contrast to the protein-like fluorescence, humic-like fluorescence components C1 and C2 exhibited distinctly higher intensity in the high-flow period with smaller spatial variation indicating strong flushing effect of increasing water discharge on terrestrial-sourced humic-like materials in the high-flow period. Pollution-affected dissolved inorganic ions, particularly Na + , Cl - , and NH 4 + -N, showed similar spatial and seasonal variations with protein-like fluorescence of DOM. The significant positive correlations between protein-like fluorescence of DOM and pollution-affected ions, particularly Na + , Cl - , and NH 4 + -N, suggested that there were similar pollution sources and transportation pathways of both inorganic and organic pollutants in the region. The combination of DOM fluorescence properties and inorganic ions could provide an important reference for the pollution source characterization and river basin management.

  13. Occurrences, sources and risk assessment of short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yellow River, China.

    PubMed

    Qiao, Lin; Xia, Dan; Gao, Lirong; Huang, Huiting; Zheng, Minghui

    2016-12-01

    Chlorinated paraffins (CPs), one class of hydrophobic and toxic compounds, are easily adsorbed into sediments and then pose potential risks to the ecosystem and human health. However, few researches on short- and medium-chain CPs (SCCPs and MCCPs) in sediments have been performed. In order to comprehensively investigate the spatial distributions, sources, and ecological risks of CPs, sediments collected from the middle reaches of the Yellow River were analyzed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS). The concentrations of SCCPs and MCCPs ranged from 11.6 to 9.76 × 10 3  ng/g dry weight (dw) and from 8.33 to 168 ng/g dw, respectively. No significant correlation was found between total organic carbon (TOC) and CP concentrations (P > 0.05). The spatial distributions showed that contamination levels of CPs were relevant to human activities. In addition, two types of sediment samples were classified by hierarchical cluster analysis (HCA) and results indicated the predominant congener groups were C 10 Cl 6-7 for SCCPs and C 14 Cl 7-8 for MCCPs. Principal component analysis (PCA) revealed that SCCPs and MCCPs in the sediments may have different sources, and SCCPs are likely to come from the production and use of CP-42 and CP-52. Moreover, complex environmental processes, including long-range transportation via the atmosphere and/or river, deposition and degradation of CPs, resulted in increased abundances of short chain and low chlorinated congeners in sediment samples compared with commercial mixtures, and different homolog patterns among samples. The significant negative correlation between SCCP concentrations and MCCP/SCCP ratios could be related to long-range transport of CPs. A preliminary risk assessment indicated that CPs at current levels posed no significant ecological risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Yellow Fever in an Unvaccinated Traveler to Peru.

    PubMed

    Winnicka, Lydia; Abdullah, Amirahwaty; Yang, Tsujung; Norville, Kim; Irizarry-Acosta, Melina

    2017-01-01

    We present a case of an unvaccinated traveler who traveled from New York to Peru and contracted yellow fever. He likely acquired the infection while visiting the Amazon River, with a point of exit of Lima, Peru. Our case illustrates the dramatic course that yellow fever may take, as well as the importance of pretravel vaccination.

  15. Sediment suspension and the dynamic mechanism during storms in the Yellow River Delta.

    PubMed

    Bian, Shuhua; Hu, Zjian; Liu, Jianqiang; Zhu, Zichen

    2016-12-01

    The suspension and hydrodynamic characteristics of the Yellow River Delta during storms were analyzed based on suspended samples obtained using automatic samplers during a storm event in the Yellow River Delta. Synchronous data for winds, waves, and tides were also collected from a nearby station. The results show that under wind speeds of 5-15 m/s and wave heights of 50-150 cm, the suspended content reached 5.7-49.6 kg/m 3 , which is 10-100 times higher than that under normal weather conditions. The medium diameter of suspended particles was 1.2-2.1 μm (8.9-9.7 Φ), which was approximately 1-2 Φ finer than that under normal weather conditions. During the early stages of the measurements, the sea level had risen by 50 cm owing to the storm, which was in addition to the tidal sea level change. We suggest that during the storms, the waves strengthened and the storm-induced sea level change, which was combined with tidal currents moving in the same direction, produced high-speed currents. This overcame the cohesive forces among the fine sediment particles and suspended a large amount of sediment. As a result, the suspended content increased markedly and the suspended particle size became finer. This explains the intense siltation and erosion of the Yellow River Delta during storms.

  16. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau

    PubMed Central

    Qu, Bin; Sillanpää, Mika; Kang, Shichang; Stubbins, Aron; Yan, Fangping; Aho, Kelly Sue; Zhou, Feng; Raymond, Peter A.

    2017-01-01

    The role played by river networks in regional and global carbon cycle is receiving increasing attention. Despite the potential of radiocarbon measurements (14C) to elucidate sources and cycling of different riverine carbon pools, there remain large regions such as the climate-sensitive Tibetan Plateau for which no data are available. Here we provide new 14C data on dissolved organic carbon (DOC) from three large Asian rivers (the Yellow, Yangtze and Yarlung Tsangpo Rivers) running on the Tibetan Plateau and present the carbon transportation pattern in rivers of the plateau versus other river system in the world. Despite higher discharge rates during the high flow season, the DOC yield of Tibetan Plateau rivers (0.41 gC m-2 yr-1) was lower than most other rivers due to lower concentrations. Radiocarbon ages of the DOC were older/more depleted (511±294 years before present, yr BP) in the Tibetan rivers than those in Arctic and tropical rivers. A positive correlation between radiocarbon age and permafrost watershed coverage was observed, indicating that 14C-deplted/old carbon is exported from permafrost regions of the Tibetan Plateau during periods of high flow. This is in sharp contrast to permafrost regions of the Arctic which export 14C-enriched carbon during high discharge periods. PMID:28552976

  17. Distribution characteristics of organochlorine pesticide in the water environment in Lanzhou section of Yellow River

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhao, X.; Shen, J. M.; Chen, Z. L.; Wang, X. C.; Qiu, H. R.

    2017-04-01

    Surface water, surface sediments and suspended particles in the Lanzhou section of Yellow River were collected. After the samples were lyophilised, extracted, concentrated, purified and separated, organochlorine pesticides in the samples were analysed by GC-MS. Results showed that organochlorine pesticide contents in surface water, surface sediments and suspended particles ranged from 28.63 ng/L to 123.2 ng/L, from 0.86 ng/g to 4.51 ng/g and from 23.29 ng/g to 126.14 ng/g, respectively. HCHs, DDTs and HCB were high; among these contents, HCH contents ranged from 1.49 ng/L to 18.1 ng/L, from 0.04ng/g to 1.53 ng/g and from 2.74ng/g to 25.64 ng/g, respectively. DDT contents ranged from 1.49 ng/Lto 18.1 ng/L, from 0.04 ng/g to 1.53 ng/g and from 2.74 ng/g to 25.64 ng/g, respectively. Component analysis results showed that organochlorine pesticide in the Lanzhou section of Yellow River was mainly from early residues or soil after pesticides were applied and long-term weathering occurred. Correlation analysis results showed that total organic carbon was an important factor affecting the distribution of organochlorine pesticide in sediments. Moderate organochlorine pesticide contents were detected in surface water in Lanzhou section of Yellow River compared with other rivers in our country and in other countries. Furthermore, the ecological risk of organochlorine pesticide in surface sediments was low.

  18. Legacy and emerging halogenated flame retardants in the middle and lower stream of the Yellow River.

    PubMed

    Su, Xianfa; Li, Qilu; Feng, Jinglan; Guo, Liya; Sun, Jianhui

    2017-12-01

    Halogenated flame retardants (HFRs), mainly encompassing polybrominated diphenylethers (PBDEs), dechlorane plus (DP) and emerging bromine flame retardants (EBFRs), are widely employed nowadays in daily lives. However, limited knowledge has been gained to date on the concentrations and distributions of HFRs in particular within certain regions. In the present study, legacy and emerging HFRs were systematically measured in suspended particle matter (SPM) and sediments collected in 2014 from the middle and lower reach of the Yellow River in Henan province. The total concentrations of HFRs in SPM among the three seasons were 42.2±91.2ngg -1 , which was far higher than the corresponding values of HFRs in sediments (1.82±2.94ngg -1 ). In this study, PBDEs, DP and EBFRs in sediment almost exhibited relatively lower levels as compared to those found in other studies, where the limited usage of HFRs in the middle and lower stream of the Yellow River was probably the major impact factor. EBFR was the predominate pollutant from SPM and sediments in most of the sampling sites, suggesting that EBFRs were widely used nowadays as substitute materials of 'old' FRs. The mean concentration values of DBDPE/BDE-209 in SPM and sediments were apparently higher than those of previous studies. Furthermore, it is interesting to reveal that herein almost all of the HFR concentrations were unrelated to the population and GDP, which might be attributed to the characteristics of 'elevated stream' of the Yellow River as well as the complex river systems in Henan province. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Chlordane, DDT, PCB's, and other selected organic compounds in Asiatic clams and yellow bullhead in the Potomac River Basin, 1992

    USGS Publications Warehouse

    Zappia, Humbert

    1996-01-01

    Chlordane, DDT (dichlor-diphenyl-trichloroethane), and PCB's (polychlorinated biphenyls) were the most widespread organic contaminants detected during a 1992 survey of aquatic biological tissues in the Potomac River Basin. On the basis of existing U.S. Food and Drug Administration criteria, no new threats to human health were discovered, although chlordane concentrations may pose a threat to fish-eating wildlife. Chlordane exceeded the National Academy of Science and National Academy of Engineering recommended maximum concentration for the protection of fish-eating wildlife at two sites. The survey, conducted by the U.S. Geological Survey's National Water-Quality Assessment Program, sampled Asiatic clams (Corbicula fluminea) and yellow bullhead (Ameiurus natalis) at 16 sites to determine the occurrence and distribution of 29 hydrophobic organic compounds. Thirteen of these organic compounds were detected in the survey. Sites with the greatest number of compounds detected include the Potomac River near Alexandria, Va., with 6 compounds detected in Asiatic clam tissue, and Accotink Creek near Annandale, Va., with 11 compounds in yellow bullhead tissue. Chlordane was detected at six sites, with maximum concentrations of 31.1 ?g/kg (micrograms per kilograms) in Asiatic clam tissue and 127 ?g/kg in yellow bullhead whole-fish tissue. DDT was detected at five sites, with maximum concentrations of 12.9 ?g/kg in Asiatic clam tissue and 7.6 ?g/kg in yellow bullhead whole-fish tissue. PCB's were detected at nine sites, with maximum concentrations of 162 ?g/kg in Asiatic clam tissue and 146 mg/ kg in yellow bullhead whole-fish tissue.

  20. Degradation and Preservation of Terrestrial Organic Carbon in the Intertidal Mudflat of Yellow River Delta: Indicated by Lignin and Lipid Molecular

    NASA Astrophysics Data System (ADS)

    Zou, L.; Yu, W.; Gao, H.; Sun, M.

    2017-12-01

    The highest input of suspended particles from the Yellow River, accumulated and formed one of the largest intertidal mudflats, the Yellow River Delta in the world. The higher nutrients originated from ambient drainage areas supported a higher primary productivity, as well as a higher secondary productivity in the estuarine and intertidal mudflats of Yellow River Delta (YRD). However, the preservation and accumulation of organic carbon were quite low in the intertidal sediments, indicated by the standing stock of organic carbon. Molecular of lignin and long chain lipid were applied to explore the degradation and preservation of organic carbon in the southern intertidal mudflats of YRD, especially the behavior of terrestrial organic molecular. Lignin Σ8 ranged at 0.13-0.54 mg/10 g dw (0.23 mg/10 gdw at avg.) in the surface sediments of estuarine and intertidal mudflats, which were about 50 % higher than those in the river sediments. LVPI suggested that, lignin was primarily originated from woody tissues of angiosperms in riverine sediments, and then was dominated by herbaceous tissues of angiosperms in the estuarine and intertidal mudflats. (Ad/Al)V and P/(S+V) indicated that, demethylation/ demethoxyhaleniaside contributed more than oxidation in lignin degradation in the estuarine and intertidal mudflats, while oxidation contributed more in the riverine sediments. Long chain fatty acids accounted for <10 % of total fatty acids in both the estuarine and riverine sediments. The input of long chain fatty acids from terrestrial higher plants varied seasonally, and followed in the turn of autumn, winter, summer and spring from river to estuary. The comparable percentages of free and bound long chain fatty acids suggested that, organic carbon from terrestrial higher plants degraded rapidly from river to estuary, and kept at a middle stage of mineralization.

  1. Sinking Coastlines: Land Subsidence at Aquaculture Facilities in the Yellow River Delta, China, measured with Differential Synthetic Aperture Radar (D-InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J. P.

    2013-12-01

    Land subsidence in river deltas is a global problem. It heightens storm surges, salinates groundwater, intensifies river flooding, destabilizes infrastructure and accelerates shoreline retreat. Measurements of delta subsidence typically rely on point measures such as GPS devices, tide gauges or extensometers, but spatial coverage is needed to fully assess risk across river deltas. Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a satellite-based technique that can provide maps of ground deformation with mm to cm-scale vertical resolution. We apply D-InSAR to the coast of the Yellow River Delta in China, which is dominated by aquaculture facilities and has experienced severe coastal erosion in the last twenty years. We extract deformation patterns from dry land adjacent to aquaculture facilities along the coast, allowing the first measurements of subsidence at a non-urban delta shoreline. Results show classic cones-of-depression surrounding aquaculture facilities, likely due to groundwater pumping. Subsidence rates are as high as 250 mm/y at the largest facility on the delta. These rates exceed local and global average sea level rise by nearly two orders of magnitude. If these rates continue, large aquaculture facilities in the area could induce more than a meter of relative sea level rise every five years. Given the global explosion in fish farming in recent years, these results also suggest that similar subsidence and associated relative sea level rise may present a significant hazard for other Asian megadeltas. False-color MODIS image of the Yellow River delta in September 2012. Water appears dark blue, highlighting the abundance of aquaculture facilities along the coast. Green land is primarily agricultural; brown is urban. Red boxes indicate locations of aquaculture facilities examined in this study. Figure from Higgins, S., Overeem, I., Tanaka, A., & Syvitski, J.P.M., (2013), Land Subsidence at Aquaculture Facilities in the Yellow River Delta, Geophysical Research Letters, in press.

  2. Environmental correlates of upstream migration of yellow-phase American eels in the Potomac River drainage

    USGS Publications Warehouse

    Welsh, Stuart A.; Heather L. Liller,

    2013-01-01

    Assessing the relationships between upstream migration and environmental variables is important to understanding the ecology of yellow-phase American Eels Anguilla rostrata. During an American Eel migration study within the lower Shenandoah River (Potomac River drainage), we counted and measured American Eels at the Millville Dam eel ladder for three periods: 14 May–23 July 2004, 7–30 September 2004, and 1 June–31 July 2005. Using generalized estimating equations, we modeled each time series of daily American Eel counts by fitting time-varying environmental covariates of lunar illumination (LI), river discharge (RD), and water temperature (WT), including 1-d and 2-d lags of each covariate. Information-theoretic approaches were used for model selection and inference. A total of 4,847 American Eels (19–74 cm total length) used the ladder during the three periods, including 2,622 individuals during a 2-d span following a hurricane-induced peak in river discharge. Additive-effects models of RD + WT, a 2-d lag of LI + RD, and LI + RD were supported for the three periods, respectively. Parameter estimates were positive for river discharge for each time period, negative for lunar illumination for two periods and positive for water temperature during one period. Additive-effects models supported synergistic influences of environmental variables on the upstream migration of yellow-phase American Eels, although river discharge was consistently supported as an influential correlate of upstream migration.

  3. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux

    PubMed Central

    Wang, Xuejing; Li, Hailong; Jiao, Jiu Jimmy; Barry, D. A.; Li, Ling; Luo, Xin; Wang, Chaoyue; Wan, Li; Wang, Xusheng; Jiang, Xiaowei; Ma, Qian; Qu, Wenjing

    2015-01-01

    Near- and off-shore fresh groundwater resources become increasingly important with the social and economic development in coastal areas. Although large scale (hundreds of km) submarine groundwater discharge (SGD) to the ocean has been shown to be of the same magnitude order as river discharge, submarine fresh groundwater discharge (SFGD) with magnitude comparable to large river discharge is never reported. Here, we proposed a method coupling mass-balance models of water, salt and radium isotopes based on field data of 223Ra, 226Ra and salinity to estimate the SFGD, SGD. By applying the method in Laizhou Bay (a water area of ~6000 km2), we showed that the SFGD and SGD are 0.57 ~ 0.88 times and 7.35 ~ 8.57 times the annual Yellow River flux in August 2012, respectively. The estimate of SFGD ranges from 4.12 × 107 m3/d to 6.36 × 107 m3/d, while SGD ranges from 5.32 × 108 m3/d to 6.20 × 108 m3/d. The proportion of the Yellow River input into Laizhou Bay was less than 14% of the total in August 2012. Our method can be used to estimate SFGD in various coastal waters. PMID:25742712

  4. Yellow River, China

    NASA Image and Video Library

    1994-09-30

    STS068-220-033 (30 September-11 October 1994) --- Photographed through the Space Shuttle Endeavour's flight deck windows, this 70mm frame shows a small section of China's Yellow River (Huang Ho) highlighted by sunglint reflection off the surface of the water. The river flows northeastward toward the village of Tung-lin-tzu. The low dissected mountains that cover more than half of this scene rise some 2,000 feet (on the average) above the valley floor. A major east-west transportation corridor (both railway and automobile) is observed traversing the landscape north of the river. This entire region is considered to be part of the Ordos Desert, actually part of the greater Gobi located just north of this area. Approximate center coordinates of this scene are 37.5 degrees north latitude and 105.0 degrees east longitude.

  5. Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Hu, Limin; Liu, Ming; Wang, Liang; Zhang, Xilin; Fan, Dejiang

    2017-02-15

    To understand the spatio-temporal distribution and sources of Pb in the sediments of the Yangtze River Estuary and its adjacent areas, 25 surface sediments and 1 sediment core were collected from the study areas. The concentrations of Al and Pb of these sediments exhibit a decreasing trend from the nearshore towards the offshore, with higher concentrations in the coastal areas of the East China Sea (ECS) and southwest of Jeju Island. According to the stable isotopic ratios of Pb, in combination with the elemental ratios and clay mineral data, it is inferred that sedimentary Pb in the surface sediments of the coastal areas of the ECS may come primarily from the Yangtze River, while the Pb southwest of Jeju Island is probably derived from both the Yangtze and Yellow Rivers. The particulate Pb derived from the Yangtze River was possibly dispersed along two paths: the path southward along the coastline of the ECS and the path eastward associated with the Changjiang Diluted Water (CDW), which crosses the shelf of the ECS towards the area southeast of Jeju Island. Although the Yangtze River Basin witnessed rapid economic development during the period from the late 1970s to the middle 1990s, the influence of human activity on Pb concentration remained weak in the Yangtze River Estuary. Since the early 2000s, however, sedimentary Pb has been significantly increasing in the coastal mud areas of the ECS due to the increasing influence of human activity, such as the increase in atmospheric emission of anthropogenic Pb in China, construction of the Three Gorges Dam (TGD), and the construction of smaller dams in the upper reaches of the Yangtze River. Coal combustion and the smelting of non-ferrous metals are possible anthropogenic sources for the sedimentary Pb in the Yangtze River Estuary. Copyright © 2016. Published by Elsevier B.V.

  6. Natural and Human Impacts on Recent Development of Asian Large Rivers and Deltas

    NASA Astrophysics Data System (ADS)

    Liu, P.; Lu, C.

    2014-12-01

    Most recent data analysis indicates sediment loads in most of Asian large rivers (like, Yellow, Yangtze, Pearl, Chao Phraya, Indus, Krishna, Godavari, etc) have decreased up to 80-90% in the past 60 years. Correspondingly, most of Asian large river deltas are facing severe sediment starving; delta shoreline comparisons indicate that some are under strong coastal erosion. For examples, the Yellow River Delta has been retreating since 1990s when its annual sediment load has kept below 300 million tons. The Yangtze River delta kept growing before Three Gorges Dams was operating, and began to be eroded from the year 2003 to 2009, and then prograded locally due to the Deep Water Navigation Project. The Mekong Delta shoreline has also been dynamically changing with the sediment flux variation, eroding from 1989 to 1996 and prograding from 1996 to 2002. More information is available at http://www.meas.ncsu.edu/sealevel

  7. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  8. Growth-temperature relation for young-of-the-year ruffe

    USGS Publications Warehouse

    Edsall, Thomas A.; Selgeby, James H.; DeSorcie, Timothy J.; French, John R. P.

    1993-01-01

    The ruffe (Gymnocephalus cernuus) was accidentally introduced into the Great Lakes basin from Eurasia and has established a breeding population in the St. Louis River, a major tributary to western Lake Superior. We captured young-of-the-year ruffe in the St. Louis River; acclimated groups of 90-91 fish to test temperatures of 7, 10, 15, 20, and 25°C; and fed them ad libitum for 42 days at those temperatures. Ruffe grew at all five temperatures, but the optimum temperature for growth was about 21°C. Because the optimum temperature for growth of walleye (Stizostedion vitreum), sauger (Stizoste-dion canadense), and yellow perch (Perca flavescens) is about 22°C, ruffe will probably attempt to share their thermal habitat. A recent survey of the St. Louis River revealed that yellow perch and small forage fish declined sharply as ruffe abundance increased. A similar decline in yellow perch abundance in Lakes Michigan, Huron, and Erie would seriously affect the fisheries in these lakes.

  9. Study on Remote Sensing Image Characteristics of Ecological Land: Case Study of Original Ecological Land in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    An, G. Q.

    2018-04-01

    Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.

  10. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhong; Wu, Jinglu; Pan, Baotian; Jia, Hongjuan; Li, Xiao; Wei, Hao

    2018-05-01

    The origin and evolution of lakes in the Hetao Plain, northern China, were influenced by climate variation, channel migration, and human activity. We analyzed a suite of sediment cores from the region to investigate Yellow River channel migration and environmental change in this region over the Holocene. Short sediment cores show that environmental indicators changed markedly around CE 1850, a time that corresponds to flood events, when large amounts of river water accumulated in the western part of the Hetao Plain, giving rise to abundant small lakes. Multiple sediment variables (environmental proxies) from two long cores collected in the Tushenze Paleolake area show that sediments deposited between 12.0 and 9.0 cal ka BP were yellow clay, indicative of fluvial deposition and channel migration. From 9.0 to 7.5 cal ka BP, sand was deposited, reflecting a desert environment. From 7.5 to 2.2 cal ka BP, however, the sediments were blue-gray clay that represents lacustrine facies of Lake Tushenze, which owes its origin to an increase in strength of the East Asian monsoon. At about 2.2 cal ka BP, the north branch of the Yellow River was flooded, and the Tushenze Paleolake developed further. Around 2.0 cal ka BP, the paleolake shrank and eolian sedimentation was recorded. The analyzed sediment records are consistent with the written history from the region, which documents channel migration and environmental changes in the Hetao Plain over the Holocene.

  11. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China.

    PubMed

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×10(3) to 2.10±0.13×10(5) copies g(-1) (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×10(3) to 1.83±0.18×10(5) copies g(-1) (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4(+)) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.

  12. Bush River ichthyoplankton distributions near the proposed Perryman site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, W.H.; Jacobs, F.; Holland, A.F.

    1985-11-01

    A survey of the ichthyoplankton inhabiting the waters adjacent to the proposed Perryman power plant site on the Bush River was conducted from 31 March to 13 September 1984. The results of the spring 1984 sampling showed that yellow perch (Perca flavescens) larvae were often abundant, reaching densities as high as 2,920/100 cu m. Comparison of the data with that from other ichthyoplankton surveys conducted in the Bush River suggests that the number of yellow perch larvae varied greatly among years. Abundance of white perch and clupeids varied less among years. Sampling of nearshore-shallow and deeper channel habitats revealed significantmore » spatial differences in abundances of certain species.« less

  13. The Impacts of Climate Change on the Frozen Soil and Eco-hydrology in the Source Region of Yellow River, China

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Yang, D.; Gao, B.

    2016-12-01

    The source region of Yellow River, located in the transition zone of discontinuous and continuous permafrost on the northeastern Tibetan Plateau, has experienced dramatic climate change during the past decades. The long-term changes in the seasonally frozen ground remarkably affected the eco-hydrological processes in the source region and the water availability in the middle and lower reaches. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to quantitatively assess the impacts of climate change on the frozen soil and regional eco-hydrology. It was found that the air temperature has increased by 2.1 °C since the 1960s and most significantly during the recent decade (0.67 °C /10a), while there was no significant trend of the precipitation. Based on a 34-year (1981-2014) simulation, the maximum frozen soil depth was in the range of 0.7-2.1 m and decreased by 1.5-7.9 cm/10a because of the warming climate. The model simulation adequately reproduced the observed streamflow changes, including the drought period in the 1990s and wet period in the 2000s, and the variability in hydrological behavior was closely associated with the climate and landscape conditions. The vegetation responses to climate changes manifested as advancing green-up dates and increasing leaf area index at the initial stage of growing season. Our study shows that the ecohydrological processes are changing along with the frozen soil degradation in headwater areas on the Tibetan Plateau, which could influence the availability of water resources in the middle and lower reaches.

  14. [Study on distribution characteristics and potential ecological risk of soil heavy metals in the Yellow River beach region in Kaifeng City].

    PubMed

    Zhang, Peng-yan; Qin, Ming-zhou; Chen, Long; Hu, Chang-hui; Zhao, Ya-ping; Dong, Wei-jun

    2013-09-01

    The distributions, soil environment status and potential ecological risk of heavy metals were studied in beach soil of returning the cropland into Yellow River beach region in Kaifeng by the Nemerows and Håkansons methods. The results showed that (1) as Among the average contents of the five heavy metals Pb, Cr, Hg, As and Cd, the highest was the average content of Cr, and the lowest was the average content of Pb and Hg. In addition to Hg, the coefficients of variation of other heavy metals were relatively small, indicating that the content of heavy metals was quite different at different sites, and to some extent, relecting that Hg, As and Pb were the major elements polluting the soil, among which, Pb pollution was the pollution with universality. There was little difference in the contents of Cr and Cd from village to village the coefficient of variation was small, and the contents were below the national standard level. (2) There was significant difference in the spatial distribution of soil heavy metal elements in the upper, the middle and lower sections of the study area. The upper section was clean, the middle section was slightly polluted, and the lower section was enriched with pollutants. (3) The distribution of heavy metals in the beach region inside and outside the levees of Yellow River was closely related to the distribution of the residential regions. In the upper section of the beach region (southwest), the population was large and the contents of heavy metals were high. The contents of heavy metals were lower in the near river zone than outside the levees of Yellow River. And the heavy metal contents in the middle and lower section were higher than those outside the levees of Yellow River, while the lower section (northwest) showed a tendency of pollution enrichment. (4) In the view of the average individual potential ecological risk index of heavy metals (E(r)i), the potential ecological risk of Hg reached intense levels, and the potential ecological risk of Pb's contribution to the integrated risk was 50.5%, which was the heavy metal with highest ecological risks. Cd and Pb had a moderate ecological risk, while As and Cr had minor ecological risk. Ecological hazards of heavy metals ranked in the ascending order of Hg > Pb > As > Cd > Cr. (5) The ecological hazard of the heavy metals was ranked in the order Hg > Cd > As > Pb > Cr. Based on the potential ecological risk level corresponding to the RI values, it was shown that there was moderate potential ecological risks of heavy metals in the Yellow River beach region in Kaifeng.

  15. Vegetative impacts upon bedload transport capacity and channel stability for differing alluvial planforms in the Yellow River source zone

    NASA Astrophysics Data System (ADS)

    Li, Zhi Wei; Yu, Guo An; Brierley, Gary; Wang, Zhao Yin

    2016-07-01

    The influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching-braided to fully braided planform conditions along trunk and tributary reaches of the Upper Yellow River in western China. Although the regional geology and climate are relatively consistent across the study area, there is a distinct gradient in the presence and abundance of riparian vegetation for these reaches atop the Qinghai-Tibet Plateau (elevations in the study area range from 2800 to 3400 m a.s.l.). To date, the influence of vegetative impacts upon channel planform and bedload transport capacity of alluvial reaches of the Upper Yellow River remains unclear because of a lack of hydrological and field data. In this region, the types and pattern of riparian vegetation vary with planform type as follows: trees exert the strongest influence in the anabranching reach, the meandering reach flows through meadow vegetation, the anabranching-braided reach has a grass, herb, and sparse shrub cover, and the braided reach has no riparian vegetation. A non-linear relation between vegetative cover on the valley floor and bedload transport capacity is evident, wherein bedload transport capacity is the highest for the anabranching reach, roughly followed by the anabranching-braided, braided, and meandering reaches. The relationship between the bedload transport capacity of a reach and sediment supply from upstream exerts a significant influence upon channel stability. Bedload transport capacity during the flood season (June-September) in the braided reach is much less than the rate of sediment supply, inducing bed aggradation and dynamic channel adjustments. Rates of channel adjustment are less pronounced for the anabranching-braided and anabranching reaches, while the meandering reach is relatively stable (i.e., this is a passive meandering reach).

  16. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    PubMed Central

    Gong, Yao; Yu, Zhigang; Yao, Qingzhen; Chen, Hongtao; Mi, Tiezhu; Tan, Jiaqiang

    2015-01-01

    The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR) watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1) with a lower concentration of dissolved silicate (average 131 μmol·L−1) and relatively low dissolved phosphate (average 0.35 μmol·L−1). Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth. PMID:26287226

  17. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    PubMed

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  18. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    PubMed Central

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  19. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Hu, Limin; Shi, Xuefa; Bai, Yazhi; Qiao, Shuqing; Li, Li; Yu, Yonggui; Yang, Gang; Ma, Deyi; Guo, Zhigang

    2016-03-01

    This study provides an extensive depiction of regional scale sedimentary total organic carbon (TOC) sequestration in the Bohai Sea (BS) and Yellow Sea (YS), marginal system of the western Pacific Ocean. The spatial pattern of the sediment mass accumulation rate (MAR) in the BS and YS was summarized based on a 100-year timescale. The relatively higher MAR (3 - 7 g/cm2/y) in the Yellow River estuary, compared to the adjacent areas, indicate a predominant impact of river discharge on the modern sedimentation process in the BS. Relatively stable sedimentary environment in the offshore mud deposits of the BS and YS was also identified based on the along-core sediment composition and radionuclides profiles. The corresponding spatial pattern of grain size and TOC content suggest a hydrodynamic constraint on the sedimentary TOC accumulation. Moreover, in spite of the various TOC sources revealed by the bulk organic matter (OM) proxies (C/N ratio and δ13C), the restriction of these bulk parameters with potential masking of the signature of terrigenous OM was also identified. The average burial flux of TOC (15.3 g C/m2/y) was finally obtained with a total sequestration of 5.6 × 106 t C/y, suggesting that the BS and YS serve as a significant repository of sedimentary TOC. The overall organic carbon storage capacity of the BS and YS is mainly sustained by the fluvial/land-based OM input, high phytoplankton primary productivity, convergent hydrodynamic and stable depositional settings.

  20. Dramatic decreases in runoff and sediment load in the Huangfuchuan Basin of the Middle Yellow River, China: historical records and future projections

    NASA Astrophysics Data System (ADS)

    LI, E.; Li, D.; Wang, Y.; Fu, X.

    2017-12-01

    The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.

  1. CONNECTICUT RIVER FISH TISSUE CONTAMINANT STUDY (2000): ECOLOGICAL AND HUMAN HEALTH RISK SCREENING

    EPA Science Inventory

    The study targeted commonly caught recreational fish, as well as other fish that are important in the river food chain. Smallmouth bass, white suckers and yellow perch were collected during 2000 from the mainstem of the Connecticut River and composite samples were analyzed for t...

  2. Sedimentary record of plutonium in the North Yellow Sea and the response to catchment environmental changes of inflow rivers.

    PubMed

    Xu, Yihong; Pan, Shaoming; Gao, Jianhua; Hou, Xiaolin; Ma, Yongfu; Hao, Yongpei

    2018-09-01

    Plutonium (Pu) isotopes were first determined in surface and core sediment samples collected from the northern North Yellow Sea (NYS) to elucidate their source terms and deposition process as well as the response to catchment environmental changes of inflow rivers. 240 Pu/ 239 Pu atom ratios in all sediments showed the typical global fallout value of ∼0.18 without any influences from the nuclear weapons tests conducted recently in the North Korea or early in the Pacific Proving Ground. The large variation of 239+240 Pu activities (0.022-0.515 mBq/g) observed in surface sediments should be mainly attributed to the re-suspension and transportation of fine sediments influenced by the Liaonan Costal Current. Based on the two 239+249 Pu depth profiles with easily observed onset fallout levels (1952) and global fallout peaks (1963), 239+240 Pu served as a valid time mark in the coastal sedimentary system. Riverine input Pu contributed only 15-27% to the total global fallout inventory (92.5-108.8 Bq/m 2 ) in the northern NYS, much lower than that in the Yangtze River estuary (77-80%), indicating a better soil conservation in the northeast China due to higher forest coverage compared to the Yangtze River's drainage basin. The increase of riverine input Pu after 1980s reflected the more intense soil erosion degree caused by the land use and cover change due to the increment of human activities in the northeast China at the same period. Our results demonstrated that plutonium is a good indicator for studying sedimentary process and its response to the environment in the coastal area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau.

    PubMed

    Deng, Cai; Zhang, Wanchang

    2018-05-30

    As the backland of the Qinghai-Tibet Plateau, the river source region is highly sensitive to changes in global climate. Air temperature estimation using remote sensing satellite provides a new way of conducting studies in the field of climate change study. A geographically weighted regression model was applied to estimate synchronic air temperature from 2001 to 2015 using Moderate-Resolution Imaging Spectroradiometry (MODIS) data. The results were R 2  = 0.913 and RMSE = 2.47 °C, which confirmed the feasibility of the estimation. The spatial distribution and variation characteristics of the average annual and seasonal air temperature were analyzed. The findings are as follows: (1) the distribution of average annual air temperature has significant terrain characteristics. The reduction in average annual air temperature along the elevation of the region is 0.19 °C/km, whereas the reduction in the average annual air temperature along the latitude is 0.04 °C/degree. (2) The average annual air temperature increase in the region is 0.37 °C/decade. The average air temperature increase could be arranged in the following decreasing order: Yangtze River Basin > Mekong River Basin > Nujiang River Basin > Yarlung Zangbo River Basin > Yellow River Basin. The fastest, namely, Yangtze River Basin, is 0.47 °C/decade. (3) The average air temperature rise in spring, summer, and winter generally increases with higher altitude. The average annual air temperature in different types of lands following a decreasing order is as follows: wetland > construction land > bare land glacier > shrub grassland > arable land > forest land > water body and that of the fastest one, wetland, is 0.13 °C/year.

  4. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review

    NASA Astrophysics Data System (ADS)

    Wang, Houjie; Wu, Xiao; Bi, Naishuang; Li, Song; Yuan, Ping; Wang, Aimei; Syvitski, James P. M.; Saito, Yoshiki; Yang, Zuosheng; Liu, Sumei; Nittrouer, Jeffrey

    2017-10-01

    The water-sediment regulation scheme (WSRS), beginning in 2002, is an unprecedented engineering effort to manage the Yellow River with the aims to mitigate the siltation both in the lower river channel and within the Xiaolangdi Reservoir utilizing the dam-regulated flood water. Ten years after its initial implementation, multi-disciplinary indicators allow us to offer a comprehensive review of this human intervention on a river-coastal system. The WSRS generally achieved its objective, including bed erosion in the lower reaches with increasing capacity for flood discharge and the mitigation of reservoir siltation. However, the WSRS presented unexpected disturbances on the delta and coastal system. Increasing grain size of suspended sediment and decreasing suspended sediment concentration at the river mouth resulted in a regime shift of sediment transport patterns that enhanced the disequilibrium of the delta. The WSRS induced an impulse delivery of nutrients and pollutants within a short period ( 20 days), which together with the altered hydrological cycle, impacted the estuarine and coastal ecosystem. We expect that the sediment yield from the loess region in the future will decrease due to soil-conservation practices, and the lower channel erosion will also decrease as the riverbed armors with coarser sediment. These, in combination with uncertain water discharge concomitant with climate change, increasing water demands and delta subsidence, will put the delta and coastal ocean at high environmental risks. In the context of global change, this work depicts a scenario of human impacts in the river basin that were transferred along the hydrological pathway to the coastal system and remotely transformed the different components of coastal environment. The synthesis review of the WSRS indicates that an integrated management of the river-coast continuum is crucially important for the sustainability of the entire river-delta system. The lessons learned from the WSRS in the Yellow River provide insights to the integrated management of large rivers worldwide.

  5. [Study on the present status of the areas with high iodine concentration in drinking water and edible salt at household levels in Ohio of Yellow River].

    PubMed

    Guo, Xiao-wei; Zhai, Li-ping; Liu, Yuan; Wang, Xin

    2005-11-01

    To understand the present condition of iodine excess areas and edible salt at household levels in Ohio of Yellow River,which will provide the evidence to control it. A cross section in one time was adopted for the epidemiological survey based on the east, west, south, north and central in all of townships from 8 counties. 2 samples of drinking water from each village were tested their water iodine content as well as the data regarding to their recourses and the depth of wells. 5 samples of edible salt were collected from each village for quantitative analysis. We investigated 451 villages in 92 townships of 8 counties. 800 samples of drinking water were tested which values of iodine content were (110.93 +/- 152.26) microg/L in main, 55.83 microg/L (0.84 - 997.82 microg/L) in medium. 102.39 thousand population are at risk for iodine excess and living in 24 townships of 7 counties where iodine concentration is over 150 microg/L in drinking water, with (327.72 +/- 192.19) microg/L in mean value or 253.87 microg/L (150.78 - 997.82 microg/L) in medium. The rate of iodized salt is 97.2%. All the iodine excess areas are located in alluvial plain of Yellow River. The etiology of high iodine in shallow well water may be supposed to be iodine aggregation formed by Yellow River in terms of thousands of flood in thousands of years. But iodine excess in deep well water may be related to rotten, deposit marine living beings rich in iodine millions upon millions years ago. There were distinctive features of iodine excess in drinking water from both shallow well and deep well, 24 iodine excess areas in Ohio of Yellow River. It has suggested that iodized salt intervention should be stopped in the areas and starting the health education project, survey of iodized salt in the region.

  6. Archaeological Inventory and Testing of Prehistoric Habitation Sites, Chief Joseph Dam Project, Washington.

    DTIC Science & Technology

    1985-01-01

    Abundance1 Seasonality2 Yellow - bellied marmot Marmota fleviventnis Common Resident Least chipmunk Eutamias minimus Rare Resident Yellow pine chipmunk...sp. Jackcrabbit 6SYMLrlaua null L4 Nuttall cottontal 6 Manmota #a~diwnfri Yellow - bellied marmot 57 Castor canadensis Beaver 6 Oiidai zibeftec Muskrat... marmot , cottontails, ground squirrels, and badgers commonly dwell near the river. The uplands of Zone IV probably always were Because of their abundance

  7. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  8. Kankakee River Basin: Evaluation of Sediment Management Strategies

    DTIC Science & Technology

    2013-09-01

    extends from South Bend, Indiana, to its confluence with the Illinois River near Wilmington, Illinois. The river has a 5,165- square-mile drainage area and...confluence with the Illinois River near Wilmington, IL (Figure 1.1). It has a 5,165-square-mile drainage area and a river length of approximately 150 miles...Yellow River drainage area is overlain by sand-sized sediment. The Rock Island, St. Louis, Chicago, and Detroit Districts collaborated to produce the

  9. Occurrence and levels of polybrominated diphenyl ethers in surface sediments from the Yellow River Estuary, China.

    PubMed

    Yuan, Zijiao; Liu, Guijian; Lam, Michael Hon Wah; Liu, Houqi; Da, Chunnian

    2016-05-01

    A total of 21 surface sediments collected from the Yellow River Estuary, China were analyzed for 40 kinds of polybrominated diphenyl ethers (PBDEs) using gas chromatography-mass spectrometry (GC-MS). Their levels, spatial distribution, congener profiles and possible sources were investigated. Only ten congeners were detected in the sediments. The total concentrations of the lower brominated BDEs (∑PBDEslow, PBDEs excluding BDE 209) and BDE 209 ranged from 0.482 ng/g to 1.07 ng/g and 1.16-5.40 ng/g, with an average value of 0.690 and 2.79 ng/g, respectively, which were both at the low end of the global contamination level. The congener profiles were dominated by BDE 209, with the average value accounting for 79.2% of the total PBDEs in the sediment samples. Among the nine lower brominated BDE congeners, BDE 47, 99 and 183 had high abundances. Although the commercial Penta/Octa-BDE products have been banned in most countries, the residual commercial Penta/Octa/Deca-BDE products and the debromination of highly brominated BDE compounds such as BDE 209 were still found to be the possible sources for the trace level of PBDEs in the present study area. In spite of the gradual removal of the commercial PBDEs in the world, the present research results further suggested that scientific attention should not be reduced on the issue of environmental contamination caused by these outdated chemical compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conservation genetics of the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi): River valleys are critical features for snakes at northern range limits.

    PubMed

    Somers, Christopher M; Graham, Carly F; Martino, Jessica A; Frasier, Timothy R; Lance, Stacey L; Gardiner, Laura E; Poulin, Ray G

    2017-01-01

    On the North American Great Plains, several snake species reach their northern range limit where they rely on sparsely distributed hibernacula located in major river valleys. Independent colonization histories for the river valleys and barriers to gene flow caused by the lack of suitable habitat between them may have produced genetically differentiated snake populations. To test this hypothesis, we used 10 microsatellite loci to examine the population structure of two species of conservation concern in Canada: the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river valleys in southern Saskatchewan. Fixation indices (FST) showed that populations in river valleys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001; bullsnakes FST = 0.045-0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordination (DAPC) strongly supported genetically differentiated groups in the geographically distinct river valleys. Finer-scale subdivision of populations within river valleys was not apparent based on our data, but is a topic that should be investigated further. Our findings highlight the importance of major river valleys for snakes at the northern extent of their ranges, and raise the possibility that populations in each river valley may warrant separate management strategies.

  11. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged shallow aquifer through canal seepage. The water flowing out of the canal system accounted for approximately 32% of the water in the CIDS canals. The storage capacity of the CIDS canals is negatively correlated to the precipitation. In years with abundant precipitation, the volume of the surface runoff and drainage from the cropland may surpass the storage capacities of the CIDS canals, while in years with less precipitation, partial storage capacity of the CIDS canal may be occupied by the diversion water from the Yellow River. Proper maintenance of the storage capacity of the CIDS has the potential in improving the efficiency of reusing the surface runoff and field drainage for irrigation practices to mitigate the increasing water shortage along the lower Yellow River.

  12. Perfluoroalkyl acids in the water cycle from a freshwater river basin to coastal waters in eastern China.

    PubMed

    Zhu, Xiaobin; Jin, Ling; Yang, Jingping; Wu, Jianfeng; Zhang, Beibei; Zhang, Xiaowei; Yu, Nanyang; Wei, Si; Wu, Jichun; Yu, Hongxia

    2017-02-01

    The distribution of perfluoroalkyl acids (PFAAs), one class of persistent organic pollutants, in groundwater, especially in confined aquifers remains poorly understood. In this study, we investigated the occurrence of 12 PFAAs through a water cycle from the Huai River Basin to the Yellow Sea, including confined aquifers, unconfined aquifers, rivers, and coastal waters. We found the ubiquity of PFAAs in all types of samples, including those from confined aquifers (2.7-6.8 ng/L). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the major PFAAs in all samples, accounting for an average of 49.1% (0.8-84.8%) and 33.3% (6.3-92.2%) of total PFAAs, respectively. Comparing the concentration of PFOA with that of PFOS, we found a higher concentration of PFOA in rivers and a higher concentration of PFOS in confined aquifers. Short-chain perfluoropentanoic acid accounted for an average of 10.3% (1.9-24.6%) of total PFAAs in rivers and coastal waters. Branched isomers of both PFOA and PFOS were detected in most samples (36/42 and 39/42, respectively). One-way analysis of variance indicated a significant difference in the profiles of PFAAs among the different types of water samples. Principal component analysis suggested that rainwater and recent uses of PFAAs could be the major sources of PFAAs in confined aquifers, while recent and current uses of PFAAs could be the major source of PFAAs in unconfined aquifers, rivers and coastal waters. The risk quotients of PFOA and PFOS in groundwater and rivers were 2-3 orders of magnitude lower than unity, indicating no immediate risks via drinking water consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Glacial and nonglacial sediment contributions to Wisconsin episode loess in the Central United States

    USGS Publications Warehouse

    Grimley, D.A.

    2000-01-01

    The relative contributions of various glacial and nonglacial sediments to Wisconsin Episode loess units along the lower Illinois and central Mississippi Valleys are estimated on the basis of a comparison of magnetic susceptibility and silt and clay mineralogy. A mathematical method of source area calculation, using four compositional parameters, was guided by current knowledge of the regional glacial history. On the basis of this technique, the Roxana Silt, along the Illinois and Mississippi River Valleys, is composed of significant Superior lobe sediment (35%-40%) as well as Wadena or Des Moines lobe sediment (about 35%). This can account for its high magnetic susceptibility, feldspar content, kaolinite content, and pink hue. Lower Peoria Silt contains about 25%-35% Lake Michigan lobe sediment with reduced contributions of the other sources. After the Mississippi River's diversion (20.4 ka), the supply of Superior, Des Moines, and Wadena lobe sediment was cut off from the Illinois Valley in favor of Lake Michigan lobe sediment (75%- 80% contribution). This major source area shift accounts for higher dolomite and illite contents and a more yellow hue in approximately the upper two-thirds of Peoria Silt in the study area. In loess south of St. Louis, less pronounced compositional shifts occur because Superior lobe sediment was not cut off and because Des Moines lobe, Wadena lobe, and Missouri River sediments, having more intermediate composition, compose 40%-50% of the loess, thereby diluting other source area changes. Nonglacial sediment, from fluvial and periglacial sources, is estimated to compose 10%-40% of loess in both regions.

  14. Analysis of flow process variation degree and influencing factors in inner Mongolia reach of the Yellow River

    NASA Astrophysics Data System (ADS)

    Jin, S. Y.; Zhang, P.; Zhao, W. R.

    2017-06-01

    The provincial hydrological sections of Shizuishan and Toudaoguai are selected as the object of study to analyze flow process variation degree and influencing factor in Inner Mongolia reach of the Yellow River, according to observe and natural monthly runoff from 1956 to 2013. The result shows that there are three phases of the flow process variation degree of the two sections, namely the year 1956 to 1968, 1969 to 1986 and 1987 to 2013, and which increase by phases. The markings appear to decrease by phases and the marking in Toudaoguai section is lower than that in Shizuishan section. The key reasons of the above features are water consumption of industry and agriculture along the river and reservoir operation of Longyangxia and Liujiaxia.

  15. [Secondary metabolites of halotolerant fungus Penicillium chrysogenum HK14-01 from the Yellow River Delta area].

    PubMed

    Qu, Peng; Liu, Peipei; Fu, Peng; Wang, Yi; Zhu, Weiming

    2012-09-04

    To search for structurally novel and biologically active compounds from the secondary metabolites of halotolerant fungi from the Yellow River Delta area. We screened halotolerant fungi with rich chemical diversity and antitumor or antimicrobial activity by means of integrated chemical and biological method. We cultured halotolerant fungi under different conditions at first. Then we investigated the chemical diversity and the bioactivity of the EtOAc extracts of the fermentation broth by HPLC and TLC, and cytotoxic assay or antimicrobial assay. We selected Penicillium chrysogenum HK14-01 to further study for the large yield, producing alkaloids and cytotoxicity on P388 cells in YMDP culture medium containing 10% NaCl. We fermented P. chrysogenum HK14-01 on a large scale; we isolated and purified the compounds by column chromatography over silica gel, Sephadex LH-20, and semipreparative HPLC; and we identified the structures by spectroscopic analysis, X-ray diffraction (Mo-Kalpha), CD spectra and the time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculation. We isolated and identified a halotolerant fungal strain, P. chrysogenum HK14-01, from the sediments collected in the Yellow River Delta area. From the fermentation broth of P. chrysogenum HK14-01, we isolated and identified eight compounds, i.e. (2S,3R)-oxaline (1, a major product), (3R, 4R)-3,4,8-trihydroxy-3,4-dihydronaphthalen-1 (2H)-one (2), (Z)-N-(4-hydroxy styryl) formamide (3), (E)-N-(4-hydroxystyryl) formamide (4), emodin (5), 4-(2-hydroxyethyl) benzene-1,2-diol (6), methyl 2-(4-hydroxyphenyl) acetate (7), and 2-(4-hydroxyphenyl) acetonitrile (8). Bioactive compounds can be obtained from the secondary metabolites of halotolerant microorganisms from the Yellow River Delta area.

  16. Contrasting behavior of tungsten and molybdenum in the Okinawa Trough, the East China Sea and the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Sohrin, Yoshiki; Matsui, Masakazu; Nakayama, Eiichiro

    1999-10-01

    By using catalytic current polarography and high-resolution inductively coupled plasma mass spectrometry, W and Mo in seawater were determined in the Okinawa Trough, a backarc rift, and in the East China Sea and the Yellow Sea. Mo was distributed conservatively throughout the study area, and its salinity-normalized concentration was 104 ± 6 nM (n = 105). W was also uniformly distributed south of the Kuroshio Current (56 ± 7 pM, n = 51). Anomalous high concentrations of W (maximum 254 pM) were found in the Iheya Graben in the middle Okinawa Trough (>1000 m depth), which were probably supplied by hydrothermal activity. The concentrations of Mo and W in the East China Sea and the Yellow Sea showed linear correlation with salinity (26 < S < 35). The Mo data can be explained by mixing of seawater and river water of the Changjiang (Mo = 10 nM; Qu et al., 1993). However, the values of W extrapolated to S = 0 were largely different between two cruises (1200 pM in May-June 1987 and 540 pM in June 1994) and much higher than the reported concentrations of 160 pM for world rivers by Turekian (1969) and 30 pM for unpolluted Japanese rivers by Sohrin et al. (1989). Moreover, significantly high W was observed in the bottom water at stations near the Changjiang River estuary and the western Yellow Sea. While these data may suggest that W is released from the anoxic sediments of the continental shelf, we need more data to elucidate the mechanism controlling the distribution of W.

  17. Algal-mediated ecosystem exchanges in the Eel River drainage network: towards photogrammetric mapping of color to function

    NASA Astrophysics Data System (ADS)

    Power, M. E.; Welter, J.; Furey, P.; Lowe, R.; Finlay, J. C.; Hondzo, M.; Limm, M.; Bode, C.; Dietrich, W. E.

    2009-12-01

    Seasonal algal proliferations in river networks are typically short-lived (weeks-months) but spatially extensive. They mediate important ecological and biogeochemical exchanges within and between ecosystems. We are investigating correspondence of assemblage color with ecosystem function in the nitrogen-limited Eel River of northern California. During summer base flow following winter floods, Eel algal assemblages are dominated by the green macroalga Cladophora glomerata. New growths are green, but blooms turn yellow as Cladophora filaments are colonized by epiphytic diatoms (Cocconeis spp.). Later, proliferations turn rust colored as epiphytic assemblages became dominated by Epithemia spp., diatoms that contain nitrogen-fixing cyanobacterial endosymbionts. Epithemia-encrusted Cladophora occurs at and downstream of reaches draining > 100 km2 (where summer inundated average channel widths > 25 m), coinciding with a threshold increase in concentration of total dissolved nitrogen. Areal nitrogen fixation rates are 14x higher in rusty algal proliferations than in green, and 3-4x higher than in yellow Cladophora mats. Corresponding increases in insect emergence suggest that nitrogen fixed by cyanobacterial endosymbionts is highly edible. Rates of biomass emergence from rusty Cladophora mats are 12-17 times greater than from green mats, and 8-10 times greater from rusty than from yellow Cladophora mats, because larger taxa emerge from rusty mats (Chironominae versus Ceratopogonidae in yellow mats). Photogrammetric detection of spatial coverage and color changes in algal proliferations may help us track nitrogen fluxes they mediate (riverine loading from the atmosphere via fixation, river to the watershed return via insect emergence) that link riverine to aerial, watershed, and potentially nearshore marine ecosystems at reach to basin scales.

  18. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales

    NASA Astrophysics Data System (ADS)

    Su, Lu; Miao, Chiyuan; Duan, Qingyun

    2017-04-01

    Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of observed and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices / sunspot number were assessed via the continuous wavelet transform (CWT) and the wavelet coherence transform (WTC). The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.

  19. Wavelet-based Variability of Yellow River Discharge at 500-, 100-, and 50-Year Timescales

    NASA Astrophysics Data System (ADS)

    Su, L.

    2017-12-01

    Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of natural, observed, and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices/sunspot number were assessed by means of continuous wavelet transform (CWT) and wavelet transform coherence (WTC) analyses. The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.

  20. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China. Additionally, the experience has demonstrated a number of water quality improvements associated with riverbank filtration. It is important to stress that the fate and behavior of emerging organic contaminants during riverbank filtration should be taken into special consideration.

  1. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.

  2. Feeding habitats of the Gulf sturgeon, Acipenser oxyrinchus desotoi, in the Suwannee and Yellow rivers, Florida, as identified by multiple stable isotope analyses

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, James J.; Randall, Michael T.

    2012-01-01

    Stable 13C, 15N, and 34S isotopes were analyzed to define the feeding habitats of Acipenser oxyrinchus desotoi in the Suwannee and Yellow River populations. For the majority (93.9%) of Suwannee subadults and adults, 13C and 34S signatures indicate use of nearshore marine waters as primary winter feeding habitat, probably due to the limiting size of the Suwannee Sound estuary. In the Yellow River population, 13C isotope signatures indicate that adults remain primarily within Pensacola Bay estuary to feed in winter, rather than emigrating to the open Gulf of Mexico. A minor Suwannee River subset (6% of samples), comprised of juveniles and subadults, displayed 13C signatures indicating continued feeding in freshwater during the spring immigration and fall emigration periods. This cannot be interpreted as incidental feeding since it resulted in a 20.5% turnover in tissue δ13C signatures over a 1–3 month period. Cessation of feeding in the general population does not coincide with high river water temperatures. The hypothesis of reduced feeding in freshwater due to localized prey depletion as a result of spatial activity restriction is not supported by the present study. Instead, Suwannee River A. o. desotoi appear to follow two trophic alternatives; 1) complete cessation of feeding immediately upon immigration in spring, continuing through emigration 8–9 months later (the predominant alternative); 2) continued intensive feeding for 1–3 months following immigration, switching to freshwater prey, selected primarily from high trophic levels (i.e., large prey). Stable –34S data verifies that recently immigrated, fully-anadromous A. o. desotoi adults had fed in nearshore marine waters, not offshore waters.

  3. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  4. Morphological Adjustment in the Wandering Reach of the Lower Yellow River in Response to the Changes in Water and Sediment Supply over the Recent Decades

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Huang, H. Q.; Yu, G.

    2017-12-01

    The flow-sediment regime entering into the LYR has changed significantly since the 1970s due to the increasing intensity of human activities. To understand how the wandering reach of the LYR adjusts its channel morphology in response to the change in the flow-sediment regime, this study extracts a series of channel cross-profiles from remote sensing images taken since 1979. It is shown clearly that at one-year timescale, the main flow has shifted significantly, while the sinuosity of the pathways of main flow increased initially, then decreased significantly from 2006 and experienced little variation since 2010. Meanwhile, the width of the wandering belt has been increasing at a very slow stepwise fashion since 2002, and the area of central bars varied with fluctuations before 2009 and yet took a rapidly increasing trend since then. In contrast, the braiding intensity of the wandering reach has shown little change, while the river channel bed and the width/depth ratio of the main channel have taken significant adjustments, with the channel bed being scoured down to a considerable degree and the width/depth ratio varying in a gradually declining trend. These adjustments in the morphology of the Lower Yellow River implicate that the perched situation of the Lower Yellow River can be reversed.

  5. Ten key questions about the management of water in the Yellow River basin.

    PubMed

    Barnett, Jon; Webber, Michael; Wang, Mark; Finlayson, Brian; Dickinson, Debbie

    2006-08-01

    Water is scarce in many regions of the world, clean water is difficult to find in most developing countries, there are conflicts between irrigation needs and urban demands, and there is wide debate over appropriate means of resolving these problems. Similarly, in China, there is limited understanding of the ways in which people, groups, and institutions contribute to, are affected by, and respond to changes in water quantity and quality. We use the example of the Yellow River basin to argue that these social, managerial, and policy dimensions of the present water problems are significant and overshadow the physical ones. Despite this, they receive relatively little attention in the research agenda, particularly of the lead agencies in the management of the Yellow River basin. To this end, we ask ten research questions needed to address the policy needs of water management in the basin, split into two groups of five. The first five relate to the importance of water in this basin and the changes that have affected water problems and will continue to do so. The second five questions represent an attempt to explore possible solutions to these problems.

  6. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    NASA Astrophysics Data System (ADS)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  7. Conservation genetics of the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi): River valleys are critical features for snakes at northern range limits

    PubMed Central

    Graham, Carly F.; Martino, Jessica A.; Frasier, Timothy R.; Lance, Stacey L.; Gardiner, Laura E.; Poulin, Ray G.

    2017-01-01

    On the North American Great Plains, several snake species reach their northern range limit where they rely on sparsely distributed hibernacula located in major river valleys. Independent colonization histories for the river valleys and barriers to gene flow caused by the lack of suitable habitat between them may have produced genetically differentiated snake populations. To test this hypothesis, we used 10 microsatellite loci to examine the population structure of two species of conservation concern in Canada: the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river valleys in southern Saskatchewan. Fixation indices (FST) showed that populations in river valleys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001; bullsnakes FST = 0.045–0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordination (DAPC) strongly supported genetically differentiated groups in the geographically distinct river valleys. Finer-scale subdivision of populations within river valleys was not apparent based on our data, but is a topic that should be investigated further. Our findings highlight the importance of major river valleys for snakes at the northern extent of their ranges, and raise the possibility that populations in each river valley may warrant separate management strategies. PMID:29095863

  8. Monthly survey of N-nitrosamine yield in a conventional water treatment plant in North China.

    PubMed

    Wang, Chengkun; Liu, Shuming; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2015-12-01

    A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China. The yield of N-nitrosamines in the treated water indicated precursors changed greatly after the source water switching. Average concentrations of N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), and N-nitrosopyrrolidine (NPYR) in the finished water were 6.9, 3.3, and 3.1ng/L, respectively, from June to October when the Luan River water was used as source water, while those of NDMA, N-nitrosomethylethylamine (NMEA), and NPYR in the finished water were 10.1, 4.9, and 4.7ng/L, respectively, from November to next April when the Yellow River was used. NDMA concentration in the finished water was frequently over the 10ng/L, i.e., the notification level of California, USA, which indicated a considerable threat to public health. Weak correlations were observed between N-nitrosamine yield and typical water quality parameters except for the dissolved organic nitrogen. Copyright © 2015. Published by Elsevier B.V.

  9. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  10. Use of main channel and two backwater habitats by larval fishes in the Detroit River

    USGS Publications Warehouse

    McDonald, Erik A.; McNaught, A. Scott; Roseman, Edward F.

    2014-01-01

    Recent investigations in the Detroit River have revealed renewed spawning activity by several important fishes, but little is known about their early life history requirements. We surveyed two main channel and two backwater areas in the lower Detroit River weekly from May to July 2007 to assess habitat use by larval fishes. Backwater areas included a soft-sediment embayment (FI) and a hard-sediment area (HIW). Main channel sites were located adjacent to each backwater area. Water temperature, velocity and clarity measurements and zooplankton samples were collected weekly. A macrophyte assessment was conducted in July. Growth and diet of larval yellow perch (Perca flavescens), bluegill (Lepomis macrochirus) and round goby (Neogobius melanostomus) were used to assess habitat quality. Macrophyte diversity and percent cover were higher and velocity lower at FI than HIW. Although larval fish diversity was highest in the main channel, yellow perch and bluegill larvae only grew beyond the yolk stage at FI, where they preferentially selected copepods, while Daphnia were selected in the main channel. Round goby ate harpacticoid copepods and Daphnia and grew at similar rates in HIW and the main channel. These data indicate that FI was a valuable nursery area for yellow perch and bluegill, whereas HIW was better suited to round goby. We only assessed two backwater areas, thus a complete census of wetland areas in the Detroit River is needed to identify valuable habitats. Restoration of shallow backwater areas is essential for rehabilitating fish populations and should be a priority in the Detroit River.

  11. Statistical Characteristics of Mesoscale Convective Systems over the Middle Reaches area of the Yellow River During 2005-2014

    NASA Astrophysics Data System (ADS)

    Zhao, Guixiang

    2017-04-01

    Based on the hourly TBB and cloud images of FY-2E, meteorological observation data, and NCEP reanalysis data with 1°×1° spatial resolution from May to October during 2005-2014, the climatic characteristics of mesoscale convective systems (MCS) over the middle reaches area of the Yellow River were analyzed, including mesoscale convective complex (MCC), persistent elongated convective systems (PECS), meso-βscale MCC (MβCCS) and Meso-βscale PECS (MβECS). The results are as follows: (1) MCS tended to occur over the middle and south of Gansu, the middle and south of Shanxi, the middle and north of Shaanxi, and the border of Shanxi, Shaanxi and Inner Mongolia. MCS over the middle reaches area of the Yellow River formed in May to October, and was easy to develop the mature in summer. MCC and MβECS were main MCS causing precipitation in summer. (2) The daily variation of MCS was obvious, and usually formed and matured in the afternoon and the evening to early morning of the next day. Most MCS generated fast and dissipated slowly, and were mainly move to the easterly and southeasterly, but the moving of round shape MCS was less than the elongated shape's. (3) The average TBB for the round shape MCS was lower than the elongated shape MCS. The development of MCC was most vigorous and strong, and it was the strongest in August, while that of MβECS wasn't obviously influenced by the seasonal change. The average eccentricity of the mature MCC and PECS over the middle reaches area of the Yellow River was greater than that in USA, and the former was greater than in the lower reaches area of the Yellow River, while the latter was smaller. (4) The characteristics of rainfall caused by MCS were complex over the middle reaches area of the Yellow River, and there were obvious regional difference. There was wider, stronger and longer precipitation when the multiple MCS merged. The rainfall in the center of cloud area was obviously greater than in other region of cloud area. The heavy rain mainly occurred in the left and backward quadrant of MCS. The most precipitation intensity of MCS was generally greater than 50 mm•h-1. The ratios of rain areas and cloud areas for the different types and regions MCS were significantly different. (5) There were obvious inter-annual variation characteristics of MCS. The number of MCS was more in 2011 and less in 2009 than the normal year, and the circulation situation in 2011 was nearly opposite to 2009, which were related not only to the subtropical high, geopotential height anomaly on 500 hPa in the middle latitude and transportation and gather of warm and moisture airflow in lower layer but also to the cold vortex systems on 500 hPa.

  12. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  13. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis

    NASA Astrophysics Data System (ADS)

    Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.

    2017-10-01

    An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using projections from five global climate models under four representative concentration pathways. Trends in the period 2070-2099 in relation to the reference period 1975-2004 were evaluated for three variables: the long-term mean annual flow and high and low flow percentiles Q 10 and Q 90, as well as for flows in three months high- and low-flow periods denoted as HF and LF. For three river basins: the Lena, MacKenzie and Tagus strong trends in all five variables were found (except for Q 10 in the MacKenzie); trends with moderate certainty for three to five variables were confirmed for the Rhine, Ganges and Upper Mississippi; and increases in HF and LF were found for the Upper Amazon, Upper Yangtze and Upper Yellow. The analysis of projected streamflow seasonality demonstrated increasing streamflow volumes during the high-flow period in four basins influenced by monsoonal precipitation (Ganges, Upper Amazon, Upper Yangtze and Upper Yellow), an amplification of the snowmelt flood peaks in the Lena and MacKenzie, and a substantial decrease of discharge in the Tagus (all months). The overall average fractions of uncertainty for the annual mean flow projections in the multi-model ensemble applied for all basins were 57% for GCMs, 27% for RCPs, and 16% for hydrological models.

  14. Chinese-U.S. sediment source-to-sink research in the east China and Yellow Seas: a brief history

    NASA Astrophysics Data System (ADS)

    Milliman, John D.; Zuosheng, Yang

    2014-11-01

    In the autumn of 1979, US oceanographers were offered a unique and in many respects a once-in-a-lifetime opportunity, as were, in hindsight, Chinese oceanographers: to help formulate and participate in the initial US-China cooperative joint oceanographic research study, as part of a cooperative research agreement signed earlier that year by the US National Oceanographic and Atmospheric Administration (NOAA) and the Chinese National Bureau of Oceanology (NBO; now known as the State Ocean Administration-SOA). Ten oceanographers from nine US oceanographic institutions and agencies traveled to China in late November with the hope-at this early stage of Chinese-US scientific relations, it was no more than a hope-to begin discussions about the possibility of a cooperative investigation of the river-estuary-shelf interactions from the Yangtze River to the adjacent East China Sea. Two years of cooperative research (1980-82) were envisioned.

  15. Variation in organotin accumulation in relation to the life history in the Japanese eel Anguilla japonica

    NASA Astrophysics Data System (ADS)

    Ohji, Madoka; Harino, Hiroya; Arai, Takaomi

    2009-08-01

    In order to examine the ecological risks caused by organotin compounds (OTs) in diadromous fish migrating between sea and freshwaters, tributyltin (TBT) and triphenyltin (TPT) compounds and their breakdown products were determined in the catadromous eel Anguilla japonica, which has sea, estuarine and river life histories, collected in Japanese sea, brackish and freshwaters within the same region. Ontogenic changes in otolith strontium (Sr) and calcium (Ca) concentrations were examined along the life history transect to discriminate the migration type. There were generally three different patterns, which were categorized as 'sea eels', 'estuarine eels' and 'river eels' according to the otolith Sr:Ca ratio. The concentrations of TBT in silver eels (mature eels) were significantly higher than that in yellow eels (immature eels), and the percentages of TBT were also higher in silver eels than in yellow eels. A positive correlation was found between TBT concentration and the gonad-somatic index (GSI). It is thus considered that silver eels have a higher risk of contamination by TBT than yellow eels. TBT and TPT concentrations in sea eels were significantly higher than those in river eels, while no significant differences were observed in TBT and TPT concentrations in estuarine eels compared to sea and river eels. These results suggest that sea eels have a higher ecological risk of OT contamination than river eels during their life history, and the risk of OTs in estuarine eels is considered to be intermediate between that of sea and river eels. Positive linear relationships were found between Sr:Ca ratios and the concentrations of TBT and TPT. Therefore, these results suggest that the ecological risk of OTs increase as the sea residence period in the eel becomes longer. TBT and TPT concentrations in sea eels were significantly higher than those in river eels even at the same growth stage. Thus, it is clear that migratory type is the most important factor for OT accumulation during the life history.

  16. Habitat use and trophic position effects on contaminant bioaccumulation in St. Louis River Estuary fishes

    EPA Science Inventory

    The objective of our study was to determine the relationship between fish tissue stable isotope composition and total mercury or polychlorinated biphenyl (PCB) concentrations in the St. Louis River estuary food web. We sampled two resident fishes, Yellow Perch (Perca flavescens) ...

  17. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment

    PubMed Central

    Nie, Junsheng; Stevens, Thomas; Rittner, Martin; Stockli, Daniel; Garzanti, Eduardo; Limonta, Mara; Bird, Anna; Andò, Sergio; Vermeesch, Pieter; Saylor, Joel; Lu, Huayu; Breecker, Daniel; Hu, Xiaofei; Liu, Shanpin; Resentini, Alberto; Vezzoli, Giovanni; Peng, Wenbin; Carter, Andrew; Ji, Shunchuan; Pan, Baotian

    2015-01-01

    Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river's upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records. PMID:26449321

  18. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge.

    PubMed

    Zhao, Jian-Liang; Zhang, Qian-Qian; Chen, Feng; Wang, Li; Ying, Guang-Guo; Liu, You-Sheng; Yang, Bin; Zhou, Li-Jun; Liu, Shan; Su, Hao-Chang; Zhang, Rui-Quan

    2013-01-01

    Triclosan (TCS) and triclocarban (TCC) are two commonly used personal care products. They may enter into aquatic environments after consumption and pose potential risks to aquatic organisms. We investigated the occurrence and fate of TCS and TCC in five large rivers (the Liao River, Hai River, Yellow River, Zhujiang River and Dongjiang River) in China, and compared the monitoring data with the predicted results from Level III fugacity modeling. TCS and TCC were detected in the five large rivers with the detection frequencies of 100% or close to 100% in surface water and sediments of almost every river. TCS and TCC were found at concentrations of up to 478 ng/L and 338 ng/L in surface water, and up to 1329 ng/g and 2723 ng/g in sediments. Cluster analysis indicated that the sites with higher concentrations were usually located in or near urban area. Meanwhile, principal component analysis also suggested that the mass inventories of TCS and TCC in water and sediment were significantly influenced by the factors such as the total or untreated urban domestic sewage discharge at river basin scale. The concentrations and mass inventories from the fugacity modeling were found at the same order of magnitude with the measured values, suggesting that the fugacity modeling can provide a useful tool for evaluating the fate of TCS and TCC in riverine environments. Both monitoring and modeling results indicated that the majority of mass inventories of TCS and TCC were stored into sediment, which could be a potential pollution source for river water. The wide presence of TCS and TCC in these large rivers of China implies that better controlling of urban domestic sewage discharge is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Surface Textural Analysis of Quartz Grains from Modern Point Bar Deposits in Lower Reaches of the Yellow River

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming

    2018-01-01

    The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.

  20. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments

    NASA Astrophysics Data System (ADS)

    Yang, Shou Ye; Jung, Hoi Soo; Choi, Man Sik; Li, Cong Xian

    2002-07-01

    Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.

  1. Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan

    2005-05-01

    Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.

  2. Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea

    NASA Astrophysics Data System (ADS)

    Cho, Hyen Goo; Kim, Soon-Oh; Kwak, Kyeong Yoon; Choi, Hunsoo; Khim, Boo-Keun

    2015-12-01

    The Heuksan mud belt (HMB), located in the southeastern Yellow Sea, runs parallel to the southwest coast of Korea. In this study, the distribution and relative contribution of four major clay minerals are investigated using 101 surface sediment samples collected in the course of KIOST (2001, 2010, 2011) and KIGAM (2012) cruises, as well as 33 river sediment samples (four from the Huanghe River, three from the Changjiang River, and 26 from Korean rivers) in order to clarify the provenance of fine-grained sediments in the HMB. Based on this currently largest and most robust dataset available for interpretation, the clay mineral assemblages of the fine-grained sediments in the HMB are found to be on average composed of 64.7% illite, 17.9% chlorite, 11.4% kaolinite, and 5.9% smectite. Overall, the clay mineral assemblages are similar in both the northern and the southern parts of the HMB, although smectite seems to be relatively enriched in the southern part, whereas kaolinite is slightly more dominant in the northern part. This clearly indicates that the clays are mostly derived from Korean rivers and, in the southern part of the HMB, partly also from the Huanghe River in China. The new data thus confirm and strengthen the tentative interpretation of some earlier work based on a more limited dataset.

  3. Revealing Water Stress by the Thermal Power Industry in China Based on a High Spatial Resolution Water Withdrawal and Consumption Inventory.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Wang, Jiao; Wu, Zhixuan

    2016-02-16

    This study reveals the spatial distribution of water withdrawal and consumption by thermal power generation and the associated water stress at catchment level in China based on a high-resolution geodatabase of electric generating units and power plants. We identified three groups of regions where the baseline water stress exerted by thermal power generation is comparatively significant: (1) the Hai River Basin/East Yellow River Basin in the north; (2) some arid catchments in Xinjiang Autonomous Region in the northwest; and (3) the coastal city clusters in the Yangtze River Delta, Pearly River Delta, and Zhejiang Province. Groundwater stress is also detected singularly in a few aquifers mainly in the Hai River Basin and the lower reaches of the Yellow River Basin. As China accelerates its pace of coal mining and coal-fired power generation in the arid northwest regions, the energy/water priorities in catchments under high water stress are noteworthy. We conclude that promotion of advanced water-efficient technologies in the energy industry and more systematic analysis of the water stress of thermal power capacity expansion in water scarce regions in inland China are needed. More comprehensive and transparent data monitoring and reporting are essential to facilitate such water stress assessment.

  4. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    NASA Astrophysics Data System (ADS)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  5. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    NASA Astrophysics Data System (ADS)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  6. Genetic Diversity and Population Structure of Chinese Foxtail Millet [Setaria italica (L.) Beauv.] Landraces

    PubMed Central

    Wang, Chunfang; Jia, Guanqing; Zhi, Hui; Niu, Zhengang; Chai, Yang; Li, Wei; Wang, Yongfang; Li, Haiquan; Lu, Ping; Zhao, Baohua; Diao, Xianmin

    2012-01-01

    As an ancient cereal of great importance for dryland agriculture even today, foxtail millet (Setaria italica) is fast becoming a new plant genomic model crop. A genotypic analysis of 250 foxtail millet landraces, which represent 1% of foxtail millet germplasm kept in the Chinese National Gene Bank (CNGB), was conducted with 77 SSRs covering the foxtail millet genome. A high degree of molecular diversity among the landraces was found, with an average of 20.9 alleles per locus detected. STRUCTURE, neighbor-jointing, and principal components analyses classify the accessions into three clusters (topmost hierarchy) and, ultimately, four conservative subgroups (substructuring within the topmost clusters) in total, which are in good accordance with eco-geographical distribution in China. The highest subpopulation diversity was identified in the accessions of Pop3 from the middle regions of the Yellow River, followed by accessions in Pop1 from the downstream regions of the Yellow River, suggesting that foxtail millet was domesticated in the Yellow River drainage area first and then spread to other parts of the country. Linkage disequilibrium (LD) decay of less than 20 cM of genetic distance in the foxtail millet landrace genome was observed, which suggests that it could be possible to achieve resolution down to the 20 cM level for association mapping. PMID:22870400

  7. [Investigation of toxigenic microcystis and microcystin pollution in Huayuankou Conservation Pool of Yellow River].

    PubMed

    Ban, Haiqun; Ba, Yue; Cheng, Xuemin; Wang, Guangzhou

    2007-09-01

    To investigate the contaminative, condition of planktonic algae, cyanobacteria, toxigenic microcystis and microcystin in Huayuankou Conservation Pool of Yellow River. From March 2005 to January 2006, water samples were taken 15 times by 2. 5L plastic sampler from Huayuankou Conservation Pool. The density of algae were counted by using blood cell counter. Phycocyanin intergenic spacer region (PC-IGS) and microcystin synthetase gene B (mcyB) of toxigenic microcystis was identified by the whole cell PCR. The concentration of microcystin was determined by ELISA kit. The positive results of PCR and ELISA were compared. Bacillariophyta, chlorophyta, cyanophyta (cyanobacteria) and euglenophyta were main algaes in Huayuankou conservation pool, and the dominant algae and cell density changed seasonally. Algae cell density and cyanobacteria cell density were higher in summer and autumn than in spring and winter. From July to November, 2005, PC-IGS and mcyB were detected positively by whole cell PCR. Microcystin was positively detected from July, the concentration of microcystin changed from 0 to 0.25microg/L, it was more higher in summer than other seasons. Toxigenic microcystis and microcystin could be detected in Huayuankou Conservation Pool of Yellow River. Whole cell PCR could be used to identify toxigenic microcystis.

  8. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces.

    PubMed

    Wang, Chunfang; Jia, Guanqing; Zhi, Hui; Niu, Zhengang; Chai, Yang; Li, Wei; Wang, Yongfang; Li, Haiquan; Lu, Ping; Zhao, Baohua; Diao, Xianmin

    2012-07-01

    As an ancient cereal of great importance for dryland agriculture even today, foxtail millet (Setaria italica) is fast becoming a new plant genomic model crop. A genotypic analysis of 250 foxtail millet landraces, which represent 1% of foxtail millet germplasm kept in the Chinese National Gene Bank (CNGB), was conducted with 77 SSRs covering the foxtail millet genome. A high degree of molecular diversity among the landraces was found, with an average of 20.9 alleles per locus detected. STRUCTURE, neighbor-jointing, and principal components analyses classify the accessions into three clusters (topmost hierarchy) and, ultimately, four conservative subgroups (substructuring within the topmost clusters) in total, which are in good accordance with eco-geographical distribution in China. The highest subpopulation diversity was identified in the accessions of Pop3 from the middle regions of the Yellow River, followed by accessions in Pop1 from the downstream regions of the Yellow River, suggesting that foxtail millet was domesticated in the Yellow River drainage area first and then spread to other parts of the country. Linkage disequilibrium (LD) decay of less than 20 cM of genetic distance in the foxtail millet landrace genome was observed, which suggests that it could be possible to achieve resolution down to the 20 cM level for association mapping.

  9. Water velocity tolerance in tadpoles of the foothill yellow-legged frog (Rana boylii): Swimming performance, growth, and survival

    Treesearch

    S. Kupferberg; A. Lind; V. Thill; S. Yarnell

    2011-01-01

    We explored the effects of large magnitude flow fluctuations in rivers with dams, commonly referred to as pulsed flows, on tadpoles of the lotic-breeding Foothill Yellow-legged Frog, Rana boylii. We quantified the velocity conditions in habitats occupied by tadpoles and then conducted experiments to assess the tolerance to values at the upper limit...

  10. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data.

    PubMed

    Wu, Bing; Zhang, Yan; Zhang, Xu-Xiang; Cheng, Shu-Pei

    2011-12-01

    A carcinogenic risk assessment of polycyclic aromatic hydrocarbons (PAHs) in source water and drinking water of China was conducted using probabilistic techniques from a national perspective. The published monitoring data of PAHs were gathered and converted into BaP equivalent (BaP(eq)) concentrations. Based on the transformed data, comprehensive risk assessment was performed by considering different age groups and exposure pathways. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The risk analysis indicated that, the risk values for children and teens were lower than the accepted value (1.00E-05), indicating no significant carcinogenic risk. The probability of risk values above 1.00E-05 was 5.8% and 6.7% for adults and lifetime groups, respectively. Overall, carcinogenic risks of PAHs in source water and drinking water of China were mostly accepted. However, specific regions, such as Yellow river of Lanzhou reach and Qiantang river should be paid more attention. Notwithstanding the uncertainties inherent in the risk assessment, this study is the first attempt to provide information on carcinogenic risk of PAHs in source water and drinking water of China, and might be useful for potential strategies of carcinogenic risk management and reduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Towards Optimal Operation of the Reservoir System in Upper Yellow River: Incorporating Long- and Short-term Operations and Using Rolling Updated Hydrologic Forecast Information

    NASA Astrophysics Data System (ADS)

    Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.

    2016-12-01

    The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model(s) to forecast and any solver to optimize the operation of reservoir system.

  12. Small fishes crossed a large mountain range: Quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains.

    PubMed

    Kim, Daemin; Hirt, M Vincent; Won, Yong-Jin; Simons, Andrew M

    2017-07-01

    The Taebaek Mountains in Korea serve as the most apparent biogeographic barrier for Korean freshwater fishes, resulting in 2 distinct ichthyofaunal assemblages on the eastern (East/Japan Sea slope) and western (Yellow Sea and Korea Strait slopes) sides of the mountain range. Of nearly 100 species of native primary freshwater fishes in Korea, only 18 species occur naturally on both sides of the mountain range. Interestingly, there are 5 rheophilic species (Phoxinus phoxinus, Coreoleuciscus splendidus, Ladislavia taczanowskii, Iksookimia koreensis and Koreocobitis rotundicaudata) found on both sides of the Taebaek Mountains that are geographically restricted to the Osip River (and several neighboring rivers, for L. taczanowskii and I. koreensis) on the eastern side of the mountain range. The Osip River and its neighboring rivers also shared a rheophilic freshwater fish, Liobagrus mediadiposalis, with the Nakdong River on the western side of the mountain range. We assessed historical biogeographic hypotheses on the presence of these rheophilic fishes, utilizing DNA sequence data from the mitochondrial cytochrome b gene. Results of our divergence time estimation indicate that ichthyofaunal transfers into the Osip River (and several neighboring rivers in East Sea slope) have occurred from the Han (Yellow Sea slope) and Nakdong (Korea Strait slope) Rivers since the Late Pleistocene. The inferred divergence times for the ichthyofaunal transfer across the Taebaek Mountains were consistent with the timing of hypothesized multiple reactivations of the Osip River Fault (Late Pleistocene), suggesting that the Osip River Fault reactivations may have caused stream capture events, followed by ichthyofaunal transfer, not only between the Osip and Nakdong Rivers, but also between the Osip and Han Rivers. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. [Spatial distribution characteristics of China cotton fiber quality and climatic factors based on GIS].

    PubMed

    Xiong, Zong-Wei; Gu, Sheng-Hao; Mao, Li-Li; Wang, Xue-Jiao; Zhang, Li-Zhen; Zhou, Zhi-Guo

    2012-12-01

    By using geographical information system (GIS), the cotton fiber quality data from 2005 to 2011 and the daily meteorological data from 1981 to 2010 at 82 sites (counties and cities) in China major cotton production regions were collected and treated with spatial interpolation. The spatial information system of cotton fiber quality in China major cotton production regions was established based on GIS, and the spatial distribution characteristics of the cotton fiber quality and their relationships with the local climatic factors were analyzed. In the northwest region (especially Xinjiang) of China, due to the abundant sunlight, low precipitation, and low relative humidity, the cotton fiber length, micronaire, and grade ranked the first. In the Yangtze River region and Yellow River region, the specific strength of cotton fiber was higher, and in the Yangtze River region, the cotton fiber length and specific strength were higher, while the micronaire and grade were lower than those in the Yellow River region. The cotton fiber quality was closely related to the climate factors such as temperature, sunlight, rainfall, and humidity.

  14. Progress in studies on hydrological impacts of degrading permafrost in the Source Area of Yellow River on NE Qinghai-Tibet Plateau, SW China

    NASA Astrophysics Data System (ADS)

    Jin, H.; Ma, Q.; Jin, X.

    2017-12-01

    Permafrost degradation substantially impacts hydrological processes in the Source Area of the Yellow River (SAYR). Deepening active layer has directly led to a reduction of surface runoffs, alters the generation and dynamics of slope runoffs and groundwater, leading to a deepening of groundwater flow paths. At present, however, there is only a limited understanding of the hydrological impact mechanisms of degrading permafrost. On the basis of analyzing and evaluating the current states, changing history and developing trends of climate, permafrost and hydrological processes, this program aims at further and better quantifying the nature of these mechanisms linking the degrading permafrost with changing hydrological processes. The key scientific themes for this research are the characterization of interactions between ground freezing-thawing and hydrogeology in the SAYR. For this study, a coupling is made between geothermal states and the occurrences of taliks in river systems, in order to understand how expanding taliks control groundwater and surface-water interactions and how these interactions might intensify or weaken when the climate warms and dries persistently. Numerical models include freeze-thaw dynamics coupled to groundwater and surface flow processes. For the proper parameterization of these models, field and laboratory studies are conducted with a focus on the SAYR. Geophysical investigations are employed for mapping permafrost distribution in relation to landscape elements. Boreholes and water wells and observation sites for the hydrothermal processes and water tables are used for establishing the current thermal state of frozen ground and talik and monitor their changes over time, and serve to ground-truth surface geophysical observations. Boreholes and wellbores, water wells and active layer sites have provided access to the permafrost and aquifer systems, allowing the dating of ground-water and -ice and soil strata for elucidating the regional hydrogeological system underlying the SAYR, and groundwater recharge mechanisms. The project plans to quantitatively study the impacting mechanisms of degrading frozen ground on changes in hydrological processes and systems in the SAYR.

  15. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    NASA Astrophysics Data System (ADS)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  16. Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and statistics-based approach

    NASA Astrophysics Data System (ADS)

    Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu

    2018-01-01

    The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.

  17. Physical characteristics of stream subbasins in the Hawk Creek-Yellow Medicine River basin, southwestern Minnesota and eastern South Dakota

    USGS Publications Warehouse

    Sanocki, Christopher A.

    1996-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Hawk Creek-Yellow Medicine River Basin, located in southwestern Minnesota and eastern South Dakota are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  18. Design and implementation of expert decision system in Yellow River Irrigation

    NASA Astrophysics Data System (ADS)

    Fuping, Wang; Bingbing, Lei; Jie, Pan

    2018-03-01

    How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.

  19. Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Pan, Shunqi; Chen, Shenliang

    2017-09-01

    The Yellow River (Huanghe) submerged delta (YRSD) has been under the threat of erosion and retreat during the Anthropocene due to dramatic climatic and anthropogenic changes in the Yellow River basin. The analysis of field data shows that over the period of 1977-2005, the changes in climate (decrease in precipitation and increase in air temperature) and human interventions (increase in water diversion projects) throughout the watershed have resulted in the sharp reductions of river flow and sediment discharges into the Bohai Sea. Consequently, over the decadal timescale, morphological evolution of the YRSD has gone through three stages: i.e. rapid accumulation (5.77 × 108 m3/year) in 1977-1985, moderate accumulation (3.80 × 108 m3/year) in 1986-1995 and slow accumulation (0.91 × 108 m3/year) in 1996-2005. Climatic change within the catchment characterized by the rapid increase of air temperature contributed significantly to the transitions from the rapid accumulation to the moderate accumulation, and to the subsequent slow accumulation. The decadal morphological changes of the YRSD also show peculiar deposition/erosion characteristics over the medium timescale under river input reduction. Within the three decades, the patterns of the main sedimentary body exhibit irregular ellipses with the long axis parallel to the - 5 or - 10 m isobaths and short axis perpendicular to the isobaths. The depocentres of the YRSD are located between the - 10 and - 15 m isobaths close to the respective river mouths, with a high vertical accretion rate of 1.20 m/year. The time series data of annual volumetric change of the YRSD and river sediment load from 1977 to 2005 further demonstrate significant linear positive relationships between deltaic geomorphic change and fluvial input over shorter timescales (annual and 3-year). The critical sediment discharges for maintaining the deposition/erosion equilibrium state of the YRSD over the annual and 3-year timescales are found to be 1.79 × 108 t/year and 1.29 × 108 t/year, respectively. The analysis from the latest hydrological data (2006-2015) suggests that over the decadal timescale, the evolution state of the YRSD currently has transitioned from constructive to destructive due to the weakened fluvial input. Moreover, there exists a close quantitative link between the progradation of the Yellow River subaerial delta (YRAD) and the YRSD over the five-year timescale, indicating that every 1 × 108 m3/year increase of the YRSD's yearly volumetric change will result in a 3.28 km2/year increase of the YRAD's yearly land-accretion area, and the YRAD will reach the extension/retreat balance state when yearly morphological change of the YRSD is at 0.73 × 108 m3/year.

  20. Assessment of the sources of sedimentary organic matter in the Bohai Sea and the northern Yellow Sea using biomarker proxies

    NASA Astrophysics Data System (ADS)

    Xing, Lei; Hou, Di; Wang, Xinchen; Li, Li; Zhao, Meixun

    2016-07-01

    To evaluate the applicability of source proxies and to assess the sources of sedimentary organic matter in the Bohai Sea (BS) and the northern Yellow Sea (NYS), we analyzed total organic carbon (TOC), total nitrogen (TN), δ13C of TOC, n-alkanes, phytoplankton biomarkers, and glycerol dialkyl glycerol tetraethers (GDGTs) including branched GDGTs (brGDGTs) in 60 surface sediment samples covering the BS and the NYS. Spatial distribution comparison and principal component analysis indicate that with the exception of brGDGTs, terrestrial biomarkers have different spatial distribution pattern from marine biomarkers, suggesting that the sources control the distributions of these biomarkers in spite of hydrodynamic forcing. Significantly positive correlation (R2 = 0.5) between TOC normalized brGDGTs content and TOC normalized crenarchaeol content suggested in situ production of brGDGTs in the BS and the NYS. The δ13C values, TMBR [terrestrial and marine biomarker ratio: (C27 + C29 + C31n-alkanes)/[(C27 + C29 + C31n-alkanes) + (brassicasterol + dinosterol + alkenones)] ] and BIT (branched isoprenoid tetratether index) proxy indicated high terrestrial organic matter (TOM) input near the Huanghe River Estuary, while TOC/TON did not reveal similar distribution pattern. Quantitative estimates of TOM using a binary model revealed much higher TOM percentage from δ13C (avg. 58%) and TMBR (avg. 31%) than from BIT (avg. 7.4%). Our results suggest that, owing to significant in situ production of brGDGTs, the BIT is not a good proxy for indicating soil OM contribution in marine sediments from the BS and the NYS.

  1. Polybrominated diphenyl ethers in sediments from the Southern Yellow Sea: Concentration, composition profile, source identification and mass inventory.

    PubMed

    Wang, Guoguang; Peng, Jialin; Xu, Xiang; Zhang, Dahai; Li, Xianguo

    2016-02-01

    The Southern Yellow Sea (SYS) is believed to be influenced by the contaminants from mainland China and the Korean peninsula. Here we report the first record about concentrations of polybrominated diphenyl ethers (PBDEs) in the sediments of the SYS. The concentrations of ∑(7)PBDEs (BDE-28, 47, 99, 100, 153, 154, 183) and BDE-209 were 0.064-0.807 ng g(-1) (dry weight) and 0.067-1.961 ng g(-1) with a mean value of 0.245 ng g(-1) and 0.652 ng g(-1), respectively. These are distinctively low compared with the PBDE levels previously reported in other regions of the world. PBDE concentrations gradually increased from the coastal areas to the central mud area. BDE-209 was the dominant congener, accounting for 70.2-91.6% of the total PBDEs. Congener profiles of PBDEs were similar to those in sediments from the Bohai Sea (BS), Laizhou Bay and modern Yellow River, which might be a tentative indication that they shared similar sources. Principal component analysis (PCA) revealed that PBDEs in the SYS were mainly from continental runoff (69.0%) and atmospheric deposition (31.0%). Depth profile of PBDEs in a sediment core collected from the edge of the central mud area showed that concentration of BDE-209 rapidly increased in recent years, which is in accordance with the replacement in demand and consumption of Penta- and Octa-BDEs by the Deca-BDE. Compared with BS, East China Sea, Erie and Ontario, the SYS was a relatively weak sink of PBDEs (0.102-1.288 t yr(-1) for ∑(7)PBDEs and 0.107-3.129 t yr(-1) for BDE-209) in the world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Polychlorinated biphenyls in adult black bass and yellow perch were not associated with their reproductive success in the upper Hudson River, New York, USA.

    PubMed

    Maceina, Michael J; Sammons, Steven M

    2013-07-01

    Although production and use of polychlorinated biphenyls (PCBs) ceased nearly 35 yr ago, questions still remain concerning the potential chronic effects these compounds may have on wild fish, including their reproductive success. In the upper Hudson River, New York, USA, fish were exposed to PCBs primarily from 2 manufacturing plants located approximately 320 km upstream of New York City, New York, from the 1940s to 1977. The authors collected yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieu), and largemouth bass (M. salmoides) using electrofishing, measured PCBs in these adults, and estimated abundance and size of their offspring at age 1 yr (age-1 fish). Fish were collected annually from 2004 to 2009 from 1 control site upstream of the PCB discharge sites and from 2 sites downstream from where PCBs were released. These sites (pools) are separated by a series of dams, locks, and canals. Muscle tissue wet weight PCB and lipid-based PCB concentrations in adults in the 2 PCB exposure pools averaged approximately 1 to 3 µg/g and 100 to 500 µg/g, respectively. Age-1 abundances were not related to adult PCB concentrations but were inversely related to river flow. Size of age-1 fish was slightly greater at the PCB-exposure sites. Levels of PCBs in yellow perch, largemouth bass, and smallmouth bass in the upper Hudson River did not impair or reduce recruitment or reproductive success. Copyright © 2013 SETAC.

  3. Historical Causes and Future Projections of Hydrological Drought Change over a Semi-arid Watershed in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Yuan, X.; Yang, D.

    2017-12-01

    During the past five decades, significant decreasing trends in streamflow records were observed at many hydrological gauges within the middle reaches of the Yellow River basin, China, leading to an intensified water resource shortage and a rising hydrological drought risk. This phenomenon is generally considered as a consequence of climate changes and human interventions, such as greenhouse gas emissions, regional land use/cover changes, dam and reservoir constructions and direct water withdrawals. There are many studies on the attribution of streamflow decline and hydrological drought change in this region, while a consolidated conclusion is missing.In this study, we focus on historical and future hydrological drought characteristics over a semi-arid watershed located in the middle reaches of the Yellow River basin. Daily climate simulations from several IPCC CMIP5 models were collected to drive a newly developed eco-hydrological model CLM-GBHM with detailed description of river network and sub-basin topological relationship, to simulate streamflow series under different forcings and scenarios. The standard streamflow index was calculated and used to figure out the characteristics (e.g., frequency, duration and severity) of both historical and future hydrological droughts. The causes and contributions in terms of natural and anthropogenic influences will be investigated based on an optimal fingerprinting method, and the relative importance of internal variability, model and scenario uncertainties for future projections will also be estimated using a separation method. This study will facilitate the implementation of adaptation strategies for hydrological drought over the semi-arid watershed in a changing environment.

  4. Télédétection par satellite et SIG pour l'analyse des déplacements des chenaux dans le delta actif de la Rivière Jaune en ChineTeledetección satelitária y SIG para analizar cambios en el desplazamiento de causes en el delta activo del Río Amarillo, China

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Damen, Michiel C. J.; van Zuidam, Robert A.

    Channel migration in deltaic lowlands tends to be complicated by marine processes and intensified cultural practices. Understanding the ways in which river channels have migrated through time is critical to tackling many geomorphologic and river management problems. Because of large magnitude and rapid rates of change, special surveillance systems are needed to efficiently measure and monitor channel migration. This study presents an application of geographic information technologies for the study of channel migration in the active Yellow River Delta, China. The main source of data was a series of time-sequential Landsat images spanning a period of approximately 19 years. A geographic information system (GIS) was used to support modernized channel position mapping and measurement. The spatio-temporal changes of river banks and channel centerlines were systematically examined, and an attempt was made to relate these computational results with appropriate natural and human processes affecting the delta. This study demonstrates the utility of satellite remote sensing integrated with a GIS in investigating channel migration.

  5. 78 FR 61621 - Endangered and Threatened Wildlife and Plants; Proposed Threatened Status for the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... length, depth of upper mandible, and wing length) of almost 700 specimens of adult yellow-billed cuckoos... wing length, bill length, and mandible depth; and (3) no statistically significant differences for... west side of the Cascades at the Sandy River Delta near its confluence with the Columbia River in July...

  6. Fractionation and characterization of natural organic matter from certain rivers and soils by free-flow electrophoresis

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Soluble river organic matter and soil fulvic acids from a variety of environments were compared by examining the free-flow electrophoretic fractionation curves of organic carbon, color, and polysaccharides. Significant amounts of virtually colorless organic material were found in both the soil and the river preparations. Polysaccharides comprised 20-75 percent of the colorless material in the soil fulvic acids but only 3.2-7.0 percent of the colorless material in the river preparations. A significant amount of polysaccharides was complexed with organic materials having negative charges. Amounts of polysaccharides were greater in the Fairbanks soil from Alaska than in the soils from North Carolina or Iowa, and they were greater in the Tahquamenon River in Michigan than in the two rivers in Florida; this suggests that polysaccharide degradation is slower in cooler environments. For all of the organic preparations which were fractionated, the intensity of the yellow color increased as the charge on the organic anion increased. Highly colored, negatively charged organic material was found to be present in greater amounts in the subsurface spodic soil horizon of the Lakewood and Fairbanks soils than in the surface mollic horizon of the Macksburg soil. Infrared spectroscopy and elemental analysis of four pooled fractions of the Fairbanks fulvic acid indicated increasing aromatic character with increasing negative charge. An increase in the carboxyl content with negative charge suggests the carboxyl group as the primary source of the negative charge.

  7. [Spatial-temporal distributions of dissolved inorganic carbon and its affecting factors in the Yellow River estuary].

    PubMed

    Guo, Xing-Sen; Lü, Ying-Chun; Sun, Zhi-Gao; Wang, Chuan-Yuan; Zhao, Quan-Sheng

    2015-02-01

    Estuary is an important area contributing to the global carbon cycle. In order to analyze the spatial-temporal distribution characteristics of the dissolved inorganic carbon (DIC) in the surface water of Yellow River estuary. Samples were collected in spring, summer, fall, winter of 2013, and discussed the correlation between the content of DIC and environmental factors. The results show that, the DIC concentration of the surface water in Yellow River estuary is in a range of 26.34-39.43 mg x L(-1), and the DIC concentration in freshwater side is higher than that in the sea side. In some areas where the salinity is less than 15 per thousand, the DIC concentration appears significant losses-the maximum loss is 20.46%. Seasonal distribution of performance in descending order is spring, fall, winter, summer. Through principal component analysis, it shows that water temperature, suspended solids, salinity and chlorophyll a are the main factors affecting the variation of the DIC concentration in surface water, their contribution rate is as high as 83% , and alkalinity, pH, dissolved organic carbon, dissolved oxygen and other factors can not be ignored. The loss of DIC in the low area is due to the calcium carbonate sedimentation. DIC presents a gradually increasing trend, which is mainly due to the effects of water retention time, temperature, outside input and environmental conditions.

  8. [Trends in yellow fever mortality in Colombia, 1998-2009].

    PubMed

    Segura, Ángela María; Cardona, Doris; Garzón, María Osley

    2013-09-01

    Yellow fever is a neglected tropical disease, thus, knowing the trends in mortality from this disease in Colombia is an important source of information for decision making and identifying public health interventions. To analyze trends in yellow fever mortality in Colombia during the 1998-2009 period and the differences in the morbidity and mortality information sources for the country, which affect indicators such as the lethality one. This is a descriptive study of deaths by yellow fever according to the Departamento Administrativo Nacional de Estadística and the incidence of the disease according to the Instituto Nacional de Salud . We used secondary sources of information in the calculation of proportions of socio-demographic characteristics of the deceased and epidemiological measures of lethality, incidence and mortality from yellow fever by department of residence of the deceased. Yellow fever deaths occur primarily in men of working age residing in scattered rural areas, who were members of the regimen vinculado, and who were living in the eastern, southeastern, northern and central zones in the country. We observed inconsistencies in the reports that affect the comparative analysis. The inhabitants of the departments located in national territories and Norte de Santander have an increased risk of illness and death from yellow fever, but this information could be underestimated, according to the source of information used for its calculation.

  9. Characterization of CDOM of river waters in China using fluorescence excitation-emission matrix and regional integration techniques

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Song, Kaishan; Shang, Yingxin; Shao, Tiantian; Wen, Zhidan; Lv, Lili

    2017-08-01

    The spatial characteristics of fluorescent dissolved organic matter (FDOM) components in river waters in China were first examined by excitation-emission matrix spectra and fluorescence regional integration (FRI) with the data collected during September to November between 2013 and 2015. One tyrosine-like (R1), one tryptophan-like (R2), one fulvic-like (R3), one microbial protein-like (R4), and one humic-like (R5) components have been identified by FRI method. Principal component analysis (PCA) was conducted to assess variations in the five FDOM components (FRί (ί = 1, 2, 3, 4, and 5)) and the humification index for all 194 river water samples. The average fluorescence intensities of the five fluorescent components and the total fluorescence intensities FSUM differed under spatial variation among the seven major river basins (Songhua, Liao, Hai, Yellow and Huai, Yangtze, Pearl, and Inflow Rivers) in China. When all the river water samples were pooled together, the fulvic-like FR3 and the humic-like FR5 showed a strong positive linear relationship (R2 = 0.90, n = 194), indicating that the two allochthonous FDOM components R3 and R5 may originate from similar sources. There is a moderate strong positive correlation between the tryptophan-like FR2 and the microbial protein-like FR4 (R2 = 0.71, n = 194), suggesting that parts of two autochthonous FDOM components R2 and R4 are likely from some common sources. However, the total allochthonous substance FR(3+5) and the total autochthonous substances FR(1+2+4) exhibited a weak correlation (R2 = 0.40, n = 194). Significant positive linear relationships between FR3 (R2 = 0.69, n = 194), FR5 (R2 = 0.79, n = 194), and chromophoric DOM (CDOM) absorption coefficient a(254) were observed, which demonstrated that the CDOM absorption was dominated by the allochthonous FDOM components R3 and R5.

  10. Impacts of the thawing-freezing process on runoff generation in the Sources Area of the Yellow River on the northeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoling; Xiang, Xiaohua; Qiu, Chao; Li, Li

    2018-06-01

    In cold regions, precipitation, air temperature and snow cover significantly influence soil water, heat transfer, the freezing-thawing processes of the active soil layer, and runoff generation. Hydrological regimes of the world's major rivers in cold regions have changed remarkably since the 1960s, but the mechanisms underlying the changes have not yet been fully understood. Using the basic physical processes for water and heat balances and transfers in snow covered soil, a water-heat coupling model for snow cover and its underlying soil layers was established. We found that freezing-thawing processes can affect the thickness of the active layer, storage capacity for liquid water, and subsequent surface runoffs. Based on calculations of thawing-freezing processes, we investigated hydrological processes at Qumalai. The results show that the water-heat coupling model can be used in this region to provide an understanding of the local movement of hydrological regimes.

  11. 1973 Mississippi River Flood's Impact on Natural Hardwood Forests and Plantations

    Treesearch

    H. E. Kennedy; R. M. Krinard

    1974-01-01

    Through October, the 1979 Mississippi River flood had not caused extensive damage to natural hardwood forests or plantations that were 1 year or older and had been flooded only during the first 2 months of the growing season. New plantings of cottonwood were virtually destroyed, however, and 1-year-old sweetgum, flooded about 9 months, was killed. All yellow-poplar...

  12. A Proposed Habitat Management Plan for Yellow-Billed Cuckoos in California

    Treesearch

    Stephen A. Laymon; Mary D. Halterman

    1989-01-01

    The California Wildlife-Habitat Relationship (WHR) system was tested for birds breeding in the Valley-Foothill Riparian habitat along California's Sacramento and South Fork Kern rivers. The model performed poorly with 33 pct and 21 pct correct predictions respectively at the two locations. Changes to the model for 60 species on the Sacramento River and 66 species...

  13. Provenance of aeolian sands in the Hetao Plain, northwestern China

    NASA Astrophysics Data System (ADS)

    Yang, Xingchen; Cai, Maotang; Ye, Peisheng; Ye, Mengni; Li, Chenglu; Wu, Hang; Lu, Jing; Wang, Tao; Zhao, Zhirong; Luzhou, Yangfan; Liu, Chao

    2018-06-01

    Patches of aeolian sand are distributed throughout the Hetao Plain, which pose threats to farming and agriculture. Identification of the provenance of the aeolian sands may help with efforts to alleviate ecological stress in Inner Mongolia and in the paleoenvironmental interpretation of sandy sequences. This study uses geochemical data to determine the provenance of aeolian sands from the Hetao Plain. Provenance discrimination diagrams revealed that the aeolian sands were mainly derived from mixed source felsic granites and granodiorites, which have undergone weak sedimentary recycling. The chemical index of alteration and A-CN-K data indicated that the aeolian sediments were transported over a short distance. Comparison of trace element and rare earth element (REE) ratios of the aeolian sands with rock samples from potential source areas has revealed that aeolian sand deposits in the Hetao Plain were mainly derived from Sertengshan and Yellow River sediments. The Langshan and Ordos Plateau may represent additional sand sources for the Hetao Plain.

  14. Differences in organotin accumulation among ecological migratory types of the Japanese eel Anguilla japonica

    NASA Astrophysics Data System (ADS)

    Ohji, Madoka; Harino, Hiroya; Arai, Takaomi

    2006-08-01

    In order to examine the ecological risks caused by organotin compounds (OTs) in diadromous fish migrating between sea and freshwater, tributyltin (TBT) and triphenyltin (TPT) compounds, and their breakdown products, were determined in the catadromous eel Anguilla japonica having sea, estuarine and river life histories, collected in Japanese sea, brackish and fresh waters. Ontogenic changes in otolith strontium (Sr) and calcium (Ca) concentrations were examined along life history transect to discriminate the migration type. There were generally three different patterns, which were categorized 'sea eels' (spent most of their life in the sea and did not enter freshwater), 'estuarine eels' (inhabited estuaries or switched between different habitats), and 'river eels' (entered and remained in freshwater river habitats after arrival in the estuary) according to the otolith Sr:Ca ratio. There were generally no significant correlations between TBT and TPT accumulation and various biological characteristics such as total length (TL), body weight (BW), age and sex in A. japonica. The concentrations of TBT and TPT in silver eels (mature eels) were significantly higher than those in yellow eels (immature eels), and the percentages of TBT and TPT were also higher in silver eels than in yellow eels. A positive correlation was found between TBT concentration and the gonad-somatic index (GSI). It is thus considered that silver eels have a higher risk of contamination by TBT than yellow eels. TBT and TPT concentrations in sea eels were significantly higher than those in river eels. In contrast, no significant differences were observed in TBT and TPT concentrations in estuarine eels compared to sea and river eels. These results suggest that sea eels have a higher ecological risk of OT contamination than river eels during their life history, and the risk of OTs in estuarine eels is considered to be intermediate between that of sea and river eels. Positive linear relationships were found between Sr:Ca ratios and the concentrations of TBT and TPT. Therefore, these results suggest that the ecological risk of OTs increase, as the sea residence period in the eel become longer. Even at the same maturation stage, TBT and TPT concentrations in sea eels were significantly higher than those in river eels. Thus, it is clear that migratory type is a more important factor for OT accumulation than maturation stage.

  15. Prevalence of Anguillicoloides crassus and growth variation in migrant yellow-phase American eels of the upper Potomac River drainage.

    PubMed

    Zimmerman, Jennifer L; Welsh, Stuart A

    2012-11-08

    Prevalence of the non-native swim bladder nematode Anguillicoloides crassus has recently increased in American eels from estuaries of the North American Atlantic coast, but little is known about parasite prevalence or conditions of previous infection in upstream migrant eels within upper watersheds. This study is the first to confirm presence of A. crassus in the upper Potomac River watershed. We estimated A. crassus prevalence during 3 time periods: September to October 2006 (5/143 eels, 3.5%), August to October 2007 (0/49 eels), and June 2008 (0/50 eels). All eels were sampled from the Millville Dam eel ladder on the lower Shenandoah River, a Potomac River tributary located approximately 285 km upstream of Chesapeake Bay, USA. Of the 5 infected eels, parasite intensity was 1 for each eel, and mean intensity was also 1.0. A swim bladder degenerative index (SDI) was calculated for the 50 eels from the final sampling period, and 38% of those eels (19 of 50) showed signs of previous infection by A. crassus. We also aged 42 of the 50 eels (mean ± SE = 6.7 ± 0.29 yr, range 4 to 11 yr) from the final sampling period. Based on the range of possible SDI scores (0 to 6), severity of previously infected swim bladders was moderate (SDI = 1 or 2). Previously infected eels, however, had a lower length-at-age than that of uninfected eels. Female yellow-phase eels in upper watersheds develop into large highly fecund silver-phase adults; hence, a parasite-induced effect on growth of yellow-phase eels could ultimately reduce reproductive potential.

  16. Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta.

    PubMed

    Wu, Chunsheng; Liu, Gaohuan; Huang, Chong; Liu, Qingsheng; Guan, Xudong

    2018-04-25

    The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural resources of YRD have brought huge challenges to the area, and frequent human activities and natural disasters have damaged the ecological systems seriously, and certain ecological functions have been threatened. Therefore, it is necessary to determine the status of the ecological environment based on scientific methods, which can provide scientifically robust data for the managers or stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions, ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed to obtain the result. The result showed that the spatial distribution of the EV grades was regular, while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously protective effect for the inner area, while the EV was higher in the area where no dikes were built. This result also showed that the soil condition and groundwater status were highly related to the EV spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had exerted considerable pressure on the ecological environment.

  17. 75 FR 69892 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    .... Yellow Medicine River Approximately 3,295 feet +1094 Unincorporated Areas of downstream of the county..., Unincorporated Areas of Cass County. Approximately 0.53 mile +1094 downstream of State Highway 50. Approximately...

  18. Identification of source locations for atmospheric dry deposition of heavy metals during yellow-sand events in Seoul, Korea in 1998 using hybrid receptor models

    NASA Astrophysics Data System (ADS)

    Han, Young-Ji; Holsen, Thomas M.; Hopke, Philip K.; Cheong, Jang-Pyo; Kim, Ho; Yi, Seung-Muk

    2004-10-01

    Elemental dry deposition fluxes were measured using dry deposition plates from March to June 1998 in Seoul, Korea. During this spring sampling period several yellow-sand events characterized by long-range transport from China and Mongolia impacted the area. Understanding the impact of yellow-sand events on atmospheric dry deposition is critical to managing the heavy metal levels in the environment in Korea. In this study, the measured flux of a primarily crustal metal, Al and an anthropogenic metal, Pb was used with two hybrid receptor models, potential source contribution function (PSCF) and residence time weighted concentration (RTWC) for locating sources of heavy metals associated with atmospheric dry deposition fluxes during the yellow-sand events in Seoul, Korea. The PSCF using a criterion value of the 75th percentile of the measured dry deposition fluxes and RTWC results using the measured elemental dry deposition fluxes agreed well and consistently showed that there were large potential source areas in the Gobi Desert in China and Mongolia and industrial areas near Tianjin, Tangshan, and Shenyang in China. Major industrial areas of Shenyang, Fushun, and Anshan, the Central China loess plateau, the Gobi Desert, and the Alashan semi-desert in China were identified to be major source areas for the measured Pb flux in Seoul, Korea. For Al, the main industrial areas of Tangshan, Tianjin and Beijing, the Gobi Desert, the Alashan semi-desert, and the Central China loess plateau were found to be the major source areas. These results indicate that both anthropogenic sources such as industrial areas and natural sources such as deserts contribute to the high dry deposition fluxes of both Pb and Al in Seoul, Korea during yellow-sand events. RTWC resolved several high potential source areas. Modeling results indicated that the long-range transport of Al and Pb from China during yellow-sand events as well as non-yellow-sand spring daytimes increased atmospheric dry deposition of heavy metals in Korea.

  19. The Spatial and Temporal Distribution of Dissolved Organic Carbon Exported from Three Chinese Rivers to the China Sea

    PubMed Central

    Shi, Guohua; Peng, Changhui; Wang, Meng; Shi, Shengwei; Yang, Yanzheng; Chu, Junyao; Zhang, Junjun; Lin, Guanghui; Shen, Yan; Zhu, Qiuan

    2016-01-01

    The lateral transport of dissolved organic carbon (DOC) plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. Neglecting the lateral flow of dissolved organic carbon can lead to an underestimation of the organic carbon budget of terrestrial ecosystems. It is thus necessary to integrate DOC concentrations and flux into carbon cycle models, particularly with regard to the development of models that are intended to directly link terrestrial and ocean carbon cycles. However, to achieve this goal, more accurate information is needed to better understand and predict DOC dynamics. In this study, we compiled an inclusive database of available data collected from the Yangtze River, Yellow River and Pearl River in China. The database is collected based on online literature survey and analysed by statistic method. Overall, our results revealed a positive correlation between DOC flux and discharge in all three rivers, whereas the DOC concentration was more strongly correlated with the regional net primary productivity (NPP). We estimated the total DOC flux exported by the three rivers into the China Sea to be approximately 2.73 Tg yr-1. Specifically, the annual flux of DOC from the Yangtze River, Yellow River and Pearl River was estimated to be 1.85 Tg yr-1, 0.06 Tg yr-1 and 0.82 Tg yr-1, respectively, and the average annual DOC concentrations were estimated to be 2.24 ± 0.53 mg L-1, 2.70 ± 0.38 mg L-1 and 1.51 ± 0.09 mg L-1, respectively. Seasonal variations in DOC concentrations are greatly influenced by the interaction between temperature and precipitation. NPP is significantly and positively related to the DOC concentration in the Yangtze River and the Pearl River. In addition, differences in climate and the productivity of the vegetation may influence both the flux and concentrations of DOC transported by the rivers and thus potentially affect estuarine geochemistry. PMID:27755581

  20. Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model

    NASA Astrophysics Data System (ADS)

    Wu, Pan; Wang, Xu-Sheng; Liang, Sihai

    2018-06-01

    Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM) was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM) ensembled data of three emission scenarios (SRA2, SRA1B and SRB1) were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011-2030 (2020s), 2046-2065 (2050s), 2080-2099 (2090s), respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the future.

  1. Assessment of Air Temperature Trends in the Source Region of Yellow River and Its Sub-Basins, China

    NASA Astrophysics Data System (ADS)

    Iqbal, Mudassar; Wen, Jun; Wang, Xin; Lan, Yongchao; Tian, Hui; Anjum, Muhammad Naveed; Adnan, Muhammad

    2018-02-01

    Changes in climatic variables at the sub-basins scale (having different features of land cover) are crucial for planning, development and designing of water resources infrastructure in the context of climate change. Accordingly, to explore the features of climate changes in sub-basins of the Source Region of Yellow River (SRYR), absolute changes and trends of temperature variables, maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tavg) and diurnal temperature range (DTR), were analyzed annually and seasonally by using daily observed air temperature dataset from 1965 to 2014. Results showed that annual Tmax, Tmin and Tavg for the SRYR were experiencing warming trends respectively at the rate of 0.28, 0.36 and 0.31°C (10 yr)-1. In comparison with the 1st period (1965-1989), more absolute changes and trends towards increasing were observed during the 2nd period (1990-2014). Apart from Tangnaihai (a low altitude sub-basin), these increasing trends and changes seemed more significant in other basins with highest magnitude during winter. Among sub-basins the increasing trends were more dominant in Huangheyan compared to other sub-basins. The largest increase magnitude of Tmin, 1.24 and 1.18°C (10 yr)-1, occurred in high altitude sub-basins Jimai and Huangheyan, respectively, while the smallest increase magnitude of 0.23°C (10 yr)-1 occurred in a low altitude sub-basin Tangnaihai. The high elevation difference in Tangnaihai probably was the main reason for the less increase in the magnitude of Tmin. In the last decade, smaller magnitude of trend for all temperature variables signified the signal of cooling in the region. Overall, changes of temperature variables had significant spatial and seasonal variations. It implies that seasonal variations of runoff might be greater or different for each sub-basin.

  2. Trends of satellite derived chlorophyll-a (1997-2011) in the Bohai and Yellow Seas, China: Effects of bathymetry on seasonal and inter-annual patterns

    NASA Astrophysics Data System (ADS)

    Liu, Dongyan; Wang, Yueqi

    2013-09-01

    The spatial and temporal variability of sea surface chlorophyll-a (Chl-a) concentrations in the Bohai and Yellow Seas were analyzed, using satellite-derived Chl-a products from SeaWiFS and MODIS sensors over the period of September 1997-September 2011. A set of monthly and cloud-free Chl-a data was produced by the Data Interpolating Empirical Orthogonal Function (DINEOF) method. The results indicate that there are different Chl-a seasonal patterns existing in the Yangtze River mouth, coastal and offshore waters, respectively. In the Yangtze River mouth, a long-lasting Chl-a peak (May-September) is seen in summer. In coastal waters, two significant Chl-a maxima occur in winter-spring and late summer, respectively. In offshore waters, only one significant spring (March-April) Chl-a maximum is evident with a time lag of 1-3 months to coastal waters and the signal of autumn maximum is very weak. In coastal waters, wind-tide-thermohaline circulations and East Asia summer rainy monsoon may important physical factors to impact the seasonal pattern of Chl-a, but increased human activity (e.g., eutrophication, dam) could significantly enhance this process. In offshore waters, the impact on the circulation of the YSWC in winter and YSCW in summer in the central Yellow Sea could be important physical factor in explaining the variability of Chl-a in seasonal patterns. The decadal trends of Chl-a and sea surface temperature are decreasing in coastal waters, with a significantly positive correlation. In offshore waters, the decadal trends of Chl-a is increasing but a slight decreasing sea surface temperature trend is seen, and they indicate a negative correlation. The highest Chl-a values (3.0-5.0 mg m-3) and the lowest variability (STD < 0.3 mg m-3) are observed in coastal waters, in the adjacent sea area of the Yangtze River and Yellow River mouths where the water depth is less than 20 m. Compared with coastal waters and the sea adjacent to the large river mouths, the central Bohai Sea and the offshore waters of the Yellow Sea with the water depth of 20-40 m have lower Chl-a concentrations (1.5-3.5 mg m-3) but higher variability (STD = 0.4-0.6 mg m-3). In contrast to (1) and (2), the lowest Chl-a values (0.5-2.0 mg m-3, with most of values below 1 mg m-3) and the highest variability (STD > 0.8 mg m-3) occurred in the center Yellow Sea where the water depth with a range of 40-120 m. Linear statistical analysis further verifies the relationship between Chl-a and water depth (Fig. 5). Chl-a concentrations and water depths display a significant negative correlation (R = -0.87, P < 0.0001) (Fig. 5a), and there is a significant positive correlation (R = 0.69, P < 0.0001) between STD and water depths (Fig. 5b). These results indicated a significant spatial correlation between water depth and Chl-a concentrations.

  3. 1. Distant view, showing bridge in context with agricultural (pastures ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Distant view, showing bridge in context with agricultural (pastures and cornfields) setting; looking southeast. - Eureka Bridge, Spanning Yellow River (Moved to City Park, Castalia), Frankville, Winneshiek County, IA

  4. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Li, Yanzhong; Zhang, Guoqing; Sang, Yan-Fang; Lim, Wee Ho; Liu, Jiahong; Wang, Hong; Bai, Peng

    2018-01-01

    The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982-2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June-October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.

  5. Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories.

    PubMed

    Cusack, Leanne K; Eagles-Smith, Collin; Harding, Anna K; Kile, Molly; Stone, Dave

    2017-07-01

    Fish provide a valuable source of beneficial nutrients and are an excellent source of low fat protein. However, fish are also the primary source of methylmercury exposure in humans. Selenium often co-occurs with mercury and there is some evidence that selenium can protect against mercury toxicity yet States issue fish consumption advisories based solely on the risks that methylmercury pose to human health. Recently, it has been suggested the selenium: mercury molar ratio be considered in risk management. In order for agencies to utilize the ratio to set consumption guidelines, it is important to evaluate the variability in selenium and mercury in different fish species. We examined 10 different freshwater fish species found within the Columbia River Basin in order to determine the inter- and intra-specific variability in the selenium: mercury molar ratios and the selenium health benefit values. We found significant variation in selenium: mercury molar ratios. The mean molar ratios for each species were all above 1:1, ranging from 3.42:1 in Walleye to 27.2:1 in Chinook salmon. There was a positive correlation between both mercury and selenium with length for each fish species apart from yellow perch and rainbow trout. All species had health benefit values greater than 2. We observed considerable variability in selenium: mercury molar ratios within fish species collected in the Columbia River Basin. Although incorporating selenium: mercury molar ratios into fish consumption holds the potential for refining advisories and assessing the risk of methylmercury exposure, the current understanding of how these ratios apply is insufficient, and further understanding of drivers of variability in the ratios is needed.

  6. Selenium: Mercury molar ratios in freshwater fish in the Columbia River Basin: Potential applications for specific fish consumption advisories

    USGS Publications Warehouse

    Cusack, Leanne K.; Eagles-Smith, Collin A.; Harding, Anna K.; Kile, Molly; Stone, Dave

    2017-01-01

    Fish provide a valuable source of beneficial nutrients and are an excellent source of low fat protein. However, fish are also the primary source of methylmercury exposure in humans. Selenium often co-occurs with mercury and there is some evidence that selenium can protect against mercury toxicity yet States issue fish consumption advisories based solely on the risks that methylmercury pose to human health. Recently, it has been suggested the selenium: mercury molar ratio be considered in risk management. In order for agencies to utilize the ratio to set consumption guidelines, it is important to evaluate the variability in selenium and mercury in different fish species. We examined 10 different freshwater fish species found within the Columbia River Basin in order to determine the inter- and intra-specific variability in the selenium: mercury molar ratios and the selenium health benefit values. We found significant variation in selenium: mercury molar ratios. The mean molar ratios for each species were all above 1:1, ranging from 3.42:1 in Walleye to 27.2:1 in Chinook salmon. There was a positive correlation between both mercury and selenium with length for each fish species apart from yellow perch and rainbow trout. All species had health benefit values greater than 2. We observed considerable variability in selenium: mercury molar ratios within fish species collected in the Columbia River Basin. Although incorporating selenium: mercury molar ratios into fish consumption holds the potential for refining advisories and assessing the risk of methylmercury exposure, the current understanding of how these ratios apply is insufficient, and further understanding of drivers of variability in the ratios is needed.

  7. Controls of channel morphology and sediment concentration on flow resistance in a large sand-bed river: A case study of the lower Yellow River

    NASA Astrophysics Data System (ADS)

    Ma, Yuanxu; Huang, He Qing

    2016-07-01

    Accurate estimation of flow resistance is crucial for flood routing, flow discharge and velocity estimation, and engineering design. Various empirical and semiempirical flow resistance models have been developed during the past century; however, a universal flow resistance model for varying types of rivers has remained difficult to be achieved to date. In this study, hydrometric data sets from six stations in the lower Yellow River during 1958-1959 are used to calibrate three empirical flow resistance models (Eqs. (5)-(7)) and evaluate their predictability. A group of statistical measures have been used to evaluate the goodness of fit of these models, including root mean square error (RMSE), coefficient of determination (CD), the Nash coefficient (NA), mean relative error (MRE), mean symmetry error (MSE), percentage of data with a relative error ≤ 50% and 25% (P50, P25), and percentage of data with overestimated error (POE). Three model selection criterions are also employed to assess the model predictability: Akaike information criterion (AIC), Bayesian information criterion (BIC), and a modified model selection criterion (MSC). The results show that mean flow depth (d) and water surface slope (S) can only explain a small proportion of variance in flow resistance. When channel width (w) and suspended sediment concentration (SSC) are involved, the new model (7) achieves a better performance than the previous ones. The MRE of model (7) is generally < 20%, which is apparently better than that reported by previous studies. This model is validated using the data sets from the corresponding stations during 1965-1966, and the results show larger uncertainties than the calibrating model. This probably resulted from the temporal shift of dominant controls caused by channel change resulting from varying flow regime. With the advancements of earth observation techniques, information about channel width, mean flow depth, and suspended sediment concentration can be effectively extracted from multisource satellite images. We expect that the empirical methods developed in this study can be used as an effective surrogate in estimation of flow resistance in the large sand-bed rivers like the lower Yellow River.

  8. The impacts of climate change and human activities on grassland productivity in Qinghai Province, China

    NASA Astrophysics Data System (ADS)

    Yin, Fang; Deng, Xiangzheng; Jin, Qin; Yuan, Yongwei; Zhao, Chunhong

    2014-03-01

    Qinghai Province, which is the source of three major rivers (i.e., Yangtze River, Yellow River and Lancang River) in East Asia, has experienced severe grassland degradation in past decades. The aim of this work was to analyze the impacts of climate change and human activities on grassland ecosystem at different spatial and temporal scales. For this purpose, the regression and residual analysis were used based on the data from remote sensing data and meteorological stations. The results show that the effect of climate change was much greater in the areas exhibiting vigorous vegetation growth. The grassland degradation was strongly correlated with the climate factors in the study area except Haixi Prefecture. Temporal and spatial heterogeneity in the quality of grassland were also detected, which was probably mainly because of the effects of human activities. In the 1980s, human activities and grassland vegetation growth were in equilibrium, which means the influence of human activities was in balance with that of climate change. However, in the 1990s, significant grassland degradation linked to human activities was observed, primarily in the Three-River Headwaters Region. Since the 21st century, this adverse trend continued in the Qinghai Lake area and near the northern provincial boundaries, opposite to what were observed in the eastern part of study. These results are consistent with the currently status of grassland degradation in Qinghai Province, which could serve as a basis for the local grassland management and restoration programs.

  9. Impact of Water-Sediment Regulation Scheme on seasonal and spatial variations of biogeochemical factors in the Yellow River estuary

    NASA Astrophysics Data System (ADS)

    Wang, Yujue; Liu, Dongyan; Lee, Kenneth; Dong, Zhijun; Di, Baoping; Wang, Yueqi; Zhang, Jingjing

    2017-11-01

    Seasonal and spatial distributions of nutrients and chlorophyll-a (Chl-a), together with temperature, salinity and total suspended matter (TSM), were investigated in the Yellow River estuary (China) to examine the biogeochemical influence of the ;Water and Sediment Regulation Scheme (WSRS); that is used to manage outflows from the river. Four cruises in April, June (early phase of WSRS), July (late phase of WSRS) and September were conducted in 2013 (WSRS from 19th June to 12th July). The results showed that nutrient species could be divided into two major groups according to their seasonal and spatial distributions. One group included NO3-, dissolved organic nitrogen (DON) and Si(OH)4, primarily from freshwater discharge. NO3- and DON related to anthropogenic sources were also separated from Si(OH)4, which was related to weather. The other group included dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), NO2-, and NH4+. Along with freshwater inputs, sediment absorption/desorption showed impacts on DIP and DOP concentration and distribution. Nitrification was a dominant factor controlling NO2- concentrations. NH4+ was influenced by both sediment absorption/desorption and nitrification. The WSRS not only shifted the seasonal patterns of nutrients in the estuary, with high concentrations moved from autumn to June and July, but also promoted the nutrient spread to the south central part of the Bohai Sea. Spatial distribution of Chlorophyll-a (Chl-a) was influenced by the WSRS, with high concentrations being found in the river mouth in June and September, flanking the river mouth in July, and in the south central part of the Bohai Sea in September. Although Chl-a concentrations increased in June and July, the seasonal patterns did not change. The highest concentrations were found in September. Nutrient loadings during the WSRS relieved DIP and Si(OH)4 limitation in the estuary and south central Bohai Sea, causing an excess of DIN and disrupting the balance of DIN/DIP in the estuary and Bohai Sea. High turbidity and freshwater flushing depressed the growth of phytoplankton during the WSRS. The growth of phytoplankton was nutrient limited in June (DIP) when the WSRS started and in September after DIP and Si(OH)4 had been consumed by phytoplankton.

  10. Yellow-billed Cuckoo Distribution, Abundance, and Habitat Use Along the Lower Colorado River and Its Tributaries, 2007 Annual Report

    USGS Publications Warehouse

    Johnson, Matthew J.; Durst, Scott L.; Calvo, Christopher M.; Stewart, Laura; Sogge, Mark K.; Bland, Geoffrey; Arundel, Terry R.

    2008-01-01

    This 2007 annual report details the second season of a 2-year study documenting western yellow-billed cuckoo (Coccyzus americanus occidentalis) distribution, abundance, and habitat use throughout the Lower Colorado River Multi-Species Conservation Program boundary area. We conducted cuckoo surveys at 40 sites within 14 areas, between 11 June and 9 September 2007. The 169 surveys across all sites yielded 163 yellow-billed cuckoo detections. Cuckoos were detected at 25 of the 40 sites, primarily at the Bill Williams River National Wildlife Refuge (NWR) study area (n = 139 detections; 85 percent of all detections). Detections declined slightly through the cuckoo breeding season, with most detections occurring in the first and second survey periods (n = 92; 54 percent). We detected breeding activity only at the Bill Williams River NWR, where we confirmed 27 breeding events, including two nesting observations. However, the breeding status of most detected birds was unknown. We used playback broadcast recordings to survey for yellow-billed cuckoos. Compared to simple point counts or surveys, this method increases the number of detections of this secretive, elusive species. It has long been suspected that cuckoos have a fairly low response rate, and that the standard survey method of using broadcast recordings might fail to detect all birds present in an area. In 2007, we found that the majority (84 percent) of cuckoo detections were solicited through broadcast at all study sites. The number of solicited detections was highest during the first survey period and declined as the breeding season progressed, while the number of unsolicited detections (cuckoos heard calling before broadcast was initiated) remained fairly constant through the first, second, and third survey periods. The majority (66 percent) of cuckoo detections, solicited or unsolicited, were aural, 23 percent were both heard and seen, and 11 percent were visual detections only. We also found that 50 percent of all responses by cuckoos were evenly split between the first and second broadcasts at sites with >10 detections, while 45 percent of responses occurred after a single broadcast at the sites with <10 detections. We refined our collection of vegetation data in 2007 and found that across the entire study area the dominant tree species were tamarisk (Tamarix spp.), willow (Salix spp.), and cottonwood (Populus spp.). The smallest size class (<8 cm diameter at breast height) trees were the most common and were dominated by tamarisk, but cottonwood and willows were well represented in the larger size classes. Sites that were occupied by yellow-billed cuckoos generally had higher canopies, denser cover in the upper layers of the canopy, and sparse shrub layers compared to unoccupied sites that consistently had higher densities of woody species. As most occupied sites were within the Bill Williams River NWR and most unoccupied sites were at Grand Canyon National Park/Lake Mead National Recreation Area, vegetation characteristics at these study areas drove the cuckoo distribution patterns we observed in 2007. However, there was a range of habitat conditions in locations that were used by yellow-billed cuckoos across the entire lower Colorado River Multi-Species Conservation Program study area. We measured microclimate variables (temperature, relative humidity, soil moisture) at occupied and unoccupied sites, and found that, across the entire study area, occupied sites were consistently cooler during the day and more humid during the day and night compared to unoccupied sites, but that soil moisture did not differ between occupied and unoccupied sites. While most cuckoo detections occurred at Bill Williams River NWR, with generally cooler and more humid conditions, cuckoos were also detected at study areas that had hotter and dryer microclimate conditions. We did not find any relationship of canopy cover characteristics to temperature or soil moisture, suggesting

  11. Decreasing Agricultural Irrigation has not reversed Groundwater Depletion in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Xie, X.; Zhu, B.

    2017-12-01

    Agricultural irrigation is considered as the major water use sector accounting for over 60% of the global freshwater withdrawals. Especially in the arid and semiarid areas, irrigation from groundwater storage substantially sustain crop growth and food security. China's Yellow River Basin (YRB) is a typical arid and semiarid area with average annual precipitation about 450 mm. In this basin, more than 52 million hm2 of arable land needs irrigation for planting wheat, cotton, paddy rice etc, and groundwater contributes over one-third irrigation water. However, agricultural irrigation remained a certain level or decreased to some degree due to water-saving technologies and returning farmland to forest projects. Then an interesting question arises: has the groundwater storage (GWS) in YRB kept a consistent variation with the agricultural irrigation? In this study, to address this question, we employed multi-source data from ground measurements, remote sensing monitoring and large-scale hydrological modeling. Specifically, groundwater storage variation was identified using Gravity Recovery and Climate Experiment (GRACE) data and ground observations, and groundwater recharge was estimated based on the Variable Infiltration Capacity (VIC) modeling. Results indicated that GWS in YRB still holds a significant depletion with a rate of about -3 mm per year during the past decade, which was consistently demonstrated by the GRACE and the ground observations. Ground water recharge shows negligible upward trends despite climate change. The roles of different sectors contributing to groundwater depletion have changed. Agricultural irrigation accounting for over 60% of groundwater depletion, but its impact decreased. However, the domestic and the industrial purposes play an increasing role in shaping groundwater depletion.

  12. Application of a level IV fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River basin, China.

    PubMed

    Ao, Jiangting; Chen, Jingwen; Tian, Fulin; Cai, Xiyun

    2009-01-01

    A level IV multimedia fugacity model was established to simulate the fate and transfer of hexachlorocyclohexane (HCH) isomers in the lower reach of the Yellow River basin, China, during 1952-2010. The predicted concentrations of HCHs are in good agreement with the observed ones, as indicated by the residual errors being generally lower than 0.5 logarithmic units. The effects of extensive agricultural application and subsequent prohibition of HCHs are reflected by the temporal variation of HCHs predicted by the model. It is predicted that only 1.8 tons of HCHs will be left in 2010, less than 0.06% of the highest contents (in 1983) in the study area, and about 99% of HCHs remain in soil. The proportions of HCH isomers in the environment also changed with time due to their different physicochemical properties. Although beta-HCH is not the main component of the technical HCHs, it has become the most abundant isomer in the environment because of its persistence. The dominant transfer processes between the adjacent compartments were deposition from air to soil, air diffusion through the air-water interface and runoff from soil to water. Sensitivity analysis showed that degradation rate in soil, parameters related to major sources, and thickness of soils had the strongest influence on the model result. Results of Monte Carlo simulation indicated the overall uncertainty of model predictions, and the coefficients of variation of the estimated concentrations of HCHs in all the compartments ranged from 0.5 to 5.8.

  13. Historical and future changes of frozen ground in the upper Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Wang, Taihua; Yang, Dawen; Qin, Yue; Wang, Yuhan; Chen, Yun; Gao, Bing; Yang, Hanbo

    2018-03-01

    Frozen ground degradation resulting from climate warming on the Tibetan Plateau has aroused wide concern in recent years. In this study, the maximum thickness of seasonally frozen ground (MTSFG) is estimated by the Stefan equation, which is validated using long-term frozen depth observations. The permafrost distribution is estimated by the temperature at the top of permafrost (TTOP) model, which is validated using borehole observations. The two models are applied to the upper Yellow River Basin (UYRB) for analyzing the spatio-temporal changes in frozen ground. The simulated results show that the areal mean MTSFG in the UYRB decreased by 3.47 cm/10 a during 1965-2014, and that approximately 23% of the permafrost in the UYRB degraded to seasonally frozen ground during the past 50 years. Using the climate data simulated by 5 General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) 4.5, the areal mean MTSFG is projected to decrease by 1.69 to 3.07 cm/10 a during 2015-2050, and approximately 40% of the permafrost in 1991-2010 is projected to degrade into seasonally frozen ground in 2031-2050. This study provides a framework to estimate the long-term changes in frozen ground based on a combination of multi-source observations at the basin scale, and this framework can be applied to other areas of the Tibetan Plateau. The estimates of frozen ground changes could provide a scientific basis for water resource management and ecological protection under the projected future climate changes in headwater regions on the Tibetan Plateau.

  14. Flood Simulation based on ArcGIS in the Ungauged Area from Fugu to Wubao of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Jin, Shuangyan; Yan, Yiqi; Jiang, Xinhui

    2017-12-01

    The Qingliangsigou and Jialuhe in the middle Yellow River are selected as the typical tributaries, history flood data in 1980-2013 and Horton infiltration capacity curve are used to calculate the stable infiltration rate and establish the model of runoff yield and concentration, the parameters are calibrated and applied in the ungauged area from Fugu to Wubao. The study area is divided into 20 units based on ArcGIS, Muskingum method parameters in each unit are calibrated, and typical floods of ungauged area from Fugu to Wubao are simulated. The results show that the simulation effects are good: the average error of peak time is about -0.4h, the error of peak discharge is in the forecasting allowable range, and the deterministic coefficient is 0.66.

  15. Illicit drugs and their metabolites in 36 rivers that drain into the Bohai Sea and north Yellow Sea, north China.

    PubMed

    Wang, De-Gao; Zheng, Qiu-Da; Wang, Xiao-Ping; Du, Juan; Tian, Chong-Guo; Wang, Zhuang; Ge, Lin-Ke

    2016-08-01

    Illicit drugs and their metabolites have recently been recognized as an emerging group of contaminants due to their potential ecotoxicological impact in aquatic ecosystems. To date, information on the occurrence of these compounds in the aquatic environment of China remains limited. In this study, we collected surface water samples from 36 rivers in north China that discharge into the Bohai Sea and north Yellow Sea and measured the concentrations of amphetamine-like compounds, ketamines, cocainics, and opioids. The occurrence and spatial patterns of these substances show significant differences between the rivers and regions. Two designer drugs, methamphetamine (METH) and ketamine (KET), were the most abundant compounds detected in the entire set of samples (detection frequency of 92 and 69 %). The concentrations of METH and KET ranged from <0.1 to 42.0 ng L(-1) (mean = 4.53 ng L(-1)) and <0.05 to 4.50 ng L(-1) (mean = 0.49 ng L(-1)), respectively. The high detection frequencies of METH and KET are consistent with the fact that they are the main illicit drugs consumed in China. The high concentrations of these illicit drugs and their metabolites were found in areas that have a high population density. The riverine input of total illicit drugs into the Bohai Sea and north Yellow Sea was estimated to be in the range of 684 to 1160 kg per year.

  16. Linked Climatic, Environmental, and Societal Changes in the Lower Yellow River Area during the Neolithic-Bronze Age Transition

    NASA Astrophysics Data System (ADS)

    Yu, S. Y.

    2017-12-01

    Understanding human-environment interactions during times of large and rapid climatic changes in the second half of the Holocene may deepen our insight into human adaptation and resilience against potential climate anomalies in the future. However, the drivers and societal responses tend to be different from area to area, and the degree and nature of this link are still a matter of debate. Flooding sediments preserved within the cultural stratigraphical context at archaeological sites in the lower Yellow River area may offer an ideal framework for evaluating the association between evolution of Neolithic cultures and climate fluctuations. Here, we present evidence from a mound site for the prevalence of extreme overbank floods during the Neolithic-Bronze Age transition most likely triggered by excessive summer precipitation in the Yellow River valley when prolonged weak El Niño condition prevailed. Repeated flooding during around 4000-3500 cal yr BP substantially modified the floodplain landscape, thereby driving people to disperse to areas dominated by the Erlitou culture and eventually giving rise to a state-level society in central China historiographically identified as the Xia Dynasty. Changes in the drainage network due to repeated flooding also exerted a profound impact on the rice farming-based communities centered in the region of the floods. Our results provide a precise past analogue of the linked climatic, environmental, and societal changes at a time when human societies were evolving into a hierarchy similar to those of today.

  17. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  18. Distribution and dissipation pathways of nonylphenol polyethoxylates in the Yellow River: Site investigation and lab-scale studies.

    PubMed

    Wang, Lei; Wu, Yinghong; Sun, Hongwen; Xu, Jian; Dai, Shugui

    2006-09-01

    Spatial distribution of nonylphenol polyethoxylates (NPEOs) and nonylphenol (NP) was investigated in a field study in Lanzhou Reach of the Yellow River. NPEOs and their metabolites were found in the river, with the maximum dissolved concentrations of 6.38 nmol/L for NPEOs, 0.19 nmol/L for nonylphenol ethoxy acetic acids (NPECs) and 0.79 nmol/L for NP, respectively. The maximum concentrations in the sediment and suspended particle samples were 1.50 and 5.09 nmol/g for NPEOs and NP, respectively. The effects of particles, light and microorganism on the dissipation of NPEOs in the river water were investigated based on lab-scale experiments. When natural particles were removed, 72% and 22% degradation of NPEOs were achieved at 120 h in non-sterile and sterile conditions with light, respectively. Different concentrations of NPECs were also observed in these experiments. When suspended particle matters (SPMs) were present, about 38-50% of NPEOs were sorbed to the particulate phase in only 1 h. As a result, the degradation of NPEOs and production of NPECs were inhibited. However, the combined sorption and degradation in the presence of SPMs resulted in lower dissolved NPEO concentrations than those in the absence of SPMs. Biodegradation was the most important pathway for NPEOs degradation in the river water, while NPECs seemed to be produced through both biological and abiological pathways.

  19. Different controls on sedimentary organic carbon in the Bohai Sea: River mouth relocation, turbidity and eutrophication

    NASA Astrophysics Data System (ADS)

    Xu, Yunping; Zhou, Shangzhe; Hu, Limin; Wang, Yinghui; Xiao, Wenjie

    2018-04-01

    The extractable lipids and bulk organic geochemical parameters in three sediment cores (M-1, M-3 and M-7) from southern, central and northern Bohai Sea were analyzed in order to reconstruct environmental changes since 1900. The C/N ratio and multiple biomarkers (e.g., C27 + C29 + C31n-alkanes, C24 + C26 + C28n-alkanols, branched versus isoprenoid tetraether index) suggest more terrigenous organic carbon (OC) inputs in southern Bohai Sea. The abrupt changes of biomarker indicators in core M-1 are generally synchronous with the Yellow River mouth relocation events (e.g., 1964, 1976 and 1996), suggesting the distance to the river mouth being an important factor for sedimentary OC dispersal in the southern Bohai Sea. However, in cores M-3 and M-7, terrigenous biomarkers (i.e., BIT) show a long-term declining trend, consistent with a continuous reduction of the Yellow River sediment load, whereas marine biomarkers such as cholesterol, brassicasterol and dinosterol dramatically increased post-1980, apparently related to human-induced eutrophication in the Bohai Sea. Our study suggests different controlling factors on sedimentary OC distribution in the southern (high turbidity) and other parts (less turbidity) of the Bohai Sea, which should be considered for interpretation of paleoenvironments and biogeochemical processes in the river dominated margins that are hotspots of the global carbon cycling.

  20. Ice flood velocity calculating approach based on single view metrology

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xu, L.

    2017-02-01

    Yellow River is the river in which the ice flood occurs most frequently in China, hence, the Ice flood forecasting has great significance for the river flood prevention work. In various ice flood forecast models, the flow velocity is one of the most important parameters. In spite of the great significance of the flow velocity, its acquisition heavily relies on manual observation or deriving from empirical formula. In recent years, with the high development of video surveillance technology and wireless transmission network, the Yellow River Conservancy Commission set up the ice situation monitoring system, in which live videos can be transmitted to the monitoring center through 3G mobile networks. In this paper, an approach to get the ice velocity based on single view metrology and motion tracking technique using monitoring videos as input data is proposed. First of all, River way can be approximated as a plane. On this condition, we analyze the geometry relevance between the object side and the image side. Besides, we present the principle to measure length in object side from image. Secondly, we use LK optical flow which support pyramid data to track the ice in motion. Combining the result of camera calibration and single view metrology, we propose a flow to calculate the real velocity of ice flood. At last we realize a prototype system by programming and use it to test the reliability and rationality of the whole solution.

  1. Diet composition and fish consumption of double-crested cormorants from three St. Lawrence River Colonies in 2013

    USGS Publications Warehouse

    Johnson, James H.; Farquhar, James F.; Mazzocchi, Irene M.; Bendig, Anne

    2014-01-01

    Double-crested Cormorants (Phalacrocorax auritus) were first observed nesting in the upper St. Lawrence River at Strachan Island in 1992. Cormorants now nest at a number of islands in the Thousand Islands section of the river. Griswold, McNair, and Strachan islands are among the largest colonies in the upper river. Until 2011, nest counts had remained relatively stable, ranging from 200 to 603 nests per colony. However, since 2011 the number of nests at McNair Island have exceeded 700 each year. Although the size of cormorant colonies in the upper St. Lawrence River is smaller than those in the eastern basin of Lake Ontario, the close proximity of islands in the upper river that have colonies may cause a cumulative fish consumption effect similar to a larger colony. Because of increasing numbers of Double-crested Cormorants in the upper St. Lawrence River and the possible effects on fish populations, studies were initiated in 1999 to quantify cormorant diet and fish consumption at the three largest colonies. From 1999 to 2012, these studies have shown that cormorants consumed about 128.6 million fish including 37.5 million yellow perch (Perca flavescens), 17.4 million rock bass (Ambloplites rupestris) and 1.0 million smallmouth bass (Micropterus dolemieu) (Johnson et al. 2012). During this same time period fish assessment studies near some of these islands have shown a major decrease in yellow perch populations (Klindt 2007). This occurrence is known as the halo effect and happens when piscivorous birds deplete local fish populations in areas immediately surrounding the colony (Ashmole 1963). This paper describes the diet and fish consumption of cormorants in the upper St. Lawrence River in 2013.

  2. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu

    2018-02-01

    The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.

  3. Reconstructing the Historical Series of Plant Functional Types in the Three-River Headwaters Region in China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, T.

    2016-12-01

    This study uses a physiological biome model to reconstruct the 5910 years historical plant functional type series based on the mechanisms about how environmental constraints affect plant growths. The study area is the Three-Rivers Source Headwaters Region (TRHR) in the south of Qinghai Province of China, which is the source area of the Yangtse River, Yellow River, and Lantsang River, with mean altitude above 4000 meters. The environmental constraints we use are temperature and precipitation. Our results demonstrate that there are only three kinds of biomes existing in this area in the history: the Cool Grass/Shrub, Tundra, and Semidesert. The evolutions of biomes are ruled by two basic patterns. The first is the precipitation driving interconversion of the Semidesert and Tundra and the conversion from the Cool Grass/Shrub to the Semidesert. The second is the temperature driving interconversion of the Tundra and Cool Grass/Shrub. The conversion from the Semidesert to the Cool Grass/Shrub can be generated by the permutations of the first process and the second process. The frequency of the first mode is far higher than the second one, which means that precipitation plays a more active role in the biome evolutions while the temperature makes a long and stable influence on these processes. In the spatial and temporal plant type series generated above, we find that the proportion of the area covered by high quality plants (the Cool Grass/Shrub and Tundra) in around 600 AD is higher than most of other periods in the history, which may led to the rise of the Tibetan Empire. The proportion above, however, decreased sharply in around 1600 AD, which was caused by the Little Ice Age. From this research, we can find the influences of major climatic events on the plant distribution, and understand the interaction or co-evolution of climates and plants more clearly. This study will help us protect our environment more scientifically and with a clearer direction.

  4. Herpetological monitoring and assessment on the Trinity River, Trinity County, California—Final report

    USGS Publications Warehouse

    Snover, Melissa L.; Adams, Michael J.

    2016-06-14

    The primary goal of the Trinity River Restoration Program is to rehabilitate the fisheries on the dam-controlled Trinity River. However, maintaining and enhancing other wildlife populations through the restoration initiative is also a key objective. Foothill yellow-legged frogs (Rana boylii) and western pond turtles (Actinemys marmorata) have been identified as important herpetological species on which to focus monitoring efforts due to their status as California state-listed species of concern and potential listing on the U.S. Endangered Species List. We developed and implemented a monitoring strategy for these species specific to the Trinity River with the objectives of establishing baseline values for probabilities of site occupancy, colonization, and local extinction; identifying site characteristics that correlate with the probability of extinction; and estimating overall trends in abundance. Our 3-year study suggests that foothill yellow-legged frogs declined in the probability of site occupancy. Conversely, our results suggest that western pond turtles increased in both abundance and the probability of site occupancy. The short length of our study period makes it difficult to draw firm conclusions, but these results provide much-needed baseline data. Further monitoring and directed studies are required to assess how habitat changes and management decisions relate to the status and trend of these species over the long term.

  5. Larval dispersal underlies demographically important inter-system connectivity in a Great Lakes yellow perch (Perca flavescens) population

    USGS Publications Warehouse

    Brodnik, Reed M.; Fraker, Michael E.; Anderson, Eric J.; Carreon-Martinez, Lucia; DeVanna, Kristen M.; Heath, Dan D.; Reichert, Julie M.; Roseman, Edward F.; Ludsin, Stuart A.

    2016-01-01

    Ability to quantify connectivity among spawning subpopulations and their relative contribution of recruits to the broader population is a critical fisheries management need. By combining microsatellite and age information from larval yellow perch (Perca flavescens) collected in the Lake St. Clair – Detroit River system (SC-DRS) and western Lake Erie with a hydrodynamic backtracking approach, we quantified subpopulation structure, connectivity, and contributions of recruits to the juvenile stage in western Lake Erie during 2006-2007. After finding weak (yet stable) genetic structure between the SC-DRS and two western Lake Erie subpopulations, microsatellites also revealed measurable recruitment of SC-DRS larvae to the juvenile stage in western Lake Erie (17-21% during 2006-2007). Consideration of pre-collection larval dispersal trajectories, using hydrodynamic backtracking, increased estimated contributions to 65% in 2006 and 57% in 2007. Our findings highlight the value of complementing subpopulation discrimination methods with hydrodynamic predictions of larval dispersal by revealing the SC-DRS as a source of recruits to western Lake Erie and also showing that connectivity through larval dispersal can affect the structure and dynamics of large-lake fish populations.

  6. Computing entropy change in synoptic-scale system

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Hu, Y. Y.; Cao, H. X.; Fu, C. F.; Feng, G. L.

    2018-03-01

    Thermodynamic entropy is of great importance in the atmospheric physics and chemistry process, because it is a non-conserved state function which making a system's tendency towards spontaneous change. But how the entropy forces a synoptic-scale system is still not well known. In this paper, we analyzed the entropy change in atmosphere system, by calculating several examples of extra tropical cyclones over the Yellow River and its adjacent area in summer. The results show that a strong negative entropy flux appears over the north of a stationary front and the thresholds Fe S ≤ - 280 and ∂s / ∂t ≤ - 50 are satisfied. At the same time, the change of total entropy is smaller than zero. Therefore the cyclone developed quickly and daily precipitation reached 371 mm, which is heaviest rain over the Yellows River area in summer. We suggest the dynamical entropy should be developed to improve the forecasting technique of heavy rainfall event in synoptic-scale.

  7. Effects of flow regimes altered by dams on survival, population declines, and range-wide losses of California river-breeding frogs.

    PubMed

    Kupferberg, Sarah J; Palen, Wendy J; Lind, Amy J; Bobzien, Steve; Catenazzi, Alessandro; Drennan, Joe; Power, Mary E

    2012-06-01

    Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology. ©2012 Society for Conservation Biology.

  8. The influence of the mass media on the selection of physicians.

    PubMed

    Trandel-Korenchuk, D M

    1998-01-01

    The purpose of this study was to examine now media sources influence an individual's reported choice of a physician as compared to personal referral sources and how consumers use the Yellow Pages to search for health care information. A random sample of 762 residents was systematically selected from the Charlotte, North Carolina White Pages and was asked to participate in a 20-item descriptive phone survey designed and tested by the investigator. Five hundred and seventy-eight individuals completed the survey, with a response rate of 75.9%. This study supports previous research suggesting that personal referrals are the most influential sources in selecting health care services. Therefore, satisfying and delighting the physician's/practice's existing client base may be one of the most potent advertising resources at hand. Mass media sources played a relatively minor role in influencing provider selection in this study. Nevertheless, it should not be dismissed in as much as the media may be an important way for physicians to promote "brand recognition," a problem not considered in this study. Finally, approximately 28% of the participants were "Yellow Pages users"; that is, individuals who tended to be heavy users of the Yellow Pages and used it for multiple information-seeking tasks. The findings related to the Yellow Pages suggest that while it may be useful to advertise in the Yellow Pages, a more modest financial allocation to this source may be considered.

  9. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China.

    PubMed

    Zhen, Xiaomei; Tang, Jianhui; Xie, Zhiyong; Wang, Runmei; Huang, Guopei; Zheng, Qian; Zhang, Kai; Sun, Yongge; Tian, Chongguo; Pan, Xiaohui; Li, Jun; Zhang, Gan

    2016-06-01

    The distribution characteristics and potential sources of polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) were investigated in 54 surface sediment samples from four bays (Taozi Bay, Sishili Bay, Dalian Bay, and Jiaozhou Bay) of North China's Yellow Sea. Of the 54 samples studied, 51 were collected from within the four bays and 3 were from rivers emptying into Jiaozhou Bay. Decabromodiphenylethane (DBDPE) was the predominant flame retardant found, and concentration ranged from 0.16 to 39.7 ng g(-1) dw and 1.13-49.9 ng g(-1) dw in coastal and riverine sediments, respectively; these levels were followed by those of BDE 209, and its concentrations ranged from n.d. to 10.2 ng g(-1) dw and 0.05-7.82 ng g(-1) dw in coastal and riverine sediments, respectively. The levels of DBDPE exceeded those of decabromodiphenyl ether (BDE 209) in most of the samples in the study region, whereas the ratio of DBDPE/BDE 209 varied among the four bays. This is indicative of different usage patterns of brominated flame retardants (BFRs) and also different hydrodynamic conditions among these bay areas. The spatial distribution and composition profile analysis indicated that BFRs in Jiaozhou Bay and Dalian Bay were mainly from local sources, whereas transport from Laizhou Bay by coastal currents was the major source of BFRs in Taozi Bay and Sishili Bay. Both the ∑PBDEs and ∑aBFRs (sum of pentabromotoluene (PBT), 2,3-diphenylpropyl-2,4,6-tribromophenyl ether (DPTE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB)) were at low concentrations in all the sediments. This is probably attributable to a combination of factors such as low regional usage of these products, atmospheric deposition patterns, coastal currents transportation patterns, and degradation processes for higher BDE congeners. This paper is the first study that has investigated the levels of DBDPE in the coastal sediments of China's Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seasonal fecundity and source-sink status of shrub-nesting birds in a southwestern riparian corridor

    USGS Publications Warehouse

    Brand, L.A.; Noon, B.R.

    2011-01-01

    Saltcedar (Tamarix spp.) has increasingly dominated riparian floodplains relative to native forests in the southwestern U.S., but little is known about its impacts on avian productivity or population status. We monitored 86 Arizona Bell's Vireo (Vireo bellii arizonae), 147 Abert's Towhee (Melozone aberti), and 154 Yellow-breasted Chat (Icteria virens) nests to assess reproductive parameters in cottonwood-willow (Populus-Salix), saltcedar, and mesquite (Prosopis spp.) stands along the San Pedro River, Arizona during 1999-2001. We also assessed source-sink status for each species in each vegetation type using field data combined with data from the literature. There were no significant differences in reproductive parameters between vegetation types for Abert's Towhee or Yellow-breasted Chat, although seasonal fecundity was quite low across vegetation types for the latter (0.75 ?? 0.14; mean ?? SE). Bell's Vireo had extremely low seasonal fecundity in saltcedar (0.10 ?? 0.09) and significantly fewer fledglings per nest in saltcedar (0.09 ?? 0.09) compared with cottonwood (1.07 ?? 0.32). Point estimates of ?? were substantially <1 for all three focal species in all habitats indicating the entire study area may be performing as a sink; 90% CI of included 1 only for Abert's Towhee across vegetation types and Bell's Vireo in cottonwood vegetation. These results are surprising given the San Pedro is considered to be one of the best remaining occurrences of lowland native riparian vegetation in the southwestern United States. ?? 2011 by the Wilson Ornithological Society.

  11. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years

    NASA Astrophysics Data System (ADS)

    Ouyang, R.; Liu, W.; Fu, G.; Liu, C.; Hu, L.; Wang, H.

    2014-09-01

    This paper investigates the single and combined impacts of El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on precipitation and streamflow in China over the last century. Results indicate that the precipitation and streamflow overall decrease during El Niño/PDO warm phase periods and increase during La Niña/PDO cool phase periods in the majority of China, although there are regional and seasonal differences. Precipitation and streamflow in the Yellow River basin, Yangtze River basin and Pearl River basin are more significantly influenced by El Niño and La Niña events than is precipitation and streamflow in the Songhua River basin, especially in October and November. Moreover, significant influence of ENSO on streamflow in the Yangtze River mainly occurs in summer and autumn while in the Pearl River influence primarily occurs in the winter and spring. The precipitation and streamflow are relatively greater in the warm PDO phase in the Songhua River basin and several parts of the Yellow River basin and relatively less in the Pearl River basin and most parts of Northwest China compared to those in the cool PDO phase, though there is little significance detected by Wilcoxon signed-rank test. When considering the combined influence of ENSO and PDO, the responses of precipitation/streamflow are shown to be opposite in northern China and southern China, with ENSO-related precipitation/streamflow enhanced in northern China and decreased in southern China during the warm PDO phases, and enhanced in southern China and decreased in northern China during the cool PDO phases. It is hoped that this study will be beneficial for understanding the precipitation/streamflow responses to the changing climate and will correspondingly provide valuable reference for water resources prediction and management across China.

  12. Synergistic and singular effects of river discharge and lunar illumination on dam passage of upstream migrant yellow-phase American eels

    USGS Publications Warehouse

    Welsh, Stuart A.; Aldinger, Joni L.; Braham, Melissa A.; Zimmerman, Jennifer L.

    2016-01-01

    Monitoring of dam passage can be useful for management and conservation assessments of American eel, particularly if passage counts can be examined over multiple years. During a 7-year study (2007–2013) of upstream migration of American eels within the lower Shenandoah River (Potomac River drainage), we counted and measured American eels at the Millville Dam eel pass, where annual study periods were determined by the timing of the eel pass installation during spring or summer and removal during fall. Daily American eel counts were analysed with negative binomial regression models, with and without a year (YR) effect, and with the following time-varying environmental covariates: river discharge of the Shenandoah River at Millville (RDM) and of the Potomac River at Point of Rocks, lunar illumination (LI), water temperature, and cloud cover. A total of 17 161 yellow-phase American eels used the pass during the seven annual periods, and length measurements were obtained from 9213 individuals (mean = 294 mm TL, s.e. = 0.49, range 183–594 mm). Data on passage counts of American eels supported an additive-effects model (YR + LI + RDM) where parameter estimates were positive for river discharge (β = 7.3, s.e. = 0.01) and negative for LI (β = −1.9, s.e. = 0.34). Interestingly, RDM and LI acted synergistically and singularly as correlates of upstream migration of American eels, but the highest daily counts and multiple-day passage events were associated with increased RDM. Annual installation of the eel pass during late spring or summer prevented an early spring assessment, a period with higher RDM relative to those values obtained during sampling periods. Because increases in river discharge are climatically controlled events, upstream migration events of American eels within the Potomac River drainage are likely linked to the influence of climate variability on flow regime.

  13. Coastal environmental monitoring using remotely sensed data and GIS techniques in the Modern Yellow River delta, China.

    PubMed

    Zhang, Yang

    2011-08-01

    On the basis of remote sensing and GIS techniques, the Landsat data obtained in 1987, 1996, and 2008 were used to examine coastline changes in the Modern Yellow River (MYR) delta in China. The coastal land lost and gained illustrations were derived, the rates of coastal change were estimated, and the coastal parts that experienced severe changes were identified. The results revealed that the accretion rates in the MYR delta coast has been decelerating while the accretion effect remained. Taken the artificial coast from the south of ShenXianGou (SXG) to Gudong Oil Field (GOF) as the landmark, the coast in the south of the landmark showed an accretion pattern, while the coast in the west of the landmark showed an erosion pattern. Wherein, the coast from Chao River Estuary (CRE) to Zhuang 106 (Z106) showed an erosion pattern with the transition from erosion to accretion and the accelerated rates from east to west. The coast from Z106 to the south border of GOF also showed erosion pattern but significant differences existed among the internal coastal parts. The coast from the south border of GOF to XiaoDao River Estuary (XDRE) showed a pattern from rapid accretion to dynamic balance of accretion/erosion, and the trend towards erosion. The coast from XDRE to XiaoQing River Estuary (XQRE) showed slow accretion pattern. Human activities have heavily influenced the natural evolution of the MYR delta coast.

  14. A bioenergetics modeling evaluation of top-down control of ruffe in the St. Louis River, western Lake Superior

    USGS Publications Warehouse

    Mayo, Kathleen R.; Selgeby, James H.; McDonald, Michael E.

    1998-01-01

    Ruffe (Gymnocephalus cernuus), were accidentally introduced into the St. Louis River estuary, western Lake Superior, in the mid 1980s and it was feared that they might affect native fish through predation on eggs and competition for forage and habitat. In an effort to control the abundance of ruffe and limit dispersal, a top-down control strategy using predators was implemented in 1989. We used bioenergetics modeling to examine the efficacy of top-down control in the St. Louis River from 1991 to 1994. Five predators--northern pike (Esox lucius), walleye (Stizostedion vitreum vitreum), smallmouth bass (Micropterus dolomieui), brown bullhead (Ictalurus nebulosus), and yellow perch (Perca flavescens)--were modeled to determine their consumption of ruffe and four other native prey species-spottail shiner (Notropis hudsonius), emerald shiner (Notropis atherinoides), yellow perch (Perca flavescens), and black crappie (Pomoxis nigromaculatus). Although predators ate as much as 47% of the ruffe biomass in 1 year, they were not able to halt the increase in ruffe abundance. The St. Louis River is an open system that allows predators to move freely out of the system, and the biomass of managed predators did not increase. A selectivity index showed all five predators selected the native prey and avoided ruffe. The St. Louis River has several predator and prey species creating many complex predator-prey interactions; and top-down control of ruffe by the predators examined in this study did not occur.

  15. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012)

    PubMed Central

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-01-01

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 105, 3.1 × 106 and 2.8 × 105 tons, respectively, while in 2006, the nutrient load was 7.4 × 105, 2.2 × 106 and 1.6 × 105 tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 105 tons), 70% of TN (2.2 × 106 tons) and 87% of TP (2.5 × 105 tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger. PMID:26582206

  16. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006-2012).

    PubMed

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-11-19

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 10(5), 3.1 × 10(6) and 2.8 × 10(5) tons, respectively, while in 2006, the nutrient load was 7.4 × 10(5), 2.2 × 10(6) and 1.6 × 10(5) tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 10(5) tons), 70% of TN (2.2 × 10(6) tons) and 87% of TP (2.5 × 10(5) tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger.

  17. Effect of water level changes in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites

    NASA Astrophysics Data System (ADS)

    Lv, Haibo; Zhang, Hong

    2018-04-01

    The purpose of this study was to investigate the effect of water level changes (WLC) in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites. The rate of CO2 emissions (RCE) from soil was measured in some Phragmites wetlands selected along the Yumenkou-Tongguan section in this river's middle reaches. An artificial recharge experiment was conducted and the data about this section's water levels for the past 15 years was analyzed. This study found that the water level of this river section changed frequently in the last 11 summers. The effect of WLC depended on air temperature. At low temperatures of between 18.0 and 28.0 °C, WLC contributed to a RCE change from 10.19 mmol.m-2.h-1 to 13.43 mmol.m-2.h-1. When the temperature fell within the normal range of 29.0-35.0 °C, the corresponding changes were from 4.07 mmol.m-2.h-1 to 7.35 mmol.m-2.h-1. When the temperature was higher than 35.0 °C, the corresponding changes increased slightly from 6.47 mmol.m-2.h-1 to 12.41 mmol.m-2.h-1. These suggest that WLC had a considerable effect on CO2 emissions at high and low temperatures. As the water level rose, the RCE increased and then decreased in both types of wetlands. At low temperatures, the most favorable water levels for CO2 emissions were -10 cm and 0 cm. At normal temperatures, the RCE from the two types of wetlands decreased with rising water level. At high temperatures, the most favorable water level was -60 cm for Phragmites wetlands. These results demonstrate that frequent WLC can slow CO2 release from Phragmites wetlands along the middle reaches of the Yellow River. Therefore, research on the effect of WLC on CO2 emissions has practical significance.

  18. Comparison of two satellite imaging platforms for evaluating quasi-circular vegetation patch in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Qingsheng; Liang, Li; Liu, Gaohuan; Huang, Chong

    2017-09-01

    Vegetation often exists as patch in arid and semi-arid region throughout the world. Vegetation patch can be effectively monitored by remote sensing images. However, not all satellite platforms are suitable to study quasi-circular vegetation patch. This study compares fine (GF-1) and coarse (CBERS-04) resolution platforms, specifically focusing on the quasicircular vegetation patches in the Yellow River Delta (YRD), China. Vegetation patch features (area, shape) were extracted from GF-1 and CBERS-04 imagery using unsupervised classifier (K-Means) and object-oriented approach (Example-based feature extraction with SVM classifier) in order to analyze vegetation patterns. These features were then compared using vector overlay and differencing, and the Root Mean Squared Error (RMSE) was used to determine if the mapped vegetation patches were significantly different. Regardless of K-Means or Example-based feature extraction with SVM classification, it was found that the area of quasi-circular vegetation patches from visual interpretation from QuickBird image (ground truth data) was greater than that from both of GF-1 and CBERS-04, and the number of patches detected from GF-1 data was more than that of CBERS-04 image. It was seen that without expert's experience and professional training on object-oriented approach, K-Means was better than example-based feature extraction with SVM for detecting the patch. It indicated that CBERS-04 could be used to detect the patch with area of more than 300 m2, but GF-1 data was a sufficient source for patch detection in the YRD. However, in the future, finer resolution platforms such as Worldview are needed to gain more detailed insight on patch structures and components and formation mechanism.

  19. Different haplotypes encode the same protein for independent sources of zucchini yellow mosaic virus resistance in cucumber

    USDA-ARS?s Scientific Manuscript database

    Cucumber (Cucumis sativus) production is negatively affected by zucchini yellow mosaic virus (ZYMV). Three sources of ZYMV resistance have been commercially deployed and all three resistances are conditioned by a single recessive gene. A vacuolar protein sorting-associated protein 4-like (VPS4-like)...

  20. Runoff and sediment variation in the areas with high and coarse sediment yield of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Yao, Wenyi; Xiao, Peiqing; Sun, Weiying

    2018-02-01

    Massive water and soil conservation works (WSCW) have been conducted in the areas with high and coarse sediment yield of the middle Yellow River since 1982. With the impending effects of climate change, it is necessary to reconsider the effects of WSCW on runoff and sediment variation at decadal and regional scales. Using long-term official and synthesized data, the WSCW impacts on reducing water and soil loss were studied in Sanchuanhe River watershed. Results showed that the sediment and runoff generated from this area showed a decreasing trend in the past 50 years. A great progress has been achieved in erosion control since the 1970s. After the 4 soil and water conservation harnessing stages during the period from 1970 to 2006, the sediment and runoff yield showed decreases with the extension of harnessing. The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. The contribution of rainfall variation to runoff reduction was as large as human activities. A great benefit have been obtained in water and soil loss control in this area.

  1. Effects of water temperature on breeding phenology, growth, and metamorphosis of foothill yellow-legged frogs (Rana boylii): a case study of the regulated mainstem and unregulated tributaries of California's Trinity River

    Treesearch

    Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh

    2014-01-01

    Many riverine organisms are well adapted to seasonally dynamic environments, but extreme changes in flow and thermal regimes can threaten sustainability of their populations in regulated rivers. Altered thermal regimes may limit recruitment to populations by shifting the timing of breeding activities and affecting the growth and development of early life stages. Stream...

  2. Soil phosphorus forms and profile distributions in the tidal river network region in the Yellow River Delta estuary.

    PubMed

    Yu, Junbao; Qu, Fanzhu; Wu, Huifeng; Meng, Ling; Du, Siyao; Xie, Baohua

    2014-01-01

    Modified Hedley fraction method was used to study the forms and profile distribution in the tidal river network region subjected to rapid deposition and hydrologic disturbance in the Yellow River Delta (YRD) estuary, eastern China. The results showed that the total P (Pt) ranged from 612.1 to 657.8 mg kg(-1). Dilute HCl extractable inorganic P (Pi) was the predominant form in all profiles, both as absolute values and as a percentage of total extracted Pi. The NaOH extractable organic P (Po) was the predominant form of total extracted Po, while Bicarb-Pi and C.HCl-Po were the lowest fractions of total extracted Pi and Po in all the P forms. The Resin-P concentrations were high in the top soil layer and decreased with depth. The Pearson correlation matrix indicated that Resin-P, Bicarb-Pi, NaOH-Pi, and C.HCl-Pi were strongly positively correlated with salinity, TOC, Ca, Al, and Fe but negatively correlated with pH. The significant correlation of any studied form of organic P (Bicarb-Po, NaOH-Po, and C.HCl-Po) with geochemical properties were not observed in the study. Duncan multiple-range test indicated that the P forms and distribution heterogeneity in the profiles could be attributed to the influences of vegetation cover and hydrologic disturbance.

  3. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces.

    PubMed

    Wen, Xin; Hempel, Judith; Schweiggert, Ralf M; Ni, Yuanying; Carle, Reinhold

    2017-08-02

    Carotenoid profiles of fruits and calyces of red (Physalis alkekengi L.) and yellow (P. pubescens L.) Physalis were characterized by HPLC-DAD-APCI-MS n . Altogether 69 carotenoids were detected in red Physalis, thereof, 45 were identified. In yellow Physalis, 40 carotenoids were detected and 33 were identified. Zeaxanthin esters with various fatty acids were found to be the most abundant carotenoids in red Physalis, accounting for 51-63% of total carotenoids, followed by β-cryptoxanthin esters (16-24%). In yellow Physalis, mainly free carotenoids such as lutein and β-carotene were found. Total carotenoid contents ranged between 19.8 and 21.6 mg/100 g fresh red Physalis fruits and 1.28-1.38 mg/100 g fresh yellow Physalis fruits, demonstrating that Physalis fruits are rich sources of dietary carotenoids. Yellow Physalis calyces contained only 153-306 μg carotenoids/g dry weight, while those of red Physalis contained substantially higher amounts (14.6-17.6 mg/g dry weight), thus possibly exhibiting great potential as a natural source for commercial zeaxanthin extraction.

  4. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation.

    PubMed

    Wu, Weihua

    2016-01-15

    The geographic region around the northern and northeastern Tibetan Plateau is the source of several inland rivers (e.g. Tarim River) of worldwide importance that are generated in the surrounding mountains systems of Tianshan, Pamir, Karakorum, and Qilian. To characterize chemical weathering and atmospheric CO2 consumption in these regions, water samples from the Tarim, Yili, Heihe, Shule, and Shiyang Rivers were collected and analyzed for major ion concentrations. The hydrochemical characteristics of these inland rivers pronouncedly distinguish them from large exorheic rivers (e.g., the Yangtze River and the Yellow River), as reflected in very high total dissolution solids (TDS) values. TDS was 115-4345 mg l(-1) with an average of 732 mg l(-1), which is an order of magnitude higher than the mean value for world rivers (65 mg l(-1)). The Cheerchen River, Niya River, Keliya River and the terminal lakes of the Tarim River and the Heihe River have TDS values higher than 1 gl(-1), indicating saline water that cannot be directly consumed. Therefore, the problem of sufficient and safe drinking water has become increasingly prominent in the northwestern China arid zone. According to an inversion model, the contribution from evaporite dissolution to the dissolved loads in these rivers is 12.5%-99% with an average of 54%. The calculated silicate and carbonate weathering rates are 0.02-4.62 t km(-2)y(-1) and 0.01-11.7 t km(-2)y(-1) for these rivers. To reduce the influence of lithology, only the silicate weathering rates in different parts of the Tibetan Plateau are compared. A rough variation tendency can be seen in the rates: northern regional (0.15-1.73 t km(-2)y(-1))

  5. Predation on ruffe by native fishes of the St. Louis River Estuary, Lake Superior, 1989-1991

    USGS Publications Warehouse

    Ogle, Derek H.; Selgeby, James H.; Savino, Jacqueline F.; Newman, Raymond M.; Henry, Mary G.

    1996-01-01

    The ruffe Gymnocephalus cernuus, an exotic Eurasian percid, recently became established in the St. Louis River estuary, Lake Superior, after accidental introduction. Management actions (catch regulations and stockings) were enacted in 1989 to increase the density of top-level predators in the estuary, and thus to increase predation on ruffe. We conducted a field and laboratory study to determine if, and to what extent, native piscivores consume ruffe. Stomachs of 3,669 predators were examined in 1989–1991. Ruffe occurred in 6.7% of burbot Lota lota, 5.8% of bullheads Ictalurus spp., 4.7% of smallmouth bass Micropterus dolomieu, 2.6% of northern pike Esox lucius, 2.6% of black crappiesPomoxis nigromaculatus, and 1.3% of yellow perch Perca flavescens (4.5% after 1989) captured during the 3-year study. No ruffe were found in 967 stomachs of walleyesStizostedion vitreum examined. Ruffe were 22.7%, of the diet (by weight) of bullheads (during the only year bullheads were captured) and 0.1–17.9% of the diet of northern pike. Ruffe were 0.9–24.5% of the diet of smallmouth bass that contained fish, 1.5–6.9% of yellow perch that contained fish, and 0.0–10.9% of black crappies that contained fish. Most ruffe eaten were age-0 or small age- 1 fish. In the laboratory, walleyes that were first fed soft-rayed prey or that were also offered soft-rayed prey consumed very few ruffe, whereas walleyes that were first fed spiny-rayed yellow perch or were also offered yellow perch consumed about equal numbers of ruffe and yellow perch. Northern pike and burbot consumed about equal numbers of ruffe and yellow perch in the laboratory. It is unlikely that predation will effectively control the initial expansion of ruffe in other areas of the Great Lakes because native predators initially consume few ruffe, especially if more preferred soft-rayed prey are available.

  6. 129I and its species in the East China Sea: level, distribution, sources and tracing water masses exchange and movement

    PubMed Central

    Liu, Dan; Hou, Xiaolin; Du, Jinzhou; Zhang, Luyuan; Zhou, Weijian

    2016-01-01

    Anthropogenic 129I as a long-lived radioisotope of iodine has been considered as an ideal oceanographic tracer due to its high residence time and conservative property in the ocean. Surface water samples collected from the East China Sea (ECS) in August 2013 were analyzed for 129I, 127I and their inorganic chemical species in the first time. The measured 129I/127I ratio is 1–3 orders of magnitude higher than the pre-nuclear level, indicating its dominantly anthropogenic sources. Relatively high 129I levels were observed in the Yangtze River and its estuary, as well as in the southern Yellow Sea, and 129I level in seawater declines towards the ECS shelf. In the open sea, 129I and 127I in surface water exists mainly as iodate, while in Yangtze River estuary and some locations, iodide is dominated. The results indicate that the Fukushima nuclear accident has no detectable effects in the ECS until August 2013. The obtained results are used for investigation of interaction of various water masses and water circulation in the ECS, as well as the marine environment in this region. Meanwhile this work provides essential data for evaluation of the possible influence of the increasing NPPs along the coast of the ECS in the future. PMID:27849026

  7. Use of oleaginous plants in phytotreatment of grey water and yellow water from source separation of sewage.

    PubMed

    Lavagnolo, Maria Cristina; Malagoli, Mario; Alibardi, Luca; Garbo, Francesco; Pivato, Alberto; Cossu, Raffaello

    2017-05-01

    Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated. Copyright © 2016. Published by Elsevier B.V.

  8. Sediment and Particular Organic Carbon (POC) fluxes changes over the past decades in the Yellow River system

    NASA Astrophysics Data System (ADS)

    Lu, Xixi; Ran, Lishan

    2015-04-01

    The Yellow River system used to have very high sediment export to ocean (around 1.5 Gt/yr in the 1950s) because of severe soil erosion on the Loess Plateau. However, its sediment export has declined to <0.25 Gt/yr in recent years (in the 2000s), mainly due to human activities like construction of reservoirs and check dams and other soil and water conservations such as construction of terraces and vegetation restoration. Such drastic reduction in soil erosion and sediment flux and subsequently in associated Particular Organic Carbon (POC) transport can potentially play a significant role in carbon cycling. Through the sediment flux budget we examined POC budget and carbon sequestration through vegetation restoration and various soil and water conservations including reservoirs construction over the past decades in the Yellow River system. Landsat imageries were used to delineate the reservoirs and check dams for estimating the sediment trapping. The reservoirs and check dams trapped a total amount of sediment 0.94 Gt/yr, equivalent to 6.5 Mt C. Soil erosion controls through vegetation restoration and terrace construction reduced soil erosion 1.82 Gt/yr, equivalent to 12 Mt C. The annual NPP increased from 0.150 Gt C in 2000 to 0.1889 Gt C in 2010 with an average increment rate of 3.4 Mt C per year over the recent decade (from 2000 to 2010) through vegetation restoration. The total carbon stabilized on slope systems through soil erosion controls (12 Mt C per year) was much higher than the direct carbon sequestration via vegetation restoration (3.4 Mt C per year), indicating the importance of horizontal carbon mobilization in carbon cycling, albeit a high estimate uncertainty.

  9. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  10. Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect.

    PubMed

    Wang, Fan; Guo, Xiangmeng; Chen, Wanguang; Sun, Yaowen; Fan, Chaojie

    2017-12-01

    Triclosan (TCS), a member of the class of compounds called pharmaceutical and personal care products (PPCPs), is a broad antibacterial and antifungal agent found in a lot of consumer products. However, TCS hormone effect mechanism in teleost female fish is not clear. Female Yellow River carp (Cyprinus carpio) were exposed to 1/20, 1/10 and 1/5 LC 50 TCS (96h LC 50 of TCS to carp) under semi-static conditions for 42days. Vitellogenin (Vtg), 17β-estradiol (E 2 ), testosterone(T), estrogen receptor (Er), gonadotropin (GtH), and gonadotropin-releasing hormone (GnRH) levels were measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, we also examined the mRNA expressions of aromatase, GtHs-β, GnRH, and Er by quantitative real-time PCR (qRT-PCR). The results indicated that 1/5 LC 50 TCS induced Vtg in hepatopancreas of female carps by interference with the hypothalamic-pituitary-gonadal (HPG) axis at multiple potential loci through three mechanisms: (a) TCS exposure enhanced the mRNA expression of hypothalamus and gonadal aromatase which converts androgens into estrogens, subsequently increasing serum concentrations of E 2 to induce Vtg in hepatopancreas; (b) TCS treatment increased GnRH and GtH-β mRNA expression and secretion, causing the disturbance of reproductive endocrine and the increase of E 2 to induce Vtg in hepatopancreas; (c) TCS exposure enhanced synthesis and secretion of Er, then it bound to Er to active Vtg synthesis. These mechanisms showed that TCS may induce Vtg production in female Yellow River carp by Er-mediated and non-Er-mediated pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Comparative Transcriptome Analysis Reveals the Genetic Basis of Skin Color Variation in Common Carp

    PubMed Central

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.; Sun, Xiaowen; Xu, Peng

    2014-01-01

    Background The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. Methodology/Principal Findings In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. Conclusions In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values. PMID:25255374

  12. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp.

    PubMed

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Sun, Xiaowen; Xu, Peng

    2014-01-01

    The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.

  13. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China.

    PubMed

    Luo, Dongliang; Jin, Huijun; Wu, Qingbai; Bense, Victor F; He, Ruixia; Ma, Qiang; Gao, Shuhui; Jin, Xiaoying; Lü, Lanzhi

    2018-03-15

    Ecology, hydrology, and natural resources in the source areas of the Yangtze and Yellow rivers (SAYYR) are closely linked to interactions between climate and permafrost. However, a comprehensive study of the interactions is currently hampered by sparsely- and unevenly-distributed monitoring sites and limited field investigations. In this study, the thermal regime of warm-dry permafrost in the SAYYR was systematically analyzed based on extensive data collected during 2010-2016 of air temperature (T a ), ground surface temperature (GST) and ground temperature across a range of areas with contrasting land-surface characteristics. Mean annual T a (MAAT) and mean annual GST (MAGST) were regionally averaged at -3.19±0.71°C and -0.40±1.26°C. There is a close relationship between GST and T a (R 2 =0.8477) as obtained by a linear regression analysis with all available daily averages. The mean annual temperature at the bottom of the active layer (T TOP ) was regionally averaged at -0.72±1.01°C and mostly in the range of -1.0°C and 0°C except at Chalaping (~-2.0°C). Surface offset (MAGST-MAAT) was regionally averaged at 2.54±0.71°C. Thermal offset (T TOP -MAGST) was regionally averaged at -0.17±0.84°C, which was generally within -0.5°C and 0.5°C. Relatively consistent thermal conductivity between the thawed and frozen states of the soils may be responsible for the small thermal offset. Active layer thickness was generally smaller at Chalaping than that on other parts of the QTP, presumably due to smaller climatic continentality index and the thermal dampening of surface temperature variability under the presence of dense vegetation and thick peaty substrates. We conclude that the accurate mapping of permafrost on the rugged elevational QTP could be potentially obtained by correlating the parameters of GST, thermal offset, and temperature gradient in the shallow permafrost. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Predation on larval suckers in the Williamson River Delta revealed by molecular genetic assays—A pilot study

    USGS Publications Warehouse

    Hereford, Danielle M.; Ostberg, Carl O.; Burdick, Summer M.

    2016-06-13

    Predation of endangered Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) during larval egress to Upper Klamath Lake from the Williamson River is poorly understood but may be an important factor limiting recruitment into adult spawning populations. Native and non-native piscivores are abundant in nursery wetland habitat, but larval predation has not been directly studied for all species. Larvae lack hard body structures and digest rapidly in predator digestive systems. Therefore, traditional visual methods for diet analysis may fail to identify the extent of predation on larvae. The goals of this study were to (1) use quantitative polymerase chain reaction (qPCR) and single nucleotide polymorphism (SNP) assays developed for Lost River and shortnose suckers to assay predator stomach contents for sucker DNA, and (2) to assess our ability to use this technique to study predation. Predators were captured opportunistically during larval sucker egress. Concurrent feeding trials indicate that most predators—yellow perch (Perca flaverscens), fathead minnow (Pimephales promelas), blue chub (Gila coerulea), Klamath tui chub (Siphatales bicolor bicolor), Klamath Lake sculpin (Cottus princeps), slender sculpin (Cottus tenuis)—preyed on sucker larvae in the laboratory. However, sucker DNA was not detected in fathead minnow stomachs. Of the stomachs screened from fish captured in the Williamson River Delta, 15.6 percent of yellow perch contained sucker DNA. This study has demonstrated that the application of qPCR and SNP assays is effective for studying predation on larval suckers. We suggest that techniques associated with dissection or detection of sucker DNA from fathead minnow stomachs need improvement.

  15. An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models

    DOE PAGES

    Yuan, Xing

    2016-06-22

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with the observed streamflow, both the hindcasts from NMME/VIC and ESP/VIC are post-processed through a linear regression model fitted by using VIC offline-simulated streamflow. The post-processed NMME/VIC reduces the root mean squared error (RMSE) from the post-processed ESP/VIC by 5–15 %. And the reduction occurs mostly during the transition from wet to dry seasons. As a result, with the consideration of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short leads, suggesting the necessity of improving the large-scale hydrological models in human-intervened river basins.« less

  16. An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xing

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with the observed streamflow, both the hindcasts from NMME/VIC and ESP/VIC are post-processed through a linear regression model fitted by using VIC offline-simulated streamflow. The post-processed NMME/VIC reduces the root mean squared error (RMSE) from the post-processed ESP/VIC by 5–15 %. And the reduction occurs mostly during the transition from wet to dry seasons. As a result, with the consideration of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short leads, suggesting the necessity of improving the large-scale hydrological models in human-intervened river basins.« less

  17. A landscape-scale model of yellow-billed loon (Gavia adamsii) habitat preferences in northern alaska

    USGS Publications Warehouse

    Earnst, Susan L.; Platte, Robert; Bond, Laura

    2006-01-01

    We modeled yellow-billed loon (Gavia adamsii) habitat preferences in a 23,500 km2 area of northern Alaska using intensive aerial surveys and landscape-scale habitat descriptors. Of the 757 lakes censused, yellow-billed loons occupied 15% and Pacific loons (G. pacifica) 42%. Lake area, depth, proportion of shoreline in aquatic vegetation, shoreline complexity, hydrological connectivity (stream present within 100 m or absent), and an area–connectivity interaction were positive, significant predictors of yellow-billed loon presence in a multivariate logistic regression model, but distance to nearest river or Beaufort Sea coast were not. Predicted yellow-billed loon presence was 13 and 4.7 times more likely on deep and medium lakes, respectively, than on shallow lakes that freeze to the bottom. On small lakes (<60 ha), predicted yellow-billed loon presence was 4.8–1.7 times more likely on lakes with hydrological connectivity than without, but connectivity was not important at most lake sizes (65–750 ha). Yellow-billed loon broods depend on fish available in the brood-rearing lake, and we suggest that a dependable supply of fish is more likely in larger lakes, those deep enough to have open water under winter ice, and those near streams. Highly convoluted shorelines and those with aquatic vegetation provide loon nesting and brood-rearing sites, as well as fish habitat. Pacific loon absence was a significant, positive predictor when added to the habitat model, indicating that yellow-billed loons were four times more likely on lakes without Pacific loons.

  18. Minimizing yellow-bellied sapsucker damage

    Treesearch

    Gayne G. Erdmann; Ralph M., Jr. Peterson

    1992-01-01

    The yellow-bellied sapsucker is a migratory woodpecker that feeds on a wide variety of orchard, shade, and forest trees. Instead of drilling holes to find insects like other woodpeckers, sapsuckers drill holes in living trees to feed on sap and phloem tissues. Yellow and paper birches are their favorite summer food sources on their nesting grounds in Upper Michigan and...

  19. Final Environmental Impact Statement. Upper and Lower Red Lakes. Operation and Maintenance Activities, Red Lake River Basin, Minnesota.

    DTIC Science & Technology

    1975-03-01

    Smith, Jr. 1971. Annual Catch of Yellow Perch from Red Lakes, Minnesota, in Relation to Growth Rate and Fishing Effort. University of Minnesota...forest... The stream borders become marshy... growths of wild rice.., muskrats and ducks, muddy game trails between r water and woods... Hardwood forest...the Reservation itself, the Red Lake River drained what was then-so far as I could see from the canoe--real wilderness...There were heavy growths of

  20. Upper Minnesota River Subbasins Study (Public Law 87-639) (Draft) Reconnaissance Stage Report (Plan of Study).

    DTIC Science & Technology

    1978-09-01

    approximately 30 miles west of the Minnesota border, and flows southeast to Big Stone Lake. From Big Stone Lake the Minnesota River flows southeast to...storage is available in lakes and wetlands in the study area. Average annual runoff varies from 3 inches in the southeast to 1 inch in the northwest...UNCLASSIFIED NL E NI//////IE mIhNI-EIIIIIIE E-EIIIIIIIIIIu EIIIIIIIIIIIIu IIIIIIIIIIIIII II IEEIIEIh U. S. DEPARTMENT OF AGRICULTURE ga Il 0 YELLOW

  1. PileSort Module Usage

    DTIC Science & Technology

    2010-05-25

    orange red violet yellow apricot bittersweet blue green blue violet brick red burnt sienna carnation pink cornflower peach...34 value=ŕ.0" /> <link source="maroon" target=" carnation pink" value=ŕ.0" /> <link source="bittersweet" target=" orange yellow" value=ŕ.0...violet" target="red orange " value=ŕ.0" /> <link source=" carnation pink" target="melon" value=ŕ.0" /> <link

  2. Predicting yellow toadflax infestations in the Flat Tops Wilderness of Colorado

    USGS Publications Warehouse

    Sutton, J.R.; Stohlgren, T.J.; Beck, K.G.

    2007-01-01

    Understanding species-environment relationships is important to predict the spread of non-native species. Yellow toadflax (Linaria vulgaris Mill.) is an invasive perennial recently found in the Flat Tops Wilderness of the White River National Forest on the western slope of the Colorado Rocky Mountains. We hypothesized yellow toadflax occurrence could be predicted from easily measured site characteristics. We used logistic regression with stepwise selection to generate a model to predict yellow toadflax occurrence on a particular plot based on that site's physical characteristics. The experimental design was a paired-plot study in two locations using circular 1,018-m2 plots. Sixty-eight plots that did not contain yellow toadflax and 65 plots that contained yellow toadflax were sampled at the Ripple Creek site in 1999. In 2000, 54 non-toadflax plots and 55 toadflax-containing plots were sampled in the Marvine Creek site. Site characteristics sampled included: vegetation type; under-canopy light level; slope; aspect; soil properties; presence of disturbance, trails, and/or water; and total species richness. A model that correctly classified >90% of the 242 plots sampled included two vegetation type parameters, the presence of trails, and total species richness. Yellow toadflax is most often found in areas that were open-canopy sites, along trails, and with higher species diversity plots (>23 species). This approach can be used for other species in other areas to rapidly identify areas vulnerable to invasion. ?? 2007 Springer Science+Business Media, Inc.

  3. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    PubMed

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury. © 2014 Wiley Periodicals, Inc.

  4. [Estimating spatiotemporal dynamics of methane emissions from livestock in China].

    PubMed

    Lin, Yu; Zhang, Wen; Huang, Yao

    2011-08-01

    Combining Tier 2 method presented in the guidelines of the Intergovernmental Panel on Climate Change (IPCC, 2006) with GIS techniques, a primary estimation of methane emission from livestock in 2004 (including emission from enteric fermentation and manure management system) was made with county-level livestock statistics and 1 km x 1 km raster data. The results indicated that the methane emission from livestock was 12.79 x 10(6) tons totally in China, and 11.64 x 10(6) tons from enteric fermentation and 1.16 x 10(6) tons from manure management. The uncertainties of the methane emission from enteric fermentation and manure management were +/- 35.10% and +/- 14. 58% respectively. The high methane emission was at Yellow River basin, especially in the lower reaches of the Yellow River and the North China Plain. The Southwestern China also can be found with high emission. In accordance with the seasonal temperature changes, the temporal variation of manure management emission was estimated the highest in summer and the lowest in winter.

  5. Transformation of Raindrop characteristics (Nov 24, 2015) of natural rainfall of Yellow River basin

    NASA Astrophysics Data System (ADS)

    Shen, Zhenzhou; Liu, Ke; Wu, Zhiqiang; Liu, Jun; Qi, Kuan; Niu, Xinnian; Wang, Guiying; Yao, Wenyi

    2018-02-01

    Raindrop characteristics, including speed and size of raindrops, in Zhengzhou city of Yellow River basin were analyzed through a natural rainfall on the loess slope. Results showed that the process of natural rainfall belonged to a parabola and counts, size and terminal velocity would increase with the rainfall intensity rising. Besides, the size and terminal velocity of natural raindrops were relatively scattered; In the process of individual rainfall, the terminal velocity and its peak value were mainly focused between 1∼3.4m/s and 1.4m/s, respectively. Size of raindrops were mainly consisted of 0.125-0.75mm, among which the terminal velocity of raindrops with a size of 0.125mm, 0.25mm, 0.375mm, 0.5mm and 0.75mm were primarily 1-3.4m/s, 1-4.2m/s, 0.8-3.4m/s, 0.8-3.4m/s, 1-2.6m/s, respectively.

  6. Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries

    PubMed Central

    Tan, Liangcheng; An, Zhisheng; Huh, Chih-An; Cai, Yanjun; Shen, Chuan-Chou; Shiau, Liang-Jian; Yan, Libin; Cheng, Hai; Edwards, R. Lawrence

    2014-01-01

    Precipitation variation on the Loess Plateau (LP) of China is not only important for rain-fed agriculture in this environmentally sensitive region, but also critical for the water and life securities over the whole Yellow River basin. Here we reconstruct high resolution precipitation variation on the western LP during the past 370 years by using two replicated, annually-laminated stalagmites. Spatial analysis suggests that the reconstruction can be also representative for the whole LP region. The precipitation variations show a significant quasi-50 year periodicity during the last 370 years, and have an important role in determining the runoff of the middle Yellow River. The main factor controlling the decadal scale variations and long-term trend in precipitation over this region is southerly water vapour transport associated with the Asian summer monsoon. The Pacific Decadal Oscillation is also an important influence on precipitation variation in this region, as it can affect the East Asian summer monsoon and the West Pacific Subtropical High. PMID:25223372

  7. A new distinctively banded-species of Panaqolus (Siluriformes: Loricariidae) from the western Amazon Basin in Peru.

    PubMed

    Lujan, Nathan K; Steele, Sarah; Velasquez, Miquel

    2013-01-01

    Panaqolus albivermis is described as a new species based on four specimens from the San Alejandro River, a tributary of the upper Ucayali River in central Peru. Panaqolus albivermis is diagnosed from all other Panaqolus except P. maccus by having head, body, and fins with widely separated small white to yellow spots, vermiculations, and/or thin oblique bands on a black base (vs. exclusively small white to yellow spots on a black base in P. alboinaculatus, generally broad oblique bands of alternating light to dark brown in P. changae, P. gnomus, P purusiensis, and a uniformly dark gray to black body color in P. dentex, P. koko, and P. nocturnus); P. albivernis can be diagnosed from P. maccus by having a black base color (vs. brown), by having parallel dentary tooth cups (vs. acute intermandibular tooth cup angle), and by having a larger known adult body size (95.8 mm SL vs. 84.8).

  8. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation.

    PubMed

    Shi, Kan; Song, Da; Chen, Gong; Pistolozzi, Marco; Wu, Zhenqiang; Quan, Lei

    2015-08-01

    Submerged fermentations of Monascus anka were performed with different nitrogen sources at different pH in 3 L bioreactors. The results revealed that the Monascus pigments dominated by different color components (yellow pigments, orange pigments or red pigments) could be selectively produced through pH control and nitrogen source selection. A large amount of intracellular pigments dominated by orange pigments and a small amount of water-soluble extracellular yellow pigments were produced at low pH (pH 2.5 and 4.0), independently of the nitrogen source employed. At higher pH (pH 6.5), the role of the nitrogen source became more significant. In particular, when ammonium sulfate was used as nitrogen source, the intracellular pigments were dominated by red pigments with a small amount of yellow pigments. Conversely, when peptone was used, intracellular pigments were dominated by yellow pigments with a few red pigments derivatives. Neither the presence of peptone nor ammonium sulfate promoted the production of intracellular orange pigments while extracellular pigments with an orangish red color were observed in both cases, with a higher yield when peptone was used. Two-stage pH control fermentation was then performed to improve desirable pigments yield and further investigate the effect of pH and nitrogen sources on pigments composition. These results provide a useful strategy to produce Monascus pigments with different composition and different color characteristics. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Ecology and management of yellow toadflax [Linaria vulgaris (L.) Mill.

    Treesearch

    Jim Jacobs; Sharlene Sing

    2006-01-01

    Yellow toadflax is a short-lived perennial herb native to the steppes of southeastern Europe and southwestern Asia (Eurasia). This species spreads by both seeds and vegetative buds on its roots and creeping rhizomes (see Figure 1). Yellow toadflax was intentionally introduced in North America but has escaped cultivation as an ornamental, a source of fabric dye, and as...

  10. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data

    NASA Astrophysics Data System (ADS)

    Xiang, Longwei; Wang, Hansheng; Steffen, Holger; Wu, Patrick; Jia, Lulu; Jiang, Liming; Shen, Qiang

    2016-09-01

    Understanding groundwater storage (GWS) changes is vital to the utilization and control of water resources in the Tibetan Plateau. However, well level observations are rare in this big area, and reliable hydrology models including GWS are not available. We use hydro-geodesy to quantitate GWS changes in the Tibetan Plateau and surroundings from 2003 to 2009 using a combined analysis of satellite gravity and satellite altimetry data, hydrology models as well as a model of glacial isostatic adjustment (GIA). Release-5 GRACE gravity data are jointly used in a mascon fitting method to estimate the terrestrial water storage (TWS) changes during the period, from which the hydrology contributions and the GIA effects are effectively deducted to give the estimates of GWS changes for 12 selected regions of interest. The hydrology contributions are carefully calculated from glaciers and lakes by ICESat-1 satellite altimetry data, permafrost degradation by an Active-Layer Depth (ALD) model, soil moisture and snow water equivalent by multiple hydrology models, and the GIA effects are calculated with the new ICE-6G_C (VM5a) model. Taking into account the measurement errors and the variability of the models, the uncertainties are rigorously estimated for the TWS changes, the hydrology contributions (including GWS changes) and the GIA effect. For the first time, we show explicitly separated GWS changes in the Tibetan Plateau and adjacent areas except for those to the south of the Himalayas. We find increasing trend rates for eight basins: + 2.46 ± 2.24 Gt/yr for the Jinsha River basin, + 1.77 ± 2.09 Gt/yr for the Nujiang-Lancangjiang Rivers Source Region, + 1.86 ± 1.69 Gt/yr for the Yangtze River Source Region, + 1.14 ± 1.39 Gt/yr for the Yellow River Source Region, + 1.52 ± 0.95 Gt/yr for the Qaidam basin, + 1.66 ± 1.52 Gt/yr for the central Qiangtang Nature Reserve, + 5.37 ± 2.17 Gt/yr for the Upper Indus basin and + 2.77 ± 0.99 Gt/yr for the Aksu River basin. All these increasing trends are most likely caused by increased runoff recharges from melt water and/or precipitation in the surroundings. We also find that the administrative actions such as the Chinese Ecological Protection and Construction Project help to store more groundwater in the Three Rivers Source Region, and suggest that seepages from the Endorheic basin to the west of it are a possible source for GWS increase in this region. In addition, our estimates for GWS changes basically confirm previous results along Afghanistan, Pakistan, north India and Bangladesh, and clearly reflect the excessive use of groundwater. Our results will benefit the water resource management in the study area, and are of particular significance for the ecological restoration in the Tibetan Plateau.

  11. Installation Restoration Program Records Search for McEntire Air National Guard Base Eastover, South Carolina

    DTIC Science & Technology

    1984-01-01

    from the north, thereby occasionally encouraging unseasonably warm temperatures. Unseasonably cold temperatures most often occur when the Bermuda...marl. Hawthorn 160 - Sandy phophatic marl and soft limestone with interbedded brittle -shale. 25 OLIGOCENE (Ta) Flint River 50 - Reddish-yellow sand

  12. NEUROSENSORY EFFECTS OF CHRONIC HUMAN EXPOSURE TO ARSENIC ASSOCIATED WITH BODY BURDEN AND ENVIRONMENTAL MEASURES

    EPA Science Inventory

    Exposure to arsenic in drinking water is known to produce a variety of health problems including peripheral neuropathy. Auditory, visual and somatosensory impairments have been reported in Mongolian farmers living in the Yellow River Valley where drinking water is contami...

  13. Connections between meteorological and hydrological droughts in a semi-arid basin of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Li, Binquan; Zhu, Changchang; Liang, Zhongmin; Wang, Guoqing; Zhang, Yu

    2018-06-01

    Differences between meteorological and hydrological droughts could reflect the regional water consumption by both natural elements and human water-use. The connections between these two drought types were analyzed using the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI), respectively. In a typical semi-arid basin of the middle Yellow River (Qingjianhe River basin), annual precipitation and air temperature showed significantly downward and upward trends, respectively, with the rates of -2.37 mm yr-1 and 0.03 °C yr-1 (1961-2007). Under their synthetic effects, water balance variable (represented by SPEI) showed obviously downward (drying) trend at both upstream and whole basin areas. For the spatial variability of precipitation, air temperature and the calculated SPEI, both upstream and downstream areas experienced very similar change characteristics. Results also suggested that the Qingjianhe River basin experienced near normal condition during the study period. As a whole, this semi-arid basin mainly had the meteorological drought episodes in the mid-1960s, late-1990s and the 2000s depicted by 12-month SPEI. The drying trend could also be depicted by the hydrological drought index (12-month SSI) at both upstream and downstream stations (Zichang and Yanchuan), but the decreasing trends were not significant. A correlation analysis showed that hydrological system responds rapidly to the change of meteorological conditions in this semi-arid region. This finding could be an useful implication to drought research for those semi-arid basins with intensive human activities.

  14. Rapid analysis of inner and outer bark composition of southern yellow pine bark from industrial sources

    Treesearch

    Chi-Leung So; Thomas L. Eberhardt

    2006-01-01

    Differences in bark chemistry between inner and outer bark are well known and may affect the suitability of various bark supplies for a particular application. Accordingly, there is a need for quality control protocols to assess variability and predict product yields. Southern yellow pine bark samples from two industrial sources were separated into inner and outer bark...

  15. Fishes and habitat characteristics of the Keya Paha River, South Dakota-Nebraska

    USGS Publications Warehouse

    Harland, B.; Berry, C.R.

    2004-01-01

    Fishes were collected in four mainstem reaches and eight tributary reaches in the Keya Paha River basin during May and June 2002. Most reaches were characteristically run habitats with sand substrates and riparian pastures. Data were combined with historical records to construct a basin-wide ichthyofaunal list which comprised 38 species from seven families. Dominant species were sand shiners (Notropis ludibundus; 47%), red shiners (Cyprinella lutrensis; 37%), and brassy minnows (Hybognathus hankinsoni; 8%). Dominant game species were bluegill (Lepomis machrochirus) and channel catfish (Ictalurus punctatus). We found one species previously listed as rare in South Dakota - plains topminnow (Fundulus sciadicus), and four species not previously found in the Keya Paha River - silver chub (Macrhybopsis storeriana), river carpsucker (Carpiodes carpio), northern pike (Esox Indus), yellow perch (Perca flavescens).

  16. Reflectance spectroscopy for the assessment of soil salt content in soils of the yellow river delta of China

    USGS Publications Warehouse

    Weng, Yongling; Gong, P.; Zhu, Z.

    2008-01-01

    There has been growing interest in the use of reflectance spectroscopy as a rapid and inexpensive tool for soil characterization. In this study, we collected 95 soil samples from the Yellow River Delta of China to investigate the level of soil salinity in relation to soil spectra. Sample plots were selected based on a field investigation and the corresponding soil salinity classification map to maximize variations of saline characteristics in the soil. Spectral reflectances of air-dried soil samples were measured using an Analytical Spectral Device (ASD) spectrometer (350-2500 nm) with an artificial light source. In the Yellow River Delta, the dominant chemical in the saline soil was NaCl and MgCl2. Soil spectra were analysed using two-thirds of the available samples, with the remaining one-third withheld for validation purposes. The analysis indicated that with some preprocessing, the reflectance at 1931-2123 nm and 2153-2254 nm was highly correlated with soil salt content (SSC). In the spectral region of 1931-2123 nm, the correlation R ranged from -0.80 to -0.87. In the region of 2153-2254 nm, the SSC was positively correlated with preprocessed reflectance (0.79-0.88). The preprocessing was done by fitting a convex hull to the reflectance curve and dividing the spectral reflectance by the value of the corresponding convex hull band by band. This process is called continuum removal, and the resulting ratio is called continuum removed reflectance (CR reflectance). However, the SSC did not have a high correlation with the unprocessed reflectance, and the correlation was always negative in the entire spectrum (350-2500 nm) with the strongest negative correlation at 1981 nm (R = -0.63). Moreover, we found a strong correlation (R=0.91) between a soil salinity index (SSI: Constructed using CR reflectance at 2052 nm and 2203 nm) and SSC. We estimated SSC as a function of SSI and SSI' (SSI': Constructed using unprocessed reflectance at 2052 nm and 2203 nm) using univariate regression. Validation of the estimation of SSC was conducted by comparing the estimated SSC with the holdout sample points. The comparison produced an estimated root mean squared error (RMSE) of 0.986 (SSC ranging from 0.06 to 12.30 g kg-1) and R2 of 0.873 for SSC with SSI as independent variable and RMSE of 1.248 and R2 of 0.8 for SSC with SSI' as independent variable. This study showed that a soil salinity index developed for CR reflectance at 2052 nm and 2203 nm on the basis of spectral absorption features of saline soil can be used as a quick and inexpensive method for soil salt-content estimation.

  17. Birch nursery practice

    Treesearch

    Sidney H. Hanks

    1969-01-01

    Of the forty or so species of trees that comprise this genera, seven are native to North America. Three are of silvicultural importance in North America: yellow birch, paper birch, and sweet birch (USDA Forest Service 1965). When ornamental, landscaping, and reclamation uses are considered, three additional species—gray birch, European white birch, and river...

  18. Validating the use of MODIS time series for salinity assessment over agricultural soils in California, USA

    USDA-ARS?s Scientific Manuscript database

    Testing soil salinity assessment methodologies over different regions is important for future continental and global scale applications. A novel regional-scale soil salinity modeling approach using plant-performance metrics was proposed by Zhang et al. (2015) for farmland in the Yellow River Delta, ...

  19. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. Themore » Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch population in the river is stunted and therefore not popular with anglers. Pumpkinseed composed 16% of the total catch, followed by tenth (9%), largemouth bass (8%), mountain whitefish (6%), largescale sucker (5%), northern squawfish (4%) and longnose sucker (3%).« less

  20. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, 1989 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Michael R.; Renberg, Becky L.; Vella, John J.

    1990-09-01

    The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreille River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the second year of the study. Currently, yellow perch (Perca flavescens (Mitchill)) are the predominant fish species in the river and largemouth bass (Micropterus salmoides (Lacepede)) are the predominant sport fish. The objectives of the second year of the study were to determine: the relative abundance of each species inmore » the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; fish growth rates; the feeding habits and abundance of preferred prey; migration patterns; and the total fishing pressure, catch-per-unit-effort, and total harvest by conducting a year-round creel survey. 55 refs., 7 figs., 154 tabs.« less

  1. Lead contamination in sediments in the past 20 years: A challenge for China.

    PubMed

    Han, Lanfang; Gao, Bo; Hao, Hong; Zhou, Huaidong; Lu, Jin; Sun, Ke

    2018-06-04

    Lead (Pb) contamination was recognized in China early in the 1920s. However, the response of Pb contamination in sediments to China's rapid economic and social development remains uncertain to date. We conducted a literature review of over 1000 articles from 1990 to 2016 and the first national-scale survey of Pb contamination in China. A literature review showed that available research in China focused on the economically highly developed river basins, including the Pearl River Basin (PRB), Yellow River Basin (YRB), and Yangtze River Basin (YtRB), whereas those in the less developed southeastern, southwestern, and northwestern river basins received limited attention. The YtRB and YRB had higher Pb contamination levels than other basins, corresponding with the rapid economic development in those regions. However, the less economically developed river basins in the southeastern and northwestern regions of China were also contaminated by Pb. Analysis of 146 studies in the PRB, YRB, and YtRB revealed that Pb contamination in PRB sediments showed a tendency to improve over time, whereas that from the YtRB exhibited a tendency to worsen. For the YRB, there was a slight increase from 1990 to 2006 and a decreasing trend from 2007 to 2014. The overall temporal trend in Pb levels in PRB and YRB sediments corresponded with that of the Pb discharged in wastewater in the surrounding cities, indicating that industrial wastewater discharge was possibly one of the main anthropogenic sources of Pb in those sediments. For the YtRB, the increasing trend in Pb concentrations was related to the considerably high atmospheric Pb emissions in the surrounding cities and its geographical characteristics. These findings suggested that China should develop systematic and consistent approaches for monitoring Pb contents in sediments and adopt a regional economic development policy focusing on pollution prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    NASA Astrophysics Data System (ADS)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  3. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  4. Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: a case of the Ten Great Gullies Basin.

    PubMed

    Liu, Tong; Huang, He Qing; Shao, Mingan; Yao, Wenyi; Gu, Jing; Yu, Guoan

    2015-01-01

    Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.

  5. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  6. Estimation of soil loss by water erosion in the Chinese Loess Plateau using Universal Soil Loss Equation and GRACE

    NASA Astrophysics Data System (ADS)

    Schnitzer, S.; Seitz, F.; Eicker, A.; Güntner, A.; Wattenbach, M.; Menzel, A.

    2013-06-01

    For the estimation of soil loss by erosion in the strongly affected Chinese Loess Plateau we applied the Universal Soil Loss Equation (USLE) using a number of input data sets (monthly precipitation, soil types, digital elevation model, land cover and soil conservation measures). Calculations were performed in ArcGIS and SAGA. The large-scale soil erosion in the Loess Plateau results in a strong non-hydrological mass change. In order to investigate whether the resulting mass change from USLE may be validated by the gravity field satellite mission GRACE (Gravity Recovery and Climate Experiment), we processed different GRACE level-2 products (ITG, GFZ and CSR). The mass variations estimated in the GRACE trend were relatively close to the observed sediment yield data of the Yellow River. However, the soil losses resulting from two USLE parameterizations were comparatively high since USLE does not consider the sediment delivery ratio. Most eroded soil stays in the study area and only a fraction is exported by the Yellow River. Thus, the resultant mass loss appears to be too small to be resolved by GRACE.

  7. [Effects of rice-duck mutualistic organic farming on rice quality in the Yellow River Delta, China.

    PubMed

    Wang, Jian Lin; Li, Jie; Cao, Yuan Yuan

    2016-07-01

    Three cultivation models including rice-duck mutualistic, manual weeding and conventional rice farming were designed in the Yellow River Delta area to study the effects on rice milling quality, appearance quality, cooking and eating quality, and sanitation quality. The results showed that compared to conventional rice farming, the rice-duckmutualistic treatment increased grain width and brown rice rate, milled rice rate, head rice rate and reduced the chalkiness. This was mainly due to the increase of panicle numbers and grain mass and the decrease of the inferior grains. Due to the application of organic manure, the gel consistency increased, amylose and protein contents decreased, and the rice taste improved under rice-duck mutualistic and manual weeding cultivation treatments. As no chemical fertilizers and pesticides were applied under rice-duck mutualistic and manual weeding treatments, pesticide residues were greatly reduced or even not detected. Rice duck farming could improve the quality of rice and protect the environment, which would be a good ecological technology for high quality rice production.

  8. Raindrop characteristics analysis (Oct 25, 2015) of natural rainfall in Zhengzhou city of Yellow River basin

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Lin, Jing; Che, Shuhong; Yang, Xueqin; Li, Weiwei; Shen, Zhenzhou

    2018-03-01

    Raindrop characteristics, including speed and size of raindrops, in Zhengzhou city of Yellow River basin were analyzed through a natural rainfall on the loess slope. Results showed that the process of natural rainfall belonged to a parabola and counts, size and terminal velocity would increase with the rainfall intensity rising. Besides, the size and terminal velocity of natural raindrops were relatively scattered; In the process of individual rainfall, the terminal velocity and its peak value were mainly focused between 1∼5m/s and 3.4m/s, respectively. Size of raindrops were mainly consisted of 0.125-1.25mm, among which the terminal velocity of raindrops with a size of 0.125mm, 0.25mm, 0.375mm, 0.5mm, 0.75mm and 1mm were primarily 0.8-2.6m/s, 1-3.4m/s, 1.4-3.4m/s, 1.8-3.4m/s, 3-4.2m/s and 3.4-5m/s, respectively.

  9. Ecological risk caused by land use change in the coastal zone: a case study in the Yellow River Delta High-Efficiency Ecological Economic Zone

    NASA Astrophysics Data System (ADS)

    Di, X. H.; Wang, Y. D.; Hou, X. Y.

    2014-03-01

    China's coastal zone plays an important role in ecological services production and social-economic development; however, extensive and intensive land resource utilization and land use change have lead to high ecological risk in this area during last decade. Regional ecological risk assessment can provide fundamental knowledge and scientific basis for better understanding of the relationship between regional landscape ecosystem and human activities or climate changes, facilitating the optimization strategy of land use structure and improving the ecological risk prevention capability. In this paper, the Yellow River Delta High-Efficiency Ecological Economic Zone is selected as the study site, which is undergoing a new round of coastal zone exploitation and has endured substantial land use change in the past decade. Land use maps of 2000, 2005 and 2010 were generated based on Landsat images by visual interpretation method, and the ecological risk index was then calculated. The index was 0.3314, 0.3461 and 0.3176 in 2000, 2005 and 2010 respectively, which showed a positive transition of regional ecological risk in 2005.

  10. Towards decadal soil salinity mapping using Landsat time series data

    NASA Astrophysics Data System (ADS)

    Fan, Xingwang; Weng, Yongling; Tao, Jinmei

    2016-10-01

    Salinization is one of the major soil problems around the world. However, decadal variation in soil salinization has not yet been extensively reported. This study exploited thirty years (1985-2015) of Landsat sensor data, including Landsat-4/5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operational Land Imager), for monitoring soil salinity of the Yellow River Delta, China. The data were initially corrected for atmospheric effects, and then matched the spectral bands of EO-1 (Earth Observing One) ALI (Advanced Land Imager). Subsequently, soil salinity maps were derived with a previously developed PLSR (Partial Least Square Regression) model. On intra-annual scale, the retrievals showed that soil salinity increased in February, stabilized in March, and decreased in April. On inter-annual scale, soil salinity decreased within 1985-2000 (-0.74 g kg-1/10a, p < 0.001), and increased within 2000-2015 (0.79 g kg-1/10a, p < 0.001). Our study presents a new perspective for use of multiple Landsat data in soil salinity retrieval, and further the understanding of soil salinization development over the Yellow River Delta.

  11. Endocrine and metabolic dysfunction in yellow perch, Perca flavescens, exposed to organic contaminants and heavy metals in the St. Lawrence River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hontela, A.; Duclos, D.; Fortin, R.

    1995-04-01

    The endocrine and biochemical responses to the acute stress of capture and handling were investigated in sexually mature and in immature male and female yellow perch, Perca flavescens, from a site contaminated by organic contaminants (PAHs and PCBs) and heavy metals (Hg, Cd, As, and Zn) and from a reference site in the St. Lawrence River. Following a standardized capture and handling stress, fish from the contaminated site did not exhibit the expected physiological stress response observed in fish from the reference site. Blood cortisol and thyroxine levels were lower, and liver glycogen stores were greater in mature males andmore » females, as well as in the immature fish from the contaminated site, compared to the reference site. Fish from the contaminated site also had smaller gonads and lower condition factor. The impaired ability to elevate blood cortisol in response to an acute stress may be used as a biomarker of toxic stress in health assessment of feral fish from polluted environments.« less

  12. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland.

    PubMed

    Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei

    2016-10-01

    Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Diets of insectivorous birds along the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Yard, H.K.; van Riper, Charles; Brown, B.T.; Kearsley, M.J.

    2004-01-01

    We examined diets of six insectivorous bird species (n = 202 individuals) from two vegetation zones along the Colorado River in Grand Canyon National Park, Arizona, 1994. All bird species consumed similar quantities of caterpillars and beetles, but use of other prey taxa varied. Non-native leafhoppers (Opsius stactagolus) specific to non-native tamarisk (Tamarix chinensis) substantially augmented Lucy's Warbler (Vermivora luciae) diets (49%), while ants comprised 82% of Yellow-breasted Chat (Icteria virens) diets. Yellow Warbler (Dendroica petechia) diets were composed of 45% aquatic midges. All bird species consumed the non-native leafhopper specific to tamarisk. Comparison of bird diets with availability of arthropod prey from aquatic and terrestrial origins showed terrestrial insects comprised 91% of all avian diets compared to 9% of prey from aquatic origin. Seasonal shifts in arthropod prey occurred in diets of three bird species, although no seasonal shifts were detected in arthropods sampled in vegetation indicating that at least three bird species were not selecting prey in proportion to its abundance. All bird species had higher prey overlap with arthropods collected in the native, mesquite-acacia vegetation zone which contained higher arthropod diversity and better prey items (i.e., Lepidoptera). Lucy's Warbler and Yellow Warbler consumed high proportions of prey items found in greatest abundance in the tamarisk-dominated vegetation zone that has been established since the construction of Glen Canyon Dam. These species appeared to exhibit ecological plasticity in response to an anthropogenic increase in prey resources.

  14. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    PubMed

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river bank, which is the efficient microbial nitrogen purification unit, nitrification-denitrification is intensive. Farm manure is an important source of organic matter loss at the artificial wetlands. Floodplain has sandy soil texture, with high infiltration capacity and low water and fertilizer conservation ability. Such features are prone for the loss of surface soil nutrition and organic matter if agricultural activities taken place in these areas change the land use of wetlands and apply extensive fertilizer. The infiltrated nutrition elements and organic matter can pollute the groundwater and the river. Compared with the losses of nutrition element and organic matter caused by surface runoff, the infiltrated process is even more prominent. As typical floodplain groundwater-river ecotone, the area between 50 m and 200 m from the river bank is a momentous pollution purification unit. Rational protection for this region is critical for the conservation of water quality in the river and groundwater.

  15. New evidence for the catastrophic demise of a prehistoric settlement (the Lajia Ruins) in the Guanting Basin, upper Yellow River, NW China

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Huang, Chun Chang; Zheng, Zixing; Hu, Ying; Zhang, Yuzhu; Guo, Yongqiang; Zhou, Qiang

    2017-09-01

    The Lajia Ruins in the Guanting Basin, NW China, are a product of the prehistoric Qijia Culture. Like Pompeii, they are a rare example of an archaeological site preserved by a natural disaster and are therefore important in archaeology, anthropology and geology. However, the nature of the disaster(s) responsible for the destruction of the site remains controversial. Most studies have focused on an earthquake and a red clay layer directly overlying the site and a detailed stratigraphic study of the mid-Holocene sedimentary strata combined with other intervals of red clay deposition (hence possible disasters) is lacking. We identified a mid-Holocene paleosol sequence (the Shanglajia section) at the site which contains two layers of red clay, dated to 3950 a BP and 3500 a BP, intercalated within the mid-Holocene paleosol (S0). Subsequent multi-proxy analysis indicated that the characteristics of the two red clay layers resemble those of typical Tertiary red clay deposits and the modern gully deposit at the foot of the Great Red Hills, but are distinctly different from those of the slackwater deposits of the Yellow River and the mid-Holocene paleosol. Our results suggest that, at 3950 a BP and 3500 a BP, two large-scale rainstorm-induced mudflow events, originating from the gullies to the north, flooded the Lajia area on the second terrace of the Yellow River, devastating and burying the human settlements. We infer that the intensified erosion and mass wasting were caused by human activity; in addition, natural factors such as rainstorms and earthquakes, may also have played an important role in triggering catastrophic mudflow events in the Tertiary Red Clay deposits. Overall, our results provide further insights into prehistoric man-land relationships in this environmentally sensitive region which may have implications for modern land use in this region of China and elsewhere.

  16. Seismic stratigraphy and depositional history of late Quaternary deposits at the eastern Yellow Sea shelf

    NASA Astrophysics Data System (ADS)

    Yoo, Dong-Geun; Lee, Gwang-Soo; Kim, Gil-Young; Chang, Se-Won; Kim, Kyoung-Jin

    2017-04-01

    The late Quaternary stratigraphy and sedimentation at the eastern Yellow Sea shelf was studied using a dense network of high-resolution, single-channel seismic reflection profiles and sediment data. The shelf sequence in this area consists of six seismic units formed since the LGM. During the LGM, the study area was completely exposed, resulting in subaerial erosion associated with paleo-channel incision by the Huanghe and Korean Rivers. As the shelf was flooded, the incised channels were backfilled fluvial or coastal sediments, forming incised channel-fill deposits (SU1). The paleo-river may have supplied abundant terrigenous sediments to the study area around the paleo-river mouth and adjacent area. These sediments were trapped within the paleo-estuary and formed SU2, regarded as an estuarine deposit. Two types of serial sand ridges (SU3 and SU5) which correspond to transgressive deposits developed. SU3 on the southern part, west of Jeju Island (80 110 m deep) is regarded as a moribund-type mainly formed during the early to middle stage of transgression. These are thought to have ceased growing and remobilizing. In contrast, SU5 (occurring 30 50 m deep off the Korean Peninsula) is generally regarded as active sand ridges deposited during the late stage of transgression and is partly modified by modern tidal currents. As the transgression continued, the near-surface sediments were reworked and redistributed by shelf erosion, resulting in a thin veneer of transgressive sands (SU4). The uppermost unit (SU6) formed the Heuksan Mud Belt (HMB), which is one of the most prominent mud deposits in the Yellow Sea. The lower part of the HMD corresponds to shelf-mud deposited during the late stage of transgression, whereas the upper part consists of a recent shelf-delta developed after the highstand sea level at about 7 ka BP.

  17. Population Structure and Gene Flow of the Yellow Anaconda (Eunectes notaeus) in Northern Argentina

    PubMed Central

    McCartney-Melstad, Evan; Waller, Tomás; Micucci, Patricio A.; Barros, Mariano; Draque, Juan; Amato, George; Mendez, Martin

    2012-01-01

    Yellow anacondas (Eunectes notaeus) are large, semiaquatic boid snakes found in wetland systems in South America. These snakes are commercially harvested under a sustainable management plan in Argentina, so information regarding population structuring can be helpful for determination of management units. We evaluated genetic structure and migration using partial sequences from the mitochondrial control region and mitochondrial genes cyt-b and ND4 for 183 samples collected within northern Argentina. A group of landscape features and environmental variables including several treatments of temperature and precipitation were explored as potential drivers of observed genetic patterns. We found significant population structure between most putative population comparisons and bidirectional but asymmetric migration in several cases. The configuration of rivers and wetlands was found to be significantly associated with yellow anaconda population structure (IBD), and important for gene flow, although genetic distances were not significantly correlated with the environmental variables used here. More in-depth analyses of environmental data may be needed to fully understand the importance of environmental conditions on population structure and migration. These analyses indicate that our putative populations are demographically distinct and should be treated as such in Argentina's management plan for the harvesting of yellow anacondas. PMID:22675425

  18. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation as the concentration-discharge as a result of end-member mixing. This study suggests that combining concentration-discharge and end-member mixing analyses can be used as a tool to understand runoff generation and hydrochemical process, and the export of water and solutes from the TP may affect water balance and ecosystems downstream.

  19. Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Sun, Fubao; Xia, Jun; Liu, Wenbin

    2017-04-01

    Under the Grain for Green Project in China, vegetation recovery construction has been widely implemented on the Loess Plateau for the purpose of soil and water conservation. Now it is becoming controversial whether the recovery construction involving vegetation, particularly forest, is reducing the streamflow in the rivers of the Yellow River basin. In this study, we chose the Wei River, the largest branch of the Yellow River, with revegetated construction area as the study area. To do that, we apply the widely used Soil and Water Assessment Tool (SWAT) model for the upper and middle reaches of the Wei River basin. The SWAT model was forced with daily observed meteorological forcings (1960-2009) calibrated against daily streamflow for 1960-1969, validated for the period of 1970-1979, and used for analysis for 1980-2009. To investigate the impact of LUCC (land use and land cover change) on the streamflow, we firstly use two observed land use maps from 1980 and 2005 that are based on national land survey statistics merged with satellite observations. We found that the mean streamflow generated by using the 2005 land use map decreased in comparison with that using the 1980 one, with the same meteorological forcings. Of particular interest here is that the streamflow decreased on agricultural land but increased in forest areas. More specifically, the surface runoff, soil flow, and baseflow all decreased on agricultural land, while the soil flow and baseflow of forest areas increased. To investigate that, we then designed five scenarios: (S1) the present land use (1980) and (S2) 10 %, (S3) 20 %, (S4) 40 %, and (S5) 100 % of agricultural land that was converted into mixed forest. We found that the streamflow consistently increased with agricultural land converted into forest by about 7.4 mm per 10 %. Our modeling results suggest that forest recovery construction has a positive impact on both soil flow and baseflow by compensating for reduced surface runoff, which leads to a slight increase in the streamflow in the Wei River with the mixed landscapes on the Loess Plateau that include earth-rock mountain area.

  20. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    Wetland underlying surface is sensitive to climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Previous studies, which focused on the forest, grassland and farmland ecosystems, lack research on the alpine wetlands. In addition, research on the environmental control mechanism of latent heat flux is still qualitative and lacks quantitative evaluations and calculations. Using data from the observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors (solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows: Due to the diurnal variations of solar radiation and wind speed, the diurnal variations of the Ω factor present a trend in which the Ω factor are small in the morning and large in the evening. Due to the vegetation growing cycle, the seasonal variations of the Ω factor present a reverse "U" trend . These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over the latent heat flux. This conforms to omega theory. The values for average absolute atmospheric factor (surface factor or total ) control exercised by solar radiation and water vapour pressure are 0.20 (0.02 or 0.22 ) and 0.005 (-0.07 or -0.06) W·m-2·Pa-1, respectively.. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on the latent heat flux. The average Ω factor is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between the alpine wetland surface and the atmosphere system is low. The actual measurements agree with omega theory. The latent heat flux is mainly influenced by solar radiation. From the above, our study has provided reference information for exploring the influences of environmental factors on the latent heat flux over the alpine wetlands of the Yellow River source region.

  1. Residence times of surface water and particle-reactive 210Pb and 210Po in the East China and Yellow seas

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Tsubota, Hlroyuki; Kasemsupaya, Vimonrut; Yashima, Mayumi; Naoko, Ikuta

    1991-05-01

    228Ra, 226Ra, 210Pb, and 210Po were measured in the surface waters of the East China and Yellow seas. Using mass balance equations for the Ra isotopes, we estimated the total flux of diffusion from sediments and desorption from suspended particles to be 0.1 dpm 226Ra cm -2 a -1 and 1 dpm 228Ra cm -2 a -1, and residence times to be 2-3 years for the waters on the East China Sea Shelf and 5-6 years for Yellow Sea waters. Box-model calculations yielded generally congruent scavenging residence times for 210Pb and 210Po in the waters of ~2 months on the shelf and ~7 months in the Kuroshio Current. These suggest that reactive heavy metals and pollutants discharged through rivers from the continent to the East Asian continental shelf are largely deposited on the bottom sediments prior to transport to the pelagic ocean by lateral mixing.

  2. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs

    NASA Astrophysics Data System (ADS)

    Xiao, Wenjie; Wang, Yinghui; Zhou, Shangzhe; Hu, Limin; Yang, Huan; Xu, Yunping

    2016-10-01

    Presumed source specificity of branched glycerol dialkyl glycerol tetraethers (brGDGTs) from bacteria thriving in soil/peat and isoprenoid GDGTs (iGDGTs) from aquatic organisms led to the development of several biomarker proxies for biogeochemical cycle and paleoenvironmental reconstructions. However, recent studies reveal that brGDGTs are also produced in aquatic environments besides soils and peat. Here we examined three cores from the Bohai Sea, and found distinct difference in brGDGT compositions varying with the distance from the Yellow River mouth. We thus propose an abundance ratio of hexamethylated to pentamethylated brGDGT (IIIa / IIa) to evaluate brGDGT sources. The compilation of globally distributed 1354 marine sediments and 589 soils shows that the IIIa / IIa ratio is generally < 0.59 in soils and 0.59-0.92 and > 0.92 in marine sediments with and without significant terrestrial inputs, respectively. Such disparity confirms the existence of two sources for brGDGTs, a terrestrial origin with lower IIIa / IIa and a marine origin with higher IIIa / IIa, which is likely attributed to a generally higher pH and the production of brGDGTs in cold deep water in marine waters. The application of the IIIa / IIa ratio to the East Siberian Arctic Shelf proves it to be a sensitive source indicator for brGDGTs, which is helpful for accurate estimation of organic carbon source and paleoclimates in marine settings.

  3. Floods of March 1982, Indiana, Michigan, and Ohio

    USGS Publications Warehouse

    Glatfelter, D.R.; Butch, G.K.; Stewart, J.A.

    1984-01-01

    Rapid melting of a snowpack containing 2 to 6 inches of water equivalent coinciding with moderate rainfall caused flooding in March 1982 across northern Indiana, southern Michigan, and northwestern Ohio. Millions of dollars in property damage and the loss of four lives resulted from the flooding. Peak discharges at several gaging stations in each of the following river basins have recurrence intervals of 50 to greater than 100 years: Wabash, St. Joseph, River Raisin, Maumee, and Kankakee. Flooding in the Wabash River basin was confined to major tributaries draining from the north. The St. Joseph River experienced flooding having a recurrence interval of about 50 years. Peak discharges having recurrence intervals of 50 to greater than 100 years were recorded on the River Raisin. Flooding on most large streams in the Maumee River basin was the worst since 1913. The Kankakee River and its major tributary, Yellow River, recorded peak discharges having recurrence intervals greater than 100 years. Hydrologic data have been tabulated for 83 gaging stations and partial-record sites. Maps are presented to emphasize the severity and untimely sequence of meteorological conditions that provided the potential and triggered the floods. Hydrographs are shown for 32 gaging stations.

  4. Current situation of "Candidatus Liberibacter asiaticus" in Guangdong, P.R. China, where citrus huanglongbing was first described

    USDA-ARS?s Scientific Manuscript database

    Citrus Huanglongbing (HLB, yellow shoot disease) was observed in Guangdong Province, Peoples’ Republic of China in the late 1800s and is endemic there, particularly in the coastal Chaoshan and Pearl River Delta plains. Since the 1990s, the center of citrus production in Guangdong has gradually shif...

  5. Interstitial Area Final Range Environmental Assessment, Revision 1

    DTIC Science & Technology

    2009-04-01

    Scientific Name Common Name State Federal Fish Acipenser oxyrinchus desotoi Gulf Sturgeon LS LT Awaous banana River Goby - - Etheostoma okaloosae...Litsea aestivalis Pondspice LE - Lupinus westianus Gulfcoast Lupine LT - Macranthera flammea Hummingbird Flower LE - Magnolia ashei Ashe’s Magnolia...Butterwort LT - Pinguicula primuliflora Primrose- Flowered Butterwort LE - Platanthera integra Southern Yellow Fringeless Orchid LE - Polygonella macrophylla

  6. JPRS Report, China

    DTIC Science & Technology

    1989-11-17

    study of soil physical properties. At present, we have established field experimental plots in the loessial plain of the lower Yellow River, provided... effect on the military strength of countries all over the world. Under present conditions, science, technology, and economics are making unprec... effect deterrence, but are also producing profound changes in the methods of deterrence. Looking at the strategic situation worldwide, scientific

  7. Hardwood Fertilization: Research Progress in the Midsouth

    Treesearch

    B. G. Blackmon

    1974-01-01

    To meet the increasing demand for wood and wood products, the Southern Hardwoods Laboratory is investigating silvicultural techniques such as fertilization. Sweetgum, water oak, and willow oak have responded to N and NPK on clay soils of the Mississippi River floodplain. Yellow-poplar growth has been improved by NPK fertilizers on eroded sites in the Silty Uplands, and...

  8. Biological Survey, Buffalo River and Outer Harbor of Buffalo, New York. Volume II. Data Report.

    DTIC Science & Technology

    1982-06-01

    SamplintDate: 4-23-81 and 4-24-81 MG - male, gravid FG - female, gravid S - spent Secies Iength(cm) Sex Condition Station 14 Net lost due to log jam moving down...virginiana Duchesne. Strawberry Melilotus officinklis (L.) Dear. Sweet yellow clover annuus (L.) Pers. Fleabane Rosa sp. Rose Rhamnus sp. Buckthorn

  9. Performance of black walnut from the central hardwood region in China's Yellow River watershed

    Treesearch

    J. W. Van Sambeek; Sheng-Ke Xi; William A. Gustafson; Mark V. Coggeshall

    2003-01-01

    The introduction and evaluation of black walnut (Juglans nigra L.) into the People's Republic of China is a relatively recent development (Xi and others 1999). Small isolated black walnut plantings established by missionaries from the United States can be found throughout much of China; however, few written records document the growth of the...

  10. Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach

    USGS Publications Warehouse

    Johnson, Matthew J.; Hatten, James R.; Holmes, Jennifer A.; Shafroth, Patrick B.

    2017-01-01

    The western population of the yellow-billed cuckoo (Coccyzus americanus) was recently listed as threatened under the federal Endangered Species Act. Yellow-billed cuckoo conservation efforts require the identification of features and area requirements associated with high quality, riparian forest habitat at spatial scales that range from nest microhabitat to landscape, as well as lower-suitability areas that can be enhanced or restored. Spatially explicit models inform conservation efforts by increasing ecological understanding of a target species, especially at landscape scales. Previous yellow-billed cuckoo modelling efforts derived plant-community maps from aerial photography, an expensive and oftentimes inconsistent approach. Satellite models can remotely map vegetation features (e.g., vegetation density, heterogeneity in vegetation density or structure) across large areas with near perfect repeatability, but they usually cannot identify plant communities. We used aerial photos and satellite imagery, and a hierarchical spatial scale approach, to identify yellow-billed cuckoo breeding habitat along the Lower Colorado River and its tributaries. Aerial-photo and satellite models identified several key features associated with yellow-billed cuckoo breeding locations: (1) a 4.5 ha core area of dense cottonwood-willow vegetation, (2) a large native, heterogeneously dense forest (72 ha) around the core area, and (3) moderately rough topography. The odds of yellow-billed cuckoo occurrence decreased rapidly as the amount of tamarisk cover increased or when cottonwood-willow vegetation was limited. We achieved model accuracies of 75–80% in the project area the following year after updating the imagery and location data. The two model types had very similar probability maps, largely predicting the same areas as high quality habitat. While each model provided unique information, a dual-modelling approach provided a more complete picture of yellow-billed cuckoo habitat requirements and will be useful for management and conservation activities.

  11. Performance of the subsurface flow constructed wetlands for pretreatment of slightly polluted source water.

    PubMed

    Yang, Xu; Zhang, Xueping; Wang, Jifu; Zhao, Guangying; Wang, Baojian

    2014-05-01

    The slightly polluted source water of Yellow River was pretreated in a horizontal subsurface flow constructed wetland (HSFCW) and a lateral subsurface flow constructed wetland (LSFCW) in the Ji'nan city Reservoir, Shandong, China. During almost one years run, the results showed that at the hydraulic loading rate of 1 m/day, the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4 (+)-N) and total phosphorus (TP) in the HSFCW were 48.9, 51.4, 48.7 and 48.9 %, respectively, and the corresponding removal efficiencies in the LSFCW were 50.51, 53.12, 50.44 and 50.83 %, respectively. The HSFCW and LSFCW had a similar high potential for nutrients removal and LSFCW was slightly better. According to the China standard for surface water resources (GB3838-2002), mean effluent COD can reach the Class I (≤ 15 mg/L), and NH4 (+)-N and TP and TN can reach nearly the Class I (≤ 0.015 mg/L), the Class III (≤ 0.05 mg/L) and the Class IV (≤ 1.5 mg/L), respectively. It can be concluded that the slightly polluted source water from Reservoir was pretreated well by the constructed wetland.

  12. Determination of 4-tert-octylphenol in surface water samples of Jinan in China by solid phase extraction coupled with GC-MS.

    PubMed

    Yang, Xueyu; Liu, Mingren; Wang, Zhongpeng; Li, Qian; Zhang, Zhaoliang

    2013-08-01

    Octylphenols, considered as xenoestrogens, mainly exist as 4-tert-octylphenol (OP) in aquatic environments. The high stability and accumulation of OP in aquatic systems have caused endocrine disruption. The OP in surface water in Jinan, China was analyzed by gas chromatography-mass spectrometry (GC-MS) coupled with solid phase extraction (SPE). Water samples were extracted by SPE on a cartridge system containing C-18 as sorbent. To increase sensitivity and selectivity, OP was derivatized to 4-tert-octyl-phenoxy silane. With the use of phenanthrene-d10 as internal standard, the detection limit based on signal-to-noise ratio (S/N = 3) was 0.06 ng/mL. The average recovery was from 84.67% to 109.7%. The precision of the method given as the relative standard deviations (RSD) was within the range 6.24%-12.96%. In the target water samples, the concentrations of OP were as follows: 15.88-71.24 ng/L for Jinxiuchuan Reservoir, 3.850-26.68 ng/L for the city moat, 6.930-41.56 ng/L for Daming Lake, 66.03-474.2 ng/L for Xiaoqing River, 14.66-17.72 ng/L for the Yellow River, and 10.60-26.43 ng/L for Queshan Reservoir. The Xiaoqing River was seriously polluted due to the discharge of wastewater from Jinan. Jinxiuchuan Reservoir had a higher concentration of OP compared with the Yellow River and Queshan Reservoir, which is ascribed to the surrounding human activities. These data are reported for the first time, providing strong support for the control of OP pollution in Jinan.

  13. Mercury in Pacific bluefin tuna (Thunnus orientalis):bioaccumulation and trans-Pacific Ocean migration

    USGS Publications Warehouse

    Colman, John A.; Nogueira, Jacob I.; Pancorbo, Oscar C.; Batdorf, Carol A.; Block, Barbara A.

    2015-01-01

    Pacific bluefin tuna (Thunnus orientalis) have the largest home range of any tuna species and are well known for the capacity to make transoceanic migrations. We report the measurement of mercury (Hg) concentrations in wild Pacific bluefin tuna (PBFT), the first reported with known size-of-fish and capture location. The results indicate juvenile PBFT that are recently arrived in the California Current from the western Pacific Ocean have significantly higher Hg concentrations in white muscle (0.51 ug/g wet mass, wm) than PBFT of longer California Current residency (0.41 ug/g wm). These new arrivals are also higher in Hg concentration than PBFT in farm pens (0.43 ug/g wm) that were captured on arrival in the California Current and raised in pens on locally derived feed. Analysis by direct Hg analyzer and attention to Hg by tissue type and location on the fish allowed precise comparisons of mercury among wild and captive fish populations. Analysis of migration and nearshore residency, determined through extensive archival tagging, bioaccumulation models, trophic investigations, and potential coastal sources of methylmercury, indicates Hg bioaccumulation is likely greater for PBFT juvenile habitats in the western Pacific Ocean (East China Sea, Yellow Sea) than in the eastern Pacific Ocean (California Current). Differential bioaccumulation may be a trophic effect or reflect methylmercury availability, with potential sources for coastal China (large hypoxic continental shelf receiving discharge of three large rivers, and island-arc volcanism) different from those for coastal Baja California (small continental shelf, no large rivers, spreading-center volcanism).

  14. Orange River, Africa

    NASA Image and Video Library

    1996-01-20

    STS072-738-036 (11-20 Jan. 1996) --- The astronauts used a 70mm handheld camera to expose this frame of the west-flowing Orange River, which constitutes the international boundary between Namibia and the Republic of South Africa. The railroad and highway connecting the two countries is seen as a ribbon crossing the corner of the view. The broad color difference between strong browns/reds in the northern half of the view and lighter yellows in the southern corresponds to two land surfaces. The darker is a higher, flat land surface developed on horizontal Nama Sandstone’s, with rock surfaces widely coated with a dark manganese stain, typical of desert regions. This region is known as Namaqualand and borders the Namib Desert. Where rivers have cut down into this surface, the lighter underlying rock and soil colors show up.

  15. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay.

    PubMed

    Blazer, Vicki S; Pinkney, Alfred E; Jenkins, Jill A; Iwanowicz, Luke R; Minkkinen, Steven; Draugelis-Dale, Rassa O; Uphoff, James H

    2013-03-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. Published by Elsevier B.V.

  16. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    NASA Astrophysics Data System (ADS)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  17. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    USGS Publications Warehouse

    Blazer, Vicki; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.

  18. Comparative susceptibility among three stocks of yellow perch, Perca flavescens (Mitchill), to viral haemorrhagic septicaemia virus strain IVb from the Great Lakes

    USGS Publications Warehouse

    Olson, W.; Emmenegger, E.; Glenn, J.; Winton, J.; Goetz, F.

    2013-01-01

    The Great Lakes strain of viral haemorrhagic septicaemia virus IVb (VHSV-IVb) is capable of infecting a wide number of naive species and has been associated with large fish kills in the Midwestern United States since its discovery in 2005. The yellow perch, Perca flavescens (Mitchill), a freshwater species commonly found throughout inland waters of the United States and prized for its high value in sport and commercial fisheries, is a species documented in several fish kills affiliated with VHS. In the present study, differences in survival after infection with VHSV IVb were observed among juvenile fish from three yellow perch broodstocks that were originally derived from distinct wild populations, suggesting innate differences in susceptibility due to genetic variance. While all three stocks were susceptible upon waterborne exposure to VHS virus infection, fish derived from the Midwest (Lake Winnebago, WI) showed significantly lower cumulative % survival compared with two perch stocks derived from the East Coast (Perquimans River, NC and Choptank River, MD) of the United States. However, despite differences in apparent susceptibility, clinical signs did not vary between stocks and included moderate-to-severe haemorrhages at the pelvic and pectoral fin bases and exophthalmia. After the 28-day challenge was complete, VHS virus was analysed in subsets of whole fish that had either survived or succumbed to the infection using both plaque assay and quantitative PCR methodologies. A direct correlation was identified between the two methods, suggesting the potential for both methods to be used to detect virus in a research setting.

  19. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins.

    PubMed

    Verhoeckx, Kitty C M; van Broekhoven, Sarah; den Hartog-Jager, Constance F; Gaspari, Marco; de Jong, Govardus A H; Wichers, Harry J; van Hoffen, Els; Houben, Geert F; Knulst, André C

    2014-03-01

    Due to the imminent growth of the world population, shortage of protein sources for human consumption will arise in the near future. Alternative and sustainable protein sources (e.g. insects) are being explored for the production of food and feed. In this project, the safety of Yellow mealworms (Tenebrio molitor L.) for human consumption was tested using approaches as advised by the European Food Safety Authority for allergenicity risk assessment. Different Yellow mealworm protein fractions were prepared, characterised, and tested for cross-reactivity using sera from patients with an inhalation or food allergy to biologically related species (House dust mite (HDM) and crustaceans) by immunoblotting and basophil activation. Furthermore, the stability was investigated using an in vitro pepsin digestion test. IgE from HDM- and crustacean allergic patients cross-reacted with Yellow mealworm proteins. This cross-reactivity was functional, as shown by the induction of basophil activation. The major cross-reactive proteins were identified as tropomyosin and arginine kinase, which are well known allergens in arthropods. These proteins were moderately stable in the pepsin stability test. Based on these cross-reactivity studies, there is a realistic possibility that HDM- and crustacean allergic patients may react to food containing Yellow mealworm proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    PubMed

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  1. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Pan, Y.; Wang, Y.; Paulot, F.; Henze, D. K.

    2015-09-01

    Rapid Asian industrialization has led to increased downwind atmospheric nitrogen deposition threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the high-NH3 emissions reflect its intensive agricultural activities. We find Asian NH3 emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind of the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7 % over the South China Sea, and become important (greater than 30 %) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92 % contribution) and the Korean peninsula (7 %), and by sectors from fertilizer use (24 %), power plants (22 %), and transportation (18 %). Deposition to the South China Sea shows source contribution from mainland China (66 %), Taiwan (20 %), and the rest (14 %) from the southeast Asian countries and oceanic NH3 emissions. The adjoint analyses also indicate that reducing Asian NH3 emissions would increase NOy dry deposition to the Yellow Sea (28 % offset annually), limiting the effectiveness of NH3 emission controls on reducing nitrogen deposition to the Yellow Sea.

  2. Method based on the Laplace equations to reconstruct the river terrain for two-dimensional hydrodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Lai, Ruixun; Wang, Min; Yang, Ming; Zhang, Chao

    2018-02-01

    The accuracy of the widely-used two-dimensional hydrodynamic numerical model depends on the quality of the river terrain model, particularly in the main channel. However, in most cases, the bathymetry of the river channel is difficult or expensive to obtain in the field, and there is a lack of available data to describe the geometry of the river channel. We introduce a method that originates from the grid generation with the elliptic equation to generate streamlines of the river channel. The streamlines are numerically solved with the Laplace equations. In the process, streamlines in the physical domain are first computed in a computational domain, and then transformed back to the physical domain. The interpolated streamlines are integrated with the surrounding topography to reconstruct the entire river terrain model. The approach was applied to a meandering reach in the Qinhe River, which is a tributary in the middle of the Yellow River, China. Cross-sectional validation and the two-dimensional shallow-water equations are used to test the performance of the river terrain generated. The results show that the approach can reconstruct the river terrain using the data from measured cross-sections. Furthermore, the created river terrain can maintain a geometrical shape consistent with the measurements, while generating a smooth main channel. Finally, several limitations and opportunities for future research are discussed.

  3. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kim Oanh; Nguyen, Van Lap; Tateishi, Masaaki; Kobayashi, Iwao; Tanabe, Susumu; Saito, Yoshiki

    2002-09-01

    Evolutionary changes, delta progradation, and sediment discharge of the Mekong River Delta, southern Vietnam, during the late Holocene are presented based on detailed analyses of samples from six boreholes on the lower delta plain. Sedimentological and chronostratigraphic analyses indicate clearly that the last 3 kyr were characterized by delta progradation under increasing wave influence, southeastward sediment dispersal, decreasing progradation rates, beach-ridge formation, and steepening of the face of the delta front. Estimated sediment discharge of the Mekong River for the last 3 kyr, based on sediment-volume analysis, was 144±36 million t yr -1 on average, or almost the same as the present level. The constant rate of delta front migration and stable sediment discharge during the last 3 kyr indicate that a dramatic increase in sediment discharge owing to human activities, as has been suggested for the Yellow River watershed, did not occur. Although Southeast Asian rivers have been considered candidates for such dramatic increases in discharge during the last 2 kyr, the Mekong River example, although it is a typical, large river of this region, does not support this hypothesis. Therefore, estimates of the millennial-scale global pristine sediment flux to the oceans must be revised.

  4. Toxicity of compounds isolated from white snakeroot (Ageratina altissima) to adult and larval yellow fever mosquitoes (Aedes aegypti)

    USDA-ARS?s Scientific Manuscript database

    Because of increasing insecticide resistance, new pesticides are needed. Flowering plants have been the source of useful pesticides in the past. We studied 15 chemicals isolated from a poisonous pasture plant for activity against the yellow fever mosquito. We found that dehydrotremetone was effectiv...

  5. Dynamic flow modeling of riverine amphibian habitat with application to regulated flow management

    Treesearch

    S. Yarnell; A. Lind; J. Mount

    2012-01-01

    In regulated rivers, relicensing of hydropower projects can provide an opportunity to change flow regimes and reduce negative effects on sensitive aquatic biota. The volume of flow, timing and ramping rate of spring spills, and magnitude of aseasonal pulsed flows have potentially negative effects on the early life stages of amphibians, such as the Foothill yellow-...

  6. Joint Maneuver Test Range on Eglin Air Force Base, Florida Final Environmental Assessment

    DTIC Science & Technology

    2009-12-14

    Common Name Status State Federal Fish Acipenser oxyrinchus desotoi Gulf Sturgeon LS LT Awaous banana River Goby - - Etheostoma okaloosae Okaloosa...westianus Gulfcoast Lupine LT - Macranthera flammea Hummingbird Flower LE - Magnolia ashei Ashe’s Magnolia LE - Magnolia pyramidata Pyramidal Magnolia LE...Stemmed Panic Grass LT - Pinguicula lutea Yellow Butterwort LT - Pinguicula planifolia Swamp Butterwort LT - Pinguicula primuliflora Primrose- Flowered

  7. Rangewide phylogeography of the western U.S. endemic frog Rana boylii (Ranidae): Implications for the conservation of frogs and rivers

    Treesearch

    A.J. Lind; H.B. Shaffer; P.Q. Spinks; G.M. Fellers

    2011-01-01

    Genetic data are increasingly being used in conservation planning for declining species. We sampled both the ecological and distributional limits of the foothill yellow-legged frog, Rana boylii to characterize mitochondrial DNA (mtDNA) variation in this declining, riverine amphibian. We evaluated 1525 base pairs (bp) of cytochrome b...

  8. Performance of black walnut in the Yellow River watershed of the People's Republic of China

    Treesearch

    J. W. Van Sambeek; Sheng-Ke Xi; William A. Gustafson; Mark V. Coggeshall

    2004-01-01

    The introduction and evaluation of black walnut (Juglans nigra L.) into the People's Republic of China is a relatively recent development (Xi and others 1999). Small isolated black walnut plantings established by missionaries from the United States can be found throughout much of China; however, few written records document the growth of the...

  9. Ecological effects of roads on the plant diversity of coastal wetland in the Yellow River Delta.

    PubMed

    Li, Yunzhao; Yu, Junbao; Ning, Kai; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0-20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  10. Future Water Scarcity and Potential Effects on Food Production under Climate Change in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Yin, Y. Y.; Liu, X.; Zhang, X.

    2016-12-01

    Increasing population and socio-economic development have put great pressure on water resources of the Yellow River Basin. The anticipated climate and socio-economic changes may further increase water stress. In this study, we assess water scarcity under climate change and various socio-economic pathways with an emphasis on the impact of water shortages on food production. The water demands in the 21st century are projected under the new developed Shared Socio-economic Pathways (SSPs). The renewable water supply is estimated from the climate projections under the Representative Concentration Pathways (RCP) 8.5. The agricultural water use is assumed to have the lowest priority of all water consumers when water shortage occurs. The results show that the water demands in domestic and industrial sectors would grow rapidly. As more water resources would be occupied by domestic and industrial sectors, a portion of irrigated land would have to be converted to rain-fed agriculture which would lead to more than a reduction in food production under various socio-economic pathways. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.

  11. Extremely high sulfate reduction, sediment oxygen demand and benthic nutrient flux associated with a large-scale artificial dyke and its implication to benthic-pelagic coupling in the Yeongsan River estuary, Yellow Sea.

    PubMed

    Kim, Sung-Han; Lee, Jae Seong; Hyun, Jung-Ho

    2017-07-15

    We investigated environmental impact of large-scale dyke on the sediment geochemistry, sulfate reduction rates (SRRs), sediment oxygen demand (SOD) and potential contribution of benthic nutrient flux (BNF) to primary production in the Yeongsan River estuary, Yellow Sea. The sediment near the dyke (YE1) with high organic carbon (C org ) content (>4%, dry wt.) was characterized by extremely high SOD (327mmolm -2 d -1 ) and SRRs (91-140mmolm -2 d -1 ). The sulfate reduction accounted for 73% of C org oxidation, and was responsible for strikingly high concentrations of NH 4 + (7.7mM), PO 4 3- (67μM) and HS - (487μM) in pore water. The BNF at YE1 accounted for approximately 200% of N and P required for primary production in the water column. The results present one of the most extreme cases that the construction of an artificial dyke may have profound impacts on the biogeochemical and ecological processes in coastal ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optimizing groundwater development strategies by genetic algorithm: a case study for balancing the needs for agricultural irrigation and environmental protection in northern China

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Zheng, Li; Liu, Depeng

    2007-11-01

    Gaoqing Plain is a major agriculture center of Shandong Province in northern China. Over the last 30 years, the diversion of Yellow River water for intensive irrigation in Gaoqing Plain has led to elevation of the water table and increased evaporation, and subsequently, a dramatic increase in salt content in soil and rapid degradation of crop productivity. Optimal strategies have been explored, that will balance the need to extract sufficient groundwater for irrigation (to ease the pressure on diverting Yellow River water) with the need to improve the local environment by appropriately lowering the water table. Two simulation-optimization models have been formulated and a genetic algorithm (GA) is applied to search for the optimal groundwater development strategies in Gaoqing Plain, while keeping the adverse environmental impacts in check. Compared with the trial-and-error approach of previous studies, the optimization results demonstrate that using an optimization model coupled with a GA search is both effective and efficient. The optimal solutions identified by the GA will provide Gaoqing Plain with the blueprints for developing sustainable groundwater abstraction plans to support local economic development and improve its environmental quality.

  13. Designing long-term fish community assessments in connecting channels: Lessons from the Saint Marys River

    USGS Publications Warehouse

    Schaeffer, Jeff; Rogers, Mark W.; Fielder, David G.; Godby, Neal; Bowen, Anjanette K.; O'Connor, Lisa; Parrish, Josh; Greenwood, Susan; Chong, Stephen; Wright, Greg

    2014-01-01

    Long-term surveys are useful in understanding trends in connecting channel fish communities; a gill net assessment in the Saint Marys River performed periodically since 1975 is the most comprehensive connecting channels sampling program within the Laurentian Great Lakes. We assessed efficiency of that survey, with intent to inform development of assessments at other connecting channels. We evaluated trends in community composition, effort versus estimates of species richness, ability to detect abundance changes for four species, and effects of subsampling yellow perch catches on size and age-structure metrics. Efficiency analysis revealed low power to detect changes in species abundance, whereas reduced effort could be considered to index species richness. Subsampling simulations indicated that subsampling would have allowed reliable estimates of yellow perch (Perca flavescens) population structure, while greatly reducing the number of fish that were assigned ages. Analyses of statistical power and efficiency of current sampling protocols are useful for managers collecting and using these types of data as well as for the development of new monitoring programs. Our approach provides insight into whether survey goals and objectives were being attained and can help evaluate ability of surveys to answer novel questions that arise as management strategies are refined.

  14. Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River

    NASA Astrophysics Data System (ADS)

    Chi, Kaige; Gang, Zhao; Pang, Bo; Huang, Ziqian

    2018-06-01

    Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR) (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station) from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann-Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1) the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2) The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3) According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.

  15. In situ observations of wave pumping of sediments in the Yellow River Delta with a newly developed benthic chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Shaotong; Jia, Yonggang; Zhang, Yaqi; Liu, Xiaolei; Shan, Hongxian

    2018-03-01

    A specially designed benthic chamber for the field observation of sediment resuspension that is caused by the wave-induced oscillatory seepage effect (i.e., the wave pumping of sediments) is newly developed. Observational results from the first sea trial prove that the geometry design and skillful instrumentation of the chamber well realize the goal of monitoring the wave pumping of sediments (WPS) continuously. Based on this field dataset, the quantitative contribution of the WPS to the total sediment resuspension is estimated to be 20-60% merely under the continuous action of normal waves (Hs ≤ 1.5 m) in the subaqueous Yellow River Delta (YRD). Such a large contribution invalidates a commonly held opinion that sediments are purely eroded from the seabed surface by the horizontal "shearing effect" from the wave orbital or current velocities. In fact, a considerable amount of sediments could originate from the shallow subsurface of seabed driven by the vertical "pumping effect" of the wave-generated seepage flows during wavy periods. According to the new findings, an improved conceptual model for the resuspension mechanisms of silty sediments under various hydrodynamics is proposed for the first time.

  16. The evaluation of basin water resources utilization efficiency based on Chaos projection mode

    NASA Astrophysics Data System (ADS)

    Guan, X.; Liang, S.; Meng, Y.; Wang, H.

    2017-12-01

    To promote the coordinated development of a healthy economy, society, and environment, and the sustainable development of water resources comprehensive utilization efficiency (WRCUE), this study investigated appropriate indicators using the trapezoidal fuzzy number method, and constructed an evaluation index system for WRCUE. A WRCUE evaluation model is applied to the areas in the Yellow River Basin in China using a genetic projection pursuit method. The comprehensive evaluation index system of water use efficiency includes 6 indicators: Water consumption per unit industrial value added, water consumption per unit GDP, eliminate the climate effect on agricultural water use efficiency, irrigation water consumption per unit area, domestic water use per capita and industrial water ratio. Then, multiple indexes in the index system are transformed to a comprehensive index by the combined model, which is used to represent the total water resources utilization efficiency. Results show that the WRCUE in Yellow River basin and the provinces have a great distance. WRCUE is well developed in Shanxi, Shandong, and Henan provinces, moderately developed in Shaanxi, Inner Mongolia, and Sichuan provinces, and poorly developed in the Ningxia Autonomous Region, Gansu Province, and Qinghai Province. According to the capacities of provinces, related measures are proposed.

  17. Novel brominated flame retardants and dechloranes in three fish species from the St. Lawrence River, Canada.

    PubMed

    Houde, Magali; Berryman, David; de Lafontaine, Yves; Verreault, Jonathan

    2014-05-01

    Restrictions in the utilization of polybrominated diphenyl ether (PBDE) mixtures have led to the increased usage of alternative flame retardant additives in a wide range of commercial applications. The present study examined the occurrence of established and emerging flame retardants (FRs) in fish from a densely-populated urbanized sector of the St. Lawrence River (Montreal, Quebec, Canada). Thirty-eight PBDE congeners and sixteen emerging FRs were determined in fish belonging to three predatory species (yellow perch, northern pike, and muskellunge). The ∑PBDE in fish were up to 24,115 ng/g lipid weight (l.w.) in the apex predator muskellunge. Twelve emerging FRs including bis(2-ethylhexyl)-tetrabromophthalate (BEHTBP), pentabromoethylbenzene (PBEB), Dechlorane Plus (anti and syn), dechloranes (Dec) 602, Dec 604, Dec 604 Compound B (Dec 604 CB), and Chlordene Plus (CP) were detected (>0.01 ng/gl.w.) in the liver of muskellunge and northern pike but not in yellow perch homogenates. This is the first report of Dec 604 CB in any fish species. The bioavailability of these FRs in human-impacted aquatic ecosystems warrants further environmental assessment and toxicity testing. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification

    NASA Astrophysics Data System (ADS)

    Yang, Qiuju; Hu, Ze-Jun

    2018-03-01

    Aurora is a very important geophysical phenomenon in the high latitudes of Arctic and Antarctic regions, and it is important to make a comparative study of the auroral morphology between the two hemispheres. Based on the morphological characteristics of the four labeled dayside discrete auroral types (auroral arc, drapery corona, radial corona and hot-spot aurora) on the 8001 dayside auroral images at the Chinese Arctic Yellow River Station in 2003, and by extracting the local binary pattern (LBP) features and using a k-nearest classifier, this paper performs an automatic classification of the 65 361 auroral images of the Chinese Arctic Yellow River Station during 2004-2009 and the 39 335 auroral images of the South Pole Station between 2003 and 2005. Finally, it obtains the occurrence distribution of the dayside auroral morphology in the Northern and Southern Hemisphere. The statistical results indicate that the four dayside discrete auroral types present a similar occurrence distribution between the two stations. To the best of our knowledge, we are the first to report statistical comparative results of dayside auroral morphology distribution between the Northern and Southern Hemisphere.

  19. Distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea during summer.

    PubMed

    Li, Jian-Long; Zhang, Hong-Hai; Yang, Gui-Peng

    2017-07-01

    Spatial distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea in July 2013 were investigated. This study is the first to report the concentrations of isoprene in the China marginal seas. Isoprene concentrations in the surface seawater during summer ranged from 32.46 to 173.5 pM, with an average of 83.62 ± 29.22 pM. Distribution of isoprene in the study area was influenced by the diluted water from the Yangtze River, which stimulated higher in-situ phytoplankton production of isoprene rather than direct freshwater input. Variations in isoprene concentrations were found to be diurnal, with high values observed during daytime. A significant correlation was observed between isoprene and chlorophyll a in the study area. Relatively higher isoprene concentrations were recorded at stations where the phytoplankton biomass was dominated by Chaetoceros, Skeletonema, Pennate-nitzschia, and Thalassiosira. Positive correlation was observed between isoprene and methyl iodide. In addition, sea-to-air fluxes of isoprene approximately ranged from 22.17 nmol m -2  d -1 -537.2 nmol m -2  d -1 , with an average of 161.5 ± 133.3 nmol m -2  d -1 . These results indicate that the coastal and shelf areas may be important sources of atmospheric isoprene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Source memory enhancement for emotional words.

    PubMed

    Doerksen, S; Shimamura, A P

    2001-03-01

    The influence of emotional stimuli on source memory was investigated by using emotionally valenced words. The words were colored blue or yellow (Experiment 1) or surrounded by a blue or yellow frame (Experiment 2). Participants were asked to associate the words with the colors. In both experiments, emotionally valenced words elicited enhanced free recall compared with nonvalenced words; however, recognition memory was not affected. Source memory for the associated color was also enhanced for emotional words, suggesting that even memory for contextual information is benefited by emotional stimuli. This effect was not due to the ease of semantic clustering of emotional words because semantically related words were not associated with enhanced source memory, despite enhanced recall (Experiment 3). It is suggested that enhancement resulted from facilitated arousal or attention, which may act to increase organization processes important for source memory.

  1. Insecticidal Effects on the Spatial Progression of Tomato Yellow Leaf Curl Virus and Movement of Its Whitefly Vector in Tomato.

    PubMed

    Dempsey, M; Riley, D G; Srinivasan, R

    2017-06-01

    Commercial management of whitefly-transmitted Tomato yellow leaf curl virus (TYLCV) typically relies on insecticide control of whitefly vectors as a first line of defense. We quantified this effect in crop tunnel studies, with validation in a tomato field setting. Tomato yellow leaf curl virus-infected and Bemisia tabaci (Gennadius)-infested source plants were planted at the beginning of tunneled rows to serve as inoculum source, so that movement of whiteflies and TYLCV symptoms could be tracked down the length of the tunnel over time. Tunnel study results showed that proximity to the source plant was a more important factor than insecticide treatments. Insecticide-treated tomato transplants did tend to suppress whitefly incidence and slowed TYLCV movement in comparison with the untreated check; however, tomato plants planted closer to the source plant had higher incidence of whiteflies and TYLCV infection, regardless of treatment. In a large tomato plot study with a controlled inoculum source, insecticide treatments significantly reduced the spread of TYLCV. When uninhibited by insecticide treatment, 80% of the TYLCV spread was restricted to <15 m from the source plant (<11 m in the validation study), with insecticide treatment generally reducing the distance and magnitude of this spread. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Yellow jackets may be an underestimated component of an ant-seed mutualism

    USGS Publications Warehouse

    Bale, M.T.; Zettler, J.A.; Robinson, B.A.; Spira, T.P.; Allen, Craig R.

    2003-01-01

    Yellow jackets (Hymenoptera: Vespidae) are attracted to the typically ant-dispersed seeds of trilliums and will take seeds from ants in the genus Aphaenogaster. To determine if yellow jacket, Vespula maculifrons (Buysson), presence interferes with seed foraging by ants, we presented seeds of Trillium discolor Wray to three species (A. texana carolinensis Wheeler, Formica schaufussi Mayr, and Solenopsis invicta Buren) of seed-carrying ants in areas where vespids were present or excluded. We found that interspecific aggression between yellow jackets and ants is species specific. Vespid presence decreased average foraging time and increased foraging efficiency of two of the three ant species studied, a situation that might reflect competition for a limited food source. We also found that yellow jackets removed more seeds than ants, suggestive that vespids are important, albeit underestimated, components of ant-seed mutualisms.

  3. Optical manifold

    DOEpatents

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  4. Characterization of Fitzroy River Virus and Serologic Evidence of Human and Animal Infection.

    PubMed

    Johansen, Cheryl A; Williams, Simon H; Melville, Lorna F; Nicholson, Jay; Hall, Roy A; Bielefeldt-Ohmann, Helle; Prow, Natalie A; Chidlow, Glenys R; Wong, Shani; Sinha, Rohini; Williams, David T; Lipkin, W Ian; Smith, David W

    2017-08-01

    In northern Western Australia in 2011 and 2012, surveillance detected a novel arbovirus in mosquitoes. Genetic and phenotypic analyses confirmed that the new flavivirus, named Fitzroy River virus, is related to Sepik virus and Wesselsbron virus, in the yellow fever virus group. Most (81%) isolates came from Aedes normanensis mosquitoes, providing circumstantial evidence of the probable vector. In cell culture, Fitzroy River virus replicated in mosquito (C6/36), mammalian (Vero, PSEK, and BSR), and avian (DF-1) cells. It also infected intraperitoneally inoculated weanling mice and caused mild clinical disease in 3 intracranially inoculated mice. Specific neutralizing antibodies were detected in sentinel horses (12.6%), cattle (6.6%), and chickens (0.5%) in the Northern Territory of Australia and in a subset of humans (0.8%) from northern Western Australia.

  5. Three new endemic species of Epictia Gray, 1845 (Serpentes: Leptotyphlopidae) from the dry forest of northwestern Peru.

    PubMed

    Koch, Claudia; Venegas, Pablo J; Böhme, Wolfgang

    2015-06-02

    Three new blind snake species of the genus Epictia are described based on material collected in the Peruvian Regions Amazonas, Cajamarca and La Libertad. All three species are well differentiated from all congeners based on characteristics of their morphology and coloration. They share 10 scale rows around the middle of the tail and possess two supralabials with the anterior one in broad contact with the supraocular. Epictia septemlineata sp. nov. has 16 subcaudal scales, 257 mid-dorsal scale rows, a yellowish-white rostral, and a black terminal spine. Epictia vanwallachi sp. nov. exhibits 16 subcaudals, 188 mid-dorsal scale rows, a grayish-brown rostral, and a yellow terminal spine. Epictia antoniogarciai sp. nov. features 14-18 subcaudals, 195-208 mid-dorsal scale rows, a bright yellow or yellowish-white rostral, and the terminal spine and terminal portion of the tail yellow. All three species were collected in the interandean dry forest valleys of the Marañón River and its tributaries. This region is an area of endemism and warrants further attention from systematic and conservation biologists.

  6. A Molecular Fluorescent Probe for Targeted Visualization of Temperature at the Endoplasmic Reticulum

    PubMed Central

    Arai, Satoshi; Lee, Sung-Chan; Zhai, Duanting; Suzuki, Madoka; Chang, Young Tae

    2014-01-01

    The dynamics of cellular heat production and propagation remains elusive at a subcellular level. Here we report the first small molecule fluorescent thermometer selectively targeting the endoplasmic reticulum (ER thermo yellow), with the highest sensitivity reported so far (3.9%/°C). Unlike nanoparticle thermometers, ER thermo yellow stains the target organelle evenly without the commonly encountered problem of aggregation, and successfully demonstrates the ability to monitor intracellular temperature gradients generated by external heat sources in various cell types. We further confirm the ability of ER thermo yellow to monitor heat production by intracellular Ca2+ changes in HeLa cells. Our thermometer anchored at nearly-zero distance from the ER, i.e. the heat source, allowed the detection of the heat as it readily dissipated, and revealed the dynamics of heat production in real time at a subcellular level. PMID:25330751

  7. Parasitic copepod (Lernaea cyprinacea) outbreaks in foothill yellow-legged frogs (Rana boylii) linked to unusually warm summers in northern California

    Treesearch

    Sarah J. Kupferberg; Alessandro Catenazzi; Kevin Lunde; Amy J. Lind; Wendy J. Palen

    2009-01-01

    How climate change may affect parasite–host assemblages and emerging infectious diseases is an important question in amphibian decline research. We present data supporting a link between periods of unusually warm summer water temperatures during 2006 and 2008 in a northern California river, outbreaks of the parasitic copepod Lernaea cyprinacea, and...

  8. Hardwood Growth and Foliar Nutrient Concentratios Best in Clean Cultivation Treatments

    Treesearch

    Harvey E. Kennedy

    1984-01-01

    Nine hardwood species were planted at a 3 m by 3 m spacing on a Mississippi River front soil (Aeric Fluvaquents) in western Mississippi and subjected to three intensities of cultural treatments. Because of the death of yellow-poplar during a severe spring flood (1973) and severe iron deficiency in three oaks caused from high soil pH, only five species are discussed in...

  9. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-06-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average ±30% (at 95% confidence level).

  10. Yellow sweet potato flour: use in sweet bread processing to increase β-carotene content and improve quality.

    PubMed

    Nogueira, Amanda C; Sehn, Georgia A R; Rebellato, Ana Paula; Coutinho, Janclei P; Godoy, Helena T; Chang, Yoon K; Steel, Caroline J; Clerici, Maria Teresa P S

    2018-01-01

    Yellow sweet potato is mostly produced by small farmers, and may be a source of energy and carotenoids in the human diet, but it is a highly perishable crop. To increase its industrial application, yellow sweet potato flour has been produced for use in bakery products. This study aimed to evaluate the technological quality and the carotenoids content in sweet breads produced with the replacement of wheat flour by 0, 3, 6, and 9% yellow sweet potato flour. Breads were characterized by technological parameters and β-carotene levels during nine days of storage. Tukey's test (p<0.05) was used for comparison between means. The increase in yellow sweet potato flour concentrations in bread led to a decrease of specific volume and firmness, and an increase in water activity, moisture, orange coloring, and carotenoids. During storage, the most significant changes were observed after the fifth day, with a decrease in intensity of the orange color. The β-carotene content was 0.1656 to 0.4715 µg/g in breads with yellow sweet potato flour. This work showed a novel use of yellow sweet potato in breads, which brings benefits to consumers' health and for the agricultural business.

  11. Magnetic resonance imaging measurements of organs within the coelomic cavity of red-eared sliders (Trachemys scripta elegans), yellow-bellied sliders (Trachemys scripta scripta), Coastal plain cooters (Pseudemys concinna floridana), and hieroglyphic river cooters (Pseudemys concinna hieroglyphica).

    PubMed

    Mathes, Karina A; Schnack, Marcus; Rohn, Karl; Fehr, Michael

    2017-12-01

    OBJECTIVE To determine anatomic reference points for 4 turtle species and to evaluate data on relative anatomic dimensions, signal intensities (SIs), and position of selected organs within the coelomic cavity by use of MRI. ANIMALS 3 turtle cadavers (1 red-eared slider [Trachemys scripta elegans], 1 yellow-bellied slider [Trachemys scripta scripta], and 1 Coastal plain cooter [Pseudemys concinna floridana]) and 63 live adult turtles (30 red-eared sliders, 20 yellow-bellied sliders, 5 Coastal plain cooters, and 8 hieroglyphic river cooters [Pseudemys concinna hieroglyphica]). PROCEDURES MRI and necropsy were performed on the 3 turtle cadavers. Physical examination, hematologic evaluation, and whole-body radiography were performed on the 63 live turtles. Turtles were sedated, and MRI in transverse, sagittal, and dorsal planes was used to measure organ dimensions, position within the coelomic cavity, and SIs. Body positioning after sedation was standardized with the head, neck, limbs, and tail positioned in maximum extension. RESULTS Measurements of the heart, liver, gallbladder, and kidneys in sagittal, transverse, and dorsal planes; relative position of those organs within the coelom; and SIs of the kidneys and liver were obtained with MRI and provided anatomic data for these 4 turtle species. CONCLUSIONS AND CLINICAL RELEVANCE MRI was a valuable tool for determining the position, dimensions, and SIs of selected organs. Measurement of organs in freshwater chelonians was achievable with MRI. Further studies are needed to establish reference values for anatomic structures in turtles. Results reported here may serve as guidelines and aid in clinical interpretation of MRI images for these 4 species.

  12. Narrowing the range of water availability projections in China using the Budyko framework

    NASA Astrophysics Data System (ADS)

    Osborne, Joe; Lambert, Hugo

    2017-04-01

    There is a growing demand for reliable 21st-century projections of water availability at the regional scale. Used alone, global climate models (GCMs) are unsuitable for generating such projections at catchment scales in the presence of simulated aridity biases. This is because the Budyko framework dictates that the partitioning of precipitation into runoff and evapotranspiration scales as a non-linear function of aridity. Therefore, GCMs are typically used in tandem with global hydrological models (GHMs), but this process is computationally expensive. Here, considering a Chinese case study, we utilise the Budyko framework to make use of plentiful GCM output, without the need for GHMs. We first apply the framework to 20th-century observations to show that the significant declines in Yellow river discharge between 1951 and 2000 cannot be accounted for by modelled climate change alone, with human activities playing a larger but poorly quantified role. We further show that the Budyko framework can be used to narrow the range of water availability projections in the Yangtze and Yellow river catchments by 33% an 72%, respectively, in the 21st-century RCP8.5 business-as-usual emission scenario. In the Yellow catchment the best-guess end-of-21st-century change in runoff decreases from an increase of 0.09 mm/d in raw multi-model mean output to an increase of 0.04 mm/d in Budyko corrected multi-model mean output. While this is a valuable finding, we stress that these changes could be dwarfed by changes due to human activity in the 21st century, unless strict water management policies are implemented.

  13. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    PubMed

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  14. [Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River Basin].

    PubMed

    Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua

    2013-02-01

    Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.

  15. Strategies for improving the performance of plywood adhesive mix fillers from southern yellow pine bark

    Treesearch

    Thomas L. Eberhardt; Karen G. Reed

    2006-01-01

    Southern yellow pine bark was obtained from an industrial source and subjected to grinding and classification operations to ultimately afford finely ground bark fractions for evaluation as plywood adhesive mix fillers. Specifically, by grinding in a laboratory blender, we were able to generate a bark fraction rich in periderm tissue with its interlocking spiculate...

  16. Improving plantation establishment by optimizing growth capacity and planting time of western yellow pines

    Treesearch

    James L. Jenkinson

    1980-01-01

    Seedlings of 27 sources of western yellow pines, selected in climates typical of the species, were raised in a nursery in the western Sierra Nevada. Seedling top and root growth capacities were periodically assessed during fall and winter, and field survivals of outplanted seedlings were evaluated in different climates with summer drought. In the nursery, four distinct...

  17. Evaluating the spatiotemporal variations of water budget across China over 1951-2006 using IBIS model

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.; Wei, X.; Peng, C.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.; Ju, W.

    2010-01-01

    The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run-off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run-off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run-off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run-off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run-off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run-off, and the Zhemin hydrological region showed a significant increasing trend.

  18. Geochemical provenance of sediments from the northern East China Sea document a gradual migration of the Asian Monsoon belt over the past 400,000 years

    NASA Astrophysics Data System (ADS)

    Beny, François; Toucanne, Samuel; Skonieczny, Charlotte; Bayon, Germain; Ziegler, Martin

    2018-06-01

    The reconstruction of the long-term evolution of the East Asian Monsoon remains controversial. In this study, we aim to give a new outlook on this evolution by studying a 400 kyr long sediment record (U1429) from the northern East China Sea recovered during IODP Expedition 346. Neodymium isotopic ratios and rare earth element concentrations of different grain-size fractions reveal significant provenance changes of the sediments in the East China Sea between East Asian continental sources (mainly Yellow River) and sediment contributions from the Japanese Archipelago. These provenance changes are interpreted as the direct impact of sea level changes, due to the reorganization of East Asian river mouth locations and ocean circulation on the East China Sea shelf, and latitudinal shifts of the intertropical convergence zone (ITCZ) from the interior of Asia to the western North Pacific Ocean. Our data reveal the dominance of winter and summer monsoons during glacial and interglacial periods, respectively, except for glacial MIS 6d (∼150-180 ka) during which unexpected summer monsoon dominated conditions prevailed. Finally, our data suggests a possible strengthening of the interglacial summer monsoon rainfalls over the East Asian continent and Japan throughout the past 400 kyr, and between MIS 11 and MIS 5 in particular. This could result from a gradual northward migration of the ITCZ.

  19. Sensitive naked eye detection and quantification assay for nitrite by a fluorescence probe in various water resources

    NASA Astrophysics Data System (ADS)

    Zhang, Fengyuan; Zhu, Xinyue; Jiao, Zhijuan; Liu, Xiaoyan; Zhang, Haixia

    2018-07-01

    An uncontrolled increase of nitrite concentration in groundwater, rivers and lakes is a growing threat to public health and environment. It is important to monitor the nitrite levels in water and clinical diagnosis. Herein, we developed a switch-off fluorescence probe (PyI) for the sensitive detection of nitrite ions in the aqueous media. This probe selectively recognizes nitrite ions through a distinct visual color change from colorless to pink with a detection limit of 0.1 μM. This method has been successfully applied to the determination of nitrites in tap water, lake water and Yellow River water with recoveries in the range of 94.8%-105.4%.

  20. Identifying across‐system sources of variation in a generalist freshwater fish: Correlates of total and size‐specific abundance of yellow perch

    USGS Publications Warehouse

    Carey, Michael P.; Mather, M. E.

    2009-01-01

    Variation in fish abundance across systems presents a challenge to our understanding of fish populations because it limits our ability to predict and transfer basic ecological principles to applied problems. Yellow perch (Perca flavescens) is an ideal species for exploring environmental and biotic correlates across system because it is widely distributed and physiologically tolerant. In 16 small, adjacent systems that span a wide range of environmental and biotic conditions, yellow perch were sampled with a standard suite of gear. Water quality, morphometry, vegetation, invertebrates and fish communities were concurrently measured. Multimodel inference was used to prioritise regressors for the entire yellow perch sample and three size groups (35-80, 81-180, ≥181 mm TL). Across systems, pH and fish richness were identified as the key drivers of yellow perch abundance. At very low pH (<4.0), few fish species and few yellow perch individuals were found. At ponds with moderately low pH (4.0–4.8), numbers of yellow perch increased. Ponds with high pH (>4.8) had many other species and few yellow perch. Similar patterns for pH and fish community were observed for the two largest‐size classes. Negative interactions were observed between the medium‐ and large‐sized yellow perch and between the largest and smallest yellow perch, although interspecific interactions were weaker than expected. This examination of variability for an indicator species and its component‐size classes provides ecological understanding that can help frame the larger‐scale sampling programs needed for the conservation of freshwater fish.

  1. LED lamp

    DOEpatents

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  2. Monitoring Ecological and Environmental Changes in Coastal Wetlands in the Yellow River Delta from 1987 to 2010 Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Shang, Kun; Zhao, Dong; Gan, Fuping; Xiao, Chenchao

    2016-04-01

    Many wetlands in the world have degraded rapidly in recent years, especially in China. The Yellow River Delta (YRD) is one of the largest deltas in China. The YRD Nature Reserve is one of China's most complete, broadest, and youngest wetland ecological systems in the warm-temperate zone. Most previous studies have placed particular emphasis on ecological environment or landscape of the YRD based on the distribution of wetlands. In recent years, with the rapid development of the city of Dongying, located in the YRD, the impacts of human activities are increasingly significant, so that monitoring changes in the wetlands has become especially important. In this research, we applied an improved Support Vector Machine (SVM) approach to wetland classification based on feature band set construction and optimization using seven Landsat images. By extracting waterlines, classifying wetlands and deriving landscape parameters, we have achieved high-frequency comprehensive monitoring of the wetlands in the YRD over a relatively long period. It offers a better estimate of wetland change trends than certain previous studies. From 1987 to 2010, the natural waterline primarily experienced erosion due to precipitation abnormalities, as well as coastal exploitation, as the co-analyzed meteorological data suggest. Meanwhile, the artificial waterline barely changed. The wetland area decreased rapidly from approximately 4,607 km2 to 2,714 km2 between 1987 and 2000. Ecological resilience and landscape diversity also decreased significantly during this period. The major impact factors were most likely urbanization, population expansion and the exploitation of the wetlands. After 2000, ecological resilience exhibited a positive trend. However, because newly built aquatic farms and salt works caused serious damages and threatened the natural beach landscape, the landscape fragmentation of muddy and sandy beaches increased after 2000. According to the results, more effective policies and laws for wetland protection are urgently needed, and the water sources of these wetlands should be guaranteed in the future. In particular, there is an urgent need to establish a complete dynamic monitoring system of the land use/cover change in the YRD.

  3. Symposium on Human Health and Global Climate Change.

    DTIC Science & Technology

    1996-03-01

    Cholera epidemics are typically associated with seacoasts and rivers, for instance, where the cholera organism, Vibrio cholerae , survives by...everywhere. These blooms represent "environmental reservoirs" for microbes, such as Vibrio cholerae , the cause of cholera in humans. Similarly, insect and...nowadays. We find them in New Mexico , in Minnesota, in Virginia, and in New York. Around the world there is a resurgence of cholera , malaria, and yellow

  4. Fresh-Water Mussels (Mollusca: Bivalvia: Unionidae) of the Upper Mississippi River: Observations at Selected Sites within the 9-Foot Channel Navigation Project on Behalf of the U.S. Army.

    DTIC Science & Technology

    1978-06-16

    Larailie teree *Yellow Sandshell Slough Sandshell Ladyfinger Banana Shell L. higginsi *Higgins’ Eye Higgins Eye Higgin’s (sic] Eye Higgin’s Sandshell...Elliptio hopetonensia Lea. M. S. thesis, Emory University, Atlanta, Georgia. Pp. 1-61. fiay, R. H. 1978. Application of an acetate peel technique to

  5. City of Freeport, Florida, State Road 20 Water Main Installation, Final Environmental Assessment, Eglin Air Force Base, Florida

    DTIC Science & Technology

    2010-07-01

    tracked Species, Eglin AFB Scientific Name Common Name Status State Federal Fish Acipenser oxyrinchus desotoi Gulf Sturgeon LS LT Awaous banana River...West’s Flax LE - Litsea aestivalis Pondspice LE - Lupinus westianus Gulfcoast Lupine LT - Macranthera flammea Hummingbird Flower LE - Magnolia ashei...Pinguicula primuliflora Primrose- Flowered Butterwort LE - Platanthera integra Southern Yellow Fringeless Orchid LE - Polygonella macrophylla Large-Leaved

  6. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  7. Do incentives still matter for the reform of irrigation management in the Yellow River Basin in China?

    NASA Astrophysics Data System (ADS)

    Wang, Jinxia; Huang, Jikun; Zhang, Lijuan; Huang, Qiuqiong

    2014-09-01

    Under the pressure of increasing water shortages and the need to sustain the development of irrigated agriculture, since the middle of the 1990s, officials in the YRB have begun to push for the institutional reform of irrigation management. Based on a panel data set collected in 2001 and 2005 in the Yellow River Basin, the overall goal of this paper is to examine how the irrigation management reform has proceeded since the early 2000s and what the impacts are of the incentive mechanisms on water use and crop yields. The results show that after the early 2000s, irrigation management reform has accelerated. Different from contracting management, more Water User Associations (WUAs) chose not to establish incentive mechanisms. The econometric model results indicate that using incentive mechanisms to promote water savings is effective under the arrangement of contracting management and not effective under WUAs. However, if incentives are provided to the contracting managers, the wheat yield declines significantly. Our results imply that at the later stage of the reform, the cost of reducing water use by providing incentives to managers includes negative impacts on some crop yields. Therefore, how to design win-win supporting policies to ensure the healthy development of the irrigation management reform should be highly addressed by policy makers.

  8. Molecular data and ecological niche modelling reveal the phylogeographic pattern of Cotinus coggygria (Anacardiaceae) in China's warm-temperate zone.

    PubMed

    Wang, W; Tian, C Y; Li, Y H; Li, Y

    2014-11-01

    The phylogeography of common and widespread species helps to elucidate the history of local flora and vegetation. In this study, we selected Cotinus coggygria, a species widely distributed in China's warm-temperate zone. One chloroplast DNA (cpDNA) region and ecological niche modelling were used to examine the phylogeographic pattern of C. coggygria. The cpDNA data revealed two phylogeographic groups (Southern and Northern) corresponding to the geographic regions. Divergence time analyses revealed that divergence of the two groups occurred at approximately 147,000 years before the present (BP), which coincided with the formation of the downstream area of the Yellow River, indicating that the Yellow River was a weak phylogeographic divide for C. coggygria. The molecular data and ecological niche modelling also indicated that C. coggyria did not experience population expansion after glaciations. This study thus supports the fact that Pleistocene glacial cycles only slightly affected C. coggygria, which survived in situ and occupied multiple localised glacial refugia during glaciations. This finding is contrary to the hypothesis of large-scale range habitat contraction and retreat into a few main refugia. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China.

    PubMed

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-05-19

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.

  10. Habitat-dependent changes in vigilance behaviour of Red-crowned Crane influenced by wildlife tourism.

    PubMed

    Li, Donglai; Liu, Yu; Sun, Xinghai; Lloyd, Huw; Zhu, Shuyu; Zhang, Shuyan; Wan, Dongmei; Zhang, Zhengwang

    2017-11-30

    The Endangered Red-crowned Crane (Grus japonensis) is one of the most culturally iconic and sought-after species by wildlife tourists. Here we investigate how the presence of tourists influence the vigilance behaviour of cranes foraging in Suaeda salsa salt marshes and S. salsa/Phragmites australis mosaic habitat in the Yellow River Delta, China. We found that both the frequency and duration of crane vigilance significantly increased in the presence of wildlife tourists. Increased frequency in crane vigilance only occurred in the much taller S. salsa/P. australis mosaic vegetation whereas the duration of vigilance showed no significant difference between the two habitats. Crane vigilance declined with increasing distance from wildlife tourists in the two habitats, with a minimum distance of disturbance triggering a high degree of vigilance by cranes identified at 300 m. The presence of wildlife tourists may represent a form of disturbance to foraging cranes but is habitat dependent. Taller P. australis vegetation serves primarily as a visual obstruction for cranes, causing them to increase the frequency of vigilance behaviour. Our findings have important implications for the conservation of the migratory red-crowned crane population that winters in the Yellow River Delta and can help inform visitor management.

  11. Bioavailability of trace metals in sediments of a recovering freshwater coastal wetland in China's Yellow River Delta, and risk assessment for the macrobenthic community.

    PubMed

    Yang, Wei; Li, Xiaoxiao; Pei, Jun; Sun, Tao; Shao, Dongdong; Bai, Junhong; Li, Yanxia

    2017-12-01

    We investigated the speciation of trace metals and their ecological risks to macrobenthic communities in a recovering coastal wetland of China's Yellow River Delta during the freshwater release project. We established 16 sampling sites in three restoration areas and one intertidal reference area, and collected sediments and macrobenthos four times from 2014 to 2015. The instability index for the trace metals showed a moderate risk for Mn and a high risk for Cd. For both Mn and Cd, the carbonate and FeMn-bound fractions appear to contribute mostly to the instability and bioavailability indexes, but for Cd, the exchangeable fraction also have a much higher contribution. The bioavailability index indicated higher bioavailability of trace metals in freshwater restoration areas than that in the intertidal area. The single-factor contamination index indicated that most trace metal concentrations in the macrobenthos were in excess of the national standard. The biota-sediment accumulation factor suggested that the macrobenthos accumulated most As, Cd, and Cu. Redundancy analysis showed clear relationships between the macrobenthos and sediment metal concentrations. Our results will help wetland managers to assess the bioaccumulation risks based on metal speciation, and to improve management of these recovering freshwater wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Occurrence of Clinostomum complanatum in Aphanius dispar (Actinoptrygii: Cyprinodontidae) collected from Mehran River, Hormuzgan Province, South of Iran

    PubMed Central

    Gholami, Z; Mobedi, I; Esmaeili, HR; Kia, EB

    2011-01-01

    Objective To investigate the possibility of Aphanius dispar (A.dispar) acting as intermediate host for Clinostomum complanatum (C. complanatum), from Mehran River, Hormuzgan Province of Iran. Methods During a biological study of A. dispar in Mehran River, Hormuzgan Province, South of Iran, a total of 97 fish specimens were collected in 24 January 2006. Results 4 specimens (4.12%) including 1 male and 3 female were found infected with C. complanatum metacercaria. These metacercaria were coiled in the epiderm on the body surface of infected fishes. The infection is known as yellow spot disease. The parasite abundance, intensity and prevalence were 0.05%, 1.25% and 4.12%, respectively. The infection was higher in females than males. Conclusions To the best of our knowledge, this is the first report on occurrence of C. complanatum metacercaria in A. dispar in Iran. PMID:23569757

  13. Water quality in the Schuylkill River, Pennsylvania: the potential for long-lead forecasts

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Peralez, J.

    2012-12-01

    Prior analysis of pathogen levels in the Schuylkill River has led to a categorical daily forecast of water quality (denoted as red, yellow, or green flag days.) The forecast, available to the public online through the Philadelphia Water Department, is predominantly based on the local precipitation forecast. In this study, we explore the feasibility of extending the forecast to the seasonal scale by associating large-scale climate drivers with local precipitation and water quality parameter levels. This advance information is relevant for recreational activities, ecosystem health, and water treatment (energy, chemicals), as the Schuylkill provides 40% of Philadelphia's water supply. Preliminary results indicate skillful prediction of average summertime water quality parameters and characteristics, including chloride, coliform, turbidity, alkalinity, and others, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic. Water quality parameter trends, including historic land use changes along the river, association with climatic variables, and prediction models will be presented.

  14. Composite Earthquake Catalog of the Yellow Sea for Seismic Hazard Studies

    NASA Astrophysics Data System (ADS)

    Kang, S. Y.; Kim, K. H.; LI, Z.; Hao, T.

    2017-12-01

    The Yellow Sea (a.k.a West Sea in Korea) is an epicontinental and semi-closed sea located between Korea and China. Recent earthquakes in the Yellow Sea including, but not limited to, the Seogyuckryulbi-do (1 April 2014, magnitude 5.1), Heuksan-do (21 April 2013, magnitude 4.9), Baekryung-do (18 May 2013, magnitude 4.9) earthquakes, and the earthquake swarm in the Boryung offshore region in 2013, remind us of the seismic hazards affecting east Asia. This series of earthquakes in the Yellow Sea raised numerous questions. Unfortunately, both governments have trouble in monitoring seismicity in the Yellow Sea because earthquakes occur beyond their seismic networks. For example, the epicenters of the magnitude 5.1 earthquake in the Seogyuckryulbi-do region in 2014 reported by the Korea Meteorological Administration and China Earthquake Administration differed by approximately 20 km. This illustrates the difficulty with seismic monitoring and locating earthquakes in the region, despite the huge effort made by both governments. Joint effort is required not only to overcome the limits posed by political boundaries and geographical location but also to study seismicity and the underground structures responsible. Although the well-established and developing seismic networks in Korea and China have provided unprecedented amount and quality of seismic data, high quality catalog is limited to the recent 10s of years, which is far from major earthquake cycle. It is also noticed the earthquake catalog from either country is biased to its own and cannot provide complete picture of seismicity in the Yellow Sea. In order to understand seismic hazard and tectonics in the Yellow Sea, a composite earthquake catalog has been developed. We gathered earthquake information during last 5,000 years from various sources. There are good reasons to believe that some listings account for same earthquake, but in different source parameters. We established criteria in order to provide consistent information in the Yellow Sea composite earthquake catalog (YComCat). Since earthquake catalog plays critical role in the seismic hazard assessment, YComCat provides improved input to reduce uncertainties in the seismic hazard estimations.

  15. Fish assemblage structure and habitat associations in a large western river system

    USGS Publications Warehouse

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  16. River water quality and pollution sources in the Pearl River Delta, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2005-07-01

    Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.

  17. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Binquan; Liang, Zhongmin; Zhang, Jianyun; Wang, Guoqing; Zhao, Weimin; Zhang, Hongyue; Wang, Jun; Hu, Yiming

    2018-01-01

    Climate variability and human activities are two main contributing attributions for runoff changes in the Yellow River, China. In the loess hilly-gully regions of the middle Yellow River, water shortage has been a serious problem, and this results in large-scale constructions of soil and water conservation (SWC) measures in the past decades in order to retain water for agricultural irrigation and industrial production. This disturbed the natural runoff characteristics. In this paper, we focused on a typical loess hilly-gully region (Wudinghe and Luhe River basins) and investigated the effects of SWC measures and climate variability on runoff during the period of 1961-2013, while the SWC measures were the main representative of human activities in this region. The nonparametric Mann-Kendall test was used to analyze the changes of annual precipitation, air temperature, potential evapotranspiration (PET), and runoff. The analysis revealed the decrease in precipitation, significant rise in temperature, and remarkable runoff reduction with a rate of more than 0.4 mm per year. It was found that runoff capacity in this region also decreased. Using the change point detection methods, the abrupt change point of annual runoff series was found at 1970, and thus, the study period was divided into the baseline period (1961-1970) and changed period (1971-2013). A conceptual framework based on four statistical runoff methods was used for attribution analysis of runoff decline in the Wudinghe and Luhe River basins (-37.3 and -56.4%, respectively). Results showed that runoff reduction can be explained by 85.2-90.3% (83.3-85.7%) with the SWC measures in the Wudinghe (Luhe) River basin while the remaining proportions were caused by climate variability. The findings suggested that the large-scale SWC measures demonstrated a dominant influence on runoff decline, and the change of precipitation extreme was also a promoting factor of the upward trending of SWC measures' contribution to runoff decline. This study enhances our understanding of runoff changes caused by SWC measures and climate variability in the typical semiarid region of Loess Plateau, China.

  19. Multi-Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment

    PubMed Central

    Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao

    2017-01-01

    The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi’an, Yan’an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F−, Cl−, NO3−, HCO3−, SO42−), cations (NH4+, K+, Na+, Ca2+, Mg2+), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl−, SO42−, Na+, K+, Ca2+, Mg2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F−, NO3−, NH4+ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F−, Cl−, NO3−, SO42− were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan’an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run. PMID:28974043

  20. Multi-Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment.

    PubMed

    Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Mielke, Howard W; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao

    2017-10-02

    The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi'an, Yan'an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F - , Cl - , NO₃ - ,HCO₃ - , SO₄ 2- ), cations (NH₄⁺, K⁺, Na⁺, Ca 2+ ,Mg 2+ ), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl - , SO₄ 2- , Na⁺, K⁺, Ca 2+ , Mg 2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F - , NO₃ - , NH₄⁺ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F - , Cl - , NO₃ - , SO₄ 2- were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan'an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run.

  1. Recessive Resistance Derived from Tomato cv. Tyking-Limits Drastically the Spread of Tomato Yellow Leaf Curl Virus

    PubMed Central

    Pereira-Carvalho, Rita C.; Díaz-Pendón, Juan A.; Fonseca, Maria Esther N.; Boiteux, Leonardo S.; Fernández-Muñoz, Rafael; Moriones, Enrique; Resende, Renato O.

    2015-01-01

    The tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato (Solanum lycopersicum L.) crops throughout tropical and subtropical regions of the world. TYLCD is associated with a complex of single-stranded circular DNA plant viruses of the genus Begomovirus (family Geminiviridae) transmitted by the whitefy Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). The tomato inbred line TX 468-RG is a source of monogenic recessive resistance to begomoviruses derived from the hybrid cv. Tyking F1. A detailed analysis of this germplasm source against tomato yellow leaf curl virus-Israel (TYLCV-IL), a widespread TYLCD-associated virus, showed a significant restriction to systemic virus accumulation even under continuous virus supply. The resistance was effective in limiting the onset of TYLCV-IL in tomato, as significantly lower primary spread of the virus occurred in resistant plants. Also, even if a limited number of resistant plants could result infected, they were less efficient virus sources for secondary spread owing to the impaired TYLCV-IL accumulation. Therefore, the incorporation of this resistance into breeding programs might help TYLCD management by drastically limiting TYLCV-IL spread. PMID:26008699

  2. WILLAMETTE BASIN SURFACE WATER ISOSCAPE (18O AND 2H) FOR INTERPRETING TEMPORAL CHANGES OF SOURCE WATER WITHIN THE RIVER.

    EPA Science Inventory

    Understanding how water sources for rivers are shifting spatially over time will greatly aid our ability to understand climate impacts on rivers. Because stable isotopes of precipitation vary geographically, variation in the stable isotopes of river water can indicate source wat...

  3. Petrographic and biomarker analysis of xylite-rich coal from the Kolubara and Kostolac lignite basins (Pannonian Basin, Serbia)

    NASA Astrophysics Data System (ADS)

    Đoković, Nataša; Mitrović, Danica; Životić, Dragana; Bechtel, Achim; Sachsenhofer, Reinhard F.; Stojanović, Ksenija

    2018-02-01

    The maceral and biomarker characteristics of 4 sublithotypes of xylite-rich coal (SXCs), pale yellow, dark yellow, brown and black, originating from the Kolubara and Kostolac lignite basins were determined. Based on these results, differences in sources and changes of organic matter (OM) resulting in formation of 4 SXCs were established. Conifers (particularly Cupressaceae, Taxodiaceae and Pinacea) had a significant impact on the precursor OM of all SXCs. The contribution of gymnosperm vs. angiosperm vegetation decreased in order pale yellow SXC>dark yellow SXC>brown SXC>black SXC. The distribution of non-hopanoid triterpenoids indicates that change of SXC colour from yellow to black is associated with reduced input of angiosperm plants from the Betulacea family. Differences in hopane distribution, bitumen content, proportion of short-chain n-alkanes and degree of aromatization of di- and triterpenoids of pale yellow SXC are controlled by microbial communities which took part in the diagenetic alteration of OM. The content of total huminites increased from black to pale yellow SXC, whereas contents of total liptinite and inertinite macerals showed the opposite trend. SXCs differ according to textinite/ulminite ratio, which sharply decreased from pale yellow to black SXC, reflecting increase in gelification of woody tissue. Regarding the composition of liptinite macerals, the SXCs mostly differ according to resinite/liptodetrinite and resinite/suberinite ratios, which are higher in yellow than in brown and black SXC. This result along with values of TOC/N ratio and Carbon Preference Index indicate that the contribution of well preserved woody material, including lignin tissue vs. the impact of epicuticular waxes decreased from yellow to black SXC.

  4. Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys Polyactis) along the north coast of China.

    PubMed

    Ma, Qiuyun; Jiao, Yan; Ren, Yiping

    2017-01-01

    In this study, length-weight relationships and relative condition factors were analyzed for Yellow Croaker (Larimichthys polyactis) along the north coast of China. Data covered six regions from north to south: Yellow River Estuary, Coastal Waters of Northern Shandong, Jiaozhou Bay, Coastal Waters of Qingdao, Haizhou Bay, and South Yellow Sea. In total 3,275 individuals were collected during six years (2008, 2011-2015). One generalized linear model, two simply linear models and nine linear mixed effect models that applied the effects from regions and/or years to coefficient a and/or the exponent b were studied and compared. Among these twelve models, the linear mixed effect model with random effects from both regions and years fit the data best, with lowest Akaike information criterion value and mean absolute error. In this model, the estimated a was 0.0192, with 95% confidence interval 0.0178~0.0308, and the estimated exponent b was 2.917 with 95% confidence interval 2.731~2.945. Estimates for a and b with the random effects in intercept and coefficient from Region and Year, ranged from 0.013 to 0.023 and from 2.835 to 3.017, respectively. Both regions and years had effects on parameters a and b, while the effects from years were shown to be much larger than those from regions. Except for Coastal Waters of Northern Shandong, a decreased from north to south. Condition factors relative to reference years of 1960, 1986, 2005, 2007, 2008~2009 and 2010 revealed that the body shape of Yellow Croaker became thinner in recent years. Furthermore relative condition factors varied among months, years, regions and length. The values of a and relative condition factors decreased, when the environmental pollution became worse, therefore, length-weight relationships could be an indicator for the environment quality. Results from this study provided basic description of current condition of Yellow Croaker along the north coast of China.

  5. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (<100 m3/s). As a result, the impact of these small floodplain rivers on the dissolved chemical load of large river systems is not constrained. To fill this knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical budget of large river systems, and they must be better monitored to address future challenges in river basin management.

  6. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Pan, Yuepeng; Wang, Yuesi; Paulot, Fabien; Henze, Daven

    2016-04-01

    Rapid Asian industrialization has lead to increased atmospheric nitrogen deposition downwind threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2°× 2/3° horizontal resolution over the East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the much higher NH3 emissions reflect its intensive agricultural activities. We improve the seasonality of Asian NH3 emissions; emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7% over the South China Sea, and become important (greater than 30%) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian Monsoon and in nitrogen emissions. The model adjoint further points out that nitrogen deposition to the Yellow Sea originates from sources over China (92% contribution) and the Korean peninsula (7%), and by sectors from fertilizer use (24%), power plants (22%), and transportation (18%). Deposition to the South China Sea shows source contribution from Mainland China (64%), Taiwan (21%), and the rest 15% from the Southeast Asian countries and oceanic NH3 emissions. The adjoint analyses also indicate that reducing Asian NH3 emissions would increase NOy dry deposition to the Yellow Sea (28% offset annually), limiting the effectiveness of NH3 emission controls.

  7. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China.

    PubMed

    Xu, Li; Wang, Tieyu; Wang, Jihua; Lu, Anxiang

    2017-04-01

    The occurrence, speciation and transport of heavy metals in 9 coastal rivers from watershed of Laizhou Bay were investigated. The largest dissolved concentrations of Cd, Cu and Zn in water were 6.26, 2755.00, 2076.00 μg/L, respectively, much higher than several drinking water guidelines. The greatest concentrations of Cu, Zn, Cr, Ni, Pb and Cd in sediments were 1462, 1602, 196, 67.2, 63.5 and 1.41 mg/kg, dw, respectively. Correlation and principal component analysis was also conducted to determine the extent between the concentrations of metals in water and sediment, as well as relevant parameters. Throughout the river stretch, most of Cr Zn, Cr, Ni and Pb bound to residual fraction, however, Cd was preferentially bound to the exchangeable phase. Among the 9 rivers, Yellow river account for 72.5%, 67.5%, 55.4%, 59.4%, 79.4% and 85.5% for Cr, Ni, Cu, Zn. Cd and Pb, respectively. The combined potential ecological risk indexes were used to evaluate potential risks. The majority of sampling sites from watershed of Laizhou Bay have moderate ecological risk from metals. The government should pay more attention to the ecological risk of river ecosystem which flow to Laizhou Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Environmental and Cultural Impact. Proposed Tennessee Colony Reservoir, Trinity River, Texas. Volume III. Appendices D and E.

    DTIC Science & Technology

    1972-01-01

    daily dissolved oxygen concentration above 5 mg/l, assuming there are normal seasonal and daily variations above this concentration, (2) dissovled oxygen ... Oxygen Concentrations: Surface oxygen determinations were made at each col- lecting station at monthly intervals. Determinations were done using a...Yellow Springs Oxygen Analyzer Model 54. G. Phosphorus and nitrogen determinations : Water samples for chemical analysis were collected at the surface

  9. Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia.

    PubMed

    Liu, Jun; Chen, Zongyu; Wang, Lijuan; Zhang, Yilong; Li, Zhenghong; Xu, Jiaming; Peng, Yurong

    2016-08-01

    The origin and evolution of brine and saline groundwater have always been a challenged work for geochemists and hydrogeologists. Chemical and isotopic data of brine and saline waters were used to trace the sources of salinity and therefore to understand the transport mechanisms of groundwater in Xishanzui, Inner Mongolia. Both Cl/Br (molar) versus Na/Br (molar) and Cl (meq/L) versus Na (meq/L) indicated that salinity was from halite dissolution or at least a significant impact by halite dissolution. The logarithmic plot of the concentration trends of Cl (mg/L) versus Br (mg/L) for the evaporation of seawater and the Qinghai Salt Lake showed that the terrestrial halite dissolution was the dominated contribution for the salinity of this brine. The stable isotope ratios of hydrogen and oxygen suggested that the origin of brine was from paleorecharge water which experienced mixing of modern water in shallow aquifer. δ(37)Cl values ranged from -0.02 to 3.43 ‰ (SMOC), and reflecting mixing of different sources. The Cl isotopic compositions suggest that the dissolution of halite by paleometeoric water had a great contribution to the salinity of brine, and the contributions of the residual seawater and the dissolution of halite by the Yellow River water could be excluded.

  10. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  11. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  12. Export of microplastics from land to sea. A modelling approach.

    PubMed

    Siegfried, Max; Koelmans, Albert A; Besseling, Ellen; Kroeze, Carolien

    2017-12-15

    Quantifying the transport of plastic debris from river to sea is crucial for assessing the risks of plastic debris to human health and the environment. We present a global modelling approach to analyse the composition and quantity of point-source microplastic fluxes from European rivers to the sea. The model accounts for different types and sources of microplastics entering river systems via point sources. We combine information on these sources with information on sewage management and plastic retention during river transport for the largest European rivers. Sources of microplastics include personal care products, laundry, household dust and tyre and road wear particles (TRWP). Most of the modelled microplastics exported by rivers to seas are synthetic polymers from TRWP (42%) and plastic-based textiles abraded during laundry (29%). Smaller sources are synthetic polymers and plastic fibres in household dust (19%) and microbeads in personal care products (10%). Microplastic export differs largely among European rivers, as a result of differences in socio-economic development and technological status of sewage treatment facilities. About two-thirds of the microplastics modelled in this study flow into the Mediterranean and Black Sea. This can be explained by the relatively low microplastic removal efficiency of sewage treatment plants in the river basins draining into these two seas. Sewage treatment is generally more efficient in river basins draining into the North Sea, the Baltic Sea and the Atlantic Ocean. We use our model to explore future trends up to the year 2050. Our scenarios indicate that in the future river export of microplastics may increase in some river basins, but decrease in others. Remarkably, for many basins we calculate a reduction in river export of microplastics from point-sources, mainly due to an anticipated improvement in sewage treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    PubMed

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Using CSLD Method to Calculate COD Pollution Load of Wei River Watershed above Huaxian Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2017-12-01

    Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.

  15. Aquaculture report 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, D.K.; Watson, L.; Kent, J.C.

    1977-04-08

    Growth of channel catfish (Ictalurus punctatus) and Tilapia zillii in the Reft River Geothermal Area (RRGT) geothermal waters can equal or surpass that in a commercial aquaculture facility. Fish and prawn mortality over the course of the intermediate term preliminary study did not appear to be related to any inherent geothermal water chemistry conditions. Temperature control was a problem but does not appear to be beyond design control. The absence of temperature-related mortality in channel catfish, Tilapia zilli, and yellow perch (Perca flavescens) indicates increased survival and suggests reduced expenditures for disease control. It may also allow higher fish densitiesmore » in commercial aquaculture operations using geothermal water. Results of this study indicate potential for commercial aquaculture development at the Raft River Geothermal Testing Site.« less

  16. Simulation of blue and green water resources in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zuo, D.

    2014-09-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  17. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.

    PubMed

    Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu

    2015-05-01

    The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. Copyright © 2015. Published by Elsevier Inc.

  18. Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, L.; Qi, J. H.; Shi, J. H.; Chen, X. J.; Gao, H. W.

    2013-05-01

    Atmospheric aerosol samples were collected over the Northern Yellow Sea of China during the years of 2006 and 2007, in which the Total Carbon (TC), Cu, Pb, Cd, V, Zn, Fe, Al, Na+, Ca2+, Mg2+, NH4+, NO3-, SO42-, Cl-, and K+ were measured. The principle components analysis (PCA) and positive matrix factorization (PMF) receptor models were used to identify the sources of particulate matter. The results indicated that seven factors contributed to the atmospheric particles over the Northern Yellow Sea, i.e., two secondary aerosols (sulfate and nitrate), soil dust, biomass burning, oil combustion, sea salt, and metal smelting. When the whole database was considered, secondary aerosol formation contributed the most to the atmospheric particle content, followed by soil dust. Secondary aerosols and soil dust consisted of 65.65% of the total mass of particulate matter. The results also suggested that the aerosols over the North Yellow Sea were heavily influenced by ship emission over the local sea area and by continental agricultural activities in the northern China, indicating by high loading of V in oil combustion and high loading of K+ in biomass burning. However, the contribution of each factor varied greatly over the different seasons. In spring and autumn, soil dust and biomass burning were the dominant factors. In summer, heavy oil combustion contributed the most among these factors. In winter, secondary aerosols were major sources. Backward trajectories analysis indicated the 66% of air mass in summer was from the ocean, while the air mass is mainly from the continent in other seasons.

  19. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  20. Satellite Altimetry based River Forecasting of Transboundary Flow

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.

    2012-12-01

    Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.

  1. A simple optical model to estimate suspended particulate matter in Yellow River Estuary.

    PubMed

    Qiu, Zhongfeng

    2013-11-18

    Distribution of the suspended particulate matter (SPM) concentration is a key issue for analyzing the deposition and erosion variety of the estuary and evaluating the material fluxes from river to sea. Satellite remote sensing is a useful tool to investigate the spatial variation of SPM concentration in estuarial zones. However, algorithm developments and validations of the SPM concentrations in Yellow River Estuary (YRE) have been seldom performed before and therefore our knowledge on the quality of retrieval of SPM concentration is poor. In this study, we developed a new simple optical model to estimate SPM concentration in YRE by specifying the optimal wavelength ratios (600-710 nm)/ (530-590 nm) based on observations of 5 cruises during 2004 and 2011. The simple optical model was attentively calibrated and the optimal band ratios were selected for application to multiple sensors, 678/551 for the Moderate Resolution Imaging Spectroradiometer (MODIS), 705/560 for the Medium Resolution Imaging Spectrometer (MERIS) and 680/555 for the Geostationary Ocean Color Imager (GOCI). With the simple optical model, the relative percentage difference and the mean absolute error were 35.4% and 15.6 gm(-3) respectively for MODIS, 42.2% and 16.3 gm(-3) for MERIS, and 34.2% and 14.7 gm(-3) for GOCI, based on an independent validation data set. Our results showed a good precision of estimation for SPM concentration using the new simple optical model, contrasting with the poor estimations derived from existing empirical models. Providing an available atmospheric correction scheme for satellite imagery, our simple model could be used for quantitative monitoring of SPM concentrations in YRE.

  2. Decadal-scale variations of sedimentary dinoflagellate cyst records from the Yellow Sea over the last 400 years

    NASA Astrophysics Data System (ADS)

    Kim, So-Young; Roh, Youn Ho; Shin, Hyeon Ho; Huh, Sik; Kang, Sung-Ho; Lim, Dhongil

    2018-01-01

    In recent decades, the Yellow Sea has experienced severe environmental deterioration due to increasing input of anthropogenic pollutants and consequently accelerated eutrophication. Whilst there have been significant advances in documenting historical records of metal pollution in the Yellow Sea region, changes in phytoplankton community structures affected by eutrophication remain understudied. Here, we present a new record of dinoflagellate cyst-based signals in age-dated sediment cores from the Yellow Sea mud deposits to provide better insight into eutrophication history and identification of associated responses of the regional phytoplankton community. It is worthy of note that there were significant variations in abundances and community structures of dinoflagellate cysts in three historical stages in association with increasing anthropogenic activity over the last 400 years. Pervasive effects of human interference altering the Yellow Sea environments are recognized by: 1) an abrupt increase of organic matter, including the diatom-produced biogenic opal concentrations (∼1850); 2) a distinct shift in phytoplankton composition towards dinoflagellate dominance (∼1940), and 3) recent acceleration of dinoflagellate cyst accumulation (∼1990). Particularly in the central Yellow Sea shelf, the anomalously high deposition of dinoflagellate cysts (especially Alexandrium species) is suggested to be a potentially important source of inoculum cells serving as a seed population for localized and recurrent blooms in coastal areas around the Yellow Sea.

  3. Temporal and spatial variations of surface particulate organic carbon in the Bohai and Yellow Sea of China

    NASA Astrophysics Data System (ADS)

    Hang, F.; Wang, X.; Yu, Z.

    2017-12-01

    The Yellow-Bohai Sea is a semi-closed marginal sea in the east of China, affected much by human activities, especially the Bohai Sea. The present study evaluates spatial and seasonal variations of surface particulate organic carbon (POC) that was derived from MODIS month-average data for the period of July 2002-December 2016. Our analyses show that POC concentrations are significantly higher in the Bohai Sea (314.7-587.9 mg m-3) than in the Yellow Sea (181.3-492.2 mg m-3). In general, POC concentrations were higher in the nearshore waters than in the offshore. There are strong seasonal to interannual variations in POC. Mean POC was highest in spring in both Bohai Sea and Yellow Sea; the lowest POC was found in summer in the Yellow Sea, but in winter in the Bohai Sea. The elevated POC from summer to fall indicates that there was allochthonous source of POC. Overall, there was a decreasing trend in POC prior to year 2012, followed by a strong upward trend until the end of 2015. The interannual variability in POC was significantly correlated with NPGO, PDO and ENSO in the Yellow Sea, but only with NPGO in the Bohai Sea. Our analyses point out that both climate variability and human activity may impacts the carbon cycle in the Yellow-Bohai Sea.

  4. Ground water resources of the Bryce Canyon National Park Area, Utah: With a section on the drilling of a test well

    USGS Publications Warehouse

    Marine, I. Wendell

    1963-01-01

    The water need at Bryce Canyon National Park in 1957 was about 1.3 million cubic feet for a tourist season that lasted from the middle of May to the middle of October. To evaluate the adequacy of water-supply sources, a hypothetical future need of 5 million cubic feet of water per season is used. This amount of water might be obtained from the East Fork of the Sevier River, from wells in the alluvium of the East Fork, from Yellow Creek Spring and nearby springs, which are below the canyon rim, or from a well drilled about 2,000 feet to the top of the Tropic shale. Although the present source of water, consisting of wells in the alluvium of East Creek valley, may be an important supplemental source in the future, it will not yield sufficient water in dry years to meet the total demand for water at the park.The yield of Yellow Creek Spring and nearby springs is estimated at a total of 7.8 million cubic feet of water per season. The springs provide water of satisfactory chemical quality, and are a reliable source even in times of drought. A serious disadvantage of using this source of water is the difficulty of constructing a pipeline over extremely rugged terrain from the source to the lodge and headquarters area.A well drilled to the top of the Tropic shale of Cretaceous age in the lodge and headquarters area might penetrate two or more aquifers, one at the base of the Wasatch formation of Eocene age and one or more in the Wahweap and Straight Cliffs sandstones of Cretaceous age. The yield of this well would depend to a large degree on the number of fractures encountered. To assure the most favorable conditions for intercepting fracture zones in the bedrock, a test-well site is proposed near the crest of a gentle anticline where tension fractures in the rocks should be common.Shallow wells in the alluvium of East Creek valley cannot be depended upon to yield sufficient water in times of drought, but they are nevertheless an important source. The water-storage capacity of the alluvium of East Creek valley in the vicinity of the wells of the Utah Parks Co. is estimated at 1.4 million cubic feet. By lowering the water table in the valley uniformly without creating excessively large cones of depression, the alluvium could supply the 1.3 million cubic feet of water per season estimated as the water need in 1957. However, in times of drought this alluvium cannot supply the hypothetical future needs of 5 million cubic feet of water per season.

  5. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao

    2013-11-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.

  6. Status of metal levels and their potential sources of contamination in Southeast Asian rivers.

    PubMed

    Chanpiwat, Penradee; Sthiannopkao, Suthipong

    2014-01-01

    To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.

  7. Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: Implications for their origin and depositional environment

    NASA Astrophysics Data System (ADS)

    Ndjigui, Paul-Désiré; Onana, Vincent Laurent; Sababa, Elisé; Bayiga, Elie Constantin

    2018-07-01

    The Lokoundje alluvial clay deposits are located at the left floodplain of the Lokoundje River, towards the estuary in the Kribi region. The mineralogical and geochemical features of the Lokoundje River fine-grained sediments have been reported using XRD, XRF, ICP-MS, and IR instruments in order to understand their provenance and depositional history. The Lokoundje watershed covers a surface area of about 5381 km2. The basement of this watershed is made up of gneisses, amphibolites, migmatites, charnockites, and pyroxenites from the Nyong and Ntem units, in the NW border of the Congo craton. The alluvial materials are about 100 cm thick and cover a total area of 1.4 km2. They are mainly plastic clays with silty-clayey texture and four colors (yellow, red yellow, white, and light grey). The mineral assemblage is composed of kaolinite, quartz, illite, gibbsite, goethite, rutile, and interstratified illite-vermiculite. The infra-red data associated with those of XRD portray the disordering of kaolinite. These materials are mostly constituted by SiO2 (44.33-69.19 wt%, av. = 51.17 wt% with n = 18) and Al2O3 (20.69-30.26 wt%, av. = 26.07 wt%) with very low Fe2O3 contents (1-7.71 wt%, av. = 3.35 wt%). The SiO2/Al2O3 ratio range between 1.46 and 4.1 (av. = 2.06). The alkali contents (Na2O + K2O) are below 5 wt%. ICV, CIA, PIA, and SiO2/Al2O3 portray high degree of chemical weathering in the source area as well as the maturity of sediments. The trace element behavior is quite different probably due to the mixed source rocks; Ba, Sr, Zn have high contents while several elements such as Th and U show low contents. The REE contents are also variable; their concentrations vary between 92 and 1065 ppm (av. = 307 ppm). The mineral assemblage associated with the geochemical data reveal that REE are mainly housed in clay minerals. The behavior of REE is also marked by the abundance of LREE (LREE/HREE = 19.69-34.62). The REE chondrite-normalized spectra confirm the LREE-abundance and exhibit negative Eu anomalies. The PAAS-normalized patterns reveal slight positive Eu anomalies and negative Ce anomalies. The (La/Yb)N values (3.30-8.43, av. = 5.71) display low degree of REE-fractionation in the Lokoundje watershed. The morphological, mineralogical, and geochemical features reveal that the fine-grained sediments derive from the intense weathering of mixed source. The disordering of kaolinite confirms that sediments were sorted during a long transportation before their deposition under oxic conditions (U/Th < 1.25; V/Cr < 2) in the floodplains near the Atlantic coast.

  8. THE DETROIT RIVER AS A CHEMICAL LOADING SOURCE TO LAKE ERIE

    EPA Science Inventory

    The Detroit River, one of 42 designated areas of concern., has been classified as one of the most polluted rivers in North America. This system receives chemical loadings from a variety of sources including upstream discharges, industrial/municipal point sources, combined sewage ...

  9. Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Liu, WanQing

    2018-02-01

    TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.

  10. Population demographics of American eels Anguilla rostrata in two Arkansas, U.S.A., catchments that drain into the Gulf of Mexico.

    PubMed

    Cox, C A; Quinn, J W; Lewis, L C; Adams, S R; Adams, G L

    2016-03-01

    The goal of this study was to compare American eel Anguilla rostrata life history in two inland river systems in Arkansas, U.S.A., that ultimately discharge into the Gulf of Mexico via the Mississippi River and the Red-Atchafalaya catchments. From 21 June 2011 to 24 April 2014, 238 yellow-phase A. rostrata were captured in the middle Ouachita River and tributaries using boat electrofishing and 39 in the lower White River using multiple sampling gears. Most of them were caught downstream of dams in both basins (61%). Medium-sized A. rostrata ranging from 225 to 350 mm total length (LT ) were the most abundant size group in the Ouachita River basin, but they were absent from the White River. Mean LT at age 4 years (i.e. youngest shared age) was 150 mm greater for the White River than the Ouachita River basin. Anguilla rostrata appeared to have a greater initial LT (i.e. minimum size upon arrival) in the White River that allowed them to reach a gonado-somatic index (IG ) of 1·5 up to 4 years earlier, and downstream migration appeared to occur 5 years earlier at 100 mm greater LT ; these differences may be related to increased river fragmentation by dams in the Ouachita River basin. Growth and maturation of A. rostrata in this study were more similar to southern populations along the Atlantic coast than other inland populations. Adult swimbladder nematodes Anguillicoloides crassus were not present in any of the 214 swimbladders inspected. Gulf of Mexico catchments may be valuable production areas for A. rostrata and data from these systems should be considered as range-wide protection and management plans are being developed. © 2016 The Fisheries Society of the British Isles.

  11. Salinity, Temperature, and Optical Characterization of a Tidally Choked Estuary Connected to Two Contrasting Intra-Coastal Waterways

    DTIC Science & Technology

    2013-06-01

    phytoplankton production, and hence chlorophyll a concentration. As a result, light absorption in coastal waters is dominated by CDOM, while light ...water influence in the ocean and to track river plumes in open water (Chen 1999). In one particular case, the addition of chlorophyll a fluorescence...matter (CDOM) (Chen 1999) that consists of the humic and fluvic acids (yellow substance) of decaying plant matter (Nieke et al. 1997). Like chlorophyll

  12. [Mapping environmental vulnerability from ETM + data in the Yellow River Mouth Area].

    PubMed

    Wang, Rui-Yan; Yu, Zhen-Wen; Xia, Yan-Ling; Wang, Xiang-Feng; Zhao, Geng-Xing; Jiang, Shu-Qian

    2013-10-01

    The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.

  13. Human activity and climate variability impacts on sediment discharge and runoff in the Yellow River of China

    NASA Astrophysics Data System (ADS)

    He, Yi; Wang, Fei; Mu, Xingmin; Guo, Lanqin; Gao, Peng; Zhao, Guangju

    2017-07-01

    We analyze the variability of sediment discharge and runoff in the Hekou-Longmen segment in the middle reaches of the Yellow River, China. Our analysis is based on Normalized Difference Vegetation Index (NDVI), sediment discharge, runoff, and monthly meteorological data (1961-2010). The climate conditions are controlled via monthly regional average precipitation and potential evapotranspiration (ET0) that are calculated with the Penman-Monteith method. Data regarding water and soil conservation infrastructure and their effects were investigated as causal factors of runoff and sediment discharge changes. The results indicated the following conclusions: (1) The sediment concentration, sediment discharge, and annual runoff, varied considerably during the study period and all of these factors exhibited larger coefficients of variation than ET0 and precipitation. (2) Sediment discharge, annual runoff, and sediment concentration significantly declined over the study period in a linear fashion. This was accompanied by an increase in ET0 and decline in precipitation that were not significant. (3) Within paired years with similar precipitation and potential evapotranspiration conditions (SPEC), all pairs showed a decline in runoff, sediment discharge, and sediment concentration. (4) Human impacts in this region were markedly high as indicated by NDVI, and soil and water measurements, and especially the soil and water conservation infrastructure resulting in an approximately 312 Mt year-1 of sediment deposition during 1960-1999.

  14. Changes of soil particle size distribution in tidal flats in the Yellow River Delta.

    PubMed

    Lyu, Xiaofei; Yu, Junbao; Zhou, Mo; Ma, Bin; Wang, Guangmei; Zhan, Chao; Han, Guangxuan; Guan, Bo; Wu, Huifeng; Li, Yunzhao; Wang, De

    2015-01-01

    The tidal flat is one of the important components of coastal wetland systems in the Yellow River Delta (YRD). It can stabilize shorelines and protect coastal biodiversity. The erosion risk in tidal flats in coastal wetlands was seldom been studied. Characterizing changes of soil particle size distribution (PSD) is an important way to quantity soil erosion in tidal flats. Based on the fractal scale theory and network analysis, we determined the fractal characterizations (singular fractal dimension and multifractal dimension) soil PSD in a successional series of tidal flats in a coastal wetland in the YRD in eastern China. The results showed that the major soil texture was from silt loam to sandy loam. The values of fractal dimensions, ranging from 2.35 to 2.55, decreased from the low tidal flat to the high tidal flat. We also found that the percent of particles with size ranging between 0.4 and 126 μm was related with fractal dimensions. Tide played a great effort on soil PSD than vegetation by increasing soil organic matter (SOM) content and salinity in the coastal wetland in the YRD. Tidal flats in coastal wetlands in the YRD, especially low tidal flats, are facing the risk of soil erosion. This study will be essential to provide a firm basis for the coast erosion control and assessment, as well as wetland ecosystem restoration.

  15. Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960-2013

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Xia, Jun; She, Dunxian

    2018-01-01

    In recent decades, extreme precipitation events have been a research hotspot worldwide. Based on 12 extreme precipitation indices, the spatiotemporal variation and statistical characteristic of precipitation extremes in the middle reaches of the Yellow River Basin (MRYRB) during 1960-2013 were investigated. The results showed that the values of most extreme precipitation indices (except consecutive dry days (CDD)) increased from the northwest to the southeast of the MRYRB, reflecting that the southeast was the wettest region in the study area. Temporally, the precipitation extremes presented a drying trend with less frequent precipitation events. Generalized extreme value (GEV) distribution was selected to fit the time series of all indices, and the quantiles values under the 50-year return period showed a similar spatial extent with the corresponding precipitation extreme indices during 1960-2013, indicating a higher risk of extreme precipitation in the southeast of the MRYRB. Furthermore, the changes in probability distribution functions of indices for the period of 1960-1986 and 1987-2013 revealed a drying tendency in our study area. Both El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) were proved to have a strong influence on precipitation extremes in the MRYRB. The results of this study are useful to master the change rule of local precipitation extremes, which will help to prevent natural hazards caused.

  16. Geographical Distribution Patterns of Iodine in Drinking-Water and Its Associations with Geological Factors in Shandong Province, China

    PubMed Central

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-01-01

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran’s I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors. PMID:24852390

  17. Spatial Pattern of Soil Salinity in Area Around the Yellow River Delta and Its Seasonal Dynamics over a 3-year Period

    NASA Astrophysics Data System (ADS)

    Lai, J.; Ouyang, Z.

    2017-12-01

    Salt-affected land varies spatially and seasonally in terms of soil salinity. "Bohai Granary" is a newly proposed national-level program which was aimed to improve soil quality and mining grain production potential of the salt-affected land in east China. In this work, soil samples were monthly taken at 11 sites within Wudi county in the Yellow river delta. The spatial distribution pattern of soil salinity were investigated and its seasonal variation over 36 months were discussed. Our findings indicate that the vertical distribution type of soil salinity was bottom-accumulating in the near coastal area while its gradually turned into a type of surface-accumulating as the sampling site moving towards the inner land. The peak of the soil salinity along the soil profile alternately moved upwards and downwards during the growing seasons. However, there was no evidence for the increasing of the total salt amount within the upper 100cm of soil. Moreover, the salt was mostly accumulated in the upper soil (0-40cm) during the late spring and early summer season; and winter wheat was tend to be affected severely at this stage. Therefore, special field practices (e.g. regular irrigation to leach salt, good maintenance of drainage system) should be taken to minimize the threat of soil salinity.

  18. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    PubMed

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  19. Storm-wave-induced seabed deformation: Results from in situ observation in the Yellow River subaqueous delta

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Wang, Z. Mr; Liu, X.; Shan, H.

    2017-12-01

    Submarine landslides move large volumes of sediment and are often hazardous to offshore installations. Current research into submarine landslides mainly relies on marine surveying techniques. In contrast, in situ observations of the submarine landslide process, specifically seabed deformation, are sparse, and therefore restrict our understanding of submarine landslide mechanisms and the establishment of a disaster warning scheme. The submarine landslide monitoring (SLM) system, which has been designed to partly overcome these pitfalls, can monitor storm-wave-induced submarine landslides in situ and over a long time period. The SLM system comprises two parts: (1) a hydrodynamic monitoring tripod for recording hydrodynamic data and (2) a shape accel array for recording seabed deformation at different depths. This study recorded the development of the SLM system and the results of in situ observation in the Yellow River Delta, China, during the boreal winter of 2014-2015. The results show an abrupt small-scale storm-wave-induced seabed shear deformation; the shear interface is in at least 1.5-m depth and the displacement of sediments at 1.23-m depth is more than 13 mm. The performance of the SLM system confirms the feasibility and stability of this approach. Further, the in situ observations, as well as the laboratory tests, helped reveal the profound mechanism of storm-wave-induced seabed deformation.

  20. Changes in daily and monthly rainfall in the Middle Yellow River, China

    NASA Astrophysics Data System (ADS)

    He, Yi; Tian, Peng; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Wang, Fei; Li, Pengfei

    2017-07-01

    Highly concentrated precipitation, where a large percentage of annual precipitation occurs over a few days, may include a high risk of flooding and severe soil erosion. Thus, areas with severe erosion such as the Loess Plateau in China are particularly vulnerable to highly concentrated precipitation events due to climate change. In this study, we investigated spatial and temporal patterns in the concentration of rainfall in the Middle Yellow River (MYR) from the last 56 years (1958-2013). We used daily and monthly precipitation data from 26 meteorological stations in the study area to calculate the precipitation concentration index (PCI) and the concentration index (CI). The southern and northern parts of the MYR were characterized by a lower CI with a decreasing trend, while the middle parts had a higher CI with an increasing trend. High PCI values occurred in the southern MYR, while lower PCIs with a more homogenous rainfall distribution were found mainly in the northern parts of the MYR. The annual PCI and CI exhibited positive trends at most stations, although only a minority of stations had significant trends ( P < 0.05). At seasonal scales, CI exhibited significantly increasing trends in winter at most stations, while a few stations had significant trends in the other three seasons. These findings provide important reference information to facilitate ecological restoration and farming operations in the study region.

  1. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    PubMed Central

    Yao, Hong; Qian, Xin; Gao, Hailong; Wang, Yulei; Xia, Bisheng

    2014-01-01

    Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season) from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s) at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05). The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River) had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River) had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account. PMID:25407421

  3. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected in all three bed-sediment samples, ranged from 1.1 micrograms per kilogram dry weight in C.J. Strike Reservoir to 11 micrograms per kilogram dry weight in Brownlee Reservoir at Burnt River. Data from this study, compared with data collected in the upper Snake River Basin from 1992 to 1994, indicates that, in general, organochlorine concentrations in fish tissue and bed sediment increased from the headwaters of the Snake River in Wyoming downstream to Brownlee Reservoir. The largest trace-element concentrations in fish tissue were in liver samples from carp from Brownlee Reservoir at Burnt River and suckers from the Boise River near Twin Springs. Concentrations of most trace elements were larger in livers than in the sport- fish fillets. However, mercury concentrations were generally larger in the sportfish fillets; they ranged from 0.08 microgram per gram wet weight in yellow perch from C.J. Strike Reservoir to 0.32 microgram per gram wet weight in channel catfish from Brownlee Reservoir at Burnt River. None of the trace-element concentrations in fillets exceeded median international standards or U.S. Food and Drug Administration action levels. Large trace-element concentrations in the upper Snake River Basin were reported in liver samples from suckers from headwater streams, probably a result of historical mining and weathering of metal-rich rocks. Concentrations of most trace elements in the bed-sediment samples were largest in Brownlee Reservoir at Mountain Man Lodge. Concentrations of arsenic, cadmium, chromium, copper, nickel, and zinc in bed sediment from the Mountain Man Lodge site exceeded either the threshold effect level or probable effect level established by the Canadian Government for the protection of benthic life. Arsenic, chromium, copper, and nickel concentrations in bed sediment from Brownlee Reservoir at Burnt River and chromium, copper, and nickel in bed sediment from C.J. Strike Reservoir also exceeded the threshold effect level.

  4. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Guo, Huaming; Zhao, Weiguang; Liu, Shuai; Cao, Yongsheng; Jia, Yongfeng

    2018-04-01

    Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.

  5. [Distribution and sources of polycyclic aromatic hydrocarbons in sediments from rivers of Pearl River Delta and its nearby South China Sea].

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.

  6. Isotopic Characterization of Mercury Downstream of Historic Industrial Contamination in the South River, Virginia.

    PubMed

    Washburn, Spencer J; Blum, Joel D; Demers, Jason D; Kurz, Aaron Y; Landis, Richard C

    2017-10-03

    Historic point source mercury (Hg) contamination from industrial processes on the South River (Waynesboro, Virginia) ended decades ago, but elevated Hg concentrations persist in the river system. In an effort to better understand Hg sources, mobility, and transport in the South River, we analyzed total Hg (THg) concentrations and Hg stable isotope compositions of streambed sediments, stream bank soils, suspended particles, and filtered surface waters. Samples were collected along a longitudinal transect of the South River, starting upstream of the historic Hg contamination point-source and extending downstream to the confluence with the South Fork Shenandoah River. Analysis of the THg concentration and Hg isotopic composition of these environmental samples indicates that the regional background Hg source is isotopically distinct in both Δ 199 Hg and δ 202 Hg from Hg derived from the original source of contamination, allowing the tracing of contamination-sourced Hg throughout the study reach. Three distinct end-members are required to explain the Hg isotopic and concentration variation observed in the South River. A consistent negative offset in δ 202 Hg values (∼0.28‰) was observed between Hg in the suspended particulate and dissolved phases, and this fractionation provides insight into the processes governing partitioning and transport of Hg in this contaminated river system.

  7. Anthropogenic activities have contributed moderately to increased inputs of organic materials in marginal seas off China.

    PubMed

    Liu, Liang-Ying; Wei, Gao-Ling; Wang, Ji-Zhong; Guan, Yu-Feng; Wong, Charles S; Wu, Feng-Chang; Zeng, Eddy Y

    2013-10-15

    Sediment has been recognized as a gigantic sink of organic materials and therefore can record temporal input trends. To examine the impact of anthropogenic activities on the marginal seas off China, sediment cores were collected from the Yellow Sea, the inner shelf of the East China Sea (ECS), and the South China Sea (SCS) to investigate the sources and spatial and temporal variations of organic materials, i.e., total organic carbon (TOC) and aliphatic hydrocarbons. The concentration ranges of TOC were 0.5-1.29, 0.63-0.83, and 0.33-0.85%, while those of Σn-C14-35 (sum of n-alkanes with carbon numbers of 14-35) were 0.08-1.5, 0.13-1.97, and 0.35-0.96 μg/g dry weight in sediment cores from the Yellow Sea, ECS inner shelf, and the SCS, respectively. Terrestrial higher plants were an important source of aliphatic hydrocarbons in marine sediments off China. The spatial distribution of Σn-C14-35 concentrations and source diagnostic ratios suggested a greater load of terrestrial organic materials in the Yellow Sea than in the ECS and SCS. Temporally, TOC and Σn-C14-35 concentrations increased with time and peaked at either the surface or immediate subsurface layers. This increase was probably reflective of elevated inputs of organic materials to marginal seas off China in recent years, and attributed partly to the impacts of intensified anthropogenic activities in mainland China. Source diagnostics also suggested that aliphatic hydrocarbons were mainly derived from biogenic sources, with a minority in surface sediment layers from petroleum sources, consistent with the above-mentioned postulation.

  8. Reconstruction of anthropogenic eutrophication in the region off the Changjiang Estuary and central Yellow Sea: From decades to centuries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhuo-Yi; Wu, Ying; Zhang, Jing; Du, Jin-Zhou; Zhang, Guo-Sen

    2014-01-01

    Anthropogenic activities are known to induce estuarine and coastal eutrophication. However, the eutrophication history over a longer time scale (e.g., over hundreds of years) is often missing, and this perspective is important for an objective assessment of recent-decades anthropogenic activities. To reconstruct eutrophication history in this region, two sediment cores were taken, core E4 in the region off the Changjiang Estuary in the coast of East China Sea, and core E2 in the central Yellow Sea. High sedimentation rate (3.8 cm/yr) of core E4 enabled us to reconstruct a detailed anthropogenic eutrophication history for the past 70 years, while the history at least back to 1855 was further revealed via core E2. Sedimentary nitrogen isotopes (δ15N) in core E4 showed a gradually depleting trend from 5‰ (1930s) to 3.8‰ in the top, which is consistent with the increasing riverine nitrogen flux over the past few decades. A negative relationship was found between total sedimentary Chla (=preserved chlorophyll a+its degradation products) and δ15N (r2=0.68), suggesting the promotion of estuarine productivity by chemical fertilizer-N. Preserved diagnostic pigments ratio (peridinin/fucoxanthin) further suggests that after 1995, the influence of dinoflagellates has been increasing compared to diatoms. At a longer time scale (i.e., core E2), sedimentary δ15N also decreased from 5.1‰ (before 1855) to 4.4‰ (at top layer). As normalized fossil cyanobacterial pigment (zeaxanthin) showed a decreasing trend from before 1855 to the top of the core, we propose that the decreasing sedimentary δ15N after 1855 was not due to assimilation of atmospheric nitrogen, but due to excess nutrients input to the central Yellow Sea, which promoted primary production. This is further proved by preserved pheopigments, which continuously increased from 41.7 nmol g OC-1 (before 1855) to 251 nmol g OC-1 (at top layer) in core E2. Besides revealing the eutrophication history, big history events were also recorded, including the 1998 flood of the Changjiang River (core E4) and the shift of the Yellow River mouth in 1855 (core E2).

  9. Karyological and gonadal sex of eels (Anguilla anguilla) from the German Bight and the lower River Elbe

    NASA Astrophysics Data System (ADS)

    Passakas, T.; Tesch, F.-W.

    1980-06-01

    Yellow eels (Anguilla anguilla) taken during summer from random commercial trapnet samples in the littoral area of Helgoland (n=116) and from a freshwater area of the River Elbe near Hamburg (n=109) were examined with regard to their karyological (i.e. existence of female sex chromosomes) and gonadal sex. In 47 % and 21 % of the two samples, respectively, chromosomes were unidentifiable because of insufficient numbers of mitotic plates. All eels from Helgoland, except one phenotypically undetermined fish, exhibited female gonads: 48 had female sex chromosomes and 13 were karyologically males. As found previously in the River Elbe, eels with male gonads predominated (n=55); 25 were undifferentiated. Of the gonadal males 26 were karyological males and 16 karyological females; the rest could not be identified by chromosome patterns. In contrast, all but one of the Elbe eels with female gonads (n=28) had female sex chromosomes. Some aspects of the sex reversal documented in the eel are considered.

  10. STS-57 Earth observation of the Eastern Mediterranean, Nile River, Asia Minor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation of the Eastern Mediterranean. From a high vantage point over the Nile River, this north-looking view shows the eastern Mediterranean and the entire landmass of Asia Minor, with the Black Sea dimly visible at the horizon. Many of the Greek islands can be seen in the Aegean Sea (top left), off the coast of Asia Minor. Cyprus is visible under atmospheric dust in the northeastern corner of the Mediterranean. The dust cloud covers the east end of the Mediterranean, its western edge demarcated by a line that cuts the center of the Nile Delta. This dust cloud originated far to the west, in Algeria, and moved northeast. A gyre of clouds in the southeast corner of the Mediterranean indicates a complementary counterclockwise (cyclonic) circulation of air. The Euphrates River appears as a thin green line (upper right) in the yellow Syrian desert just south of the mountains of Turkey. The Dead Sea (lower right) lies in a rift valley which extends north into Turkey and sout

  11. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River.

    PubMed

    Xiong, Lihua; Jiang, Cong; Du, Tao

    2014-01-01

    Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.

  12. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads. Anticipating changes in sources and transformations will be critical for effectively managing nonpoint pollution and ecosystem services such as drinking water quality and coastal habitat.

  13. Historical record of lead accumulation and source in the tidal flat of Haizhou Bay, Yellow Sea: Insights from lead isotopes.

    PubMed

    Zhang, Rui; Guan, Minglei; Shu, Yujie; Shen, Liya; Chen, Xixi; Zhang, Fan; Li, Tiegang

    2016-05-15

    In order to investigate the historical records of lead contamination and source in coastal region of Haizhou Bay, Yellow Sea, a sediment core was collected from tidal flat, dated by (210)Pb and (137)Cs. Lead and its stable isotopic ratios were determined. The profiles of enrichment factor (EF) and Pb isotope ratios showed increasing trend upward throughout the core, correlating closely with the experience of a rapid economic and industrial development of the catchment. According to Pb isotopic ratios, coal combustion emission mainly contributed to the Pb burden in sediments. Based on end-member model, coal combustion emission dominated anthropogenic Pb sources in recent decades contributing from 48% to 67% in sediment. And the contribution of leaded gasoline was lower than 20%. A stable increase of coal combustion source was found in sediment core, while the contribution of leaded gasoline had declined recently, with the phase-out of leaded gasoline in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An assessment of fish assemblage structure in a large river

    USGS Publications Warehouse

    Kiraly, Ian A.; Coghlan, S.M.; Zydlewski, Joseph D.; Hayes, D.

    2015-01-01

    The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main-stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main-stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free-flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs.

  15. Environmental Studies of Macrozoobenthos, Aquatic Macrophytes, and Juvenile Fishes in the St. Clair-Detroit River System, 1983-1984

    DTIC Science & Technology

    1986-02-01

    the world . Sediment particle size and contaminant distribution basically determined the benthic community in the SCDRS. The St. Clair River, with its ...Brown bullhead 2 Olc u iuIs j’tesus 3 264 5 279 Yellow bullhead u It iT 3 231 0 - Black redhorse t -Usnel 3 397 S 459 Northern pike us 2 660 1 775...Ponar Grab Data WI Z I- ll 0 t49~ 0- OD-0 * 0 ( 0 t.- I-- 09r, 0 e 0 z x IU 40 I 0m 4 .- K e- eI 9- 0 a CO U IK0z M 0 It Cz S O lw I n 00 I CIS to 0 z z

  16. Sensitive naked eye detection and quantification assay for nitrite by a fluorescence probe in various water resources.

    PubMed

    Zhang, Fengyuan; Zhu, Xinyue; Jiao, Zhijuan; Liu, Xiaoyan; Zhang, Haixia

    2018-07-05

    An uncontrolled increase of nitrite concentration in groundwater, rivers and lakes is a growing threat to public health and environment. It is important to monitor the nitrite levels in water and clinical diagnosis. Herein, we developed a switch-off fluorescence probe (PyI) for the sensitive detection of nitrite ions in the aqueous media. This probe selectively recognizes nitrite ions through a distinct visual color change from colorless to pink with a detection limit of 0.1 μM. This method has been successfully applied to the determination of nitrites in tap water, lake water and Yellow River water with recoveries in the range of 94.8%-105.4%. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Eco-sewerage System Design for Modern Office Buildings: based on Vacuum and Source-separation Technology

    NASA Astrophysics Data System (ADS)

    Xu, Kangning; Wang, Chengwen; Zheng, Min; Yuan, Xin

    2010-11-01

    This study aimed to construct an on-site eco-sewerage system for modern office buildings in urban area based on combined innovative technologies of vacuum and source-separation. Results showed that source-separated grey water had low concentrations of pollutants, which helped the reuse of grey water. However, the system had a low separation efficiency between the yellow water and the brown water, which was caused by the plug problem in the urine collection from the urine-diverting toilets. During the storage of yellow water for liquid fertilizer production, nearly all urea nitrogen transferred to ammonium nitrogen and about 2/3 phosphorus was lost because of the struvite precipitation. Total bacteria and coliforms increased first in the storage, but then decreased to low concentrations. The anaerobic/anoxic/aerobic MBR had high elimination rates of COD, ammonium nitrogen and total nitrogen of the brown water, which were 94.2%, 98.1% and 95.1%, respectively. However, the effluent still had high contents of colority, nitrate and phosphorus, which affected the application of the effluent for flushing water. Even though, the effluent might be used as dilution water for the yellow water fertilizer. Based on the results and the assumption of an ideal operation of the vacuum source-separation system, a future plan for on-site eco-sewerage system of modern office buildings was constructed. Its sustainability was validated by the analysis of the substances flow of water and nutrients.

  18. Southern Monarchs do not Develop Learned Preferences for Flowers With Pyrrolizidine Alkaloids.

    PubMed

    de Oliveira, Marina Vasconcelos; Trigo, José Roberto; Rodrigues, Daniela

    2015-07-01

    Danaus butterflies sequester pyrrolizidine alkaloids (PAs) from nectar and leaves of various plant species for defense and reproduction. We tested the hypothesis that the southern monarch butterfly Danaus erippus shows innate preferences for certain flower colors and has the capacity to develop learned preferences for artificial flowers presenting advantageous floral rewards such as PAs. We predicted that orange and yellow flowers would be innately preferred by southern monarchs. Another prediction is that flowers with both sucrose and PAs would be preferred over those having sucrose only, regardless of flower color. In nature, males of Danaus generally visit PA sources more often than females, so we expected that males of D. erippus would exhibit a stronger learned preference for PA sources than the females. In the innate preference tests, adults were offered artificial non-rewarding yellow, orange, blue, red, green, and violet flowers. Orange and yellow artificial flowers were most visited by southern monarchs, followed by blue and red ones. No individual visited either green or violet flowers. For assessing learned preferences for PA flowers over flowers with no PAs, southern monarchs were trained to associate orange flowers with sucrose plus the PA monocrotaline vs. yellow flowers with sucrose only; the opposite combination was used to train another set of butterflies. In the tests, empty flowers were offered to trained butterflies. Neither males nor females showed learned preferences for flower colors associated with PAs in the training set. Thus, southern monarchs resemble the sister species Danaus plexippus in their innate preferences for orange and yellow flowers. Southern monarchs, similarly to temperate monarchs, might not be as PA-demanding as are other danaine species.

  19. Calculating NH3-N pollution load of wei river watershed above Huaxian section using CSLD method

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2018-02-01

    Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. So it is taken as the research objective in this paper and NH3-N is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load (CSLD)method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly. The non-point source pollution load proportions of total pollution load of NH3-N decrease in the normal, rainy and wet period in turn.

  20. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA: I. Low-flow discharge and major solute chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.

    2010-01-01

    The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO2, Cl, F, HCO3, SO4, NO3, and NH4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO4, and N loads (35–58%) in the Gibbon River. The largest source of HCO3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9–14% of the river discharge at the gage is from thermal flows during this period.

  1. Modelling future improvements in the St. Louis River fishery ...

    EPA Pesticide Factsheets

    The presence of fish consumption advisories has a negative impact on fishing. In the St. Louis River, an important natural resource management goal is to reduce or eliminate fish consumption advisories by remediating contaminant sediments and improving aquatic habitat. However, we currently lack sufficient understanding to estimate the cumulative effects of these habitat improvements on fish contaminant burdens. To address this gap, our study had two main research objectives: first, to determine the relationship between game fish habitat use and polychlorinated biphenyls (PCBs) concentrations in the lower St. Louis River, and two, to calibrate and validate a habitat-based Biota-Sediment Accumulation Factor (BSAF) model that estimates fish PCBs concentration as a function of both sediment and habitat quality. We sampled two resident fishes, Yellow Perch (Perca flavescens) and Black Crappie (Pomoxis nigromaculatus), and two migratory fishes, Northern Pike (Esox lucius) and Walleye (Sander vitreus) of varying size and from locations spread across the St. Louis River estuary, the largest coastal wetland complex in Lake Superior. We found differences in contaminant concentration that were related to habitat usage, though results varied by species. For migratory fishes, increasing diet from Lake Superior was associated with decreasing PCBs concentration in tissue. For resident fishes, PCBs concentration was highest in the industrial portion of the river. Model calibra

  2. Sediment consolidation settlement of Chengbei Sea area in the northern Huanghe River subaqueous delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Feng, Xiuli; Liu, Xiao

    2017-05-01

    One of the most important factors controlling the morphology of the modern Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.

  3. Yellow-Billed Cuckoo Distribution, Abundance, and Habitat Use Along the Lower Colorado and Tributaries, 2006 Annual Report

    USGS Publications Warehouse

    Johnson, Matthew J.; Holmes, Jennifer A.; Calvo, Christopher; Samuels, Ivan; Krantz, Stefani; Sogge, Mark K.

    2007-01-01

    Executive Summary This 2006 annual report details the first season of a 2-year study documenting western yellow-billed cuckoo (Coccyzus americanus occidentalis) distribution, abundance, and habitat use throughout the Lower Colorado River Multi-Species Conservation Plan boundary area. We conducted cuckoo surveys at 55 sites within 17 areas, between 11 June and 13 September. The 243 visits across all sites yielded 180 yellow-billed cuckoo detections. Cuckoos were detected at 27 of the 55 sites, primarily at the Bill Williams River National Wildlife Refuge AZ sites (n = 117 detections) and the Grand Canyon National Park-Lake Mead National Recreation Area AZ delta sites (n = 29 detections). There were also cuckoos at the Gila River-Colorado River Confluence, AZ (n = 9), Overton Wildlife Management, NV area (n = 7), and Limitrophe Division North, AZ (n = 6); however, at these sites the numbers were much lower and very few of these birds were considered to be paired or breeding. The greatest number of detections (n = 79) occurred during the second survey period (3-23 July). In 2006, we confirmed five breeding events, including one nesting observation and sightings of four juveniles; all confirmed breeding was at the Bill Williams River NWR and Grand Canyon NP-Lake Mead NRA delta sites. The breeding status of most of our detections were unknown, however, we observed 17 adult cuckoos carrying nest material or food and 40 cuckoo detections were detected while counter-calling occurred in same area during repeated surveys. We used playback recordings to survey for western yellow-billed cuckoos. Compared to simple point counts or surveys, this method increases the number of detections of this secretive, elusive species. It has long been suspected that cuckoos have a fairly low response rate, and that the standard survey method of using playback recordings may fail to detect all birds present in an area. In 2006, we found that the majority (72%) of cuckoo detections were solicited through playback at all study sites. The number of solicited detections peaked during the first half of July and then declined as the breeding season progressed, while the number of unsolicited detections (cuckoos heard calling before playback was initiated) remained fairly constant. The majority (64%) of cuckoo detections, solicited or unsolicited, were aural; 27 percent were both heard and seen and nine percent were visual detections only. Cuckoos in areas with the largest populations had the highest rate of vocalizations before playback or after the first broadcast. In contrast, more than half the responses at sites with fewer cuckoos (with < 10 detections per site) first occurred after three or more playback recordings. This type of baseline information will be used to help refine the survey protocol for 2007, and to create hypotheses that can serve as the foundation for a full-scale evaluation and optimization of this survey technique. Our preliminary analysis of vegetation data from occupied and unoccupied sites in 2006 focused on general patterns in the distribution and abundance of woody species. The density and composition of woody riparian vegetation varied considerably among the study areas. Much of the variation in tree density was due to the patterns of abundance of trees in the smallest size class (< 8 cm dbh). The dominant tree species at the cuckoo survey sites were cottonwood, willow, and tamarisk. Tamarisk was the most common tree, due to the abundance of small (< 8 cm dbh) individuals. When occupied and unoccupied sites were compared, occupied sites tended to have higher average canopy cover, attributable to higher average cover of the mid and low canopy. The dominant canopy at occupied sites most often consisted of cottonwood or willow trees. In addition, occupied sites in most areas had lower than average total tree density whereas unoccupied sites were denser than average. When densities of trees in different size classes were com

  4. Spatial distributions and deposition chronology of short chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas.

    PubMed

    Zeng, Lixi; Chen, Ru; Zhao, Zongshan; Wang, Thanh; Gao, Yan; Li, An; Wang, Yawei; Jiang, Guibin; Sun, Liguang

    2013-10-15

    As the most complex halogenated contaminants, short chain chlorinated paraffins (SCCPs) are scarcely reported in marine environments. In this work, a total of 117 surficial sediment (0-3 cm) samples and two sediment cores were collected from the Chinese Bohai and Yellow Seas to systematically study the spatial and temporal trends of SCCPs at a large scale in the Chinese marine environment. Total SCCP concentrations in the surficial sediments were in the range of 14.5-85.2 ng g(-1) (dry weight, d.w.) with an average level of 38.4 ng g(-1) d.w. Spatial distribution showed a decreasing trend with the distance from the coast to the open waters. Compositional pattern analysis suggested that C10 was the most predominant homologue group, followed by C11, C12, and C13 homologue groups. The concentrations of total SCCPs in sediment cores ranged from 11.6 to 94.7 ng g(-1) d.w. for YS1 and from 14.7 to 195.6 ng g(-1) d.w. for YS2, with sharp rise from the early 1950s to present based on (210)Pb dating technique. The historical records in cores correspond well to the production and usage changes of CPs in China. Multivariate regression statistics indicate TOC, latitude and longitude are the major factors influencing surficial SCCP levels in the Chinese East Seas by combining analysis with the data from the East China Sea (R(2) = 0.332, p < 0.01). These findings indicated that the sources of SCCPs were mainly from river outflows via ocean current and partly from atmospheric depositions by East Asian monsoon in the sampling areas.

  5. Cultural Resources Investigations of the Upper Minnesota River (639) Project, Deuel and Grant Counties, South Dakota, and Lac Qui Parle and Yellow Medicine Counties, Minnesota,

    DTIC Science & Technology

    1984-09-01

    10,000 B.P. to 9,000 B.P., the climate was cooler and moister than at present. A regional deciduous forest, dominated by oak, •:- ~ elm and ironwood...deltoides Cottonwood Quercus macrocarpa Bur oak Ulmus americana American elm Celtis occidentalis Hackberry Ribes americanum Black currant Ribes missouriense...occidentalis Wolfberry Viburnum lentago Sheepberry, wild raisin /Ulmus rubra Red elm Crataegus chrysocarpa Hawthorn £ Psedera quinquefolia Virginia creeper

  6. Combat Squadrons of the Air Force, World War II,

    DTIC Science & Technology

    1982-01-01

    1952. Inactivated on 1 Jul 1957. Redes- of a paddle wheel river boat, Air Force ignated 7o2d Troop Carrier Squadron blue, the windows lighted Air Force ...782d Bombard- hitched to a red wagon with wheels red, ment Squadron (Heavy) on 19 May hub yellow, tires and axles black, the 1943. Activated on 1 Aug...AD-A128 026 COMBAT SQUADRONS OF TOE AIR FORCE WORLD WAR IU) 1OFFICEOF AIR FORCE HISTORY WASHINGTON DC M MAURER UNCLASSIFIED F/G 15/7 NL

  7. Uranium isotopes (U-234/U-238) in rivers of the Yukon Basin (Alaska and Canada) as an aid in identifying water sources, with implications for monitoring hydrologic change in arctic regions

    USGS Publications Warehouse

    Kraemer, Thomas F.; Brabets, Timothy P.

    2012-01-01

    The ability to detect hydrologic variation in large arctic river systems is of major importance in understanding and predicting effects of climate change in high-latitude environments. Monitoring uranium isotopes (234U and 238U) in river water of the Yukon River Basin of Alaska and northwestern Canada (2001–2005) has enhanced the ability to identify water sources to rivers, as well as detect flow changes that have occurred over the 5-year study. Uranium isotopic data for the Yukon River and major tributaries (the Porcupine and Tanana rivers) identify several sources that contribute to river flow, including: deep groundwater, seasonally frozen river-valley alluvium groundwater, and high-elevation glacial melt water. The main-stem Yukon River exhibits patterns of uranium isotopic variation at several locations that reflect input from ice melt and shallow groundwater in the spring, as well as a multi-year pattern of increased variability in timing and relative amount of water supplied from higher elevations within the basin. Results of this study demonstrate both the utility of uranium isotopes in revealing sources of water in large river systems and of incorporating uranium isotope analysis in long-term monitoring of arctic river systems that attempt to assess the effects of climate change.

  8. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    PubMed

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  9. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea.

    PubMed

    Li, Hongmei; Zhang, Yongyu; Tang, Hongjie; Shi, Xiaoyong; Rivkin, Richard B; Legendre, Louis

    2017-03-01

    Large macroalgal blooms (i.e. green tides of Ulva prolifera) occurred in the southern Yellow Sea, China, yearly from 2007 to 2016. They were among the largest of such outbreaks around the world, and these blooms likely originated along the coast of the Jiangsu Province, China. Understanding the roles of nutrients in the onset of these macroalgal blooms is needed to identify their origin. This study analyzes the spatiotemporal variations in dissolved inorganic nitrogen and phosphorus (DIN and PO 4 -P) and the N/P ratio along the Jiangsu coast from 1996 to 2014 during late-March to April, the months which corresponds to the pre-bloom period of green tides since 2007. A zone of high DIN and PO 4 -P concentrations has developed along the Jiangsu coast, between the cities of Sheyang and Nantong, since 1996. There was an 18-year trend of increasing DIN concentrations during the pre-bloom period as well as a positive correlation between the U. prolifera biomass and DIN concentrations. Nutrient inputs from rivers and mariculture in the Jiangsu Province may have provided nitrogen that contributed the magnitude of macroalgal blooms that subsequently spread into the southern Yellow Sea. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Tracking sediment through the Holocene: Determining anthropogenic contributions to a sediment-rich agricultural system, north-central USA

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Belmont, Patrick; Finnegan, Noah

    2013-04-01

    Management and restoration of sediment-impaired streams requires quantification of sediment sources and pathways of transport. Addressing the role of humans in altering the magnitude and sources of sediment supplied to a catchment is notoriously challenging. Here, we explore how humans have amplified erosion in geomorphically-sensitive portions of the predominantly-agricultural Minnesota River basin in north-central USA. In the Minnesota River basin, the primary sources of sediment are classified generally as upland agricultural field vs. near-channel sources, with near-channel sources including stream banks, bluffs, and ravines. Using aerial lidar data, repeat terrestrial lidar scans of bluffs, ravine monitoring, historic air photo analyses, and sediment fingerprinting, we have developed a sediment budget to determine the relative importance of each source in a tributary to the Minnesota River, the Le Sueur River. We then investigate how these sources have changed through time, from changes evident over the past few decades to changes associated with valley evolution over the past 13,400 years. The Minnesota River valley was carved ~13,400 years ago through catastrophic drainage of glacial Lake Agassiz. As the Minnesota River valley incised, knickpoints have migrated upstream into tributaries, carving out deep valleys where the most actively eroding near-channel sediment sources occur. The modern sediment budget, closed for the time period 2000 to 2010, shows that the majority of the fine sediment load in the Le Sueur River comes from bluffs and other near-channel sources in the deeply-incised knick zone. Numerical modeling of valley evolution constrained by mapped and dated strath terraces cut into the glacial till presents an opportunity to compare the modern sediment budget to that of the river prior to anthropogenic modification. This comparison reveals a natural background or "pre-agriculture" rate of erosion from near-channel sources to be 3-5 times lower than modern near-channel erosion rates. Notably, depositional records from a naturally-dammed lake downstream on the upper Mississippi River show a more dramatic 10-fold increase in deposition rates from pre-agricultural times to the present. Sediment fingerprinting shows that pre-agriculture sediment loads were dominated by near-channel sediment sources. As deposition rates rose in the late 1800s and early 1900s, the sources shifted increasingly to agricultural soil erosion. In the past few decades, deposition rates have remained high, but sediment fingerprinting indicates yet another significant shift back to near-channel sources. On-going changes in basin hydrology, from both installation of agricultural drainage systems and on-going climate change have put more water in the rivers, increasing rates of near-channel bank and bluff erosion. This most recent shift in sediment sources has significant implications for turbidity management in the Minnesota River basin.

  11. Effects of the free fatty acid content in yellow grease on performance, carcass characteristics, and serum lipids in broilers.

    PubMed

    Wu, H; Gong, L M; Guo, L; Zhang, L Y; Li, J T

    2011-09-01

    This study was conducted to investigate whether the free fatty acid (FFA) content of yellow grease would influence the performance and carcass characteristics of broiler chicks. A total of 432 one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 4 treatments, with each treatment being applied to 6 pens of 18 chicks. The dietary treatments were based on corn and soybean meal and were supplemented with either soybean oil (2.86% FFA) or yellow grease with a low (2.74%), medium (12.59%), or high (19.05%) FFA content. The fat sources were supplemented at 1.5% of the diet during the starter phase (0 to 21 d) and at 3.0% of the diet during the grower phase (22 to 42 d). From d 0 to 42, the BW gains of chicks fed diets containing soybean oil and yellow grease with 2.74% FFA were similar. As the FFA level in the yellow grease increased, the BW gain of chicks decreased (P < 0.01). The reduction in BW gain appeared to be mediated by a reduction in feed intake. The dressing percentage and the percentage of breast muscle in the carcass were significantly (P < 0.01) lower for broilers fed any yellow grease diet compared with birds fed soybean oil. In contrast, abdominal fat was significantly increased in diets containing yellow grease. These results demonstrate that the performance of birds fed yellow grease with a low content of FFA was essentially equal to that of birds fed soybean oil. However, because yellow grease samples containing FFA levels greater than 2.74% negatively affected bird performance, producers should exercise caution with regard to feeding broilers yellow grease with an elevated FFA content. In 42-d-old broilers, serum total cholesterol and low-density lipoprotein cholesterol levels were elevated in birds fed yellow grease, regardless of the dietary level. In contrast, serum high-density lipoprotein cholesterol and triglyceride levels were unaffected by dietary treatment. Although dietary FFA may influence triglyceride-rich lipoprotein metabolism in broilers, an explanation for the observed effects remains elusive.

  12. Effects of Yangtze River source water on genomic polymorphisms of male mice detected by RAPD.

    PubMed

    Zhang, Xiaolin; Zhang, Zongyao; Zhang, Xuxiang; Wu, Bing; Zhang, Yan; Yang, Liuyan; Cheng, Shupei

    2010-02-01

    In order to evaluate the environmental health risk of drinking water from Yangtze River source, randomly amplified polymorphic DNA (RAPD) markers were used to detect the effects of the source water on genomic polymorphisms of hepatic cell of male mice (Mus musculus, ICR). After the mice were fed with source water for 90 days, RAPD-polymerase chain reactions (PCRs) were performed on hepatic genomic DNA using 20 arbitrary primers. Totally, 189 loci were generated, including 151 polymorphic loci. On average, one PCR primer produced 5.3, 4.9 and 4.8 bands for each mouse in the control, the groups fed with source water and BaP solution, respectively. Compared with the control, feeding mice with Yangtze River source water caused 33 new loci to appear and 19 to disappear. Statistical analysis of RAPD printfingers revealed that Yangtze River source water exerted a significant influence on the hepatic genomic polymorphisms of male mice. This study suggests that RAPD is a reliable and sensitive method for the environmental health risk of Yangtze River source water.

  13. Dispersal and deposition of river sediments in coastal seas: Models from Asia and the tropics

    NASA Astrophysics Data System (ADS)

    Wright, L. D.

    The diverse mechanisms by which river-borne sediments are dispersed into coastal oceans and the associated patterns of deposition are considered for some tropical and Asian river mouth dispersal systems: the Huanghe (Yellow River), which enters the Bohai Gulf (China), the Purari River which enters the Gulf of Papua (Papua New Guinea) and the Jaba River, which enters Empress Augusta Bay (Bougainville, Papua New Guinea). These models contrast sharply with 'conventional' models such as that of the Mississippi, although in different respects. Extremely high suspended sediment concentrations off the Huanghe mouth cause sinking, gravity-driven plumes which produce rapid deposition very near the mouth; extremely rapid seaward growth of the subaqueous delta results. Although the average water discharge of the Purari exceeds that of the Huanghe, the average sediment discharge from the Purari is an order of magnitude less than that of the Huanghe. Suspended sediments transported via buoyant plumes from the Purari mouth are trapped inshore by the southeasterly trades and have their ultimate sink in the tidal estuaries to the west of the mouths rather than offshore. The Jaba is a small river with a very steep gradient and an extremely high bed load relative to water discharge. It has constructed a protruding and rapidly evolving delta. Literature on the Indonesian rivers Solo and Porong dispersal systems suggests that those systems may, at different times, be subject to processes similar to those which operate off the mouths of the Huanghe, Purari and Jaba although no single, direct analogies can be made.

  14. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources.

    PubMed

    Tong, Yindong; Bu, Xiaoge; Chen, Junyue; Zhou, Feng; Chen, Long; Liu, Maodian; Tan, Xin; Yu, Tao; Zhang, Wei; Mi, Zhaorong; Ma, Lekuan; Wang, Xuejun; Ni, Jing

    2017-01-05

    Based on a time-series dataset and the mass balance method, the contributions of various sources to the nutrient discharges from the Yangtze River to the East China Sea are identified. The results indicate that the nutrient concentrations vary considerably among different sections of the Yangtze River. Non-point sources are an important source of nutrients to the Yangtze River, contributing about 36% and 63% of the nitrogen and phosphorus discharged into the East China Sea, respectively. Nutrient inputs from non-point sources vary among the sections of the Yangtze River, and the contributions of non-point sources increase from upstream to downstream. Considering the rice growing patterns in the Yangtze River Basin, the synchrony of rice tillering and the wet seasons might be an important cause of the high nutrient discharge from the non-point sources. Based on our calculations, a reduction of 0.99Tg per year in total nitrogen discharges from the Yangtze River would be needed to limit the occurrences of harmful algal blooms in the East China Sea to 15 times per year. The extensive construction of sewage treatment plants in urban areas may have only a limited effect on reducing the occurrences of harmful algal blooms in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis).

    PubMed

    Gramza-Michałowska, Anna; Kobus-Cisowska, Joanna; Kmiecik, Dominik; Korczak, Józef; Helak, Barbara; Dziedzic, Krzysztof; Górecka, Danuta

    2016-11-15

    This paper presents a study on development of functional food products containing green and yellow tea leaves. The results indicated that green and yellow tea are significant tools in the creation of the nutritional value, antioxidative potential and stability of the lipid fraction of cookies. Tea-fortified cookies showed considerably higher contents of dietary fiber, especially hemicellulose and insoluble fractions, and were characterized by significantly higher antioxidant potential associated with their phenolics content. Results of ABTS, DPPH, ORACFL and PCL assay showed significantly higher antioxidant potential of tea cookies, highest for yellow tea. The antioxidative potential of applied teas was significant in terms of the inhibition of hydroperoxide content, while formation of secondary lipid oxidation products was less spectacular. It is concluded that tea leaves could be widely used as a source of polyphenols with high antioxidative potential, as well as fiber; thus introducing numerous health benefits for the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The origin of the Ulva macroalgal blooms in the Yellow Sea in 2013.

    PubMed

    Zhang, Jianheng; Huo, Yuanzi; Wu, Hailong; Yu, Kefeng; Kim, Jang Kyun; Yarish, Charles; Qin, Yutao; Liu, Caicai; Xu, Ren; He, Peimin

    2014-12-15

    Green algal blooms have occurred in the Yellow Sea for seven consecutive years from 2007 to 2013. In this study, satellite image analysis and field shipboard observations indicated that the Ulva blooms in 2013 originated in the Rudong coast. The spatial distribution of Ulva microscopic propagules in the Southern Yellow Sea also supported that the blooms originated in the Rudong coast. In addition, multi-source satellite data were used to evaluate the biomass of green algae on the Pyropia aquaculture rafts. The results showed that approximately 2784 tons of Ulva prolifera were attached to the rafts and possessed the same internal transcribed spacer and 5S rDNA sequence as the dominant species in the 2013 blooms. We conclude that the significant biomass of Ulva species on the Pyropia rafts during the harvesting season in radial tidal sand ridges played an important role in the rapid development of blooms in the Yellow Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Occurrence and sources of Escherichia coli in metropolitan St. Louis streams, October 2004 through September 2007

    USGS Publications Warehouse

    Wilkison, Donald H.; Davis, Jerri V.

    2010-01-01

    The occurrence and sources of Escherichia coli (E. coli), one of several fecal indicator bacteria, in metropolitan St. Louis streams known to receive nonpoint source runoff, occasional discharges from combined and sanitary sewers, and treated wastewater effluent were investigated from October 2004 through September 2007. Three Missouri River sites, five Mississippi River sites, and six small basin tributary stream sites were sampled during base flow and storm events for the presence of E. coli and their sources. E. coli host-source determinations were conducted using local library based genotypic methods. Human fecal contamination in stream samples was additionally confirmed by the presence of Bacteroides thetaiotaomicron, an anaerobic, enteric bacterium with a high occurrence in, and specificity to, humans. Missouri River E. coli densities and loads during base flow were approximately 10 times greater than those in the Mississippi River above its confluence with the Missouri River. Although substantial amounts of E. coli originated from within the study area during base flow and storm events, considerable amounts of E. coli in the Missouri River, as well as in the middle Mississippi River sections downstream from its confluence with the Missouri River, originated in Missouri River reaches upstream from the study area. In lower Mississippi River reaches, bacteria contributions from the numerous combined and sanitary sewer overflows within the study area, as well as contributions from nonpoint source runoff, greatly increased instream E. coli densities. Although other urban factors cannot be discounted, average E. coli densities in streams were strongly correlated with the number of upstream combined and sanitary sewer overflow points, and the percentage of upstream impervious cover. Small basin sites with the greatest number of combined and sanitary sewer overflows (Maline Creek and the River des Peres) had larger E. coli densities, larger loads, and a greater percentage of E. coli attributable to humans than other small basin sites; however, even though small basin E. coli densities typically were much larger than in large river receiving streams, small basins contributed, on average, only a small part (a maximum of 16 percent) of the total E. coli load to larger rivers. On average, approximately one-third of E. coli in metropolitan St. Louis streams was identified as originating from humans. Another one-third of the E. coli was determined to have originated from unidentified sources; dogs and geese contributed lesser amounts, 10 and 20 percent, of the total instream bacteria. Sources of E. coli were largely independent of hydrologic conditions-an indication that sources remained relatively consistent with time.

  18. River Export of Plastic from Land to Sea: A Global Modeling Approach

    NASA Astrophysics Data System (ADS)

    Siegfried, Max; Gabbert, Silke; Koelmans, Albert A.; Kroeze, Carolien; Löhr, Ansje; Verburg, Charlotte

    2016-04-01

    Plastic is increasingly considered a serious cause of water pollution. It is a threat to aquatic ecosystems, including rivers, coastal waters and oceans. Rivers transport considerable amounts of plastic from land to sea. The quantity and its main sources, however, are not well known. Assessing the amount of macro- and microplastic transport from river to sea is, therefore, important for understanding the dimension and the patterns of plastic pollution of aquatic ecosystems. In addition, it is crucial for assessing short- and long-term impacts caused by plastic pollution. Here we present a global modelling approach to quantify river export of plastic from land to sea. Our approach accounts for different types of plastic, including both macro- and micro-plastics. Moreover, we distinguish point sources and diffuse sources of plastic in rivers. Our modelling approach is inspired by global nutrient models, which include more than 6000 river basins. In this paper, we will present our modelling approach, as well as first model results for micro-plastic pollution in European rivers. Important sources of micro-plastics include personal care products, laundry, household dust and car tyre wear. We combine information on these sources with information on sewage management, and plastic retention during river transport for the largest European rivers. Our modelling approach may help to better understand and prevent water pollution by plastic , and at the same time serves as 'proof of concept' for future application on global scale.

  19. Farmer perceptions on factors influencing water scarcity for goats in resource-limited communal farming environments.

    PubMed

    Mdletshe, Zwelethu Mfanafuthi; Ndlela, Sithembile Zenith; Nsahlai, Ignatius Verla; Chimonyo, Michael

    2018-05-09

    The objective of the study was to compare factors influencing water scarcity for goats in areas where there are seasonal and perennial rivers under resource-limited communal farming environments. Data were collected using a structured questionnaire (n = 285) administered randomly to smallholder goat farmers from areas with seasonal and perennial rivers. Ceremonies was ranked as the major reason for keeping goats. Water scarcity was ranked the major constraint to goat production in areas with seasonal rivers when compared to areas with perennial rivers (P < 0.05). Dams and rivers were ranked as the major water source for goat drinking in areas with seasonal and perennial river systems during cool dry and rainy seasons. Rivers were ranked as an important water source for goat drinking where there are seasonal and perennial river systems during the cool dry season. Households located close (≤ 3 km) to the nearest water source reported drinking water for goats a scarce resource. These results show that river systems, season and distance to the nearest water source from a household were factors perceived by farmers to influence water scarcity for goats in resource-limited communal farming environments. Farmers should explore water-saving strategies such as recycling wastewater from kitchens and bathrooms as an alternative water source. The government may assist farmers through sinking boreholes to supply water for both humans and livestock.

  20. Potential pollutant sources in a Choptank River subwatershed: Influence of agricultural and residential land use and aqueous and atmospheric sources

    USDA-ARS?s Scientific Manuscript database

    Agriculture and animal feeding operations have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined a subwatershed within the Choptank River watershed for effects of land use on water quality. Water and sediment...

Top